crypto: hifn_795x - Fix DMA setup
[firefly-linux-kernel-4.4.55.git] / drivers / crypto / hifn_795x.c
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
35
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
38
39 #include <asm/kmap_types.h>
40
41 #undef dprintk
42
43 #define HIFN_TEST
44 //#define HIFN_DEBUG
45
46 #ifdef HIFN_DEBUG
47 #define dprintk(f, a...)        printk(f, ##a)
48 #else
49 #define dprintk(f, a...)        do {} while (0)
50 #endif
51
52 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
53 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
54 MODULE_PARM_DESC(hifn_pll_ref,
55                  "PLL reference clock (pci[freq] or ext[freq], default ext)");
56
57 static atomic_t hifn_dev_number;
58
59 #define ACRYPTO_OP_DECRYPT      0
60 #define ACRYPTO_OP_ENCRYPT      1
61 #define ACRYPTO_OP_HMAC         2
62 #define ACRYPTO_OP_RNG          3
63
64 #define ACRYPTO_MODE_ECB                0
65 #define ACRYPTO_MODE_CBC                1
66 #define ACRYPTO_MODE_CFB                2
67 #define ACRYPTO_MODE_OFB                3
68
69 #define ACRYPTO_TYPE_AES_128    0
70 #define ACRYPTO_TYPE_AES_192    1
71 #define ACRYPTO_TYPE_AES_256    2
72 #define ACRYPTO_TYPE_3DES       3
73 #define ACRYPTO_TYPE_DES        4
74
75 #define PCI_VENDOR_ID_HIFN              0x13A3
76 #define PCI_DEVICE_ID_HIFN_7955         0x0020
77 #define PCI_DEVICE_ID_HIFN_7956         0x001d
78
79 /* I/O region sizes */
80
81 #define HIFN_BAR0_SIZE                  0x1000
82 #define HIFN_BAR1_SIZE                  0x2000
83 #define HIFN_BAR2_SIZE                  0x8000
84
85 /* DMA registres */
86
87 #define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
88 #define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
89 #define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
90 #define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
91 #define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
92 #define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
93 #define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
94 #define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
95 #define HIFN_CHIP_ID                    0x98    /* Chip ID */
96
97 /*
98  * Processing Unit Registers (offset from BASEREG0)
99  */
100 #define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
101 #define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
102 #define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
103 #define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
104 #define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
105 #define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
106 #define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
107 #define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
108 #define HIFN_0_SPACESIZE        0x20    /* Register space size */
109
110 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
111 #define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
112 #define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
113 #define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
114 #define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
115 #define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
116
117 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
118 #define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
119 #define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
120 #define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
121 #define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
122 #define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
123 #define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
124 #define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
125 #define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
126 #define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
127 #define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
128
129 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
130 #define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
131 #define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
132 #define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
133 #define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
134 #define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
135 #define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
136 #define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
137 #define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
138 #define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
139 #define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
140 #define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
141 #define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
142 #define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
143 #define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
144 #define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
145 #define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
146 #define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
147 #define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
148 #define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
149 #define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
150 #define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
151 #define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
152 #define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
153
154 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
155 #define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
156 #define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
157 #define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
158 #define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
159 #define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
160 #define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
161 #define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
162 #define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
163 #define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
164 #define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
165
166 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
167 #define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
168 #define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
169 #define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
170 #define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
171 #define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
172 #define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
173 #define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
174 #define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
175 #define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
176 #define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
177 #define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
178 #define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
179 #define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
180 #define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
181 #define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
182 #define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
183 #define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
184
185 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
186 #define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
187 #define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
188
189 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
190 #define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
191
192 /*
193  * DMA Interface Registers (offset from BASEREG1)
194  */
195 #define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
196 #define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
197 #define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
198 #define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
199 #define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
200 #define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
201 #define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
202 #define HIFN_1_PLL              0x4c    /* 795x: PLL config */
203 #define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
204 #define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
205 #define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
206 #define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
207 #define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
208 #define HIFN_1_REVID            0x98    /* Revision ID */
209 #define HIFN_1_UNLOCK_SECRET1   0xf4
210 #define HIFN_1_UNLOCK_SECRET2   0xfc
211 #define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
212 #define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
213 #define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
214 #define HIFN_1_PUB_OP           0x308   /* Public Operand */
215 #define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
216 #define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
217 #define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
218 #define HIFN_1_RNG_DATA         0x318   /* RNG data */
219 #define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
220 #define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
221
222 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
223 #define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
224 #define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
225 #define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
226 #define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
227 #define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
228 #define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
229 #define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
230 #define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
231 #define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
232 #define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
233 #define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
234 #define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
235 #define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
236 #define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
237 #define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
238 #define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
239 #define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
240 #define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
241 #define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
242 #define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
243 #define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
244 #define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
245 #define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
246 #define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
247 #define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
248 #define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
249 #define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
250 #define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
251 #define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
252 #define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
253 #define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
254 #define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
255 #define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
256 #define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
257 #define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
258 #define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
259 #define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
260 #define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
261
262 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
263 #define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
264 #define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
265 #define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
266 #define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
267 #define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
268 #define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
269 #define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
270 #define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
271 #define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
272 #define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
273 #define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
274 #define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
275 #define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
276 #define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
277 #define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
278 #define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
279 #define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
280 #define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
281 #define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
282 #define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
283 #define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
284 #define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
285
286 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
287 #define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
288 #define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
289 #define HIFN_DMACNFG_UNLOCK     0x00000800
290 #define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
291 #define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
292 #define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
293 #define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
294 #define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
295
296 /* PLL configuration register */
297 #define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
298 #define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
299 #define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
300 #define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
301 #define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
302 #define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
303 #define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
304 #define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
305 #define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
306 #define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
307 #define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
308 #define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
309 #define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
310 #define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
311 #define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
312 #define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
313 #define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
314
315 #define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
316
317 /* Public key reset register (HIFN_1_PUB_RESET) */
318 #define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
319
320 /* Public base address register (HIFN_1_PUB_BASE) */
321 #define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
322
323 /* Public operand length register (HIFN_1_PUB_OPLEN) */
324 #define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
325 #define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
326 #define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
327 #define HIFN_PUBOPLEN_EXP_S     7               /* exponent lenght shift */
328 #define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
329 #define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
330
331 /* Public operation register (HIFN_1_PUB_OP) */
332 #define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
333 #define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
334 #define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
335 #define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
336 #define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
337 #define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
338 #define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
339 #define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
340 #define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
341 #define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
342 #define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
343 #define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
344 #define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
345 #define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
346 #define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
347 #define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
348 #define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
349 #define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
350 #define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
351 #define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
352
353 /* Public status register (HIFN_1_PUB_STATUS) */
354 #define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
355 #define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
356
357 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
358 #define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
359
360 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
361 #define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
362
363 #define HIFN_NAMESIZE                   32
364 #define HIFN_MAX_RESULT_ORDER           5
365
366 #define HIFN_D_CMD_RSIZE                24*4
367 #define HIFN_D_SRC_RSIZE                80*4
368 #define HIFN_D_DST_RSIZE                80*4
369 #define HIFN_D_RES_RSIZE                24*4
370
371 #define HIFN_D_DST_DALIGN               4
372
373 #define HIFN_QUEUE_LENGTH               HIFN_D_CMD_RSIZE-1
374
375 #define AES_MIN_KEY_SIZE                16
376 #define AES_MAX_KEY_SIZE                32
377
378 #define HIFN_DES_KEY_LENGTH             8
379 #define HIFN_3DES_KEY_LENGTH            24
380 #define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
381 #define HIFN_IV_LENGTH                  8
382 #define HIFN_AES_IV_LENGTH              16
383 #define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
384
385 #define HIFN_MAC_KEY_LENGTH             64
386 #define HIFN_MD5_LENGTH                 16
387 #define HIFN_SHA1_LENGTH                20
388 #define HIFN_MAC_TRUNC_LENGTH           12
389
390 #define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
391 #define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
392 #define HIFN_USED_RESULT                12
393
394 struct hifn_desc
395 {
396         volatile __le32         l;
397         volatile __le32         p;
398 };
399
400 struct hifn_dma {
401         struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE+1];
402         struct hifn_desc        srcr[HIFN_D_SRC_RSIZE+1];
403         struct hifn_desc        dstr[HIFN_D_DST_RSIZE+1];
404         struct hifn_desc        resr[HIFN_D_RES_RSIZE+1];
405
406         u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
407         u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
408
409         u64                     test_src, test_dst;
410
411         /*
412          *  Our current positions for insertion and removal from the descriptor
413          *  rings.
414          */
415         volatile int            cmdi, srci, dsti, resi;
416         volatile int            cmdu, srcu, dstu, resu;
417         int                     cmdk, srck, dstk, resk;
418 };
419
420 #define HIFN_FLAG_CMD_BUSY      (1<<0)
421 #define HIFN_FLAG_SRC_BUSY      (1<<1)
422 #define HIFN_FLAG_DST_BUSY      (1<<2)
423 #define HIFN_FLAG_RES_BUSY      (1<<3)
424 #define HIFN_FLAG_OLD_KEY       (1<<4)
425
426 #define HIFN_DEFAULT_ACTIVE_NUM 5
427
428 struct hifn_device
429 {
430         char                    name[HIFN_NAMESIZE];
431
432         int                     irq;
433
434         struct pci_dev          *pdev;
435         void __iomem            *bar[3];
436
437         unsigned long           result_mem;
438         dma_addr_t              dst;
439
440         void                    *desc_virt;
441         dma_addr_t              desc_dma;
442
443         u32                     dmareg;
444
445         void                    *sa[HIFN_D_RES_RSIZE];
446
447         spinlock_t              lock;
448
449         void                    *priv;
450
451         u32                     flags;
452         int                     active, started;
453         struct delayed_work     work;
454         unsigned long           reset;
455         unsigned long           success;
456         unsigned long           prev_success;
457
458         u8                      snum;
459
460         struct tasklet_struct   tasklet;
461
462         struct crypto_queue     queue;
463         struct list_head        alg_list;
464
465         unsigned int            pk_clk_freq;
466
467 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
468         unsigned int            rng_wait_time;
469         ktime_t                 rngtime;
470         struct hwrng            rng;
471 #endif
472 };
473
474 #define HIFN_D_LENGTH                   0x0000ffff
475 #define HIFN_D_NOINVALID                0x01000000
476 #define HIFN_D_MASKDONEIRQ              0x02000000
477 #define HIFN_D_DESTOVER                 0x04000000
478 #define HIFN_D_OVER                     0x08000000
479 #define HIFN_D_LAST                     0x20000000
480 #define HIFN_D_JUMP                     0x40000000
481 #define HIFN_D_VALID                    0x80000000
482
483 struct hifn_base_command
484 {
485         volatile __le16         masks;
486         volatile __le16         session_num;
487         volatile __le16         total_source_count;
488         volatile __le16         total_dest_count;
489 };
490
491 #define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
492 #define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
493 #define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
494 #define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
495 #define HIFN_BASE_CMD_DECODE            0x2000
496 #define HIFN_BASE_CMD_SRCLEN_M          0xc000
497 #define HIFN_BASE_CMD_SRCLEN_S          14
498 #define HIFN_BASE_CMD_DSTLEN_M          0x3000
499 #define HIFN_BASE_CMD_DSTLEN_S          12
500 #define HIFN_BASE_CMD_LENMASK_HI        0x30000
501 #define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
502
503 /*
504  * Structure to help build up the command data structure.
505  */
506 struct hifn_crypt_command
507 {
508         volatile __le16                 masks;
509         volatile __le16                 header_skip;
510         volatile __le16                 source_count;
511         volatile __le16                 reserved;
512 };
513
514 #define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
515 #define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
516 #define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
517 #define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
518 #define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
519 #define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
520 #define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
521 #define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
522 #define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
523 #define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
524 #define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
525 #define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
526 #define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
527 #define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
528 #define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
529 #define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
530 #define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
531 #define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
532 #define HIFN_CRYPT_CMD_SRCLEN_S         14
533
534 /*
535  * Structure to help build up the command data structure.
536  */
537 struct hifn_mac_command
538 {
539         volatile __le16         masks;
540         volatile __le16         header_skip;
541         volatile __le16         source_count;
542         volatile __le16         reserved;
543 };
544
545 #define HIFN_MAC_CMD_ALG_MASK           0x0001
546 #define HIFN_MAC_CMD_ALG_SHA1           0x0000
547 #define HIFN_MAC_CMD_ALG_MD5            0x0001
548 #define HIFN_MAC_CMD_MODE_MASK          0x000c
549 #define HIFN_MAC_CMD_MODE_HMAC          0x0000
550 #define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
551 #define HIFN_MAC_CMD_MODE_HASH          0x0008
552 #define HIFN_MAC_CMD_MODE_FULL          0x0004
553 #define HIFN_MAC_CMD_TRUNC              0x0010
554 #define HIFN_MAC_CMD_RESULT             0x0020
555 #define HIFN_MAC_CMD_APPEND             0x0040
556 #define HIFN_MAC_CMD_SRCLEN_M           0xc000
557 #define HIFN_MAC_CMD_SRCLEN_S           14
558
559 /*
560  * MAC POS IPsec initiates authentication after encryption on encodes
561  * and before decryption on decodes.
562  */
563 #define HIFN_MAC_CMD_POS_IPSEC          0x0200
564 #define HIFN_MAC_CMD_NEW_KEY            0x0800
565
566 struct hifn_comp_command
567 {
568         volatile __le16         masks;
569         volatile __le16         header_skip;
570         volatile __le16         source_count;
571         volatile __le16         reserved;
572 };
573
574 #define HIFN_COMP_CMD_SRCLEN_M          0xc000
575 #define HIFN_COMP_CMD_SRCLEN_S          14
576 #define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
577 #define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
578 #define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
579 #define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
580 #define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
581 #define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
582 #define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
583 #define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
584
585 struct hifn_base_result
586 {
587         volatile __le16         flags;
588         volatile __le16         session;
589         volatile __le16         src_cnt;                /* 15:0 of source count */
590         volatile __le16         dst_cnt;                /* 15:0 of dest count */
591 };
592
593 #define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
594 #define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
595 #define HIFN_BASE_RES_SRCLEN_S          14
596 #define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
597 #define HIFN_BASE_RES_DSTLEN_S          12
598
599 struct hifn_comp_result
600 {
601         volatile __le16         flags;
602         volatile __le16         crc;
603 };
604
605 #define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
606 #define HIFN_COMP_RES_LCB_S             8
607 #define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
608 #define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
609 #define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
610
611 struct hifn_mac_result
612 {
613         volatile __le16         flags;
614         volatile __le16         reserved;
615         /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
616 };
617
618 #define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
619 #define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
620
621 struct hifn_crypt_result
622 {
623         volatile __le16         flags;
624         volatile __le16         reserved;
625 };
626
627 #define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
628
629 #ifndef HIFN_POLL_FREQUENCY
630 #define HIFN_POLL_FREQUENCY     0x1
631 #endif
632
633 #ifndef HIFN_POLL_SCALAR
634 #define HIFN_POLL_SCALAR        0x0
635 #endif
636
637 #define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
638 #define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
639
640 struct hifn_crypto_alg
641 {
642         struct list_head        entry;
643         struct crypto_alg       alg;
644         struct hifn_device      *dev;
645 };
646
647 #define ASYNC_SCATTERLIST_CACHE 16
648
649 #define ASYNC_FLAGS_MISALIGNED  (1<<0)
650
651 struct ablkcipher_walk
652 {
653         struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
654         u32                     flags;
655         int                     num;
656 };
657
658 struct hifn_context
659 {
660         u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv;
661         struct hifn_device      *dev;
662         unsigned int            keysize, ivsize;
663         u8                      op, type, mode, unused;
664         struct ablkcipher_walk  walk;
665 };
666
667 #define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
668
669 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
670 {
671         u32 ret;
672
673         ret = readl(dev->bar[0] + reg);
674
675         return ret;
676 }
677
678 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
679 {
680         u32 ret;
681
682         ret = readl(dev->bar[1] + reg);
683
684         return ret;
685 }
686
687 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
688 {
689         writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
690 }
691
692 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
693 {
694         writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
695 }
696
697 static void hifn_wait_puc(struct hifn_device *dev)
698 {
699         int i;
700         u32 ret;
701
702         for (i=10000; i > 0; --i) {
703                 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
704                 if (!(ret & HIFN_PUCTRL_RESET))
705                         break;
706
707                 udelay(1);
708         }
709
710         if (!i)
711                 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
712 }
713
714 static void hifn_reset_puc(struct hifn_device *dev)
715 {
716         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
717         hifn_wait_puc(dev);
718 }
719
720 static void hifn_stop_device(struct hifn_device *dev)
721 {
722         hifn_write_1(dev, HIFN_1_DMA_CSR,
723                 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
724                 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
725         hifn_write_0(dev, HIFN_0_PUIER, 0);
726         hifn_write_1(dev, HIFN_1_DMA_IER, 0);
727 }
728
729 static void hifn_reset_dma(struct hifn_device *dev, int full)
730 {
731         hifn_stop_device(dev);
732
733         /*
734          * Setting poll frequency and others to 0.
735          */
736         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
737                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
738         mdelay(1);
739
740         /*
741          * Reset DMA.
742          */
743         if (full) {
744                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
745                 mdelay(1);
746         } else {
747                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
748                                 HIFN_DMACNFG_MSTRESET);
749                 hifn_reset_puc(dev);
750         }
751
752         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
753                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
754
755         hifn_reset_puc(dev);
756 }
757
758 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
759 {
760         int i;
761         u32 v;
762
763         for (i = 0; i < cnt; i++) {
764
765                 /* get the parity */
766                 v = a & 0x80080125;
767                 v ^= v >> 16;
768                 v ^= v >> 8;
769                 v ^= v >> 4;
770                 v ^= v >> 2;
771                 v ^= v >> 1;
772
773                 a = (v & 1) ^ (a << 1);
774         }
775
776         return a;
777 }
778
779 static struct pci2id {
780         u_short         pci_vendor;
781         u_short         pci_prod;
782         char            card_id[13];
783 } pci2id[] = {
784         {
785                 PCI_VENDOR_ID_HIFN,
786                 PCI_DEVICE_ID_HIFN_7955,
787                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
788                   0x00, 0x00, 0x00, 0x00, 0x00 }
789         },
790         {
791                 PCI_VENDOR_ID_HIFN,
792                 PCI_DEVICE_ID_HIFN_7956,
793                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
794                   0x00, 0x00, 0x00, 0x00, 0x00 }
795         }
796 };
797
798 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
799 static int hifn_rng_data_present(struct hwrng *rng, int wait)
800 {
801         struct hifn_device *dev = (struct hifn_device *)rng->priv;
802         s64 nsec;
803
804         nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
805         nsec -= dev->rng_wait_time;
806         if (nsec <= 0)
807                 return 1;
808         if (!wait)
809                 return 0;
810         ndelay(nsec);
811         return 1;
812 }
813
814 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
815 {
816         struct hifn_device *dev = (struct hifn_device *)rng->priv;
817
818         *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
819         dev->rngtime = ktime_get();
820         return 4;
821 }
822
823 static int hifn_register_rng(struct hifn_device *dev)
824 {
825         /*
826          * We must wait at least 256 Pk_clk cycles between two reads of the rng.
827          */
828         dev->rng_wait_time      = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
829                                   256;
830
831         dev->rng.name           = dev->name;
832         dev->rng.data_present   = hifn_rng_data_present,
833         dev->rng.data_read      = hifn_rng_data_read,
834         dev->rng.priv           = (unsigned long)dev;
835
836         return hwrng_register(&dev->rng);
837 }
838
839 static void hifn_unregister_rng(struct hifn_device *dev)
840 {
841         hwrng_unregister(&dev->rng);
842 }
843 #else
844 #define hifn_register_rng(dev)          0
845 #define hifn_unregister_rng(dev)
846 #endif
847
848 static int hifn_init_pubrng(struct hifn_device *dev)
849 {
850         int i;
851
852         hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
853                         HIFN_PUBRST_RESET);
854
855         for (i=100; i > 0; --i) {
856                 mdelay(1);
857
858                 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
859                         break;
860         }
861
862         if (!i)
863                 dprintk("Chip %s: Failed to initialise public key engine.\n",
864                                 dev->name);
865         else {
866                 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
867                 dev->dmareg |= HIFN_DMAIER_PUBDONE;
868                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
869
870                 dprintk("Chip %s: Public key engine has been sucessfully "
871                                 "initialised.\n", dev->name);
872         }
873
874         /*
875          * Enable RNG engine.
876          */
877
878         hifn_write_1(dev, HIFN_1_RNG_CONFIG,
879                         hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
880         dprintk("Chip %s: RNG engine has been successfully initialised.\n",
881                         dev->name);
882
883 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
884         /* First value must be discarded */
885         hifn_read_1(dev, HIFN_1_RNG_DATA);
886         dev->rngtime = ktime_get();
887 #endif
888         return 0;
889 }
890
891 static int hifn_enable_crypto(struct hifn_device *dev)
892 {
893         u32 dmacfg, addr;
894         char *offtbl = NULL;
895         int i;
896
897         for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
898                 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
899                                 pci2id[i].pci_prod == dev->pdev->device) {
900                         offtbl = pci2id[i].card_id;
901                         break;
902                 }
903         }
904
905         if (offtbl == NULL) {
906                 dprintk("Chip %s: Unknown card!\n", dev->name);
907                 return -ENODEV;
908         }
909
910         dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
911
912         hifn_write_1(dev, HIFN_1_DMA_CNFG,
913                         HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
914                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
915         mdelay(1);
916         addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
917         mdelay(1);
918         hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
919         mdelay(1);
920
921         for (i=0; i<12; ++i) {
922                 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
923                 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
924
925                 mdelay(1);
926         }
927         hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
928
929         dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
930
931         return 0;
932 }
933
934 static void hifn_init_dma(struct hifn_device *dev)
935 {
936         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
937         u32 dptr = dev->desc_dma;
938         int i;
939
940         for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
941                 dma->cmdr[i].p = __cpu_to_le32(dptr +
942                                 offsetof(struct hifn_dma, command_bufs[i][0]));
943         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
944                 dma->resr[i].p = __cpu_to_le32(dptr +
945                                 offsetof(struct hifn_dma, result_bufs[i][0]));
946
947         /*
948          * Setup LAST descriptors.
949          */
950         dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
951                         offsetof(struct hifn_dma, cmdr[0]));
952         dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
953                         offsetof(struct hifn_dma, srcr[0]));
954         dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
955                         offsetof(struct hifn_dma, dstr[0]));
956         dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
957                         offsetof(struct hifn_dma, resr[0]));
958
959         dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
960         dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
961         dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
962 }
963
964 /*
965  * Initialize the PLL. We need to know the frequency of the reference clock
966  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
967  * allows us to operate without the risk of overclocking the chip. If it
968  * actually uses 33MHz, the chip will operate at half the speed, this can be
969  * overriden by specifying the frequency as module parameter (pci33).
970  *
971  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
972  * stable clock and the PCI clock frequency may vary, so the default is the
973  * external clock. There is no way to find out its frequency, we default to
974  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
975  * has an external crystal populated at 66MHz.
976  */
977 static void hifn_init_pll(struct hifn_device *dev)
978 {
979         unsigned int freq, m;
980         u32 pllcfg;
981
982         pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
983
984         if (strncmp(hifn_pll_ref, "ext", 3) == 0)
985                 pllcfg |= HIFN_PLL_REF_CLK_PLL;
986         else
987                 pllcfg |= HIFN_PLL_REF_CLK_HBI;
988
989         if (hifn_pll_ref[3] != '\0')
990                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
991         else {
992                 freq = 66;
993                 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
994                                  "override with hifn_pll_ref=%.3s<frequency>\n",
995                        freq, hifn_pll_ref);
996         }
997
998         m = HIFN_PLL_FCK_MAX / freq;
999
1000         pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
1001         if (m <= 8)
1002                 pllcfg |= HIFN_PLL_IS_1_8;
1003         else
1004                 pllcfg |= HIFN_PLL_IS_9_12;
1005
1006         /* Select clock source and enable clock bypass */
1007         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1008                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1009
1010         /* Let the chip lock to the input clock */
1011         mdelay(10);
1012
1013         /* Disable clock bypass */
1014         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1015                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1016
1017         /* Switch the engines to the PLL */
1018         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1019                      HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1020
1021         /*
1022          * The Fpk_clk runs at half the total speed. Its frequency is needed to
1023          * calculate the minimum time between two reads of the rng. Since 33MHz
1024          * is actually 33.333... we overestimate the frequency here, resulting
1025          * in slightly larger intervals.
1026          */
1027         dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1028 }
1029
1030 static void hifn_init_registers(struct hifn_device *dev)
1031 {
1032         u32 dptr = dev->desc_dma;
1033
1034         /* Initialization magic... */
1035         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1036         hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1037         hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1038
1039         /* write all 4 ring address registers */
1040         hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1041                                 offsetof(struct hifn_dma, cmdr[0]));
1042         hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1043                                 offsetof(struct hifn_dma, srcr[0]));
1044         hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1045                                 offsetof(struct hifn_dma, dstr[0]));
1046         hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1047                                 offsetof(struct hifn_dma, resr[0]));
1048
1049         mdelay(2);
1050 #if 0
1051         hifn_write_1(dev, HIFN_1_DMA_CSR,
1052             HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1053             HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1054             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1055             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1056             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1057             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1058             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1059             HIFN_DMACSR_S_WAIT |
1060             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1061             HIFN_DMACSR_C_WAIT |
1062             HIFN_DMACSR_ENGINE |
1063             HIFN_DMACSR_PUBDONE);
1064 #else
1065         hifn_write_1(dev, HIFN_1_DMA_CSR,
1066             HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1067             HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1068             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1069             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1070             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1071             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1072             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1073             HIFN_DMACSR_S_WAIT |
1074             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1075             HIFN_DMACSR_C_WAIT |
1076             HIFN_DMACSR_ENGINE |
1077             HIFN_DMACSR_PUBDONE);
1078 #endif
1079         hifn_read_1(dev, HIFN_1_DMA_CSR);
1080
1081         dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1082             HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1083             HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1084             HIFN_DMAIER_ENGINE;
1085         dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1086
1087         hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1088         hifn_read_1(dev, HIFN_1_DMA_IER);
1089 #if 0
1090         hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1091                     HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1092                     HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1093                     HIFN_PUCNFG_DRAM);
1094 #else
1095         hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1096 #endif
1097         hifn_init_pll(dev);
1098
1099         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1100         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1101             HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1102             ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1103             ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1104 }
1105
1106 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1107                 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1108 {
1109         struct hifn_base_command *base_cmd;
1110         u8 *buf_pos = buf;
1111
1112         base_cmd = (struct hifn_base_command *)buf_pos;
1113         base_cmd->masks = __cpu_to_le16(mask);
1114         base_cmd->total_source_count =
1115                 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1116         base_cmd->total_dest_count =
1117                 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1118
1119         dlen >>= 16;
1120         slen >>= 16;
1121         base_cmd->session_num = __cpu_to_le16(snum |
1122             ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1123             ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1124
1125         return sizeof(struct hifn_base_command);
1126 }
1127
1128 static int hifn_setup_crypto_command(struct hifn_device *dev,
1129                 u8 *buf, unsigned dlen, unsigned slen,
1130                 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1131 {
1132         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1133         struct hifn_crypt_command *cry_cmd;
1134         u8 *buf_pos = buf;
1135         u16 cmd_len;
1136
1137         cry_cmd = (struct hifn_crypt_command *)buf_pos;
1138
1139         cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1140         dlen >>= 16;
1141         cry_cmd->masks = __cpu_to_le16(mode |
1142                         ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1143                          HIFN_CRYPT_CMD_SRCLEN_M));
1144         cry_cmd->header_skip = 0;
1145         cry_cmd->reserved = 0;
1146
1147         buf_pos += sizeof(struct hifn_crypt_command);
1148
1149         dma->cmdu++;
1150         if (dma->cmdu > 1) {
1151                 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1152                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1153         }
1154
1155         if (keylen) {
1156                 memcpy(buf_pos, key, keylen);
1157                 buf_pos += keylen;
1158         }
1159         if (ivsize) {
1160                 memcpy(buf_pos, iv, ivsize);
1161                 buf_pos += ivsize;
1162         }
1163
1164         cmd_len = buf_pos - buf;
1165
1166         return cmd_len;
1167 }
1168
1169 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1170                 struct hifn_context *ctx, void *priv, unsigned int nbytes)
1171 {
1172         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1173         int cmd_len, sa_idx;
1174         u8 *buf, *buf_pos;
1175         u16 mask;
1176
1177         sa_idx = dma->cmdi;
1178         buf_pos = buf = dma->command_bufs[dma->cmdi];
1179
1180         mask = 0;
1181         switch (ctx->op) {
1182                 case ACRYPTO_OP_DECRYPT:
1183                         mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1184                         break;
1185                 case ACRYPTO_OP_ENCRYPT:
1186                         mask = HIFN_BASE_CMD_CRYPT;
1187                         break;
1188                 case ACRYPTO_OP_HMAC:
1189                         mask = HIFN_BASE_CMD_MAC;
1190                         break;
1191                 default:
1192                         goto err_out;
1193         }
1194
1195         buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1196                         nbytes, mask, dev->snum);
1197
1198         if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) {
1199                 u16 md = 0;
1200
1201                 if (ctx->keysize)
1202                         md |= HIFN_CRYPT_CMD_NEW_KEY;
1203                 if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB)
1204                         md |= HIFN_CRYPT_CMD_NEW_IV;
1205
1206                 switch (ctx->mode) {
1207                         case ACRYPTO_MODE_ECB:
1208                                 md |= HIFN_CRYPT_CMD_MODE_ECB;
1209                                 break;
1210                         case ACRYPTO_MODE_CBC:
1211                                 md |= HIFN_CRYPT_CMD_MODE_CBC;
1212                                 break;
1213                         case ACRYPTO_MODE_CFB:
1214                                 md |= HIFN_CRYPT_CMD_MODE_CFB;
1215                                 break;
1216                         case ACRYPTO_MODE_OFB:
1217                                 md |= HIFN_CRYPT_CMD_MODE_OFB;
1218                                 break;
1219                         default:
1220                                 goto err_out;
1221                 }
1222
1223                 switch (ctx->type) {
1224                         case ACRYPTO_TYPE_AES_128:
1225                                 if (ctx->keysize != 16)
1226                                         goto err_out;
1227                                 md |= HIFN_CRYPT_CMD_KSZ_128 |
1228                                         HIFN_CRYPT_CMD_ALG_AES;
1229                                 break;
1230                         case ACRYPTO_TYPE_AES_192:
1231                                 if (ctx->keysize != 24)
1232                                         goto err_out;
1233                                 md |= HIFN_CRYPT_CMD_KSZ_192 |
1234                                         HIFN_CRYPT_CMD_ALG_AES;
1235                                 break;
1236                         case ACRYPTO_TYPE_AES_256:
1237                                 if (ctx->keysize != 32)
1238                                         goto err_out;
1239                                 md |= HIFN_CRYPT_CMD_KSZ_256 |
1240                                         HIFN_CRYPT_CMD_ALG_AES;
1241                                 break;
1242                         case ACRYPTO_TYPE_3DES:
1243                                 if (ctx->keysize != 24)
1244                                         goto err_out;
1245                                 md |= HIFN_CRYPT_CMD_ALG_3DES;
1246                                 break;
1247                         case ACRYPTO_TYPE_DES:
1248                                 if (ctx->keysize != 8)
1249                                         goto err_out;
1250                                 md |= HIFN_CRYPT_CMD_ALG_DES;
1251                                 break;
1252                         default:
1253                                 goto err_out;
1254                 }
1255
1256                 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1257                                 nbytes, nbytes, ctx->key, ctx->keysize,
1258                                 ctx->iv, ctx->ivsize, md);
1259         }
1260
1261         dev->sa[sa_idx] = priv;
1262
1263         cmd_len = buf_pos - buf;
1264         dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1265                         HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1266
1267         if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1268                 dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND |
1269                         HIFN_D_VALID | HIFN_D_LAST |
1270                         HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1271                 dma->cmdi = 0;
1272         } else
1273                 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1274
1275         if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1276                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1277                 dev->flags |= HIFN_FLAG_CMD_BUSY;
1278         }
1279         return 0;
1280
1281 err_out:
1282         return -EINVAL;
1283 }
1284
1285 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1286                 unsigned int offset, unsigned int size, int last)
1287 {
1288         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1289         int idx;
1290         dma_addr_t addr;
1291
1292         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1293
1294         idx = dma->srci;
1295
1296         dma->srcr[idx].p = __cpu_to_le32(addr);
1297         dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1298                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1299
1300         if (++idx == HIFN_D_SRC_RSIZE) {
1301                 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1302                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1303                                 (last ? HIFN_D_LAST : 0));
1304                 idx = 0;
1305         }
1306
1307         dma->srci = idx;
1308         dma->srcu++;
1309
1310         if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1311                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1312                 dev->flags |= HIFN_FLAG_SRC_BUSY;
1313         }
1314
1315         return size;
1316 }
1317
1318 static void hifn_setup_res_desc(struct hifn_device *dev)
1319 {
1320         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1321
1322         dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1323                         HIFN_D_VALID | HIFN_D_LAST);
1324         /*
1325          * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1326          *                                      HIFN_D_LAST);
1327          */
1328
1329         if (++dma->resi == HIFN_D_RES_RSIZE) {
1330                 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1331                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1332                 dma->resi = 0;
1333         }
1334
1335         dma->resu++;
1336
1337         if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1338                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1339                 dev->flags |= HIFN_FLAG_RES_BUSY;
1340         }
1341 }
1342
1343 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1344                 unsigned offset, unsigned size, int last)
1345 {
1346         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1347         int idx;
1348         dma_addr_t addr;
1349
1350         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1351
1352         idx = dma->dsti;
1353         dma->dstr[idx].p = __cpu_to_le32(addr);
1354         dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1355                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1356
1357         if (++idx == HIFN_D_DST_RSIZE) {
1358                 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1359                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1360                                 (last ? HIFN_D_LAST : 0));
1361                 idx = 0;
1362         }
1363         dma->dsti = idx;
1364         dma->dstu++;
1365
1366         if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1367                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1368                 dev->flags |= HIFN_FLAG_DST_BUSY;
1369         }
1370 }
1371
1372 static int hifn_setup_dma(struct hifn_device *dev, struct hifn_context *ctx,
1373                 struct scatterlist *src, struct scatterlist *dst,
1374                 unsigned int nbytes, void *priv)
1375 {
1376         struct scatterlist *t;
1377         struct page *spage, *dpage;
1378         unsigned int soff, doff;
1379         unsigned int n, len;
1380
1381         t = &ctx->walk.cache[0];
1382         n = nbytes;
1383         while (n) {
1384                 if (t->length) {
1385                         spage = dpage = sg_page(t);
1386                         soff = doff = 0;
1387                         len = t->length;
1388                 } else {
1389                         spage = sg_page(src);
1390                         soff = src->offset;
1391
1392                         dpage = sg_page(dst);
1393                         doff = dst->offset;
1394
1395                         len = dst->length;
1396                 }
1397                 len = min(len, n);
1398
1399                 dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, "
1400                         "nbytes: %u, priv: %p, ctx: %p.\n",
1401                         dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);
1402
1403                 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1404                 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1405
1406                 src++;
1407                 dst++;
1408                 t++;
1409                 n -= len;
1410         }
1411
1412         hifn_setup_cmd_desc(dev, ctx, priv, nbytes);
1413         hifn_setup_res_desc(dev);
1414         return 0;
1415 }
1416
1417 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1418                 int num, gfp_t gfp_flags)
1419 {
1420         int i;
1421
1422         num = min(ASYNC_SCATTERLIST_CACHE, num);
1423         sg_init_table(w->cache, num);
1424
1425         w->num = 0;
1426         for (i=0; i<num; ++i) {
1427                 struct page *page = alloc_page(gfp_flags);
1428                 struct scatterlist *s;
1429
1430                 if (!page)
1431                         break;
1432
1433                 s = &w->cache[i];
1434
1435                 sg_set_page(s, page, PAGE_SIZE, 0);
1436                 w->num++;
1437         }
1438
1439         return i;
1440 }
1441
1442 static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1443 {
1444         int i;
1445
1446         for (i=0; i<w->num; ++i) {
1447                 struct scatterlist *s = &w->cache[i];
1448
1449                 __free_page(sg_page(s));
1450
1451                 s->length = 0;
1452         }
1453
1454         w->num = 0;
1455 }
1456
1457 static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src,
1458                 unsigned int size, unsigned int *nbytesp)
1459 {
1460         unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1461         int idx = 0;
1462         void *saddr;
1463
1464         if (drest < size || size > nbytes)
1465                 return -EINVAL;
1466
1467         while (size) {
1468                 copy = min(drest, min(size, src->length));
1469
1470                 saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1);
1471                 memcpy(daddr, saddr + src->offset, copy);
1472                 kunmap_atomic(saddr, KM_SOFTIRQ1);
1473
1474                 size -= copy;
1475                 drest -= copy;
1476                 nbytes -= copy;
1477                 daddr += copy;
1478
1479                 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1480                                 __func__, copy, size, drest, nbytes);
1481
1482                 src++;
1483                 idx++;
1484         }
1485
1486         *nbytesp = nbytes;
1487         *drestp = drest;
1488
1489         return idx;
1490 }
1491
1492 static int ablkcipher_walk(struct ablkcipher_request *req,
1493                 struct ablkcipher_walk *w)
1494 {
1495         struct scatterlist *src, *dst, *t;
1496         void *daddr;
1497         unsigned int nbytes = req->nbytes, offset, copy, diff;
1498         int idx, tidx, err;
1499
1500         tidx = idx = 0;
1501         offset = 0;
1502         while (nbytes) {
1503                 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1504                         return -EINVAL;
1505
1506                 src = &req->src[idx];
1507                 dst = &req->dst[idx];
1508
1509                 dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, "
1510                                 "nbytes: %u.\n",
1511                                 __func__, src->length, dst->length, src->offset,
1512                                 dst->offset, offset, nbytes);
1513
1514                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1515                     !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1516                     offset) {
1517                         unsigned slen = min(src->length - offset, nbytes);
1518                         unsigned dlen = PAGE_SIZE;
1519
1520                         t = &w->cache[idx];
1521
1522                         daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1523                         err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes);
1524                         if (err < 0)
1525                                 goto err_out_unmap;
1526
1527                         idx += err;
1528
1529                         copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1530                         diff = slen & (HIFN_D_DST_DALIGN - 1);
1531
1532                         if (dlen < nbytes) {
1533                                 /*
1534                                  * Destination page does not have enough space
1535                                  * to put there additional blocksized chunk,
1536                                  * so we mark that page as containing only
1537                                  * blocksize aligned chunks:
1538                                  *      t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1539                                  * and increase number of bytes to be processed
1540                                  * in next chunk:
1541                                  *      nbytes += diff;
1542                                  */
1543                                 nbytes += diff;
1544
1545                                 /*
1546                                  * Temporary of course...
1547                                  * Kick author if you will catch this one.
1548                                  */
1549                                 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1550                                         "slen: %u, offset: %u.\n",
1551                                         __func__, dlen, nbytes, slen, offset);
1552                                 printk(KERN_ERR "%s: please contact author to fix this "
1553                                         "issue, generally you should not catch "
1554                                         "this path under any condition but who "
1555                                         "knows how did you use crypto code.\n"
1556                                         "Thank you.\n", __func__);
1557                                 BUG();
1558                         } else {
1559                                 copy += diff + nbytes;
1560
1561                                 src = &req->src[idx];
1562
1563                                 err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes);
1564                                 if (err < 0)
1565                                         goto err_out_unmap;
1566
1567                                 idx += err;
1568                         }
1569
1570                         t->length = copy;
1571                         t->offset = offset;
1572
1573                         kunmap_atomic(daddr, KM_SOFTIRQ0);
1574                 } else {
1575                         nbytes -= min(src->length, nbytes);
1576                         idx++;
1577                 }
1578
1579                 tidx++;
1580         }
1581
1582         return tidx;
1583
1584 err_out_unmap:
1585         kunmap_atomic(daddr, KM_SOFTIRQ0);
1586         return err;
1587 }
1588
1589 static int hifn_setup_session(struct ablkcipher_request *req)
1590 {
1591         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1592         struct hifn_device *dev = ctx->dev;
1593         unsigned long dlen, flags;
1594         unsigned int nbytes = req->nbytes, idx = 0;
1595         int err = -EINVAL, sg_num;
1596         struct scatterlist *dst;
1597
1598         if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
1599                 goto err_out_exit;
1600
1601         ctx->walk.flags = 0;
1602
1603         while (nbytes) {
1604                 dst = &req->dst[idx];
1605                 dlen = min(dst->length, nbytes);
1606
1607                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1608                     !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1609                         ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1610
1611                 nbytes -= dlen;
1612                 idx++;
1613         }
1614
1615         if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1616                 err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC);
1617                 if (err < 0)
1618                         return err;
1619         }
1620
1621         sg_num = ablkcipher_walk(req, &ctx->walk);
1622         if (sg_num < 0) {
1623                 err = sg_num;
1624                 goto err_out_exit;
1625         }
1626
1627         spin_lock_irqsave(&dev->lock, flags);
1628         if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1629                 err = -EAGAIN;
1630                 goto err_out;
1631         }
1632
1633         dev->snum++;
1634         dev->started++;
1635
1636         err = hifn_setup_dma(dev, ctx, req->src, req->dst, req->nbytes, req);
1637         if (err)
1638                 goto err_out;
1639
1640         dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1641         spin_unlock_irqrestore(&dev->lock, flags);
1642
1643         return 0;
1644
1645 err_out:
1646         spin_unlock_irqrestore(&dev->lock, flags);
1647 err_out_exit:
1648         if (err)
1649                 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1650                                 "type: %u, err: %d.\n",
1651                         dev->name, ctx->iv, ctx->ivsize,
1652                         ctx->key, ctx->keysize,
1653                         ctx->mode, ctx->op, ctx->type, err);
1654
1655         return err;
1656 }
1657
1658 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1659 {
1660         int n, err;
1661         u8 src[16];
1662         struct hifn_context ctx;
1663         u8 fips_aes_ecb_from_zero[16] = {
1664                 0x66, 0xE9, 0x4B, 0xD4,
1665                 0xEF, 0x8A, 0x2C, 0x3B,
1666                 0x88, 0x4C, 0xFA, 0x59,
1667                 0xCA, 0x34, 0x2B, 0x2E};
1668         struct scatterlist sg;
1669
1670         memset(src, 0, sizeof(src));
1671         memset(ctx.key, 0, sizeof(ctx.key));
1672
1673         ctx.dev = dev;
1674         ctx.keysize = 16;
1675         ctx.ivsize = 0;
1676         ctx.iv = NULL;
1677         ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1678         ctx.mode = ACRYPTO_MODE_ECB;
1679         ctx.type = ACRYPTO_TYPE_AES_128;
1680         ctx.walk.cache[0].length = 0;
1681
1682         sg_init_one(&sg, &src, sizeof(src));
1683
1684         err = hifn_setup_dma(dev, &ctx, &sg, &sg, sizeof(src), NULL);
1685         if (err)
1686                 goto err_out;
1687
1688         msleep(200);
1689
1690         dprintk("%s: decoded: ", dev->name);
1691         for (n=0; n<sizeof(src); ++n)
1692                 dprintk("%02x ", src[n]);
1693         dprintk("\n");
1694         dprintk("%s: FIPS   : ", dev->name);
1695         for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1696                 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1697         dprintk("\n");
1698
1699         if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1700                 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1701                                 "passed.\n", dev->name);
1702                 return 0;
1703         }
1704
1705 err_out:
1706         printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1707         return -1;
1708 }
1709
1710 static int hifn_start_device(struct hifn_device *dev)
1711 {
1712         int err;
1713
1714         hifn_reset_dma(dev, 1);
1715
1716         err = hifn_enable_crypto(dev);
1717         if (err)
1718                 return err;
1719
1720         hifn_reset_puc(dev);
1721
1722         hifn_init_dma(dev);
1723
1724         hifn_init_registers(dev);
1725
1726         hifn_init_pubrng(dev);
1727
1728         return 0;
1729 }
1730
1731 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1732                 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1733 {
1734         unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1735         void *daddr;
1736         int idx = 0;
1737
1738         if (srest < size || size > nbytes)
1739                 return -EINVAL;
1740
1741         while (size) {
1742                 copy = min(srest, min(dst->length, size));
1743
1744                 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1745                 memcpy(daddr + dst->offset + offset, saddr, copy);
1746                 kunmap_atomic(daddr, KM_IRQ0);
1747
1748                 nbytes -= copy;
1749                 size -= copy;
1750                 srest -= copy;
1751                 saddr += copy;
1752                 offset = 0;
1753
1754                 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1755                                 __func__, copy, size, srest, nbytes);
1756
1757                 dst++;
1758                 idx++;
1759         }
1760
1761         *nbytesp = nbytes;
1762         *srestp = srest;
1763
1764         return idx;
1765 }
1766
1767 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1768 {
1769         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1770         struct hifn_device *dev;
1771
1772         dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx);
1773
1774         dev = ctx->dev;
1775         dprintk("%s: req: %p, started: %d.\n", __func__, req, dev->started);
1776
1777         if (--dev->started < 0)
1778                 BUG();
1779
1780         if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1781                 unsigned int nbytes = req->nbytes;
1782                 int idx = 0, err;
1783                 struct scatterlist *dst, *t;
1784                 void *saddr;
1785
1786                 while (nbytes) {
1787                         t = &ctx->walk.cache[idx];
1788                         dst = &req->dst[idx];
1789
1790                         dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1791                                 "sg_page(dst): %p, dst->length: %u, "
1792                                 "nbytes: %u.\n",
1793                                 __func__, sg_page(t), t->length,
1794                                 sg_page(dst), dst->length, nbytes);
1795
1796                         if (!t->length) {
1797                                 nbytes -= min(dst->length, nbytes);
1798                                 idx++;
1799                                 continue;
1800                         }
1801
1802                         saddr = kmap_atomic(sg_page(t), KM_IRQ1);
1803
1804                         err = ablkcipher_get(saddr, &t->length, t->offset,
1805                                         dst, nbytes, &nbytes);
1806                         if (err < 0) {
1807                                 kunmap_atomic(saddr, KM_IRQ1);
1808                                 break;
1809                         }
1810
1811                         idx += err;
1812                         kunmap_atomic(saddr, KM_IRQ1);
1813                 }
1814
1815                 ablkcipher_walk_exit(&ctx->walk);
1816         }
1817
1818         req->base.complete(&req->base, error);
1819 }
1820
1821 static void hifn_check_for_completion(struct hifn_device *dev, int error)
1822 {
1823         int i;
1824         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1825
1826         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1827                 struct hifn_desc *d = &dma->resr[i];
1828
1829                 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
1830                         dev->success++;
1831                         dev->reset = 0;
1832                         hifn_process_ready(dev->sa[i], error);
1833                         dev->sa[i] = NULL;
1834                 }
1835
1836                 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
1837                         if (printk_ratelimit())
1838                                 printk("%s: overflow detected [d: %u, o: %u] "
1839                                                 "at %d resr: l: %08x, p: %08x.\n",
1840                                         dev->name,
1841                                         !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
1842                                         !!(d->l & __cpu_to_le32(HIFN_D_OVER)),
1843                                         i, d->l, d->p);
1844         }
1845 }
1846
1847 static void hifn_clear_rings(struct hifn_device *dev)
1848 {
1849         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1850         int i, u;
1851
1852         dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1853                         "k: %d.%d.%d.%d.\n",
1854                         dev->name,
1855                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1856                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1857                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1858
1859         i = dma->resk; u = dma->resu;
1860         while (u != 0) {
1861                 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1862                         break;
1863
1864                 if (i != HIFN_D_RES_RSIZE)
1865                         u--;
1866
1867                 if (++i == (HIFN_D_RES_RSIZE + 1))
1868                         i = 0;
1869         }
1870         dma->resk = i; dma->resu = u;
1871
1872         i = dma->srck; u = dma->srcu;
1873         while (u != 0) {
1874                 if (i == HIFN_D_SRC_RSIZE)
1875                         i = 0;
1876                 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1877                         break;
1878                 i++, u--;
1879         }
1880         dma->srck = i; dma->srcu = u;
1881
1882         i = dma->cmdk; u = dma->cmdu;
1883         while (u != 0) {
1884                 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1885                         break;
1886                 if (i != HIFN_D_CMD_RSIZE)
1887                         u--;
1888                 if (++i == (HIFN_D_CMD_RSIZE + 1))
1889                         i = 0;
1890         }
1891         dma->cmdk = i; dma->cmdu = u;
1892
1893         i = dma->dstk; u = dma->dstu;
1894         while (u != 0) {
1895                 if (i == HIFN_D_DST_RSIZE)
1896                         i = 0;
1897                 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1898                         break;
1899                 i++, u--;
1900         }
1901         dma->dstk = i; dma->dstu = u;
1902
1903         dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1904                         "k: %d.%d.%d.%d.\n",
1905                         dev->name,
1906                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1907                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1908                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1909 }
1910
1911 static void hifn_work(struct work_struct *work)
1912 {
1913         struct delayed_work *dw = container_of(work, struct delayed_work, work);
1914         struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1915         unsigned long flags;
1916         int reset = 0;
1917         u32 r = 0;
1918
1919         spin_lock_irqsave(&dev->lock, flags);
1920         if (dev->active == 0) {
1921                 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1922
1923                 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1924                         dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1925                         r |= HIFN_DMACSR_C_CTRL_DIS;
1926                 }
1927                 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1928                         dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1929                         r |= HIFN_DMACSR_S_CTRL_DIS;
1930                 }
1931                 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1932                         dev->flags &= ~HIFN_FLAG_DST_BUSY;
1933                         r |= HIFN_DMACSR_D_CTRL_DIS;
1934                 }
1935                 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1936                         dev->flags &= ~HIFN_FLAG_RES_BUSY;
1937                         r |= HIFN_DMACSR_R_CTRL_DIS;
1938                 }
1939                 if (r)
1940                         hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1941         } else
1942                 dev->active--;
1943
1944         if (dev->prev_success == dev->success && dev->started)
1945                 reset = 1;
1946         dev->prev_success = dev->success;
1947         spin_unlock_irqrestore(&dev->lock, flags);
1948
1949         if (reset) {
1950                 dprintk("%s: r: %08x, active: %d, started: %d, "
1951                                 "success: %lu: reset: %d.\n",
1952                         dev->name, r, dev->active, dev->started,
1953                         dev->success, reset);
1954
1955                 if (++dev->reset >= 5) {
1956                         dprintk("%s: really hard reset.\n", dev->name);
1957                         hifn_reset_dma(dev, 1);
1958                         hifn_stop_device(dev);
1959                         hifn_start_device(dev);
1960                         dev->reset = 0;
1961                 }
1962
1963                 spin_lock_irqsave(&dev->lock, flags);
1964                 hifn_check_for_completion(dev, -EBUSY);
1965                 hifn_clear_rings(dev);
1966                 dev->started = 0;
1967                 spin_unlock_irqrestore(&dev->lock, flags);
1968         }
1969
1970         schedule_delayed_work(&dev->work, HZ);
1971 }
1972
1973 static irqreturn_t hifn_interrupt(int irq, void *data)
1974 {
1975         struct hifn_device *dev = (struct hifn_device *)data;
1976         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1977         u32 dmacsr, restart;
1978
1979         dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1980
1981         dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1982                         "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1983                 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1984                 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1985                 dma->cmdi, dma->srci, dma->dsti, dma->resi);
1986
1987         if ((dmacsr & dev->dmareg) == 0)
1988                 return IRQ_NONE;
1989
1990         hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1991
1992         if (dmacsr & HIFN_DMACSR_ENGINE)
1993                 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1994         if (dmacsr & HIFN_DMACSR_PUBDONE)
1995                 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1996                         hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1997
1998         restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1999         if (restart) {
2000                 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
2001
2002                 if (printk_ratelimit())
2003                         printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
2004                                 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
2005                                 !!(dmacsr & HIFN_DMACSR_D_OVER),
2006                                 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
2007                 if (!!(puisr & HIFN_PUISR_DSTOVER))
2008                         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
2009                 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
2010                                         HIFN_DMACSR_D_OVER));
2011         }
2012
2013         restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
2014                         HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
2015         if (restart) {
2016                 if (printk_ratelimit())
2017                         printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
2018                                 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
2019                                 !!(dmacsr & HIFN_DMACSR_S_ABORT),
2020                                 !!(dmacsr & HIFN_DMACSR_D_ABORT),
2021                                 !!(dmacsr & HIFN_DMACSR_R_ABORT));
2022                 hifn_reset_dma(dev, 1);
2023                 hifn_init_dma(dev);
2024                 hifn_init_registers(dev);
2025         }
2026
2027         if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2028                 dprintk("%s: wait on command.\n", dev->name);
2029                 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2030                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2031         }
2032
2033         tasklet_schedule(&dev->tasklet);
2034         hifn_clear_rings(dev);
2035
2036         return IRQ_HANDLED;
2037 }
2038
2039 static void hifn_flush(struct hifn_device *dev)
2040 {
2041         unsigned long flags;
2042         struct crypto_async_request *async_req;
2043         struct hifn_context *ctx;
2044         struct ablkcipher_request *req;
2045         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2046         int i;
2047
2048         spin_lock_irqsave(&dev->lock, flags);
2049         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2050                 struct hifn_desc *d = &dma->resr[i];
2051
2052                 if (dev->sa[i]) {
2053                         hifn_process_ready(dev->sa[i],
2054                                 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2055                 }
2056         }
2057
2058         while ((async_req = crypto_dequeue_request(&dev->queue))) {
2059                 ctx = crypto_tfm_ctx(async_req->tfm);
2060                 req = container_of(async_req, struct ablkcipher_request, base);
2061
2062                 hifn_process_ready(req, -ENODEV);
2063         }
2064         spin_unlock_irqrestore(&dev->lock, flags);
2065 }
2066
2067 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2068                 unsigned int len)
2069 {
2070         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2071         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2072         struct hifn_device *dev = ctx->dev;
2073
2074         if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2075                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2076                 return -1;
2077         }
2078
2079         if (len == HIFN_DES_KEY_LENGTH) {
2080                 u32 tmp[DES_EXPKEY_WORDS];
2081                 int ret = des_ekey(tmp, key);
2082                 
2083                 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2084                         tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2085                         return -EINVAL;
2086                 }
2087         }
2088
2089         dev->flags &= ~HIFN_FLAG_OLD_KEY;
2090
2091         memcpy(ctx->key, key, len);
2092         ctx->keysize = len;
2093
2094         return 0;
2095 }
2096
2097 static int hifn_handle_req(struct ablkcipher_request *req)
2098 {
2099         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2100         struct hifn_device *dev = ctx->dev;
2101         int err = -EAGAIN;
2102
2103         if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2104                 err = hifn_setup_session(req);
2105
2106         if (err == -EAGAIN) {
2107                 unsigned long flags;
2108
2109                 spin_lock_irqsave(&dev->lock, flags);
2110                 err = ablkcipher_enqueue_request(&dev->queue, req);
2111                 spin_unlock_irqrestore(&dev->lock, flags);
2112         }
2113
2114         return err;
2115 }
2116
2117 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2118                 u8 type, u8 mode)
2119 {
2120         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2121         unsigned ivsize;
2122
2123         ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2124
2125         if (req->info && mode != ACRYPTO_MODE_ECB) {
2126                 if (type == ACRYPTO_TYPE_AES_128)
2127                         ivsize = HIFN_AES_IV_LENGTH;
2128                 else if (type == ACRYPTO_TYPE_DES)
2129                         ivsize = HIFN_DES_KEY_LENGTH;
2130                 else if (type == ACRYPTO_TYPE_3DES)
2131                         ivsize = HIFN_3DES_KEY_LENGTH;
2132         }
2133
2134         if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2135                 if (ctx->keysize == 24)
2136                         type = ACRYPTO_TYPE_AES_192;
2137                 else if (ctx->keysize == 32)
2138                         type = ACRYPTO_TYPE_AES_256;
2139         }
2140
2141         ctx->op = op;
2142         ctx->mode = mode;
2143         ctx->type = type;
2144         ctx->iv = req->info;
2145         ctx->ivsize = ivsize;
2146
2147         /*
2148          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2149          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2150          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2151          */
2152
2153         return hifn_handle_req(req);
2154 }
2155
2156 static int hifn_process_queue(struct hifn_device *dev)
2157 {
2158         struct crypto_async_request *async_req;
2159         struct hifn_context *ctx;
2160         struct ablkcipher_request *req;
2161         unsigned long flags;
2162         int err = 0;
2163
2164         while (dev->started < HIFN_QUEUE_LENGTH) {
2165                 spin_lock_irqsave(&dev->lock, flags);
2166                 async_req = crypto_dequeue_request(&dev->queue);
2167                 spin_unlock_irqrestore(&dev->lock, flags);
2168
2169                 if (!async_req)
2170                         break;
2171
2172                 ctx = crypto_tfm_ctx(async_req->tfm);
2173                 req = container_of(async_req, struct ablkcipher_request, base);
2174
2175                 err = hifn_handle_req(req);
2176                 if (err)
2177                         break;
2178         }
2179
2180         return err;
2181 }
2182
2183 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2184                 u8 type, u8 mode)
2185 {
2186         int err;
2187         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2188         struct hifn_device *dev = ctx->dev;
2189
2190         err = hifn_setup_crypto_req(req, op, type, mode);
2191         if (err)
2192                 return err;
2193
2194         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2195                 hifn_process_queue(dev);
2196
2197         return -EINPROGRESS;
2198 }
2199
2200 /*
2201  * AES ecryption functions.
2202  */
2203 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2204 {
2205         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2206                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2207 }
2208 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2209 {
2210         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2211                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2212 }
2213 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2214 {
2215         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2216                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2217 }
2218 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2219 {
2220         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2221                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2222 }
2223
2224 /*
2225  * AES decryption functions.
2226  */
2227 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2228 {
2229         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2230                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2231 }
2232 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2233 {
2234         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2235                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2236 }
2237 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2238 {
2239         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2240                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2241 }
2242 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2243 {
2244         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2245                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2246 }
2247
2248 /*
2249  * DES ecryption functions.
2250  */
2251 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2252 {
2253         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2254                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2255 }
2256 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2257 {
2258         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2259                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2260 }
2261 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2262 {
2263         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2264                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2265 }
2266 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2267 {
2268         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2269                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2270 }
2271
2272 /*
2273  * DES decryption functions.
2274  */
2275 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2276 {
2277         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2278                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2279 }
2280 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2281 {
2282         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2283                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2284 }
2285 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2286 {
2287         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2288                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2289 }
2290 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2291 {
2292         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2293                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2294 }
2295
2296 /*
2297  * 3DES ecryption functions.
2298  */
2299 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2300 {
2301         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2302                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2303 }
2304 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2305 {
2306         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2307                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2308 }
2309 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2310 {
2311         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2312                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2313 }
2314 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2315 {
2316         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2317                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2318 }
2319
2320 /*
2321  * 3DES decryption functions.
2322  */
2323 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2324 {
2325         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2326                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2327 }
2328 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2329 {
2330         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2331                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2332 }
2333 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2334 {
2335         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2336                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2337 }
2338 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2339 {
2340         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2341                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2342 }
2343
2344 struct hifn_alg_template
2345 {
2346         char name[CRYPTO_MAX_ALG_NAME];
2347         char drv_name[CRYPTO_MAX_ALG_NAME];
2348         unsigned int bsize;
2349         struct ablkcipher_alg ablkcipher;
2350 };
2351
2352 static struct hifn_alg_template hifn_alg_templates[] = {
2353         /*
2354          * 3DES ECB, CBC, CFB and OFB modes.
2355          */
2356         {
2357                 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2358                 .ablkcipher = {
2359                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2360                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2361                         .setkey         =       hifn_setkey,
2362                         .encrypt        =       hifn_encrypt_3des_cfb,
2363                         .decrypt        =       hifn_decrypt_3des_cfb,
2364                 },
2365         },
2366         {
2367                 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2368                 .ablkcipher = {
2369                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2370                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2371                         .setkey         =       hifn_setkey,
2372                         .encrypt        =       hifn_encrypt_3des_ofb,
2373                         .decrypt        =       hifn_decrypt_3des_ofb,
2374                 },
2375         },
2376         {
2377                 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2378                 .ablkcipher = {
2379                         .ivsize         =       HIFN_IV_LENGTH,
2380                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2381                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2382                         .setkey         =       hifn_setkey,
2383                         .encrypt        =       hifn_encrypt_3des_cbc,
2384                         .decrypt        =       hifn_decrypt_3des_cbc,
2385                 },
2386         },
2387         {
2388                 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2389                 .ablkcipher = {
2390                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2391                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2392                         .setkey         =       hifn_setkey,
2393                         .encrypt        =       hifn_encrypt_3des_ecb,
2394                         .decrypt        =       hifn_decrypt_3des_ecb,
2395                 },
2396         },
2397
2398         /*
2399          * DES ECB, CBC, CFB and OFB modes.
2400          */
2401         {
2402                 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2403                 .ablkcipher = {
2404                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2405                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2406                         .setkey         =       hifn_setkey,
2407                         .encrypt        =       hifn_encrypt_des_cfb,
2408                         .decrypt        =       hifn_decrypt_des_cfb,
2409                 },
2410         },
2411         {
2412                 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2413                 .ablkcipher = {
2414                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2415                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2416                         .setkey         =       hifn_setkey,
2417                         .encrypt        =       hifn_encrypt_des_ofb,
2418                         .decrypt        =       hifn_decrypt_des_ofb,
2419                 },
2420         },
2421         {
2422                 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2423                 .ablkcipher = {
2424                         .ivsize         =       HIFN_IV_LENGTH,
2425                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2426                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2427                         .setkey         =       hifn_setkey,
2428                         .encrypt        =       hifn_encrypt_des_cbc,
2429                         .decrypt        =       hifn_decrypt_des_cbc,
2430                 },
2431         },
2432         {
2433                 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2434                 .ablkcipher = {
2435                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2436                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2437                         .setkey         =       hifn_setkey,
2438                         .encrypt        =       hifn_encrypt_des_ecb,
2439                         .decrypt        =       hifn_decrypt_des_ecb,
2440                 },
2441         },
2442
2443         /*
2444          * AES ECB, CBC, CFB and OFB modes.
2445          */
2446         {
2447                 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2448                 .ablkcipher = {
2449                         .min_keysize    =       AES_MIN_KEY_SIZE,
2450                         .max_keysize    =       AES_MAX_KEY_SIZE,
2451                         .setkey         =       hifn_setkey,
2452                         .encrypt        =       hifn_encrypt_aes_ecb,
2453                         .decrypt        =       hifn_decrypt_aes_ecb,
2454                 },
2455         },
2456         {
2457                 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2458                 .ablkcipher = {
2459                         .ivsize         =       HIFN_AES_IV_LENGTH,
2460                         .min_keysize    =       AES_MIN_KEY_SIZE,
2461                         .max_keysize    =       AES_MAX_KEY_SIZE,
2462                         .setkey         =       hifn_setkey,
2463                         .encrypt        =       hifn_encrypt_aes_cbc,
2464                         .decrypt        =       hifn_decrypt_aes_cbc,
2465                 },
2466         },
2467         {
2468                 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2469                 .ablkcipher = {
2470                         .min_keysize    =       AES_MIN_KEY_SIZE,
2471                         .max_keysize    =       AES_MAX_KEY_SIZE,
2472                         .setkey         =       hifn_setkey,
2473                         .encrypt        =       hifn_encrypt_aes_cfb,
2474                         .decrypt        =       hifn_decrypt_aes_cfb,
2475                 },
2476         },
2477         {
2478                 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2479                 .ablkcipher = {
2480                         .min_keysize    =       AES_MIN_KEY_SIZE,
2481                         .max_keysize    =       AES_MAX_KEY_SIZE,
2482                         .setkey         =       hifn_setkey,
2483                         .encrypt        =       hifn_encrypt_aes_ofb,
2484                         .decrypt        =       hifn_decrypt_aes_ofb,
2485                 },
2486         },
2487 };
2488
2489 static int hifn_cra_init(struct crypto_tfm *tfm)
2490 {
2491         struct crypto_alg *alg = tfm->__crt_alg;
2492         struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2493         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2494
2495         ctx->dev = ha->dev;
2496
2497         return 0;
2498 }
2499
2500 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2501 {
2502         struct hifn_crypto_alg *alg;
2503         int err;
2504
2505         alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2506         if (!alg)
2507                 return -ENOMEM;
2508
2509         snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2510         snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2511                  t->drv_name, dev->name);
2512
2513         alg->alg.cra_priority = 300;
2514         alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2515         alg->alg.cra_blocksize = t->bsize;
2516         alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2517         alg->alg.cra_alignmask = 0;
2518         alg->alg.cra_type = &crypto_ablkcipher_type;
2519         alg->alg.cra_module = THIS_MODULE;
2520         alg->alg.cra_u.ablkcipher = t->ablkcipher;
2521         alg->alg.cra_init = hifn_cra_init;
2522
2523         alg->dev = dev;
2524
2525         list_add_tail(&alg->entry, &dev->alg_list);
2526
2527         err = crypto_register_alg(&alg->alg);
2528         if (err) {
2529                 list_del(&alg->entry);
2530                 kfree(alg);
2531         }
2532
2533         return err;
2534 }
2535
2536 static void hifn_unregister_alg(struct hifn_device *dev)
2537 {
2538         struct hifn_crypto_alg *a, *n;
2539
2540         list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2541                 list_del(&a->entry);
2542                 crypto_unregister_alg(&a->alg);
2543                 kfree(a);
2544         }
2545 }
2546
2547 static int hifn_register_alg(struct hifn_device *dev)
2548 {
2549         int i, err;
2550
2551         for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2552                 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2553                 if (err)
2554                         goto err_out_exit;
2555         }
2556
2557         return 0;
2558
2559 err_out_exit:
2560         hifn_unregister_alg(dev);
2561         return err;
2562 }
2563
2564 static void hifn_tasklet_callback(unsigned long data)
2565 {
2566         struct hifn_device *dev = (struct hifn_device *)data;
2567
2568         /*
2569          * This is ok to call this without lock being held,
2570          * althogh it modifies some parameters used in parallel,
2571          * (like dev->success), but they are used in process
2572          * context or update is atomic (like setting dev->sa[i] to NULL).
2573          */
2574         hifn_check_for_completion(dev, 0);
2575 }
2576
2577 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2578 {
2579         int err, i;
2580         struct hifn_device *dev;
2581         char name[8];
2582
2583         err = pci_enable_device(pdev);
2584         if (err)
2585                 return err;
2586         pci_set_master(pdev);
2587
2588         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2589         if (err)
2590                 goto err_out_disable_pci_device;
2591
2592         snprintf(name, sizeof(name), "hifn%d",
2593                         atomic_inc_return(&hifn_dev_number)-1);
2594
2595         err = pci_request_regions(pdev, name);
2596         if (err)
2597                 goto err_out_disable_pci_device;
2598
2599         if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2600             pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2601             pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2602                 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2603                                 pci_name(pdev));
2604                 err = -ENODEV;
2605                 goto err_out_free_regions;
2606         }
2607
2608         dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2609                         GFP_KERNEL);
2610         if (!dev) {
2611                 err = -ENOMEM;
2612                 goto err_out_free_regions;
2613         }
2614
2615         INIT_LIST_HEAD(&dev->alg_list);
2616
2617         snprintf(dev->name, sizeof(dev->name), "%s", name);
2618         spin_lock_init(&dev->lock);
2619
2620         for (i=0; i<3; ++i) {
2621                 unsigned long addr, size;
2622
2623                 addr = pci_resource_start(pdev, i);
2624                 size = pci_resource_len(pdev, i);
2625
2626                 dev->bar[i] = ioremap_nocache(addr, size);
2627                 if (!dev->bar[i])
2628                         goto err_out_unmap_bars;
2629         }
2630
2631         dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
2632         if (!dev->result_mem) {
2633                 dprintk("Failed to allocate %d pages for result_mem.\n",
2634                                 HIFN_MAX_RESULT_ORDER);
2635                 goto err_out_unmap_bars;
2636         }
2637         memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));
2638
2639         dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
2640                         PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);
2641
2642         dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2643                         &dev->desc_dma);
2644         if (!dev->desc_virt) {
2645                 dprintk("Failed to allocate descriptor rings.\n");
2646                 goto err_out_free_result_pages;
2647         }
2648         memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2649
2650         dev->pdev = pdev;
2651         dev->irq = pdev->irq;
2652
2653         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2654                 dev->sa[i] = NULL;
2655
2656         pci_set_drvdata(pdev, dev);
2657
2658         tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2659
2660         crypto_init_queue(&dev->queue, 1);
2661
2662         err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2663         if (err) {
2664                 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2665                 dev->irq = 0;
2666                 goto err_out_free_desc;
2667         }
2668
2669         err = hifn_start_device(dev);
2670         if (err)
2671                 goto err_out_free_irq;
2672
2673         err = hifn_test(dev, 1, 0);
2674         if (err)
2675                 goto err_out_stop_device;
2676
2677         err = hifn_register_rng(dev);
2678         if (err)
2679                 goto err_out_stop_device;
2680
2681         err = hifn_register_alg(dev);
2682         if (err)
2683                 goto err_out_unregister_rng;
2684
2685         INIT_DELAYED_WORK(&dev->work, hifn_work);
2686         schedule_delayed_work(&dev->work, HZ);
2687
2688         dprintk("HIFN crypto accelerator card at %s has been "
2689                         "successfully registered as %s.\n",
2690                         pci_name(pdev), dev->name);
2691
2692         return 0;
2693
2694 err_out_unregister_rng:
2695         hifn_unregister_rng(dev);
2696 err_out_stop_device:
2697         hifn_reset_dma(dev, 1);
2698         hifn_stop_device(dev);
2699 err_out_free_irq:
2700         free_irq(dev->irq, dev->name);
2701         tasklet_kill(&dev->tasklet);
2702 err_out_free_desc:
2703         pci_free_consistent(pdev, sizeof(struct hifn_dma),
2704                         dev->desc_virt, dev->desc_dma);
2705
2706 err_out_free_result_pages:
2707         pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2708                         PCI_DMA_FROMDEVICE);
2709         free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2710
2711 err_out_unmap_bars:
2712         for (i=0; i<3; ++i)
2713                 if (dev->bar[i])
2714                         iounmap(dev->bar[i]);
2715
2716 err_out_free_regions:
2717         pci_release_regions(pdev);
2718
2719 err_out_disable_pci_device:
2720         pci_disable_device(pdev);
2721
2722         return err;
2723 }
2724
2725 static void hifn_remove(struct pci_dev *pdev)
2726 {
2727         int i;
2728         struct hifn_device *dev;
2729
2730         dev = pci_get_drvdata(pdev);
2731
2732         if (dev) {
2733                 cancel_delayed_work(&dev->work);
2734                 flush_scheduled_work();
2735
2736                 hifn_unregister_rng(dev);
2737                 hifn_unregister_alg(dev);
2738                 hifn_reset_dma(dev, 1);
2739                 hifn_stop_device(dev);
2740
2741                 free_irq(dev->irq, dev->name);
2742                 tasklet_kill(&dev->tasklet);
2743
2744                 hifn_flush(dev);
2745
2746                 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2747                                 dev->desc_virt, dev->desc_dma);
2748                 pci_unmap_single(pdev, dev->dst,
2749                                 PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2750                                 PCI_DMA_FROMDEVICE);
2751                 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2752                 for (i=0; i<3; ++i)
2753                         if (dev->bar[i])
2754                                 iounmap(dev->bar[i]);
2755
2756                 kfree(dev);
2757         }
2758
2759         pci_release_regions(pdev);
2760         pci_disable_device(pdev);
2761 }
2762
2763 static struct pci_device_id hifn_pci_tbl[] = {
2764         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2765         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2766         { 0 }
2767 };
2768 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2769
2770 static struct pci_driver hifn_pci_driver = {
2771         .name     = "hifn795x",
2772         .id_table = hifn_pci_tbl,
2773         .probe    = hifn_probe,
2774         .remove   = __devexit_p(hifn_remove),
2775 };
2776
2777 static int __devinit hifn_init(void)
2778 {
2779         unsigned int freq;
2780         int err;
2781
2782         if (sizeof(dma_addr_t) > 4) {
2783                 printk(KERN_INFO "HIFN supports only 32-bit addresses.\n");
2784                 return -EINVAL;
2785         }
2786
2787         if (strncmp(hifn_pll_ref, "ext", 3) &&
2788             strncmp(hifn_pll_ref, "pci", 3)) {
2789                 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2790                                 "must be pci or ext");
2791                 return -EINVAL;
2792         }
2793
2794         /*
2795          * For the 7955/7956 the reference clock frequency must be in the
2796          * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2797          * but this chip is currently not supported.
2798          */
2799         if (hifn_pll_ref[3] != '\0') {
2800                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2801                 if (freq < 20 || freq > 100) {
2802                         printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2803                                         "frequency, must be in the range "
2804                                         "of 20-100");
2805                         return -EINVAL;
2806                 }
2807         }
2808
2809         err = pci_register_driver(&hifn_pci_driver);
2810         if (err < 0) {
2811                 dprintk("Failed to register PCI driver for %s device.\n",
2812                                 hifn_pci_driver.name);
2813                 return -ENODEV;
2814         }
2815
2816         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2817                         "has been successfully registered.\n");
2818
2819         return 0;
2820 }
2821
2822 static void __devexit hifn_fini(void)
2823 {
2824         pci_unregister_driver(&hifn_pci_driver);
2825
2826         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2827                         "has been successfully unregistered.\n");
2828 }
2829
2830 module_init(hifn_init);
2831 module_exit(hifn_fini);
2832
2833 MODULE_LICENSE("GPL");
2834 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2835 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");