Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[firefly-linux-kernel-4.4.55.git] / drivers / crypto / picoxcell_crypto.c
1 /*
2  * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17  */
18 #include <crypto/internal/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/sizes.h>
44 #include <linux/slab.h>
45 #include <linux/timer.h>
46
47 #include "picoxcell_crypto_regs.h"
48
49 /*
50  * The threshold for the number of entries in the CMD FIFO available before
51  * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
52  * number of interrupts raised to the CPU.
53  */
54 #define CMD0_IRQ_THRESHOLD   1
55
56 /*
57  * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
58  * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
59  * When there are packets in flight but lower than the threshold, we enable
60  * the timer and at expiry, attempt to remove any processed packets from the
61  * queue and if there are still packets left, schedule the timer again.
62  */
63 #define PACKET_TIMEOUT      1
64
65 /* The priority to register each algorithm with. */
66 #define SPACC_CRYPTO_ALG_PRIORITY       10000
67
68 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN  16
69 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
70 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ   64
71 #define SPACC_CRYPTO_IPSEC_MAX_CTXS     32
72 #define SPACC_CRYPTO_IPSEC_FIFO_SZ      32
73 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ    64
74 #define SPACC_CRYPTO_L2_HASH_PG_SZ      64
75 #define SPACC_CRYPTO_L2_MAX_CTXS        128
76 #define SPACC_CRYPTO_L2_FIFO_SZ         128
77
78 #define MAX_DDT_LEN                     16
79
80 /* DDT format. This must match the hardware DDT format exactly. */
81 struct spacc_ddt {
82         dma_addr_t      p;
83         u32             len;
84 };
85
86 /*
87  * Asynchronous crypto request structure.
88  *
89  * This structure defines a request that is either queued for processing or
90  * being processed.
91  */
92 struct spacc_req {
93         struct list_head                list;
94         struct spacc_engine             *engine;
95         struct crypto_async_request     *req;
96         int                             result;
97         bool                            is_encrypt;
98         unsigned                        ctx_id;
99         dma_addr_t                      src_addr, dst_addr;
100         struct spacc_ddt                *src_ddt, *dst_ddt;
101         void                            (*complete)(struct spacc_req *req);
102
103         /* AEAD specific bits. */
104         u8                              *giv;
105         size_t                          giv_len;
106         dma_addr_t                      giv_pa;
107 };
108
109 struct spacc_engine {
110         void __iomem                    *regs;
111         struct list_head                pending;
112         int                             next_ctx;
113         spinlock_t                      hw_lock;
114         int                             in_flight;
115         struct list_head                completed;
116         struct list_head                in_progress;
117         struct tasklet_struct           complete;
118         unsigned long                   fifo_sz;
119         void __iomem                    *cipher_ctx_base;
120         void __iomem                    *hash_key_base;
121         struct spacc_alg                *algs;
122         unsigned                        num_algs;
123         struct list_head                registered_algs;
124         size_t                          cipher_pg_sz;
125         size_t                          hash_pg_sz;
126         const char                      *name;
127         struct clk                      *clk;
128         struct device                   *dev;
129         unsigned                        max_ctxs;
130         struct timer_list               packet_timeout;
131         unsigned                        stat_irq_thresh;
132         struct dma_pool                 *req_pool;
133 };
134
135 /* Algorithm type mask. */
136 #define SPACC_CRYPTO_ALG_MASK           0x7
137
138 /* SPACC definition of a crypto algorithm. */
139 struct spacc_alg {
140         unsigned long                   ctrl_default;
141         unsigned long                   type;
142         struct crypto_alg               alg;
143         struct spacc_engine             *engine;
144         struct list_head                entry;
145         int                             key_offs;
146         int                             iv_offs;
147 };
148
149 /* Generic context structure for any algorithm type. */
150 struct spacc_generic_ctx {
151         struct spacc_engine             *engine;
152         int                             flags;
153         int                             key_offs;
154         int                             iv_offs;
155 };
156
157 /* Block cipher context. */
158 struct spacc_ablk_ctx {
159         struct spacc_generic_ctx        generic;
160         u8                              key[AES_MAX_KEY_SIZE];
161         u8                              key_len;
162         /*
163          * The fallback cipher. If the operation can't be done in hardware,
164          * fallback to a software version.
165          */
166         struct crypto_ablkcipher        *sw_cipher;
167 };
168
169 /* AEAD cipher context. */
170 struct spacc_aead_ctx {
171         struct spacc_generic_ctx        generic;
172         u8                              cipher_key[AES_MAX_KEY_SIZE];
173         u8                              hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
174         u8                              cipher_key_len;
175         u8                              hash_key_len;
176         struct crypto_aead              *sw_cipher;
177         size_t                          auth_size;
178         u8                              salt[AES_BLOCK_SIZE];
179 };
180
181 static int spacc_ablk_submit(struct spacc_req *req);
182
183 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
184 {
185         return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
186 }
187
188 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
189 {
190         u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
191
192         return fifo_stat & SPA_FIFO_CMD_FULL;
193 }
194
195 /*
196  * Given a cipher context, and a context number, get the base address of the
197  * context page.
198  *
199  * Returns the address of the context page where the key/context may
200  * be written.
201  */
202 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
203                                                 unsigned indx,
204                                                 bool is_cipher_ctx)
205 {
206         return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
207                         (indx * ctx->engine->cipher_pg_sz) :
208                 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
209 }
210
211 /* The context pages can only be written with 32-bit accesses. */
212 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
213                                  unsigned count)
214 {
215         const u32 *src32 = (const u32 *) src;
216
217         while (count--)
218                 writel(*src32++, dst++);
219 }
220
221 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
222                                    void __iomem *page_addr, const u8 *key,
223                                    size_t key_len, const u8 *iv, size_t iv_len)
224 {
225         void __iomem *key_ptr = page_addr + ctx->key_offs;
226         void __iomem *iv_ptr = page_addr + ctx->iv_offs;
227
228         memcpy_toio32(key_ptr, key, key_len / 4);
229         memcpy_toio32(iv_ptr, iv, iv_len / 4);
230 }
231
232 /*
233  * Load a context into the engines context memory.
234  *
235  * Returns the index of the context page where the context was loaded.
236  */
237 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
238                                const u8 *ciph_key, size_t ciph_len,
239                                const u8 *iv, size_t ivlen, const u8 *hash_key,
240                                size_t hash_len)
241 {
242         unsigned indx = ctx->engine->next_ctx++;
243         void __iomem *ciph_page_addr, *hash_page_addr;
244
245         ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
246         hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
247
248         ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
249         spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
250                                ivlen);
251         writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
252                (1 << SPA_KEY_SZ_CIPHER_OFFSET),
253                ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
254
255         if (hash_key) {
256                 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
257                 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
258                        ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
259         }
260
261         return indx;
262 }
263
264 /* Count the number of scatterlist entries in a scatterlist. */
265 static inline int sg_count(struct scatterlist *sg_list, int nbytes)
266 {
267         return sg_nents_for_len(sg_list, nbytes);
268 }
269
270 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
271 {
272         ddt->p = phys;
273         ddt->len = len;
274 }
275
276 /*
277  * Take a crypto request and scatterlists for the data and turn them into DDTs
278  * for passing to the crypto engines. This also DMA maps the data so that the
279  * crypto engines can DMA to/from them.
280  */
281 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
282                                          struct scatterlist *payload,
283                                          unsigned nbytes,
284                                          enum dma_data_direction dir,
285                                          dma_addr_t *ddt_phys)
286 {
287         unsigned nents, mapped_ents;
288         struct scatterlist *cur;
289         struct spacc_ddt *ddt;
290         int i;
291
292         nents = sg_count(payload, nbytes);
293         mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
294
295         if (mapped_ents + 1 > MAX_DDT_LEN)
296                 goto out;
297
298         ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
299         if (!ddt)
300                 goto out;
301
302         for_each_sg(payload, cur, mapped_ents, i)
303                 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
304         ddt_set(&ddt[mapped_ents], 0, 0);
305
306         return ddt;
307
308 out:
309         dma_unmap_sg(engine->dev, payload, nents, dir);
310         return NULL;
311 }
312
313 static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
314 {
315         struct aead_request *areq = container_of(req->req, struct aead_request,
316                                                  base);
317         struct spacc_engine *engine = req->engine;
318         struct spacc_ddt *src_ddt, *dst_ddt;
319         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
320         unsigned nents = sg_count(areq->src, areq->cryptlen);
321         unsigned total;
322         dma_addr_t iv_addr;
323         struct scatterlist *cur;
324         int i, dst_ents, src_ents, assoc_ents;
325         u8 *iv = giv ? giv : areq->iv;
326
327         src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
328         if (!src_ddt)
329                 return -ENOMEM;
330
331         dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
332         if (!dst_ddt) {
333                 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
334                 return -ENOMEM;
335         }
336
337         req->src_ddt = src_ddt;
338         req->dst_ddt = dst_ddt;
339
340         assoc_ents = dma_map_sg(engine->dev, areq->assoc,
341                 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
342         if (areq->src != areq->dst) {
343                 src_ents = dma_map_sg(engine->dev, areq->src, nents,
344                                       DMA_TO_DEVICE);
345                 dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
346                                       DMA_FROM_DEVICE);
347         } else {
348                 src_ents = dma_map_sg(engine->dev, areq->src, nents,
349                                       DMA_BIDIRECTIONAL);
350                 dst_ents = 0;
351         }
352
353         /*
354          * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
355          * formed by the crypto block and sent as the ESP IV for IPSEC.
356          */
357         iv_addr = dma_map_single(engine->dev, iv, ivsize,
358                                  giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
359         req->giv_pa = iv_addr;
360
361         /*
362          * Map the associated data. For decryption we don't copy the
363          * associated data.
364          */
365         total = areq->assoclen;
366         for_each_sg(areq->assoc, cur, assoc_ents, i) {
367                 unsigned len = sg_dma_len(cur);
368
369                 if (len > total)
370                         len = total;
371
372                 total -= len;
373
374                 ddt_set(src_ddt++, sg_dma_address(cur), len);
375                 if (req->is_encrypt)
376                         ddt_set(dst_ddt++, sg_dma_address(cur), len);
377         }
378         ddt_set(src_ddt++, iv_addr, ivsize);
379
380         if (giv || req->is_encrypt)
381                 ddt_set(dst_ddt++, iv_addr, ivsize);
382
383         /*
384          * Now map in the payload for the source and destination and terminate
385          * with the NULL pointers.
386          */
387         for_each_sg(areq->src, cur, src_ents, i) {
388                 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
389                 if (areq->src == areq->dst)
390                         ddt_set(dst_ddt++, sg_dma_address(cur),
391                                 sg_dma_len(cur));
392         }
393
394         for_each_sg(areq->dst, cur, dst_ents, i)
395                 ddt_set(dst_ddt++, sg_dma_address(cur),
396                         sg_dma_len(cur));
397
398         ddt_set(src_ddt, 0, 0);
399         ddt_set(dst_ddt, 0, 0);
400
401         return 0;
402 }
403
404 static void spacc_aead_free_ddts(struct spacc_req *req)
405 {
406         struct aead_request *areq = container_of(req->req, struct aead_request,
407                                                  base);
408         struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
409         struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
410         struct spacc_engine *engine = aead_ctx->generic.engine;
411         unsigned ivsize = alg->alg.cra_aead.ivsize;
412         unsigned nents = sg_count(areq->src, areq->cryptlen);
413
414         if (areq->src != areq->dst) {
415                 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
416                 dma_unmap_sg(engine->dev, areq->dst,
417                              sg_count(areq->dst, areq->cryptlen),
418                              DMA_FROM_DEVICE);
419         } else
420                 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
421
422         dma_unmap_sg(engine->dev, areq->assoc,
423                      sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
424
425         dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
426
427         dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
428         dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
429 }
430
431 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
432                            dma_addr_t ddt_addr, struct scatterlist *payload,
433                            unsigned nbytes, enum dma_data_direction dir)
434 {
435         unsigned nents = sg_count(payload, nbytes);
436
437         dma_unmap_sg(req->engine->dev, payload, nents, dir);
438         dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
439 }
440
441 /*
442  * Set key for a DES operation in an AEAD cipher. This also performs weak key
443  * checking if required.
444  */
445 static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
446                                  unsigned int len)
447 {
448         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
449         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
450         u32 tmp[DES_EXPKEY_WORDS];
451
452         if (unlikely(!des_ekey(tmp, key)) &&
453             (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
454                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
455                 return -EINVAL;
456         }
457
458         memcpy(ctx->cipher_key, key, len);
459         ctx->cipher_key_len = len;
460
461         return 0;
462 }
463
464 /* Set the key for the AES block cipher component of the AEAD transform. */
465 static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
466                                  unsigned int len)
467 {
468         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
469         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
470
471         /*
472          * IPSec engine only supports 128 and 256 bit AES keys. If we get a
473          * request for any other size (192 bits) then we need to do a software
474          * fallback.
475          */
476         if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
477                 /*
478                  * Set the fallback transform to use the same request flags as
479                  * the hardware transform.
480                  */
481                 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
482                 ctx->sw_cipher->base.crt_flags |=
483                         tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
484                 return crypto_aead_setkey(ctx->sw_cipher, key, len);
485         }
486
487         memcpy(ctx->cipher_key, key, len);
488         ctx->cipher_key_len = len;
489
490         return 0;
491 }
492
493 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
494                              unsigned int keylen)
495 {
496         struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
497         struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
498         struct crypto_authenc_keys keys;
499         int err = -EINVAL;
500
501         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
502                 goto badkey;
503
504         if (keys.enckeylen > AES_MAX_KEY_SIZE)
505                 goto badkey;
506
507         if (keys.authkeylen > sizeof(ctx->hash_ctx))
508                 goto badkey;
509
510         if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
511             SPA_CTRL_CIPH_ALG_AES)
512                 err = spacc_aead_aes_setkey(tfm, keys.enckey, keys.enckeylen);
513         else
514                 err = spacc_aead_des_setkey(tfm, keys.enckey, keys.enckeylen);
515
516         if (err)
517                 goto badkey;
518
519         memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
520         ctx->hash_key_len = keys.authkeylen;
521
522         return 0;
523
524 badkey:
525         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
526         return -EINVAL;
527 }
528
529 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
530                                   unsigned int authsize)
531 {
532         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
533
534         ctx->auth_size = authsize;
535
536         return 0;
537 }
538
539 /*
540  * Check if an AEAD request requires a fallback operation. Some requests can't
541  * be completed in hardware because the hardware may not support certain key
542  * sizes. In these cases we need to complete the request in software.
543  */
544 static int spacc_aead_need_fallback(struct spacc_req *req)
545 {
546         struct aead_request *aead_req;
547         struct crypto_tfm *tfm = req->req->tfm;
548         struct crypto_alg *alg = req->req->tfm->__crt_alg;
549         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
550         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
551
552         aead_req = container_of(req->req, struct aead_request, base);
553         /*
554          * If we have a non-supported key-length, then we need to do a
555          * software fallback.
556          */
557         if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
558             SPA_CTRL_CIPH_ALG_AES &&
559             ctx->cipher_key_len != AES_KEYSIZE_128 &&
560             ctx->cipher_key_len != AES_KEYSIZE_256)
561                 return 1;
562
563         return 0;
564 }
565
566 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
567                                   bool is_encrypt)
568 {
569         struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
570         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
571         int err;
572
573         if (ctx->sw_cipher) {
574                 /*
575                  * Change the request to use the software fallback transform,
576                  * and once the ciphering has completed, put the old transform
577                  * back into the request.
578                  */
579                 aead_request_set_tfm(req, ctx->sw_cipher);
580                 err = is_encrypt ? crypto_aead_encrypt(req) :
581                     crypto_aead_decrypt(req);
582                 aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
583         } else
584                 err = -EINVAL;
585
586         return err;
587 }
588
589 static void spacc_aead_complete(struct spacc_req *req)
590 {
591         spacc_aead_free_ddts(req);
592         req->req->complete(req->req, req->result);
593 }
594
595 static int spacc_aead_submit(struct spacc_req *req)
596 {
597         struct crypto_tfm *tfm = req->req->tfm;
598         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
599         struct crypto_alg *alg = req->req->tfm->__crt_alg;
600         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
601         struct spacc_engine *engine = ctx->generic.engine;
602         u32 ctrl, proc_len, assoc_len;
603         struct aead_request *aead_req =
604                 container_of(req->req, struct aead_request, base);
605
606         req->result = -EINPROGRESS;
607         req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
608                 ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
609                 ctx->hash_ctx, ctx->hash_key_len);
610
611         /* Set the source and destination DDT pointers. */
612         writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
613         writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
614         writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
615
616         assoc_len = aead_req->assoclen;
617         proc_len = aead_req->cryptlen + assoc_len;
618
619         /*
620          * If we aren't generating an IV, then we need to include the IV in the
621          * associated data so that it is included in the hash.
622          */
623         if (!req->giv) {
624                 assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
625                 proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
626         } else
627                 proc_len += req->giv_len;
628
629         /*
630          * If we are decrypting, we need to take the length of the ICV out of
631          * the processing length.
632          */
633         if (!req->is_encrypt)
634                 proc_len -= ctx->auth_size;
635
636         writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
637         writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
638         writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
639         writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
640         writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
641
642         ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
643                 (1 << SPA_CTRL_ICV_APPEND);
644         if (req->is_encrypt)
645                 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
646         else
647                 ctrl |= (1 << SPA_CTRL_KEY_EXP);
648
649         mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
650
651         writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
652
653         return -EINPROGRESS;
654 }
655
656 static int spacc_req_submit(struct spacc_req *req);
657
658 static void spacc_push(struct spacc_engine *engine)
659 {
660         struct spacc_req *req;
661
662         while (!list_empty(&engine->pending) &&
663                engine->in_flight + 1 <= engine->fifo_sz) {
664
665                 ++engine->in_flight;
666                 req = list_first_entry(&engine->pending, struct spacc_req,
667                                        list);
668                 list_move_tail(&req->list, &engine->in_progress);
669
670                 req->result = spacc_req_submit(req);
671         }
672 }
673
674 /*
675  * Setup an AEAD request for processing. This will configure the engine, load
676  * the context and then start the packet processing.
677  *
678  * @giv Pointer to destination address for a generated IV. If the
679  *      request does not need to generate an IV then this should be set to NULL.
680  */
681 static int spacc_aead_setup(struct aead_request *req, u8 *giv,
682                             unsigned alg_type, bool is_encrypt)
683 {
684         struct crypto_alg *alg = req->base.tfm->__crt_alg;
685         struct spacc_engine *engine = to_spacc_alg(alg)->engine;
686         struct spacc_req *dev_req = aead_request_ctx(req);
687         int err = -EINPROGRESS;
688         unsigned long flags;
689         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
690
691         dev_req->giv            = giv;
692         dev_req->giv_len        = ivsize;
693         dev_req->req            = &req->base;
694         dev_req->is_encrypt     = is_encrypt;
695         dev_req->result         = -EBUSY;
696         dev_req->engine         = engine;
697         dev_req->complete       = spacc_aead_complete;
698
699         if (unlikely(spacc_aead_need_fallback(dev_req)))
700                 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
701
702         spacc_aead_make_ddts(dev_req, dev_req->giv);
703
704         err = -EINPROGRESS;
705         spin_lock_irqsave(&engine->hw_lock, flags);
706         if (unlikely(spacc_fifo_cmd_full(engine)) ||
707             engine->in_flight + 1 > engine->fifo_sz) {
708                 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
709                         err = -EBUSY;
710                         spin_unlock_irqrestore(&engine->hw_lock, flags);
711                         goto out_free_ddts;
712                 }
713                 list_add_tail(&dev_req->list, &engine->pending);
714         } else {
715                 list_add_tail(&dev_req->list, &engine->pending);
716                 spacc_push(engine);
717         }
718         spin_unlock_irqrestore(&engine->hw_lock, flags);
719
720         goto out;
721
722 out_free_ddts:
723         spacc_aead_free_ddts(dev_req);
724 out:
725         return err;
726 }
727
728 static int spacc_aead_encrypt(struct aead_request *req)
729 {
730         struct crypto_aead *aead = crypto_aead_reqtfm(req);
731         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
732         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
733
734         return spacc_aead_setup(req, NULL, alg->type, 1);
735 }
736
737 static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
738 {
739         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
740         struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
741         size_t ivsize = crypto_aead_ivsize(tfm);
742         struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
743         unsigned len;
744         __be64 seq;
745
746         memcpy(req->areq.iv, ctx->salt, ivsize);
747         len = ivsize;
748         if (ivsize > sizeof(u64)) {
749                 memset(req->giv, 0, ivsize - sizeof(u64));
750                 len = sizeof(u64);
751         }
752         seq = cpu_to_be64(req->seq);
753         memcpy(req->giv + ivsize - len, &seq, len);
754
755         return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
756 }
757
758 static int spacc_aead_decrypt(struct aead_request *req)
759 {
760         struct crypto_aead *aead = crypto_aead_reqtfm(req);
761         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
762         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
763
764         return spacc_aead_setup(req, NULL, alg->type, 0);
765 }
766
767 /*
768  * Initialise a new AEAD context. This is responsible for allocating the
769  * fallback cipher and initialising the context.
770  */
771 static int spacc_aead_cra_init(struct crypto_tfm *tfm)
772 {
773         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
774         struct crypto_alg *alg = tfm->__crt_alg;
775         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
776         struct spacc_engine *engine = spacc_alg->engine;
777
778         ctx->generic.flags = spacc_alg->type;
779         ctx->generic.engine = engine;
780         ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
781                                            CRYPTO_ALG_ASYNC |
782                                            CRYPTO_ALG_NEED_FALLBACK);
783         if (IS_ERR(ctx->sw_cipher)) {
784                 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
785                          alg->cra_name);
786                 ctx->sw_cipher = NULL;
787         }
788         ctx->generic.key_offs = spacc_alg->key_offs;
789         ctx->generic.iv_offs = spacc_alg->iv_offs;
790
791         get_random_bytes(ctx->salt, sizeof(ctx->salt));
792
793         crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
794                                 sizeof(struct spacc_req));
795
796         return 0;
797 }
798
799 /*
800  * Destructor for an AEAD context. This is called when the transform is freed
801  * and must free the fallback cipher.
802  */
803 static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
804 {
805         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
806
807         if (ctx->sw_cipher)
808                 crypto_free_aead(ctx->sw_cipher);
809         ctx->sw_cipher = NULL;
810 }
811
812 /*
813  * Set the DES key for a block cipher transform. This also performs weak key
814  * checking if the transform has requested it.
815  */
816 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
817                             unsigned int len)
818 {
819         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
820         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
821         u32 tmp[DES_EXPKEY_WORDS];
822
823         if (len > DES3_EDE_KEY_SIZE) {
824                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
825                 return -EINVAL;
826         }
827
828         if (unlikely(!des_ekey(tmp, key)) &&
829             (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
830                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
831                 return -EINVAL;
832         }
833
834         memcpy(ctx->key, key, len);
835         ctx->key_len = len;
836
837         return 0;
838 }
839
840 /*
841  * Set the key for an AES block cipher. Some key lengths are not supported in
842  * hardware so this must also check whether a fallback is needed.
843  */
844 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
845                             unsigned int len)
846 {
847         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
848         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
849         int err = 0;
850
851         if (len > AES_MAX_KEY_SIZE) {
852                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
853                 return -EINVAL;
854         }
855
856         /*
857          * IPSec engine only supports 128 and 256 bit AES keys. If we get a
858          * request for any other size (192 bits) then we need to do a software
859          * fallback.
860          */
861         if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
862             ctx->sw_cipher) {
863                 /*
864                  * Set the fallback transform to use the same request flags as
865                  * the hardware transform.
866                  */
867                 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
868                 ctx->sw_cipher->base.crt_flags |=
869                         cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
870
871                 err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
872                 if (err)
873                         goto sw_setkey_failed;
874         } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
875                    !ctx->sw_cipher)
876                 err = -EINVAL;
877
878         memcpy(ctx->key, key, len);
879         ctx->key_len = len;
880
881 sw_setkey_failed:
882         if (err && ctx->sw_cipher) {
883                 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
884                 tfm->crt_flags |=
885                         ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
886         }
887
888         return err;
889 }
890
891 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
892                                   const u8 *key, unsigned int len)
893 {
894         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
895         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
896         int err = 0;
897
898         if (len > AES_MAX_KEY_SIZE) {
899                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
900                 err = -EINVAL;
901                 goto out;
902         }
903
904         memcpy(ctx->key, key, len);
905         ctx->key_len = len;
906
907 out:
908         return err;
909 }
910
911 static int spacc_ablk_need_fallback(struct spacc_req *req)
912 {
913         struct spacc_ablk_ctx *ctx;
914         struct crypto_tfm *tfm = req->req->tfm;
915         struct crypto_alg *alg = req->req->tfm->__crt_alg;
916         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
917
918         ctx = crypto_tfm_ctx(tfm);
919
920         return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
921                         SPA_CTRL_CIPH_ALG_AES &&
922                         ctx->key_len != AES_KEYSIZE_128 &&
923                         ctx->key_len != AES_KEYSIZE_256;
924 }
925
926 static void spacc_ablk_complete(struct spacc_req *req)
927 {
928         struct ablkcipher_request *ablk_req =
929                 container_of(req->req, struct ablkcipher_request, base);
930
931         if (ablk_req->src != ablk_req->dst) {
932                 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
933                                ablk_req->nbytes, DMA_TO_DEVICE);
934                 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
935                                ablk_req->nbytes, DMA_FROM_DEVICE);
936         } else
937                 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
938                                ablk_req->nbytes, DMA_BIDIRECTIONAL);
939
940         req->req->complete(req->req, req->result);
941 }
942
943 static int spacc_ablk_submit(struct spacc_req *req)
944 {
945         struct crypto_tfm *tfm = req->req->tfm;
946         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
947         struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
948         struct crypto_alg *alg = req->req->tfm->__crt_alg;
949         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
950         struct spacc_engine *engine = ctx->generic.engine;
951         u32 ctrl;
952
953         req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
954                 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
955                 NULL, 0);
956
957         writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
958         writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
959         writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
960
961         writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
962         writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
963         writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
964         writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
965
966         ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
967                 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
968                  (1 << SPA_CTRL_KEY_EXP));
969
970         mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
971
972         writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
973
974         return -EINPROGRESS;
975 }
976
977 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
978                                   unsigned alg_type, bool is_encrypt)
979 {
980         struct crypto_tfm *old_tfm =
981             crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
982         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
983         int err;
984
985         if (!ctx->sw_cipher)
986                 return -EINVAL;
987
988         /*
989          * Change the request to use the software fallback transform, and once
990          * the ciphering has completed, put the old transform back into the
991          * request.
992          */
993         ablkcipher_request_set_tfm(req, ctx->sw_cipher);
994         err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
995                 crypto_ablkcipher_decrypt(req);
996         ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
997
998         return err;
999 }
1000
1001 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1002                             bool is_encrypt)
1003 {
1004         struct crypto_alg *alg = req->base.tfm->__crt_alg;
1005         struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1006         struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1007         unsigned long flags;
1008         int err = -ENOMEM;
1009
1010         dev_req->req            = &req->base;
1011         dev_req->is_encrypt     = is_encrypt;
1012         dev_req->engine         = engine;
1013         dev_req->complete       = spacc_ablk_complete;
1014         dev_req->result         = -EINPROGRESS;
1015
1016         if (unlikely(spacc_ablk_need_fallback(dev_req)))
1017                 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1018
1019         /*
1020          * Create the DDT's for the engine. If we share the same source and
1021          * destination then we can optimize by reusing the DDT's.
1022          */
1023         if (req->src != req->dst) {
1024                 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1025                         req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1026                 if (!dev_req->src_ddt)
1027                         goto out;
1028
1029                 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1030                         req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1031                 if (!dev_req->dst_ddt)
1032                         goto out_free_src;
1033         } else {
1034                 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1035                         req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1036                 if (!dev_req->dst_ddt)
1037                         goto out;
1038
1039                 dev_req->src_ddt = NULL;
1040                 dev_req->src_addr = dev_req->dst_addr;
1041         }
1042
1043         err = -EINPROGRESS;
1044         spin_lock_irqsave(&engine->hw_lock, flags);
1045         /*
1046          * Check if the engine will accept the operation now. If it won't then
1047          * we either stick it on the end of a pending list if we can backlog,
1048          * or bailout with an error if not.
1049          */
1050         if (unlikely(spacc_fifo_cmd_full(engine)) ||
1051             engine->in_flight + 1 > engine->fifo_sz) {
1052                 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1053                         err = -EBUSY;
1054                         spin_unlock_irqrestore(&engine->hw_lock, flags);
1055                         goto out_free_ddts;
1056                 }
1057                 list_add_tail(&dev_req->list, &engine->pending);
1058         } else {
1059                 list_add_tail(&dev_req->list, &engine->pending);
1060                 spacc_push(engine);
1061         }
1062         spin_unlock_irqrestore(&engine->hw_lock, flags);
1063
1064         goto out;
1065
1066 out_free_ddts:
1067         spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1068                        req->nbytes, req->src == req->dst ?
1069                        DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1070 out_free_src:
1071         if (req->src != req->dst)
1072                 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1073                                req->src, req->nbytes, DMA_TO_DEVICE);
1074 out:
1075         return err;
1076 }
1077
1078 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1079 {
1080         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1081         struct crypto_alg *alg = tfm->__crt_alg;
1082         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1083         struct spacc_engine *engine = spacc_alg->engine;
1084
1085         ctx->generic.flags = spacc_alg->type;
1086         ctx->generic.engine = engine;
1087         if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1088                 ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1089                                 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1090                 if (IS_ERR(ctx->sw_cipher)) {
1091                         dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1092                                  alg->cra_name);
1093                         ctx->sw_cipher = NULL;
1094                 }
1095         }
1096         ctx->generic.key_offs = spacc_alg->key_offs;
1097         ctx->generic.iv_offs = spacc_alg->iv_offs;
1098
1099         tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1100
1101         return 0;
1102 }
1103
1104 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1105 {
1106         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1107
1108         if (ctx->sw_cipher)
1109                 crypto_free_ablkcipher(ctx->sw_cipher);
1110         ctx->sw_cipher = NULL;
1111 }
1112
1113 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1114 {
1115         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1116         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1117         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1118
1119         return spacc_ablk_setup(req, alg->type, 1);
1120 }
1121
1122 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1123 {
1124         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1125         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1126         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1127
1128         return spacc_ablk_setup(req, alg->type, 0);
1129 }
1130
1131 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1132 {
1133         return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1134                 SPA_FIFO_STAT_EMPTY;
1135 }
1136
1137 static void spacc_process_done(struct spacc_engine *engine)
1138 {
1139         struct spacc_req *req;
1140         unsigned long flags;
1141
1142         spin_lock_irqsave(&engine->hw_lock, flags);
1143
1144         while (!spacc_fifo_stat_empty(engine)) {
1145                 req = list_first_entry(&engine->in_progress, struct spacc_req,
1146                                        list);
1147                 list_move_tail(&req->list, &engine->completed);
1148                 --engine->in_flight;
1149
1150                 /* POP the status register. */
1151                 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1152                 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1153                      SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1154
1155                 /*
1156                  * Convert the SPAcc error status into the standard POSIX error
1157                  * codes.
1158                  */
1159                 if (unlikely(req->result)) {
1160                         switch (req->result) {
1161                         case SPA_STATUS_ICV_FAIL:
1162                                 req->result = -EBADMSG;
1163                                 break;
1164
1165                         case SPA_STATUS_MEMORY_ERROR:
1166                                 dev_warn(engine->dev,
1167                                          "memory error triggered\n");
1168                                 req->result = -EFAULT;
1169                                 break;
1170
1171                         case SPA_STATUS_BLOCK_ERROR:
1172                                 dev_warn(engine->dev,
1173                                          "block error triggered\n");
1174                                 req->result = -EIO;
1175                                 break;
1176                         }
1177                 }
1178         }
1179
1180         tasklet_schedule(&engine->complete);
1181
1182         spin_unlock_irqrestore(&engine->hw_lock, flags);
1183 }
1184
1185 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1186 {
1187         struct spacc_engine *engine = (struct spacc_engine *)dev;
1188         u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1189
1190         writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1191         spacc_process_done(engine);
1192
1193         return IRQ_HANDLED;
1194 }
1195
1196 static void spacc_packet_timeout(unsigned long data)
1197 {
1198         struct spacc_engine *engine = (struct spacc_engine *)data;
1199
1200         spacc_process_done(engine);
1201 }
1202
1203 static int spacc_req_submit(struct spacc_req *req)
1204 {
1205         struct crypto_alg *alg = req->req->tfm->__crt_alg;
1206
1207         if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1208                 return spacc_aead_submit(req);
1209         else
1210                 return spacc_ablk_submit(req);
1211 }
1212
1213 static void spacc_spacc_complete(unsigned long data)
1214 {
1215         struct spacc_engine *engine = (struct spacc_engine *)data;
1216         struct spacc_req *req, *tmp;
1217         unsigned long flags;
1218         LIST_HEAD(completed);
1219
1220         spin_lock_irqsave(&engine->hw_lock, flags);
1221
1222         list_splice_init(&engine->completed, &completed);
1223         spacc_push(engine);
1224         if (engine->in_flight)
1225                 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1226
1227         spin_unlock_irqrestore(&engine->hw_lock, flags);
1228
1229         list_for_each_entry_safe(req, tmp, &completed, list) {
1230                 list_del(&req->list);
1231                 req->complete(req);
1232         }
1233 }
1234
1235 #ifdef CONFIG_PM
1236 static int spacc_suspend(struct device *dev)
1237 {
1238         struct platform_device *pdev = to_platform_device(dev);
1239         struct spacc_engine *engine = platform_get_drvdata(pdev);
1240
1241         /*
1242          * We only support standby mode. All we have to do is gate the clock to
1243          * the spacc. The hardware will preserve state until we turn it back
1244          * on again.
1245          */
1246         clk_disable(engine->clk);
1247
1248         return 0;
1249 }
1250
1251 static int spacc_resume(struct device *dev)
1252 {
1253         struct platform_device *pdev = to_platform_device(dev);
1254         struct spacc_engine *engine = platform_get_drvdata(pdev);
1255
1256         return clk_enable(engine->clk);
1257 }
1258
1259 static const struct dev_pm_ops spacc_pm_ops = {
1260         .suspend        = spacc_suspend,
1261         .resume         = spacc_resume,
1262 };
1263 #endif /* CONFIG_PM */
1264
1265 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1266 {
1267         return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1268 }
1269
1270 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1271                                           struct device_attribute *attr,
1272                                           char *buf)
1273 {
1274         struct spacc_engine *engine = spacc_dev_to_engine(dev);
1275
1276         return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1277 }
1278
1279 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1280                                            struct device_attribute *attr,
1281                                            const char *buf, size_t len)
1282 {
1283         struct spacc_engine *engine = spacc_dev_to_engine(dev);
1284         unsigned long thresh;
1285
1286         if (kstrtoul(buf, 0, &thresh))
1287                 return -EINVAL;
1288
1289         thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1290
1291         engine->stat_irq_thresh = thresh;
1292         writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1293                engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1294
1295         return len;
1296 }
1297 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1298                    spacc_stat_irq_thresh_store);
1299
1300 static struct spacc_alg ipsec_engine_algs[] = {
1301         {
1302                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1303                 .key_offs = 0,
1304                 .iv_offs = AES_MAX_KEY_SIZE,
1305                 .alg = {
1306                         .cra_name = "cbc(aes)",
1307                         .cra_driver_name = "cbc-aes-picoxcell",
1308                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1309                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1310                                      CRYPTO_ALG_KERN_DRIVER_ONLY |
1311                                      CRYPTO_ALG_ASYNC |
1312                                      CRYPTO_ALG_NEED_FALLBACK,
1313                         .cra_blocksize = AES_BLOCK_SIZE,
1314                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1315                         .cra_type = &crypto_ablkcipher_type,
1316                         .cra_module = THIS_MODULE,
1317                         .cra_ablkcipher = {
1318                                 .setkey = spacc_aes_setkey,
1319                                 .encrypt = spacc_ablk_encrypt,
1320                                 .decrypt = spacc_ablk_decrypt,
1321                                 .min_keysize = AES_MIN_KEY_SIZE,
1322                                 .max_keysize = AES_MAX_KEY_SIZE,
1323                                 .ivsize = AES_BLOCK_SIZE,
1324                         },
1325                         .cra_init = spacc_ablk_cra_init,
1326                         .cra_exit = spacc_ablk_cra_exit,
1327                 },
1328         },
1329         {
1330                 .key_offs = 0,
1331                 .iv_offs = AES_MAX_KEY_SIZE,
1332                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1333                 .alg = {
1334                         .cra_name = "ecb(aes)",
1335                         .cra_driver_name = "ecb-aes-picoxcell",
1336                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1337                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1338                                 CRYPTO_ALG_KERN_DRIVER_ONLY |
1339                                 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1340                         .cra_blocksize = AES_BLOCK_SIZE,
1341                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1342                         .cra_type = &crypto_ablkcipher_type,
1343                         .cra_module = THIS_MODULE,
1344                         .cra_ablkcipher = {
1345                                 .setkey = spacc_aes_setkey,
1346                                 .encrypt = spacc_ablk_encrypt,
1347                                 .decrypt = spacc_ablk_decrypt,
1348                                 .min_keysize = AES_MIN_KEY_SIZE,
1349                                 .max_keysize = AES_MAX_KEY_SIZE,
1350                         },
1351                         .cra_init = spacc_ablk_cra_init,
1352                         .cra_exit = spacc_ablk_cra_exit,
1353                 },
1354         },
1355         {
1356                 .key_offs = DES_BLOCK_SIZE,
1357                 .iv_offs = 0,
1358                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1359                 .alg = {
1360                         .cra_name = "cbc(des)",
1361                         .cra_driver_name = "cbc-des-picoxcell",
1362                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1363                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1364                                         CRYPTO_ALG_ASYNC |
1365                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1366                         .cra_blocksize = DES_BLOCK_SIZE,
1367                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1368                         .cra_type = &crypto_ablkcipher_type,
1369                         .cra_module = THIS_MODULE,
1370                         .cra_ablkcipher = {
1371                                 .setkey = spacc_des_setkey,
1372                                 .encrypt = spacc_ablk_encrypt,
1373                                 .decrypt = spacc_ablk_decrypt,
1374                                 .min_keysize = DES_KEY_SIZE,
1375                                 .max_keysize = DES_KEY_SIZE,
1376                                 .ivsize = DES_BLOCK_SIZE,
1377                         },
1378                         .cra_init = spacc_ablk_cra_init,
1379                         .cra_exit = spacc_ablk_cra_exit,
1380                 },
1381         },
1382         {
1383                 .key_offs = DES_BLOCK_SIZE,
1384                 .iv_offs = 0,
1385                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1386                 .alg = {
1387                         .cra_name = "ecb(des)",
1388                         .cra_driver_name = "ecb-des-picoxcell",
1389                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1390                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1391                                         CRYPTO_ALG_ASYNC |
1392                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1393                         .cra_blocksize = DES_BLOCK_SIZE,
1394                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1395                         .cra_type = &crypto_ablkcipher_type,
1396                         .cra_module = THIS_MODULE,
1397                         .cra_ablkcipher = {
1398                                 .setkey = spacc_des_setkey,
1399                                 .encrypt = spacc_ablk_encrypt,
1400                                 .decrypt = spacc_ablk_decrypt,
1401                                 .min_keysize = DES_KEY_SIZE,
1402                                 .max_keysize = DES_KEY_SIZE,
1403                         },
1404                         .cra_init = spacc_ablk_cra_init,
1405                         .cra_exit = spacc_ablk_cra_exit,
1406                 },
1407         },
1408         {
1409                 .key_offs = DES_BLOCK_SIZE,
1410                 .iv_offs = 0,
1411                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1412                 .alg = {
1413                         .cra_name = "cbc(des3_ede)",
1414                         .cra_driver_name = "cbc-des3-ede-picoxcell",
1415                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1416                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1417                                         CRYPTO_ALG_ASYNC |
1418                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1419                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1420                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1421                         .cra_type = &crypto_ablkcipher_type,
1422                         .cra_module = THIS_MODULE,
1423                         .cra_ablkcipher = {
1424                                 .setkey = spacc_des_setkey,
1425                                 .encrypt = spacc_ablk_encrypt,
1426                                 .decrypt = spacc_ablk_decrypt,
1427                                 .min_keysize = DES3_EDE_KEY_SIZE,
1428                                 .max_keysize = DES3_EDE_KEY_SIZE,
1429                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1430                         },
1431                         .cra_init = spacc_ablk_cra_init,
1432                         .cra_exit = spacc_ablk_cra_exit,
1433                 },
1434         },
1435         {
1436                 .key_offs = DES_BLOCK_SIZE,
1437                 .iv_offs = 0,
1438                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1439                 .alg = {
1440                         .cra_name = "ecb(des3_ede)",
1441                         .cra_driver_name = "ecb-des3-ede-picoxcell",
1442                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1443                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1444                                         CRYPTO_ALG_ASYNC |
1445                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1446                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1447                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1448                         .cra_type = &crypto_ablkcipher_type,
1449                         .cra_module = THIS_MODULE,
1450                         .cra_ablkcipher = {
1451                                 .setkey = spacc_des_setkey,
1452                                 .encrypt = spacc_ablk_encrypt,
1453                                 .decrypt = spacc_ablk_decrypt,
1454                                 .min_keysize = DES3_EDE_KEY_SIZE,
1455                                 .max_keysize = DES3_EDE_KEY_SIZE,
1456                         },
1457                         .cra_init = spacc_ablk_cra_init,
1458                         .cra_exit = spacc_ablk_cra_exit,
1459                 },
1460         },
1461         {
1462                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1463                                 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1464                 .key_offs = 0,
1465                 .iv_offs = AES_MAX_KEY_SIZE,
1466                 .alg = {
1467                         .cra_name = "authenc(hmac(sha1),cbc(aes))",
1468                         .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1469                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1470                         .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1471                                         CRYPTO_ALG_ASYNC |
1472                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1473                         .cra_blocksize = AES_BLOCK_SIZE,
1474                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1475                         .cra_type = &crypto_aead_type,
1476                         .cra_module = THIS_MODULE,
1477                         .cra_aead = {
1478                                 .setkey = spacc_aead_setkey,
1479                                 .setauthsize = spacc_aead_setauthsize,
1480                                 .encrypt = spacc_aead_encrypt,
1481                                 .decrypt = spacc_aead_decrypt,
1482                                 .givencrypt = spacc_aead_givencrypt,
1483                                 .ivsize = AES_BLOCK_SIZE,
1484                                 .maxauthsize = SHA1_DIGEST_SIZE,
1485                         },
1486                         .cra_init = spacc_aead_cra_init,
1487                         .cra_exit = spacc_aead_cra_exit,
1488                 },
1489         },
1490         {
1491                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1492                                 SPA_CTRL_HASH_ALG_SHA256 |
1493                                 SPA_CTRL_HASH_MODE_HMAC,
1494                 .key_offs = 0,
1495                 .iv_offs = AES_MAX_KEY_SIZE,
1496                 .alg = {
1497                         .cra_name = "authenc(hmac(sha256),cbc(aes))",
1498                         .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1499                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1500                         .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1501                                         CRYPTO_ALG_ASYNC |
1502                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1503                         .cra_blocksize = AES_BLOCK_SIZE,
1504                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1505                         .cra_type = &crypto_aead_type,
1506                         .cra_module = THIS_MODULE,
1507                         .cra_aead = {
1508                                 .setkey = spacc_aead_setkey,
1509                                 .setauthsize = spacc_aead_setauthsize,
1510                                 .encrypt = spacc_aead_encrypt,
1511                                 .decrypt = spacc_aead_decrypt,
1512                                 .givencrypt = spacc_aead_givencrypt,
1513                                 .ivsize = AES_BLOCK_SIZE,
1514                                 .maxauthsize = SHA256_DIGEST_SIZE,
1515                         },
1516                         .cra_init = spacc_aead_cra_init,
1517                         .cra_exit = spacc_aead_cra_exit,
1518                 },
1519         },
1520         {
1521                 .key_offs = 0,
1522                 .iv_offs = AES_MAX_KEY_SIZE,
1523                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1524                                 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1525                 .alg = {
1526                         .cra_name = "authenc(hmac(md5),cbc(aes))",
1527                         .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1528                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1529                         .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1530                                         CRYPTO_ALG_ASYNC |
1531                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1532                         .cra_blocksize = AES_BLOCK_SIZE,
1533                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1534                         .cra_type = &crypto_aead_type,
1535                         .cra_module = THIS_MODULE,
1536                         .cra_aead = {
1537                                 .setkey = spacc_aead_setkey,
1538                                 .setauthsize = spacc_aead_setauthsize,
1539                                 .encrypt = spacc_aead_encrypt,
1540                                 .decrypt = spacc_aead_decrypt,
1541                                 .givencrypt = spacc_aead_givencrypt,
1542                                 .ivsize = AES_BLOCK_SIZE,
1543                                 .maxauthsize = MD5_DIGEST_SIZE,
1544                         },
1545                         .cra_init = spacc_aead_cra_init,
1546                         .cra_exit = spacc_aead_cra_exit,
1547                 },
1548         },
1549         {
1550                 .key_offs = DES_BLOCK_SIZE,
1551                 .iv_offs = 0,
1552                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1553                                 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1554                 .alg = {
1555                         .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1556                         .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1557                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1558                         .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1559                                         CRYPTO_ALG_ASYNC |
1560                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1561                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1562                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1563                         .cra_type = &crypto_aead_type,
1564                         .cra_module = THIS_MODULE,
1565                         .cra_aead = {
1566                                 .setkey = spacc_aead_setkey,
1567                                 .setauthsize = spacc_aead_setauthsize,
1568                                 .encrypt = spacc_aead_encrypt,
1569                                 .decrypt = spacc_aead_decrypt,
1570                                 .givencrypt = spacc_aead_givencrypt,
1571                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1572                                 .maxauthsize = SHA1_DIGEST_SIZE,
1573                         },
1574                         .cra_init = spacc_aead_cra_init,
1575                         .cra_exit = spacc_aead_cra_exit,
1576                 },
1577         },
1578         {
1579                 .key_offs = DES_BLOCK_SIZE,
1580                 .iv_offs = 0,
1581                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1582                                 SPA_CTRL_HASH_ALG_SHA256 |
1583                                 SPA_CTRL_HASH_MODE_HMAC,
1584                 .alg = {
1585                         .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1586                         .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1587                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1588                         .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1589                                         CRYPTO_ALG_ASYNC |
1590                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1591                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1592                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1593                         .cra_type = &crypto_aead_type,
1594                         .cra_module = THIS_MODULE,
1595                         .cra_aead = {
1596                                 .setkey = spacc_aead_setkey,
1597                                 .setauthsize = spacc_aead_setauthsize,
1598                                 .encrypt = spacc_aead_encrypt,
1599                                 .decrypt = spacc_aead_decrypt,
1600                                 .givencrypt = spacc_aead_givencrypt,
1601                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1602                                 .maxauthsize = SHA256_DIGEST_SIZE,
1603                         },
1604                         .cra_init = spacc_aead_cra_init,
1605                         .cra_exit = spacc_aead_cra_exit,
1606                 },
1607         },
1608         {
1609                 .key_offs = DES_BLOCK_SIZE,
1610                 .iv_offs = 0,
1611                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1612                                 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1613                 .alg = {
1614                         .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1615                         .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1616                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1617                         .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1618                                         CRYPTO_ALG_ASYNC |
1619                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1620                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1621                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1622                         .cra_type = &crypto_aead_type,
1623                         .cra_module = THIS_MODULE,
1624                         .cra_aead = {
1625                                 .setkey = spacc_aead_setkey,
1626                                 .setauthsize = spacc_aead_setauthsize,
1627                                 .encrypt = spacc_aead_encrypt,
1628                                 .decrypt = spacc_aead_decrypt,
1629                                 .givencrypt = spacc_aead_givencrypt,
1630                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1631                                 .maxauthsize = MD5_DIGEST_SIZE,
1632                         },
1633                         .cra_init = spacc_aead_cra_init,
1634                         .cra_exit = spacc_aead_cra_exit,
1635                 },
1636         },
1637 };
1638
1639 static struct spacc_alg l2_engine_algs[] = {
1640         {
1641                 .key_offs = 0,
1642                 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1643                 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1644                                 SPA_CTRL_CIPH_MODE_F8,
1645                 .alg = {
1646                         .cra_name = "f8(kasumi)",
1647                         .cra_driver_name = "f8-kasumi-picoxcell",
1648                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1649                         .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1650                                         CRYPTO_ALG_ASYNC |
1651                                         CRYPTO_ALG_KERN_DRIVER_ONLY,
1652                         .cra_blocksize = 8,
1653                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1654                         .cra_type = &crypto_ablkcipher_type,
1655                         .cra_module = THIS_MODULE,
1656                         .cra_ablkcipher = {
1657                                 .setkey = spacc_kasumi_f8_setkey,
1658                                 .encrypt = spacc_ablk_encrypt,
1659                                 .decrypt = spacc_ablk_decrypt,
1660                                 .min_keysize = 16,
1661                                 .max_keysize = 16,
1662                                 .ivsize = 8,
1663                         },
1664                         .cra_init = spacc_ablk_cra_init,
1665                         .cra_exit = spacc_ablk_cra_exit,
1666                 },
1667         },
1668 };
1669
1670 #ifdef CONFIG_OF
1671 static const struct of_device_id spacc_of_id_table[] = {
1672         { .compatible = "picochip,spacc-ipsec" },
1673         { .compatible = "picochip,spacc-l2" },
1674         {}
1675 };
1676 #endif /* CONFIG_OF */
1677
1678 static bool spacc_is_compatible(struct platform_device *pdev,
1679                                 const char *spacc_type)
1680 {
1681         const struct platform_device_id *platid = platform_get_device_id(pdev);
1682
1683         if (platid && !strcmp(platid->name, spacc_type))
1684                 return true;
1685
1686 #ifdef CONFIG_OF
1687         if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1688                 return true;
1689 #endif /* CONFIG_OF */
1690
1691         return false;
1692 }
1693
1694 static int spacc_probe(struct platform_device *pdev)
1695 {
1696         int i, err, ret = -EINVAL;
1697         struct resource *mem, *irq;
1698         struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1699                                                    GFP_KERNEL);
1700         if (!engine)
1701                 return -ENOMEM;
1702
1703         if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1704                 engine->max_ctxs        = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1705                 engine->cipher_pg_sz    = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1706                 engine->hash_pg_sz      = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1707                 engine->fifo_sz         = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1708                 engine->algs            = ipsec_engine_algs;
1709                 engine->num_algs        = ARRAY_SIZE(ipsec_engine_algs);
1710         } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1711                 engine->max_ctxs        = SPACC_CRYPTO_L2_MAX_CTXS;
1712                 engine->cipher_pg_sz    = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1713                 engine->hash_pg_sz      = SPACC_CRYPTO_L2_HASH_PG_SZ;
1714                 engine->fifo_sz         = SPACC_CRYPTO_L2_FIFO_SZ;
1715                 engine->algs            = l2_engine_algs;
1716                 engine->num_algs        = ARRAY_SIZE(l2_engine_algs);
1717         } else {
1718                 return -EINVAL;
1719         }
1720
1721         engine->name = dev_name(&pdev->dev);
1722
1723         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1724         engine->regs = devm_ioremap_resource(&pdev->dev, mem);
1725         if (IS_ERR(engine->regs))
1726                 return PTR_ERR(engine->regs);
1727
1728         irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1729         if (!irq) {
1730                 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1731                 return -ENXIO;
1732         }
1733
1734         if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1735                              engine->name, engine)) {
1736                 dev_err(engine->dev, "failed to request IRQ\n");
1737                 return -EBUSY;
1738         }
1739
1740         engine->dev             = &pdev->dev;
1741         engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1742         engine->hash_key_base   = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1743
1744         engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1745                 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1746         if (!engine->req_pool)
1747                 return -ENOMEM;
1748
1749         spin_lock_init(&engine->hw_lock);
1750
1751         engine->clk = clk_get(&pdev->dev, "ref");
1752         if (IS_ERR(engine->clk)) {
1753                 dev_info(&pdev->dev, "clk unavailable\n");
1754                 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1755                 return PTR_ERR(engine->clk);
1756         }
1757
1758         if (clk_prepare_enable(engine->clk)) {
1759                 dev_info(&pdev->dev, "unable to prepare/enable clk\n");
1760                 clk_put(engine->clk);
1761                 return -EIO;
1762         }
1763
1764         err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1765         if (err) {
1766                 clk_disable_unprepare(engine->clk);
1767                 clk_put(engine->clk);
1768                 return err;
1769         }
1770
1771
1772         /*
1773          * Use an IRQ threshold of 50% as a default. This seems to be a
1774          * reasonable trade off of latency against throughput but can be
1775          * changed at runtime.
1776          */
1777         engine->stat_irq_thresh = (engine->fifo_sz / 2);
1778
1779         /*
1780          * Configure the interrupts. We only use the STAT_CNT interrupt as we
1781          * only submit a new packet for processing when we complete another in
1782          * the queue. This minimizes time spent in the interrupt handler.
1783          */
1784         writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1785                engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1786         writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1787                engine->regs + SPA_IRQ_EN_REG_OFFSET);
1788
1789         setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1790                     (unsigned long)engine);
1791
1792         INIT_LIST_HEAD(&engine->pending);
1793         INIT_LIST_HEAD(&engine->completed);
1794         INIT_LIST_HEAD(&engine->in_progress);
1795         engine->in_flight = 0;
1796         tasklet_init(&engine->complete, spacc_spacc_complete,
1797                      (unsigned long)engine);
1798
1799         platform_set_drvdata(pdev, engine);
1800
1801         INIT_LIST_HEAD(&engine->registered_algs);
1802         for (i = 0; i < engine->num_algs; ++i) {
1803                 engine->algs[i].engine = engine;
1804                 err = crypto_register_alg(&engine->algs[i].alg);
1805                 if (!err) {
1806                         list_add_tail(&engine->algs[i].entry,
1807                                       &engine->registered_algs);
1808                         ret = 0;
1809                 }
1810                 if (err)
1811                         dev_err(engine->dev, "failed to register alg \"%s\"\n",
1812                                 engine->algs[i].alg.cra_name);
1813                 else
1814                         dev_dbg(engine->dev, "registered alg \"%s\"\n",
1815                                 engine->algs[i].alg.cra_name);
1816         }
1817
1818         return ret;
1819 }
1820
1821 static int spacc_remove(struct platform_device *pdev)
1822 {
1823         struct spacc_alg *alg, *next;
1824         struct spacc_engine *engine = platform_get_drvdata(pdev);
1825
1826         del_timer_sync(&engine->packet_timeout);
1827         device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1828
1829         list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1830                 list_del(&alg->entry);
1831                 crypto_unregister_alg(&alg->alg);
1832         }
1833
1834         clk_disable_unprepare(engine->clk);
1835         clk_put(engine->clk);
1836
1837         return 0;
1838 }
1839
1840 static const struct platform_device_id spacc_id_table[] = {
1841         { "picochip,spacc-ipsec", },
1842         { "picochip,spacc-l2", },
1843         { }
1844 };
1845
1846 static struct platform_driver spacc_driver = {
1847         .probe          = spacc_probe,
1848         .remove         = spacc_remove,
1849         .driver         = {
1850                 .name   = "picochip,spacc",
1851 #ifdef CONFIG_PM
1852                 .pm     = &spacc_pm_ops,
1853 #endif /* CONFIG_PM */
1854                 .of_match_table = of_match_ptr(spacc_of_id_table),
1855         },
1856         .id_table       = spacc_id_table,
1857 };
1858
1859 module_platform_driver(spacc_driver);
1860
1861 MODULE_LICENSE("GPL");
1862 MODULE_AUTHOR("Jamie Iles");