1 #include <linux/dmaengine.h>
2 #include <linux/dma-mapping.h>
3 #include <linux/platform_device.h>
4 #include <linux/module.h>
6 #include <linux/slab.h>
7 #include <linux/of_dma.h>
8 #include <linux/of_irq.h>
9 #include <linux/dmapool.h>
10 #include <linux/interrupt.h>
11 #include <linux/of_address.h>
12 #include <linux/pm_runtime.h>
13 #include "dmaengine.h"
16 #define DESC_TYPE_HOST 0x10
17 #define DESC_TYPE_TEARD 0x13
19 #define TD_DESC_IS_RX (1 << 16)
20 #define TD_DESC_DMA_NUM 10
22 #define DESC_LENGTH_BITS_NUM 21
24 #define DESC_TYPE_USB (5 << 26)
25 #define DESC_PD_COMPLETE (1 << 31)
29 #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
30 #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
33 #define GCR_CHAN_ENABLE (1 << 31)
34 #define GCR_TEARDOWN (1 << 30)
35 #define GCR_STARV_RETRY (1 << 24)
36 #define GCR_DESC_TYPE_HOST (1 << 14)
39 #define DMA_SCHED_CTRL 0
40 #define DMA_SCHED_CTRL_EN (1 << 31)
41 #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
43 #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
44 #define SCHED_ENTRY0_IS_RX (1 << 7)
46 #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
47 #define SCHED_ENTRY1_IS_RX (1 << 15)
49 #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
50 #define SCHED_ENTRY2_IS_RX (1 << 23)
52 #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
53 #define SCHED_ENTRY3_IS_RX (1 << 31)
56 /* 4 KiB of memory for descriptors, 2 for each endpoint */
57 #define ALLOC_DECS_NUM 128
59 #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
60 #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
62 #define QMGR_LRAM0_BASE 0x80
63 #define QMGR_LRAM_SIZE 0x84
64 #define QMGR_LRAM1_BASE 0x88
65 #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
66 #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
67 #define QMGR_MEMCTRL_IDX_SH 16
68 #define QMGR_MEMCTRL_DESC_SH 8
70 #define QMGR_NUM_PEND 5
71 #define QMGR_PEND(x) (0x90 + (x) * 4)
73 #define QMGR_PENDING_SLOT_Q(x) (x / 32)
74 #define QMGR_PENDING_BIT_Q(x) (x % 32)
76 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
77 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
78 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
79 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
81 /* Glue layer specific */
82 /* USBSS / USB AM335x */
83 #define USBSS_IRQ_STATUS 0x28
84 #define USBSS_IRQ_ENABLER 0x2c
85 #define USBSS_IRQ_CLEARR 0x30
87 #define USBSS_IRQ_PD_COMP (1 << 2)
89 struct cppi41_channel {
91 struct dma_async_tx_descriptor txd;
92 struct cppi41_dd *cdd;
93 struct cppi41_desc *desc;
95 void __iomem *gcr_reg;
100 unsigned int q_comp_num;
101 unsigned int port_num;
104 unsigned td_queued:1;
106 unsigned td_desc_seen:1;
126 struct dma_device ddev;
129 dma_addr_t scratch_phys;
131 struct cppi41_desc *cd;
132 dma_addr_t descs_phys;
134 struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
136 void __iomem *usbss_mem;
137 void __iomem *ctrl_mem;
138 void __iomem *sched_mem;
139 void __iomem *qmgr_mem;
141 const struct chan_queues *queues_rx;
142 const struct chan_queues *queues_tx;
143 struct chan_queues td_queue;
146 #define FIST_COMPLETION_QUEUE 93
147 static struct chan_queues usb_queues_tx[] = {
149 [ 0] = { .submit = 32, .complete = 93},
150 [ 1] = { .submit = 34, .complete = 94},
151 [ 2] = { .submit = 36, .complete = 95},
152 [ 3] = { .submit = 38, .complete = 96},
153 [ 4] = { .submit = 40, .complete = 97},
154 [ 5] = { .submit = 42, .complete = 98},
155 [ 6] = { .submit = 44, .complete = 99},
156 [ 7] = { .submit = 46, .complete = 100},
157 [ 8] = { .submit = 48, .complete = 101},
158 [ 9] = { .submit = 50, .complete = 102},
159 [10] = { .submit = 52, .complete = 103},
160 [11] = { .submit = 54, .complete = 104},
161 [12] = { .submit = 56, .complete = 105},
162 [13] = { .submit = 58, .complete = 106},
163 [14] = { .submit = 60, .complete = 107},
166 [15] = { .submit = 62, .complete = 125},
167 [16] = { .submit = 64, .complete = 126},
168 [17] = { .submit = 66, .complete = 127},
169 [18] = { .submit = 68, .complete = 128},
170 [19] = { .submit = 70, .complete = 129},
171 [20] = { .submit = 72, .complete = 130},
172 [21] = { .submit = 74, .complete = 131},
173 [22] = { .submit = 76, .complete = 132},
174 [23] = { .submit = 78, .complete = 133},
175 [24] = { .submit = 80, .complete = 134},
176 [25] = { .submit = 82, .complete = 135},
177 [26] = { .submit = 84, .complete = 136},
178 [27] = { .submit = 86, .complete = 137},
179 [28] = { .submit = 88, .complete = 138},
180 [29] = { .submit = 90, .complete = 139},
183 static const struct chan_queues usb_queues_rx[] = {
185 [ 0] = { .submit = 1, .complete = 109},
186 [ 1] = { .submit = 2, .complete = 110},
187 [ 2] = { .submit = 3, .complete = 111},
188 [ 3] = { .submit = 4, .complete = 112},
189 [ 4] = { .submit = 5, .complete = 113},
190 [ 5] = { .submit = 6, .complete = 114},
191 [ 6] = { .submit = 7, .complete = 115},
192 [ 7] = { .submit = 8, .complete = 116},
193 [ 8] = { .submit = 9, .complete = 117},
194 [ 9] = { .submit = 10, .complete = 118},
195 [10] = { .submit = 11, .complete = 119},
196 [11] = { .submit = 12, .complete = 120},
197 [12] = { .submit = 13, .complete = 121},
198 [13] = { .submit = 14, .complete = 122},
199 [14] = { .submit = 15, .complete = 123},
202 [15] = { .submit = 16, .complete = 141},
203 [16] = { .submit = 17, .complete = 142},
204 [17] = { .submit = 18, .complete = 143},
205 [18] = { .submit = 19, .complete = 144},
206 [19] = { .submit = 20, .complete = 145},
207 [20] = { .submit = 21, .complete = 146},
208 [21] = { .submit = 22, .complete = 147},
209 [22] = { .submit = 23, .complete = 148},
210 [23] = { .submit = 24, .complete = 149},
211 [24] = { .submit = 25, .complete = 150},
212 [25] = { .submit = 26, .complete = 151},
213 [26] = { .submit = 27, .complete = 152},
214 [27] = { .submit = 28, .complete = 153},
215 [28] = { .submit = 29, .complete = 154},
216 [29] = { .submit = 30, .complete = 155},
219 struct cppi_glue_infos {
220 irqreturn_t (*isr)(int irq, void *data);
221 const struct chan_queues *queues_rx;
222 const struct chan_queues *queues_tx;
223 struct chan_queues td_queue;
226 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
228 return container_of(c, struct cppi41_channel, chan);
231 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
233 struct cppi41_channel *c;
237 descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
239 if (!((desc >= cdd->descs_phys) &&
240 (desc < (cdd->descs_phys + descs_size)))) {
244 desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
245 BUG_ON(desc_num >= ALLOC_DECS_NUM);
246 c = cdd->chan_busy[desc_num];
247 cdd->chan_busy[desc_num] = NULL;
251 static void cppi_writel(u32 val, void *__iomem *mem)
253 __raw_writel(val, mem);
256 static u32 cppi_readl(void *__iomem *mem)
258 return __raw_readl(mem);
261 static u32 pd_trans_len(u32 val)
263 return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
266 static irqreturn_t cppi41_irq(int irq, void *data)
268 struct cppi41_dd *cdd = data;
269 struct cppi41_channel *c;
273 status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
274 if (!(status & USBSS_IRQ_PD_COMP))
276 cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
278 for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
283 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
284 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
286 /* set corresponding bit for completetion Q 93 */
287 mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
288 /* not set all bits for queues less than Q 93 */
290 /* now invert and keep only Q 93+ set */
301 val &= ~(1 << q_num);
303 desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(q_num));
305 c = desc_to_chan(cdd, desc);
307 pr_err("%s() q %d desc %08x\n", __func__,
311 c->residue = pd_trans_len(c->desc->pd6) -
312 pd_trans_len(c->desc->pd0);
314 dma_cookie_complete(&c->txd);
315 c->txd.callback(c->txd.callback_param);
321 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
325 cookie = dma_cookie_assign(tx);
330 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
332 struct cppi41_channel *c = to_cpp41_chan(chan);
334 dma_cookie_init(chan);
335 dma_async_tx_descriptor_init(&c->txd, chan);
336 c->txd.tx_submit = cppi41_tx_submit;
339 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
344 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
348 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
349 dma_cookie_t cookie, struct dma_tx_state *txstate)
351 struct cppi41_channel *c = to_cpp41_chan(chan);
355 ret = dma_cookie_status(chan, cookie, txstate);
356 if (txstate && ret == DMA_SUCCESS)
357 txstate->residue = c->residue;
363 static void push_desc_queue(struct cppi41_channel *c)
365 struct cppi41_dd *cdd = c->cdd;
370 desc_phys = lower_32_bits(c->desc_phys);
371 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
372 WARN_ON(cdd->chan_busy[desc_num]);
373 cdd->chan_busy[desc_num] = c;
375 reg = (sizeof(struct cppi41_desc) - 24) / 4;
377 cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
380 static void cppi41_dma_issue_pending(struct dma_chan *chan)
382 struct cppi41_channel *c = to_cpp41_chan(chan);
387 reg = GCR_CHAN_ENABLE;
389 reg |= GCR_STARV_RETRY;
390 reg |= GCR_DESC_TYPE_HOST;
391 reg |= c->q_comp_num;
394 cppi_writel(reg, c->gcr_reg);
397 * We don't use writel() but __raw_writel() so we have to make sure
398 * that the DMA descriptor in coherent memory made to the main memory
399 * before starting the dma engine.
405 static u32 get_host_pd0(u32 length)
409 reg = DESC_TYPE_HOST << DESC_TYPE;
415 static u32 get_host_pd1(struct cppi41_channel *c)
424 static u32 get_host_pd2(struct cppi41_channel *c)
429 reg |= c->q_comp_num;
434 static u32 get_host_pd3(u32 length)
438 /* PD3 = packet size */
444 static u32 get_host_pd6(u32 length)
448 /* PD6 buffer size */
449 reg = DESC_PD_COMPLETE;
455 static u32 get_host_pd4_or_7(u32 addr)
464 static u32 get_host_pd5(void)
473 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
474 struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
475 enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
477 struct cppi41_channel *c = to_cpp41_chan(chan);
478 struct cppi41_desc *d;
479 struct scatterlist *sg;
485 for_each_sg(sgl, sg, sg_len, i) {
489 /* We need to use more than one desc once musb supports sg */
491 addr = lower_32_bits(sg_dma_address(sg));
492 len = sg_dma_len(sg);
494 d->pd0 = get_host_pd0(len);
495 d->pd1 = get_host_pd1(c);
496 d->pd2 = get_host_pd2(c);
497 d->pd3 = get_host_pd3(len);
498 d->pd4 = get_host_pd4_or_7(addr);
499 d->pd5 = get_host_pd5();
500 d->pd6 = get_host_pd6(len);
501 d->pd7 = get_host_pd4_or_7(addr);
509 static int cpp41_cfg_chan(struct cppi41_channel *c,
510 struct dma_slave_config *cfg)
515 static void cppi41_compute_td_desc(struct cppi41_desc *d)
517 d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
520 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
524 desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
529 static int cppi41_tear_down_chan(struct cppi41_channel *c)
531 struct cppi41_dd *cdd = c->cdd;
532 struct cppi41_desc *td;
538 td += cdd->first_td_desc;
540 td_desc_phys = cdd->descs_phys;
541 td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
544 cppi41_compute_td_desc(td);
547 reg = (sizeof(struct cppi41_desc) - 24) / 4;
549 cppi_writel(reg, cdd->qmgr_mem +
550 QMGR_QUEUE_D(cdd->td_queue.submit));
552 reg = GCR_CHAN_ENABLE;
554 reg |= GCR_STARV_RETRY;
555 reg |= GCR_DESC_TYPE_HOST;
556 reg |= c->q_comp_num;
559 cppi_writel(reg, c->gcr_reg);
565 unsigned td_comp_queue;
568 td_comp_queue = cdd->td_queue.complete;
570 td_comp_queue = c->q_comp_num;
572 desc_phys = cppi41_pop_desc(cdd, td_comp_queue);
576 if (desc_phys == td_desc_phys) {
579 WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
580 WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
581 WARN_ON((pd0 & 0x1f) != c->port_num);
588 if (!c->td_desc_seen) {
589 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
592 WARN_ON(c->desc_phys != desc_phys);
598 * If the TX descriptor / channel is in use, the caller needs to poke
599 * his TD bit multiple times. After that he hardware releases the
600 * transfer descriptor followed by TD descriptor. Waiting seems not to
601 * cause any difference.
602 * RX seems to be thrown out right away. However once the TearDown
603 * descriptor gets through we are done. If we have seens the transfer
604 * descriptor before the TD we fetch it from enqueue, it has to be
605 * there waiting for us.
607 if (!c->td_seen && c->td_retry)
610 WARN_ON(!c->td_retry);
611 if (!c->td_desc_seen) {
612 desc_phys = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
619 cppi_writel(0, c->gcr_reg);
623 static int cppi41_stop_chan(struct dma_chan *chan)
625 struct cppi41_channel *c = to_cpp41_chan(chan);
626 struct cppi41_dd *cdd = c->cdd;
631 ret = cppi41_tear_down_chan(c);
635 desc_phys = lower_32_bits(c->desc_phys);
636 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
637 WARN_ON(!cdd->chan_busy[desc_num]);
638 cdd->chan_busy[desc_num] = NULL;
643 static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
646 struct cppi41_channel *c = to_cpp41_chan(chan);
650 case DMA_SLAVE_CONFIG:
651 ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
654 case DMA_TERMINATE_ALL:
655 ret = cppi41_stop_chan(chan);
665 static void cleanup_chans(struct cppi41_dd *cdd)
667 while (!list_empty(&cdd->ddev.channels)) {
668 struct cppi41_channel *cchan;
670 cchan = list_first_entry(&cdd->ddev.channels,
671 struct cppi41_channel, chan.device_node);
672 list_del(&cchan->chan.device_node);
677 static int cppi41_add_chans(struct platform_device *pdev, struct cppi41_dd *cdd)
679 struct cppi41_channel *cchan;
684 ret = of_property_read_u32(pdev->dev.of_node, "#dma-channels",
689 * The channels can only be used as TX or as RX. So we add twice
690 * that much dma channels because USB can only do RX or TX.
694 for (i = 0; i < n_chans; i++) {
695 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
701 cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
704 cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
707 cchan->port_num = i >> 1;
708 cchan->desc = &cdd->cd[i];
709 cchan->desc_phys = cdd->descs_phys;
710 cchan->desc_phys += i * sizeof(struct cppi41_desc);
711 cchan->chan.device = &cdd->ddev;
712 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
714 cdd->first_td_desc = n_chans;
722 static void purge_descs(struct platform_device *pdev, struct cppi41_dd *cdd)
724 unsigned int mem_decs;
727 mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
729 for (i = 0; i < DESCS_AREAS; i++) {
731 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
732 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
734 dma_free_coherent(&pdev->dev, mem_decs, cdd->cd,
739 static void disable_sched(struct cppi41_dd *cdd)
741 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
744 static void deinit_cpii41(struct platform_device *pdev, struct cppi41_dd *cdd)
748 purge_descs(pdev, cdd);
750 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
751 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
752 dma_free_coherent(&pdev->dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
756 static int init_descs(struct platform_device *pdev, struct cppi41_dd *cdd)
758 unsigned int desc_size;
759 unsigned int mem_decs;
764 BUILD_BUG_ON(sizeof(struct cppi41_desc) &
765 (sizeof(struct cppi41_desc) - 1));
766 BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
767 BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
769 desc_size = sizeof(struct cppi41_desc);
770 mem_decs = ALLOC_DECS_NUM * desc_size;
773 for (i = 0; i < DESCS_AREAS; i++) {
775 reg = idx << QMGR_MEMCTRL_IDX_SH;
776 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
777 reg |= ilog2(ALLOC_DECS_NUM) - 5;
779 BUILD_BUG_ON(DESCS_AREAS != 1);
780 cdd->cd = dma_alloc_coherent(&pdev->dev, mem_decs,
781 &cdd->descs_phys, GFP_KERNEL);
785 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
786 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
788 idx += ALLOC_DECS_NUM;
793 static void init_sched(struct cppi41_dd *cdd)
800 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
801 for (ch = 0; ch < 15 * 2; ch += 2) {
803 reg = SCHED_ENTRY0_CHAN(ch);
804 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
806 reg |= SCHED_ENTRY2_CHAN(ch + 1);
807 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
808 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
811 reg = 15 * 2 * 2 - 1;
812 reg |= DMA_SCHED_CTRL_EN;
813 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
816 static int init_cppi41(struct platform_device *pdev, struct cppi41_dd *cdd)
820 BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
821 cdd->qmgr_scratch = dma_alloc_coherent(&pdev->dev, QMGR_SCRATCH_SIZE,
822 &cdd->scratch_phys, GFP_KERNEL);
823 if (!cdd->qmgr_scratch)
826 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
827 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
828 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
830 ret = init_descs(pdev, cdd);
834 cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
838 deinit_cpii41(pdev, cdd);
842 static struct platform_driver cpp41_dma_driver;
844 * The param format is:
852 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
854 struct cppi41_channel *cchan;
855 struct cppi41_dd *cdd;
856 const struct chan_queues *queues;
859 if (chan->device->dev->driver != &cpp41_dma_driver.driver)
862 cchan = to_cpp41_chan(chan);
864 if (cchan->port_num != num[INFO_PORT])
867 if (cchan->is_tx && !num[INFO_IS_TX])
871 queues = cdd->queues_tx;
873 queues = cdd->queues_rx;
875 BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
876 if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
879 cchan->q_num = queues[cchan->port_num].submit;
880 cchan->q_comp_num = queues[cchan->port_num].complete;
884 static struct of_dma_filter_info cpp41_dma_info = {
885 .filter_fn = cpp41_dma_filter_fn,
888 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
889 struct of_dma *ofdma)
891 int count = dma_spec->args_count;
892 struct of_dma_filter_info *info = ofdma->of_dma_data;
894 if (!info || !info->filter_fn)
900 return dma_request_channel(info->dma_cap, info->filter_fn,
904 static const struct cppi_glue_infos usb_infos = {
906 .queues_rx = usb_queues_rx,
907 .queues_tx = usb_queues_tx,
908 .td_queue = { .submit = 31, .complete = 0 },
911 static const struct of_device_id cppi41_dma_ids[] = {
912 { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
915 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
917 static const struct cppi_glue_infos *get_glue_info(struct platform_device *pdev)
919 const struct of_device_id *of_id;
921 of_id = of_match_node(cppi41_dma_ids, pdev->dev.of_node);
927 static int cppi41_dma_probe(struct platform_device *pdev)
929 struct cppi41_dd *cdd;
930 const struct cppi_glue_infos *glue_info;
934 glue_info = get_glue_info(pdev);
938 cdd = kzalloc(sizeof(*cdd), GFP_KERNEL);
942 dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
943 cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
944 cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
945 cdd->ddev.device_tx_status = cppi41_dma_tx_status;
946 cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
947 cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
948 cdd->ddev.device_control = cppi41_dma_control;
949 cdd->ddev.dev = &pdev->dev;
950 INIT_LIST_HEAD(&cdd->ddev.channels);
951 cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
953 cdd->usbss_mem = of_iomap(pdev->dev.of_node, 0);
954 cdd->ctrl_mem = of_iomap(pdev->dev.of_node, 1);
955 cdd->sched_mem = of_iomap(pdev->dev.of_node, 2);
956 cdd->qmgr_mem = of_iomap(pdev->dev.of_node, 3);
958 if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
964 pm_runtime_enable(&pdev->dev);
965 ret = pm_runtime_get_sync(&pdev->dev);
969 cdd->queues_rx = glue_info->queues_rx;
970 cdd->queues_tx = glue_info->queues_tx;
971 cdd->td_queue = glue_info->td_queue;
973 ret = init_cppi41(pdev, cdd);
977 ret = cppi41_add_chans(pdev, cdd);
981 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
985 cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
987 ret = request_irq(irq, glue_info->isr, IRQF_SHARED,
988 dev_name(&pdev->dev), cdd);
993 ret = dma_async_device_register(&cdd->ddev);
997 ret = of_dma_controller_register(pdev->dev.of_node,
998 cppi41_dma_xlate, &cpp41_dma_info);
1002 platform_set_drvdata(pdev, cdd);
1005 dma_async_device_unregister(&cdd->ddev);
1009 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1012 deinit_cpii41(pdev, cdd);
1014 pm_runtime_put(&pdev->dev);
1016 pm_runtime_disable(&pdev->dev);
1017 iounmap(cdd->usbss_mem);
1018 iounmap(cdd->ctrl_mem);
1019 iounmap(cdd->sched_mem);
1020 iounmap(cdd->qmgr_mem);
1026 static int cppi41_dma_remove(struct platform_device *pdev)
1028 struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1030 of_dma_controller_free(pdev->dev.of_node);
1031 dma_async_device_unregister(&cdd->ddev);
1033 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1034 free_irq(cdd->irq, cdd);
1036 deinit_cpii41(pdev, cdd);
1037 iounmap(cdd->usbss_mem);
1038 iounmap(cdd->ctrl_mem);
1039 iounmap(cdd->sched_mem);
1040 iounmap(cdd->qmgr_mem);
1041 pm_runtime_put(&pdev->dev);
1042 pm_runtime_disable(&pdev->dev);
1047 static struct platform_driver cpp41_dma_driver = {
1048 .probe = cppi41_dma_probe,
1049 .remove = cppi41_dma_remove,
1051 .name = "cppi41-dma-engine",
1052 .owner = THIS_MODULE,
1053 .of_match_table = of_match_ptr(cppi41_dma_ids),
1057 module_platform_driver(cpp41_dma_driver);
1058 MODULE_LICENSE("GPL");
1059 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");