2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
38 #include "dmaengine.h"
41 #define chan_dbg(chan, fmt, arg...) \
42 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
43 #define chan_err(chan, fmt, arg...) \
44 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
46 static const char msg_ld_oom[] = "No free memory for link descriptor";
52 static void set_sr(struct fsldma_chan *chan, u32 val)
54 DMA_OUT(chan, &chan->regs->sr, val, 32);
57 static u32 get_sr(struct fsldma_chan *chan)
59 return DMA_IN(chan, &chan->regs->sr, 32);
62 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
64 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
67 static dma_addr_t get_cdar(struct fsldma_chan *chan)
69 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
72 static u32 get_bcr(struct fsldma_chan *chan)
74 return DMA_IN(chan, &chan->regs->bcr, 32);
81 static void set_desc_cnt(struct fsldma_chan *chan,
82 struct fsl_dma_ld_hw *hw, u32 count)
84 hw->count = CPU_TO_DMA(chan, count, 32);
87 static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
89 return DMA_TO_CPU(chan, desc->hw.count, 32);
92 static void set_desc_src(struct fsldma_chan *chan,
93 struct fsl_dma_ld_hw *hw, dma_addr_t src)
97 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
98 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
99 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
102 static dma_addr_t get_desc_src(struct fsldma_chan *chan,
103 struct fsl_desc_sw *desc)
107 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
108 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
109 return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
112 static void set_desc_dst(struct fsldma_chan *chan,
113 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
117 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
118 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
119 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
123 struct fsl_desc_sw *desc)
127 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
128 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
129 return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
132 static void set_desc_next(struct fsldma_chan *chan,
133 struct fsl_dma_ld_hw *hw, dma_addr_t next)
137 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
142 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
146 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
149 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
150 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
155 * DMA Engine Hardware Control Helpers
158 static void dma_init(struct fsldma_chan *chan)
160 /* Reset the channel */
161 DMA_OUT(chan, &chan->regs->mr, 0, 32);
163 switch (chan->feature & FSL_DMA_IP_MASK) {
164 case FSL_DMA_IP_85XX:
165 /* Set the channel to below modes:
166 * EIE - Error interrupt enable
167 * EOLNIE - End of links interrupt enable
168 * BWC - Bandwidth sharing among channels
170 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
171 | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
173 case FSL_DMA_IP_83XX:
174 /* Set the channel to below modes:
175 * EOTIE - End-of-transfer interrupt enable
176 * PRC_RM - PCI read multiple
178 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
179 | FSL_DMA_MR_PRC_RM, 32);
184 static int dma_is_idle(struct fsldma_chan *chan)
186 u32 sr = get_sr(chan);
187 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
191 * Start the DMA controller
194 * - the CDAR register must point to the start descriptor
195 * - the MRn[CS] bit must be cleared
197 static void dma_start(struct fsldma_chan *chan)
201 mode = DMA_IN(chan, &chan->regs->mr, 32);
203 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
204 DMA_OUT(chan, &chan->regs->bcr, 0, 32);
205 mode |= FSL_DMA_MR_EMP_EN;
207 mode &= ~FSL_DMA_MR_EMP_EN;
210 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
211 mode |= FSL_DMA_MR_EMS_EN;
213 mode &= ~FSL_DMA_MR_EMS_EN;
214 mode |= FSL_DMA_MR_CS;
217 DMA_OUT(chan, &chan->regs->mr, mode, 32);
220 static void dma_halt(struct fsldma_chan *chan)
225 /* read the mode register */
226 mode = DMA_IN(chan, &chan->regs->mr, 32);
229 * The 85xx controller supports channel abort, which will stop
230 * the current transfer. On 83xx, this bit is the transfer error
231 * mask bit, which should not be changed.
233 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
234 mode |= FSL_DMA_MR_CA;
235 DMA_OUT(chan, &chan->regs->mr, mode, 32);
237 mode &= ~FSL_DMA_MR_CA;
240 /* stop the DMA controller */
241 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
242 DMA_OUT(chan, &chan->regs->mr, mode, 32);
244 /* wait for the DMA controller to become idle */
245 for (i = 0; i < 100; i++) {
246 if (dma_is_idle(chan))
252 if (!dma_is_idle(chan))
253 chan_err(chan, "DMA halt timeout!\n");
257 * fsl_chan_set_src_loop_size - Set source address hold transfer size
258 * @chan : Freescale DMA channel
259 * @size : Address loop size, 0 for disable loop
261 * The set source address hold transfer size. The source
262 * address hold or loop transfer size is when the DMA transfer
263 * data from source address (SA), if the loop size is 4, the DMA will
264 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
265 * SA + 1 ... and so on.
267 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
271 mode = DMA_IN(chan, &chan->regs->mr, 32);
275 mode &= ~FSL_DMA_MR_SAHE;
281 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
285 DMA_OUT(chan, &chan->regs->mr, mode, 32);
289 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
290 * @chan : Freescale DMA channel
291 * @size : Address loop size, 0 for disable loop
293 * The set destination address hold transfer size. The destination
294 * address hold or loop transfer size is when the DMA transfer
295 * data to destination address (TA), if the loop size is 4, the DMA will
296 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
297 * TA + 1 ... and so on.
299 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
303 mode = DMA_IN(chan, &chan->regs->mr, 32);
307 mode &= ~FSL_DMA_MR_DAHE;
313 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
317 DMA_OUT(chan, &chan->regs->mr, mode, 32);
321 * fsl_chan_set_request_count - Set DMA Request Count for external control
322 * @chan : Freescale DMA channel
323 * @size : Number of bytes to transfer in a single request
325 * The Freescale DMA channel can be controlled by the external signal DREQ#.
326 * The DMA request count is how many bytes are allowed to transfer before
327 * pausing the channel, after which a new assertion of DREQ# resumes channel
330 * A size of 0 disables external pause control. The maximum size is 1024.
332 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
338 mode = DMA_IN(chan, &chan->regs->mr, 32);
339 mode |= (__ilog2(size) << 24) & 0x0f000000;
341 DMA_OUT(chan, &chan->regs->mr, mode, 32);
345 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
346 * @chan : Freescale DMA channel
347 * @enable : 0 is disabled, 1 is enabled.
349 * The Freescale DMA channel can be controlled by the external signal DREQ#.
350 * The DMA Request Count feature should be used in addition to this feature
351 * to set the number of bytes to transfer before pausing the channel.
353 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
356 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
358 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
362 * fsl_chan_toggle_ext_start - Toggle channel external start status
363 * @chan : Freescale DMA channel
364 * @enable : 0 is disabled, 1 is enabled.
366 * If enable the external start, the channel can be started by an
367 * external DMA start pin. So the dma_start() does not start the
368 * transfer immediately. The DMA channel will wait for the
369 * control pin asserted.
371 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
374 chan->feature |= FSL_DMA_CHAN_START_EXT;
376 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
379 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
381 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
383 if (list_empty(&chan->ld_pending))
387 * Add the hardware descriptor to the chain of hardware descriptors
388 * that already exists in memory.
390 * This will un-set the EOL bit of the existing transaction, and the
391 * last link in this transaction will become the EOL descriptor.
393 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
396 * Add the software descriptor and all children to the list
397 * of pending transactions
400 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
403 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
405 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
406 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
407 struct fsl_desc_sw *child;
411 spin_lock_irqsave(&chan->desc_lock, flags);
414 * assign cookies to all of the software descriptors
415 * that make up this transaction
417 list_for_each_entry(child, &desc->tx_list, node) {
418 cookie = dma_cookie_assign(&child->async_tx);
421 /* put this transaction onto the tail of the pending queue */
422 append_ld_queue(chan, desc);
424 spin_unlock_irqrestore(&chan->desc_lock, flags);
430 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
431 * @chan : Freescale DMA channel
433 * Return - The descriptor allocated. NULL for failed.
435 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
437 struct fsl_desc_sw *desc;
440 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
442 chan_dbg(chan, "out of memory for link descriptor\n");
446 memset(desc, 0, sizeof(*desc));
447 INIT_LIST_HEAD(&desc->tx_list);
448 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
449 desc->async_tx.tx_submit = fsl_dma_tx_submit;
450 desc->async_tx.phys = pdesc;
452 #ifdef FSL_DMA_LD_DEBUG
453 chan_dbg(chan, "LD %p allocated\n", desc);
460 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
461 * @chan : Freescale DMA channel
463 * This function will create a dma pool for descriptor allocation.
465 * Return - The number of descriptors allocated.
467 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
469 struct fsldma_chan *chan = to_fsl_chan(dchan);
471 /* Has this channel already been allocated? */
476 * We need the descriptor to be aligned to 32bytes
477 * for meeting FSL DMA specification requirement.
479 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
480 sizeof(struct fsl_desc_sw),
481 __alignof__(struct fsl_desc_sw), 0);
482 if (!chan->desc_pool) {
483 chan_err(chan, "unable to allocate descriptor pool\n");
487 /* there is at least one descriptor free to be allocated */
492 * fsldma_free_desc_list - Free all descriptors in a queue
493 * @chan: Freescae DMA channel
494 * @list: the list to free
496 * LOCKING: must hold chan->desc_lock
498 static void fsldma_free_desc_list(struct fsldma_chan *chan,
499 struct list_head *list)
501 struct fsl_desc_sw *desc, *_desc;
503 list_for_each_entry_safe(desc, _desc, list, node) {
504 list_del(&desc->node);
505 #ifdef FSL_DMA_LD_DEBUG
506 chan_dbg(chan, "LD %p free\n", desc);
508 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
512 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
513 struct list_head *list)
515 struct fsl_desc_sw *desc, *_desc;
517 list_for_each_entry_safe_reverse(desc, _desc, list, node) {
518 list_del(&desc->node);
519 #ifdef FSL_DMA_LD_DEBUG
520 chan_dbg(chan, "LD %p free\n", desc);
522 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
527 * fsl_dma_free_chan_resources - Free all resources of the channel.
528 * @chan : Freescale DMA channel
530 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
532 struct fsldma_chan *chan = to_fsl_chan(dchan);
535 chan_dbg(chan, "free all channel resources\n");
536 spin_lock_irqsave(&chan->desc_lock, flags);
537 fsldma_free_desc_list(chan, &chan->ld_pending);
538 fsldma_free_desc_list(chan, &chan->ld_running);
539 spin_unlock_irqrestore(&chan->desc_lock, flags);
541 dma_pool_destroy(chan->desc_pool);
542 chan->desc_pool = NULL;
545 static struct dma_async_tx_descriptor *
546 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
548 struct fsldma_chan *chan;
549 struct fsl_desc_sw *new;
554 chan = to_fsl_chan(dchan);
556 new = fsl_dma_alloc_descriptor(chan);
558 chan_err(chan, "%s\n", msg_ld_oom);
562 new->async_tx.cookie = -EBUSY;
563 new->async_tx.flags = flags;
565 /* Insert the link descriptor to the LD ring */
566 list_add_tail(&new->node, &new->tx_list);
568 /* Set End-of-link to the last link descriptor of new list */
569 set_ld_eol(chan, new);
571 return &new->async_tx;
574 static struct dma_async_tx_descriptor *
575 fsl_dma_prep_memcpy(struct dma_chan *dchan,
576 dma_addr_t dma_dst, dma_addr_t dma_src,
577 size_t len, unsigned long flags)
579 struct fsldma_chan *chan;
580 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
589 chan = to_fsl_chan(dchan);
593 /* Allocate the link descriptor from DMA pool */
594 new = fsl_dma_alloc_descriptor(chan);
596 chan_err(chan, "%s\n", msg_ld_oom);
600 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
602 set_desc_cnt(chan, &new->hw, copy);
603 set_desc_src(chan, &new->hw, dma_src);
604 set_desc_dst(chan, &new->hw, dma_dst);
609 set_desc_next(chan, &prev->hw, new->async_tx.phys);
611 new->async_tx.cookie = 0;
612 async_tx_ack(&new->async_tx);
619 /* Insert the link descriptor to the LD ring */
620 list_add_tail(&new->node, &first->tx_list);
623 new->async_tx.flags = flags; /* client is in control of this ack */
624 new->async_tx.cookie = -EBUSY;
626 /* Set End-of-link to the last link descriptor of new list */
627 set_ld_eol(chan, new);
629 return &first->async_tx;
635 fsldma_free_desc_list_reverse(chan, &first->tx_list);
639 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
640 struct scatterlist *dst_sg, unsigned int dst_nents,
641 struct scatterlist *src_sg, unsigned int src_nents,
644 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
645 struct fsldma_chan *chan = to_fsl_chan(dchan);
646 size_t dst_avail, src_avail;
650 /* basic sanity checks */
651 if (dst_nents == 0 || src_nents == 0)
654 if (dst_sg == NULL || src_sg == NULL)
658 * TODO: should we check that both scatterlists have the same
659 * TODO: number of bytes in total? Is that really an error?
662 /* get prepared for the loop */
663 dst_avail = sg_dma_len(dst_sg);
664 src_avail = sg_dma_len(src_sg);
666 /* run until we are out of scatterlist entries */
669 /* create the largest transaction possible */
670 len = min_t(size_t, src_avail, dst_avail);
671 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
675 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
676 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
678 /* allocate and populate the descriptor */
679 new = fsl_dma_alloc_descriptor(chan);
681 chan_err(chan, "%s\n", msg_ld_oom);
685 set_desc_cnt(chan, &new->hw, len);
686 set_desc_src(chan, &new->hw, src);
687 set_desc_dst(chan, &new->hw, dst);
692 set_desc_next(chan, &prev->hw, new->async_tx.phys);
694 new->async_tx.cookie = 0;
695 async_tx_ack(&new->async_tx);
698 /* Insert the link descriptor to the LD ring */
699 list_add_tail(&new->node, &first->tx_list);
701 /* update metadata */
706 /* fetch the next dst scatterlist entry */
707 if (dst_avail == 0) {
709 /* no more entries: we're done */
713 /* fetch the next entry: if there are no more: done */
714 dst_sg = sg_next(dst_sg);
719 dst_avail = sg_dma_len(dst_sg);
722 /* fetch the next src scatterlist entry */
723 if (src_avail == 0) {
725 /* no more entries: we're done */
729 /* fetch the next entry: if there are no more: done */
730 src_sg = sg_next(src_sg);
735 src_avail = sg_dma_len(src_sg);
739 new->async_tx.flags = flags; /* client is in control of this ack */
740 new->async_tx.cookie = -EBUSY;
742 /* Set End-of-link to the last link descriptor of new list */
743 set_ld_eol(chan, new);
745 return &first->async_tx;
751 fsldma_free_desc_list_reverse(chan, &first->tx_list);
756 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
758 * @sgl: scatterlist to transfer to/from
759 * @sg_len: number of entries in @scatterlist
760 * @direction: DMA direction
761 * @flags: DMAEngine flags
762 * @context: transaction context (ignored)
764 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
765 * DMA_SLAVE API, this gets the device-specific information from the
766 * chan->private variable.
768 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
769 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
770 enum dma_transfer_direction direction, unsigned long flags,
774 * This operation is not supported on the Freescale DMA controller
776 * However, we need to provide the function pointer to allow the
777 * device_control() method to work.
782 static int fsl_dma_device_control(struct dma_chan *dchan,
783 enum dma_ctrl_cmd cmd, unsigned long arg)
785 struct dma_slave_config *config;
786 struct fsldma_chan *chan;
793 chan = to_fsl_chan(dchan);
796 case DMA_TERMINATE_ALL:
797 spin_lock_irqsave(&chan->desc_lock, flags);
799 /* Halt the DMA engine */
802 /* Remove and free all of the descriptors in the LD queue */
803 fsldma_free_desc_list(chan, &chan->ld_pending);
804 fsldma_free_desc_list(chan, &chan->ld_running);
807 spin_unlock_irqrestore(&chan->desc_lock, flags);
810 case DMA_SLAVE_CONFIG:
811 config = (struct dma_slave_config *)arg;
813 /* make sure the channel supports setting burst size */
814 if (!chan->set_request_count)
817 /* we set the controller burst size depending on direction */
818 if (config->direction == DMA_MEM_TO_DEV)
819 size = config->dst_addr_width * config->dst_maxburst;
821 size = config->src_addr_width * config->src_maxburst;
823 chan->set_request_count(chan, size);
826 case FSLDMA_EXTERNAL_START:
828 /* make sure the channel supports external start */
829 if (!chan->toggle_ext_start)
832 chan->toggle_ext_start(chan, arg);
843 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
844 * @chan: Freescale DMA channel
845 * @desc: descriptor to cleanup and free
847 * This function is used on a descriptor which has been executed by the DMA
848 * controller. It will run any callbacks, submit any dependencies, and then
849 * free the descriptor.
851 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
852 struct fsl_desc_sw *desc)
854 struct dma_async_tx_descriptor *txd = &desc->async_tx;
855 struct device *dev = chan->common.device->dev;
856 dma_addr_t src = get_desc_src(chan, desc);
857 dma_addr_t dst = get_desc_dst(chan, desc);
858 u32 len = get_desc_cnt(chan, desc);
860 /* Run the link descriptor callback function */
862 #ifdef FSL_DMA_LD_DEBUG
863 chan_dbg(chan, "LD %p callback\n", desc);
865 txd->callback(txd->callback_param);
868 /* Run any dependencies */
869 dma_run_dependencies(txd);
871 /* Unmap the dst buffer, if requested */
872 if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
873 if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
874 dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
876 dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
879 /* Unmap the src buffer, if requested */
880 if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
881 if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
882 dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
884 dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
887 #ifdef FSL_DMA_LD_DEBUG
888 chan_dbg(chan, "LD %p free\n", desc);
890 dma_pool_free(chan->desc_pool, desc, txd->phys);
894 * fsl_chan_xfer_ld_queue - transfer any pending transactions
895 * @chan : Freescale DMA channel
897 * HARDWARE STATE: idle
898 * LOCKING: must hold chan->desc_lock
900 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
902 struct fsl_desc_sw *desc;
905 * If the list of pending descriptors is empty, then we
906 * don't need to do any work at all
908 if (list_empty(&chan->ld_pending)) {
909 chan_dbg(chan, "no pending LDs\n");
914 * The DMA controller is not idle, which means that the interrupt
915 * handler will start any queued transactions when it runs after
916 * this transaction finishes
919 chan_dbg(chan, "DMA controller still busy\n");
924 * If there are some link descriptors which have not been
925 * transferred, we need to start the controller
929 * Move all elements from the queue of pending transactions
930 * onto the list of running transactions
932 chan_dbg(chan, "idle, starting controller\n");
933 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
934 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
937 * The 85xx DMA controller doesn't clear the channel start bit
938 * automatically at the end of a transfer. Therefore we must clear
939 * it in software before starting the transfer.
941 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
944 mode = DMA_IN(chan, &chan->regs->mr, 32);
945 mode &= ~FSL_DMA_MR_CS;
946 DMA_OUT(chan, &chan->regs->mr, mode, 32);
950 * Program the descriptor's address into the DMA controller,
951 * then start the DMA transaction
953 set_cdar(chan, desc->async_tx.phys);
961 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
962 * @chan : Freescale DMA channel
964 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
966 struct fsldma_chan *chan = to_fsl_chan(dchan);
969 spin_lock_irqsave(&chan->desc_lock, flags);
970 fsl_chan_xfer_ld_queue(chan);
971 spin_unlock_irqrestore(&chan->desc_lock, flags);
975 * fsl_tx_status - Determine the DMA status
976 * @chan : Freescale DMA channel
978 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
980 struct dma_tx_state *txstate)
982 return dma_cookie_status(dchan, cookie, txstate);
985 /*----------------------------------------------------------------------------*/
986 /* Interrupt Handling */
987 /*----------------------------------------------------------------------------*/
989 static irqreturn_t fsldma_chan_irq(int irq, void *data)
991 struct fsldma_chan *chan = data;
994 /* save and clear the status register */
997 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
999 /* check that this was really our device */
1000 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1004 if (stat & FSL_DMA_SR_TE)
1005 chan_err(chan, "Transfer Error!\n");
1009 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1010 * trigger a PE interrupt.
1012 if (stat & FSL_DMA_SR_PE) {
1013 chan_dbg(chan, "irq: Programming Error INT\n");
1014 stat &= ~FSL_DMA_SR_PE;
1015 if (get_bcr(chan) != 0)
1016 chan_err(chan, "Programming Error!\n");
1020 * For MPC8349, EOCDI event need to update cookie
1021 * and start the next transfer if it exist.
1023 if (stat & FSL_DMA_SR_EOCDI) {
1024 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1025 stat &= ~FSL_DMA_SR_EOCDI;
1029 * If it current transfer is the end-of-transfer,
1030 * we should clear the Channel Start bit for
1031 * prepare next transfer.
1033 if (stat & FSL_DMA_SR_EOLNI) {
1034 chan_dbg(chan, "irq: End-of-link INT\n");
1035 stat &= ~FSL_DMA_SR_EOLNI;
1038 /* check that the DMA controller is really idle */
1039 if (!dma_is_idle(chan))
1040 chan_err(chan, "irq: controller not idle!\n");
1042 /* check that we handled all of the bits */
1044 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1047 * Schedule the tasklet to handle all cleanup of the current
1048 * transaction. It will start a new transaction if there is
1051 tasklet_schedule(&chan->tasklet);
1052 chan_dbg(chan, "irq: Exit\n");
1056 static void dma_do_tasklet(unsigned long data)
1058 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1059 struct fsl_desc_sw *desc, *_desc;
1060 LIST_HEAD(ld_cleanup);
1061 unsigned long flags;
1063 chan_dbg(chan, "tasklet entry\n");
1065 spin_lock_irqsave(&chan->desc_lock, flags);
1067 /* update the cookie if we have some descriptors to cleanup */
1068 if (!list_empty(&chan->ld_running)) {
1069 dma_cookie_t cookie;
1071 desc = to_fsl_desc(chan->ld_running.prev);
1072 cookie = desc->async_tx.cookie;
1073 dma_cookie_complete(&desc->async_tx);
1075 chan_dbg(chan, "completed_cookie=%d\n", cookie);
1079 * move the descriptors to a temporary list so we can drop the lock
1080 * during the entire cleanup operation
1082 list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1084 /* the hardware is now idle and ready for more */
1088 * Start any pending transactions automatically
1090 * In the ideal case, we keep the DMA controller busy while we go
1091 * ahead and free the descriptors below.
1093 fsl_chan_xfer_ld_queue(chan);
1094 spin_unlock_irqrestore(&chan->desc_lock, flags);
1096 /* Run the callback for each descriptor, in order */
1097 list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1099 /* Remove from the list of transactions */
1100 list_del(&desc->node);
1102 /* Run all cleanup for this descriptor */
1103 fsldma_cleanup_descriptor(chan, desc);
1106 chan_dbg(chan, "tasklet exit\n");
1109 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1111 struct fsldma_device *fdev = data;
1112 struct fsldma_chan *chan;
1113 unsigned int handled = 0;
1117 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1118 : in_le32(fdev->regs);
1120 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1122 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1123 chan = fdev->chan[i];
1128 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1129 fsldma_chan_irq(irq, chan);
1137 return IRQ_RETVAL(handled);
1140 static void fsldma_free_irqs(struct fsldma_device *fdev)
1142 struct fsldma_chan *chan;
1145 if (fdev->irq != NO_IRQ) {
1146 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1147 free_irq(fdev->irq, fdev);
1151 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1152 chan = fdev->chan[i];
1153 if (chan && chan->irq != NO_IRQ) {
1154 chan_dbg(chan, "free per-channel IRQ\n");
1155 free_irq(chan->irq, chan);
1160 static int fsldma_request_irqs(struct fsldma_device *fdev)
1162 struct fsldma_chan *chan;
1166 /* if we have a per-controller IRQ, use that */
1167 if (fdev->irq != NO_IRQ) {
1168 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1169 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1170 "fsldma-controller", fdev);
1174 /* no per-controller IRQ, use the per-channel IRQs */
1175 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1176 chan = fdev->chan[i];
1180 if (chan->irq == NO_IRQ) {
1181 chan_err(chan, "interrupts property missing in device tree\n");
1186 chan_dbg(chan, "request per-channel IRQ\n");
1187 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1188 "fsldma-chan", chan);
1190 chan_err(chan, "unable to request per-channel IRQ\n");
1198 for (/* none */; i >= 0; i--) {
1199 chan = fdev->chan[i];
1203 if (chan->irq == NO_IRQ)
1206 free_irq(chan->irq, chan);
1212 /*----------------------------------------------------------------------------*/
1213 /* OpenFirmware Subsystem */
1214 /*----------------------------------------------------------------------------*/
1216 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1217 struct device_node *node, u32 feature, const char *compatible)
1219 struct fsldma_chan *chan;
1220 struct resource res;
1224 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1226 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1231 /* ioremap registers for use */
1232 chan->regs = of_iomap(node, 0);
1234 dev_err(fdev->dev, "unable to ioremap registers\n");
1239 err = of_address_to_resource(node, 0, &res);
1241 dev_err(fdev->dev, "unable to find 'reg' property\n");
1242 goto out_iounmap_regs;
1245 chan->feature = feature;
1247 fdev->feature = chan->feature;
1250 * If the DMA device's feature is different than the feature
1251 * of its channels, report the bug
1253 WARN_ON(fdev->feature != chan->feature);
1255 chan->dev = fdev->dev;
1256 chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1257 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1258 dev_err(fdev->dev, "too many channels for device\n");
1260 goto out_iounmap_regs;
1263 fdev->chan[chan->id] = chan;
1264 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1265 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1267 /* Initialize the channel */
1270 /* Clear cdar registers */
1273 switch (chan->feature & FSL_DMA_IP_MASK) {
1274 case FSL_DMA_IP_85XX:
1275 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1276 case FSL_DMA_IP_83XX:
1277 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1278 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1279 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1280 chan->set_request_count = fsl_chan_set_request_count;
1283 spin_lock_init(&chan->desc_lock);
1284 INIT_LIST_HEAD(&chan->ld_pending);
1285 INIT_LIST_HEAD(&chan->ld_running);
1288 chan->common.device = &fdev->common;
1289 dma_cookie_init(&chan->common);
1291 /* find the IRQ line, if it exists in the device tree */
1292 chan->irq = irq_of_parse_and_map(node, 0);
1294 /* Add the channel to DMA device channel list */
1295 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1296 fdev->common.chancnt++;
1298 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1299 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1304 iounmap(chan->regs);
1311 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1313 irq_dispose_mapping(chan->irq);
1314 list_del(&chan->common.device_node);
1315 iounmap(chan->regs);
1319 static int fsldma_of_probe(struct platform_device *op)
1321 struct fsldma_device *fdev;
1322 struct device_node *child;
1325 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1327 dev_err(&op->dev, "No enough memory for 'priv'\n");
1332 fdev->dev = &op->dev;
1333 INIT_LIST_HEAD(&fdev->common.channels);
1335 /* ioremap the registers for use */
1336 fdev->regs = of_iomap(op->dev.of_node, 0);
1338 dev_err(&op->dev, "unable to ioremap registers\n");
1343 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1344 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1346 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1347 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1348 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1349 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1350 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1351 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1352 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1353 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1354 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1355 fdev->common.device_tx_status = fsl_tx_status;
1356 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1357 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1358 fdev->common.device_control = fsl_dma_device_control;
1359 fdev->common.dev = &op->dev;
1361 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1363 platform_set_drvdata(op, fdev);
1366 * We cannot use of_platform_bus_probe() because there is no
1367 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1370 for_each_child_of_node(op->dev.of_node, child) {
1371 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1372 fsl_dma_chan_probe(fdev, child,
1373 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1374 "fsl,eloplus-dma-channel");
1377 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1378 fsl_dma_chan_probe(fdev, child,
1379 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1380 "fsl,elo-dma-channel");
1385 * Hookup the IRQ handler(s)
1387 * If we have a per-controller interrupt, we prefer that to the
1388 * per-channel interrupts to reduce the number of shared interrupt
1389 * handlers on the same IRQ line
1391 err = fsldma_request_irqs(fdev);
1393 dev_err(fdev->dev, "unable to request IRQs\n");
1397 dma_async_device_register(&fdev->common);
1401 irq_dispose_mapping(fdev->irq);
1407 static int fsldma_of_remove(struct platform_device *op)
1409 struct fsldma_device *fdev;
1412 fdev = platform_get_drvdata(op);
1413 dma_async_device_unregister(&fdev->common);
1415 fsldma_free_irqs(fdev);
1417 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1419 fsl_dma_chan_remove(fdev->chan[i]);
1422 iounmap(fdev->regs);
1428 static const struct of_device_id fsldma_of_ids[] = {
1429 { .compatible = "fsl,eloplus-dma", },
1430 { .compatible = "fsl,elo-dma", },
1434 static struct platform_driver fsldma_of_driver = {
1436 .name = "fsl-elo-dma",
1437 .owner = THIS_MODULE,
1438 .of_match_table = fsldma_of_ids,
1440 .probe = fsldma_of_probe,
1441 .remove = fsldma_of_remove,
1444 /*----------------------------------------------------------------------------*/
1445 /* Module Init / Exit */
1446 /*----------------------------------------------------------------------------*/
1448 static __init int fsldma_init(void)
1450 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1451 return platform_driver_register(&fsldma_of_driver);
1454 static void __exit fsldma_exit(void)
1456 platform_driver_unregister(&fsldma_of_driver);
1459 subsys_initcall(fsldma_init);
1460 module_exit(fsldma_exit);
1462 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1463 MODULE_LICENSE("GPL");