bbcf783707f1953d85b151787ff6768cee1f44f6
[firefly-linux-kernel-4.4.55.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130         u32 count   : 16; /* size of the buffer pointed by this BD */
131         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132         u32 command :  8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139         struct sdma_mode_count  mode;
140         u32 buffer_addr;        /* address of the buffer described */
141         u32 ext_buffer_addr;    /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr      current buffer descriptor processed
148  * @base_bd_ptr         first element of buffer descriptor array
149  * @unused              padding. The SDMA engine expects an array of 128 byte
150  *                      control blocks
151  */
152 struct sdma_channel_control {
153         u32 current_bd_ptr;
154         u32 base_bd_ptr;
155         u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:         program counter
162  * @t:          test bit: status of arithmetic & test instruction
163  * @rpc:        return program counter
164  * @sf:         source fault while loading data
165  * @spc:        loop start program counter
166  * @df:         destination fault while storing data
167  * @epc:        loop end program counter
168  * @lm:         loop mode
169  */
170 struct sdma_state_registers {
171         u32 pc     :14;
172         u32 unused1: 1;
173         u32 t      : 1;
174         u32 rpc    :14;
175         u32 unused0: 1;
176         u32 sf     : 1;
177         u32 spc    :14;
178         u32 unused2: 1;
179         u32 df     : 1;
180         u32 epc    :14;
181         u32 lm     : 2;
182 } __attribute__ ((packed));
183
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:      channel state bits
188  * @gReg:               general registers
189  * @mda:                burst dma destination address register
190  * @msa:                burst dma source address register
191  * @ms:                 burst dma status register
192  * @md:                 burst dma data register
193  * @pda:                peripheral dma destination address register
194  * @psa:                peripheral dma source address register
195  * @ps:                 peripheral dma status register
196  * @pd:                 peripheral dma data register
197  * @ca:                 CRC polynomial register
198  * @cs:                 CRC accumulator register
199  * @dda:                dedicated core destination address register
200  * @dsa:                dedicated core source address register
201  * @ds:                 dedicated core status register
202  * @dd:                 dedicated core data register
203  */
204 struct sdma_context_data {
205         struct sdma_state_registers  channel_state;
206         u32  gReg[8];
207         u32  mda;
208         u32  msa;
209         u32  ms;
210         u32  md;
211         u32  pda;
212         u32  psa;
213         u32  ps;
214         u32  pd;
215         u32  ca;
216         u32  cs;
217         u32  dda;
218         u32  dsa;
219         u32  ds;
220         u32  dd;
221         u32  scratch0;
222         u32  scratch1;
223         u32  scratch2;
224         u32  scratch3;
225         u32  scratch4;
226         u32  scratch5;
227         u32  scratch6;
228         u32  scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma                pointer to the SDMA engine for this channel
239  * @channel             the channel number, matches dmaengine chan_id + 1
240  * @direction           transfer type. Needed for setting SDMA script
241  * @peripheral_type     Peripheral type. Needed for setting SDMA script
242  * @event_id0           aka dma request line
243  * @event_id1           for channels that use 2 events
244  * @word_size           peripheral access size
245  * @buf_tail            ID of the buffer that was processed
246  * @num_bd              max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249         struct sdma_engine              *sdma;
250         unsigned int                    channel;
251         enum dma_transfer_direction             direction;
252         enum sdma_peripheral_type       peripheral_type;
253         unsigned int                    event_id0;
254         unsigned int                    event_id1;
255         enum dma_slave_buswidth         word_size;
256         unsigned int                    buf_tail;
257         unsigned int                    num_bd;
258         unsigned int                    period_len;
259         struct sdma_buffer_descriptor   *bd;
260         dma_addr_t                      bd_phys;
261         unsigned int                    pc_from_device, pc_to_device;
262         unsigned long                   flags;
263         dma_addr_t                      per_address;
264         unsigned long                   event_mask[2];
265         unsigned long                   watermark_level;
266         u32                             shp_addr, per_addr;
267         struct dma_chan                 chan;
268         spinlock_t                      lock;
269         struct dma_async_tx_descriptor  desc;
270         enum dma_status                 status;
271         unsigned int                    chn_count;
272         unsigned int                    chn_real_count;
273         struct tasklet_struct           tasklet;
274 };
275
276 #define IMX_DMA_SG_LOOP         BIT(0)
277
278 #define MAX_DMA_CHANNELS 32
279 #define MXC_SDMA_DEFAULT_PRIORITY 1
280 #define MXC_SDMA_MIN_PRIORITY 1
281 #define MXC_SDMA_MAX_PRIORITY 7
282
283 #define SDMA_FIRMWARE_MAGIC 0x414d4453
284
285 /**
286  * struct sdma_firmware_header - Layout of the firmware image
287  *
288  * @magic               "SDMA"
289  * @version_major       increased whenever layout of struct sdma_script_start_addrs
290  *                      changes.
291  * @version_minor       firmware minor version (for binary compatible changes)
292  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
293  * @num_script_addrs    Number of script addresses in this image
294  * @ram_code_start      offset of SDMA ram image in this firmware image
295  * @ram_code_size       size of SDMA ram image
296  * @script_addrs        Stores the start address of the SDMA scripts
297  *                      (in SDMA memory space)
298  */
299 struct sdma_firmware_header {
300         u32     magic;
301         u32     version_major;
302         u32     version_minor;
303         u32     script_addrs_start;
304         u32     num_script_addrs;
305         u32     ram_code_start;
306         u32     ram_code_size;
307 };
308
309 struct sdma_driver_data {
310         int chnenbl0;
311         int num_events;
312         struct sdma_script_start_addrs  *script_addrs;
313 };
314
315 struct sdma_engine {
316         struct device                   *dev;
317         struct device_dma_parameters    dma_parms;
318         struct sdma_channel             channel[MAX_DMA_CHANNELS];
319         struct sdma_channel_control     *channel_control;
320         void __iomem                    *regs;
321         struct sdma_context_data        *context;
322         dma_addr_t                      context_phys;
323         struct dma_device               dma_device;
324         struct clk                      *clk_ipg;
325         struct clk                      *clk_ahb;
326         spinlock_t                      channel_0_lock;
327         u32                             script_number;
328         struct sdma_script_start_addrs  *script_addrs;
329         const struct sdma_driver_data   *drvdata;
330 };
331
332 static struct sdma_driver_data sdma_imx31 = {
333         .chnenbl0 = SDMA_CHNENBL0_IMX31,
334         .num_events = 32,
335 };
336
337 static struct sdma_script_start_addrs sdma_script_imx25 = {
338         .ap_2_ap_addr = 729,
339         .uart_2_mcu_addr = 904,
340         .per_2_app_addr = 1255,
341         .mcu_2_app_addr = 834,
342         .uartsh_2_mcu_addr = 1120,
343         .per_2_shp_addr = 1329,
344         .mcu_2_shp_addr = 1048,
345         .ata_2_mcu_addr = 1560,
346         .mcu_2_ata_addr = 1479,
347         .app_2_per_addr = 1189,
348         .app_2_mcu_addr = 770,
349         .shp_2_per_addr = 1407,
350         .shp_2_mcu_addr = 979,
351 };
352
353 static struct sdma_driver_data sdma_imx25 = {
354         .chnenbl0 = SDMA_CHNENBL0_IMX35,
355         .num_events = 48,
356         .script_addrs = &sdma_script_imx25,
357 };
358
359 static struct sdma_driver_data sdma_imx35 = {
360         .chnenbl0 = SDMA_CHNENBL0_IMX35,
361         .num_events = 48,
362 };
363
364 static struct sdma_script_start_addrs sdma_script_imx51 = {
365         .ap_2_ap_addr = 642,
366         .uart_2_mcu_addr = 817,
367         .mcu_2_app_addr = 747,
368         .mcu_2_shp_addr = 961,
369         .ata_2_mcu_addr = 1473,
370         .mcu_2_ata_addr = 1392,
371         .app_2_per_addr = 1033,
372         .app_2_mcu_addr = 683,
373         .shp_2_per_addr = 1251,
374         .shp_2_mcu_addr = 892,
375 };
376
377 static struct sdma_driver_data sdma_imx51 = {
378         .chnenbl0 = SDMA_CHNENBL0_IMX35,
379         .num_events = 48,
380         .script_addrs = &sdma_script_imx51,
381 };
382
383 static struct sdma_script_start_addrs sdma_script_imx53 = {
384         .ap_2_ap_addr = 642,
385         .app_2_mcu_addr = 683,
386         .mcu_2_app_addr = 747,
387         .uart_2_mcu_addr = 817,
388         .shp_2_mcu_addr = 891,
389         .mcu_2_shp_addr = 960,
390         .uartsh_2_mcu_addr = 1032,
391         .spdif_2_mcu_addr = 1100,
392         .mcu_2_spdif_addr = 1134,
393         .firi_2_mcu_addr = 1193,
394         .mcu_2_firi_addr = 1290,
395 };
396
397 static struct sdma_driver_data sdma_imx53 = {
398         .chnenbl0 = SDMA_CHNENBL0_IMX35,
399         .num_events = 48,
400         .script_addrs = &sdma_script_imx53,
401 };
402
403 static struct sdma_script_start_addrs sdma_script_imx6q = {
404         .ap_2_ap_addr = 642,
405         .uart_2_mcu_addr = 817,
406         .mcu_2_app_addr = 747,
407         .per_2_per_addr = 6331,
408         .uartsh_2_mcu_addr = 1032,
409         .mcu_2_shp_addr = 960,
410         .app_2_mcu_addr = 683,
411         .shp_2_mcu_addr = 891,
412         .spdif_2_mcu_addr = 1100,
413         .mcu_2_spdif_addr = 1134,
414 };
415
416 static struct sdma_driver_data sdma_imx6q = {
417         .chnenbl0 = SDMA_CHNENBL0_IMX35,
418         .num_events = 48,
419         .script_addrs = &sdma_script_imx6q,
420 };
421
422 static struct platform_device_id sdma_devtypes[] = {
423         {
424                 .name = "imx25-sdma",
425                 .driver_data = (unsigned long)&sdma_imx25,
426         }, {
427                 .name = "imx31-sdma",
428                 .driver_data = (unsigned long)&sdma_imx31,
429         }, {
430                 .name = "imx35-sdma",
431                 .driver_data = (unsigned long)&sdma_imx35,
432         }, {
433                 .name = "imx51-sdma",
434                 .driver_data = (unsigned long)&sdma_imx51,
435         }, {
436                 .name = "imx53-sdma",
437                 .driver_data = (unsigned long)&sdma_imx53,
438         }, {
439                 .name = "imx6q-sdma",
440                 .driver_data = (unsigned long)&sdma_imx6q,
441         }, {
442                 /* sentinel */
443         }
444 };
445 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
446
447 static const struct of_device_id sdma_dt_ids[] = {
448         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
449         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
450         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
451         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
452         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
453         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
454         { /* sentinel */ }
455 };
456 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
457
458 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
459 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
460 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
461 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
462
463 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
464 {
465         u32 chnenbl0 = sdma->drvdata->chnenbl0;
466         return chnenbl0 + event * 4;
467 }
468
469 static int sdma_config_ownership(struct sdma_channel *sdmac,
470                 bool event_override, bool mcu_override, bool dsp_override)
471 {
472         struct sdma_engine *sdma = sdmac->sdma;
473         int channel = sdmac->channel;
474         unsigned long evt, mcu, dsp;
475
476         if (event_override && mcu_override && dsp_override)
477                 return -EINVAL;
478
479         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
480         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
481         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
482
483         if (dsp_override)
484                 __clear_bit(channel, &dsp);
485         else
486                 __set_bit(channel, &dsp);
487
488         if (event_override)
489                 __clear_bit(channel, &evt);
490         else
491                 __set_bit(channel, &evt);
492
493         if (mcu_override)
494                 __clear_bit(channel, &mcu);
495         else
496                 __set_bit(channel, &mcu);
497
498         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
499         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
500         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
501
502         return 0;
503 }
504
505 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
506 {
507         writel(BIT(channel), sdma->regs + SDMA_H_START);
508 }
509
510 /*
511  * sdma_run_channel0 - run a channel and wait till it's done
512  */
513 static int sdma_run_channel0(struct sdma_engine *sdma)
514 {
515         int ret;
516         unsigned long timeout = 500;
517
518         sdma_enable_channel(sdma, 0);
519
520         while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
521                 if (timeout-- <= 0)
522                         break;
523                 udelay(1);
524         }
525
526         if (ret) {
527                 /* Clear the interrupt status */
528                 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
529         } else {
530                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
531         }
532
533         return ret ? 0 : -ETIMEDOUT;
534 }
535
536 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
537                 u32 address)
538 {
539         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
540         void *buf_virt;
541         dma_addr_t buf_phys;
542         int ret;
543         unsigned long flags;
544
545         buf_virt = dma_alloc_coherent(NULL,
546                         size,
547                         &buf_phys, GFP_KERNEL);
548         if (!buf_virt) {
549                 return -ENOMEM;
550         }
551
552         spin_lock_irqsave(&sdma->channel_0_lock, flags);
553
554         bd0->mode.command = C0_SETPM;
555         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
556         bd0->mode.count = size / 2;
557         bd0->buffer_addr = buf_phys;
558         bd0->ext_buffer_addr = address;
559
560         memcpy(buf_virt, buf, size);
561
562         ret = sdma_run_channel0(sdma);
563
564         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
565
566         dma_free_coherent(NULL, size, buf_virt, buf_phys);
567
568         return ret;
569 }
570
571 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
572 {
573         struct sdma_engine *sdma = sdmac->sdma;
574         int channel = sdmac->channel;
575         unsigned long val;
576         u32 chnenbl = chnenbl_ofs(sdma, event);
577
578         val = readl_relaxed(sdma->regs + chnenbl);
579         __set_bit(channel, &val);
580         writel_relaxed(val, sdma->regs + chnenbl);
581 }
582
583 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
584 {
585         struct sdma_engine *sdma = sdmac->sdma;
586         int channel = sdmac->channel;
587         u32 chnenbl = chnenbl_ofs(sdma, event);
588         unsigned long val;
589
590         val = readl_relaxed(sdma->regs + chnenbl);
591         __clear_bit(channel, &val);
592         writel_relaxed(val, sdma->regs + chnenbl);
593 }
594
595 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
596 {
597         if (sdmac->desc.callback)
598                 sdmac->desc.callback(sdmac->desc.callback_param);
599 }
600
601 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
602 {
603         struct sdma_buffer_descriptor *bd;
604
605         /*
606          * loop mode. Iterate over descriptors, re-setup them and
607          * call callback function.
608          */
609         while (1) {
610                 bd = &sdmac->bd[sdmac->buf_tail];
611
612                 if (bd->mode.status & BD_DONE)
613                         break;
614
615                 if (bd->mode.status & BD_RROR)
616                         sdmac->status = DMA_ERROR;
617
618                 bd->mode.status |= BD_DONE;
619                 sdmac->buf_tail++;
620                 sdmac->buf_tail %= sdmac->num_bd;
621         }
622 }
623
624 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
625 {
626         struct sdma_buffer_descriptor *bd;
627         int i, error = 0;
628
629         sdmac->chn_real_count = 0;
630         /*
631          * non loop mode. Iterate over all descriptors, collect
632          * errors and call callback function
633          */
634         for (i = 0; i < sdmac->num_bd; i++) {
635                 bd = &sdmac->bd[i];
636
637                  if (bd->mode.status & (BD_DONE | BD_RROR))
638                         error = -EIO;
639                  sdmac->chn_real_count += bd->mode.count;
640         }
641
642         if (error)
643                 sdmac->status = DMA_ERROR;
644         else
645                 sdmac->status = DMA_COMPLETE;
646
647         dma_cookie_complete(&sdmac->desc);
648         if (sdmac->desc.callback)
649                 sdmac->desc.callback(sdmac->desc.callback_param);
650 }
651
652 static void sdma_tasklet(unsigned long data)
653 {
654         struct sdma_channel *sdmac = (struct sdma_channel *) data;
655
656         if (sdmac->flags & IMX_DMA_SG_LOOP)
657                 sdma_handle_channel_loop(sdmac);
658         else
659                 mxc_sdma_handle_channel_normal(sdmac);
660 }
661
662 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
663 {
664         struct sdma_engine *sdma = dev_id;
665         unsigned long stat;
666
667         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
668         /* not interested in channel 0 interrupts */
669         stat &= ~1;
670         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
671
672         while (stat) {
673                 int channel = fls(stat) - 1;
674                 struct sdma_channel *sdmac = &sdma->channel[channel];
675
676                 if (sdmac->flags & IMX_DMA_SG_LOOP)
677                         sdma_update_channel_loop(sdmac);
678
679                 tasklet_schedule(&sdmac->tasklet);
680
681                 __clear_bit(channel, &stat);
682         }
683
684         return IRQ_HANDLED;
685 }
686
687 /*
688  * sets the pc of SDMA script according to the peripheral type
689  */
690 static void sdma_get_pc(struct sdma_channel *sdmac,
691                 enum sdma_peripheral_type peripheral_type)
692 {
693         struct sdma_engine *sdma = sdmac->sdma;
694         int per_2_emi = 0, emi_2_per = 0;
695         /*
696          * These are needed once we start to support transfers between
697          * two peripherals or memory-to-memory transfers
698          */
699         int per_2_per = 0, emi_2_emi = 0;
700
701         sdmac->pc_from_device = 0;
702         sdmac->pc_to_device = 0;
703
704         switch (peripheral_type) {
705         case IMX_DMATYPE_MEMORY:
706                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
707                 break;
708         case IMX_DMATYPE_DSP:
709                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
710                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
711                 break;
712         case IMX_DMATYPE_FIRI:
713                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
714                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
715                 break;
716         case IMX_DMATYPE_UART:
717                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
718                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
719                 break;
720         case IMX_DMATYPE_UART_SP:
721                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
722                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
723                 break;
724         case IMX_DMATYPE_ATA:
725                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
726                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
727                 break;
728         case IMX_DMATYPE_CSPI:
729         case IMX_DMATYPE_EXT:
730         case IMX_DMATYPE_SSI:
731                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
732                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
733                 break;
734         case IMX_DMATYPE_SSI_DUAL:
735                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
736                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
737                 break;
738         case IMX_DMATYPE_SSI_SP:
739         case IMX_DMATYPE_MMC:
740         case IMX_DMATYPE_SDHC:
741         case IMX_DMATYPE_CSPI_SP:
742         case IMX_DMATYPE_ESAI:
743         case IMX_DMATYPE_MSHC_SP:
744                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
745                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
746                 break;
747         case IMX_DMATYPE_ASRC:
748                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
749                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
750                 per_2_per = sdma->script_addrs->per_2_per_addr;
751                 break;
752         case IMX_DMATYPE_MSHC:
753                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
754                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
755                 break;
756         case IMX_DMATYPE_CCM:
757                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
758                 break;
759         case IMX_DMATYPE_SPDIF:
760                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
761                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
762                 break;
763         case IMX_DMATYPE_IPU_MEMORY:
764                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
765                 break;
766         default:
767                 break;
768         }
769
770         sdmac->pc_from_device = per_2_emi;
771         sdmac->pc_to_device = emi_2_per;
772 }
773
774 static int sdma_load_context(struct sdma_channel *sdmac)
775 {
776         struct sdma_engine *sdma = sdmac->sdma;
777         int channel = sdmac->channel;
778         int load_address;
779         struct sdma_context_data *context = sdma->context;
780         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
781         int ret;
782         unsigned long flags;
783
784         if (sdmac->direction == DMA_DEV_TO_MEM) {
785                 load_address = sdmac->pc_from_device;
786         } else {
787                 load_address = sdmac->pc_to_device;
788         }
789
790         if (load_address < 0)
791                 return load_address;
792
793         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
794         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
795         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
796         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
797         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
798         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
799
800         spin_lock_irqsave(&sdma->channel_0_lock, flags);
801
802         memset(context, 0, sizeof(*context));
803         context->channel_state.pc = load_address;
804
805         /* Send by context the event mask,base address for peripheral
806          * and watermark level
807          */
808         context->gReg[0] = sdmac->event_mask[1];
809         context->gReg[1] = sdmac->event_mask[0];
810         context->gReg[2] = sdmac->per_addr;
811         context->gReg[6] = sdmac->shp_addr;
812         context->gReg[7] = sdmac->watermark_level;
813
814         bd0->mode.command = C0_SETDM;
815         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
816         bd0->mode.count = sizeof(*context) / 4;
817         bd0->buffer_addr = sdma->context_phys;
818         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
819         ret = sdma_run_channel0(sdma);
820
821         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
822
823         return ret;
824 }
825
826 static void sdma_disable_channel(struct sdma_channel *sdmac)
827 {
828         struct sdma_engine *sdma = sdmac->sdma;
829         int channel = sdmac->channel;
830
831         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
832         sdmac->status = DMA_ERROR;
833 }
834
835 static int sdma_config_channel(struct sdma_channel *sdmac)
836 {
837         int ret;
838
839         sdma_disable_channel(sdmac);
840
841         sdmac->event_mask[0] = 0;
842         sdmac->event_mask[1] = 0;
843         sdmac->shp_addr = 0;
844         sdmac->per_addr = 0;
845
846         if (sdmac->event_id0) {
847                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
848                         return -EINVAL;
849                 sdma_event_enable(sdmac, sdmac->event_id0);
850         }
851
852         switch (sdmac->peripheral_type) {
853         case IMX_DMATYPE_DSP:
854                 sdma_config_ownership(sdmac, false, true, true);
855                 break;
856         case IMX_DMATYPE_MEMORY:
857                 sdma_config_ownership(sdmac, false, true, false);
858                 break;
859         default:
860                 sdma_config_ownership(sdmac, true, true, false);
861                 break;
862         }
863
864         sdma_get_pc(sdmac, sdmac->peripheral_type);
865
866         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
867                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
868                 /* Handle multiple event channels differently */
869                 if (sdmac->event_id1) {
870                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
871                         if (sdmac->event_id1 > 31)
872                                 __set_bit(31, &sdmac->watermark_level);
873                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
874                         if (sdmac->event_id0 > 31)
875                                 __set_bit(30, &sdmac->watermark_level);
876                 } else {
877                         __set_bit(sdmac->event_id0, sdmac->event_mask);
878                 }
879                 /* Watermark Level */
880                 sdmac->watermark_level |= sdmac->watermark_level;
881                 /* Address */
882                 sdmac->shp_addr = sdmac->per_address;
883         } else {
884                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
885         }
886
887         ret = sdma_load_context(sdmac);
888
889         return ret;
890 }
891
892 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
893                 unsigned int priority)
894 {
895         struct sdma_engine *sdma = sdmac->sdma;
896         int channel = sdmac->channel;
897
898         if (priority < MXC_SDMA_MIN_PRIORITY
899             || priority > MXC_SDMA_MAX_PRIORITY) {
900                 return -EINVAL;
901         }
902
903         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
904
905         return 0;
906 }
907
908 static int sdma_request_channel(struct sdma_channel *sdmac)
909 {
910         struct sdma_engine *sdma = sdmac->sdma;
911         int channel = sdmac->channel;
912         int ret = -EBUSY;
913
914         sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
915                                         GFP_KERNEL);
916         if (!sdmac->bd) {
917                 ret = -ENOMEM;
918                 goto out;
919         }
920
921         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
922         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
923
924         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
925         return 0;
926 out:
927
928         return ret;
929 }
930
931 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
932 {
933         return container_of(chan, struct sdma_channel, chan);
934 }
935
936 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
937 {
938         unsigned long flags;
939         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
940         dma_cookie_t cookie;
941
942         spin_lock_irqsave(&sdmac->lock, flags);
943
944         cookie = dma_cookie_assign(tx);
945
946         spin_unlock_irqrestore(&sdmac->lock, flags);
947
948         return cookie;
949 }
950
951 static int sdma_alloc_chan_resources(struct dma_chan *chan)
952 {
953         struct sdma_channel *sdmac = to_sdma_chan(chan);
954         struct imx_dma_data *data = chan->private;
955         int prio, ret;
956
957         if (!data)
958                 return -EINVAL;
959
960         switch (data->priority) {
961         case DMA_PRIO_HIGH:
962                 prio = 3;
963                 break;
964         case DMA_PRIO_MEDIUM:
965                 prio = 2;
966                 break;
967         case DMA_PRIO_LOW:
968         default:
969                 prio = 1;
970                 break;
971         }
972
973         sdmac->peripheral_type = data->peripheral_type;
974         sdmac->event_id0 = data->dma_request;
975
976         clk_enable(sdmac->sdma->clk_ipg);
977         clk_enable(sdmac->sdma->clk_ahb);
978
979         ret = sdma_request_channel(sdmac);
980         if (ret)
981                 return ret;
982
983         ret = sdma_set_channel_priority(sdmac, prio);
984         if (ret)
985                 return ret;
986
987         dma_async_tx_descriptor_init(&sdmac->desc, chan);
988         sdmac->desc.tx_submit = sdma_tx_submit;
989         /* txd.flags will be overwritten in prep funcs */
990         sdmac->desc.flags = DMA_CTRL_ACK;
991
992         return 0;
993 }
994
995 static void sdma_free_chan_resources(struct dma_chan *chan)
996 {
997         struct sdma_channel *sdmac = to_sdma_chan(chan);
998         struct sdma_engine *sdma = sdmac->sdma;
999
1000         sdma_disable_channel(sdmac);
1001
1002         if (sdmac->event_id0)
1003                 sdma_event_disable(sdmac, sdmac->event_id0);
1004         if (sdmac->event_id1)
1005                 sdma_event_disable(sdmac, sdmac->event_id1);
1006
1007         sdmac->event_id0 = 0;
1008         sdmac->event_id1 = 0;
1009
1010         sdma_set_channel_priority(sdmac, 0);
1011
1012         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1013
1014         clk_disable(sdma->clk_ipg);
1015         clk_disable(sdma->clk_ahb);
1016 }
1017
1018 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1019                 struct dma_chan *chan, struct scatterlist *sgl,
1020                 unsigned int sg_len, enum dma_transfer_direction direction,
1021                 unsigned long flags, void *context)
1022 {
1023         struct sdma_channel *sdmac = to_sdma_chan(chan);
1024         struct sdma_engine *sdma = sdmac->sdma;
1025         int ret, i, count;
1026         int channel = sdmac->channel;
1027         struct scatterlist *sg;
1028
1029         if (sdmac->status == DMA_IN_PROGRESS)
1030                 return NULL;
1031         sdmac->status = DMA_IN_PROGRESS;
1032
1033         sdmac->flags = 0;
1034
1035         sdmac->buf_tail = 0;
1036
1037         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1038                         sg_len, channel);
1039
1040         sdmac->direction = direction;
1041         ret = sdma_load_context(sdmac);
1042         if (ret)
1043                 goto err_out;
1044
1045         if (sg_len > NUM_BD) {
1046                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1047                                 channel, sg_len, NUM_BD);
1048                 ret = -EINVAL;
1049                 goto err_out;
1050         }
1051
1052         sdmac->chn_count = 0;
1053         for_each_sg(sgl, sg, sg_len, i) {
1054                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1055                 int param;
1056
1057                 bd->buffer_addr = sg->dma_address;
1058
1059                 count = sg_dma_len(sg);
1060
1061                 if (count > 0xffff) {
1062                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1063                                         channel, count, 0xffff);
1064                         ret = -EINVAL;
1065                         goto err_out;
1066                 }
1067
1068                 bd->mode.count = count;
1069                 sdmac->chn_count += count;
1070
1071                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1072                         ret =  -EINVAL;
1073                         goto err_out;
1074                 }
1075
1076                 switch (sdmac->word_size) {
1077                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1078                         bd->mode.command = 0;
1079                         if (count & 3 || sg->dma_address & 3)
1080                                 return NULL;
1081                         break;
1082                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1083                         bd->mode.command = 2;
1084                         if (count & 1 || sg->dma_address & 1)
1085                                 return NULL;
1086                         break;
1087                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1088                         bd->mode.command = 1;
1089                         break;
1090                 default:
1091                         return NULL;
1092                 }
1093
1094                 param = BD_DONE | BD_EXTD | BD_CONT;
1095
1096                 if (i + 1 == sg_len) {
1097                         param |= BD_INTR;
1098                         param |= BD_LAST;
1099                         param &= ~BD_CONT;
1100                 }
1101
1102                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1103                                 i, count, (u64)sg->dma_address,
1104                                 param & BD_WRAP ? "wrap" : "",
1105                                 param & BD_INTR ? " intr" : "");
1106
1107                 bd->mode.status = param;
1108         }
1109
1110         sdmac->num_bd = sg_len;
1111         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1112
1113         return &sdmac->desc;
1114 err_out:
1115         sdmac->status = DMA_ERROR;
1116         return NULL;
1117 }
1118
1119 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1120                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1121                 size_t period_len, enum dma_transfer_direction direction,
1122                 unsigned long flags, void *context)
1123 {
1124         struct sdma_channel *sdmac = to_sdma_chan(chan);
1125         struct sdma_engine *sdma = sdmac->sdma;
1126         int num_periods = buf_len / period_len;
1127         int channel = sdmac->channel;
1128         int ret, i = 0, buf = 0;
1129
1130         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1131
1132         if (sdmac->status == DMA_IN_PROGRESS)
1133                 return NULL;
1134
1135         sdmac->status = DMA_IN_PROGRESS;
1136
1137         sdmac->buf_tail = 0;
1138         sdmac->period_len = period_len;
1139
1140         sdmac->flags |= IMX_DMA_SG_LOOP;
1141         sdmac->direction = direction;
1142         ret = sdma_load_context(sdmac);
1143         if (ret)
1144                 goto err_out;
1145
1146         if (num_periods > NUM_BD) {
1147                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1148                                 channel, num_periods, NUM_BD);
1149                 goto err_out;
1150         }
1151
1152         if (period_len > 0xffff) {
1153                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1154                                 channel, period_len, 0xffff);
1155                 goto err_out;
1156         }
1157
1158         while (buf < buf_len) {
1159                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1160                 int param;
1161
1162                 bd->buffer_addr = dma_addr;
1163
1164                 bd->mode.count = period_len;
1165
1166                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1167                         goto err_out;
1168                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1169                         bd->mode.command = 0;
1170                 else
1171                         bd->mode.command = sdmac->word_size;
1172
1173                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1174                 if (i + 1 == num_periods)
1175                         param |= BD_WRAP;
1176
1177                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1178                                 i, period_len, (u64)dma_addr,
1179                                 param & BD_WRAP ? "wrap" : "",
1180                                 param & BD_INTR ? " intr" : "");
1181
1182                 bd->mode.status = param;
1183
1184                 dma_addr += period_len;
1185                 buf += period_len;
1186
1187                 i++;
1188         }
1189
1190         sdmac->num_bd = num_periods;
1191         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1192
1193         return &sdmac->desc;
1194 err_out:
1195         sdmac->status = DMA_ERROR;
1196         return NULL;
1197 }
1198
1199 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1200                 unsigned long arg)
1201 {
1202         struct sdma_channel *sdmac = to_sdma_chan(chan);
1203         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1204
1205         switch (cmd) {
1206         case DMA_TERMINATE_ALL:
1207                 sdma_disable_channel(sdmac);
1208                 return 0;
1209         case DMA_SLAVE_CONFIG:
1210                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1211                         sdmac->per_address = dmaengine_cfg->src_addr;
1212                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1213                                                 dmaengine_cfg->src_addr_width;
1214                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1215                 } else {
1216                         sdmac->per_address = dmaengine_cfg->dst_addr;
1217                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1218                                                 dmaengine_cfg->dst_addr_width;
1219                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1220                 }
1221                 sdmac->direction = dmaengine_cfg->direction;
1222                 return sdma_config_channel(sdmac);
1223         default:
1224                 return -ENOSYS;
1225         }
1226
1227         return -EINVAL;
1228 }
1229
1230 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1231                                       dma_cookie_t cookie,
1232                                       struct dma_tx_state *txstate)
1233 {
1234         struct sdma_channel *sdmac = to_sdma_chan(chan);
1235         u32 residue;
1236
1237         if (sdmac->flags & IMX_DMA_SG_LOOP)
1238                 residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1239         else
1240                 residue = sdmac->chn_count - sdmac->chn_real_count;
1241
1242         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1243                          residue);
1244
1245         return sdmac->status;
1246 }
1247
1248 static void sdma_issue_pending(struct dma_chan *chan)
1249 {
1250         struct sdma_channel *sdmac = to_sdma_chan(chan);
1251         struct sdma_engine *sdma = sdmac->sdma;
1252
1253         if (sdmac->status == DMA_IN_PROGRESS)
1254                 sdma_enable_channel(sdma, sdmac->channel);
1255 }
1256
1257 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1258 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1259
1260 static void sdma_add_scripts(struct sdma_engine *sdma,
1261                 const struct sdma_script_start_addrs *addr)
1262 {
1263         s32 *addr_arr = (u32 *)addr;
1264         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1265         int i;
1266
1267         /* use the default firmware in ROM if missing external firmware */
1268         if (!sdma->script_number)
1269                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1270
1271         for (i = 0; i < sdma->script_number; i++)
1272                 if (addr_arr[i] > 0)
1273                         saddr_arr[i] = addr_arr[i];
1274 }
1275
1276 static void sdma_load_firmware(const struct firmware *fw, void *context)
1277 {
1278         struct sdma_engine *sdma = context;
1279         const struct sdma_firmware_header *header;
1280         const struct sdma_script_start_addrs *addr;
1281         unsigned short *ram_code;
1282
1283         if (!fw) {
1284                 dev_err(sdma->dev, "firmware not found\n");
1285                 return;
1286         }
1287
1288         if (fw->size < sizeof(*header))
1289                 goto err_firmware;
1290
1291         header = (struct sdma_firmware_header *)fw->data;
1292
1293         if (header->magic != SDMA_FIRMWARE_MAGIC)
1294                 goto err_firmware;
1295         if (header->ram_code_start + header->ram_code_size > fw->size)
1296                 goto err_firmware;
1297         switch (header->version_major) {
1298                 case 1:
1299                         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1300                         break;
1301                 case 2:
1302                         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1303                         break;
1304                 default:
1305                         dev_err(sdma->dev, "unknown firmware version\n");
1306                         goto err_firmware;
1307         }
1308
1309         addr = (void *)header + header->script_addrs_start;
1310         ram_code = (void *)header + header->ram_code_start;
1311
1312         clk_enable(sdma->clk_ipg);
1313         clk_enable(sdma->clk_ahb);
1314         /* download the RAM image for SDMA */
1315         sdma_load_script(sdma, ram_code,
1316                         header->ram_code_size,
1317                         addr->ram_code_start_addr);
1318         clk_disable(sdma->clk_ipg);
1319         clk_disable(sdma->clk_ahb);
1320
1321         sdma_add_scripts(sdma, addr);
1322
1323         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1324                         header->version_major,
1325                         header->version_minor);
1326
1327 err_firmware:
1328         release_firmware(fw);
1329 }
1330
1331 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1332                 const char *fw_name)
1333 {
1334         int ret;
1335
1336         ret = request_firmware_nowait(THIS_MODULE,
1337                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1338                         GFP_KERNEL, sdma, sdma_load_firmware);
1339
1340         return ret;
1341 }
1342
1343 static int __init sdma_init(struct sdma_engine *sdma)
1344 {
1345         int i, ret;
1346         dma_addr_t ccb_phys;
1347
1348         clk_enable(sdma->clk_ipg);
1349         clk_enable(sdma->clk_ahb);
1350
1351         /* Be sure SDMA has not started yet */
1352         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1353
1354         sdma->channel_control = dma_alloc_coherent(NULL,
1355                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1356                         sizeof(struct sdma_context_data),
1357                         &ccb_phys, GFP_KERNEL);
1358
1359         if (!sdma->channel_control) {
1360                 ret = -ENOMEM;
1361                 goto err_dma_alloc;
1362         }
1363
1364         sdma->context = (void *)sdma->channel_control +
1365                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1366         sdma->context_phys = ccb_phys +
1367                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1368
1369         /* Zero-out the CCB structures array just allocated */
1370         memset(sdma->channel_control, 0,
1371                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1372
1373         /* disable all channels */
1374         for (i = 0; i < sdma->drvdata->num_events; i++)
1375                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1376
1377         /* All channels have priority 0 */
1378         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1379                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1380
1381         ret = sdma_request_channel(&sdma->channel[0]);
1382         if (ret)
1383                 goto err_dma_alloc;
1384
1385         sdma_config_ownership(&sdma->channel[0], false, true, false);
1386
1387         /* Set Command Channel (Channel Zero) */
1388         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1389
1390         /* Set bits of CONFIG register but with static context switching */
1391         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1392         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1393
1394         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1395
1396         /* Set bits of CONFIG register with given context switching mode */
1397         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1398
1399         /* Initializes channel's priorities */
1400         sdma_set_channel_priority(&sdma->channel[0], 7);
1401
1402         clk_disable(sdma->clk_ipg);
1403         clk_disable(sdma->clk_ahb);
1404
1405         return 0;
1406
1407 err_dma_alloc:
1408         clk_disable(sdma->clk_ipg);
1409         clk_disable(sdma->clk_ahb);
1410         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1411         return ret;
1412 }
1413
1414 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1415 {
1416         struct imx_dma_data *data = fn_param;
1417
1418         if (!imx_dma_is_general_purpose(chan))
1419                 return false;
1420
1421         chan->private = data;
1422
1423         return true;
1424 }
1425
1426 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1427                                    struct of_dma *ofdma)
1428 {
1429         struct sdma_engine *sdma = ofdma->of_dma_data;
1430         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1431         struct imx_dma_data data;
1432
1433         if (dma_spec->args_count != 3)
1434                 return NULL;
1435
1436         data.dma_request = dma_spec->args[0];
1437         data.peripheral_type = dma_spec->args[1];
1438         data.priority = dma_spec->args[2];
1439
1440         return dma_request_channel(mask, sdma_filter_fn, &data);
1441 }
1442
1443 static int __init sdma_probe(struct platform_device *pdev)
1444 {
1445         const struct of_device_id *of_id =
1446                         of_match_device(sdma_dt_ids, &pdev->dev);
1447         struct device_node *np = pdev->dev.of_node;
1448         const char *fw_name;
1449         int ret;
1450         int irq;
1451         struct resource *iores;
1452         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1453         int i;
1454         struct sdma_engine *sdma;
1455         s32 *saddr_arr;
1456         const struct sdma_driver_data *drvdata = NULL;
1457
1458         if (of_id)
1459                 drvdata = of_id->data;
1460         else if (pdev->id_entry)
1461                 drvdata = (void *)pdev->id_entry->driver_data;
1462
1463         if (!drvdata) {
1464                 dev_err(&pdev->dev, "unable to find driver data\n");
1465                 return -EINVAL;
1466         }
1467
1468         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1469         if (ret)
1470                 return ret;
1471
1472         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1473         if (!sdma)
1474                 return -ENOMEM;
1475
1476         spin_lock_init(&sdma->channel_0_lock);
1477
1478         sdma->dev = &pdev->dev;
1479         sdma->drvdata = drvdata;
1480
1481         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1482         irq = platform_get_irq(pdev, 0);
1483         if (!iores || irq < 0) {
1484                 ret = -EINVAL;
1485                 goto err_irq;
1486         }
1487
1488         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1489                 ret = -EBUSY;
1490                 goto err_request_region;
1491         }
1492
1493         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1494         if (IS_ERR(sdma->clk_ipg)) {
1495                 ret = PTR_ERR(sdma->clk_ipg);
1496                 goto err_clk;
1497         }
1498
1499         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1500         if (IS_ERR(sdma->clk_ahb)) {
1501                 ret = PTR_ERR(sdma->clk_ahb);
1502                 goto err_clk;
1503         }
1504
1505         clk_prepare(sdma->clk_ipg);
1506         clk_prepare(sdma->clk_ahb);
1507
1508         sdma->regs = ioremap(iores->start, resource_size(iores));
1509         if (!sdma->regs) {
1510                 ret = -ENOMEM;
1511                 goto err_ioremap;
1512         }
1513
1514         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1515         if (ret)
1516                 goto err_request_irq;
1517
1518         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1519         if (!sdma->script_addrs) {
1520                 ret = -ENOMEM;
1521                 goto err_alloc;
1522         }
1523
1524         /* initially no scripts available */
1525         saddr_arr = (s32 *)sdma->script_addrs;
1526         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1527                 saddr_arr[i] = -EINVAL;
1528
1529         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1530         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1531
1532         INIT_LIST_HEAD(&sdma->dma_device.channels);
1533         /* Initialize channel parameters */
1534         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1535                 struct sdma_channel *sdmac = &sdma->channel[i];
1536
1537                 sdmac->sdma = sdma;
1538                 spin_lock_init(&sdmac->lock);
1539
1540                 sdmac->chan.device = &sdma->dma_device;
1541                 dma_cookie_init(&sdmac->chan);
1542                 sdmac->channel = i;
1543
1544                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1545                              (unsigned long) sdmac);
1546                 /*
1547                  * Add the channel to the DMAC list. Do not add channel 0 though
1548                  * because we need it internally in the SDMA driver. This also means
1549                  * that channel 0 in dmaengine counting matches sdma channel 1.
1550                  */
1551                 if (i)
1552                         list_add_tail(&sdmac->chan.device_node,
1553                                         &sdma->dma_device.channels);
1554         }
1555
1556         ret = sdma_init(sdma);
1557         if (ret)
1558                 goto err_init;
1559
1560         if (sdma->drvdata->script_addrs)
1561                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1562         if (pdata && pdata->script_addrs)
1563                 sdma_add_scripts(sdma, pdata->script_addrs);
1564
1565         if (pdata) {
1566                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1567                 if (ret)
1568                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1569         } else {
1570                 /*
1571                  * Because that device tree does not encode ROM script address,
1572                  * the RAM script in firmware is mandatory for device tree
1573                  * probe, otherwise it fails.
1574                  */
1575                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1576                                               &fw_name);
1577                 if (ret)
1578                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1579                 else {
1580                         ret = sdma_get_firmware(sdma, fw_name);
1581                         if (ret)
1582                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1583                 }
1584         }
1585
1586         sdma->dma_device.dev = &pdev->dev;
1587
1588         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1589         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1590         sdma->dma_device.device_tx_status = sdma_tx_status;
1591         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1592         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1593         sdma->dma_device.device_control = sdma_control;
1594         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1595         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1596         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1597
1598         ret = dma_async_device_register(&sdma->dma_device);
1599         if (ret) {
1600                 dev_err(&pdev->dev, "unable to register\n");
1601                 goto err_init;
1602         }
1603
1604         if (np) {
1605                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1606                 if (ret) {
1607                         dev_err(&pdev->dev, "failed to register controller\n");
1608                         goto err_register;
1609                 }
1610         }
1611
1612         dev_info(sdma->dev, "initialized\n");
1613
1614         return 0;
1615
1616 err_register:
1617         dma_async_device_unregister(&sdma->dma_device);
1618 err_init:
1619         kfree(sdma->script_addrs);
1620 err_alloc:
1621         free_irq(irq, sdma);
1622 err_request_irq:
1623         iounmap(sdma->regs);
1624 err_ioremap:
1625 err_clk:
1626         release_mem_region(iores->start, resource_size(iores));
1627 err_request_region:
1628 err_irq:
1629         kfree(sdma);
1630         return ret;
1631 }
1632
1633 static int sdma_remove(struct platform_device *pdev)
1634 {
1635         return -EBUSY;
1636 }
1637
1638 static struct platform_driver sdma_driver = {
1639         .driver         = {
1640                 .name   = "imx-sdma",
1641                 .of_match_table = sdma_dt_ids,
1642         },
1643         .id_table       = sdma_devtypes,
1644         .remove         = sdma_remove,
1645 };
1646
1647 static int __init sdma_module_init(void)
1648 {
1649         return platform_driver_probe(&sdma_driver, sdma_probe);
1650 }
1651 module_init(sdma_module_init);
1652
1653 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1654 MODULE_DESCRIPTION("i.MX SDMA driver");
1655 MODULE_LICENSE("GPL");