Merge tag 'for-linus-20121219' of git://git.infradead.org/linux-mtd
[firefly-linux-kernel-4.4.55.git] / drivers / dma / intel_mid_dma.c
1 /*
2  *  intel_mid_dma.c - Intel Langwell DMA Drivers
3  *
4  *  Copyright (C) 2008-10 Intel Corp
5  *  Author: Vinod Koul <vinod.koul@intel.com>
6  *  The driver design is based on dw_dmac driver
7  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; version 2 of the License.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License along
19  *  with this program; if not, write to the Free Software Foundation, Inc.,
20  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  *
25  */
26 #include <linux/pci.h>
27 #include <linux/interrupt.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/intel_mid_dma.h>
30 #include <linux/module.h>
31
32 #include "dmaengine.h"
33
34 #define MAX_CHAN        4 /*max ch across controllers*/
35 #include "intel_mid_dma_regs.h"
36
37 #define INTEL_MID_DMAC1_ID              0x0814
38 #define INTEL_MID_DMAC2_ID              0x0813
39 #define INTEL_MID_GP_DMAC2_ID           0x0827
40 #define INTEL_MFLD_DMAC1_ID             0x0830
41 #define LNW_PERIPHRAL_MASK_BASE         0xFFAE8008
42 #define LNW_PERIPHRAL_MASK_SIZE         0x10
43 #define LNW_PERIPHRAL_STATUS            0x0
44 #define LNW_PERIPHRAL_MASK              0x8
45
46 struct intel_mid_dma_probe_info {
47         u8 max_chan;
48         u8 ch_base;
49         u16 block_size;
50         u32 pimr_mask;
51 };
52
53 #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
54         ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) {   \
55                 .max_chan = (_max_chan),                        \
56                 .ch_base = (_ch_base),                          \
57                 .block_size = (_block_size),                    \
58                 .pimr_mask = (_pimr_mask),                      \
59         })
60
61 /*****************************************************************************
62 Utility Functions*/
63 /**
64  * get_ch_index -       convert status to channel
65  * @status: status mask
66  * @base: dma ch base value
67  *
68  * Modify the status mask and return the channel index needing
69  * attention (or -1 if neither)
70  */
71 static int get_ch_index(int *status, unsigned int base)
72 {
73         int i;
74         for (i = 0; i < MAX_CHAN; i++) {
75                 if (*status & (1 << (i + base))) {
76                         *status = *status & ~(1 << (i + base));
77                         pr_debug("MDMA: index %d New status %x\n", i, *status);
78                         return i;
79                 }
80         }
81         return -1;
82 }
83
84 /**
85  * get_block_ts -       calculates dma transaction length
86  * @len: dma transfer length
87  * @tx_width: dma transfer src width
88  * @block_size: dma controller max block size
89  *
90  * Based on src width calculate the DMA trsaction length in data items
91  * return data items or FFFF if exceeds max length for block
92  */
93 static int get_block_ts(int len, int tx_width, int block_size)
94 {
95         int byte_width = 0, block_ts = 0;
96
97         switch (tx_width) {
98         case DMA_SLAVE_BUSWIDTH_1_BYTE:
99                 byte_width = 1;
100                 break;
101         case DMA_SLAVE_BUSWIDTH_2_BYTES:
102                 byte_width = 2;
103                 break;
104         case DMA_SLAVE_BUSWIDTH_4_BYTES:
105         default:
106                 byte_width = 4;
107                 break;
108         }
109
110         block_ts = len/byte_width;
111         if (block_ts > block_size)
112                 block_ts = 0xFFFF;
113         return block_ts;
114 }
115
116 /*****************************************************************************
117 DMAC1 interrupt Functions*/
118
119 /**
120  * dmac1_mask_periphral_intr -  mask the periphral interrupt
121  * @mid: dma device for which masking is required
122  *
123  * Masks the DMA periphral interrupt
124  * this is valid for DMAC1 family controllers only
125  * This controller should have periphral mask registers already mapped
126  */
127 static void dmac1_mask_periphral_intr(struct middma_device *mid)
128 {
129         u32 pimr;
130
131         if (mid->pimr_mask) {
132                 pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
133                 pimr |= mid->pimr_mask;
134                 writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
135         }
136         return;
137 }
138
139 /**
140  * dmac1_unmask_periphral_intr -        unmask the periphral interrupt
141  * @midc: dma channel for which masking is required
142  *
143  * UnMasks the DMA periphral interrupt,
144  * this is valid for DMAC1 family controllers only
145  * This controller should have periphral mask registers already mapped
146  */
147 static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
148 {
149         u32 pimr;
150         struct middma_device *mid = to_middma_device(midc->chan.device);
151
152         if (mid->pimr_mask) {
153                 pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
154                 pimr &= ~mid->pimr_mask;
155                 writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
156         }
157         return;
158 }
159
160 /**
161  * enable_dma_interrupt -       enable the periphral interrupt
162  * @midc: dma channel for which enable interrupt is required
163  *
164  * Enable the DMA periphral interrupt,
165  * this is valid for DMAC1 family controllers only
166  * This controller should have periphral mask registers already mapped
167  */
168 static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
169 {
170         dmac1_unmask_periphral_intr(midc);
171
172         /*en ch interrupts*/
173         iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
174         iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
175         return;
176 }
177
178 /**
179  * disable_dma_interrupt -      disable the periphral interrupt
180  * @midc: dma channel for which disable interrupt is required
181  *
182  * Disable the DMA periphral interrupt,
183  * this is valid for DMAC1 family controllers only
184  * This controller should have periphral mask registers already mapped
185  */
186 static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
187 {
188         /*Check LPE PISR, make sure fwd is disabled*/
189         iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
190         iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
191         iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
192         return;
193 }
194
195 /*****************************************************************************
196 DMA channel helper Functions*/
197 /**
198  * mid_desc_get         -       get a descriptor
199  * @midc: dma channel for which descriptor is required
200  *
201  * Obtain a descriptor for the channel. Returns NULL if none are free.
202  * Once the descriptor is returned it is private until put on another
203  * list or freed
204  */
205 static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
206 {
207         struct intel_mid_dma_desc *desc, *_desc;
208         struct intel_mid_dma_desc *ret = NULL;
209
210         spin_lock_bh(&midc->lock);
211         list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
212                 if (async_tx_test_ack(&desc->txd)) {
213                         list_del(&desc->desc_node);
214                         ret = desc;
215                         break;
216                 }
217         }
218         spin_unlock_bh(&midc->lock);
219         return ret;
220 }
221
222 /**
223  * mid_desc_put         -       put a descriptor
224  * @midc: dma channel for which descriptor is required
225  * @desc: descriptor to put
226  *
227  * Return a descriptor from lwn_desc_get back to the free pool
228  */
229 static void midc_desc_put(struct intel_mid_dma_chan *midc,
230                         struct intel_mid_dma_desc *desc)
231 {
232         if (desc) {
233                 spin_lock_bh(&midc->lock);
234                 list_add_tail(&desc->desc_node, &midc->free_list);
235                 spin_unlock_bh(&midc->lock);
236         }
237 }
238 /**
239  * midc_dostart         -               begin a DMA transaction
240  * @midc: channel for which txn is to be started
241  * @first: first descriptor of series
242  *
243  * Load a transaction into the engine. This must be called with midc->lock
244  * held and bh disabled.
245  */
246 static void midc_dostart(struct intel_mid_dma_chan *midc,
247                         struct intel_mid_dma_desc *first)
248 {
249         struct middma_device *mid = to_middma_device(midc->chan.device);
250
251         /*  channel is idle */
252         if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
253                 /*error*/
254                 pr_err("ERR_MDMA: channel is busy in start\n");
255                 /* The tasklet will hopefully advance the queue... */
256                 return;
257         }
258         midc->busy = true;
259         /*write registers and en*/
260         iowrite32(first->sar, midc->ch_regs + SAR);
261         iowrite32(first->dar, midc->ch_regs + DAR);
262         iowrite32(first->lli_phys, midc->ch_regs + LLP);
263         iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
264         iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
265         iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
266         iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
267         pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
268                 (int)first->sar, (int)first->dar, first->cfg_hi,
269                 first->cfg_lo, first->ctl_hi, first->ctl_lo);
270         first->status = DMA_IN_PROGRESS;
271
272         iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
273 }
274
275 /**
276  * midc_descriptor_complete     -       process completed descriptor
277  * @midc: channel owning the descriptor
278  * @desc: the descriptor itself
279  *
280  * Process a completed descriptor and perform any callbacks upon
281  * the completion. The completion handling drops the lock during the
282  * callbacks but must be called with the lock held.
283  */
284 static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
285                 struct intel_mid_dma_desc *desc)
286                 __releases(&midc->lock) __acquires(&midc->lock)
287 {
288         struct dma_async_tx_descriptor  *txd = &desc->txd;
289         dma_async_tx_callback callback_txd = NULL;
290         struct intel_mid_dma_lli        *llitem;
291         void *param_txd = NULL;
292
293         dma_cookie_complete(txd);
294         callback_txd = txd->callback;
295         param_txd = txd->callback_param;
296
297         if (desc->lli != NULL) {
298                 /*clear the DONE bit of completed LLI in memory*/
299                 llitem = desc->lli + desc->current_lli;
300                 llitem->ctl_hi &= CLEAR_DONE;
301                 if (desc->current_lli < desc->lli_length-1)
302                         (desc->current_lli)++;
303                 else
304                         desc->current_lli = 0;
305         }
306         spin_unlock_bh(&midc->lock);
307         if (callback_txd) {
308                 pr_debug("MDMA: TXD callback set ... calling\n");
309                 callback_txd(param_txd);
310         }
311         if (midc->raw_tfr) {
312                 desc->status = DMA_SUCCESS;
313                 if (desc->lli != NULL) {
314                         pci_pool_free(desc->lli_pool, desc->lli,
315                                                 desc->lli_phys);
316                         pci_pool_destroy(desc->lli_pool);
317                         desc->lli = NULL;
318                 }
319                 list_move(&desc->desc_node, &midc->free_list);
320                 midc->busy = false;
321         }
322         spin_lock_bh(&midc->lock);
323
324 }
325 /**
326  * midc_scan_descriptors -              check the descriptors in channel
327  *                                      mark completed when tx is completete
328  * @mid: device
329  * @midc: channel to scan
330  *
331  * Walk the descriptor chain for the device and process any entries
332  * that are complete.
333  */
334 static void midc_scan_descriptors(struct middma_device *mid,
335                                 struct intel_mid_dma_chan *midc)
336 {
337         struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
338
339         /*tx is complete*/
340         list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
341                 if (desc->status == DMA_IN_PROGRESS)
342                         midc_descriptor_complete(midc, desc);
343         }
344         return;
345         }
346 /**
347  * midc_lli_fill_sg -           Helper function to convert
348  *                              SG list to Linked List Items.
349  *@midc: Channel
350  *@desc: DMA descriptor
351  *@sglist: Pointer to SG list
352  *@sglen: SG list length
353  *@flags: DMA transaction flags
354  *
355  * Walk through the SG list and convert the SG list into Linked
356  * List Items (LLI).
357  */
358 static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
359                                 struct intel_mid_dma_desc *desc,
360                                 struct scatterlist *sglist,
361                                 unsigned int sglen,
362                                 unsigned int flags)
363 {
364         struct intel_mid_dma_slave *mids;
365         struct scatterlist  *sg;
366         dma_addr_t lli_next, sg_phy_addr;
367         struct intel_mid_dma_lli *lli_bloc_desc;
368         union intel_mid_dma_ctl_lo ctl_lo;
369         union intel_mid_dma_ctl_hi ctl_hi;
370         int i;
371
372         pr_debug("MDMA: Entered midc_lli_fill_sg\n");
373         mids = midc->mid_slave;
374
375         lli_bloc_desc = desc->lli;
376         lli_next = desc->lli_phys;
377
378         ctl_lo.ctl_lo = desc->ctl_lo;
379         ctl_hi.ctl_hi = desc->ctl_hi;
380         for_each_sg(sglist, sg, sglen, i) {
381                 /*Populate CTL_LOW and LLI values*/
382                 if (i != sglen - 1) {
383                         lli_next = lli_next +
384                                 sizeof(struct intel_mid_dma_lli);
385                 } else {
386                 /*Check for circular list, otherwise terminate LLI to ZERO*/
387                         if (flags & DMA_PREP_CIRCULAR_LIST) {
388                                 pr_debug("MDMA: LLI is configured in circular mode\n");
389                                 lli_next = desc->lli_phys;
390                         } else {
391                                 lli_next = 0;
392                                 ctl_lo.ctlx.llp_dst_en = 0;
393                                 ctl_lo.ctlx.llp_src_en = 0;
394                         }
395                 }
396                 /*Populate CTL_HI values*/
397                 ctl_hi.ctlx.block_ts = get_block_ts(sg_dma_len(sg),
398                                                         desc->width,
399                                                         midc->dma->block_size);
400                 /*Populate SAR and DAR values*/
401                 sg_phy_addr = sg_dma_address(sg);
402                 if (desc->dirn ==  DMA_MEM_TO_DEV) {
403                         lli_bloc_desc->sar  = sg_phy_addr;
404                         lli_bloc_desc->dar  = mids->dma_slave.dst_addr;
405                 } else if (desc->dirn ==  DMA_DEV_TO_MEM) {
406                         lli_bloc_desc->sar  = mids->dma_slave.src_addr;
407                         lli_bloc_desc->dar  = sg_phy_addr;
408                 }
409                 /*Copy values into block descriptor in system memroy*/
410                 lli_bloc_desc->llp = lli_next;
411                 lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
412                 lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
413
414                 lli_bloc_desc++;
415         }
416         /*Copy very first LLI values to descriptor*/
417         desc->ctl_lo = desc->lli->ctl_lo;
418         desc->ctl_hi = desc->lli->ctl_hi;
419         desc->sar = desc->lli->sar;
420         desc->dar = desc->lli->dar;
421
422         return 0;
423 }
424 /*****************************************************************************
425 DMA engine callback Functions*/
426 /**
427  * intel_mid_dma_tx_submit -    callback to submit DMA transaction
428  * @tx: dma engine descriptor
429  *
430  * Submit the DMA transaction for this descriptor, start if ch idle
431  */
432 static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
433 {
434         struct intel_mid_dma_desc       *desc = to_intel_mid_dma_desc(tx);
435         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(tx->chan);
436         dma_cookie_t            cookie;
437
438         spin_lock_bh(&midc->lock);
439         cookie = dma_cookie_assign(tx);
440
441         if (list_empty(&midc->active_list))
442                 list_add_tail(&desc->desc_node, &midc->active_list);
443         else
444                 list_add_tail(&desc->desc_node, &midc->queue);
445
446         midc_dostart(midc, desc);
447         spin_unlock_bh(&midc->lock);
448
449         return cookie;
450 }
451
452 /**
453  * intel_mid_dma_issue_pending -        callback to issue pending txn
454  * @chan: chan where pending trascation needs to be checked and submitted
455  *
456  * Call for scan to issue pending descriptors
457  */
458 static void intel_mid_dma_issue_pending(struct dma_chan *chan)
459 {
460         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
461
462         spin_lock_bh(&midc->lock);
463         if (!list_empty(&midc->queue))
464                 midc_scan_descriptors(to_middma_device(chan->device), midc);
465         spin_unlock_bh(&midc->lock);
466 }
467
468 /**
469  * intel_mid_dma_tx_status -    Return status of txn
470  * @chan: chan for where status needs to be checked
471  * @cookie: cookie for txn
472  * @txstate: DMA txn state
473  *
474  * Return status of DMA txn
475  */
476 static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
477                                                 dma_cookie_t cookie,
478                                                 struct dma_tx_state *txstate)
479 {
480         struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
481         enum dma_status ret;
482
483         ret = dma_cookie_status(chan, cookie, txstate);
484         if (ret != DMA_SUCCESS) {
485                 spin_lock_bh(&midc->lock);
486                 midc_scan_descriptors(to_middma_device(chan->device), midc);
487                 spin_unlock_bh(&midc->lock);
488
489                 ret = dma_cookie_status(chan, cookie, txstate);
490         }
491
492         return ret;
493 }
494
495 static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
496 {
497         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
498         struct dma_slave_config  *slave = (struct dma_slave_config *)arg;
499         struct intel_mid_dma_slave *mid_slave;
500
501         BUG_ON(!midc);
502         BUG_ON(!slave);
503         pr_debug("MDMA: slave control called\n");
504
505         mid_slave = to_intel_mid_dma_slave(slave);
506
507         BUG_ON(!mid_slave);
508
509         midc->mid_slave = mid_slave;
510         return 0;
511 }
512 /**
513  * intel_mid_dma_device_control -       DMA device control
514  * @chan: chan for DMA control
515  * @cmd: control cmd
516  * @arg: cmd arg value
517  *
518  * Perform DMA control command
519  */
520 static int intel_mid_dma_device_control(struct dma_chan *chan,
521                         enum dma_ctrl_cmd cmd, unsigned long arg)
522 {
523         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
524         struct middma_device    *mid = to_middma_device(chan->device);
525         struct intel_mid_dma_desc       *desc, *_desc;
526         union intel_mid_dma_cfg_lo cfg_lo;
527
528         if (cmd == DMA_SLAVE_CONFIG)
529                 return dma_slave_control(chan, arg);
530
531         if (cmd != DMA_TERMINATE_ALL)
532                 return -ENXIO;
533
534         spin_lock_bh(&midc->lock);
535         if (midc->busy == false) {
536                 spin_unlock_bh(&midc->lock);
537                 return 0;
538         }
539         /*Suspend and disable the channel*/
540         cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
541         cfg_lo.cfgx.ch_susp = 1;
542         iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
543         iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
544         midc->busy = false;
545         /* Disable interrupts */
546         disable_dma_interrupt(midc);
547         midc->descs_allocated = 0;
548
549         spin_unlock_bh(&midc->lock);
550         list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
551                 if (desc->lli != NULL) {
552                         pci_pool_free(desc->lli_pool, desc->lli,
553                                                 desc->lli_phys);
554                         pci_pool_destroy(desc->lli_pool);
555                         desc->lli = NULL;
556                 }
557                 list_move(&desc->desc_node, &midc->free_list);
558         }
559         return 0;
560 }
561
562
563 /**
564  * intel_mid_dma_prep_memcpy -  Prep memcpy txn
565  * @chan: chan for DMA transfer
566  * @dest: destn address
567  * @src: src address
568  * @len: DMA transfer len
569  * @flags: DMA flags
570  *
571  * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
572  * The periphral txn details should be filled in slave structure properly
573  * Returns the descriptor for this txn
574  */
575 static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
576                         struct dma_chan *chan, dma_addr_t dest,
577                         dma_addr_t src, size_t len, unsigned long flags)
578 {
579         struct intel_mid_dma_chan *midc;
580         struct intel_mid_dma_desc *desc = NULL;
581         struct intel_mid_dma_slave *mids;
582         union intel_mid_dma_ctl_lo ctl_lo;
583         union intel_mid_dma_ctl_hi ctl_hi;
584         union intel_mid_dma_cfg_lo cfg_lo;
585         union intel_mid_dma_cfg_hi cfg_hi;
586         enum dma_slave_buswidth width;
587
588         pr_debug("MDMA: Prep for memcpy\n");
589         BUG_ON(!chan);
590         if (!len)
591                 return NULL;
592
593         midc = to_intel_mid_dma_chan(chan);
594         BUG_ON(!midc);
595
596         mids = midc->mid_slave;
597         BUG_ON(!mids);
598
599         pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
600                                 midc->dma->pci_id, midc->ch_id, len);
601         pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
602                         mids->cfg_mode, mids->dma_slave.direction,
603                         mids->hs_mode, mids->dma_slave.src_addr_width);
604
605         /*calculate CFG_LO*/
606         if (mids->hs_mode == LNW_DMA_SW_HS) {
607                 cfg_lo.cfg_lo = 0;
608                 cfg_lo.cfgx.hs_sel_dst = 1;
609                 cfg_lo.cfgx.hs_sel_src = 1;
610         } else if (mids->hs_mode == LNW_DMA_HW_HS)
611                 cfg_lo.cfg_lo = 0x00000;
612
613         /*calculate CFG_HI*/
614         if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
615                 /*SW HS only*/
616                 cfg_hi.cfg_hi = 0;
617         } else {
618                 cfg_hi.cfg_hi = 0;
619                 if (midc->dma->pimr_mask) {
620                         cfg_hi.cfgx.protctl = 0x0; /*default value*/
621                         cfg_hi.cfgx.fifo_mode = 1;
622                         if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
623                                 cfg_hi.cfgx.src_per = 0;
624                                 if (mids->device_instance == 0)
625                                         cfg_hi.cfgx.dst_per = 3;
626                                 if (mids->device_instance == 1)
627                                         cfg_hi.cfgx.dst_per = 1;
628                         } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
629                                 if (mids->device_instance == 0)
630                                         cfg_hi.cfgx.src_per = 2;
631                                 if (mids->device_instance == 1)
632                                         cfg_hi.cfgx.src_per = 0;
633                                 cfg_hi.cfgx.dst_per = 0;
634                         }
635                 } else {
636                         cfg_hi.cfgx.protctl = 0x1; /*default value*/
637                         cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
638                                         midc->ch_id - midc->dma->chan_base;
639                 }
640         }
641
642         /*calculate CTL_HI*/
643         ctl_hi.ctlx.reser = 0;
644         ctl_hi.ctlx.done  = 0;
645         width = mids->dma_slave.src_addr_width;
646
647         ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
648         pr_debug("MDMA:calc len %d for block size %d\n",
649                                 ctl_hi.ctlx.block_ts, midc->dma->block_size);
650         /*calculate CTL_LO*/
651         ctl_lo.ctl_lo = 0;
652         ctl_lo.ctlx.int_en = 1;
653         ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
654         ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
655
656         /*
657          * Here we need some translation from "enum dma_slave_buswidth"
658          * to the format for our dma controller
659          *              standard        intel_mid_dmac's format
660          *               1 Byte                 0b000
661          *               2 Bytes                0b001
662          *               4 Bytes                0b010
663          */
664         ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
665         ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
666
667         if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
668                 ctl_lo.ctlx.tt_fc = 0;
669                 ctl_lo.ctlx.sinc = 0;
670                 ctl_lo.ctlx.dinc = 0;
671         } else {
672                 if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
673                         ctl_lo.ctlx.sinc = 0;
674                         ctl_lo.ctlx.dinc = 2;
675                         ctl_lo.ctlx.tt_fc = 1;
676                 } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
677                         ctl_lo.ctlx.sinc = 2;
678                         ctl_lo.ctlx.dinc = 0;
679                         ctl_lo.ctlx.tt_fc = 2;
680                 }
681         }
682
683         pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
684                 ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
685
686         enable_dma_interrupt(midc);
687
688         desc = midc_desc_get(midc);
689         if (desc == NULL)
690                 goto err_desc_get;
691         desc->sar = src;
692         desc->dar = dest ;
693         desc->len = len;
694         desc->cfg_hi = cfg_hi.cfg_hi;
695         desc->cfg_lo = cfg_lo.cfg_lo;
696         desc->ctl_lo = ctl_lo.ctl_lo;
697         desc->ctl_hi = ctl_hi.ctl_hi;
698         desc->width = width;
699         desc->dirn = mids->dma_slave.direction;
700         desc->lli_phys = 0;
701         desc->lli = NULL;
702         desc->lli_pool = NULL;
703         return &desc->txd;
704
705 err_desc_get:
706         pr_err("ERR_MDMA: Failed to get desc\n");
707         midc_desc_put(midc, desc);
708         return NULL;
709 }
710 /**
711  * intel_mid_dma_prep_slave_sg -        Prep slave sg txn
712  * @chan: chan for DMA transfer
713  * @sgl: scatter gather list
714  * @sg_len: length of sg txn
715  * @direction: DMA transfer dirtn
716  * @flags: DMA flags
717  * @context: transfer context (ignored)
718  *
719  * Prepares LLI based periphral transfer
720  */
721 static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
722                         struct dma_chan *chan, struct scatterlist *sgl,
723                         unsigned int sg_len, enum dma_transfer_direction direction,
724                         unsigned long flags, void *context)
725 {
726         struct intel_mid_dma_chan *midc = NULL;
727         struct intel_mid_dma_slave *mids = NULL;
728         struct intel_mid_dma_desc *desc = NULL;
729         struct dma_async_tx_descriptor *txd = NULL;
730         union intel_mid_dma_ctl_lo ctl_lo;
731
732         pr_debug("MDMA: Prep for slave SG\n");
733
734         if (!sg_len) {
735                 pr_err("MDMA: Invalid SG length\n");
736                 return NULL;
737         }
738         midc = to_intel_mid_dma_chan(chan);
739         BUG_ON(!midc);
740
741         mids = midc->mid_slave;
742         BUG_ON(!mids);
743
744         if (!midc->dma->pimr_mask) {
745                 /* We can still handle sg list with only one item */
746                 if (sg_len == 1) {
747                         txd = intel_mid_dma_prep_memcpy(chan,
748                                                 mids->dma_slave.dst_addr,
749                                                 mids->dma_slave.src_addr,
750                                                 sg_dma_len(sgl),
751                                                 flags);
752                         return txd;
753                 } else {
754                         pr_warn("MDMA: SG list is not supported by this controller\n");
755                         return  NULL;
756                 }
757         }
758
759         pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
760                         sg_len, direction, flags);
761
762         txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sg_dma_len(sgl), flags);
763         if (NULL == txd) {
764                 pr_err("MDMA: Prep memcpy failed\n");
765                 return NULL;
766         }
767
768         desc = to_intel_mid_dma_desc(txd);
769         desc->dirn = direction;
770         ctl_lo.ctl_lo = desc->ctl_lo;
771         ctl_lo.ctlx.llp_dst_en = 1;
772         ctl_lo.ctlx.llp_src_en = 1;
773         desc->ctl_lo = ctl_lo.ctl_lo;
774         desc->lli_length = sg_len;
775         desc->current_lli = 0;
776         /* DMA coherent memory pool for LLI descriptors*/
777         desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
778                                 midc->dma->pdev,
779                                 (sizeof(struct intel_mid_dma_lli)*sg_len),
780                                 32, 0);
781         if (NULL == desc->lli_pool) {
782                 pr_err("MID_DMA:LLI pool create failed\n");
783                 return NULL;
784         }
785
786         desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
787         if (!desc->lli) {
788                 pr_err("MID_DMA: LLI alloc failed\n");
789                 pci_pool_destroy(desc->lli_pool);
790                 return NULL;
791         }
792
793         midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
794         if (flags & DMA_PREP_INTERRUPT) {
795                 iowrite32(UNMASK_INTR_REG(midc->ch_id),
796                                 midc->dma_base + MASK_BLOCK);
797                 pr_debug("MDMA:Enabled Block interrupt\n");
798         }
799         return &desc->txd;
800 }
801
802 /**
803  * intel_mid_dma_free_chan_resources -  Frees dma resources
804  * @chan: chan requiring attention
805  *
806  * Frees the allocated resources on this DMA chan
807  */
808 static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
809 {
810         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
811         struct middma_device    *mid = to_middma_device(chan->device);
812         struct intel_mid_dma_desc       *desc, *_desc;
813
814         if (true == midc->busy) {
815                 /*trying to free ch in use!!!!!*/
816                 pr_err("ERR_MDMA: trying to free ch in use\n");
817         }
818         spin_lock_bh(&midc->lock);
819         midc->descs_allocated = 0;
820         list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
821                 list_del(&desc->desc_node);
822                 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
823         }
824         list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
825                 list_del(&desc->desc_node);
826                 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
827         }
828         list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
829                 list_del(&desc->desc_node);
830                 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
831         }
832         spin_unlock_bh(&midc->lock);
833         midc->in_use = false;
834         midc->busy = false;
835         /* Disable CH interrupts */
836         iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
837         iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
838         pm_runtime_put(&mid->pdev->dev);
839 }
840
841 /**
842  * intel_mid_dma_alloc_chan_resources - Allocate dma resources
843  * @chan: chan requiring attention
844  *
845  * Allocates DMA resources on this chan
846  * Return the descriptors allocated
847  */
848 static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
849 {
850         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
851         struct middma_device    *mid = to_middma_device(chan->device);
852         struct intel_mid_dma_desc       *desc;
853         dma_addr_t              phys;
854         int     i = 0;
855
856         pm_runtime_get_sync(&mid->pdev->dev);
857
858         if (mid->state == SUSPENDED) {
859                 if (dma_resume(&mid->pdev->dev)) {
860                         pr_err("ERR_MDMA: resume failed");
861                         return -EFAULT;
862                 }
863         }
864
865         /* ASSERT:  channel is idle */
866         if (test_ch_en(mid->dma_base, midc->ch_id)) {
867                 /*ch is not idle*/
868                 pr_err("ERR_MDMA: ch not idle\n");
869                 pm_runtime_put(&mid->pdev->dev);
870                 return -EIO;
871         }
872         dma_cookie_init(chan);
873
874         spin_lock_bh(&midc->lock);
875         while (midc->descs_allocated < DESCS_PER_CHANNEL) {
876                 spin_unlock_bh(&midc->lock);
877                 desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
878                 if (!desc) {
879                         pr_err("ERR_MDMA: desc failed\n");
880                         pm_runtime_put(&mid->pdev->dev);
881                         return -ENOMEM;
882                         /*check*/
883                 }
884                 dma_async_tx_descriptor_init(&desc->txd, chan);
885                 desc->txd.tx_submit = intel_mid_dma_tx_submit;
886                 desc->txd.flags = DMA_CTRL_ACK;
887                 desc->txd.phys = phys;
888                 spin_lock_bh(&midc->lock);
889                 i = ++midc->descs_allocated;
890                 list_add_tail(&desc->desc_node, &midc->free_list);
891         }
892         spin_unlock_bh(&midc->lock);
893         midc->in_use = true;
894         midc->busy = false;
895         pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
896         return i;
897 }
898
899 /**
900  * midc_handle_error -  Handle DMA txn error
901  * @mid: controller where error occurred
902  * @midc: chan where error occurred
903  *
904  * Scan the descriptor for error
905  */
906 static void midc_handle_error(struct middma_device *mid,
907                 struct intel_mid_dma_chan *midc)
908 {
909         midc_scan_descriptors(mid, midc);
910 }
911
912 /**
913  * dma_tasklet -        DMA interrupt tasklet
914  * @data: tasklet arg (the controller structure)
915  *
916  * Scan the controller for interrupts for completion/error
917  * Clear the interrupt and call for handling completion/error
918  */
919 static void dma_tasklet(unsigned long data)
920 {
921         struct middma_device *mid = NULL;
922         struct intel_mid_dma_chan *midc = NULL;
923         u32 status, raw_tfr, raw_block;
924         int i;
925
926         mid = (struct middma_device *)data;
927         if (mid == NULL) {
928                 pr_err("ERR_MDMA: tasklet Null param\n");
929                 return;
930         }
931         pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
932         raw_tfr = ioread32(mid->dma_base + RAW_TFR);
933         raw_block = ioread32(mid->dma_base + RAW_BLOCK);
934         status = raw_tfr | raw_block;
935         status &= mid->intr_mask;
936         while (status) {
937                 /*txn interrupt*/
938                 i = get_ch_index(&status, mid->chan_base);
939                 if (i < 0) {
940                         pr_err("ERR_MDMA:Invalid ch index %x\n", i);
941                         return;
942                 }
943                 midc = &mid->ch[i];
944                 if (midc == NULL) {
945                         pr_err("ERR_MDMA:Null param midc\n");
946                         return;
947                 }
948                 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
949                                 status, midc->ch_id, i);
950                 midc->raw_tfr = raw_tfr;
951                 midc->raw_block = raw_block;
952                 spin_lock_bh(&midc->lock);
953                 /*clearing this interrupts first*/
954                 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
955                 if (raw_block) {
956                         iowrite32((1 << midc->ch_id),
957                                 mid->dma_base + CLEAR_BLOCK);
958                 }
959                 midc_scan_descriptors(mid, midc);
960                 pr_debug("MDMA:Scan of desc... complete, unmasking\n");
961                 iowrite32(UNMASK_INTR_REG(midc->ch_id),
962                                 mid->dma_base + MASK_TFR);
963                 if (raw_block) {
964                         iowrite32(UNMASK_INTR_REG(midc->ch_id),
965                                 mid->dma_base + MASK_BLOCK);
966                 }
967                 spin_unlock_bh(&midc->lock);
968         }
969
970         status = ioread32(mid->dma_base + RAW_ERR);
971         status &= mid->intr_mask;
972         while (status) {
973                 /*err interrupt*/
974                 i = get_ch_index(&status, mid->chan_base);
975                 if (i < 0) {
976                         pr_err("ERR_MDMA:Invalid ch index %x\n", i);
977                         return;
978                 }
979                 midc = &mid->ch[i];
980                 if (midc == NULL) {
981                         pr_err("ERR_MDMA:Null param midc\n");
982                         return;
983                 }
984                 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
985                                 status, midc->ch_id, i);
986
987                 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
988                 spin_lock_bh(&midc->lock);
989                 midc_handle_error(mid, midc);
990                 iowrite32(UNMASK_INTR_REG(midc->ch_id),
991                                 mid->dma_base + MASK_ERR);
992                 spin_unlock_bh(&midc->lock);
993         }
994         pr_debug("MDMA:Exiting takslet...\n");
995         return;
996 }
997
998 static void dma_tasklet1(unsigned long data)
999 {
1000         pr_debug("MDMA:in takslet1...\n");
1001         return dma_tasklet(data);
1002 }
1003
1004 static void dma_tasklet2(unsigned long data)
1005 {
1006         pr_debug("MDMA:in takslet2...\n");
1007         return dma_tasklet(data);
1008 }
1009
1010 /**
1011  * intel_mid_dma_interrupt -    DMA ISR
1012  * @irq: IRQ where interrupt occurred
1013  * @data: ISR cllback data (the controller structure)
1014  *
1015  * See if this is our interrupt if so then schedule the tasklet
1016  * otherwise ignore
1017  */
1018 static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1019 {
1020         struct middma_device *mid = data;
1021         u32 tfr_status, err_status;
1022         int call_tasklet = 0;
1023
1024         tfr_status = ioread32(mid->dma_base + RAW_TFR);
1025         err_status = ioread32(mid->dma_base + RAW_ERR);
1026         if (!tfr_status && !err_status)
1027                 return IRQ_NONE;
1028
1029         /*DMA Interrupt*/
1030         pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1031         pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1032         tfr_status &= mid->intr_mask;
1033         if (tfr_status) {
1034                 /*need to disable intr*/
1035                 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1036                 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1037                 pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1038                 call_tasklet = 1;
1039         }
1040         err_status &= mid->intr_mask;
1041         if (err_status) {
1042                 iowrite32((err_status << INT_MASK_WE),
1043                           mid->dma_base + MASK_ERR);
1044                 call_tasklet = 1;
1045         }
1046         if (call_tasklet)
1047                 tasklet_schedule(&mid->tasklet);
1048
1049         return IRQ_HANDLED;
1050 }
1051
1052 static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1053 {
1054         return intel_mid_dma_interrupt(irq, data);
1055 }
1056
1057 static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1058 {
1059         return intel_mid_dma_interrupt(irq, data);
1060 }
1061
1062 /**
1063  * mid_setup_dma -      Setup the DMA controller
1064  * @pdev: Controller PCI device structure
1065  *
1066  * Initialize the DMA controller, channels, registers with DMA engine,
1067  * ISR. Initialize DMA controller channels.
1068  */
1069 static int mid_setup_dma(struct pci_dev *pdev)
1070 {
1071         struct middma_device *dma = pci_get_drvdata(pdev);
1072         int err, i;
1073
1074         /* DMA coherent memory pool for DMA descriptor allocations */
1075         dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1076                                         sizeof(struct intel_mid_dma_desc),
1077                                         32, 0);
1078         if (NULL == dma->dma_pool) {
1079                 pr_err("ERR_MDMA:pci_pool_create failed\n");
1080                 err = -ENOMEM;
1081                 goto err_dma_pool;
1082         }
1083
1084         INIT_LIST_HEAD(&dma->common.channels);
1085         dma->pci_id = pdev->device;
1086         if (dma->pimr_mask) {
1087                 dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1088                                         LNW_PERIPHRAL_MASK_SIZE);
1089                 if (dma->mask_reg == NULL) {
1090                         pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1091                         err = -ENOMEM;
1092                         goto err_ioremap;
1093                 }
1094         } else
1095                 dma->mask_reg = NULL;
1096
1097         pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1098         /*init CH structures*/
1099         dma->intr_mask = 0;
1100         dma->state = RUNNING;
1101         for (i = 0; i < dma->max_chan; i++) {
1102                 struct intel_mid_dma_chan *midch = &dma->ch[i];
1103
1104                 midch->chan.device = &dma->common;
1105                 dma_cookie_init(&midch->chan);
1106                 midch->ch_id = dma->chan_base + i;
1107                 pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1108
1109                 midch->dma_base = dma->dma_base;
1110                 midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1111                 midch->dma = dma;
1112                 dma->intr_mask |= 1 << (dma->chan_base + i);
1113                 spin_lock_init(&midch->lock);
1114
1115                 INIT_LIST_HEAD(&midch->active_list);
1116                 INIT_LIST_HEAD(&midch->queue);
1117                 INIT_LIST_HEAD(&midch->free_list);
1118                 /*mask interrupts*/
1119                 iowrite32(MASK_INTR_REG(midch->ch_id),
1120                         dma->dma_base + MASK_BLOCK);
1121                 iowrite32(MASK_INTR_REG(midch->ch_id),
1122                         dma->dma_base + MASK_SRC_TRAN);
1123                 iowrite32(MASK_INTR_REG(midch->ch_id),
1124                         dma->dma_base + MASK_DST_TRAN);
1125                 iowrite32(MASK_INTR_REG(midch->ch_id),
1126                         dma->dma_base + MASK_ERR);
1127                 iowrite32(MASK_INTR_REG(midch->ch_id),
1128                         dma->dma_base + MASK_TFR);
1129
1130                 disable_dma_interrupt(midch);
1131                 list_add_tail(&midch->chan.device_node, &dma->common.channels);
1132         }
1133         pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1134
1135         /*init dma structure*/
1136         dma_cap_zero(dma->common.cap_mask);
1137         dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1138         dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1139         dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1140         dma->common.dev = &pdev->dev;
1141
1142         dma->common.device_alloc_chan_resources =
1143                                         intel_mid_dma_alloc_chan_resources;
1144         dma->common.device_free_chan_resources =
1145                                         intel_mid_dma_free_chan_resources;
1146
1147         dma->common.device_tx_status = intel_mid_dma_tx_status;
1148         dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1149         dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1150         dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1151         dma->common.device_control = intel_mid_dma_device_control;
1152
1153         /*enable dma cntrl*/
1154         iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1155
1156         /*register irq */
1157         if (dma->pimr_mask) {
1158                 pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1159                 err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1160                         IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1161                 if (0 != err)
1162                         goto err_irq;
1163         } else {
1164                 dma->intr_mask = 0x03;
1165                 pr_debug("MDMA:Requesting irq for DMAC2\n");
1166                 err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1167                         IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1168                 if (0 != err)
1169                         goto err_irq;
1170         }
1171         /*register device w/ engine*/
1172         err = dma_async_device_register(&dma->common);
1173         if (0 != err) {
1174                 pr_err("ERR_MDMA:device_register failed: %d\n", err);
1175                 goto err_engine;
1176         }
1177         if (dma->pimr_mask) {
1178                 pr_debug("setting up tasklet1 for DMAC1\n");
1179                 tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1180         } else {
1181                 pr_debug("setting up tasklet2 for DMAC2\n");
1182                 tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1183         }
1184         return 0;
1185
1186 err_engine:
1187         free_irq(pdev->irq, dma);
1188 err_irq:
1189         if (dma->mask_reg)
1190                 iounmap(dma->mask_reg);
1191 err_ioremap:
1192         pci_pool_destroy(dma->dma_pool);
1193 err_dma_pool:
1194         pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1195         return err;
1196
1197 }
1198
1199 /**
1200  * middma_shutdown -    Shutdown the DMA controller
1201  * @pdev: Controller PCI device structure
1202  *
1203  * Called by remove
1204  * Unregister DMa controller, clear all structures and free interrupt
1205  */
1206 static void middma_shutdown(struct pci_dev *pdev)
1207 {
1208         struct middma_device *device = pci_get_drvdata(pdev);
1209
1210         dma_async_device_unregister(&device->common);
1211         pci_pool_destroy(device->dma_pool);
1212         if (device->mask_reg)
1213                 iounmap(device->mask_reg);
1214         if (device->dma_base)
1215                 iounmap(device->dma_base);
1216         free_irq(pdev->irq, device);
1217         return;
1218 }
1219
1220 /**
1221  * intel_mid_dma_probe -        PCI Probe
1222  * @pdev: Controller PCI device structure
1223  * @id: pci device id structure
1224  *
1225  * Initialize the PCI device, map BARs, query driver data.
1226  * Call setup_dma to complete contoller and chan initilzation
1227  */
1228 static int intel_mid_dma_probe(struct pci_dev *pdev,
1229                                         const struct pci_device_id *id)
1230 {
1231         struct middma_device *device;
1232         u32 base_addr, bar_size;
1233         struct intel_mid_dma_probe_info *info;
1234         int err;
1235
1236         pr_debug("MDMA: probe for %x\n", pdev->device);
1237         info = (void *)id->driver_data;
1238         pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1239                                 info->max_chan, info->ch_base,
1240                                 info->block_size, info->pimr_mask);
1241
1242         err = pci_enable_device(pdev);
1243         if (err)
1244                 goto err_enable_device;
1245
1246         err = pci_request_regions(pdev, "intel_mid_dmac");
1247         if (err)
1248                 goto err_request_regions;
1249
1250         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1251         if (err)
1252                 goto err_set_dma_mask;
1253
1254         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1255         if (err)
1256                 goto err_set_dma_mask;
1257
1258         device = kzalloc(sizeof(*device), GFP_KERNEL);
1259         if (!device) {
1260                 pr_err("ERR_MDMA:kzalloc failed probe\n");
1261                 err = -ENOMEM;
1262                 goto err_kzalloc;
1263         }
1264         device->pdev = pci_dev_get(pdev);
1265
1266         base_addr = pci_resource_start(pdev, 0);
1267         bar_size  = pci_resource_len(pdev, 0);
1268         device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1269         if (!device->dma_base) {
1270                 pr_err("ERR_MDMA:ioremap failed\n");
1271                 err = -ENOMEM;
1272                 goto err_ioremap;
1273         }
1274         pci_set_drvdata(pdev, device);
1275         pci_set_master(pdev);
1276         device->max_chan = info->max_chan;
1277         device->chan_base = info->ch_base;
1278         device->block_size = info->block_size;
1279         device->pimr_mask = info->pimr_mask;
1280
1281         err = mid_setup_dma(pdev);
1282         if (err)
1283                 goto err_dma;
1284
1285         pm_runtime_put_noidle(&pdev->dev);
1286         pm_runtime_allow(&pdev->dev);
1287         return 0;
1288
1289 err_dma:
1290         iounmap(device->dma_base);
1291 err_ioremap:
1292         pci_dev_put(pdev);
1293         kfree(device);
1294 err_kzalloc:
1295 err_set_dma_mask:
1296         pci_release_regions(pdev);
1297         pci_disable_device(pdev);
1298 err_request_regions:
1299 err_enable_device:
1300         pr_err("ERR_MDMA:Probe failed %d\n", err);
1301         return err;
1302 }
1303
1304 /**
1305  * intel_mid_dma_remove -       PCI remove
1306  * @pdev: Controller PCI device structure
1307  *
1308  * Free up all resources and data
1309  * Call shutdown_dma to complete contoller and chan cleanup
1310  */
1311 static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1312 {
1313         struct middma_device *device = pci_get_drvdata(pdev);
1314
1315         pm_runtime_get_noresume(&pdev->dev);
1316         pm_runtime_forbid(&pdev->dev);
1317         middma_shutdown(pdev);
1318         pci_dev_put(pdev);
1319         kfree(device);
1320         pci_release_regions(pdev);
1321         pci_disable_device(pdev);
1322 }
1323
1324 /* Power Management */
1325 /*
1326 * dma_suspend - PCI suspend function
1327 *
1328 * @pci: PCI device structure
1329 * @state: PM message
1330 *
1331 * This function is called by OS when a power event occurs
1332 */
1333 static int dma_suspend(struct device *dev)
1334 {
1335         struct pci_dev *pci = to_pci_dev(dev);
1336         int i;
1337         struct middma_device *device = pci_get_drvdata(pci);
1338         pr_debug("MDMA: dma_suspend called\n");
1339
1340         for (i = 0; i < device->max_chan; i++) {
1341                 if (device->ch[i].in_use)
1342                         return -EAGAIN;
1343         }
1344         dmac1_mask_periphral_intr(device);
1345         device->state = SUSPENDED;
1346         pci_save_state(pci);
1347         pci_disable_device(pci);
1348         pci_set_power_state(pci, PCI_D3hot);
1349         return 0;
1350 }
1351
1352 /**
1353 * dma_resume - PCI resume function
1354 *
1355 * @pci: PCI device structure
1356 *
1357 * This function is called by OS when a power event occurs
1358 */
1359 int dma_resume(struct device *dev)
1360 {
1361         struct pci_dev *pci = to_pci_dev(dev);
1362         int ret;
1363         struct middma_device *device = pci_get_drvdata(pci);
1364
1365         pr_debug("MDMA: dma_resume called\n");
1366         pci_set_power_state(pci, PCI_D0);
1367         pci_restore_state(pci);
1368         ret = pci_enable_device(pci);
1369         if (ret) {
1370                 pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1371                 return ret;
1372         }
1373         device->state = RUNNING;
1374         iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1375         return 0;
1376 }
1377
1378 static int dma_runtime_suspend(struct device *dev)
1379 {
1380         struct pci_dev *pci_dev = to_pci_dev(dev);
1381         struct middma_device *device = pci_get_drvdata(pci_dev);
1382
1383         device->state = SUSPENDED;
1384         return 0;
1385 }
1386
1387 static int dma_runtime_resume(struct device *dev)
1388 {
1389         struct pci_dev *pci_dev = to_pci_dev(dev);
1390         struct middma_device *device = pci_get_drvdata(pci_dev);
1391
1392         device->state = RUNNING;
1393         iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1394         return 0;
1395 }
1396
1397 static int dma_runtime_idle(struct device *dev)
1398 {
1399         struct pci_dev *pdev = to_pci_dev(dev);
1400         struct middma_device *device = pci_get_drvdata(pdev);
1401         int i;
1402
1403         for (i = 0; i < device->max_chan; i++) {
1404                 if (device->ch[i].in_use)
1405                         return -EAGAIN;
1406         }
1407
1408         return pm_schedule_suspend(dev, 0);
1409 }
1410
1411 /******************************************************************************
1412 * PCI stuff
1413 */
1414 static struct pci_device_id intel_mid_dma_ids[] = {
1415         { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),       INFO(2, 6, 4095, 0x200020)},
1416         { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),       INFO(2, 0, 2047, 0)},
1417         { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),    INFO(2, 0, 2047, 0)},
1418         { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),      INFO(4, 0, 4095, 0x400040)},
1419         { 0, }
1420 };
1421 MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1422
1423 static const struct dev_pm_ops intel_mid_dma_pm = {
1424         .runtime_suspend = dma_runtime_suspend,
1425         .runtime_resume = dma_runtime_resume,
1426         .runtime_idle = dma_runtime_idle,
1427         .suspend = dma_suspend,
1428         .resume = dma_resume,
1429 };
1430
1431 static struct pci_driver intel_mid_dma_pci_driver = {
1432         .name           =       "Intel MID DMA",
1433         .id_table       =       intel_mid_dma_ids,
1434         .probe          =       intel_mid_dma_probe,
1435         .remove         =       intel_mid_dma_remove,
1436 #ifdef CONFIG_PM
1437         .driver = {
1438                 .pm = &intel_mid_dma_pm,
1439         },
1440 #endif
1441 };
1442
1443 static int __init intel_mid_dma_init(void)
1444 {
1445         pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1446                         INTEL_MID_DMA_DRIVER_VERSION);
1447         return pci_register_driver(&intel_mid_dma_pci_driver);
1448 }
1449 fs_initcall(intel_mid_dma_init);
1450
1451 static void __exit intel_mid_dma_exit(void)
1452 {
1453         pci_unregister_driver(&intel_mid_dma_pci_driver);
1454 }
1455 module_exit(intel_mid_dma_exit);
1456
1457 MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1458 MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1459 MODULE_LICENSE("GPL v2");
1460 MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);