dmaengine: nbpfaxi: fix a theoretical race
[firefly-linux-kernel-4.4.55.git] / drivers / dma / nbpfaxi.c
1 /*
2  * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25
26 #include <dt-bindings/dma/nbpfaxi.h>
27
28 #include "dmaengine.h"
29
30 #define NBPF_REG_CHAN_OFFSET    0
31 #define NBPF_REG_CHAN_SIZE      0x40
32
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE   0x20
35
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT  0x24
38 #define NBPF_CHAN_STAT_EN       1
39 #define NBPF_CHAN_STAT_TACT     4
40 #define NBPF_CHAN_STAT_ERR      0x10
41 #define NBPF_CHAN_STAT_END      0x20
42 #define NBPF_CHAN_STAT_TC       0x40
43 #define NBPF_CHAN_STAT_DER      0x400
44
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL  0x28
47 #define NBPF_CHAN_CTRL_SETEN    1
48 #define NBPF_CHAN_CTRL_CLREN    2
49 #define NBPF_CHAN_CTRL_STG      4
50 #define NBPF_CHAN_CTRL_SWRST    8
51 #define NBPF_CHAN_CTRL_CLRRQ    0x10
52 #define NBPF_CHAN_CTRL_CLREND   0x20
53 #define NBPF_CHAN_CTRL_CLRTC    0x40
54 #define NBPF_CHAN_CTRL_SETSUS   0x100
55 #define NBPF_CHAN_CTRL_CLRSUS   0x200
56
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG   0x2c
59 #define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
77
78 #define NBPF_CHAN_NXLA  0x38
79 #define NBPF_CHAN_CRLA  0x3c
80
81 /* Link Header field */
82 #define NBPF_HEADER_LV  1
83 #define NBPF_HEADER_LE  2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
86
87 #define NBPF_CTRL       0x300
88 #define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
90
91 #define NBPF_DSTAT_ER   0x314
92 #define NBPF_DSTAT_END  0x318
93
94 #define NBPF_DMA_BUSWIDTHS \
95         (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96          BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97          BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98          BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99          BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
100
101 struct nbpf_config {
102         int num_channels;
103         int buffer_size;
104 };
105
106 /*
107  * We've got 3 types of objects, used to describe DMA transfers:
108  * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109  *      in it, used to communicate with the user
110  * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111  *      queuing, these must be DMAable, using either the streaming DMA API or
112  *      allocated from coherent memory - one per SG segment
113  * 3. one per SG segment descriptors, used to manage HW link descriptors from
114  *      (2). They do not have to be DMAable. They can either be (a) allocated
115  *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
116  *      separately. Even if allocated separately it would be best to link them
117  *      to link descriptors once during channel resource allocation and always
118  *      use them as a single object.
119  * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120  * treated as a single SG segment descriptor.
121  */
122
123 struct nbpf_link_reg {
124         u32     header;
125         u32     src_addr;
126         u32     dst_addr;
127         u32     transaction_size;
128         u32     config;
129         u32     interval;
130         u32     extension;
131         u32     next;
132 } __packed;
133
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
137
138 struct nbpf_link_desc {
139         struct nbpf_link_reg *hwdesc;
140         dma_addr_t hwdesc_dma_addr;
141         struct nbpf_desc *desc;
142         struct list_head node;
143 };
144
145 /**
146  * struct nbpf_desc - DMA transfer descriptor
147  * @async_tx:   dmaengine object
148  * @user_wait:  waiting for a user ack
149  * @length:     total transfer length
150  * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
151  * @node:       member in channel descriptor lists
152  */
153 struct nbpf_desc {
154         struct dma_async_tx_descriptor async_tx;
155         bool user_wait;
156         size_t length;
157         struct nbpf_channel *chan;
158         struct list_head sg;
159         struct list_head node;
160 };
161
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
165         (sizeof(struct nbpf_desc) +                                     \
166          NBPF_SEGMENTS_PER_DESC *                                       \
167          (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
169
170 struct nbpf_desc_page {
171         struct list_head node;
172         struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173         struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174         struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175 };
176
177 /**
178  * struct nbpf_channel - one DMAC channel
179  * @dma_chan:   standard dmaengine channel object
180  * @base:       register address base
181  * @nbpf:       DMAC
182  * @name:       IRQ name
183  * @irq:        IRQ number
184  * @slave_addr: address for slave DMA
185  * @slave_width:slave data size in bytes
186  * @slave_burst:maximum slave burst size in bytes
187  * @terminal:   DMA terminal, assigned to this channel
188  * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189  * @flags:      configuration flags from DT
190  * @lock:       protect descriptor lists
191  * @free_links: list of free link descriptors
192  * @free:       list of free descriptors
193  * @queued:     list of queued descriptors
194  * @active:     list of descriptors, scheduled for processing
195  * @done:       list of completed descriptors, waiting post-processing
196  * @desc_page:  list of additionally allocated descriptor pages - if any
197  */
198 struct nbpf_channel {
199         struct dma_chan dma_chan;
200         void __iomem *base;
201         struct nbpf_device *nbpf;
202         char name[16];
203         int irq;
204         dma_addr_t slave_src_addr;
205         size_t slave_src_width;
206         size_t slave_src_burst;
207         dma_addr_t slave_dst_addr;
208         size_t slave_dst_width;
209         size_t slave_dst_burst;
210         unsigned int terminal;
211         u32 dmarq_cfg;
212         unsigned long flags;
213         spinlock_t lock;
214         struct list_head free_links;
215         struct list_head free;
216         struct list_head queued;
217         struct list_head active;
218         struct list_head done;
219         struct list_head desc_page;
220         struct nbpf_desc *running;
221         bool paused;
222 };
223
224 struct nbpf_device {
225         struct dma_device dma_dev;
226         void __iomem *base;
227         struct clk *clk;
228         const struct nbpf_config *config;
229         struct nbpf_channel chan[];
230 };
231
232 enum nbpf_model {
233         NBPF1B4,
234         NBPF1B8,
235         NBPF1B16,
236         NBPF4B4,
237         NBPF4B8,
238         NBPF4B16,
239         NBPF8B4,
240         NBPF8B8,
241         NBPF8B16,
242 };
243
244 static struct nbpf_config nbpf_cfg[] = {
245         [NBPF1B4] = {
246                 .num_channels = 1,
247                 .buffer_size = 4,
248         },
249         [NBPF1B8] = {
250                 .num_channels = 1,
251                 .buffer_size = 8,
252         },
253         [NBPF1B16] = {
254                 .num_channels = 1,
255                 .buffer_size = 16,
256         },
257         [NBPF4B4] = {
258                 .num_channels = 4,
259                 .buffer_size = 4,
260         },
261         [NBPF4B8] = {
262                 .num_channels = 4,
263                 .buffer_size = 8,
264         },
265         [NBPF4B16] = {
266                 .num_channels = 4,
267                 .buffer_size = 16,
268         },
269         [NBPF8B4] = {
270                 .num_channels = 8,
271                 .buffer_size = 4,
272         },
273         [NBPF8B8] = {
274                 .num_channels = 8,
275                 .buffer_size = 8,
276         },
277         [NBPF8B16] = {
278                 .num_channels = 8,
279                 .buffer_size = 16,
280         },
281 };
282
283 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
284
285 /*
286  * dmaengine drivers seem to have a lot in common and instead of sharing more
287  * code, they reimplement those common algorithms independently. In this driver
288  * we try to separate the hardware-specific part from the (largely) generic
289  * part. This improves code readability and makes it possible in the future to
290  * reuse the generic code in form of a helper library. That generic code should
291  * be suitable for various DMA controllers, using transfer descriptors in RAM
292  * and pushing one SG list at a time to the DMA controller.
293  */
294
295 /*              Hardware-specific part          */
296
297 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
298                                  unsigned int offset)
299 {
300         u32 data = ioread32(chan->base + offset);
301         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
302                 __func__, chan->base, offset, data);
303         return data;
304 }
305
306 static inline void nbpf_chan_write(struct nbpf_channel *chan,
307                                    unsigned int offset, u32 data)
308 {
309         iowrite32(data, chan->base + offset);
310         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
311                 __func__, chan->base, offset, data);
312 }
313
314 static inline u32 nbpf_read(struct nbpf_device *nbpf,
315                             unsigned int offset)
316 {
317         u32 data = ioread32(nbpf->base + offset);
318         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
319                 __func__, nbpf->base, offset, data);
320         return data;
321 }
322
323 static inline void nbpf_write(struct nbpf_device *nbpf,
324                               unsigned int offset, u32 data)
325 {
326         iowrite32(data, nbpf->base + offset);
327         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
328                 __func__, nbpf->base, offset, data);
329 }
330
331 static void nbpf_chan_halt(struct nbpf_channel *chan)
332 {
333         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
334 }
335
336 static bool nbpf_status_get(struct nbpf_channel *chan)
337 {
338         u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
339
340         return status & BIT(chan - chan->nbpf->chan);
341 }
342
343 static void nbpf_status_ack(struct nbpf_channel *chan)
344 {
345         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
346 }
347
348 static u32 nbpf_error_get(struct nbpf_device *nbpf)
349 {
350         return nbpf_read(nbpf, NBPF_DSTAT_ER);
351 }
352
353 struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
354 {
355         return nbpf->chan + __ffs(error);
356 }
357
358 static void nbpf_error_clear(struct nbpf_channel *chan)
359 {
360         u32 status;
361         int i;
362
363         /* Stop the channel, make sure DMA has been aborted */
364         nbpf_chan_halt(chan);
365
366         for (i = 1000; i; i--) {
367                 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
368                 if (!(status & NBPF_CHAN_STAT_TACT))
369                         break;
370                 cpu_relax();
371         }
372
373         if (!i)
374                 dev_err(chan->dma_chan.device->dev,
375                         "%s(): abort timeout, channel status 0x%x\n", __func__, status);
376
377         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
378 }
379
380 static int nbpf_start(struct nbpf_desc *desc)
381 {
382         struct nbpf_channel *chan = desc->chan;
383         struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
384
385         nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
386         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
387         chan->paused = false;
388
389         /* Software trigger MEMCPY - only MEMCPY uses the block mode */
390         if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
391                 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
392
393         dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
394                 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
395
396         return 0;
397 }
398
399 static void nbpf_chan_prepare(struct nbpf_channel *chan)
400 {
401         chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
402                 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
403                 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
404                  NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
405                 chan->terminal;
406 }
407
408 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
409 {
410         /* Don't output DMAACK */
411         chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
412         chan->terminal = 0;
413         chan->flags = 0;
414 }
415
416 static void nbpf_chan_configure(struct nbpf_channel *chan)
417 {
418         /*
419          * We assume, that only the link mode and DMA request line configuration
420          * have to be set in the configuration register manually. Dynamic
421          * per-transfer configuration will be loaded from transfer descriptors.
422          */
423         nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
424 }
425
426 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
427 {
428         /* Maximum supported bursts depend on the buffer size */
429         return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
430 }
431
432 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
433                              enum dma_slave_buswidth width, u32 burst)
434 {
435         size_t size;
436
437         if (!burst)
438                 burst = 1;
439
440         switch (width) {
441         case DMA_SLAVE_BUSWIDTH_8_BYTES:
442                 size = 8 * burst;
443                 break;
444
445         case DMA_SLAVE_BUSWIDTH_4_BYTES:
446                 size = 4 * burst;
447                 break;
448
449         case DMA_SLAVE_BUSWIDTH_2_BYTES:
450                 size = 2 * burst;
451                 break;
452
453         default:
454                 pr_warn("%s(): invalid bus width %u\n", __func__, width);
455         case DMA_SLAVE_BUSWIDTH_1_BYTE:
456                 size = burst;
457         }
458
459         return nbpf_xfer_ds(nbpf, size);
460 }
461
462 /*
463  * We need a way to recognise slaves, whose data is sent "raw" over the bus,
464  * i.e. it isn't known in advance how many bytes will be received. Therefore
465  * the slave driver has to provide a "large enough" buffer and either read the
466  * buffer, when it is full, or detect, that some data has arrived, then wait for
467  * a timeout, if no more data arrives - receive what's already there. We want to
468  * handle such slaves in a special way to allow an optimised mode for other
469  * users, for whom the amount of data is known in advance. So far there's no way
470  * to recognise such slaves. We use a data-width check to distinguish between
471  * the SD host and the PL011 UART.
472  */
473
474 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
475                          enum dma_transfer_direction direction,
476                          dma_addr_t src, dma_addr_t dst, size_t size, bool last)
477 {
478         struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
479         struct nbpf_desc *desc = ldesc->desc;
480         struct nbpf_channel *chan = desc->chan;
481         struct device *dev = chan->dma_chan.device->dev;
482         size_t mem_xfer, slave_xfer;
483         bool can_burst;
484
485         hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
486                 (last ? NBPF_HEADER_LE : 0);
487
488         hwdesc->src_addr = src;
489         hwdesc->dst_addr = dst;
490         hwdesc->transaction_size = size;
491
492         /*
493          * set config: SAD, DAD, DDS, SDS, etc.
494          * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
495          * but it is important to have transaction size a multiple of both
496          * receiver and transmitter transfer sizes. It is also possible to use
497          * different RAM and device transfer sizes, and it does work well with
498          * some devices, e.g. with V08R07S01E SD host controllers, which can use
499          * 128 byte transfers. But this doesn't work with other devices,
500          * especially when the transaction size is unknown. This is the case,
501          * e.g. with serial drivers like amba-pl011.c. For reception it sets up
502          * the transaction size of 4K and if fewer bytes are received, it
503          * pauses DMA and reads out data received via DMA as well as those left
504          * in the Rx FIFO. For this to work with the RAM side using burst
505          * transfers we enable the SBE bit and terminate the transfer in our
506          * DMA_PAUSE handler.
507          */
508         mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
509
510         switch (direction) {
511         case DMA_DEV_TO_MEM:
512                 can_burst = chan->slave_src_width >= 3;
513                 slave_xfer = min(mem_xfer, can_burst ?
514                                  chan->slave_src_burst : chan->slave_src_width);
515                 /*
516                  * Is the slave narrower than 64 bits, i.e. isn't using the full
517                  * bus width and cannot use bursts?
518                  */
519                 if (mem_xfer > chan->slave_src_burst && !can_burst)
520                         mem_xfer = chan->slave_src_burst;
521                 /* Device-to-RAM DMA is unreliable without REQD set */
522                 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
523                         (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
524                         NBPF_CHAN_CFG_SBE;
525                 break;
526
527         case DMA_MEM_TO_DEV:
528                 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
529                                  chan->slave_dst_burst : chan->slave_dst_width);
530                 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
531                         (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
532                 break;
533
534         case DMA_MEM_TO_MEM:
535                 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
536                         (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
537                         (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
538                 break;
539
540         default:
541                 return -EINVAL;
542         }
543
544         hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
545                 NBPF_CHAN_CFG_DMS;
546
547         dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
548                 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
549                 hwdesc->config, size, &src, &dst);
550
551         dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
552                                    DMA_TO_DEVICE);
553
554         return 0;
555 }
556
557 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
558 {
559         return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
560 }
561
562 static void nbpf_configure(struct nbpf_device *nbpf)
563 {
564         nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
565 }
566
567 static void nbpf_pause(struct nbpf_channel *chan)
568 {
569         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
570         /* See comment in nbpf_prep_one() */
571         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
572 }
573
574 /*              Generic part                    */
575
576 /* DMA ENGINE functions */
577 static void nbpf_issue_pending(struct dma_chan *dchan)
578 {
579         struct nbpf_channel *chan = nbpf_to_chan(dchan);
580         unsigned long flags;
581
582         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
583
584         spin_lock_irqsave(&chan->lock, flags);
585         if (list_empty(&chan->queued))
586                 goto unlock;
587
588         list_splice_tail_init(&chan->queued, &chan->active);
589
590         if (!chan->running) {
591                 struct nbpf_desc *desc = list_first_entry(&chan->active,
592                                                 struct nbpf_desc, node);
593                 if (!nbpf_start(desc))
594                         chan->running = desc;
595         }
596
597 unlock:
598         spin_unlock_irqrestore(&chan->lock, flags);
599 }
600
601 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
602                 dma_cookie_t cookie, struct dma_tx_state *state)
603 {
604         struct nbpf_channel *chan = nbpf_to_chan(dchan);
605         enum dma_status status = dma_cookie_status(dchan, cookie, state);
606
607         if (state) {
608                 dma_cookie_t running;
609                 unsigned long flags;
610
611                 spin_lock_irqsave(&chan->lock, flags);
612                 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
613
614                 if (cookie == running) {
615                         state->residue = nbpf_bytes_left(chan);
616                         dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
617                                 state->residue);
618                 } else if (status == DMA_IN_PROGRESS) {
619                         struct nbpf_desc *desc;
620                         bool found = false;
621
622                         list_for_each_entry(desc, &chan->active, node)
623                                 if (desc->async_tx.cookie == cookie) {
624                                         found = true;
625                                         break;
626                                 }
627
628                         if (!found)
629                                 list_for_each_entry(desc, &chan->queued, node)
630                                         if (desc->async_tx.cookie == cookie) {
631                                                 found = true;
632                                                 break;
633
634                                         }
635
636                         state->residue = found ? desc->length : 0;
637                 }
638
639                 spin_unlock_irqrestore(&chan->lock, flags);
640         }
641
642         if (chan->paused)
643                 status = DMA_PAUSED;
644
645         return status;
646 }
647
648 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
649 {
650         struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
651         struct nbpf_channel *chan = desc->chan;
652         unsigned long flags;
653         dma_cookie_t cookie;
654
655         spin_lock_irqsave(&chan->lock, flags);
656         cookie = dma_cookie_assign(tx);
657         list_add_tail(&desc->node, &chan->queued);
658         spin_unlock_irqrestore(&chan->lock, flags);
659
660         dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
661
662         return cookie;
663 }
664
665 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
666 {
667         struct dma_chan *dchan = &chan->dma_chan;
668         struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
669         struct nbpf_link_desc *ldesc;
670         struct nbpf_link_reg *hwdesc;
671         struct nbpf_desc *desc;
672         LIST_HEAD(head);
673         LIST_HEAD(lhead);
674         int i;
675         struct device *dev = dchan->device->dev;
676
677         if (!dpage)
678                 return -ENOMEM;
679
680         dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
681                 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
682
683         for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
684              i < ARRAY_SIZE(dpage->ldesc);
685              i++, ldesc++, hwdesc++) {
686                 ldesc->hwdesc = hwdesc;
687                 list_add_tail(&ldesc->node, &lhead);
688                 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
689                                         hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
690
691                 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
692                         hwdesc, &ldesc->hwdesc_dma_addr);
693         }
694
695         for (i = 0, desc = dpage->desc;
696              i < ARRAY_SIZE(dpage->desc);
697              i++, desc++) {
698                 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
699                 desc->async_tx.tx_submit = nbpf_tx_submit;
700                 desc->chan = chan;
701                 INIT_LIST_HEAD(&desc->sg);
702                 list_add_tail(&desc->node, &head);
703         }
704
705         /*
706          * This function cannot be called from interrupt context, so, no need to
707          * save flags
708          */
709         spin_lock_irq(&chan->lock);
710         list_splice_tail(&lhead, &chan->free_links);
711         list_splice_tail(&head, &chan->free);
712         list_add(&dpage->node, &chan->desc_page);
713         spin_unlock_irq(&chan->lock);
714
715         return ARRAY_SIZE(dpage->desc);
716 }
717
718 static void nbpf_desc_put(struct nbpf_desc *desc)
719 {
720         struct nbpf_channel *chan = desc->chan;
721         struct nbpf_link_desc *ldesc, *tmp;
722         unsigned long flags;
723
724         spin_lock_irqsave(&chan->lock, flags);
725         list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
726                 list_move(&ldesc->node, &chan->free_links);
727
728         list_add(&desc->node, &chan->free);
729         spin_unlock_irqrestore(&chan->lock, flags);
730 }
731
732 static void nbpf_scan_acked(struct nbpf_channel *chan)
733 {
734         struct nbpf_desc *desc, *tmp;
735         unsigned long flags;
736         LIST_HEAD(head);
737
738         spin_lock_irqsave(&chan->lock, flags);
739         list_for_each_entry_safe(desc, tmp, &chan->done, node)
740                 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
741                         list_move(&desc->node, &head);
742                         desc->user_wait = false;
743                 }
744         spin_unlock_irqrestore(&chan->lock, flags);
745
746         list_for_each_entry_safe(desc, tmp, &head, node) {
747                 list_del(&desc->node);
748                 nbpf_desc_put(desc);
749         }
750 }
751
752 /*
753  * We have to allocate descriptors with the channel lock dropped. This means,
754  * before we re-acquire the lock buffers can be taken already, so we have to
755  * re-check after re-acquiring the lock and possibly retry, if buffers are gone
756  * again.
757  */
758 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
759 {
760         struct nbpf_desc *desc = NULL;
761         struct nbpf_link_desc *ldesc, *prev = NULL;
762
763         nbpf_scan_acked(chan);
764
765         spin_lock_irq(&chan->lock);
766
767         do {
768                 int i = 0, ret;
769
770                 if (list_empty(&chan->free)) {
771                         /* No more free descriptors */
772                         spin_unlock_irq(&chan->lock);
773                         ret = nbpf_desc_page_alloc(chan);
774                         if (ret < 0)
775                                 return NULL;
776                         spin_lock_irq(&chan->lock);
777                         continue;
778                 }
779                 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
780                 list_del(&desc->node);
781
782                 do {
783                         if (list_empty(&chan->free_links)) {
784                                 /* No more free link descriptors */
785                                 spin_unlock_irq(&chan->lock);
786                                 ret = nbpf_desc_page_alloc(chan);
787                                 if (ret < 0) {
788                                         nbpf_desc_put(desc);
789                                         return NULL;
790                                 }
791                                 spin_lock_irq(&chan->lock);
792                                 continue;
793                         }
794
795                         ldesc = list_first_entry(&chan->free_links,
796                                                  struct nbpf_link_desc, node);
797                         ldesc->desc = desc;
798                         if (prev)
799                                 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
800
801                         prev = ldesc;
802                         list_move_tail(&ldesc->node, &desc->sg);
803
804                         i++;
805                 } while (i < len);
806         } while (!desc);
807
808         prev->hwdesc->next = 0;
809
810         spin_unlock_irq(&chan->lock);
811
812         return desc;
813 }
814
815 static void nbpf_chan_idle(struct nbpf_channel *chan)
816 {
817         struct nbpf_desc *desc, *tmp;
818         unsigned long flags;
819         LIST_HEAD(head);
820
821         spin_lock_irqsave(&chan->lock, flags);
822
823         list_splice_init(&chan->done, &head);
824         list_splice_init(&chan->active, &head);
825         list_splice_init(&chan->queued, &head);
826
827         chan->running = NULL;
828
829         spin_unlock_irqrestore(&chan->lock, flags);
830
831         list_for_each_entry_safe(desc, tmp, &head, node) {
832                 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
833                         __func__, desc, desc->async_tx.cookie);
834                 list_del(&desc->node);
835                 nbpf_desc_put(desc);
836         }
837 }
838
839 static int nbpf_control(struct dma_chan *dchan, enum dma_ctrl_cmd cmd,
840                         unsigned long arg)
841 {
842         struct nbpf_channel *chan = nbpf_to_chan(dchan);
843         struct dma_slave_config *config;
844
845         dev_dbg(dchan->device->dev, "Entry %s(%d)\n", __func__, cmd);
846
847         switch (cmd) {
848         case DMA_TERMINATE_ALL:
849                 dev_dbg(dchan->device->dev, "Terminating\n");
850                 nbpf_chan_halt(chan);
851                 nbpf_chan_idle(chan);
852                 break;
853
854         case DMA_SLAVE_CONFIG:
855                 if (!arg)
856                         return -EINVAL;
857                 config = (struct dma_slave_config *)arg;
858
859                 /*
860                  * We could check config->slave_id to match chan->terminal here,
861                  * but with DT they would be coming from the same source, so
862                  * such a check would be superflous
863                  */
864
865                 chan->slave_dst_addr = config->dst_addr;
866                 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
867                                                        config->dst_addr_width, 1);
868                 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
869                                                        config->dst_addr_width,
870                                                        config->dst_maxburst);
871                 chan->slave_src_addr = config->src_addr;
872                 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
873                                                        config->src_addr_width, 1);
874                 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
875                                                        config->src_addr_width,
876                                                        config->src_maxburst);
877                 break;
878
879         case DMA_PAUSE:
880                 chan->paused = true;
881                 nbpf_pause(chan);
882                 break;
883
884         default:
885                 return -ENXIO;
886         }
887
888         return 0;
889 }
890
891 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
892                 struct scatterlist *src_sg, struct scatterlist *dst_sg,
893                 size_t len, enum dma_transfer_direction direction,
894                 unsigned long flags)
895 {
896         struct nbpf_link_desc *ldesc;
897         struct scatterlist *mem_sg;
898         struct nbpf_desc *desc;
899         bool inc_src, inc_dst;
900         size_t data_len = 0;
901         int i = 0;
902
903         switch (direction) {
904         case DMA_DEV_TO_MEM:
905                 mem_sg = dst_sg;
906                 inc_src = false;
907                 inc_dst = true;
908                 break;
909
910         case DMA_MEM_TO_DEV:
911                 mem_sg = src_sg;
912                 inc_src = true;
913                 inc_dst = false;
914                 break;
915
916         default:
917         case DMA_MEM_TO_MEM:
918                 mem_sg = src_sg;
919                 inc_src = true;
920                 inc_dst = true;
921         }
922
923         desc = nbpf_desc_get(chan, len);
924         if (!desc)
925                 return NULL;
926
927         desc->async_tx.flags = flags;
928         desc->async_tx.cookie = -EBUSY;
929         desc->user_wait = false;
930
931         /*
932          * This is a private descriptor list, and we own the descriptor. No need
933          * to lock.
934          */
935         list_for_each_entry(ldesc, &desc->sg, node) {
936                 int ret = nbpf_prep_one(ldesc, direction,
937                                         sg_dma_address(src_sg),
938                                         sg_dma_address(dst_sg),
939                                         sg_dma_len(mem_sg),
940                                         i == len - 1);
941                 if (ret < 0) {
942                         nbpf_desc_put(desc);
943                         return NULL;
944                 }
945                 data_len += sg_dma_len(mem_sg);
946                 if (inc_src)
947                         src_sg = sg_next(src_sg);
948                 if (inc_dst)
949                         dst_sg = sg_next(dst_sg);
950                 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
951                 i++;
952         }
953
954         desc->length = data_len;
955
956         /* The user has to return the descriptor to us ASAP via .tx_submit() */
957         return &desc->async_tx;
958 }
959
960 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
961         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
962         size_t len, unsigned long flags)
963 {
964         struct nbpf_channel *chan = nbpf_to_chan(dchan);
965         struct scatterlist dst_sg;
966         struct scatterlist src_sg;
967
968         sg_init_table(&dst_sg, 1);
969         sg_init_table(&src_sg, 1);
970
971         sg_dma_address(&dst_sg) = dst;
972         sg_dma_address(&src_sg) = src;
973
974         sg_dma_len(&dst_sg) = len;
975         sg_dma_len(&src_sg) = len;
976
977         dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
978                 __func__, len, &src, &dst);
979
980         return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
981                             DMA_MEM_TO_MEM, flags);
982 }
983
984 static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
985         struct dma_chan *dchan,
986         struct scatterlist *dst_sg, unsigned int dst_nents,
987         struct scatterlist *src_sg, unsigned int src_nents,
988         unsigned long flags)
989 {
990         struct nbpf_channel *chan = nbpf_to_chan(dchan);
991
992         if (dst_nents != src_nents)
993                 return NULL;
994
995         return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
996                             DMA_MEM_TO_MEM, flags);
997 }
998
999 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1000         struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1001         enum dma_transfer_direction direction, unsigned long flags, void *context)
1002 {
1003         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1004         struct scatterlist slave_sg;
1005
1006         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1007
1008         sg_init_table(&slave_sg, 1);
1009
1010         switch (direction) {
1011         case DMA_MEM_TO_DEV:
1012                 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1013                 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1014                                     direction, flags);
1015
1016         case DMA_DEV_TO_MEM:
1017                 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1018                 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1019                                     direction, flags);
1020
1021         default:
1022                 return NULL;
1023         }
1024 }
1025
1026 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1027 {
1028         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1029         int ret;
1030
1031         INIT_LIST_HEAD(&chan->free);
1032         INIT_LIST_HEAD(&chan->free_links);
1033         INIT_LIST_HEAD(&chan->queued);
1034         INIT_LIST_HEAD(&chan->active);
1035         INIT_LIST_HEAD(&chan->done);
1036
1037         ret = nbpf_desc_page_alloc(chan);
1038         if (ret < 0)
1039                 return ret;
1040
1041         dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1042                 chan->terminal);
1043
1044         nbpf_chan_configure(chan);
1045
1046         return ret;
1047 }
1048
1049 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1050 {
1051         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1052         struct nbpf_desc_page *dpage, *tmp;
1053
1054         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1055
1056         nbpf_chan_halt(chan);
1057         nbpf_chan_idle(chan);
1058         /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1059         nbpf_chan_prepare_default(chan);
1060
1061         list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1062                 struct nbpf_link_desc *ldesc;
1063                 int i;
1064                 list_del(&dpage->node);
1065                 for (i = 0, ldesc = dpage->ldesc;
1066                      i < ARRAY_SIZE(dpage->ldesc);
1067                      i++, ldesc++)
1068                         dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1069                                          sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1070                 free_page((unsigned long)dpage);
1071         }
1072 }
1073
1074 static int nbpf_slave_caps(struct dma_chan *dchan,
1075                            struct dma_slave_caps *caps)
1076 {
1077         caps->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1078         caps->dstn_addr_widths = NBPF_DMA_BUSWIDTHS;
1079         caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1080         caps->cmd_pause = false;
1081         caps->cmd_terminate = true;
1082
1083         return 0;
1084 }
1085
1086 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1087                                       struct of_dma *ofdma)
1088 {
1089         struct nbpf_device *nbpf = ofdma->of_dma_data;
1090         struct dma_chan *dchan;
1091         struct nbpf_channel *chan;
1092
1093         if (dma_spec->args_count != 2)
1094                 return NULL;
1095
1096         dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1097         if (!dchan)
1098                 return NULL;
1099
1100         dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1101                 dma_spec->np->name);
1102
1103         chan = nbpf_to_chan(dchan);
1104
1105         chan->terminal = dma_spec->args[0];
1106         chan->flags = dma_spec->args[1];
1107
1108         nbpf_chan_prepare(chan);
1109         nbpf_chan_configure(chan);
1110
1111         return dchan;
1112 }
1113
1114 static irqreturn_t nbpf_chan_irqt(int irq, void *dev)
1115 {
1116         struct nbpf_channel *chan = dev;
1117         struct nbpf_desc *desc, *tmp;
1118         dma_async_tx_callback callback;
1119         void *param;
1120
1121         while (!list_empty(&chan->done)) {
1122                 bool found = false, must_put, recycling = false;
1123
1124                 spin_lock_irq(&chan->lock);
1125
1126                 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1127                         if (!desc->user_wait) {
1128                                 /* Newly completed descriptor, have to process */
1129                                 found = true;
1130                                 break;
1131                         } else if (async_tx_test_ack(&desc->async_tx)) {
1132                                 /*
1133                                  * This descriptor was waiting for a user ACK,
1134                                  * it can be recycled now.
1135                                  */
1136                                 list_del(&desc->node);
1137                                 spin_unlock_irq(&chan->lock);
1138                                 nbpf_desc_put(desc);
1139                                 recycling = true;
1140                                 break;
1141                         }
1142                 }
1143
1144                 if (recycling)
1145                         continue;
1146
1147                 if (!found) {
1148                         /* This can happen if TERMINATE_ALL has been called */
1149                         spin_unlock_irq(&chan->lock);
1150                         break;
1151                 }
1152
1153                 dma_cookie_complete(&desc->async_tx);
1154
1155                 /*
1156                  * With released lock we cannot dereference desc, maybe it's
1157                  * still on the "done" list
1158                  */
1159                 if (async_tx_test_ack(&desc->async_tx)) {
1160                         list_del(&desc->node);
1161                         must_put = true;
1162                 } else {
1163                         desc->user_wait = true;
1164                         must_put = false;
1165                 }
1166
1167                 callback = desc->async_tx.callback;
1168                 param = desc->async_tx.callback_param;
1169
1170                 /* ack and callback completed descriptor */
1171                 spin_unlock_irq(&chan->lock);
1172
1173                 if (callback)
1174                         callback(param);
1175
1176                 if (must_put)
1177                         nbpf_desc_put(desc);
1178         }
1179
1180         return IRQ_HANDLED;
1181 }
1182
1183 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1184 {
1185         struct nbpf_channel *chan = dev;
1186         bool done = nbpf_status_get(chan);
1187         struct nbpf_desc *desc;
1188         irqreturn_t ret;
1189
1190         if (!done)
1191                 return IRQ_NONE;
1192
1193         nbpf_status_ack(chan);
1194
1195         dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1196
1197         spin_lock(&chan->lock);
1198         desc = chan->running;
1199         if (WARN_ON(!desc)) {
1200                 ret = IRQ_NONE;
1201                 goto unlock;
1202         } else {
1203                 ret = IRQ_WAKE_THREAD;
1204         }
1205
1206         list_move_tail(&desc->node, &chan->done);
1207         chan->running = NULL;
1208
1209         if (!list_empty(&chan->active)) {
1210                 desc = list_first_entry(&chan->active,
1211                                         struct nbpf_desc, node);
1212                 if (!nbpf_start(desc))
1213                         chan->running = desc;
1214         }
1215
1216 unlock:
1217         spin_unlock(&chan->lock);
1218
1219         return ret;
1220 }
1221
1222 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1223 {
1224         struct nbpf_device *nbpf = dev;
1225         u32 error = nbpf_error_get(nbpf);
1226
1227         dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1228
1229         if (!error)
1230                 return IRQ_NONE;
1231
1232         do {
1233                 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1234                 /* On error: abort all queued transfers, no callback */
1235                 nbpf_error_clear(chan);
1236                 nbpf_chan_idle(chan);
1237                 error = nbpf_error_get(nbpf);
1238         } while (error);
1239
1240         return IRQ_HANDLED;
1241 }
1242
1243 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1244 {
1245         struct dma_device *dma_dev = &nbpf->dma_dev;
1246         struct nbpf_channel *chan = nbpf->chan + n;
1247         int ret;
1248
1249         chan->nbpf = nbpf;
1250         chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1251         INIT_LIST_HEAD(&chan->desc_page);
1252         spin_lock_init(&chan->lock);
1253         chan->dma_chan.device = dma_dev;
1254         dma_cookie_init(&chan->dma_chan);
1255         nbpf_chan_prepare_default(chan);
1256
1257         dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1258
1259         snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1260
1261         ret = devm_request_threaded_irq(dma_dev->dev, chan->irq,
1262                         nbpf_chan_irq, nbpf_chan_irqt, IRQF_SHARED,
1263                         chan->name, chan);
1264         if (ret < 0)
1265                 return ret;
1266
1267         /* Add the channel to DMA device channel list */
1268         list_add_tail(&chan->dma_chan.device_node,
1269                       &dma_dev->channels);
1270
1271         return 0;
1272 }
1273
1274 static const struct of_device_id nbpf_match[] = {
1275         {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1276         {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1277         {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1278         {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1279         {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1280         {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1281         {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1282         {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1283         {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1284         {}
1285 };
1286 MODULE_DEVICE_TABLE(of, nbpf_match);
1287
1288 static int nbpf_probe(struct platform_device *pdev)
1289 {
1290         struct device *dev = &pdev->dev;
1291         const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1292         struct device_node *np = dev->of_node;
1293         struct nbpf_device *nbpf;
1294         struct dma_device *dma_dev;
1295         struct resource *iomem, *irq_res;
1296         const struct nbpf_config *cfg;
1297         int num_channels;
1298         int ret, irq, eirq, i;
1299         int irqbuf[9] /* maximum 8 channels + error IRQ */;
1300         unsigned int irqs = 0;
1301
1302         BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1303
1304         /* DT only */
1305         if (!np || !of_id || !of_id->data)
1306                 return -ENODEV;
1307
1308         cfg = of_id->data;
1309         num_channels = cfg->num_channels;
1310
1311         nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1312                             sizeof(nbpf->chan[0]), GFP_KERNEL);
1313         if (!nbpf) {
1314                 dev_err(dev, "Memory allocation failed\n");
1315                 return -ENOMEM;
1316         }
1317         dma_dev = &nbpf->dma_dev;
1318         dma_dev->dev = dev;
1319
1320         iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1321         nbpf->base = devm_ioremap_resource(dev, iomem);
1322         if (IS_ERR(nbpf->base))
1323                 return PTR_ERR(nbpf->base);
1324
1325         nbpf->clk = devm_clk_get(dev, NULL);
1326         if (IS_ERR(nbpf->clk))
1327                 return PTR_ERR(nbpf->clk);
1328
1329         nbpf->config = cfg;
1330
1331         for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1332                 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1333                 if (!irq_res)
1334                         break;
1335
1336                 for (irq = irq_res->start; irq <= irq_res->end;
1337                      irq++, irqs++)
1338                         irqbuf[irqs] = irq;
1339         }
1340
1341         /*
1342          * 3 IRQ resource schemes are supported:
1343          * 1. 1 shared IRQ for error and all channels
1344          * 2. 2 IRQs: one for error and one shared for all channels
1345          * 3. 1 IRQ for error and an own IRQ for each channel
1346          */
1347         if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1348                 return -ENXIO;
1349
1350         if (irqs == 1) {
1351                 eirq = irqbuf[0];
1352
1353                 for (i = 0; i <= num_channels; i++)
1354                         nbpf->chan[i].irq = irqbuf[0];
1355         } else {
1356                 eirq = platform_get_irq_byname(pdev, "error");
1357                 if (eirq < 0)
1358                         return eirq;
1359
1360                 if (irqs == num_channels + 1) {
1361                         struct nbpf_channel *chan;
1362
1363                         for (i = 0, chan = nbpf->chan; i <= num_channels;
1364                              i++, chan++) {
1365                                 /* Skip the error IRQ */
1366                                 if (irqbuf[i] == eirq)
1367                                         i++;
1368                                 chan->irq = irqbuf[i];
1369                         }
1370
1371                         if (chan != nbpf->chan + num_channels)
1372                                 return -EINVAL;
1373                 } else {
1374                         /* 2 IRQs and more than one channel */
1375                         if (irqbuf[0] == eirq)
1376                                 irq = irqbuf[1];
1377                         else
1378                                 irq = irqbuf[0];
1379
1380                         for (i = 0; i <= num_channels; i++)
1381                                 nbpf->chan[i].irq = irq;
1382                 }
1383         }
1384
1385         ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1386                                IRQF_SHARED, "dma error", nbpf);
1387         if (ret < 0)
1388                 return ret;
1389
1390         INIT_LIST_HEAD(&dma_dev->channels);
1391
1392         /* Create DMA Channel */
1393         for (i = 0; i < num_channels; i++) {
1394                 ret = nbpf_chan_probe(nbpf, i);
1395                 if (ret < 0)
1396                         return ret;
1397         }
1398
1399         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1400         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1401         dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1402         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1403
1404         /* Common and MEMCPY operations */
1405         dma_dev->device_alloc_chan_resources
1406                 = nbpf_alloc_chan_resources;
1407         dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1408         dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1409         dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1410         dma_dev->device_tx_status = nbpf_tx_status;
1411         dma_dev->device_issue_pending = nbpf_issue_pending;
1412         dma_dev->device_slave_caps = nbpf_slave_caps;
1413
1414         /*
1415          * If we drop support for unaligned MEMCPY buffer addresses and / or
1416          * lengths by setting
1417          * dma_dev->copy_align = 4;
1418          * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1419          * DMA_MEM_TO_MEM
1420          */
1421
1422         /* Compulsory for DMA_SLAVE fields */
1423         dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1424         dma_dev->device_control = nbpf_control;
1425
1426         platform_set_drvdata(pdev, nbpf);
1427
1428         ret = clk_prepare_enable(nbpf->clk);
1429         if (ret < 0)
1430                 return ret;
1431
1432         nbpf_configure(nbpf);
1433
1434         ret = dma_async_device_register(dma_dev);
1435         if (ret < 0)
1436                 goto e_clk_off;
1437
1438         ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1439         if (ret < 0)
1440                 goto e_dma_dev_unreg;
1441
1442         return 0;
1443
1444 e_dma_dev_unreg:
1445         dma_async_device_unregister(dma_dev);
1446 e_clk_off:
1447         clk_disable_unprepare(nbpf->clk);
1448
1449         return ret;
1450 }
1451
1452 static int nbpf_remove(struct platform_device *pdev)
1453 {
1454         struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1455
1456         of_dma_controller_free(pdev->dev.of_node);
1457         dma_async_device_unregister(&nbpf->dma_dev);
1458         clk_disable_unprepare(nbpf->clk);
1459
1460         return 0;
1461 }
1462
1463 static struct platform_device_id nbpf_ids[] = {
1464         {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1465         {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1466         {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1467         {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1468         {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1469         {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1470         {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1471         {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1472         {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1473         {},
1474 };
1475 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1476
1477 #ifdef CONFIG_PM_RUNTIME
1478 static int nbpf_runtime_suspend(struct device *dev)
1479 {
1480         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1481         clk_disable_unprepare(nbpf->clk);
1482         return 0;
1483 }
1484
1485 static int nbpf_runtime_resume(struct device *dev)
1486 {
1487         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1488         return clk_prepare_enable(nbpf->clk);
1489 }
1490 #endif
1491
1492 static const struct dev_pm_ops nbpf_pm_ops = {
1493         SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1494 };
1495
1496 static struct platform_driver nbpf_driver = {
1497         .driver = {
1498                 .owner = THIS_MODULE,
1499                 .name = "dma-nbpf",
1500                 .of_match_table = nbpf_match,
1501                 .pm = &nbpf_pm_ops,
1502         },
1503         .id_table = nbpf_ids,
1504         .probe = nbpf_probe,
1505         .remove = nbpf_remove,
1506 };
1507
1508 module_platform_driver(nbpf_driver);
1509
1510 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1511 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1512 MODULE_LICENSE("GPL v2");