dma40: remove unnecessary ALIGN()s
[firefly-linux-kernel-4.4.55.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/dmaengine.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16
17 #include <plat/ste_dma40.h>
18
19 #include "ste_dma40_ll.h"
20
21 #define D40_NAME "dma40"
22
23 #define D40_PHY_CHAN -1
24
25 /* For masking out/in 2 bit channel positions */
26 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
27 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28
29 /* Maximum iterations taken before giving up suspending a channel */
30 #define D40_SUSPEND_MAX_IT 500
31
32 /* Hardware requirement on LCLA alignment */
33 #define LCLA_ALIGNMENT 0x40000
34
35 /* Max number of links per event group */
36 #define D40_LCLA_LINK_PER_EVENT_GRP 128
37 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38
39 /* Attempts before giving up to trying to get pages that are aligned */
40 #define MAX_LCLA_ALLOC_ATTEMPTS 256
41
42 /* Bit markings for allocation map */
43 #define D40_ALLOC_FREE          (1 << 31)
44 #define D40_ALLOC_PHY           (1 << 30)
45 #define D40_ALLOC_LOG_FREE      0
46
47 /* Hardware designer of the block */
48 #define D40_HW_DESIGNER 0x8
49
50 /**
51  * enum 40_command - The different commands and/or statuses.
52  *
53  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57  */
58 enum d40_command {
59         D40_DMA_STOP            = 0,
60         D40_DMA_RUN             = 1,
61         D40_DMA_SUSPEND_REQ     = 2,
62         D40_DMA_SUSPENDED       = 3
63 };
64
65 /**
66  * struct d40_lli_pool - Structure for keeping LLIs in memory
67  *
68  * @base: Pointer to memory area when the pre_alloc_lli's are not large
69  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70  * pre_alloc_lli is used.
71  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73  * one buffer to one buffer.
74  */
75 struct d40_lli_pool {
76         void    *base;
77         int      size;
78         /* Space for dst and src, plus an extra for padding */
79         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
80 };
81
82 /**
83  * struct d40_desc - A descriptor is one DMA job.
84  *
85  * @lli_phy: LLI settings for physical channel. Both src and dst=
86  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
87  * lli_len equals one.
88  * @lli_log: Same as above but for logical channels.
89  * @lli_pool: The pool with two entries pre-allocated.
90  * @lli_len: Number of llis of current descriptor.
91  * @lli_current: Number of transfered llis.
92  * @lcla_alloc: Number of LCLA entries allocated.
93  * @txd: DMA engine struct. Used for among other things for communication
94  * during a transfer.
95  * @node: List entry.
96  * @is_in_client_list: true if the client owns this descriptor.
97  * the previous one.
98  *
99  * This descriptor is used for both logical and physical transfers.
100  */
101 struct d40_desc {
102         /* LLI physical */
103         struct d40_phy_lli_bidir         lli_phy;
104         /* LLI logical */
105         struct d40_log_lli_bidir         lli_log;
106
107         struct d40_lli_pool              lli_pool;
108         int                              lli_len;
109         int                              lli_current;
110         int                              lcla_alloc;
111
112         struct dma_async_tx_descriptor   txd;
113         struct list_head                 node;
114
115         bool                             is_in_client_list;
116 };
117
118 /**
119  * struct d40_lcla_pool - LCLA pool settings and data.
120  *
121  * @base: The virtual address of LCLA. 18 bit aligned.
122  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
123  * This pointer is only there for clean-up on error.
124  * @pages: The number of pages needed for all physical channels.
125  * Only used later for clean-up on error
126  * @lock: Lock to protect the content in this struct.
127  * @alloc_map: big map over which LCLA entry is own by which job.
128  */
129 struct d40_lcla_pool {
130         void            *base;
131         void            *base_unaligned;
132         int              pages;
133         spinlock_t       lock;
134         struct d40_desc **alloc_map;
135 };
136
137 /**
138  * struct d40_phy_res - struct for handling eventlines mapped to physical
139  * channels.
140  *
141  * @lock: A lock protection this entity.
142  * @num: The physical channel number of this entity.
143  * @allocated_src: Bit mapped to show which src event line's are mapped to
144  * this physical channel. Can also be free or physically allocated.
145  * @allocated_dst: Same as for src but is dst.
146  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
147  * event line number.
148  */
149 struct d40_phy_res {
150         spinlock_t lock;
151         int        num;
152         u32        allocated_src;
153         u32        allocated_dst;
154 };
155
156 struct d40_base;
157
158 /**
159  * struct d40_chan - Struct that describes a channel.
160  *
161  * @lock: A spinlock to protect this struct.
162  * @log_num: The logical number, if any of this channel.
163  * @completed: Starts with 1, after first interrupt it is set to dma engine's
164  * current cookie.
165  * @pending_tx: The number of pending transfers. Used between interrupt handler
166  * and tasklet.
167  * @busy: Set to true when transfer is ongoing on this channel.
168  * @phy_chan: Pointer to physical channel which this instance runs on. If this
169  * point is NULL, then the channel is not allocated.
170  * @chan: DMA engine handle.
171  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
172  * transfer and call client callback.
173  * @client: Cliented owned descriptor list.
174  * @active: Active descriptor.
175  * @queue: Queued jobs.
176  * @dma_cfg: The client configuration of this dma channel.
177  * @configured: whether the dma_cfg configuration is valid
178  * @base: Pointer to the device instance struct.
179  * @src_def_cfg: Default cfg register setting for src.
180  * @dst_def_cfg: Default cfg register setting for dst.
181  * @log_def: Default logical channel settings.
182  * @lcla: Space for one dst src pair for logical channel transfers.
183  * @lcpa: Pointer to dst and src lcpa settings.
184  *
185  * This struct can either "be" a logical or a physical channel.
186  */
187 struct d40_chan {
188         spinlock_t                       lock;
189         int                              log_num;
190         /* ID of the most recent completed transfer */
191         int                              completed;
192         int                              pending_tx;
193         bool                             busy;
194         struct d40_phy_res              *phy_chan;
195         struct dma_chan                  chan;
196         struct tasklet_struct            tasklet;
197         struct list_head                 client;
198         struct list_head                 active;
199         struct list_head                 queue;
200         struct stedma40_chan_cfg         dma_cfg;
201         bool                             configured;
202         struct d40_base                 *base;
203         /* Default register configurations */
204         u32                              src_def_cfg;
205         u32                              dst_def_cfg;
206         struct d40_def_lcsp              log_def;
207         struct d40_log_lli_full         *lcpa;
208         /* Runtime reconfiguration */
209         dma_addr_t                      runtime_addr;
210         enum dma_data_direction         runtime_direction;
211 };
212
213 /**
214  * struct d40_base - The big global struct, one for each probe'd instance.
215  *
216  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
217  * @execmd_lock: Lock for execute command usage since several channels share
218  * the same physical register.
219  * @dev: The device structure.
220  * @virtbase: The virtual base address of the DMA's register.
221  * @rev: silicon revision detected.
222  * @clk: Pointer to the DMA clock structure.
223  * @phy_start: Physical memory start of the DMA registers.
224  * @phy_size: Size of the DMA register map.
225  * @irq: The IRQ number.
226  * @num_phy_chans: The number of physical channels. Read from HW. This
227  * is the number of available channels for this driver, not counting "Secure
228  * mode" allocated physical channels.
229  * @num_log_chans: The number of logical channels. Calculated from
230  * num_phy_chans.
231  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
232  * @dma_slave: dma_device channels that can do only do slave transfers.
233  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
234  * @log_chans: Room for all possible logical channels in system.
235  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
236  * to log_chans entries.
237  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
238  * to phy_chans entries.
239  * @plat_data: Pointer to provided platform_data which is the driver
240  * configuration.
241  * @phy_res: Vector containing all physical channels.
242  * @lcla_pool: lcla pool settings and data.
243  * @lcpa_base: The virtual mapped address of LCPA.
244  * @phy_lcpa: The physical address of the LCPA.
245  * @lcpa_size: The size of the LCPA area.
246  * @desc_slab: cache for descriptors.
247  */
248 struct d40_base {
249         spinlock_t                       interrupt_lock;
250         spinlock_t                       execmd_lock;
251         struct device                    *dev;
252         void __iomem                     *virtbase;
253         u8                                rev:4;
254         struct clk                       *clk;
255         phys_addr_t                       phy_start;
256         resource_size_t                   phy_size;
257         int                               irq;
258         int                               num_phy_chans;
259         int                               num_log_chans;
260         struct dma_device                 dma_both;
261         struct dma_device                 dma_slave;
262         struct dma_device                 dma_memcpy;
263         struct d40_chan                  *phy_chans;
264         struct d40_chan                  *log_chans;
265         struct d40_chan                 **lookup_log_chans;
266         struct d40_chan                 **lookup_phy_chans;
267         struct stedma40_platform_data    *plat_data;
268         /* Physical half channels */
269         struct d40_phy_res               *phy_res;
270         struct d40_lcla_pool              lcla_pool;
271         void                             *lcpa_base;
272         dma_addr_t                        phy_lcpa;
273         resource_size_t                   lcpa_size;
274         struct kmem_cache                *desc_slab;
275 };
276
277 /**
278  * struct d40_interrupt_lookup - lookup table for interrupt handler
279  *
280  * @src: Interrupt mask register.
281  * @clr: Interrupt clear register.
282  * @is_error: true if this is an error interrupt.
283  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
284  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
285  */
286 struct d40_interrupt_lookup {
287         u32 src;
288         u32 clr;
289         bool is_error;
290         int offset;
291 };
292
293 /**
294  * struct d40_reg_val - simple lookup struct
295  *
296  * @reg: The register.
297  * @val: The value that belongs to the register in reg.
298  */
299 struct d40_reg_val {
300         unsigned int reg;
301         unsigned int val;
302 };
303
304 static struct device *chan2dev(struct d40_chan *d40c)
305 {
306         return &d40c->chan.dev->device;
307 }
308
309 static bool chan_is_physical(struct d40_chan *chan)
310 {
311         return chan->log_num == D40_PHY_CHAN;
312 }
313
314 static bool chan_is_logical(struct d40_chan *chan)
315 {
316         return !chan_is_physical(chan);
317 }
318
319 static void __iomem *chan_base(struct d40_chan *chan)
320 {
321         return chan->base->virtbase + D40_DREG_PCBASE +
322                chan->phy_chan->num * D40_DREG_PCDELTA;
323 }
324
325 #define d40_err(dev, format, arg...)            \
326         dev_err(dev, "[%s] " format, __func__, ## arg)
327
328 #define chan_err(d40c, format, arg...)          \
329         d40_err(chan2dev(d40c), format, ## arg)
330
331 static int d40_pool_lli_alloc(struct d40_desc *d40d,
332                               int lli_len, bool is_log)
333 {
334         u32 align;
335         void *base;
336
337         if (is_log)
338                 align = sizeof(struct d40_log_lli);
339         else
340                 align = sizeof(struct d40_phy_lli);
341
342         if (lli_len == 1) {
343                 base = d40d->lli_pool.pre_alloc_lli;
344                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
345                 d40d->lli_pool.base = NULL;
346         } else {
347                 d40d->lli_pool.size = lli_len * 2 * align;
348
349                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
350                 d40d->lli_pool.base = base;
351
352                 if (d40d->lli_pool.base == NULL)
353                         return -ENOMEM;
354         }
355
356         if (is_log) {
357                 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
358                                               align);
359                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
360         } else {
361                 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
362                                               align);
363                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
364         }
365
366         return 0;
367 }
368
369 static void d40_pool_lli_free(struct d40_desc *d40d)
370 {
371         kfree(d40d->lli_pool.base);
372         d40d->lli_pool.base = NULL;
373         d40d->lli_pool.size = 0;
374         d40d->lli_log.src = NULL;
375         d40d->lli_log.dst = NULL;
376         d40d->lli_phy.src = NULL;
377         d40d->lli_phy.dst = NULL;
378 }
379
380 static int d40_lcla_alloc_one(struct d40_chan *d40c,
381                               struct d40_desc *d40d)
382 {
383         unsigned long flags;
384         int i;
385         int ret = -EINVAL;
386         int p;
387
388         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
389
390         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
391
392         /*
393          * Allocate both src and dst at the same time, therefore the half
394          * start on 1 since 0 can't be used since zero is used as end marker.
395          */
396         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
397                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
398                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
399                         d40d->lcla_alloc++;
400                         ret = i;
401                         break;
402                 }
403         }
404
405         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
406
407         return ret;
408 }
409
410 static int d40_lcla_free_all(struct d40_chan *d40c,
411                              struct d40_desc *d40d)
412 {
413         unsigned long flags;
414         int i;
415         int ret = -EINVAL;
416
417         if (chan_is_physical(d40c))
418                 return 0;
419
420         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
421
422         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
423                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
424                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
425                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
426                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
427                         d40d->lcla_alloc--;
428                         if (d40d->lcla_alloc == 0) {
429                                 ret = 0;
430                                 break;
431                         }
432                 }
433         }
434
435         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
436
437         return ret;
438
439 }
440
441 static void d40_desc_remove(struct d40_desc *d40d)
442 {
443         list_del(&d40d->node);
444 }
445
446 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
447 {
448         struct d40_desc *desc = NULL;
449
450         if (!list_empty(&d40c->client)) {
451                 struct d40_desc *d;
452                 struct d40_desc *_d;
453
454                 list_for_each_entry_safe(d, _d, &d40c->client, node)
455                         if (async_tx_test_ack(&d->txd)) {
456                                 d40_pool_lli_free(d);
457                                 d40_desc_remove(d);
458                                 desc = d;
459                                 memset(desc, 0, sizeof(*desc));
460                                 break;
461                         }
462         }
463
464         if (!desc)
465                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
466
467         if (desc)
468                 INIT_LIST_HEAD(&desc->node);
469
470         return desc;
471 }
472
473 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
474 {
475
476         d40_lcla_free_all(d40c, d40d);
477         kmem_cache_free(d40c->base->desc_slab, d40d);
478 }
479
480 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
481 {
482         list_add_tail(&desc->node, &d40c->active);
483 }
484
485 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
486 {
487         int curr_lcla = -EINVAL, next_lcla;
488
489         if (chan_is_physical(d40c)) {
490                 d40_phy_lli_write(d40c->base->virtbase,
491                                   d40c->phy_chan->num,
492                                   d40d->lli_phy.dst,
493                                   d40d->lli_phy.src);
494                 d40d->lli_current = d40d->lli_len;
495         } else {
496
497                 if ((d40d->lli_len - d40d->lli_current) > 1)
498                         curr_lcla = d40_lcla_alloc_one(d40c, d40d);
499
500                 d40_log_lli_lcpa_write(d40c->lcpa,
501                                        &d40d->lli_log.dst[d40d->lli_current],
502                                        &d40d->lli_log.src[d40d->lli_current],
503                                        curr_lcla);
504
505                 d40d->lli_current++;
506                 for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
507                         struct d40_log_lli *lcla;
508
509                         if (d40d->lli_current + 1 < d40d->lli_len)
510                                 next_lcla = d40_lcla_alloc_one(d40c, d40d);
511                         else
512                                 next_lcla = -EINVAL;
513
514                         lcla = d40c->base->lcla_pool.base +
515                                 d40c->phy_chan->num * 1024 +
516                                 8 * curr_lcla * 2;
517
518                         d40_log_lli_lcla_write(lcla,
519                                                &d40d->lli_log.dst[d40d->lli_current],
520                                                &d40d->lli_log.src[d40d->lli_current],
521                                                next_lcla);
522
523                         (void) dma_map_single(d40c->base->dev, lcla,
524                                               2 * sizeof(struct d40_log_lli),
525                                               DMA_TO_DEVICE);
526
527                         curr_lcla = next_lcla;
528
529                         if (curr_lcla == -EINVAL) {
530                                 d40d->lli_current++;
531                                 break;
532                         }
533
534                 }
535         }
536 }
537
538 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
539 {
540         struct d40_desc *d;
541
542         if (list_empty(&d40c->active))
543                 return NULL;
544
545         d = list_first_entry(&d40c->active,
546                              struct d40_desc,
547                              node);
548         return d;
549 }
550
551 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
552 {
553         list_add_tail(&desc->node, &d40c->queue);
554 }
555
556 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
557 {
558         struct d40_desc *d;
559
560         if (list_empty(&d40c->queue))
561                 return NULL;
562
563         d = list_first_entry(&d40c->queue,
564                              struct d40_desc,
565                              node);
566         return d;
567 }
568
569 static int d40_psize_2_burst_size(bool is_log, int psize)
570 {
571         if (is_log) {
572                 if (psize == STEDMA40_PSIZE_LOG_1)
573                         return 1;
574         } else {
575                 if (psize == STEDMA40_PSIZE_PHY_1)
576                         return 1;
577         }
578
579         return 2 << psize;
580 }
581
582 /*
583  * The dma only supports transmitting packages up to
584  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
585  * dma elements required to send the entire sg list
586  */
587 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
588 {
589         int dmalen;
590         u32 max_w = max(data_width1, data_width2);
591         u32 min_w = min(data_width1, data_width2);
592         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
593
594         if (seg_max > STEDMA40_MAX_SEG_SIZE)
595                 seg_max -= (1 << max_w);
596
597         if (!IS_ALIGNED(size, 1 << max_w))
598                 return -EINVAL;
599
600         if (size <= seg_max)
601                 dmalen = 1;
602         else {
603                 dmalen = size / seg_max;
604                 if (dmalen * seg_max < size)
605                         dmalen++;
606         }
607         return dmalen;
608 }
609
610 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
611                            u32 data_width1, u32 data_width2)
612 {
613         struct scatterlist *sg;
614         int i;
615         int len = 0;
616         int ret;
617
618         for_each_sg(sgl, sg, sg_len, i) {
619                 ret = d40_size_2_dmalen(sg_dma_len(sg),
620                                         data_width1, data_width2);
621                 if (ret < 0)
622                         return ret;
623                 len += ret;
624         }
625         return len;
626 }
627
628 /* Support functions for logical channels */
629
630 static int d40_channel_execute_command(struct d40_chan *d40c,
631                                        enum d40_command command)
632 {
633         u32 status;
634         int i;
635         void __iomem *active_reg;
636         int ret = 0;
637         unsigned long flags;
638         u32 wmask;
639
640         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
641
642         if (d40c->phy_chan->num % 2 == 0)
643                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
644         else
645                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
646
647         if (command == D40_DMA_SUSPEND_REQ) {
648                 status = (readl(active_reg) &
649                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
650                         D40_CHAN_POS(d40c->phy_chan->num);
651
652                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
653                         goto done;
654         }
655
656         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
657         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
658                active_reg);
659
660         if (command == D40_DMA_SUSPEND_REQ) {
661
662                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
663                         status = (readl(active_reg) &
664                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
665                                 D40_CHAN_POS(d40c->phy_chan->num);
666
667                         cpu_relax();
668                         /*
669                          * Reduce the number of bus accesses while
670                          * waiting for the DMA to suspend.
671                          */
672                         udelay(3);
673
674                         if (status == D40_DMA_STOP ||
675                             status == D40_DMA_SUSPENDED)
676                                 break;
677                 }
678
679                 if (i == D40_SUSPEND_MAX_IT) {
680                         chan_err(d40c,
681                                 "unable to suspend the chl %d (log: %d) status %x\n",
682                                 d40c->phy_chan->num, d40c->log_num,
683                                 status);
684                         dump_stack();
685                         ret = -EBUSY;
686                 }
687
688         }
689 done:
690         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
691         return ret;
692 }
693
694 static void d40_term_all(struct d40_chan *d40c)
695 {
696         struct d40_desc *d40d;
697
698         /* Release active descriptors */
699         while ((d40d = d40_first_active_get(d40c))) {
700                 d40_desc_remove(d40d);
701                 d40_desc_free(d40c, d40d);
702         }
703
704         /* Release queued descriptors waiting for transfer */
705         while ((d40d = d40_first_queued(d40c))) {
706                 d40_desc_remove(d40d);
707                 d40_desc_free(d40c, d40d);
708         }
709
710
711         d40c->pending_tx = 0;
712         d40c->busy = false;
713 }
714
715 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
716                                    u32 event, int reg)
717 {
718         void __iomem *addr = chan_base(d40c) + reg;
719         int tries;
720
721         if (!enable) {
722                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
723                        | ~D40_EVENTLINE_MASK(event), addr);
724                 return;
725         }
726
727         /*
728          * The hardware sometimes doesn't register the enable when src and dst
729          * event lines are active on the same logical channel.  Retry to ensure
730          * it does.  Usually only one retry is sufficient.
731          */
732         tries = 100;
733         while (--tries) {
734                 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
735                        | ~D40_EVENTLINE_MASK(event), addr);
736
737                 if (readl(addr) & D40_EVENTLINE_MASK(event))
738                         break;
739         }
740
741         if (tries != 99)
742                 dev_dbg(chan2dev(d40c),
743                         "[%s] workaround enable S%cLNK (%d tries)\n",
744                         __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
745                         100 - tries);
746
747         WARN_ON(!tries);
748 }
749
750 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
751 {
752         unsigned long flags;
753
754         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
755
756         /* Enable event line connected to device (or memcpy) */
757         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
758             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
759                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
760
761                 __d40_config_set_event(d40c, do_enable, event,
762                                        D40_CHAN_REG_SSLNK);
763         }
764
765         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
766                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
767
768                 __d40_config_set_event(d40c, do_enable, event,
769                                        D40_CHAN_REG_SDLNK);
770         }
771
772         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
773 }
774
775 static u32 d40_chan_has_events(struct d40_chan *d40c)
776 {
777         void __iomem *chanbase = chan_base(d40c);
778         u32 val;
779
780         val = readl(chanbase + D40_CHAN_REG_SSLNK);
781         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
782
783         return val;
784 }
785
786 static u32 d40_get_prmo(struct d40_chan *d40c)
787 {
788         static const unsigned int phy_map[] = {
789                 [STEDMA40_PCHAN_BASIC_MODE]
790                         = D40_DREG_PRMO_PCHAN_BASIC,
791                 [STEDMA40_PCHAN_MODULO_MODE]
792                         = D40_DREG_PRMO_PCHAN_MODULO,
793                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
794                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
795         };
796         static const unsigned int log_map[] = {
797                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
798                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
799                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
800                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
801                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
802                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
803         };
804
805         if (chan_is_physical(d40c))
806                 return phy_map[d40c->dma_cfg.mode_opt];
807         else
808                 return log_map[d40c->dma_cfg.mode_opt];
809 }
810
811 static void d40_config_write(struct d40_chan *d40c)
812 {
813         u32 addr_base;
814         u32 var;
815
816         /* Odd addresses are even addresses + 4 */
817         addr_base = (d40c->phy_chan->num % 2) * 4;
818         /* Setup channel mode to logical or physical */
819         var = ((u32)(chan_is_logical(d40c)) + 1) <<
820                 D40_CHAN_POS(d40c->phy_chan->num);
821         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
822
823         /* Setup operational mode option register */
824         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
825
826         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
827
828         if (chan_is_logical(d40c)) {
829                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
830                            & D40_SREG_ELEM_LOG_LIDX_MASK;
831                 void __iomem *chanbase = chan_base(d40c);
832
833                 /* Set default config for CFG reg */
834                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
835                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
836
837                 /* Set LIDX for lcla */
838                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
839                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
840         }
841 }
842
843 static u32 d40_residue(struct d40_chan *d40c)
844 {
845         u32 num_elt;
846
847         if (chan_is_logical(d40c))
848                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
849                         >> D40_MEM_LCSP2_ECNT_POS;
850         else {
851                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
852                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
853                           >> D40_SREG_ELEM_PHY_ECNT_POS;
854         }
855
856         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
857 }
858
859 static bool d40_tx_is_linked(struct d40_chan *d40c)
860 {
861         bool is_link;
862
863         if (chan_is_logical(d40c))
864                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
865         else
866                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
867                           & D40_SREG_LNK_PHYS_LNK_MASK;
868
869         return is_link;
870 }
871
872 static int d40_pause(struct dma_chan *chan)
873 {
874         struct d40_chan *d40c =
875                 container_of(chan, struct d40_chan, chan);
876         int res = 0;
877         unsigned long flags;
878
879         if (!d40c->busy)
880                 return 0;
881
882         spin_lock_irqsave(&d40c->lock, flags);
883
884         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
885         if (res == 0) {
886                 if (chan_is_logical(d40c)) {
887                         d40_config_set_event(d40c, false);
888                         /* Resume the other logical channels if any */
889                         if (d40_chan_has_events(d40c))
890                                 res = d40_channel_execute_command(d40c,
891                                                                   D40_DMA_RUN);
892                 }
893         }
894
895         spin_unlock_irqrestore(&d40c->lock, flags);
896         return res;
897 }
898
899 static int d40_resume(struct dma_chan *chan)
900 {
901         struct d40_chan *d40c =
902                 container_of(chan, struct d40_chan, chan);
903         int res = 0;
904         unsigned long flags;
905
906         if (!d40c->busy)
907                 return 0;
908
909         spin_lock_irqsave(&d40c->lock, flags);
910
911         if (d40c->base->rev == 0)
912                 if (chan_is_logical(d40c)) {
913                         res = d40_channel_execute_command(d40c,
914                                                           D40_DMA_SUSPEND_REQ);
915                         goto no_suspend;
916                 }
917
918         /* If bytes left to transfer or linked tx resume job */
919         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
920
921                 if (chan_is_logical(d40c))
922                         d40_config_set_event(d40c, true);
923
924                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
925         }
926
927 no_suspend:
928         spin_unlock_irqrestore(&d40c->lock, flags);
929         return res;
930 }
931
932 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
933 {
934         struct d40_chan *d40c = container_of(tx->chan,
935                                              struct d40_chan,
936                                              chan);
937         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
938         unsigned long flags;
939
940         spin_lock_irqsave(&d40c->lock, flags);
941
942         d40c->chan.cookie++;
943
944         if (d40c->chan.cookie < 0)
945                 d40c->chan.cookie = 1;
946
947         d40d->txd.cookie = d40c->chan.cookie;
948
949         d40_desc_queue(d40c, d40d);
950
951         spin_unlock_irqrestore(&d40c->lock, flags);
952
953         return tx->cookie;
954 }
955
956 static int d40_start(struct d40_chan *d40c)
957 {
958         if (d40c->base->rev == 0) {
959                 int err;
960
961                 if (chan_is_logical(d40c)) {
962                         err = d40_channel_execute_command(d40c,
963                                                           D40_DMA_SUSPEND_REQ);
964                         if (err)
965                                 return err;
966                 }
967         }
968
969         if (chan_is_logical(d40c))
970                 d40_config_set_event(d40c, true);
971
972         return d40_channel_execute_command(d40c, D40_DMA_RUN);
973 }
974
975 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
976 {
977         struct d40_desc *d40d;
978         int err;
979
980         /* Start queued jobs, if any */
981         d40d = d40_first_queued(d40c);
982
983         if (d40d != NULL) {
984                 d40c->busy = true;
985
986                 /* Remove from queue */
987                 d40_desc_remove(d40d);
988
989                 /* Add to active queue */
990                 d40_desc_submit(d40c, d40d);
991
992                 /* Initiate DMA job */
993                 d40_desc_load(d40c, d40d);
994
995                 /* Start dma job */
996                 err = d40_start(d40c);
997
998                 if (err)
999                         return NULL;
1000         }
1001
1002         return d40d;
1003 }
1004
1005 /* called from interrupt context */
1006 static void dma_tc_handle(struct d40_chan *d40c)
1007 {
1008         struct d40_desc *d40d;
1009
1010         /* Get first active entry from list */
1011         d40d = d40_first_active_get(d40c);
1012
1013         if (d40d == NULL)
1014                 return;
1015
1016         d40_lcla_free_all(d40c, d40d);
1017
1018         if (d40d->lli_current < d40d->lli_len) {
1019                 d40_desc_load(d40c, d40d);
1020                 /* Start dma job */
1021                 (void) d40_start(d40c);
1022                 return;
1023         }
1024
1025         if (d40_queue_start(d40c) == NULL)
1026                 d40c->busy = false;
1027
1028         d40c->pending_tx++;
1029         tasklet_schedule(&d40c->tasklet);
1030
1031 }
1032
1033 static void dma_tasklet(unsigned long data)
1034 {
1035         struct d40_chan *d40c = (struct d40_chan *) data;
1036         struct d40_desc *d40d;
1037         unsigned long flags;
1038         dma_async_tx_callback callback;
1039         void *callback_param;
1040
1041         spin_lock_irqsave(&d40c->lock, flags);
1042
1043         /* Get first active entry from list */
1044         d40d = d40_first_active_get(d40c);
1045
1046         if (d40d == NULL)
1047                 goto err;
1048
1049         d40c->completed = d40d->txd.cookie;
1050
1051         /*
1052          * If terminating a channel pending_tx is set to zero.
1053          * This prevents any finished active jobs to return to the client.
1054          */
1055         if (d40c->pending_tx == 0) {
1056                 spin_unlock_irqrestore(&d40c->lock, flags);
1057                 return;
1058         }
1059
1060         /* Callback to client */
1061         callback = d40d->txd.callback;
1062         callback_param = d40d->txd.callback_param;
1063
1064         if (async_tx_test_ack(&d40d->txd)) {
1065                 d40_pool_lli_free(d40d);
1066                 d40_desc_remove(d40d);
1067                 d40_desc_free(d40c, d40d);
1068         } else {
1069                 if (!d40d->is_in_client_list) {
1070                         d40_desc_remove(d40d);
1071                         d40_lcla_free_all(d40c, d40d);
1072                         list_add_tail(&d40d->node, &d40c->client);
1073                         d40d->is_in_client_list = true;
1074                 }
1075         }
1076
1077         d40c->pending_tx--;
1078
1079         if (d40c->pending_tx)
1080                 tasklet_schedule(&d40c->tasklet);
1081
1082         spin_unlock_irqrestore(&d40c->lock, flags);
1083
1084         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1085                 callback(callback_param);
1086
1087         return;
1088
1089  err:
1090         /* Rescue manouver if receiving double interrupts */
1091         if (d40c->pending_tx > 0)
1092                 d40c->pending_tx--;
1093         spin_unlock_irqrestore(&d40c->lock, flags);
1094 }
1095
1096 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1097 {
1098         static const struct d40_interrupt_lookup il[] = {
1099                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1100                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1101                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1102                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1103                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1104                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1105                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1106                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1107                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1108                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1109         };
1110
1111         int i;
1112         u32 regs[ARRAY_SIZE(il)];
1113         u32 idx;
1114         u32 row;
1115         long chan = -1;
1116         struct d40_chan *d40c;
1117         unsigned long flags;
1118         struct d40_base *base = data;
1119
1120         spin_lock_irqsave(&base->interrupt_lock, flags);
1121
1122         /* Read interrupt status of both logical and physical channels */
1123         for (i = 0; i < ARRAY_SIZE(il); i++)
1124                 regs[i] = readl(base->virtbase + il[i].src);
1125
1126         for (;;) {
1127
1128                 chan = find_next_bit((unsigned long *)regs,
1129                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1130
1131                 /* No more set bits found? */
1132                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1133                         break;
1134
1135                 row = chan / BITS_PER_LONG;
1136                 idx = chan & (BITS_PER_LONG - 1);
1137
1138                 /* ACK interrupt */
1139                 writel(1 << idx, base->virtbase + il[row].clr);
1140
1141                 if (il[row].offset == D40_PHY_CHAN)
1142                         d40c = base->lookup_phy_chans[idx];
1143                 else
1144                         d40c = base->lookup_log_chans[il[row].offset + idx];
1145                 spin_lock(&d40c->lock);
1146
1147                 if (!il[row].is_error)
1148                         dma_tc_handle(d40c);
1149                 else
1150                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1151                                 chan, il[row].offset, idx);
1152
1153                 spin_unlock(&d40c->lock);
1154         }
1155
1156         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1157
1158         return IRQ_HANDLED;
1159 }
1160
1161 static int d40_validate_conf(struct d40_chan *d40c,
1162                              struct stedma40_chan_cfg *conf)
1163 {
1164         int res = 0;
1165         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1166         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1167         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1168
1169         if (!conf->dir) {
1170                 chan_err(d40c, "Invalid direction.\n");
1171                 res = -EINVAL;
1172         }
1173
1174         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1175             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1176             d40c->runtime_addr == 0) {
1177
1178                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1179                          conf->dst_dev_type);
1180                 res = -EINVAL;
1181         }
1182
1183         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1184             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1185             d40c->runtime_addr == 0) {
1186                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1187                         conf->src_dev_type);
1188                 res = -EINVAL;
1189         }
1190
1191         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1192             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1193                 chan_err(d40c, "Invalid dst\n");
1194                 res = -EINVAL;
1195         }
1196
1197         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1198             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1199                 chan_err(d40c, "Invalid src\n");
1200                 res = -EINVAL;
1201         }
1202
1203         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1204             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1205                 chan_err(d40c, "No event line\n");
1206                 res = -EINVAL;
1207         }
1208
1209         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1210             (src_event_group != dst_event_group)) {
1211                 chan_err(d40c, "Invalid event group\n");
1212                 res = -EINVAL;
1213         }
1214
1215         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1216                 /*
1217                  * DMAC HW supports it. Will be added to this driver,
1218                  * in case any dma client requires it.
1219                  */
1220                 chan_err(d40c, "periph to periph not supported\n");
1221                 res = -EINVAL;
1222         }
1223
1224         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1225             (1 << conf->src_info.data_width) !=
1226             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1227             (1 << conf->dst_info.data_width)) {
1228                 /*
1229                  * The DMAC hardware only supports
1230                  * src (burst x width) == dst (burst x width)
1231                  */
1232
1233                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1234                 res = -EINVAL;
1235         }
1236
1237         return res;
1238 }
1239
1240 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1241                                int log_event_line, bool is_log)
1242 {
1243         unsigned long flags;
1244         spin_lock_irqsave(&phy->lock, flags);
1245         if (!is_log) {
1246                 /* Physical interrupts are masked per physical full channel */
1247                 if (phy->allocated_src == D40_ALLOC_FREE &&
1248                     phy->allocated_dst == D40_ALLOC_FREE) {
1249                         phy->allocated_dst = D40_ALLOC_PHY;
1250                         phy->allocated_src = D40_ALLOC_PHY;
1251                         goto found;
1252                 } else
1253                         goto not_found;
1254         }
1255
1256         /* Logical channel */
1257         if (is_src) {
1258                 if (phy->allocated_src == D40_ALLOC_PHY)
1259                         goto not_found;
1260
1261                 if (phy->allocated_src == D40_ALLOC_FREE)
1262                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1263
1264                 if (!(phy->allocated_src & (1 << log_event_line))) {
1265                         phy->allocated_src |= 1 << log_event_line;
1266                         goto found;
1267                 } else
1268                         goto not_found;
1269         } else {
1270                 if (phy->allocated_dst == D40_ALLOC_PHY)
1271                         goto not_found;
1272
1273                 if (phy->allocated_dst == D40_ALLOC_FREE)
1274                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1275
1276                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1277                         phy->allocated_dst |= 1 << log_event_line;
1278                         goto found;
1279                 } else
1280                         goto not_found;
1281         }
1282
1283 not_found:
1284         spin_unlock_irqrestore(&phy->lock, flags);
1285         return false;
1286 found:
1287         spin_unlock_irqrestore(&phy->lock, flags);
1288         return true;
1289 }
1290
1291 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1292                                int log_event_line)
1293 {
1294         unsigned long flags;
1295         bool is_free = false;
1296
1297         spin_lock_irqsave(&phy->lock, flags);
1298         if (!log_event_line) {
1299                 phy->allocated_dst = D40_ALLOC_FREE;
1300                 phy->allocated_src = D40_ALLOC_FREE;
1301                 is_free = true;
1302                 goto out;
1303         }
1304
1305         /* Logical channel */
1306         if (is_src) {
1307                 phy->allocated_src &= ~(1 << log_event_line);
1308                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1309                         phy->allocated_src = D40_ALLOC_FREE;
1310         } else {
1311                 phy->allocated_dst &= ~(1 << log_event_line);
1312                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1313                         phy->allocated_dst = D40_ALLOC_FREE;
1314         }
1315
1316         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1317                    D40_ALLOC_FREE);
1318
1319 out:
1320         spin_unlock_irqrestore(&phy->lock, flags);
1321
1322         return is_free;
1323 }
1324
1325 static int d40_allocate_channel(struct d40_chan *d40c)
1326 {
1327         int dev_type;
1328         int event_group;
1329         int event_line;
1330         struct d40_phy_res *phys;
1331         int i;
1332         int j;
1333         int log_num;
1334         bool is_src;
1335         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1336
1337         phys = d40c->base->phy_res;
1338
1339         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1340                 dev_type = d40c->dma_cfg.src_dev_type;
1341                 log_num = 2 * dev_type;
1342                 is_src = true;
1343         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1344                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1345                 /* dst event lines are used for logical memcpy */
1346                 dev_type = d40c->dma_cfg.dst_dev_type;
1347                 log_num = 2 * dev_type + 1;
1348                 is_src = false;
1349         } else
1350                 return -EINVAL;
1351
1352         event_group = D40_TYPE_TO_GROUP(dev_type);
1353         event_line = D40_TYPE_TO_EVENT(dev_type);
1354
1355         if (!is_log) {
1356                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1357                         /* Find physical half channel */
1358                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1359
1360                                 if (d40_alloc_mask_set(&phys[i], is_src,
1361                                                        0, is_log))
1362                                         goto found_phy;
1363                         }
1364                 } else
1365                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1366                                 int phy_num = j  + event_group * 2;
1367                                 for (i = phy_num; i < phy_num + 2; i++) {
1368                                         if (d40_alloc_mask_set(&phys[i],
1369                                                                is_src,
1370                                                                0,
1371                                                                is_log))
1372                                                 goto found_phy;
1373                                 }
1374                         }
1375                 return -EINVAL;
1376 found_phy:
1377                 d40c->phy_chan = &phys[i];
1378                 d40c->log_num = D40_PHY_CHAN;
1379                 goto out;
1380         }
1381         if (dev_type == -1)
1382                 return -EINVAL;
1383
1384         /* Find logical channel */
1385         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1386                 int phy_num = j + event_group * 2;
1387                 /*
1388                  * Spread logical channels across all available physical rather
1389                  * than pack every logical channel at the first available phy
1390                  * channels.
1391                  */
1392                 if (is_src) {
1393                         for (i = phy_num; i < phy_num + 2; i++) {
1394                                 if (d40_alloc_mask_set(&phys[i], is_src,
1395                                                        event_line, is_log))
1396                                         goto found_log;
1397                         }
1398                 } else {
1399                         for (i = phy_num + 1; i >= phy_num; i--) {
1400                                 if (d40_alloc_mask_set(&phys[i], is_src,
1401                                                        event_line, is_log))
1402                                         goto found_log;
1403                         }
1404                 }
1405         }
1406         return -EINVAL;
1407
1408 found_log:
1409         d40c->phy_chan = &phys[i];
1410         d40c->log_num = log_num;
1411 out:
1412
1413         if (is_log)
1414                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1415         else
1416                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1417
1418         return 0;
1419
1420 }
1421
1422 static int d40_config_memcpy(struct d40_chan *d40c)
1423 {
1424         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1425
1426         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1427                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1428                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1429                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1430                         memcpy[d40c->chan.chan_id];
1431
1432         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1433                    dma_has_cap(DMA_SLAVE, cap)) {
1434                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1435         } else {
1436                 chan_err(d40c, "No memcpy\n");
1437                 return -EINVAL;
1438         }
1439
1440         return 0;
1441 }
1442
1443
1444 static int d40_free_dma(struct d40_chan *d40c)
1445 {
1446
1447         int res = 0;
1448         u32 event;
1449         struct d40_phy_res *phy = d40c->phy_chan;
1450         bool is_src;
1451         struct d40_desc *d;
1452         struct d40_desc *_d;
1453
1454
1455         /* Terminate all queued and active transfers */
1456         d40_term_all(d40c);
1457
1458         /* Release client owned descriptors */
1459         if (!list_empty(&d40c->client))
1460                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1461                         d40_pool_lli_free(d);
1462                         d40_desc_remove(d);
1463                         d40_desc_free(d40c, d);
1464                 }
1465
1466         if (phy == NULL) {
1467                 chan_err(d40c, "phy == null\n");
1468                 return -EINVAL;
1469         }
1470
1471         if (phy->allocated_src == D40_ALLOC_FREE &&
1472             phy->allocated_dst == D40_ALLOC_FREE) {
1473                 chan_err(d40c, "channel already free\n");
1474                 return -EINVAL;
1475         }
1476
1477         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1478             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1479                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1480                 is_src = false;
1481         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1482                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1483                 is_src = true;
1484         } else {
1485                 chan_err(d40c, "Unknown direction\n");
1486                 return -EINVAL;
1487         }
1488
1489         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1490         if (res) {
1491                 chan_err(d40c, "suspend failed\n");
1492                 return res;
1493         }
1494
1495         if (chan_is_logical(d40c)) {
1496                 /* Release logical channel, deactivate the event line */
1497
1498                 d40_config_set_event(d40c, false);
1499                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1500
1501                 /*
1502                  * Check if there are more logical allocation
1503                  * on this phy channel.
1504                  */
1505                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1506                         /* Resume the other logical channels if any */
1507                         if (d40_chan_has_events(d40c)) {
1508                                 res = d40_channel_execute_command(d40c,
1509                                                                   D40_DMA_RUN);
1510                                 if (res) {
1511                                         chan_err(d40c,
1512                                                 "Executing RUN command\n");
1513                                         return res;
1514                                 }
1515                         }
1516                         return 0;
1517                 }
1518         } else {
1519                 (void) d40_alloc_mask_free(phy, is_src, 0);
1520         }
1521
1522         /* Release physical channel */
1523         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1524         if (res) {
1525                 chan_err(d40c, "Failed to stop channel\n");
1526                 return res;
1527         }
1528         d40c->phy_chan = NULL;
1529         d40c->configured = false;
1530         d40c->base->lookup_phy_chans[phy->num] = NULL;
1531
1532         return 0;
1533 }
1534
1535 static bool d40_is_paused(struct d40_chan *d40c)
1536 {
1537         void __iomem *chanbase = chan_base(d40c);
1538         bool is_paused = false;
1539         unsigned long flags;
1540         void __iomem *active_reg;
1541         u32 status;
1542         u32 event;
1543
1544         spin_lock_irqsave(&d40c->lock, flags);
1545
1546         if (chan_is_physical(d40c)) {
1547                 if (d40c->phy_chan->num % 2 == 0)
1548                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1549                 else
1550                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1551
1552                 status = (readl(active_reg) &
1553                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1554                         D40_CHAN_POS(d40c->phy_chan->num);
1555                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1556                         is_paused = true;
1557
1558                 goto _exit;
1559         }
1560
1561         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1562             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1563                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1564                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1565         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1566                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1567                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1568         } else {
1569                 chan_err(d40c, "Unknown direction\n");
1570                 goto _exit;
1571         }
1572
1573         status = (status & D40_EVENTLINE_MASK(event)) >>
1574                 D40_EVENTLINE_POS(event);
1575
1576         if (status != D40_DMA_RUN)
1577                 is_paused = true;
1578 _exit:
1579         spin_unlock_irqrestore(&d40c->lock, flags);
1580         return is_paused;
1581
1582 }
1583
1584
1585 static u32 stedma40_residue(struct dma_chan *chan)
1586 {
1587         struct d40_chan *d40c =
1588                 container_of(chan, struct d40_chan, chan);
1589         u32 bytes_left;
1590         unsigned long flags;
1591
1592         spin_lock_irqsave(&d40c->lock, flags);
1593         bytes_left = d40_residue(d40c);
1594         spin_unlock_irqrestore(&d40c->lock, flags);
1595
1596         return bytes_left;
1597 }
1598
1599 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1600                                                    struct scatterlist *sgl_dst,
1601                                                    struct scatterlist *sgl_src,
1602                                                    unsigned int sgl_len,
1603                                                    unsigned long dma_flags)
1604 {
1605         int res;
1606         struct d40_desc *d40d;
1607         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1608                                              chan);
1609         unsigned long flags;
1610
1611         if (d40c->phy_chan == NULL) {
1612                 chan_err(d40c, "Unallocated channel.\n");
1613                 return ERR_PTR(-EINVAL);
1614         }
1615
1616         spin_lock_irqsave(&d40c->lock, flags);
1617         d40d = d40_desc_get(d40c);
1618
1619         if (d40d == NULL)
1620                 goto err;
1621
1622         d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
1623                                         d40c->dma_cfg.src_info.data_width,
1624                                         d40c->dma_cfg.dst_info.data_width);
1625         if (d40d->lli_len < 0) {
1626                 chan_err(d40c, "Unaligned size\n");
1627                 goto err;
1628         }
1629
1630         d40d->lli_current = 0;
1631         d40d->txd.flags = dma_flags;
1632
1633         if (chan_is_logical(d40c)) {
1634
1635                 if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1636                         chan_err(d40c, "Out of memory\n");
1637                         goto err;
1638                 }
1639
1640                 (void) d40_log_sg_to_lli(sgl_src,
1641                                          sgl_len,
1642                                          d40d->lli_log.src,
1643                                          d40c->log_def.lcsp1,
1644                                          d40c->dma_cfg.src_info.data_width,
1645                                          d40c->dma_cfg.dst_info.data_width);
1646
1647                 (void) d40_log_sg_to_lli(sgl_dst,
1648                                          sgl_len,
1649                                          d40d->lli_log.dst,
1650                                          d40c->log_def.lcsp3,
1651                                          d40c->dma_cfg.dst_info.data_width,
1652                                          d40c->dma_cfg.src_info.data_width);
1653         } else {
1654                 if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
1655                         chan_err(d40c, "Out of memory\n");
1656                         goto err;
1657                 }
1658
1659                 res = d40_phy_sg_to_lli(sgl_src,
1660                                         sgl_len,
1661                                         0,
1662                                         d40d->lli_phy.src,
1663                                         virt_to_phys(d40d->lli_phy.src),
1664                                         d40c->src_def_cfg,
1665                                         d40c->dma_cfg.src_info.data_width,
1666                                         d40c->dma_cfg.dst_info.data_width,
1667                                         d40c->dma_cfg.src_info.psize);
1668
1669                 if (res < 0)
1670                         goto err;
1671
1672                 res = d40_phy_sg_to_lli(sgl_dst,
1673                                         sgl_len,
1674                                         0,
1675                                         d40d->lli_phy.dst,
1676                                         virt_to_phys(d40d->lli_phy.dst),
1677                                         d40c->dst_def_cfg,
1678                                         d40c->dma_cfg.dst_info.data_width,
1679                                         d40c->dma_cfg.src_info.data_width,
1680                                         d40c->dma_cfg.dst_info.psize);
1681
1682                 if (res < 0)
1683                         goto err;
1684
1685                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1686                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1687         }
1688
1689         dma_async_tx_descriptor_init(&d40d->txd, chan);
1690
1691         d40d->txd.tx_submit = d40_tx_submit;
1692
1693         spin_unlock_irqrestore(&d40c->lock, flags);
1694
1695         return &d40d->txd;
1696 err:
1697         if (d40d)
1698                 d40_desc_free(d40c, d40d);
1699         spin_unlock_irqrestore(&d40c->lock, flags);
1700         return NULL;
1701 }
1702 EXPORT_SYMBOL(stedma40_memcpy_sg);
1703
1704 bool stedma40_filter(struct dma_chan *chan, void *data)
1705 {
1706         struct stedma40_chan_cfg *info = data;
1707         struct d40_chan *d40c =
1708                 container_of(chan, struct d40_chan, chan);
1709         int err;
1710
1711         if (data) {
1712                 err = d40_validate_conf(d40c, info);
1713                 if (!err)
1714                         d40c->dma_cfg = *info;
1715         } else
1716                 err = d40_config_memcpy(d40c);
1717
1718         if (!err)
1719                 d40c->configured = true;
1720
1721         return err == 0;
1722 }
1723 EXPORT_SYMBOL(stedma40_filter);
1724
1725 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1726 {
1727         bool realtime = d40c->dma_cfg.realtime;
1728         bool highprio = d40c->dma_cfg.high_priority;
1729         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1730         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1731         u32 event = D40_TYPE_TO_EVENT(dev_type);
1732         u32 group = D40_TYPE_TO_GROUP(dev_type);
1733         u32 bit = 1 << event;
1734
1735         /* Destination event lines are stored in the upper halfword */
1736         if (!src)
1737                 bit <<= 16;
1738
1739         writel(bit, d40c->base->virtbase + prioreg + group * 4);
1740         writel(bit, d40c->base->virtbase + rtreg + group * 4);
1741 }
1742
1743 static void d40_set_prio_realtime(struct d40_chan *d40c)
1744 {
1745         if (d40c->base->rev < 3)
1746                 return;
1747
1748         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1749             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1750                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1751
1752         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1753             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1754                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1755 }
1756
1757 /* DMA ENGINE functions */
1758 static int d40_alloc_chan_resources(struct dma_chan *chan)
1759 {
1760         int err;
1761         unsigned long flags;
1762         struct d40_chan *d40c =
1763                 container_of(chan, struct d40_chan, chan);
1764         bool is_free_phy;
1765         spin_lock_irqsave(&d40c->lock, flags);
1766
1767         d40c->completed = chan->cookie = 1;
1768
1769         /* If no dma configuration is set use default configuration (memcpy) */
1770         if (!d40c->configured) {
1771                 err = d40_config_memcpy(d40c);
1772                 if (err) {
1773                         chan_err(d40c, "Failed to configure memcpy channel\n");
1774                         goto fail;
1775                 }
1776         }
1777         is_free_phy = (d40c->phy_chan == NULL);
1778
1779         err = d40_allocate_channel(d40c);
1780         if (err) {
1781                 chan_err(d40c, "Failed to allocate channel\n");
1782                 goto fail;
1783         }
1784
1785         /* Fill in basic CFG register values */
1786         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1787                     &d40c->dst_def_cfg, chan_is_logical(d40c));
1788
1789         d40_set_prio_realtime(d40c);
1790
1791         if (chan_is_logical(d40c)) {
1792                 d40_log_cfg(&d40c->dma_cfg,
1793                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1794
1795                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1796                         d40c->lcpa = d40c->base->lcpa_base +
1797                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1798                 else
1799                         d40c->lcpa = d40c->base->lcpa_base +
1800                           d40c->dma_cfg.dst_dev_type *
1801                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1802         }
1803
1804         /*
1805          * Only write channel configuration to the DMA if the physical
1806          * resource is free. In case of multiple logical channels
1807          * on the same physical resource, only the first write is necessary.
1808          */
1809         if (is_free_phy)
1810                 d40_config_write(d40c);
1811 fail:
1812         spin_unlock_irqrestore(&d40c->lock, flags);
1813         return err;
1814 }
1815
1816 static void d40_free_chan_resources(struct dma_chan *chan)
1817 {
1818         struct d40_chan *d40c =
1819                 container_of(chan, struct d40_chan, chan);
1820         int err;
1821         unsigned long flags;
1822
1823         if (d40c->phy_chan == NULL) {
1824                 chan_err(d40c, "Cannot free unallocated channel\n");
1825                 return;
1826         }
1827
1828
1829         spin_lock_irqsave(&d40c->lock, flags);
1830
1831         err = d40_free_dma(d40c);
1832
1833         if (err)
1834                 chan_err(d40c, "Failed to free channel\n");
1835         spin_unlock_irqrestore(&d40c->lock, flags);
1836 }
1837
1838 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1839                                                        dma_addr_t dst,
1840                                                        dma_addr_t src,
1841                                                        size_t size,
1842                                                        unsigned long dma_flags)
1843 {
1844         struct d40_desc *d40d;
1845         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1846                                              chan);
1847         unsigned long flags;
1848
1849         if (d40c->phy_chan == NULL) {
1850                 chan_err(d40c, "Channel is not allocated.\n");
1851                 return ERR_PTR(-EINVAL);
1852         }
1853
1854         spin_lock_irqsave(&d40c->lock, flags);
1855         d40d = d40_desc_get(d40c);
1856
1857         if (d40d == NULL) {
1858                 chan_err(d40c, "Descriptor is NULL\n");
1859                 goto err;
1860         }
1861
1862         d40d->txd.flags = dma_flags;
1863         d40d->lli_len = d40_size_2_dmalen(size,
1864                                           d40c->dma_cfg.src_info.data_width,
1865                                           d40c->dma_cfg.dst_info.data_width);
1866         if (d40d->lli_len < 0) {
1867                 chan_err(d40c, "Unaligned size\n");
1868                 goto err;
1869         }
1870
1871
1872         dma_async_tx_descriptor_init(&d40d->txd, chan);
1873
1874         d40d->txd.tx_submit = d40_tx_submit;
1875
1876         if (chan_is_logical(d40c)) {
1877
1878                 if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1879                         chan_err(d40c, "Out of memory\n");
1880                         goto err;
1881                 }
1882                 d40d->lli_current = 0;
1883
1884                 if (d40_log_buf_to_lli(d40d->lli_log.src,
1885                                        src,
1886                                        size,
1887                                        d40c->log_def.lcsp1,
1888                                        d40c->dma_cfg.src_info.data_width,
1889                                        d40c->dma_cfg.dst_info.data_width,
1890                                        true) == NULL)
1891                         goto err;
1892
1893                 if (d40_log_buf_to_lli(d40d->lli_log.dst,
1894                                        dst,
1895                                        size,
1896                                        d40c->log_def.lcsp3,
1897                                        d40c->dma_cfg.dst_info.data_width,
1898                                        d40c->dma_cfg.src_info.data_width,
1899                                        true) == NULL)
1900                         goto err;
1901
1902         } else {
1903
1904                 if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
1905                         chan_err(d40c, "Out of memory\n");
1906                         goto err;
1907                 }
1908
1909                 if (d40_phy_buf_to_lli(d40d->lli_phy.src,
1910                                        src,
1911                                        size,
1912                                        d40c->dma_cfg.src_info.psize,
1913                                        0,
1914                                        d40c->src_def_cfg,
1915                                        true,
1916                                        d40c->dma_cfg.src_info.data_width,
1917                                        d40c->dma_cfg.dst_info.data_width,
1918                                        false) == NULL)
1919                         goto err;
1920
1921                 if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
1922                                        dst,
1923                                        size,
1924                                        d40c->dma_cfg.dst_info.psize,
1925                                        0,
1926                                        d40c->dst_def_cfg,
1927                                        true,
1928                                        d40c->dma_cfg.dst_info.data_width,
1929                                        d40c->dma_cfg.src_info.data_width,
1930                                        false) == NULL)
1931                         goto err;
1932
1933                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1934                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1935         }
1936
1937         spin_unlock_irqrestore(&d40c->lock, flags);
1938         return &d40d->txd;
1939
1940 err:
1941         if (d40d)
1942                 d40_desc_free(d40c, d40d);
1943         spin_unlock_irqrestore(&d40c->lock, flags);
1944         return NULL;
1945 }
1946
1947 static struct dma_async_tx_descriptor *
1948 d40_prep_sg(struct dma_chan *chan,
1949             struct scatterlist *dst_sg, unsigned int dst_nents,
1950             struct scatterlist *src_sg, unsigned int src_nents,
1951             unsigned long dma_flags)
1952 {
1953         if (dst_nents != src_nents)
1954                 return NULL;
1955
1956         return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
1957 }
1958
1959 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1960                                  struct d40_chan *d40c,
1961                                  struct scatterlist *sgl,
1962                                  unsigned int sg_len,
1963                                  enum dma_data_direction direction,
1964                                  unsigned long dma_flags)
1965 {
1966         dma_addr_t dev_addr = 0;
1967         int total_size;
1968
1969         d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
1970                                         d40c->dma_cfg.src_info.data_width,
1971                                         d40c->dma_cfg.dst_info.data_width);
1972         if (d40d->lli_len < 0) {
1973                 chan_err(d40c, "Unaligned size\n");
1974                 return -EINVAL;
1975         }
1976
1977         if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1978                 chan_err(d40c, "Out of memory\n");
1979                 return -ENOMEM;
1980         }
1981
1982         d40d->lli_current = 0;
1983
1984         if (direction == DMA_FROM_DEVICE)
1985                 if (d40c->runtime_addr)
1986                         dev_addr = d40c->runtime_addr;
1987                 else
1988                         dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1989         else if (direction == DMA_TO_DEVICE)
1990                 if (d40c->runtime_addr)
1991                         dev_addr = d40c->runtime_addr;
1992                 else
1993                         dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1994
1995         else
1996                 return -EINVAL;
1997
1998         total_size = d40_log_sg_to_dev(sgl, sg_len,
1999                                        &d40d->lli_log,
2000                                        &d40c->log_def,
2001                                        d40c->dma_cfg.src_info.data_width,
2002                                        d40c->dma_cfg.dst_info.data_width,
2003                                        direction,
2004                                        dev_addr);
2005
2006         if (total_size < 0)
2007                 return -EINVAL;
2008
2009         return 0;
2010 }
2011
2012 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
2013                                  struct d40_chan *d40c,
2014                                  struct scatterlist *sgl,
2015                                  unsigned int sgl_len,
2016                                  enum dma_data_direction direction,
2017                                  unsigned long dma_flags)
2018 {
2019         dma_addr_t src_dev_addr;
2020         dma_addr_t dst_dev_addr;
2021         int res;
2022
2023         d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
2024                                         d40c->dma_cfg.src_info.data_width,
2025                                         d40c->dma_cfg.dst_info.data_width);
2026         if (d40d->lli_len < 0) {
2027                 chan_err(d40c, "Unaligned size\n");
2028                 return -EINVAL;
2029         }
2030
2031         if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
2032                 chan_err(d40c, "Out of memory\n");
2033                 return -ENOMEM;
2034         }
2035
2036         d40d->lli_current = 0;
2037
2038         if (direction == DMA_FROM_DEVICE) {
2039                 dst_dev_addr = 0;
2040                 if (d40c->runtime_addr)
2041                         src_dev_addr = d40c->runtime_addr;
2042                 else
2043                         src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2044         } else if (direction == DMA_TO_DEVICE) {
2045                 if (d40c->runtime_addr)
2046                         dst_dev_addr = d40c->runtime_addr;
2047                 else
2048                         dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2049                 src_dev_addr = 0;
2050         } else
2051                 return -EINVAL;
2052
2053         res = d40_phy_sg_to_lli(sgl,
2054                                 sgl_len,
2055                                 src_dev_addr,
2056                                 d40d->lli_phy.src,
2057                                 virt_to_phys(d40d->lli_phy.src),
2058                                 d40c->src_def_cfg,
2059                                 d40c->dma_cfg.src_info.data_width,
2060                                 d40c->dma_cfg.dst_info.data_width,
2061                                 d40c->dma_cfg.src_info.psize);
2062         if (res < 0)
2063                 return res;
2064
2065         res = d40_phy_sg_to_lli(sgl,
2066                                 sgl_len,
2067                                 dst_dev_addr,
2068                                 d40d->lli_phy.dst,
2069                                 virt_to_phys(d40d->lli_phy.dst),
2070                                 d40c->dst_def_cfg,
2071                                 d40c->dma_cfg.dst_info.data_width,
2072                                 d40c->dma_cfg.src_info.data_width,
2073                                 d40c->dma_cfg.dst_info.psize);
2074         if (res < 0)
2075                 return res;
2076
2077         (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
2078                               d40d->lli_pool.size, DMA_TO_DEVICE);
2079         return 0;
2080 }
2081
2082 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2083                                                          struct scatterlist *sgl,
2084                                                          unsigned int sg_len,
2085                                                          enum dma_data_direction direction,
2086                                                          unsigned long dma_flags)
2087 {
2088         struct d40_desc *d40d;
2089         struct d40_chan *d40c = container_of(chan, struct d40_chan,
2090                                              chan);
2091         unsigned long flags;
2092         int err;
2093
2094         if (d40c->phy_chan == NULL) {
2095                 chan_err(d40c, "Cannot prepare unallocated channel\n");
2096                 return ERR_PTR(-EINVAL);
2097         }
2098
2099         spin_lock_irqsave(&d40c->lock, flags);
2100         d40d = d40_desc_get(d40c);
2101
2102         if (d40d == NULL)
2103                 goto err;
2104
2105         if (chan_is_logical(d40c))
2106                 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2107                                             direction, dma_flags);
2108         else
2109                 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2110                                             direction, dma_flags);
2111         if (err) {
2112                 chan_err(d40c, "Failed to prepare %s slave sg job: %d\n",
2113                         chan_is_logical(d40c) ? "log" : "phy", err);
2114                 goto err;
2115         }
2116
2117         d40d->txd.flags = dma_flags;
2118
2119         dma_async_tx_descriptor_init(&d40d->txd, chan);
2120
2121         d40d->txd.tx_submit = d40_tx_submit;
2122
2123         spin_unlock_irqrestore(&d40c->lock, flags);
2124         return &d40d->txd;
2125
2126 err:
2127         if (d40d)
2128                 d40_desc_free(d40c, d40d);
2129         spin_unlock_irqrestore(&d40c->lock, flags);
2130         return NULL;
2131 }
2132
2133 static enum dma_status d40_tx_status(struct dma_chan *chan,
2134                                      dma_cookie_t cookie,
2135                                      struct dma_tx_state *txstate)
2136 {
2137         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2138         dma_cookie_t last_used;
2139         dma_cookie_t last_complete;
2140         int ret;
2141
2142         if (d40c->phy_chan == NULL) {
2143                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2144                 return -EINVAL;
2145         }
2146
2147         last_complete = d40c->completed;
2148         last_used = chan->cookie;
2149
2150         if (d40_is_paused(d40c))
2151                 ret = DMA_PAUSED;
2152         else
2153                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2154
2155         dma_set_tx_state(txstate, last_complete, last_used,
2156                          stedma40_residue(chan));
2157
2158         return ret;
2159 }
2160
2161 static void d40_issue_pending(struct dma_chan *chan)
2162 {
2163         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2164         unsigned long flags;
2165
2166         if (d40c->phy_chan == NULL) {
2167                 chan_err(d40c, "Channel is not allocated!\n");
2168                 return;
2169         }
2170
2171         spin_lock_irqsave(&d40c->lock, flags);
2172
2173         /* Busy means that pending jobs are already being processed */
2174         if (!d40c->busy)
2175                 (void) d40_queue_start(d40c);
2176
2177         spin_unlock_irqrestore(&d40c->lock, flags);
2178 }
2179
2180 /* Runtime reconfiguration extension */
2181 static void d40_set_runtime_config(struct dma_chan *chan,
2182                                struct dma_slave_config *config)
2183 {
2184         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2185         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2186         enum dma_slave_buswidth config_addr_width;
2187         dma_addr_t config_addr;
2188         u32 config_maxburst;
2189         enum stedma40_periph_data_width addr_width;
2190         int psize;
2191
2192         if (config->direction == DMA_FROM_DEVICE) {
2193                 dma_addr_t dev_addr_rx =
2194                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2195
2196                 config_addr = config->src_addr;
2197                 if (dev_addr_rx)
2198                         dev_dbg(d40c->base->dev,
2199                                 "channel has a pre-wired RX address %08x "
2200                                 "overriding with %08x\n",
2201                                 dev_addr_rx, config_addr);
2202                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2203                         dev_dbg(d40c->base->dev,
2204                                 "channel was not configured for peripheral "
2205                                 "to memory transfer (%d) overriding\n",
2206                                 cfg->dir);
2207                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2208
2209                 config_addr_width = config->src_addr_width;
2210                 config_maxburst = config->src_maxburst;
2211
2212         } else if (config->direction == DMA_TO_DEVICE) {
2213                 dma_addr_t dev_addr_tx =
2214                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2215
2216                 config_addr = config->dst_addr;
2217                 if (dev_addr_tx)
2218                         dev_dbg(d40c->base->dev,
2219                                 "channel has a pre-wired TX address %08x "
2220                                 "overriding with %08x\n",
2221                                 dev_addr_tx, config_addr);
2222                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2223                         dev_dbg(d40c->base->dev,
2224                                 "channel was not configured for memory "
2225                                 "to peripheral transfer (%d) overriding\n",
2226                                 cfg->dir);
2227                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2228
2229                 config_addr_width = config->dst_addr_width;
2230                 config_maxburst = config->dst_maxburst;
2231
2232         } else {
2233                 dev_err(d40c->base->dev,
2234                         "unrecognized channel direction %d\n",
2235                         config->direction);
2236                 return;
2237         }
2238
2239         switch (config_addr_width) {
2240         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2241                 addr_width = STEDMA40_BYTE_WIDTH;
2242                 break;
2243         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2244                 addr_width = STEDMA40_HALFWORD_WIDTH;
2245                 break;
2246         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2247                 addr_width = STEDMA40_WORD_WIDTH;
2248                 break;
2249         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2250                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2251                 break;
2252         default:
2253                 dev_err(d40c->base->dev,
2254                         "illegal peripheral address width "
2255                         "requested (%d)\n",
2256                         config->src_addr_width);
2257                 return;
2258         }
2259
2260         if (chan_is_logical(d40c)) {
2261                 if (config_maxburst >= 16)
2262                         psize = STEDMA40_PSIZE_LOG_16;
2263                 else if (config_maxburst >= 8)
2264                         psize = STEDMA40_PSIZE_LOG_8;
2265                 else if (config_maxburst >= 4)
2266                         psize = STEDMA40_PSIZE_LOG_4;
2267                 else
2268                         psize = STEDMA40_PSIZE_LOG_1;
2269         } else {
2270                 if (config_maxburst >= 16)
2271                         psize = STEDMA40_PSIZE_PHY_16;
2272                 else if (config_maxburst >= 8)
2273                         psize = STEDMA40_PSIZE_PHY_8;
2274                 else if (config_maxburst >= 4)
2275                         psize = STEDMA40_PSIZE_PHY_4;
2276                 else if (config_maxburst >= 2)
2277                         psize = STEDMA40_PSIZE_PHY_2;
2278                 else
2279                         psize = STEDMA40_PSIZE_PHY_1;
2280         }
2281
2282         /* Set up all the endpoint configs */
2283         cfg->src_info.data_width = addr_width;
2284         cfg->src_info.psize = psize;
2285         cfg->src_info.big_endian = false;
2286         cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2287         cfg->dst_info.data_width = addr_width;
2288         cfg->dst_info.psize = psize;
2289         cfg->dst_info.big_endian = false;
2290         cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2291
2292         /* Fill in register values */
2293         if (chan_is_logical(d40c))
2294                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2295         else
2296                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2297                             &d40c->dst_def_cfg, false);
2298
2299         /* These settings will take precedence later */
2300         d40c->runtime_addr = config_addr;
2301         d40c->runtime_direction = config->direction;
2302         dev_dbg(d40c->base->dev,
2303                 "configured channel %s for %s, data width %d, "
2304                 "maxburst %d bytes, LE, no flow control\n",
2305                 dma_chan_name(chan),
2306                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2307                 config_addr_width,
2308                 config_maxburst);
2309 }
2310
2311 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2312                        unsigned long arg)
2313 {
2314         unsigned long flags;
2315         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2316
2317         if (d40c->phy_chan == NULL) {
2318                 chan_err(d40c, "Channel is not allocated!\n");
2319                 return -EINVAL;
2320         }
2321
2322         switch (cmd) {
2323         case DMA_TERMINATE_ALL:
2324                 spin_lock_irqsave(&d40c->lock, flags);
2325                 d40_term_all(d40c);
2326                 spin_unlock_irqrestore(&d40c->lock, flags);
2327                 return 0;
2328         case DMA_PAUSE:
2329                 return d40_pause(chan);
2330         case DMA_RESUME:
2331                 return d40_resume(chan);
2332         case DMA_SLAVE_CONFIG:
2333                 d40_set_runtime_config(chan,
2334                         (struct dma_slave_config *) arg);
2335                 return 0;
2336         default:
2337                 break;
2338         }
2339
2340         /* Other commands are unimplemented */
2341         return -ENXIO;
2342 }
2343
2344 /* Initialization functions */
2345
2346 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2347                                  struct d40_chan *chans, int offset,
2348                                  int num_chans)
2349 {
2350         int i = 0;
2351         struct d40_chan *d40c;
2352
2353         INIT_LIST_HEAD(&dma->channels);
2354
2355         for (i = offset; i < offset + num_chans; i++) {
2356                 d40c = &chans[i];
2357                 d40c->base = base;
2358                 d40c->chan.device = dma;
2359
2360                 spin_lock_init(&d40c->lock);
2361
2362                 d40c->log_num = D40_PHY_CHAN;
2363
2364                 INIT_LIST_HEAD(&d40c->active);
2365                 INIT_LIST_HEAD(&d40c->queue);
2366                 INIT_LIST_HEAD(&d40c->client);
2367
2368                 tasklet_init(&d40c->tasklet, dma_tasklet,
2369                              (unsigned long) d40c);
2370
2371                 list_add_tail(&d40c->chan.device_node,
2372                               &dma->channels);
2373         }
2374 }
2375
2376 static int __init d40_dmaengine_init(struct d40_base *base,
2377                                      int num_reserved_chans)
2378 {
2379         int err ;
2380
2381         d40_chan_init(base, &base->dma_slave, base->log_chans,
2382                       0, base->num_log_chans);
2383
2384         dma_cap_zero(base->dma_slave.cap_mask);
2385         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2386
2387         base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2388         base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2389         base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2390         base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2391         base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2392         base->dma_slave.device_tx_status = d40_tx_status;
2393         base->dma_slave.device_issue_pending = d40_issue_pending;
2394         base->dma_slave.device_control = d40_control;
2395         base->dma_slave.dev = base->dev;
2396
2397         err = dma_async_device_register(&base->dma_slave);
2398
2399         if (err) {
2400                 d40_err(base->dev, "Failed to register slave channels\n");
2401                 goto failure1;
2402         }
2403
2404         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2405                       base->num_log_chans, base->plat_data->memcpy_len);
2406
2407         dma_cap_zero(base->dma_memcpy.cap_mask);
2408         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2409         dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2410
2411         base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2412         base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2413         base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2414         base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2415         base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2416         base->dma_memcpy.device_tx_status = d40_tx_status;
2417         base->dma_memcpy.device_issue_pending = d40_issue_pending;
2418         base->dma_memcpy.device_control = d40_control;
2419         base->dma_memcpy.dev = base->dev;
2420         /*
2421          * This controller can only access address at even
2422          * 32bit boundaries, i.e. 2^2
2423          */
2424         base->dma_memcpy.copy_align = 2;
2425
2426         err = dma_async_device_register(&base->dma_memcpy);
2427
2428         if (err) {
2429                 d40_err(base->dev,
2430                         "Failed to regsiter memcpy only channels\n");
2431                 goto failure2;
2432         }
2433
2434         d40_chan_init(base, &base->dma_both, base->phy_chans,
2435                       0, num_reserved_chans);
2436
2437         dma_cap_zero(base->dma_both.cap_mask);
2438         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2439         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2440         dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2441
2442         base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2443         base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2444         base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2445         base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2446         base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2447         base->dma_both.device_tx_status = d40_tx_status;
2448         base->dma_both.device_issue_pending = d40_issue_pending;
2449         base->dma_both.device_control = d40_control;
2450         base->dma_both.dev = base->dev;
2451         base->dma_both.copy_align = 2;
2452         err = dma_async_device_register(&base->dma_both);
2453
2454         if (err) {
2455                 d40_err(base->dev,
2456                         "Failed to register logical and physical capable channels\n");
2457                 goto failure3;
2458         }
2459         return 0;
2460 failure3:
2461         dma_async_device_unregister(&base->dma_memcpy);
2462 failure2:
2463         dma_async_device_unregister(&base->dma_slave);
2464 failure1:
2465         return err;
2466 }
2467
2468 /* Initialization functions. */
2469
2470 static int __init d40_phy_res_init(struct d40_base *base)
2471 {
2472         int i;
2473         int num_phy_chans_avail = 0;
2474         u32 val[2];
2475         int odd_even_bit = -2;
2476
2477         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2478         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2479
2480         for (i = 0; i < base->num_phy_chans; i++) {
2481                 base->phy_res[i].num = i;
2482                 odd_even_bit += 2 * ((i % 2) == 0);
2483                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2484                         /* Mark security only channels as occupied */
2485                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2486                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2487                 } else {
2488                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2489                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2490                         num_phy_chans_avail++;
2491                 }
2492                 spin_lock_init(&base->phy_res[i].lock);
2493         }
2494
2495         /* Mark disabled channels as occupied */
2496         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2497                 int chan = base->plat_data->disabled_channels[i];
2498
2499                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2500                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2501                 num_phy_chans_avail--;
2502         }
2503
2504         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2505                  num_phy_chans_avail, base->num_phy_chans);
2506
2507         /* Verify settings extended vs standard */
2508         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2509
2510         for (i = 0; i < base->num_phy_chans; i++) {
2511
2512                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2513                     (val[0] & 0x3) != 1)
2514                         dev_info(base->dev,
2515                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2516                                  __func__, i, val[0] & 0x3);
2517
2518                 val[0] = val[0] >> 2;
2519         }
2520
2521         return num_phy_chans_avail;
2522 }
2523
2524 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2525 {
2526         static const struct d40_reg_val dma_id_regs[] = {
2527                 /* Peripheral Id */
2528                 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2529                 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2530                 /*
2531                  * D40_DREG_PERIPHID2 Depends on HW revision:
2532                  *  DB8500ed has 0x0008,
2533                  *  ? has 0x0018,
2534                  *  DB8500v1 has 0x0028
2535                  *  DB8500v2 has 0x0038
2536                  */
2537                 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2538
2539                 /* PCell Id */
2540                 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2541                 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2542                 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2543                 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2544         };
2545         struct stedma40_platform_data *plat_data;
2546         struct clk *clk = NULL;
2547         void __iomem *virtbase = NULL;
2548         struct resource *res = NULL;
2549         struct d40_base *base = NULL;
2550         int num_log_chans = 0;
2551         int num_phy_chans;
2552         int i;
2553         u32 val;
2554         u32 rev;
2555
2556         clk = clk_get(&pdev->dev, NULL);
2557
2558         if (IS_ERR(clk)) {
2559                 d40_err(&pdev->dev, "No matching clock found\n");
2560                 goto failure;
2561         }
2562
2563         clk_enable(clk);
2564
2565         /* Get IO for DMAC base address */
2566         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2567         if (!res)
2568                 goto failure;
2569
2570         if (request_mem_region(res->start, resource_size(res),
2571                                D40_NAME " I/O base") == NULL)
2572                 goto failure;
2573
2574         virtbase = ioremap(res->start, resource_size(res));
2575         if (!virtbase)
2576                 goto failure;
2577
2578         /* HW version check */
2579         for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2580                 if (dma_id_regs[i].val !=
2581                     readl(virtbase + dma_id_regs[i].reg)) {
2582                         d40_err(&pdev->dev,
2583                                 "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2584                                 dma_id_regs[i].val,
2585                                 dma_id_regs[i].reg,
2586                                 readl(virtbase + dma_id_regs[i].reg));
2587                         goto failure;
2588                 }
2589         }
2590
2591         /* Get silicon revision and designer */
2592         val = readl(virtbase + D40_DREG_PERIPHID2);
2593
2594         if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2595             D40_HW_DESIGNER) {
2596                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2597                         val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2598                         D40_HW_DESIGNER);
2599                 goto failure;
2600         }
2601
2602         rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2603                 D40_DREG_PERIPHID2_REV_POS;
2604
2605         /* The number of physical channels on this HW */
2606         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2607
2608         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2609                  rev, res->start);
2610
2611         plat_data = pdev->dev.platform_data;
2612
2613         /* Count the number of logical channels in use */
2614         for (i = 0; i < plat_data->dev_len; i++)
2615                 if (plat_data->dev_rx[i] != 0)
2616                         num_log_chans++;
2617
2618         for (i = 0; i < plat_data->dev_len; i++)
2619                 if (plat_data->dev_tx[i] != 0)
2620                         num_log_chans++;
2621
2622         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2623                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2624                        sizeof(struct d40_chan), GFP_KERNEL);
2625
2626         if (base == NULL) {
2627                 d40_err(&pdev->dev, "Out of memory\n");
2628                 goto failure;
2629         }
2630
2631         base->rev = rev;
2632         base->clk = clk;
2633         base->num_phy_chans = num_phy_chans;
2634         base->num_log_chans = num_log_chans;
2635         base->phy_start = res->start;
2636         base->phy_size = resource_size(res);
2637         base->virtbase = virtbase;
2638         base->plat_data = plat_data;
2639         base->dev = &pdev->dev;
2640         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2641         base->log_chans = &base->phy_chans[num_phy_chans];
2642
2643         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2644                                 GFP_KERNEL);
2645         if (!base->phy_res)
2646                 goto failure;
2647
2648         base->lookup_phy_chans = kzalloc(num_phy_chans *
2649                                          sizeof(struct d40_chan *),
2650                                          GFP_KERNEL);
2651         if (!base->lookup_phy_chans)
2652                 goto failure;
2653
2654         if (num_log_chans + plat_data->memcpy_len) {
2655                 /*
2656                  * The max number of logical channels are event lines for all
2657                  * src devices and dst devices
2658                  */
2659                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2660                                                  sizeof(struct d40_chan *),
2661                                                  GFP_KERNEL);
2662                 if (!base->lookup_log_chans)
2663                         goto failure;
2664         }
2665
2666         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2667                                             sizeof(struct d40_desc *) *
2668                                             D40_LCLA_LINK_PER_EVENT_GRP,
2669                                             GFP_KERNEL);
2670         if (!base->lcla_pool.alloc_map)
2671                 goto failure;
2672
2673         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2674                                             0, SLAB_HWCACHE_ALIGN,
2675                                             NULL);
2676         if (base->desc_slab == NULL)
2677                 goto failure;
2678
2679         return base;
2680
2681 failure:
2682         if (!IS_ERR(clk)) {
2683                 clk_disable(clk);
2684                 clk_put(clk);
2685         }
2686         if (virtbase)
2687                 iounmap(virtbase);
2688         if (res)
2689                 release_mem_region(res->start,
2690                                    resource_size(res));
2691         if (virtbase)
2692                 iounmap(virtbase);
2693
2694         if (base) {
2695                 kfree(base->lcla_pool.alloc_map);
2696                 kfree(base->lookup_log_chans);
2697                 kfree(base->lookup_phy_chans);
2698                 kfree(base->phy_res);
2699                 kfree(base);
2700         }
2701
2702         return NULL;
2703 }
2704
2705 static void __init d40_hw_init(struct d40_base *base)
2706 {
2707
2708         static const struct d40_reg_val dma_init_reg[] = {
2709                 /* Clock every part of the DMA block from start */
2710                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2711
2712                 /* Interrupts on all logical channels */
2713                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2714                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2715                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2716                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2717                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2718                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2719                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2720                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2721                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2722                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2723                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2724                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2725         };
2726         int i;
2727         u32 prmseo[2] = {0, 0};
2728         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2729         u32 pcmis = 0;
2730         u32 pcicr = 0;
2731
2732         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2733                 writel(dma_init_reg[i].val,
2734                        base->virtbase + dma_init_reg[i].reg);
2735
2736         /* Configure all our dma channels to default settings */
2737         for (i = 0; i < base->num_phy_chans; i++) {
2738
2739                 activeo[i % 2] = activeo[i % 2] << 2;
2740
2741                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2742                     == D40_ALLOC_PHY) {
2743                         activeo[i % 2] |= 3;
2744                         continue;
2745                 }
2746
2747                 /* Enable interrupt # */
2748                 pcmis = (pcmis << 1) | 1;
2749
2750                 /* Clear interrupt # */
2751                 pcicr = (pcicr << 1) | 1;
2752
2753                 /* Set channel to physical mode */
2754                 prmseo[i % 2] = prmseo[i % 2] << 2;
2755                 prmseo[i % 2] |= 1;
2756
2757         }
2758
2759         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2760         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2761         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2762         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2763
2764         /* Write which interrupt to enable */
2765         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2766
2767         /* Write which interrupt to clear */
2768         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2769
2770 }
2771
2772 static int __init d40_lcla_allocate(struct d40_base *base)
2773 {
2774         unsigned long *page_list;
2775         int i, j;
2776         int ret = 0;
2777
2778         /*
2779          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2780          * To full fill this hardware requirement without wasting 256 kb
2781          * we allocate pages until we get an aligned one.
2782          */
2783         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2784                             GFP_KERNEL);
2785
2786         if (!page_list) {
2787                 ret = -ENOMEM;
2788                 goto failure;
2789         }
2790
2791         /* Calculating how many pages that are required */
2792         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2793
2794         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2795                 page_list[i] = __get_free_pages(GFP_KERNEL,
2796                                                 base->lcla_pool.pages);
2797                 if (!page_list[i]) {
2798
2799                         d40_err(base->dev, "Failed to allocate %d pages.\n",
2800                                 base->lcla_pool.pages);
2801
2802                         for (j = 0; j < i; j++)
2803                                 free_pages(page_list[j], base->lcla_pool.pages);
2804                         goto failure;
2805                 }
2806
2807                 if ((virt_to_phys((void *)page_list[i]) &
2808                      (LCLA_ALIGNMENT - 1)) == 0)
2809                         break;
2810         }
2811
2812         for (j = 0; j < i; j++)
2813                 free_pages(page_list[j], base->lcla_pool.pages);
2814
2815         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2816                 base->lcla_pool.base = (void *)page_list[i];
2817         } else {
2818                 /*
2819                  * After many attempts and no succees with finding the correct
2820                  * alignment, try with allocating a big buffer.
2821                  */
2822                 dev_warn(base->dev,
2823                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2824                          __func__, base->lcla_pool.pages);
2825                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2826                                                          base->num_phy_chans +
2827                                                          LCLA_ALIGNMENT,
2828                                                          GFP_KERNEL);
2829                 if (!base->lcla_pool.base_unaligned) {
2830                         ret = -ENOMEM;
2831                         goto failure;
2832                 }
2833
2834                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2835                                                  LCLA_ALIGNMENT);
2836         }
2837
2838         writel(virt_to_phys(base->lcla_pool.base),
2839                base->virtbase + D40_DREG_LCLA);
2840 failure:
2841         kfree(page_list);
2842         return ret;
2843 }
2844
2845 static int __init d40_probe(struct platform_device *pdev)
2846 {
2847         int err;
2848         int ret = -ENOENT;
2849         struct d40_base *base;
2850         struct resource *res = NULL;
2851         int num_reserved_chans;
2852         u32 val;
2853
2854         base = d40_hw_detect_init(pdev);
2855
2856         if (!base)
2857                 goto failure;
2858
2859         num_reserved_chans = d40_phy_res_init(base);
2860
2861         platform_set_drvdata(pdev, base);
2862
2863         spin_lock_init(&base->interrupt_lock);
2864         spin_lock_init(&base->execmd_lock);
2865
2866         /* Get IO for logical channel parameter address */
2867         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2868         if (!res) {
2869                 ret = -ENOENT;
2870                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2871                 goto failure;
2872         }
2873         base->lcpa_size = resource_size(res);
2874         base->phy_lcpa = res->start;
2875
2876         if (request_mem_region(res->start, resource_size(res),
2877                                D40_NAME " I/O lcpa") == NULL) {
2878                 ret = -EBUSY;
2879                 d40_err(&pdev->dev,
2880                         "Failed to request LCPA region 0x%x-0x%x\n",
2881                         res->start, res->end);
2882                 goto failure;
2883         }
2884
2885         /* We make use of ESRAM memory for this. */
2886         val = readl(base->virtbase + D40_DREG_LCPA);
2887         if (res->start != val && val != 0) {
2888                 dev_warn(&pdev->dev,
2889                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2890                          __func__, val, res->start);
2891         } else
2892                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2893
2894         base->lcpa_base = ioremap(res->start, resource_size(res));
2895         if (!base->lcpa_base) {
2896                 ret = -ENOMEM;
2897                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2898                 goto failure;
2899         }
2900
2901         ret = d40_lcla_allocate(base);
2902         if (ret) {
2903                 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2904                 goto failure;
2905         }
2906
2907         spin_lock_init(&base->lcla_pool.lock);
2908
2909         base->irq = platform_get_irq(pdev, 0);
2910
2911         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2912         if (ret) {
2913                 d40_err(&pdev->dev, "No IRQ defined\n");
2914                 goto failure;
2915         }
2916
2917         err = d40_dmaengine_init(base, num_reserved_chans);
2918         if (err)
2919                 goto failure;
2920
2921         d40_hw_init(base);
2922
2923         dev_info(base->dev, "initialized\n");
2924         return 0;
2925
2926 failure:
2927         if (base) {
2928                 if (base->desc_slab)
2929                         kmem_cache_destroy(base->desc_slab);
2930                 if (base->virtbase)
2931                         iounmap(base->virtbase);
2932                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2933                         free_pages((unsigned long)base->lcla_pool.base,
2934                                    base->lcla_pool.pages);
2935
2936                 kfree(base->lcla_pool.base_unaligned);
2937
2938                 if (base->phy_lcpa)
2939                         release_mem_region(base->phy_lcpa,
2940                                            base->lcpa_size);
2941                 if (base->phy_start)
2942                         release_mem_region(base->phy_start,
2943                                            base->phy_size);
2944                 if (base->clk) {
2945                         clk_disable(base->clk);
2946                         clk_put(base->clk);
2947                 }
2948
2949                 kfree(base->lcla_pool.alloc_map);
2950                 kfree(base->lookup_log_chans);
2951                 kfree(base->lookup_phy_chans);
2952                 kfree(base->phy_res);
2953                 kfree(base);
2954         }
2955
2956         d40_err(&pdev->dev, "probe failed\n");
2957         return ret;
2958 }
2959
2960 static struct platform_driver d40_driver = {
2961         .driver = {
2962                 .owner = THIS_MODULE,
2963                 .name  = D40_NAME,
2964         },
2965 };
2966
2967 static int __init stedma40_init(void)
2968 {
2969         return platform_driver_probe(&d40_driver, d40_probe);
2970 }
2971 arch_initcall(stedma40_init);