sb_edac: remove bogus assumption on mc ordering
[firefly-linux-kernel-4.4.55.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /*
56  * sbridge Memory Controller Registers
57  */
58
59 /*
60  * FIXME: For now, let's order by device function, as it makes
61  * easier for driver's development process. This table should be
62  * moved to pci_id.h when submitted upstream
63  */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0        0x3cf4  /* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1        0x3cf6  /* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR          0x3cf5  /* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0     0x3ca0  /* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA      0x3ca8  /* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS     0x3c71  /* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0    0x3caa  /* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1    0x3cab  /* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2    0x3cac  /* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3    0x3cad  /* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO   0x3cb8  /* 17.0 */
75
76         /*
77          * Currently, unused, but will be needed in the future
78          * implementations, as they hold the error counters
79          */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0    0x3c72  /* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1    0x3c73  /* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2    0x3c76  /* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3    0x3c77  /* 16.7 */
84
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 sbridge_dram_rule[] = {
87         0x80, 0x88, 0x90, 0x98, 0xa0,
88         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89 };
90
91 static const u32 ibridge_dram_rule[] = {
92         0x60, 0x68, 0x70, 0x78, 0x80,
93         0x88, 0x90, 0x98, 0xa0, 0xa8,
94         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
95         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
96 };
97
98 #define SAD_LIMIT(reg)          ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
99 #define DRAM_ATTR(reg)          GET_BITFIELD(reg, 2,  3)
100 #define INTERLEAVE_MODE(reg)    GET_BITFIELD(reg, 1,  1)
101 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
102
103 static char *get_dram_attr(u32 reg)
104 {
105         switch(DRAM_ATTR(reg)) {
106                 case 0:
107                         return "DRAM";
108                 case 1:
109                         return "MMCFG";
110                 case 2:
111                         return "NXM";
112                 default:
113                         return "unknown";
114         }
115 }
116
117 static const u32 sbridge_interleave_list[] = {
118         0x84, 0x8c, 0x94, 0x9c, 0xa4,
119         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
120 };
121
122 static const u32 ibridge_interleave_list[] = {
123         0x64, 0x6c, 0x74, 0x7c, 0x84,
124         0x8c, 0x94, 0x9c, 0xa4, 0xac,
125         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
126         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
127 };
128
129 struct interleave_pkg {
130         unsigned char start;
131         unsigned char end;
132 };
133
134 static const struct interleave_pkg sbridge_interleave_pkg[] = {
135         { 0, 2 },
136         { 3, 5 },
137         { 8, 10 },
138         { 11, 13 },
139         { 16, 18 },
140         { 19, 21 },
141         { 24, 26 },
142         { 27, 29 },
143 };
144
145 static const struct interleave_pkg ibridge_interleave_pkg[] = {
146         { 0, 3 },
147         { 4, 7 },
148         { 8, 11 },
149         { 12, 15 },
150         { 16, 19 },
151         { 20, 23 },
152         { 24, 27 },
153         { 28, 31 },
154 };
155
156 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
157                           int interleave)
158 {
159         return GET_BITFIELD(reg, table[interleave].start,
160                             table[interleave].end);
161 }
162
163 /* Devices 12 Function 7 */
164
165 #define TOLM            0x80
166 #define TOHM            0x84
167
168 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
169 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
170
171 /* Device 13 Function 6 */
172
173 #define SAD_TARGET      0xf0
174
175 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
176
177 #define SAD_CONTROL     0xf4
178
179 /* Device 14 function 0 */
180
181 static const u32 tad_dram_rule[] = {
182         0x40, 0x44, 0x48, 0x4c,
183         0x50, 0x54, 0x58, 0x5c,
184         0x60, 0x64, 0x68, 0x6c,
185 };
186 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
187
188 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
189 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
190 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
191 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
192 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
193 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
194 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
195
196 /* Device 15, function 0 */
197
198 #define MCMTR                   0x7c
199
200 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
201 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
202 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
203
204 /* Device 15, function 1 */
205
206 #define RASENABLES              0xac
207 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
208
209 /* Device 15, functions 2-5 */
210
211 static const int mtr_regs[] = {
212         0x80, 0x84, 0x88,
213 };
214
215 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
220
221 static const u32 tad_ch_nilv_offset[] = {
222         0x90, 0x94, 0x98, 0x9c,
223         0xa0, 0xa4, 0xa8, 0xac,
224         0xb0, 0xb4, 0xb8, 0xbc,
225 };
226 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
228
229 static const u32 rir_way_limit[] = {
230         0x108, 0x10c, 0x110, 0x114, 0x118,
231 };
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
233
234 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
236
237 #define MAX_RIR_WAY     8
238
239 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245 };
246
247 #define RIR_RNK_TGT(reg)                GET_BITFIELD(reg, 16, 19)
248 #define RIR_OFFSET(reg)         GET_BITFIELD(reg,  2, 14)
249
250 /* Device 16, functions 2-7 */
251
252 /*
253  * FIXME: Implement the error count reads directly
254  */
255
256 static const u32 correrrcnt[] = {
257         0x104, 0x108, 0x10c, 0x110,
258 };
259
260 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
261 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
262 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
263 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
264
265 static const u32 correrrthrsld[] = {
266         0x11c, 0x120, 0x124, 0x128,
267 };
268
269 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
270 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
271
272
273 /* Device 17, function 0 */
274
275 #define SB_RANK_CFG_A           0x0328
276
277 #define IB_RANK_CFG_A           0x0320
278
279 /*
280  * sbridge structs
281  */
282
283 #define NUM_CHANNELS    4
284 #define MAX_DIMMS       3               /* Max DIMMS per channel */
285
286 enum type {
287         SANDY_BRIDGE,
288         IVY_BRIDGE,
289 };
290
291 struct sbridge_pvt;
292 struct sbridge_info {
293         enum type       type;
294         u32             mcmtr;
295         u32             rankcfgr;
296         u64             (*get_tolm)(struct sbridge_pvt *pvt);
297         u64             (*get_tohm)(struct sbridge_pvt *pvt);
298         u64             (*rir_limit)(u32 reg);
299         const u32       *dram_rule;
300         const u32       *interleave_list;
301         const struct interleave_pkg *interleave_pkg;
302         u8              max_sad;
303         u8              max_interleave;
304         u8              (*get_node_id)(struct sbridge_pvt *pvt);
305         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
306 };
307
308 struct sbridge_channel {
309         u32             ranks;
310         u32             dimms;
311 };
312
313 struct pci_id_descr {
314         int                     dev_id;
315         int                     optional;
316 };
317
318 struct pci_id_table {
319         const struct pci_id_descr       *descr;
320         int                             n_devs;
321 };
322
323 struct sbridge_dev {
324         struct list_head        list;
325         u8                      bus, mc;
326         u8                      node_id, source_id;
327         struct pci_dev          **pdev;
328         int                     n_devs;
329         struct mem_ctl_info     *mci;
330 };
331
332 struct sbridge_pvt {
333         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
334         struct pci_dev          *pci_sad0, *pci_sad1;
335         struct pci_dev          *pci_ha0, *pci_ha1;
336         struct pci_dev          *pci_br0, *pci_br1;
337         struct pci_dev          *pci_tad[NUM_CHANNELS];
338
339         struct sbridge_dev      *sbridge_dev;
340
341         struct sbridge_info     info;
342         struct sbridge_channel  channel[NUM_CHANNELS];
343
344         /* Memory type detection */
345         bool                    is_mirrored, is_lockstep, is_close_pg;
346
347         /* Fifo double buffers */
348         struct mce              mce_entry[MCE_LOG_LEN];
349         struct mce              mce_outentry[MCE_LOG_LEN];
350
351         /* Fifo in/out counters */
352         unsigned                mce_in, mce_out;
353
354         /* Count indicator to show errors not got */
355         unsigned                mce_overrun;
356
357         /* Memory description */
358         u64                     tolm, tohm;
359 };
360
361 #define PCI_DESCR(device_id, opt)       \
362         .dev_id = (device_id),          \
363         .optional = opt
364
365 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
366                 /* Processor Home Agent */
367         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
368
369                 /* Memory controller */
370         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
371         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
372         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
373         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
374         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
375         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
376         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
377
378                 /* System Address Decoder */
379         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
380         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
381
382                 /* Broadcast Registers */
383         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
384 };
385
386 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
387 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
388         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
389         {0,}                    /* 0 terminated list. */
390 };
391
392 /* This changes depending if 1HA or 2HA:
393  * 1HA:
394  *      0x0eb8 (17.0) is DDRIO0
395  * 2HA:
396  *      0x0ebc (17.4) is DDRIO0
397  */
398 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
399 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
400
401 /* pci ids */
402 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
403 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
404 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
405 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
406 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
407 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
408 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
409 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
410 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
411 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
412 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
413 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
414 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
415 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
416 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
417
418 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
419                 /* Processor Home Agent */
420         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
421
422                 /* Memory controller */
423         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
424         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
425         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
426         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
427         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
428         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
429
430                 /* System Address Decoder */
431         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
432
433                 /* Broadcast Registers */
434         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
435         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
436
437                 /* Optional, mode 2HA */
438         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
439 #if 0
440         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
441         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
442 #endif
443         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
444         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
445
446         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
447         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
448 };
449
450 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
451         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
452         {0,}                    /* 0 terminated list. */
453 };
454
455 /*
456  *      pci_device_id   table for which devices we are looking for
457  */
458 static const struct pci_device_id sbridge_pci_tbl[] = {
459         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
460         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
461         {0,}                    /* 0 terminated list. */
462 };
463
464
465 /****************************************************************************
466                         Ancillary status routines
467  ****************************************************************************/
468
469 static inline int numrank(u32 mtr)
470 {
471         int ranks = (1 << RANK_CNT_BITS(mtr));
472
473         if (ranks > 4) {
474                 edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
475                          ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
476                 return -EINVAL;
477         }
478
479         return ranks;
480 }
481
482 static inline int numrow(u32 mtr)
483 {
484         int rows = (RANK_WIDTH_BITS(mtr) + 12);
485
486         if (rows < 13 || rows > 18) {
487                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
488                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
489                 return -EINVAL;
490         }
491
492         return 1 << rows;
493 }
494
495 static inline int numcol(u32 mtr)
496 {
497         int cols = (COL_WIDTH_BITS(mtr) + 10);
498
499         if (cols > 12) {
500                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
501                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
502                 return -EINVAL;
503         }
504
505         return 1 << cols;
506 }
507
508 static struct sbridge_dev *get_sbridge_dev(u8 bus)
509 {
510         struct sbridge_dev *sbridge_dev;
511
512         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
513                 if (sbridge_dev->bus == bus)
514                         return sbridge_dev;
515         }
516
517         return NULL;
518 }
519
520 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
521                                            const struct pci_id_table *table)
522 {
523         struct sbridge_dev *sbridge_dev;
524
525         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
526         if (!sbridge_dev)
527                 return NULL;
528
529         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
530                                    GFP_KERNEL);
531         if (!sbridge_dev->pdev) {
532                 kfree(sbridge_dev);
533                 return NULL;
534         }
535
536         sbridge_dev->bus = bus;
537         sbridge_dev->n_devs = table->n_devs;
538         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
539
540         return sbridge_dev;
541 }
542
543 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
544 {
545         list_del(&sbridge_dev->list);
546         kfree(sbridge_dev->pdev);
547         kfree(sbridge_dev);
548 }
549
550 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
551 {
552         u32 reg;
553
554         /* Address range is 32:28 */
555         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
556         return GET_TOLM(reg);
557 }
558
559 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
560 {
561         u32 reg;
562
563         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
564         return GET_TOHM(reg);
565 }
566
567 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
568 {
569         u32 reg;
570
571         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
572
573         return GET_TOLM(reg);
574 }
575
576 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
577 {
578         u32 reg;
579
580         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
581
582         return GET_TOHM(reg);
583 }
584
585 static u64 rir_limit(u32 reg)
586 {
587         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
588 }
589
590 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
591 {
592         u32 reg;
593         enum mem_type mtype;
594
595         if (pvt->pci_ddrio) {
596                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
597                                       &reg);
598                 if (GET_BITFIELD(reg, 11, 11))
599                         /* FIXME: Can also be LRDIMM */
600                         mtype = MEM_RDDR3;
601                 else
602                         mtype = MEM_DDR3;
603         } else
604                 mtype = MEM_UNKNOWN;
605
606         return mtype;
607 }
608
609 static u8 get_node_id(struct sbridge_pvt *pvt)
610 {
611         u32 reg;
612         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
613         return GET_BITFIELD(reg, 0, 2);
614 }
615
616 static inline u8 sad_pkg_socket(u8 pkg)
617 {
618         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
619         return ((pkg >> 3) << 2) | (pkg & 0x3);
620 }
621
622 static inline u8 sad_pkg_ha(u8 pkg)
623 {
624         return (pkg >> 2) & 0x1;
625 }
626
627 /****************************************************************************
628                         Memory check routines
629  ****************************************************************************/
630 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
631 {
632         struct pci_dev *pdev = NULL;
633
634         do {
635                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
636                 if (pdev && pdev->bus->number == bus)
637                         break;
638         } while (pdev);
639
640         return pdev;
641 }
642
643 /**
644  * check_if_ecc_is_active() - Checks if ECC is active
645  * bus:         Device bus
646  */
647 static int check_if_ecc_is_active(const u8 bus, enum type type)
648 {
649         struct pci_dev *pdev = NULL;
650         u32 mcmtr, id;
651
652         if (type == IVY_BRIDGE)
653                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
654         else
655                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
656
657         pdev = get_pdev_same_bus(bus, id);
658         if (!pdev) {
659                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
660                                         "%04x:%04x! on bus %02d\n",
661                                         PCI_VENDOR_ID_INTEL, id, bus);
662                 return -ENODEV;
663         }
664
665         pci_read_config_dword(pdev, MCMTR, &mcmtr);
666         if (!IS_ECC_ENABLED(mcmtr)) {
667                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
668                 return -ENODEV;
669         }
670         return 0;
671 }
672
673 static int get_dimm_config(struct mem_ctl_info *mci)
674 {
675         struct sbridge_pvt *pvt = mci->pvt_info;
676         struct dimm_info *dimm;
677         unsigned i, j, banks, ranks, rows, cols, npages;
678         u64 size;
679         u32 reg;
680         enum edac_type mode;
681         enum mem_type mtype;
682
683         pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
684         pvt->sbridge_dev->source_id = SOURCE_ID(reg);
685
686         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
687         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
688                  pvt->sbridge_dev->mc,
689                  pvt->sbridge_dev->node_id,
690                  pvt->sbridge_dev->source_id);
691
692         pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
693         if (IS_MIRROR_ENABLED(reg)) {
694                 edac_dbg(0, "Memory mirror is enabled\n");
695                 pvt->is_mirrored = true;
696         } else {
697                 edac_dbg(0, "Memory mirror is disabled\n");
698                 pvt->is_mirrored = false;
699         }
700
701         pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
702         if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
703                 edac_dbg(0, "Lockstep is enabled\n");
704                 mode = EDAC_S8ECD8ED;
705                 pvt->is_lockstep = true;
706         } else {
707                 edac_dbg(0, "Lockstep is disabled\n");
708                 mode = EDAC_S4ECD4ED;
709                 pvt->is_lockstep = false;
710         }
711         if (IS_CLOSE_PG(pvt->info.mcmtr)) {
712                 edac_dbg(0, "address map is on closed page mode\n");
713                 pvt->is_close_pg = true;
714         } else {
715                 edac_dbg(0, "address map is on open page mode\n");
716                 pvt->is_close_pg = false;
717         }
718
719         mtype = pvt->info.get_memory_type(pvt);
720         if (mtype == MEM_RDDR3)
721                 edac_dbg(0, "Memory is registered\n");
722         else if (mtype == MEM_UNKNOWN)
723                 edac_dbg(0, "Cannot determine memory type\n");
724         else
725                 edac_dbg(0, "Memory is unregistered\n");
726
727         /* On all supported DDR3 DIMM types, there are 8 banks available */
728         banks = 8;
729
730         for (i = 0; i < NUM_CHANNELS; i++) {
731                 u32 mtr;
732
733                 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
734                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
735                                        i, j, 0);
736                         pci_read_config_dword(pvt->pci_tad[i],
737                                               mtr_regs[j], &mtr);
738                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
739                         if (IS_DIMM_PRESENT(mtr)) {
740                                 pvt->channel[i].dimms++;
741
742                                 ranks = numrank(mtr);
743                                 rows = numrow(mtr);
744                                 cols = numcol(mtr);
745
746                                 /* DDR3 has 8 I/O banks */
747                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
748                                 npages = MiB_TO_PAGES(size);
749
750                                 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
751                                          pvt->sbridge_dev->mc, i, j,
752                                          size, npages,
753                                          banks, ranks, rows, cols);
754
755                                 dimm->nr_pages = npages;
756                                 dimm->grain = 32;
757                                 dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
758                                 dimm->mtype = mtype;
759                                 dimm->edac_mode = mode;
760                                 snprintf(dimm->label, sizeof(dimm->label),
761                                          "CPU_SrcID#%u_Channel#%u_DIMM#%u",
762                                          pvt->sbridge_dev->source_id, i, j);
763                         }
764                 }
765         }
766
767         return 0;
768 }
769
770 static void get_memory_layout(const struct mem_ctl_info *mci)
771 {
772         struct sbridge_pvt *pvt = mci->pvt_info;
773         int i, j, k, n_sads, n_tads, sad_interl;
774         u32 reg;
775         u64 limit, prv = 0;
776         u64 tmp_mb;
777         u32 mb, kb;
778         u32 rir_way;
779
780         /*
781          * Step 1) Get TOLM/TOHM ranges
782          */
783
784         pvt->tolm = pvt->info.get_tolm(pvt);
785         tmp_mb = (1 + pvt->tolm) >> 20;
786
787         mb = div_u64_rem(tmp_mb, 1000, &kb);
788         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
789
790         /* Address range is already 45:25 */
791         pvt->tohm = pvt->info.get_tohm(pvt);
792         tmp_mb = (1 + pvt->tohm) >> 20;
793
794         mb = div_u64_rem(tmp_mb, 1000, &kb);
795         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
796
797         /*
798          * Step 2) Get SAD range and SAD Interleave list
799          * TAD registers contain the interleave wayness. However, it
800          * seems simpler to just discover it indirectly, with the
801          * algorithm bellow.
802          */
803         prv = 0;
804         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
805                 /* SAD_LIMIT Address range is 45:26 */
806                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
807                                       &reg);
808                 limit = SAD_LIMIT(reg);
809
810                 if (!DRAM_RULE_ENABLE(reg))
811                         continue;
812
813                 if (limit <= prv)
814                         break;
815
816                 tmp_mb = (limit + 1) >> 20;
817                 mb = div_u64_rem(tmp_mb, 1000, &kb);
818                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
819                          n_sads,
820                          get_dram_attr(reg),
821                          mb, kb,
822                          ((u64)tmp_mb) << 20L,
823                          INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
824                          reg);
825                 prv = limit;
826
827                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
828                                       &reg);
829                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
830                 for (j = 0; j < 8; j++) {
831                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
832                         if (j > 0 && sad_interl == pkg)
833                                 break;
834
835                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
836                                  n_sads, j, pkg);
837                 }
838         }
839
840         /*
841          * Step 3) Get TAD range
842          */
843         prv = 0;
844         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
845                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
846                                       &reg);
847                 limit = TAD_LIMIT(reg);
848                 if (limit <= prv)
849                         break;
850                 tmp_mb = (limit + 1) >> 20;
851
852                 mb = div_u64_rem(tmp_mb, 1000, &kb);
853                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
854                          n_tads, mb, kb,
855                          ((u64)tmp_mb) << 20L,
856                          (u32)TAD_SOCK(reg),
857                          (u32)TAD_CH(reg),
858                          (u32)TAD_TGT0(reg),
859                          (u32)TAD_TGT1(reg),
860                          (u32)TAD_TGT2(reg),
861                          (u32)TAD_TGT3(reg),
862                          reg);
863                 prv = limit;
864         }
865
866         /*
867          * Step 4) Get TAD offsets, per each channel
868          */
869         for (i = 0; i < NUM_CHANNELS; i++) {
870                 if (!pvt->channel[i].dimms)
871                         continue;
872                 for (j = 0; j < n_tads; j++) {
873                         pci_read_config_dword(pvt->pci_tad[i],
874                                               tad_ch_nilv_offset[j],
875                                               &reg);
876                         tmp_mb = TAD_OFFSET(reg) >> 20;
877                         mb = div_u64_rem(tmp_mb, 1000, &kb);
878                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
879                                  i, j,
880                                  mb, kb,
881                                  ((u64)tmp_mb) << 20L,
882                                  reg);
883                 }
884         }
885
886         /*
887          * Step 6) Get RIR Wayness/Limit, per each channel
888          */
889         for (i = 0; i < NUM_CHANNELS; i++) {
890                 if (!pvt->channel[i].dimms)
891                         continue;
892                 for (j = 0; j < MAX_RIR_RANGES; j++) {
893                         pci_read_config_dword(pvt->pci_tad[i],
894                                               rir_way_limit[j],
895                                               &reg);
896
897                         if (!IS_RIR_VALID(reg))
898                                 continue;
899
900                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
901                         rir_way = 1 << RIR_WAY(reg);
902                         mb = div_u64_rem(tmp_mb, 1000, &kb);
903                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
904                                  i, j,
905                                  mb, kb,
906                                  ((u64)tmp_mb) << 20L,
907                                  rir_way,
908                                  reg);
909
910                         for (k = 0; k < rir_way; k++) {
911                                 pci_read_config_dword(pvt->pci_tad[i],
912                                                       rir_offset[j][k],
913                                                       &reg);
914                                 tmp_mb = RIR_OFFSET(reg) << 6;
915
916                                 mb = div_u64_rem(tmp_mb, 1000, &kb);
917                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
918                                          i, j, k,
919                                          mb, kb,
920                                          ((u64)tmp_mb) << 20L,
921                                          (u32)RIR_RNK_TGT(reg),
922                                          reg);
923                         }
924                 }
925         }
926 }
927
928 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
929 {
930         struct sbridge_dev *sbridge_dev;
931
932         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
933                 if (sbridge_dev->node_id == node_id)
934                         return sbridge_dev->mci;
935         }
936         return NULL;
937 }
938
939 static int get_memory_error_data(struct mem_ctl_info *mci,
940                                  u64 addr,
941                                  u8 *socket,
942                                  long *channel_mask,
943                                  u8 *rank,
944                                  char **area_type, char *msg)
945 {
946         struct mem_ctl_info     *new_mci;
947         struct sbridge_pvt *pvt = mci->pvt_info;
948         struct pci_dev          *pci_ha;
949         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
950         int                     sad_interl, idx, base_ch;
951         int                     interleave_mode;
952         unsigned                sad_interleave[pvt->info.max_interleave];
953         u32                     reg;
954         u8                      ch_way, sck_way, pkg, sad_ha = 0;
955         u32                     tad_offset;
956         u32                     rir_way;
957         u32                     mb, kb;
958         u64                     ch_addr, offset, limit = 0, prv = 0;
959
960
961         /*
962          * Step 0) Check if the address is at special memory ranges
963          * The check bellow is probably enough to fill all cases where
964          * the error is not inside a memory, except for the legacy
965          * range (e. g. VGA addresses). It is unlikely, however, that the
966          * memory controller would generate an error on that range.
967          */
968         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
969                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
970                 return -EINVAL;
971         }
972         if (addr >= (u64)pvt->tohm) {
973                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
974                 return -EINVAL;
975         }
976
977         /*
978          * Step 1) Get socket
979          */
980         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
981                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
982                                       &reg);
983
984                 if (!DRAM_RULE_ENABLE(reg))
985                         continue;
986
987                 limit = SAD_LIMIT(reg);
988                 if (limit <= prv) {
989                         sprintf(msg, "Can't discover the memory socket");
990                         return -EINVAL;
991                 }
992                 if  (addr <= limit)
993                         break;
994                 prv = limit;
995         }
996         if (n_sads == pvt->info.max_sad) {
997                 sprintf(msg, "Can't discover the memory socket");
998                 return -EINVAL;
999         }
1000         *area_type = get_dram_attr(reg);
1001         interleave_mode = INTERLEAVE_MODE(reg);
1002
1003         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1004                               &reg);
1005
1006         if (pvt->info.type == SANDY_BRIDGE) {
1007                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1008                 for (sad_way = 0; sad_way < 8; sad_way++) {
1009                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1010                         if (sad_way > 0 && sad_interl == pkg)
1011                                 break;
1012                         sad_interleave[sad_way] = pkg;
1013                         edac_dbg(0, "SAD interleave #%d: %d\n",
1014                                  sad_way, sad_interleave[sad_way]);
1015                 }
1016                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1017                          pvt->sbridge_dev->mc,
1018                          n_sads,
1019                          addr,
1020                          limit,
1021                          sad_way + 7,
1022                          !interleave_mode ? "" : "XOR[18:16]");
1023                 if (interleave_mode)
1024                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1025                 else
1026                         idx = (addr >> 6) & 7;
1027                 switch (sad_way) {
1028                 case 1:
1029                         idx = 0;
1030                         break;
1031                 case 2:
1032                         idx = idx & 1;
1033                         break;
1034                 case 4:
1035                         idx = idx & 3;
1036                         break;
1037                 case 8:
1038                         break;
1039                 default:
1040                         sprintf(msg, "Can't discover socket interleave");
1041                         return -EINVAL;
1042                 }
1043                 *socket = sad_interleave[idx];
1044                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1045                          idx, sad_way, *socket);
1046         } else {
1047                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1048                 idx = (addr >> 6) & 7;
1049                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1050                 *socket = sad_pkg_socket(pkg);
1051                 sad_ha = sad_pkg_ha(pkg);
1052                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1053                          idx, *socket, sad_ha);
1054         }
1055
1056         /*
1057          * Move to the proper node structure, in order to access the
1058          * right PCI registers
1059          */
1060         new_mci = get_mci_for_node_id(*socket);
1061         if (!new_mci) {
1062                 sprintf(msg, "Struct for socket #%u wasn't initialized",
1063                         *socket);
1064                 return -EINVAL;
1065         }
1066         mci = new_mci;
1067         pvt = mci->pvt_info;
1068
1069         /*
1070          * Step 2) Get memory channel
1071          */
1072         prv = 0;
1073         if (pvt->info.type == SANDY_BRIDGE)
1074                 pci_ha = pvt->pci_ha0;
1075         else {
1076                 if (sad_ha)
1077                         pci_ha = pvt->pci_ha1;
1078                 else
1079                         pci_ha = pvt->pci_ha0;
1080         }
1081         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1082                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1083                 limit = TAD_LIMIT(reg);
1084                 if (limit <= prv) {
1085                         sprintf(msg, "Can't discover the memory channel");
1086                         return -EINVAL;
1087                 }
1088                 if  (addr <= limit)
1089                         break;
1090                 prv = limit;
1091         }
1092         if (n_tads == MAX_TAD) {
1093                 sprintf(msg, "Can't discover the memory channel");
1094                 return -EINVAL;
1095         }
1096
1097         ch_way = TAD_CH(reg) + 1;
1098         sck_way = TAD_SOCK(reg) + 1;
1099
1100         if (ch_way == 3)
1101                 idx = addr >> 6;
1102         else
1103                 idx = addr >> (6 + sck_way);
1104         idx = idx % ch_way;
1105
1106         /*
1107          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1108          */
1109         switch (idx) {
1110         case 0:
1111                 base_ch = TAD_TGT0(reg);
1112                 break;
1113         case 1:
1114                 base_ch = TAD_TGT1(reg);
1115                 break;
1116         case 2:
1117                 base_ch = TAD_TGT2(reg);
1118                 break;
1119         case 3:
1120                 base_ch = TAD_TGT3(reg);
1121                 break;
1122         default:
1123                 sprintf(msg, "Can't discover the TAD target");
1124                 return -EINVAL;
1125         }
1126         *channel_mask = 1 << base_ch;
1127
1128         pci_read_config_dword(pvt->pci_tad[base_ch],
1129                                 tad_ch_nilv_offset[n_tads],
1130                                 &tad_offset);
1131
1132         if (pvt->is_mirrored) {
1133                 *channel_mask |= 1 << ((base_ch + 2) % 4);
1134                 switch(ch_way) {
1135                 case 2:
1136                 case 4:
1137                         sck_xch = 1 << sck_way * (ch_way >> 1);
1138                         break;
1139                 default:
1140                         sprintf(msg, "Invalid mirror set. Can't decode addr");
1141                         return -EINVAL;
1142                 }
1143         } else
1144                 sck_xch = (1 << sck_way) * ch_way;
1145
1146         if (pvt->is_lockstep)
1147                 *channel_mask |= 1 << ((base_ch + 1) % 4);
1148
1149         offset = TAD_OFFSET(tad_offset);
1150
1151         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1152                  n_tads,
1153                  addr,
1154                  limit,
1155                  (u32)TAD_SOCK(reg),
1156                  ch_way,
1157                  offset,
1158                  idx,
1159                  base_ch,
1160                  *channel_mask);
1161
1162         /* Calculate channel address */
1163         /* Remove the TAD offset */
1164
1165         if (offset > addr) {
1166                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1167                         offset, addr);
1168                 return -EINVAL;
1169         }
1170         addr -= offset;
1171         /* Store the low bits [0:6] of the addr */
1172         ch_addr = addr & 0x7f;
1173         /* Remove socket wayness and remove 6 bits */
1174         addr >>= 6;
1175         addr = div_u64(addr, sck_xch);
1176 #if 0
1177         /* Divide by channel way */
1178         addr = addr / ch_way;
1179 #endif
1180         /* Recover the last 6 bits */
1181         ch_addr |= addr << 6;
1182
1183         /*
1184          * Step 3) Decode rank
1185          */
1186         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1187                 pci_read_config_dword(pvt->pci_tad[base_ch],
1188                                       rir_way_limit[n_rir],
1189                                       &reg);
1190
1191                 if (!IS_RIR_VALID(reg))
1192                         continue;
1193
1194                 limit = pvt->info.rir_limit(reg);
1195                 mb = div_u64_rem(limit >> 20, 1000, &kb);
1196                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1197                          n_rir,
1198                          mb, kb,
1199                          limit,
1200                          1 << RIR_WAY(reg));
1201                 if  (ch_addr <= limit)
1202                         break;
1203         }
1204         if (n_rir == MAX_RIR_RANGES) {
1205                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1206                         ch_addr);
1207                 return -EINVAL;
1208         }
1209         rir_way = RIR_WAY(reg);
1210         if (pvt->is_close_pg)
1211                 idx = (ch_addr >> 6);
1212         else
1213                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
1214         idx %= 1 << rir_way;
1215
1216         pci_read_config_dword(pvt->pci_tad[base_ch],
1217                               rir_offset[n_rir][idx],
1218                               &reg);
1219         *rank = RIR_RNK_TGT(reg);
1220
1221         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1222                  n_rir,
1223                  ch_addr,
1224                  limit,
1225                  rir_way,
1226                  idx);
1227
1228         return 0;
1229 }
1230
1231 /****************************************************************************
1232         Device initialization routines: put/get, init/exit
1233  ****************************************************************************/
1234
1235 /*
1236  *      sbridge_put_all_devices 'put' all the devices that we have
1237  *                              reserved via 'get'
1238  */
1239 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1240 {
1241         int i;
1242
1243         edac_dbg(0, "\n");
1244         for (i = 0; i < sbridge_dev->n_devs; i++) {
1245                 struct pci_dev *pdev = sbridge_dev->pdev[i];
1246                 if (!pdev)
1247                         continue;
1248                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1249                          pdev->bus->number,
1250                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1251                 pci_dev_put(pdev);
1252         }
1253 }
1254
1255 static void sbridge_put_all_devices(void)
1256 {
1257         struct sbridge_dev *sbridge_dev, *tmp;
1258
1259         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1260                 sbridge_put_devices(sbridge_dev);
1261                 free_sbridge_dev(sbridge_dev);
1262         }
1263 }
1264
1265 static int sbridge_get_onedevice(struct pci_dev **prev,
1266                                  u8 *num_mc,
1267                                  const struct pci_id_table *table,
1268                                  const unsigned devno)
1269 {
1270         struct sbridge_dev *sbridge_dev;
1271         const struct pci_id_descr *dev_descr = &table->descr[devno];
1272         struct pci_dev *pdev = NULL;
1273         u8 bus = 0;
1274
1275         sbridge_printk(KERN_DEBUG,
1276                 "Seeking for: PCI ID %04x:%04x\n",
1277                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1278
1279         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1280                               dev_descr->dev_id, *prev);
1281
1282         if (!pdev) {
1283                 if (*prev) {
1284                         *prev = pdev;
1285                         return 0;
1286                 }
1287
1288                 if (dev_descr->optional)
1289                         return 0;
1290
1291                 /* if the HA wasn't found */
1292                 if (devno == 0)
1293                         return -ENODEV;
1294
1295                 sbridge_printk(KERN_INFO,
1296                         "Device not found: %04x:%04x\n",
1297                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1298
1299                 /* End of list, leave */
1300                 return -ENODEV;
1301         }
1302         bus = pdev->bus->number;
1303
1304         sbridge_dev = get_sbridge_dev(bus);
1305         if (!sbridge_dev) {
1306                 sbridge_dev = alloc_sbridge_dev(bus, table);
1307                 if (!sbridge_dev) {
1308                         pci_dev_put(pdev);
1309                         return -ENOMEM;
1310                 }
1311                 (*num_mc)++;
1312         }
1313
1314         if (sbridge_dev->pdev[devno]) {
1315                 sbridge_printk(KERN_ERR,
1316                         "Duplicated device for %04x:%04x\n",
1317                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1318                 pci_dev_put(pdev);
1319                 return -ENODEV;
1320         }
1321
1322         sbridge_dev->pdev[devno] = pdev;
1323
1324         /* Be sure that the device is enabled */
1325         if (unlikely(pci_enable_device(pdev) < 0)) {
1326                 sbridge_printk(KERN_ERR,
1327                         "Couldn't enable %04x:%04x\n",
1328                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1329                 return -ENODEV;
1330         }
1331
1332         edac_dbg(0, "Detected %04x:%04x\n",
1333                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1334
1335         /*
1336          * As stated on drivers/pci/search.c, the reference count for
1337          * @from is always decremented if it is not %NULL. So, as we need
1338          * to get all devices up to null, we need to do a get for the device
1339          */
1340         pci_dev_get(pdev);
1341
1342         *prev = pdev;
1343
1344         return 0;
1345 }
1346
1347 /*
1348  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1349  *                           devices we want to reference for this driver.
1350  * @num_mc: pointer to the memory controllers count, to be incremented in case
1351  *          of success.
1352  * @table: model specific table
1353  *
1354  * returns 0 in case of success or error code
1355  */
1356 static int sbridge_get_all_devices(u8 *num_mc,
1357                                    const struct pci_id_table *table)
1358 {
1359         int i, rc;
1360         struct pci_dev *pdev = NULL;
1361
1362         while (table && table->descr) {
1363                 for (i = 0; i < table->n_devs; i++) {
1364                         pdev = NULL;
1365                         do {
1366                                 rc = sbridge_get_onedevice(&pdev, num_mc,
1367                                                            table, i);
1368                                 if (rc < 0) {
1369                                         if (i == 0) {
1370                                                 i = table->n_devs;
1371                                                 break;
1372                                         }
1373                                         sbridge_put_all_devices();
1374                                         return -ENODEV;
1375                                 }
1376                         } while (pdev);
1377                 }
1378                 table++;
1379         }
1380
1381         return 0;
1382 }
1383
1384 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1385                                  struct sbridge_dev *sbridge_dev)
1386 {
1387         struct sbridge_pvt *pvt = mci->pvt_info;
1388         struct pci_dev *pdev;
1389         int i;
1390
1391         for (i = 0; i < sbridge_dev->n_devs; i++) {
1392                 pdev = sbridge_dev->pdev[i];
1393                 if (!pdev)
1394                         continue;
1395
1396                 switch (pdev->device) {
1397                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1398                         pvt->pci_sad0 = pdev;
1399                         break;
1400                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1401                         pvt->pci_sad1 = pdev;
1402                         break;
1403                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1404                         pvt->pci_br0 = pdev;
1405                         break;
1406                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1407                         pvt->pci_ha0 = pdev;
1408                         break;
1409                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1410                         pvt->pci_ta = pdev;
1411                         break;
1412                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1413                         pvt->pci_ras = pdev;
1414                         break;
1415                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1416                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1417                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1418                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1419                 {
1420                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1421                         pvt->pci_tad[id] = pdev;
1422                 }
1423                         break;
1424                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1425                         pvt->pci_ddrio = pdev;
1426                         break;
1427                 default:
1428                         goto error;
1429                 }
1430
1431                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1432                          pdev->vendor, pdev->device,
1433                          sbridge_dev->bus,
1434                          pdev);
1435         }
1436
1437         /* Check if everything were registered */
1438         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1439             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1440                 goto enodev;
1441
1442         for (i = 0; i < NUM_CHANNELS; i++) {
1443                 if (!pvt->pci_tad[i])
1444                         goto enodev;
1445         }
1446         return 0;
1447
1448 enodev:
1449         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1450         return -ENODEV;
1451
1452 error:
1453         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1454                        PCI_VENDOR_ID_INTEL, pdev->device);
1455         return -EINVAL;
1456 }
1457
1458 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1459                                  struct sbridge_dev *sbridge_dev)
1460 {
1461         struct sbridge_pvt *pvt = mci->pvt_info;
1462         struct pci_dev *pdev, *tmp;
1463         int i;
1464         bool mode_2ha = false;
1465
1466         tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1467                              PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
1468         if (tmp) {
1469                 mode_2ha = true;
1470                 pci_dev_put(tmp);
1471         }
1472
1473         for (i = 0; i < sbridge_dev->n_devs; i++) {
1474                 pdev = sbridge_dev->pdev[i];
1475                 if (!pdev)
1476                         continue;
1477
1478                 switch (pdev->device) {
1479                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1480                         pvt->pci_ha0 = pdev;
1481                         break;
1482                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1483                         pvt->pci_ta = pdev;
1484                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1485                         pvt->pci_ras = pdev;
1486                         break;
1487                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1488                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1489                         /* if we have 2 HAs active, channels 2 and 3
1490                          * are in other device */
1491                         if (mode_2ha)
1492                                 break;
1493                         /* fall through */
1494                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1495                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1496                 {
1497                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1498                         pvt->pci_tad[id] = pdev;
1499                 }
1500                         break;
1501                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1502                         pvt->pci_ddrio = pdev;
1503                         break;
1504                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1505                         if (!mode_2ha)
1506                                 pvt->pci_ddrio = pdev;
1507                         break;
1508                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1509                         pvt->pci_sad0 = pdev;
1510                         break;
1511                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1512                         pvt->pci_br0 = pdev;
1513                         break;
1514                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1515                         pvt->pci_br1 = pdev;
1516                         break;
1517                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1518                         pvt->pci_ha1 = pdev;
1519                         break;
1520                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1521                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1522                 {
1523                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
1524
1525                         /* we shouldn't have this device if we have just one
1526                          * HA present */
1527                         WARN_ON(!mode_2ha);
1528                         pvt->pci_tad[id] = pdev;
1529                 }
1530                         break;
1531                 default:
1532                         goto error;
1533                 }
1534
1535                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1536                          sbridge_dev->bus,
1537                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1538                          pdev);
1539         }
1540
1541         /* Check if everything were registered */
1542         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1543             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1544             !pvt->pci_ta)
1545                 goto enodev;
1546
1547         for (i = 0; i < NUM_CHANNELS; i++) {
1548                 if (!pvt->pci_tad[i])
1549                         goto enodev;
1550         }
1551         return 0;
1552
1553 enodev:
1554         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1555         return -ENODEV;
1556
1557 error:
1558         sbridge_printk(KERN_ERR,
1559                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1560                         pdev->device);
1561         return -EINVAL;
1562 }
1563
1564 /****************************************************************************
1565                         Error check routines
1566  ****************************************************************************/
1567
1568 /*
1569  * While Sandy Bridge has error count registers, SMI BIOS read values from
1570  * and resets the counters. So, they are not reliable for the OS to read
1571  * from them. So, we have no option but to just trust on whatever MCE is
1572  * telling us about the errors.
1573  */
1574 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1575                                     const struct mce *m)
1576 {
1577         struct mem_ctl_info *new_mci;
1578         struct sbridge_pvt *pvt = mci->pvt_info;
1579         enum hw_event_mc_err_type tp_event;
1580         char *type, *optype, msg[256];
1581         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1582         bool overflow = GET_BITFIELD(m->status, 62, 62);
1583         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1584         bool recoverable;
1585         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1586         u32 mscod = GET_BITFIELD(m->status, 16, 31);
1587         u32 errcode = GET_BITFIELD(m->status, 0, 15);
1588         u32 channel = GET_BITFIELD(m->status, 0, 3);
1589         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1590         long channel_mask, first_channel;
1591         u8  rank, socket;
1592         int rc, dimm;
1593         char *area_type = NULL;
1594
1595         if (pvt->info.type == IVY_BRIDGE)
1596                 recoverable = true;
1597         else
1598                 recoverable = GET_BITFIELD(m->status, 56, 56);
1599
1600         if (uncorrected_error) {
1601                 if (ripv) {
1602                         type = "FATAL";
1603                         tp_event = HW_EVENT_ERR_FATAL;
1604                 } else {
1605                         type = "NON_FATAL";
1606                         tp_event = HW_EVENT_ERR_UNCORRECTED;
1607                 }
1608         } else {
1609                 type = "CORRECTED";
1610                 tp_event = HW_EVENT_ERR_CORRECTED;
1611         }
1612
1613         /*
1614          * According with Table 15-9 of the Intel Architecture spec vol 3A,
1615          * memory errors should fit in this mask:
1616          *      000f 0000 1mmm cccc (binary)
1617          * where:
1618          *      f = Correction Report Filtering Bit. If 1, subsequent errors
1619          *          won't be shown
1620          *      mmm = error type
1621          *      cccc = channel
1622          * If the mask doesn't match, report an error to the parsing logic
1623          */
1624         if (! ((errcode & 0xef80) == 0x80)) {
1625                 optype = "Can't parse: it is not a mem";
1626         } else {
1627                 switch (optypenum) {
1628                 case 0:
1629                         optype = "generic undef request error";
1630                         break;
1631                 case 1:
1632                         optype = "memory read error";
1633                         break;
1634                 case 2:
1635                         optype = "memory write error";
1636                         break;
1637                 case 3:
1638                         optype = "addr/cmd error";
1639                         break;
1640                 case 4:
1641                         optype = "memory scrubbing error";
1642                         break;
1643                 default:
1644                         optype = "reserved";
1645                         break;
1646                 }
1647         }
1648
1649         /* Only decode errors with an valid address (ADDRV) */
1650         if (!GET_BITFIELD(m->status, 58, 58))
1651                 return;
1652
1653         rc = get_memory_error_data(mci, m->addr, &socket,
1654                                    &channel_mask, &rank, &area_type, msg);
1655         if (rc < 0)
1656                 goto err_parsing;
1657         new_mci = get_mci_for_node_id(socket);
1658         if (!new_mci) {
1659                 strcpy(msg, "Error: socket got corrupted!");
1660                 goto err_parsing;
1661         }
1662         mci = new_mci;
1663         pvt = mci->pvt_info;
1664
1665         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1666
1667         if (rank < 4)
1668                 dimm = 0;
1669         else if (rank < 8)
1670                 dimm = 1;
1671         else
1672                 dimm = 2;
1673
1674
1675         /*
1676          * FIXME: On some memory configurations (mirror, lockstep), the
1677          * Memory Controller can't point the error to a single DIMM. The
1678          * EDAC core should be handling the channel mask, in order to point
1679          * to the group of dimm's where the error may be happening.
1680          */
1681         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
1682                 channel = first_channel;
1683
1684         snprintf(msg, sizeof(msg),
1685                  "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1686                  overflow ? " OVERFLOW" : "",
1687                  (uncorrected_error && recoverable) ? " recoverable" : "",
1688                  area_type,
1689                  mscod, errcode,
1690                  socket,
1691                  channel_mask,
1692                  rank);
1693
1694         edac_dbg(0, "%s\n", msg);
1695
1696         /* FIXME: need support for channel mask */
1697
1698         /* Call the helper to output message */
1699         edac_mc_handle_error(tp_event, mci, core_err_cnt,
1700                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1701                              channel, dimm, -1,
1702                              optype, msg);
1703         return;
1704 err_parsing:
1705         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1706                              -1, -1, -1,
1707                              msg, "");
1708
1709 }
1710
1711 /*
1712  *      sbridge_check_error     Retrieve and process errors reported by the
1713  *                              hardware. Called by the Core module.
1714  */
1715 static void sbridge_check_error(struct mem_ctl_info *mci)
1716 {
1717         struct sbridge_pvt *pvt = mci->pvt_info;
1718         int i;
1719         unsigned count = 0;
1720         struct mce *m;
1721
1722         /*
1723          * MCE first step: Copy all mce errors into a temporary buffer
1724          * We use a double buffering here, to reduce the risk of
1725          * loosing an error.
1726          */
1727         smp_rmb();
1728         count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1729                 % MCE_LOG_LEN;
1730         if (!count)
1731                 return;
1732
1733         m = pvt->mce_outentry;
1734         if (pvt->mce_in + count > MCE_LOG_LEN) {
1735                 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1736
1737                 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1738                 smp_wmb();
1739                 pvt->mce_in = 0;
1740                 count -= l;
1741                 m += l;
1742         }
1743         memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1744         smp_wmb();
1745         pvt->mce_in += count;
1746
1747         smp_rmb();
1748         if (pvt->mce_overrun) {
1749                 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1750                               pvt->mce_overrun);
1751                 smp_wmb();
1752                 pvt->mce_overrun = 0;
1753         }
1754
1755         /*
1756          * MCE second step: parse errors and display
1757          */
1758         for (i = 0; i < count; i++)
1759                 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1760 }
1761
1762 /*
1763  * sbridge_mce_check_error      Replicates mcelog routine to get errors
1764  *                              This routine simply queues mcelog errors, and
1765  *                              return. The error itself should be handled later
1766  *                              by sbridge_check_error.
1767  * WARNING: As this routine should be called at NMI time, extra care should
1768  * be taken to avoid deadlocks, and to be as fast as possible.
1769  */
1770 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1771                                    void *data)
1772 {
1773         struct mce *mce = (struct mce *)data;
1774         struct mem_ctl_info *mci;
1775         struct sbridge_pvt *pvt;
1776         char *type;
1777
1778         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
1779                 return NOTIFY_DONE;
1780
1781         mci = get_mci_for_node_id(mce->socketid);
1782         if (!mci)
1783                 return NOTIFY_BAD;
1784         pvt = mci->pvt_info;
1785
1786         /*
1787          * Just let mcelog handle it if the error is
1788          * outside the memory controller. A memory error
1789          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1790          * bit 12 has an special meaning.
1791          */
1792         if ((mce->status & 0xefff) >> 7 != 1)
1793                 return NOTIFY_DONE;
1794
1795         if (mce->mcgstatus & MCG_STATUS_MCIP)
1796                 type = "Exception";
1797         else
1798                 type = "Event";
1799
1800         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
1801
1802         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
1803                           "Bank %d: %016Lx\n", mce->extcpu, type,
1804                           mce->mcgstatus, mce->bank, mce->status);
1805         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
1806         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
1807         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
1808
1809         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
1810                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
1811                           mce->time, mce->socketid, mce->apicid);
1812
1813         smp_rmb();
1814         if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1815                 smp_wmb();
1816                 pvt->mce_overrun++;
1817                 return NOTIFY_DONE;
1818         }
1819
1820         /* Copy memory error at the ringbuffer */
1821         memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1822         smp_wmb();
1823         pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1824
1825         /* Handle fatal errors immediately */
1826         if (mce->mcgstatus & 1)
1827                 sbridge_check_error(mci);
1828
1829         /* Advice mcelog that the error were handled */
1830         return NOTIFY_STOP;
1831 }
1832
1833 static struct notifier_block sbridge_mce_dec = {
1834         .notifier_call      = sbridge_mce_check_error,
1835 };
1836
1837 /****************************************************************************
1838                         EDAC register/unregister logic
1839  ****************************************************************************/
1840
1841 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1842 {
1843         struct mem_ctl_info *mci = sbridge_dev->mci;
1844         struct sbridge_pvt *pvt;
1845
1846         if (unlikely(!mci || !mci->pvt_info)) {
1847                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1848
1849                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1850                 return;
1851         }
1852
1853         pvt = mci->pvt_info;
1854
1855         edac_dbg(0, "MC: mci = %p, dev = %p\n",
1856                  mci, &sbridge_dev->pdev[0]->dev);
1857
1858         /* Remove MC sysfs nodes */
1859         edac_mc_del_mc(mci->pdev);
1860
1861         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1862         kfree(mci->ctl_name);
1863         edac_mc_free(mci);
1864         sbridge_dev->mci = NULL;
1865 }
1866
1867 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
1868 {
1869         struct mem_ctl_info *mci;
1870         struct edac_mc_layer layers[2];
1871         struct sbridge_pvt *pvt;
1872         struct pci_dev *pdev = sbridge_dev->pdev[0];
1873         int rc;
1874
1875         /* Check the number of active and not disabled channels */
1876         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
1877         if (unlikely(rc < 0))
1878                 return rc;
1879
1880         /* allocate a new MC control structure */
1881         layers[0].type = EDAC_MC_LAYER_CHANNEL;
1882         layers[0].size = NUM_CHANNELS;
1883         layers[0].is_virt_csrow = false;
1884         layers[1].type = EDAC_MC_LAYER_SLOT;
1885         layers[1].size = MAX_DIMMS;
1886         layers[1].is_virt_csrow = true;
1887         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1888                             sizeof(*pvt));
1889
1890         if (unlikely(!mci))
1891                 return -ENOMEM;
1892
1893         edac_dbg(0, "MC: mci = %p, dev = %p\n",
1894                  mci, &pdev->dev);
1895
1896         pvt = mci->pvt_info;
1897         memset(pvt, 0, sizeof(*pvt));
1898
1899         /* Associate sbridge_dev and mci for future usage */
1900         pvt->sbridge_dev = sbridge_dev;
1901         sbridge_dev->mci = mci;
1902
1903         mci->mtype_cap = MEM_FLAG_DDR3;
1904         mci->edac_ctl_cap = EDAC_FLAG_NONE;
1905         mci->edac_cap = EDAC_FLAG_NONE;
1906         mci->mod_name = "sbridge_edac.c";
1907         mci->mod_ver = SBRIDGE_REVISION;
1908         mci->dev_name = pci_name(pdev);
1909         mci->ctl_page_to_phys = NULL;
1910
1911         /* Set the function pointer to an actual operation function */
1912         mci->edac_check = sbridge_check_error;
1913
1914         pvt->info.type = type;
1915         if (type == IVY_BRIDGE) {
1916                 pvt->info.rankcfgr = IB_RANK_CFG_A;
1917                 pvt->info.get_tolm = ibridge_get_tolm;
1918                 pvt->info.get_tohm = ibridge_get_tohm;
1919                 pvt->info.dram_rule = ibridge_dram_rule;
1920                 pvt->info.get_memory_type = get_memory_type;
1921                 pvt->info.get_node_id = get_node_id;
1922                 pvt->info.rir_limit = rir_limit;
1923                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
1924                 pvt->info.interleave_list = ibridge_interleave_list;
1925                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
1926                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
1927                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
1928
1929                 /* Store pci devices at mci for faster access */
1930                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
1931                 if (unlikely(rc < 0))
1932                         goto fail0;
1933         } else {
1934                 pvt->info.rankcfgr = SB_RANK_CFG_A;
1935                 pvt->info.get_tolm = sbridge_get_tolm;
1936                 pvt->info.get_tohm = sbridge_get_tohm;
1937                 pvt->info.dram_rule = sbridge_dram_rule;
1938                 pvt->info.get_memory_type = get_memory_type;
1939                 pvt->info.get_node_id = get_node_id;
1940                 pvt->info.rir_limit = rir_limit;
1941                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
1942                 pvt->info.interleave_list = sbridge_interleave_list;
1943                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
1944                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
1945                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1946
1947                 /* Store pci devices at mci for faster access */
1948                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
1949                 if (unlikely(rc < 0))
1950                         goto fail0;
1951         }
1952
1953
1954         /* Get dimm basic config and the memory layout */
1955         get_dimm_config(mci);
1956         get_memory_layout(mci);
1957
1958         /* record ptr to the generic device */
1959         mci->pdev = &pdev->dev;
1960
1961         /* add this new MC control structure to EDAC's list of MCs */
1962         if (unlikely(edac_mc_add_mc(mci))) {
1963                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1964                 rc = -EINVAL;
1965                 goto fail0;
1966         }
1967
1968         return 0;
1969
1970 fail0:
1971         kfree(mci->ctl_name);
1972         edac_mc_free(mci);
1973         sbridge_dev->mci = NULL;
1974         return rc;
1975 }
1976
1977 /*
1978  *      sbridge_probe   Probe for ONE instance of device to see if it is
1979  *                      present.
1980  *      return:
1981  *              0 for FOUND a device
1982  *              < 0 for error code
1983  */
1984
1985 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1986 {
1987         int rc;
1988         u8 mc, num_mc = 0;
1989         struct sbridge_dev *sbridge_dev;
1990         enum type type;
1991
1992         /* get the pci devices we want to reserve for our use */
1993         mutex_lock(&sbridge_edac_lock);
1994
1995         /*
1996          * All memory controllers are allocated at the first pass.
1997          */
1998         if (unlikely(probed >= 1)) {
1999                 mutex_unlock(&sbridge_edac_lock);
2000                 return -ENODEV;
2001         }
2002         probed++;
2003
2004         if (pdev->device == PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA) {
2005                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2006                 type = IVY_BRIDGE;
2007         } else {
2008                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2009                 type = SANDY_BRIDGE;
2010         }
2011         if (unlikely(rc < 0))
2012                 goto fail0;
2013         mc = 0;
2014
2015         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2016                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2017                          mc, mc + 1, num_mc);
2018                 sbridge_dev->mc = mc++;
2019                 rc = sbridge_register_mci(sbridge_dev, type);
2020                 if (unlikely(rc < 0))
2021                         goto fail1;
2022         }
2023
2024         sbridge_printk(KERN_INFO, "Driver loaded.\n");
2025
2026         mutex_unlock(&sbridge_edac_lock);
2027         return 0;
2028
2029 fail1:
2030         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2031                 sbridge_unregister_mci(sbridge_dev);
2032
2033         sbridge_put_all_devices();
2034 fail0:
2035         mutex_unlock(&sbridge_edac_lock);
2036         return rc;
2037 }
2038
2039 /*
2040  *      sbridge_remove  destructor for one instance of device
2041  *
2042  */
2043 static void sbridge_remove(struct pci_dev *pdev)
2044 {
2045         struct sbridge_dev *sbridge_dev;
2046
2047         edac_dbg(0, "\n");
2048
2049         /*
2050          * we have a trouble here: pdev value for removal will be wrong, since
2051          * it will point to the X58 register used to detect that the machine
2052          * is a Nehalem or upper design. However, due to the way several PCI
2053          * devices are grouped together to provide MC functionality, we need
2054          * to use a different method for releasing the devices
2055          */
2056
2057         mutex_lock(&sbridge_edac_lock);
2058
2059         if (unlikely(!probed)) {
2060                 mutex_unlock(&sbridge_edac_lock);
2061                 return;
2062         }
2063
2064         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2065                 sbridge_unregister_mci(sbridge_dev);
2066
2067         /* Release PCI resources */
2068         sbridge_put_all_devices();
2069
2070         probed--;
2071
2072         mutex_unlock(&sbridge_edac_lock);
2073 }
2074
2075 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2076
2077 /*
2078  *      sbridge_driver  pci_driver structure for this module
2079  *
2080  */
2081 static struct pci_driver sbridge_driver = {
2082         .name     = "sbridge_edac",
2083         .probe    = sbridge_probe,
2084         .remove   = sbridge_remove,
2085         .id_table = sbridge_pci_tbl,
2086 };
2087
2088 /*
2089  *      sbridge_init            Module entry function
2090  *                      Try to initialize this module for its devices
2091  */
2092 static int __init sbridge_init(void)
2093 {
2094         int pci_rc;
2095
2096         edac_dbg(2, "\n");
2097
2098         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2099         opstate_init();
2100
2101         pci_rc = pci_register_driver(&sbridge_driver);
2102         if (pci_rc >= 0) {
2103                 mce_register_decode_chain(&sbridge_mce_dec);
2104                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2105                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2106                 return 0;
2107         }
2108
2109         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2110                       pci_rc);
2111
2112         return pci_rc;
2113 }
2114
2115 /*
2116  *      sbridge_exit()  Module exit function
2117  *                      Unregister the driver
2118  */
2119 static void __exit sbridge_exit(void)
2120 {
2121         edac_dbg(2, "\n");
2122         pci_unregister_driver(&sbridge_driver);
2123         mce_unregister_decode_chain(&sbridge_mce_dec);
2124 }
2125
2126 module_init(sbridge_init);
2127 module_exit(sbridge_exit);
2128
2129 module_param(edac_op_state, int, 0444);
2130 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2131
2132 MODULE_LICENSE("GPL");
2133 MODULE_AUTHOR("Mauro Carvalho Chehab");
2134 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2135 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2136                    SBRIDGE_REVISION);