ppc4xx_edac: convert driver to use the new edac ABI
[firefly-linux-kernel-4.4.55.git] / drivers / edac / x38_edac.c
1 /*
2  * Intel X38 Memory Controller kernel module
3  * Copyright (C) 2008 Cluster Computing, Inc.
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * This file is based on i3200_edac.c
9  *
10  */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/edac.h>
17 #include "edac_core.h"
18
19 #define X38_REVISION            "1.1"
20
21 #define EDAC_MOD_STR            "x38_edac"
22
23 #define PCI_DEVICE_ID_INTEL_X38_HB      0x29e0
24
25 #define X38_RANKS               8
26 #define X38_RANKS_PER_CHANNEL   4
27 #define X38_CHANNELS            2
28
29 /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
30
31 #define X38_MCHBAR_LOW  0x48    /* MCH Memory Mapped Register BAR */
32 #define X38_MCHBAR_HIGH 0x4c
33 #define X38_MCHBAR_MASK 0xfffffc000ULL  /* bits 35:14 */
34 #define X38_MMR_WINDOW_SIZE     16384
35
36 #define X38_TOM 0xa0    /* Top of Memory (16b)
37                                  *
38                                  * 15:10 reserved
39                                  *  9:0  total populated physical memory
40                                  */
41 #define X38_TOM_MASK    0x3ff   /* bits 9:0 */
42 #define X38_TOM_SHIFT 26        /* 64MiB grain */
43
44 #define X38_ERRSTS      0xc8    /* Error Status Register (16b)
45                                  *
46                                  * 15    reserved
47                                  * 14    Isochronous TBWRR Run Behind FIFO Full
48                                  *       (ITCV)
49                                  * 13    Isochronous TBWRR Run Behind FIFO Put
50                                  *       (ITSTV)
51                                  * 12    reserved
52                                  * 11    MCH Thermal Sensor Event
53                                  *       for SMI/SCI/SERR (GTSE)
54                                  * 10    reserved
55                                  *  9    LOCK to non-DRAM Memory Flag (LCKF)
56                                  *  8    reserved
57                                  *  7    DRAM Throttle Flag (DTF)
58                                  *  6:2  reserved
59                                  *  1    Multi-bit DRAM ECC Error Flag (DMERR)
60                                  *  0    Single-bit DRAM ECC Error Flag (DSERR)
61                                  */
62 #define X38_ERRSTS_UE           0x0002
63 #define X38_ERRSTS_CE           0x0001
64 #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE)
65
66
67 /* Intel  MMIO register space - device 0 function 0 - MMR space */
68
69 #define X38_C0DRB       0x200   /* Channel 0 DRAM Rank Boundary (16b x 4)
70                                  *
71                                  * 15:10 reserved
72                                  *  9:0  Channel 0 DRAM Rank Boundary Address
73                                  */
74 #define X38_C1DRB       0x600   /* Channel 1 DRAM Rank Boundary (16b x 4) */
75 #define X38_DRB_MASK    0x3ff   /* bits 9:0 */
76 #define X38_DRB_SHIFT 26        /* 64MiB grain */
77
78 #define X38_C0ECCERRLOG 0x280   /* Channel 0 ECC Error Log (64b)
79                                  *
80                                  * 63:48 Error Column Address (ERRCOL)
81                                  * 47:32 Error Row Address (ERRROW)
82                                  * 31:29 Error Bank Address (ERRBANK)
83                                  * 28:27 Error Rank Address (ERRRANK)
84                                  * 26:24 reserved
85                                  * 23:16 Error Syndrome (ERRSYND)
86                                  * 15: 2 reserved
87                                  *    1  Multiple Bit Error Status (MERRSTS)
88                                  *    0  Correctable Error Status (CERRSTS)
89                                  */
90 #define X38_C1ECCERRLOG 0x680   /* Channel 1 ECC Error Log (64b) */
91 #define X38_ECCERRLOG_CE        0x1
92 #define X38_ECCERRLOG_UE        0x2
93 #define X38_ECCERRLOG_RANK_BITS 0x18000000
94 #define X38_ECCERRLOG_SYNDROME_BITS     0xff0000
95
96 #define X38_CAPID0 0xe0 /* see P.94 of spec for details */
97
98 static int x38_channel_num;
99
100 static int how_many_channel(struct pci_dev *pdev)
101 {
102         unsigned char capid0_8b; /* 8th byte of CAPID0 */
103
104         pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
105         if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */
106                 debugf0("In single channel mode.\n");
107                 x38_channel_num = 1;
108         } else {
109                 debugf0("In dual channel mode.\n");
110                 x38_channel_num = 2;
111         }
112
113         return x38_channel_num;
114 }
115
116 static unsigned long eccerrlog_syndrome(u64 log)
117 {
118         return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
119 }
120
121 static int eccerrlog_row(int channel, u64 log)
122 {
123         return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
124                 (channel * X38_RANKS_PER_CHANNEL);
125 }
126
127 enum x38_chips {
128         X38 = 0,
129 };
130
131 struct x38_dev_info {
132         const char *ctl_name;
133 };
134
135 struct x38_error_info {
136         u16 errsts;
137         u16 errsts2;
138         u64 eccerrlog[X38_CHANNELS];
139 };
140
141 static const struct x38_dev_info x38_devs[] = {
142         [X38] = {
143                 .ctl_name = "x38"},
144 };
145
146 static struct pci_dev *mci_pdev;
147 static int x38_registered = 1;
148
149
150 static void x38_clear_error_info(struct mem_ctl_info *mci)
151 {
152         struct pci_dev *pdev;
153
154         pdev = to_pci_dev(mci->dev);
155
156         /*
157          * Clear any error bits.
158          * (Yes, we really clear bits by writing 1 to them.)
159          */
160         pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
161                          X38_ERRSTS_BITS);
162 }
163
164 static u64 x38_readq(const void __iomem *addr)
165 {
166         return readl(addr) | (((u64)readl(addr + 4)) << 32);
167 }
168
169 static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
170                                  struct x38_error_info *info)
171 {
172         struct pci_dev *pdev;
173         void __iomem *window = mci->pvt_info;
174
175         pdev = to_pci_dev(mci->dev);
176
177         /*
178          * This is a mess because there is no atomic way to read all the
179          * registers at once and the registers can transition from CE being
180          * overwritten by UE.
181          */
182         pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
183         if (!(info->errsts & X38_ERRSTS_BITS))
184                 return;
185
186         info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
187         if (x38_channel_num == 2)
188                 info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
189
190         pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
191
192         /*
193          * If the error is the same for both reads then the first set
194          * of reads is valid.  If there is a change then there is a CE
195          * with no info and the second set of reads is valid and
196          * should be UE info.
197          */
198         if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
199                 info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
200                 if (x38_channel_num == 2)
201                         info->eccerrlog[1] =
202                                 x38_readq(window + X38_C1ECCERRLOG);
203         }
204
205         x38_clear_error_info(mci);
206 }
207
208 static void x38_process_error_info(struct mem_ctl_info *mci,
209                                 struct x38_error_info *info)
210 {
211         int channel;
212         u64 log;
213
214         if (!(info->errsts & X38_ERRSTS_BITS))
215                 return;
216
217         if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
218                 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
219                 info->errsts = info->errsts2;
220         }
221
222         for (channel = 0; channel < x38_channel_num; channel++) {
223                 log = info->eccerrlog[channel];
224                 if (log & X38_ECCERRLOG_UE) {
225                         edac_mc_handle_ue(mci, 0, 0,
226                                 eccerrlog_row(channel, log), "x38 UE");
227                 } else if (log & X38_ECCERRLOG_CE) {
228                         edac_mc_handle_ce(mci, 0, 0,
229                                 eccerrlog_syndrome(log),
230                                 eccerrlog_row(channel, log), 0, "x38 CE");
231                 }
232         }
233 }
234
235 static void x38_check(struct mem_ctl_info *mci)
236 {
237         struct x38_error_info info;
238
239         debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
240         x38_get_and_clear_error_info(mci, &info);
241         x38_process_error_info(mci, &info);
242 }
243
244
245 void __iomem *x38_map_mchbar(struct pci_dev *pdev)
246 {
247         union {
248                 u64 mchbar;
249                 struct {
250                         u32 mchbar_low;
251                         u32 mchbar_high;
252                 };
253         } u;
254         void __iomem *window;
255
256         pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
257         pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
258         pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
259         u.mchbar &= X38_MCHBAR_MASK;
260
261         if (u.mchbar != (resource_size_t)u.mchbar) {
262                 printk(KERN_ERR
263                         "x38: mmio space beyond accessible range (0x%llx)\n",
264                         (unsigned long long)u.mchbar);
265                 return NULL;
266         }
267
268         window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
269         if (!window)
270                 printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
271                         (unsigned long long)u.mchbar);
272
273         return window;
274 }
275
276
277 static void x38_get_drbs(void __iomem *window,
278                         u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
279 {
280         int i;
281
282         for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
283                 drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
284                 drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
285         }
286 }
287
288 static bool x38_is_stacked(struct pci_dev *pdev,
289                         u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
290 {
291         u16 tom;
292
293         pci_read_config_word(pdev, X38_TOM, &tom);
294         tom &= X38_TOM_MASK;
295
296         return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
297 }
298
299 static unsigned long drb_to_nr_pages(
300                         u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
301                         bool stacked, int channel, int rank)
302 {
303         int n;
304
305         n = drbs[channel][rank];
306         if (rank > 0)
307                 n -= drbs[channel][rank - 1];
308         if (stacked && (channel == 1) && drbs[channel][rank] ==
309                                 drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
310                 n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
311         }
312
313         n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
314         return n;
315 }
316
317 static int x38_probe1(struct pci_dev *pdev, int dev_idx)
318 {
319         int rc;
320         int i, j;
321         struct mem_ctl_info *mci = NULL;
322         u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
323         bool stacked;
324         void __iomem *window;
325
326         debugf0("MC: %s()\n", __func__);
327
328         window = x38_map_mchbar(pdev);
329         if (!window)
330                 return -ENODEV;
331
332         x38_get_drbs(window, drbs);
333
334         how_many_channel(pdev);
335
336         /* FIXME: unconventional pvt_info usage */
337         mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0);
338         if (!mci)
339                 return -ENOMEM;
340
341         debugf3("MC: %s(): init mci\n", __func__);
342
343         mci->dev = &pdev->dev;
344         mci->mtype_cap = MEM_FLAG_DDR2;
345
346         mci->edac_ctl_cap = EDAC_FLAG_SECDED;
347         mci->edac_cap = EDAC_FLAG_SECDED;
348
349         mci->mod_name = EDAC_MOD_STR;
350         mci->mod_ver = X38_REVISION;
351         mci->ctl_name = x38_devs[dev_idx].ctl_name;
352         mci->dev_name = pci_name(pdev);
353         mci->edac_check = x38_check;
354         mci->ctl_page_to_phys = NULL;
355         mci->pvt_info = window;
356
357         stacked = x38_is_stacked(pdev, drbs);
358
359         /*
360          * The dram rank boundary (DRB) reg values are boundary addresses
361          * for each DRAM rank with a granularity of 64MB.  DRB regs are
362          * cumulative; the last one will contain the total memory
363          * contained in all ranks.
364          */
365         for (i = 0; i < mci->nr_csrows; i++) {
366                 unsigned long nr_pages;
367                 struct csrow_info *csrow = &mci->csrows[i];
368
369                 nr_pages = drb_to_nr_pages(drbs, stacked,
370                         i / X38_RANKS_PER_CHANNEL,
371                         i % X38_RANKS_PER_CHANNEL);
372
373                 if (nr_pages == 0)
374                         continue;
375
376                 for (j = 0; j < x38_channel_num; j++) {
377                         struct dimm_info *dimm = csrow->channels[j].dimm;
378
379                         dimm->nr_pages = nr_pages / x38_channel_num;
380                         dimm->grain = nr_pages << PAGE_SHIFT;
381                         dimm->mtype = MEM_DDR2;
382                         dimm->dtype = DEV_UNKNOWN;
383                         dimm->edac_mode = EDAC_UNKNOWN;
384                 }
385         }
386
387         x38_clear_error_info(mci);
388
389         rc = -ENODEV;
390         if (edac_mc_add_mc(mci)) {
391                 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
392                 goto fail;
393         }
394
395         /* get this far and it's successful */
396         debugf3("MC: %s(): success\n", __func__);
397         return 0;
398
399 fail:
400         iounmap(window);
401         if (mci)
402                 edac_mc_free(mci);
403
404         return rc;
405 }
406
407 static int __devinit x38_init_one(struct pci_dev *pdev,
408                                 const struct pci_device_id *ent)
409 {
410         int rc;
411
412         debugf0("MC: %s()\n", __func__);
413
414         if (pci_enable_device(pdev) < 0)
415                 return -EIO;
416
417         rc = x38_probe1(pdev, ent->driver_data);
418         if (!mci_pdev)
419                 mci_pdev = pci_dev_get(pdev);
420
421         return rc;
422 }
423
424 static void __devexit x38_remove_one(struct pci_dev *pdev)
425 {
426         struct mem_ctl_info *mci;
427
428         debugf0("%s()\n", __func__);
429
430         mci = edac_mc_del_mc(&pdev->dev);
431         if (!mci)
432                 return;
433
434         iounmap(mci->pvt_info);
435
436         edac_mc_free(mci);
437 }
438
439 static DEFINE_PCI_DEVICE_TABLE(x38_pci_tbl) = {
440         {
441          PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
442          X38},
443         {
444          0,
445          }                      /* 0 terminated list. */
446 };
447
448 MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
449
450 static struct pci_driver x38_driver = {
451         .name = EDAC_MOD_STR,
452         .probe = x38_init_one,
453         .remove = __devexit_p(x38_remove_one),
454         .id_table = x38_pci_tbl,
455 };
456
457 static int __init x38_init(void)
458 {
459         int pci_rc;
460
461         debugf3("MC: %s()\n", __func__);
462
463         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
464         opstate_init();
465
466         pci_rc = pci_register_driver(&x38_driver);
467         if (pci_rc < 0)
468                 goto fail0;
469
470         if (!mci_pdev) {
471                 x38_registered = 0;
472                 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
473                                         PCI_DEVICE_ID_INTEL_X38_HB, NULL);
474                 if (!mci_pdev) {
475                         debugf0("x38 pci_get_device fail\n");
476                         pci_rc = -ENODEV;
477                         goto fail1;
478                 }
479
480                 pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
481                 if (pci_rc < 0) {
482                         debugf0("x38 init fail\n");
483                         pci_rc = -ENODEV;
484                         goto fail1;
485                 }
486         }
487
488         return 0;
489
490 fail1:
491         pci_unregister_driver(&x38_driver);
492
493 fail0:
494         if (mci_pdev)
495                 pci_dev_put(mci_pdev);
496
497         return pci_rc;
498 }
499
500 static void __exit x38_exit(void)
501 {
502         debugf3("MC: %s()\n", __func__);
503
504         pci_unregister_driver(&x38_driver);
505         if (!x38_registered) {
506                 x38_remove_one(mci_pdev);
507                 pci_dev_put(mci_pdev);
508         }
509 }
510
511 module_init(x38_init);
512 module_exit(x38_exit);
513
514 MODULE_LICENSE("GPL");
515 MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
516 MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
517
518 module_param(edac_op_state, int, 0444);
519 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");