firewire net: Send L2 multicast via GASP.
[firefly-linux-kernel-4.4.55.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
31
32 /* rx limits */
33 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
34 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
35
36 /* tx limits */
37 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
38 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
39 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
40
41 #define IEEE1394_BROADCAST_CHANNEL      31
42 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
43 #define IEEE1394_MAX_PAYLOAD_S100       512
44 #define FWNET_NO_FIFO_ADDR              (~0ULL)
45
46 #define IANA_SPECIFIER_ID               0x00005eU
47 #define RFC2734_SW_VERSION              0x000001U
48
49 #define IEEE1394_GASP_HDR_SIZE  8
50
51 #define RFC2374_UNFRAG_HDR_SIZE 4
52 #define RFC2374_FRAG_HDR_SIZE   8
53 #define RFC2374_FRAG_OVERHEAD   4
54
55 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
56 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
57 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
58 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
59
60 #define RFC2734_HW_ADDR_LEN     16
61
62 struct rfc2734_arp {
63         __be16 hw_type;         /* 0x0018       */
64         __be16 proto_type;      /* 0x0806       */
65         u8 hw_addr_len;         /* 16           */
66         u8 ip_addr_len;         /* 4            */
67         __be16 opcode;          /* ARP Opcode   */
68         /* Above is exactly the same format as struct arphdr */
69
70         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
71         u8 max_rec;             /* Sender's max packet size             */
72         u8 sspd;                /* Sender's max speed                   */
73         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
74         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
75         __be32 sip;             /* Sender's IP Address                  */
76         __be32 tip;             /* IP Address of requested hw addr      */
77 } __packed;
78
79 /* This header format is specific to this driver implementation. */
80 #define FWNET_ALEN      8
81 #define FWNET_HLEN      10
82 struct fwnet_header {
83         u8 h_dest[FWNET_ALEN];  /* destination address */
84         __be16 h_proto;         /* packet type ID field */
85 } __packed;
86
87 static bool fwnet_hwaddr_is_multicast(u8 *ha)
88 {
89         return !!(*ha & 1);
90 }
91
92 /* IPv4 and IPv6 encapsulation header */
93 struct rfc2734_header {
94         u32 w0;
95         u32 w1;
96 };
97
98 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
99 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
100 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
101 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
102 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
103
104 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
105 #define fwnet_set_hdr_ether_type(et)    (et)
106 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
107 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
108
109 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
110
111 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
112                 unsigned ether_type)
113 {
114         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
115                   | fwnet_set_hdr_ether_type(ether_type);
116 }
117
118 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
119                 unsigned ether_type, unsigned dg_size, unsigned dgl)
120 {
121         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
122                   | fwnet_set_hdr_dg_size(dg_size)
123                   | fwnet_set_hdr_ether_type(ether_type);
124         hdr->w1 = fwnet_set_hdr_dgl(dgl);
125 }
126
127 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
128                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
129 {
130         hdr->w0 = fwnet_set_hdr_lf(lf)
131                   | fwnet_set_hdr_dg_size(dg_size)
132                   | fwnet_set_hdr_fg_off(fg_off);
133         hdr->w1 = fwnet_set_hdr_dgl(dgl);
134 }
135
136 /* This list keeps track of what parts of the datagram have been filled in */
137 struct fwnet_fragment_info {
138         struct list_head fi_link;
139         u16 offset;
140         u16 len;
141 };
142
143 struct fwnet_partial_datagram {
144         struct list_head pd_link;
145         struct list_head fi_list;
146         struct sk_buff *skb;
147         /* FIXME Why not use skb->data? */
148         char *pbuf;
149         u16 datagram_label;
150         u16 ether_type;
151         u16 datagram_size;
152 };
153
154 static DEFINE_MUTEX(fwnet_device_mutex);
155 static LIST_HEAD(fwnet_device_list);
156
157 struct fwnet_device {
158         struct list_head dev_link;
159         spinlock_t lock;
160         enum {
161                 FWNET_BROADCAST_ERROR,
162                 FWNET_BROADCAST_RUNNING,
163                 FWNET_BROADCAST_STOPPED,
164         } broadcast_state;
165         struct fw_iso_context *broadcast_rcv_context;
166         struct fw_iso_buffer broadcast_rcv_buffer;
167         void **broadcast_rcv_buffer_ptrs;
168         unsigned broadcast_rcv_next_ptr;
169         unsigned num_broadcast_rcv_ptrs;
170         unsigned rcv_buffer_size;
171         /*
172          * This value is the maximum unfragmented datagram size that can be
173          * sent by the hardware.  It already has the GASP overhead and the
174          * unfragmented datagram header overhead calculated into it.
175          */
176         unsigned broadcast_xmt_max_payload;
177         u16 broadcast_xmt_datagramlabel;
178
179         /*
180          * The CSR address that remote nodes must send datagrams to for us to
181          * receive them.
182          */
183         struct fw_address_handler handler;
184         u64 local_fifo;
185
186         /* Number of tx datagrams that have been queued but not yet acked */
187         int queued_datagrams;
188
189         int peer_count;
190         struct list_head peer_list;
191         struct fw_card *card;
192         struct net_device *netdev;
193 };
194
195 struct fwnet_peer {
196         struct list_head peer_link;
197         struct fwnet_device *dev;
198         u64 guid;
199         u64 fifo;
200         __be32 ip;
201
202         /* guarded by dev->lock */
203         struct list_head pd_list; /* received partial datagrams */
204         unsigned pdg_size;        /* pd_list size */
205
206         u16 datagram_label;       /* outgoing datagram label */
207         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
208         int node_id;
209         int generation;
210         unsigned speed;
211 };
212
213 /* This is our task struct. It's used for the packet complete callback.  */
214 struct fwnet_packet_task {
215         struct fw_transaction transaction;
216         struct rfc2734_header hdr;
217         struct sk_buff *skb;
218         struct fwnet_device *dev;
219
220         int outstanding_pkts;
221         u64 fifo_addr;
222         u16 dest_node;
223         u16 max_payload;
224         u8 generation;
225         u8 speed;
226         u8 enqueued;
227 };
228
229 /*
230  * saddr == NULL means use device source address.
231  * daddr == NULL means leave destination address (eg unresolved arp).
232  */
233 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
234                         unsigned short type, const void *daddr,
235                         const void *saddr, unsigned len)
236 {
237         struct fwnet_header *h;
238
239         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
240         put_unaligned_be16(type, &h->h_proto);
241
242         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
243                 memset(h->h_dest, 0, net->addr_len);
244
245                 return net->hard_header_len;
246         }
247
248         if (daddr) {
249                 memcpy(h->h_dest, daddr, net->addr_len);
250
251                 return net->hard_header_len;
252         }
253
254         return -net->hard_header_len;
255 }
256
257 static int fwnet_header_rebuild(struct sk_buff *skb)
258 {
259         struct fwnet_header *h = (struct fwnet_header *)skb->data;
260
261         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
262                 return arp_find((unsigned char *)&h->h_dest, skb);
263
264         dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
265                    be16_to_cpu(h->h_proto));
266         return 0;
267 }
268
269 static int fwnet_header_cache(const struct neighbour *neigh,
270                               struct hh_cache *hh, __be16 type)
271 {
272         struct net_device *net;
273         struct fwnet_header *h;
274
275         if (type == cpu_to_be16(ETH_P_802_3))
276                 return -1;
277         net = neigh->dev;
278         h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
279         h->h_proto = type;
280         memcpy(h->h_dest, neigh->ha, net->addr_len);
281         hh->hh_len = FWNET_HLEN;
282
283         return 0;
284 }
285
286 /* Called by Address Resolution module to notify changes in address. */
287 static void fwnet_header_cache_update(struct hh_cache *hh,
288                 const struct net_device *net, const unsigned char *haddr)
289 {
290         memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
291 }
292
293 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
294 {
295         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
296
297         return FWNET_ALEN;
298 }
299
300 static const struct header_ops fwnet_header_ops = {
301         .create         = fwnet_header_create,
302         .rebuild        = fwnet_header_rebuild,
303         .cache          = fwnet_header_cache,
304         .cache_update   = fwnet_header_cache_update,
305         .parse          = fwnet_header_parse,
306 };
307
308 /* FIXME: is this correct for all cases? */
309 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
310                                unsigned offset, unsigned len)
311 {
312         struct fwnet_fragment_info *fi;
313         unsigned end = offset + len;
314
315         list_for_each_entry(fi, &pd->fi_list, fi_link)
316                 if (offset < fi->offset + fi->len && end > fi->offset)
317                         return true;
318
319         return false;
320 }
321
322 /* Assumes that new fragment does not overlap any existing fragments */
323 static struct fwnet_fragment_info *fwnet_frag_new(
324         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
325 {
326         struct fwnet_fragment_info *fi, *fi2, *new;
327         struct list_head *list;
328
329         list = &pd->fi_list;
330         list_for_each_entry(fi, &pd->fi_list, fi_link) {
331                 if (fi->offset + fi->len == offset) {
332                         /* The new fragment can be tacked on to the end */
333                         /* Did the new fragment plug a hole? */
334                         fi2 = list_entry(fi->fi_link.next,
335                                          struct fwnet_fragment_info, fi_link);
336                         if (fi->offset + fi->len == fi2->offset) {
337                                 /* glue fragments together */
338                                 fi->len += len + fi2->len;
339                                 list_del(&fi2->fi_link);
340                                 kfree(fi2);
341                         } else {
342                                 fi->len += len;
343                         }
344
345                         return fi;
346                 }
347                 if (offset + len == fi->offset) {
348                         /* The new fragment can be tacked on to the beginning */
349                         /* Did the new fragment plug a hole? */
350                         fi2 = list_entry(fi->fi_link.prev,
351                                          struct fwnet_fragment_info, fi_link);
352                         if (fi2->offset + fi2->len == fi->offset) {
353                                 /* glue fragments together */
354                                 fi2->len += fi->len + len;
355                                 list_del(&fi->fi_link);
356                                 kfree(fi);
357
358                                 return fi2;
359                         }
360                         fi->offset = offset;
361                         fi->len += len;
362
363                         return fi;
364                 }
365                 if (offset > fi->offset + fi->len) {
366                         list = &fi->fi_link;
367                         break;
368                 }
369                 if (offset + len < fi->offset) {
370                         list = fi->fi_link.prev;
371                         break;
372                 }
373         }
374
375         new = kmalloc(sizeof(*new), GFP_ATOMIC);
376         if (!new) {
377                 dev_err(&pd->skb->dev->dev, "out of memory\n");
378                 return NULL;
379         }
380
381         new->offset = offset;
382         new->len = len;
383         list_add(&new->fi_link, list);
384
385         return new;
386 }
387
388 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
389                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
390                 void *frag_buf, unsigned frag_off, unsigned frag_len)
391 {
392         struct fwnet_partial_datagram *new;
393         struct fwnet_fragment_info *fi;
394
395         new = kmalloc(sizeof(*new), GFP_ATOMIC);
396         if (!new)
397                 goto fail;
398
399         INIT_LIST_HEAD(&new->fi_list);
400         fi = fwnet_frag_new(new, frag_off, frag_len);
401         if (fi == NULL)
402                 goto fail_w_new;
403
404         new->datagram_label = datagram_label;
405         new->datagram_size = dg_size;
406         new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
407         if (new->skb == NULL)
408                 goto fail_w_fi;
409
410         skb_reserve(new->skb, LL_RESERVED_SPACE(net));
411         new->pbuf = skb_put(new->skb, dg_size);
412         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
413         list_add_tail(&new->pd_link, &peer->pd_list);
414
415         return new;
416
417 fail_w_fi:
418         kfree(fi);
419 fail_w_new:
420         kfree(new);
421 fail:
422         dev_err(&net->dev, "out of memory\n");
423
424         return NULL;
425 }
426
427 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
428                                                     u16 datagram_label)
429 {
430         struct fwnet_partial_datagram *pd;
431
432         list_for_each_entry(pd, &peer->pd_list, pd_link)
433                 if (pd->datagram_label == datagram_label)
434                         return pd;
435
436         return NULL;
437 }
438
439
440 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
441 {
442         struct fwnet_fragment_info *fi, *n;
443
444         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
445                 kfree(fi);
446
447         list_del(&old->pd_link);
448         dev_kfree_skb_any(old->skb);
449         kfree(old);
450 }
451
452 static bool fwnet_pd_update(struct fwnet_peer *peer,
453                 struct fwnet_partial_datagram *pd, void *frag_buf,
454                 unsigned frag_off, unsigned frag_len)
455 {
456         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
457                 return false;
458
459         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
460
461         /*
462          * Move list entry to beginning of list so that oldest partial
463          * datagrams percolate to the end of the list
464          */
465         list_move_tail(&pd->pd_link, &peer->pd_list);
466
467         return true;
468 }
469
470 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
471 {
472         struct fwnet_fragment_info *fi;
473
474         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
475
476         return fi->len == pd->datagram_size;
477 }
478
479 /* caller must hold dev->lock */
480 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
481                                                   u64 guid)
482 {
483         struct fwnet_peer *peer;
484
485         list_for_each_entry(peer, &dev->peer_list, peer_link)
486                 if (peer->guid == guid)
487                         return peer;
488
489         return NULL;
490 }
491
492 /* caller must hold dev->lock */
493 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
494                                                 int node_id, int generation)
495 {
496         struct fwnet_peer *peer;
497
498         list_for_each_entry(peer, &dev->peer_list, peer_link)
499                 if (peer->node_id    == node_id &&
500                     peer->generation == generation)
501                         return peer;
502
503         return NULL;
504 }
505
506 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
507 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
508 {
509         max_rec = min(max_rec, speed + 8);
510         max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
511
512         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
513 }
514
515
516 static int fwnet_finish_incoming_packet(struct net_device *net,
517                                         struct sk_buff *skb, u16 source_node_id,
518                                         bool is_broadcast, u16 ether_type)
519 {
520         struct fwnet_device *dev;
521         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
522         int status;
523         __be64 guid;
524
525         switch (ether_type) {
526         case ETH_P_ARP:
527         case ETH_P_IP:
528                 break;
529         default:
530                 goto err;
531         }
532
533         dev = netdev_priv(net);
534         /* Write metadata, and then pass to the receive level */
535         skb->dev = net;
536         skb->ip_summed = CHECKSUM_NONE;
537
538         /*
539          * Parse the encapsulation header. This actually does the job of
540          * converting to an ethernet frame header, as well as arp
541          * conversion if needed. ARP conversion is easier in this
542          * direction, since we are using ethernet as our backend.
543          */
544         /*
545          * If this is an ARP packet, convert it. First, we want to make
546          * use of some of the fields, since they tell us a little bit
547          * about the sending machine.
548          */
549         if (ether_type == ETH_P_ARP) {
550                 struct rfc2734_arp *arp1394;
551                 struct arphdr *arp;
552                 unsigned char *arp_ptr;
553                 u64 fifo_addr;
554                 u64 peer_guid;
555                 unsigned sspd;
556                 u16 max_payload;
557                 struct fwnet_peer *peer;
558                 unsigned long flags;
559
560                 arp1394   = (struct rfc2734_arp *)skb->data;
561                 arp       = (struct arphdr *)skb->data;
562                 arp_ptr   = (unsigned char *)(arp + 1);
563                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
564                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
565                                 | get_unaligned_be32(&arp1394->fifo_lo);
566
567                 sspd = arp1394->sspd;
568                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
569                 if (sspd > SCODE_3200) {
570                         dev_notice(&net->dev, "sspd %x out of range\n", sspd);
571                         sspd = SCODE_3200;
572                 }
573                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
574
575                 spin_lock_irqsave(&dev->lock, flags);
576                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
577                 if (peer) {
578                         peer->fifo = fifo_addr;
579
580                         if (peer->speed > sspd)
581                                 peer->speed = sspd;
582                         if (peer->max_payload > max_payload)
583                                 peer->max_payload = max_payload;
584
585                         peer->ip = arp1394->sip;
586                 }
587                 spin_unlock_irqrestore(&dev->lock, flags);
588
589                 if (!peer) {
590                         dev_notice(&net->dev,
591                                    "no peer for ARP packet from %016llx\n",
592                                    (unsigned long long)peer_guid);
593                         goto no_peer;
594                 }
595
596                 /*
597                  * Now that we're done with the 1394 specific stuff, we'll
598                  * need to alter some of the data.  Believe it or not, all
599                  * that needs to be done is sender_IP_address needs to be
600                  * moved, the destination hardware address get stuffed
601                  * in and the hardware address length set to 8.
602                  *
603                  * IMPORTANT: The code below overwrites 1394 specific data
604                  * needed above so keep the munging of the data for the
605                  * higher level IP stack last.
606                  */
607
608                 arp->ar_hln = 8;
609                 /* skip over sender unique id */
610                 arp_ptr += arp->ar_hln;
611                 /* move sender IP addr */
612                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
613                 /* skip over sender IP addr */
614                 arp_ptr += arp->ar_pln;
615
616                 if (arp->ar_op == htons(ARPOP_REQUEST))
617                         memset(arp_ptr, 0, sizeof(u64));
618                 else
619                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
620         }
621
622         /* Now add the ethernet header. */
623         guid = cpu_to_be64(dev->card->guid);
624         if (dev_hard_header(skb, net, ether_type,
625                            is_broadcast ? &broadcast_hw : &guid,
626                            NULL, skb->len) >= 0) {
627                 struct fwnet_header *eth;
628                 u16 *rawp;
629                 __be16 protocol;
630
631                 skb_reset_mac_header(skb);
632                 skb_pull(skb, sizeof(*eth));
633                 eth = (struct fwnet_header *)skb_mac_header(skb);
634                 if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
635                         if (memcmp(eth->h_dest, net->broadcast,
636                                    net->addr_len) == 0)
637                                 skb->pkt_type = PACKET_BROADCAST;
638 #if 0
639                         else
640                                 skb->pkt_type = PACKET_MULTICAST;
641 #endif
642                 } else {
643                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
644                                 skb->pkt_type = PACKET_OTHERHOST;
645                 }
646                 if (ntohs(eth->h_proto) >= 1536) {
647                         protocol = eth->h_proto;
648                 } else {
649                         rawp = (u16 *)skb->data;
650                         if (*rawp == 0xffff)
651                                 protocol = htons(ETH_P_802_3);
652                         else
653                                 protocol = htons(ETH_P_802_2);
654                 }
655                 skb->protocol = protocol;
656         }
657         status = netif_rx(skb);
658         if (status == NET_RX_DROP) {
659                 net->stats.rx_errors++;
660                 net->stats.rx_dropped++;
661         } else {
662                 net->stats.rx_packets++;
663                 net->stats.rx_bytes += skb->len;
664         }
665
666         return 0;
667
668  no_peer:
669  err:
670         net->stats.rx_errors++;
671         net->stats.rx_dropped++;
672
673         dev_kfree_skb_any(skb);
674
675         return -ENOENT;
676 }
677
678 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
679                                  int source_node_id, int generation,
680                                  bool is_broadcast)
681 {
682         struct sk_buff *skb;
683         struct net_device *net = dev->netdev;
684         struct rfc2734_header hdr;
685         unsigned lf;
686         unsigned long flags;
687         struct fwnet_peer *peer;
688         struct fwnet_partial_datagram *pd;
689         int fg_off;
690         int dg_size;
691         u16 datagram_label;
692         int retval;
693         u16 ether_type;
694
695         hdr.w0 = be32_to_cpu(buf[0]);
696         lf = fwnet_get_hdr_lf(&hdr);
697         if (lf == RFC2374_HDR_UNFRAG) {
698                 /*
699                  * An unfragmented datagram has been received by the ieee1394
700                  * bus. Build an skbuff around it so we can pass it to the
701                  * high level network layer.
702                  */
703                 ether_type = fwnet_get_hdr_ether_type(&hdr);
704                 buf++;
705                 len -= RFC2374_UNFRAG_HDR_SIZE;
706
707                 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
708                 if (unlikely(!skb)) {
709                         dev_err(&net->dev, "out of memory\n");
710                         net->stats.rx_dropped++;
711
712                         return -ENOMEM;
713                 }
714                 skb_reserve(skb, LL_RESERVED_SPACE(net));
715                 memcpy(skb_put(skb, len), buf, len);
716
717                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
718                                                     is_broadcast, ether_type);
719         }
720         /* A datagram fragment has been received, now the fun begins. */
721         hdr.w1 = ntohl(buf[1]);
722         buf += 2;
723         len -= RFC2374_FRAG_HDR_SIZE;
724         if (lf == RFC2374_HDR_FIRSTFRAG) {
725                 ether_type = fwnet_get_hdr_ether_type(&hdr);
726                 fg_off = 0;
727         } else {
728                 ether_type = 0;
729                 fg_off = fwnet_get_hdr_fg_off(&hdr);
730         }
731         datagram_label = fwnet_get_hdr_dgl(&hdr);
732         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
733
734         spin_lock_irqsave(&dev->lock, flags);
735
736         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
737         if (!peer) {
738                 retval = -ENOENT;
739                 goto fail;
740         }
741
742         pd = fwnet_pd_find(peer, datagram_label);
743         if (pd == NULL) {
744                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
745                         /* remove the oldest */
746                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
747                                 struct fwnet_partial_datagram, pd_link));
748                         peer->pdg_size--;
749                 }
750                 pd = fwnet_pd_new(net, peer, datagram_label,
751                                   dg_size, buf, fg_off, len);
752                 if (pd == NULL) {
753                         retval = -ENOMEM;
754                         goto fail;
755                 }
756                 peer->pdg_size++;
757         } else {
758                 if (fwnet_frag_overlap(pd, fg_off, len) ||
759                     pd->datagram_size != dg_size) {
760                         /*
761                          * Differing datagram sizes or overlapping fragments,
762                          * discard old datagram and start a new one.
763                          */
764                         fwnet_pd_delete(pd);
765                         pd = fwnet_pd_new(net, peer, datagram_label,
766                                           dg_size, buf, fg_off, len);
767                         if (pd == NULL) {
768                                 peer->pdg_size--;
769                                 retval = -ENOMEM;
770                                 goto fail;
771                         }
772                 } else {
773                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
774                                 /*
775                                  * Couldn't save off fragment anyway
776                                  * so might as well obliterate the
777                                  * datagram now.
778                                  */
779                                 fwnet_pd_delete(pd);
780                                 peer->pdg_size--;
781                                 retval = -ENOMEM;
782                                 goto fail;
783                         }
784                 }
785         } /* new datagram or add to existing one */
786
787         if (lf == RFC2374_HDR_FIRSTFRAG)
788                 pd->ether_type = ether_type;
789
790         if (fwnet_pd_is_complete(pd)) {
791                 ether_type = pd->ether_type;
792                 peer->pdg_size--;
793                 skb = skb_get(pd->skb);
794                 fwnet_pd_delete(pd);
795
796                 spin_unlock_irqrestore(&dev->lock, flags);
797
798                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
799                                                     false, ether_type);
800         }
801         /*
802          * Datagram is not complete, we're done for the
803          * moment.
804          */
805         retval = 0;
806  fail:
807         spin_unlock_irqrestore(&dev->lock, flags);
808
809         return retval;
810 }
811
812 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
813                 int tcode, int destination, int source, int generation,
814                 unsigned long long offset, void *payload, size_t length,
815                 void *callback_data)
816 {
817         struct fwnet_device *dev = callback_data;
818         int rcode;
819
820         if (destination == IEEE1394_ALL_NODES) {
821                 kfree(r);
822
823                 return;
824         }
825
826         if (offset != dev->handler.offset)
827                 rcode = RCODE_ADDRESS_ERROR;
828         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
829                 rcode = RCODE_TYPE_ERROR;
830         else if (fwnet_incoming_packet(dev, payload, length,
831                                        source, generation, false) != 0) {
832                 dev_err(&dev->netdev->dev, "incoming packet failure\n");
833                 rcode = RCODE_CONFLICT_ERROR;
834         } else
835                 rcode = RCODE_COMPLETE;
836
837         fw_send_response(card, r, rcode);
838 }
839
840 static void fwnet_receive_broadcast(struct fw_iso_context *context,
841                 u32 cycle, size_t header_length, void *header, void *data)
842 {
843         struct fwnet_device *dev;
844         struct fw_iso_packet packet;
845         __be16 *hdr_ptr;
846         __be32 *buf_ptr;
847         int retval;
848         u32 length;
849         u16 source_node_id;
850         u32 specifier_id;
851         u32 ver;
852         unsigned long offset;
853         unsigned long flags;
854
855         dev = data;
856         hdr_ptr = header;
857         length = be16_to_cpup(hdr_ptr);
858
859         spin_lock_irqsave(&dev->lock, flags);
860
861         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
862         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
863         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
864                 dev->broadcast_rcv_next_ptr = 0;
865
866         spin_unlock_irqrestore(&dev->lock, flags);
867
868         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
869                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
870         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
871         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
872
873         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
874                 buf_ptr += 2;
875                 length -= IEEE1394_GASP_HDR_SIZE;
876                 fwnet_incoming_packet(dev, buf_ptr, length, source_node_id,
877                                       context->card->generation, true);
878         }
879
880         packet.payload_length = dev->rcv_buffer_size;
881         packet.interrupt = 1;
882         packet.skip = 0;
883         packet.tag = 3;
884         packet.sy = 0;
885         packet.header_length = IEEE1394_GASP_HDR_SIZE;
886
887         spin_lock_irqsave(&dev->lock, flags);
888
889         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
890                                       &dev->broadcast_rcv_buffer, offset);
891
892         spin_unlock_irqrestore(&dev->lock, flags);
893
894         if (retval >= 0)
895                 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
896         else
897                 dev_err(&dev->netdev->dev, "requeue failed\n");
898 }
899
900 static struct kmem_cache *fwnet_packet_task_cache;
901
902 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
903 {
904         dev_kfree_skb_any(ptask->skb);
905         kmem_cache_free(fwnet_packet_task_cache, ptask);
906 }
907
908 /* Caller must hold dev->lock. */
909 static void dec_queued_datagrams(struct fwnet_device *dev)
910 {
911         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
912                 netif_wake_queue(dev->netdev);
913 }
914
915 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
916
917 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
918 {
919         struct fwnet_device *dev = ptask->dev;
920         struct sk_buff *skb = ptask->skb;
921         unsigned long flags;
922         bool free;
923
924         spin_lock_irqsave(&dev->lock, flags);
925
926         ptask->outstanding_pkts--;
927
928         /* Check whether we or the networking TX soft-IRQ is last user. */
929         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
930         if (free)
931                 dec_queued_datagrams(dev);
932
933         if (ptask->outstanding_pkts == 0) {
934                 dev->netdev->stats.tx_packets++;
935                 dev->netdev->stats.tx_bytes += skb->len;
936         }
937
938         spin_unlock_irqrestore(&dev->lock, flags);
939
940         if (ptask->outstanding_pkts > 0) {
941                 u16 dg_size;
942                 u16 fg_off;
943                 u16 datagram_label;
944                 u16 lf;
945
946                 /* Update the ptask to point to the next fragment and send it */
947                 lf = fwnet_get_hdr_lf(&ptask->hdr);
948                 switch (lf) {
949                 case RFC2374_HDR_LASTFRAG:
950                 case RFC2374_HDR_UNFRAG:
951                 default:
952                         dev_err(&dev->netdev->dev,
953                                 "outstanding packet %x lf %x, header %x,%x\n",
954                                 ptask->outstanding_pkts, lf, ptask->hdr.w0,
955                                 ptask->hdr.w1);
956                         BUG();
957
958                 case RFC2374_HDR_FIRSTFRAG:
959                         /* Set frag type here for future interior fragments */
960                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
961                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
962                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
963                         break;
964
965                 case RFC2374_HDR_INTFRAG:
966                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
967                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
968                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
969                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
970                         break;
971                 }
972
973                 if (ptask->dest_node == IEEE1394_ALL_NODES) {
974                         skb_pull(skb,
975                                  ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
976                 } else {
977                         skb_pull(skb, ptask->max_payload);
978                 }
979                 if (ptask->outstanding_pkts > 1) {
980                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
981                                           dg_size, fg_off, datagram_label);
982                 } else {
983                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
984                                           dg_size, fg_off, datagram_label);
985                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
986                 }
987                 fwnet_send_packet(ptask);
988         }
989
990         if (free)
991                 fwnet_free_ptask(ptask);
992 }
993
994 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
995 {
996         struct fwnet_device *dev = ptask->dev;
997         unsigned long flags;
998         bool free;
999
1000         spin_lock_irqsave(&dev->lock, flags);
1001
1002         /* One fragment failed; don't try to send remaining fragments. */
1003         ptask->outstanding_pkts = 0;
1004
1005         /* Check whether we or the networking TX soft-IRQ is last user. */
1006         free = ptask->enqueued;
1007         if (free)
1008                 dec_queued_datagrams(dev);
1009
1010         dev->netdev->stats.tx_dropped++;
1011         dev->netdev->stats.tx_errors++;
1012
1013         spin_unlock_irqrestore(&dev->lock, flags);
1014
1015         if (free)
1016                 fwnet_free_ptask(ptask);
1017 }
1018
1019 static void fwnet_write_complete(struct fw_card *card, int rcode,
1020                                  void *payload, size_t length, void *data)
1021 {
1022         struct fwnet_packet_task *ptask = data;
1023         static unsigned long j;
1024         static int last_rcode, errors_skipped;
1025
1026         if (rcode == RCODE_COMPLETE) {
1027                 fwnet_transmit_packet_done(ptask);
1028         } else {
1029                 fwnet_transmit_packet_failed(ptask);
1030
1031                 if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1032                         dev_err(&ptask->dev->netdev->dev,
1033                                 "fwnet_write_complete failed: %x (skipped %d)\n",
1034                                 rcode, errors_skipped);
1035
1036                         errors_skipped = 0;
1037                         last_rcode = rcode;
1038                 } else
1039                         errors_skipped++;
1040         }
1041 }
1042
1043 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1044 {
1045         struct fwnet_device *dev;
1046         unsigned tx_len;
1047         struct rfc2734_header *bufhdr;
1048         unsigned long flags;
1049         bool free;
1050
1051         dev = ptask->dev;
1052         tx_len = ptask->max_payload;
1053         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1054         case RFC2374_HDR_UNFRAG:
1055                 bufhdr = (struct rfc2734_header *)
1056                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1057                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1058                 break;
1059
1060         case RFC2374_HDR_FIRSTFRAG:
1061         case RFC2374_HDR_INTFRAG:
1062         case RFC2374_HDR_LASTFRAG:
1063                 bufhdr = (struct rfc2734_header *)
1064                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1065                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1066                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1067                 break;
1068
1069         default:
1070                 BUG();
1071         }
1072         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1073                 u8 *p;
1074                 int generation;
1075                 int node_id;
1076
1077                 /* ptask->generation may not have been set yet */
1078                 generation = dev->card->generation;
1079                 smp_rmb();
1080                 node_id = dev->card->node_id;
1081
1082                 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
1083                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1084                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1085                                                 | RFC2734_SW_VERSION, &p[4]);
1086
1087                 /* We should not transmit if broadcast_channel.valid == 0. */
1088                 fw_send_request(dev->card, &ptask->transaction,
1089                                 TCODE_STREAM_DATA,
1090                                 fw_stream_packet_destination_id(3,
1091                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1092                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1093                                 tx_len + 8, fwnet_write_complete, ptask);
1094
1095                 spin_lock_irqsave(&dev->lock, flags);
1096
1097                 /* If the AT tasklet already ran, we may be last user. */
1098                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1099                 if (!free)
1100                         ptask->enqueued = true;
1101                 else
1102                         dec_queued_datagrams(dev);
1103
1104                 spin_unlock_irqrestore(&dev->lock, flags);
1105
1106                 goto out;
1107         }
1108
1109         fw_send_request(dev->card, &ptask->transaction,
1110                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1111                         ptask->generation, ptask->speed, ptask->fifo_addr,
1112                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1113
1114         spin_lock_irqsave(&dev->lock, flags);
1115
1116         /* If the AT tasklet already ran, we may be last user. */
1117         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1118         if (!free)
1119                 ptask->enqueued = true;
1120         else
1121                 dec_queued_datagrams(dev);
1122
1123         spin_unlock_irqrestore(&dev->lock, flags);
1124
1125         dev->netdev->trans_start = jiffies;
1126  out:
1127         if (free)
1128                 fwnet_free_ptask(ptask);
1129
1130         return 0;
1131 }
1132
1133 static void fwnet_fifo_stop(struct fwnet_device *dev)
1134 {
1135         if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1136                 return;
1137
1138         fw_core_remove_address_handler(&dev->handler);
1139         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1140 }
1141
1142 static int fwnet_fifo_start(struct fwnet_device *dev)
1143 {
1144         int retval;
1145
1146         if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1147                 return 0;
1148
1149         dev->handler.length = 4096;
1150         dev->handler.address_callback = fwnet_receive_packet;
1151         dev->handler.callback_data = dev;
1152
1153         retval = fw_core_add_address_handler(&dev->handler,
1154                                              &fw_high_memory_region);
1155         if (retval < 0)
1156                 return retval;
1157
1158         dev->local_fifo = dev->handler.offset;
1159
1160         return 0;
1161 }
1162
1163 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1164 {
1165         unsigned u;
1166
1167         if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1168                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1169                         kunmap(dev->broadcast_rcv_buffer.pages[u]);
1170                 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1171         }
1172         if (dev->broadcast_rcv_context) {
1173                 fw_iso_context_destroy(dev->broadcast_rcv_context);
1174                 dev->broadcast_rcv_context = NULL;
1175         }
1176         kfree(dev->broadcast_rcv_buffer_ptrs);
1177         dev->broadcast_rcv_buffer_ptrs = NULL;
1178         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1179 }
1180
1181 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1182 {
1183         if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1184                 return;
1185         fw_iso_context_stop(dev->broadcast_rcv_context);
1186         __fwnet_broadcast_stop(dev);
1187 }
1188
1189 static int fwnet_broadcast_start(struct fwnet_device *dev)
1190 {
1191         struct fw_iso_context *context;
1192         int retval;
1193         unsigned num_packets;
1194         unsigned max_receive;
1195         struct fw_iso_packet packet;
1196         unsigned long offset;
1197         void **ptrptr;
1198         unsigned u;
1199
1200         if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1201                 return 0;
1202
1203         max_receive = 1U << (dev->card->max_receive + 1);
1204         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1205
1206         ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1207         if (!ptrptr) {
1208                 retval = -ENOMEM;
1209                 goto failed;
1210         }
1211         dev->broadcast_rcv_buffer_ptrs = ptrptr;
1212
1213         context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1214                                         IEEE1394_BROADCAST_CHANNEL,
1215                                         dev->card->link_speed, 8,
1216                                         fwnet_receive_broadcast, dev);
1217         if (IS_ERR(context)) {
1218                 retval = PTR_ERR(context);
1219                 goto failed;
1220         }
1221
1222         retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1223                                     FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1224         if (retval < 0)
1225                 goto failed;
1226
1227         dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1228
1229         for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1230                 void *ptr;
1231                 unsigned v;
1232
1233                 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1234                 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1235                         *ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1236         }
1237         dev->broadcast_rcv_context = context;
1238
1239         packet.payload_length = max_receive;
1240         packet.interrupt = 1;
1241         packet.skip = 0;
1242         packet.tag = 3;
1243         packet.sy = 0;
1244         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1245         offset = 0;
1246
1247         for (u = 0; u < num_packets; u++) {
1248                 retval = fw_iso_context_queue(context, &packet,
1249                                 &dev->broadcast_rcv_buffer, offset);
1250                 if (retval < 0)
1251                         goto failed;
1252
1253                 offset += max_receive;
1254         }
1255         dev->num_broadcast_rcv_ptrs = num_packets;
1256         dev->rcv_buffer_size = max_receive;
1257         dev->broadcast_rcv_next_ptr = 0U;
1258         retval = fw_iso_context_start(context, -1, 0,
1259                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1260         if (retval < 0)
1261                 goto failed;
1262
1263         /* FIXME: adjust it according to the min. speed of all known peers? */
1264         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1265                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1266         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1267
1268         return 0;
1269
1270  failed:
1271         __fwnet_broadcast_stop(dev);
1272         return retval;
1273 }
1274
1275 static void set_carrier_state(struct fwnet_device *dev)
1276 {
1277         if (dev->peer_count > 1)
1278                 netif_carrier_on(dev->netdev);
1279         else
1280                 netif_carrier_off(dev->netdev);
1281 }
1282
1283 /* ifup */
1284 static int fwnet_open(struct net_device *net)
1285 {
1286         struct fwnet_device *dev = netdev_priv(net);
1287         int ret;
1288
1289         ret = fwnet_fifo_start(dev);
1290         if (ret)
1291                 return ret;
1292
1293         ret = fwnet_broadcast_start(dev);
1294         if (ret)
1295                 goto out;
1296
1297         netif_start_queue(net);
1298
1299         spin_lock_irq(&dev->lock);
1300         set_carrier_state(dev);
1301         spin_unlock_irq(&dev->lock);
1302
1303         return 0;
1304 out:
1305         fwnet_fifo_stop(dev);
1306         return ret;
1307 }
1308
1309 /* ifdown */
1310 static int fwnet_stop(struct net_device *net)
1311 {
1312         struct fwnet_device *dev = netdev_priv(net);
1313
1314         netif_stop_queue(net);
1315
1316         fwnet_broadcast_stop(dev);
1317         fwnet_fifo_stop(dev);
1318
1319         return 0;
1320 }
1321
1322 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1323 {
1324         struct fwnet_header hdr_buf;
1325         struct fwnet_device *dev = netdev_priv(net);
1326         __be16 proto;
1327         u16 dest_node;
1328         unsigned max_payload;
1329         u16 dg_size;
1330         u16 *datagram_label_ptr;
1331         struct fwnet_packet_task *ptask;
1332         struct fwnet_peer *peer;
1333         unsigned long flags;
1334
1335         spin_lock_irqsave(&dev->lock, flags);
1336
1337         /* Can this happen? */
1338         if (netif_queue_stopped(dev->netdev)) {
1339                 spin_unlock_irqrestore(&dev->lock, flags);
1340
1341                 return NETDEV_TX_BUSY;
1342         }
1343
1344         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1345         if (ptask == NULL)
1346                 goto fail;
1347
1348         skb = skb_share_check(skb, GFP_ATOMIC);
1349         if (!skb)
1350                 goto fail;
1351
1352         /*
1353          * Make a copy of the driver-specific header.
1354          * We might need to rebuild the header on tx failure.
1355          */
1356         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1357         proto = hdr_buf.h_proto;
1358
1359         switch (proto) {
1360         case htons(ETH_P_ARP):
1361         case htons(ETH_P_IP):
1362                 break;
1363         default:
1364                 goto fail;
1365         }
1366
1367         skb_pull(skb, sizeof(hdr_buf));
1368         dg_size = skb->len;
1369
1370         /*
1371          * Set the transmission type for the packet.  ARP packets and IP
1372          * broadcast packets are sent via GASP.
1373          */
1374         if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1375                 max_payload        = dev->broadcast_xmt_max_payload;
1376                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1377
1378                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1379                 ptask->generation  = 0;
1380                 ptask->dest_node   = IEEE1394_ALL_NODES;
1381                 ptask->speed       = SCODE_100;
1382         } else {
1383                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1384                 u8 generation;
1385
1386                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1387                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1388                         goto fail;
1389
1390                 generation         = peer->generation;
1391                 dest_node          = peer->node_id;
1392                 max_payload        = peer->max_payload;
1393                 datagram_label_ptr = &peer->datagram_label;
1394
1395                 ptask->fifo_addr   = peer->fifo;
1396                 ptask->generation  = generation;
1397                 ptask->dest_node   = dest_node;
1398                 ptask->speed       = peer->speed;
1399         }
1400
1401         /* If this is an ARP packet, convert it */
1402         if (proto == htons(ETH_P_ARP)) {
1403                 struct arphdr *arp = (struct arphdr *)skb->data;
1404                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1405                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1406                 __be32 ipaddr;
1407
1408                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1409
1410                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1411                 arp1394->max_rec        = dev->card->max_receive;
1412                 arp1394->sspd           = dev->card->link_speed;
1413
1414                 put_unaligned_be16(dev->local_fifo >> 32,
1415                                    &arp1394->fifo_hi);
1416                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1417                                    &arp1394->fifo_lo);
1418                 put_unaligned(ipaddr, &arp1394->sip);
1419         }
1420
1421         ptask->hdr.w0 = 0;
1422         ptask->hdr.w1 = 0;
1423         ptask->skb = skb;
1424         ptask->dev = dev;
1425
1426         /* Does it all fit in one packet? */
1427         if (dg_size <= max_payload) {
1428                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1429                 ptask->outstanding_pkts = 1;
1430                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1431         } else {
1432                 u16 datagram_label;
1433
1434                 max_payload -= RFC2374_FRAG_OVERHEAD;
1435                 datagram_label = (*datagram_label_ptr)++;
1436                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1437                                   datagram_label);
1438                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1439                 max_payload += RFC2374_FRAG_HDR_SIZE;
1440         }
1441
1442         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1443                 netif_stop_queue(dev->netdev);
1444
1445         spin_unlock_irqrestore(&dev->lock, flags);
1446
1447         ptask->max_payload = max_payload;
1448         ptask->enqueued    = 0;
1449
1450         fwnet_send_packet(ptask);
1451
1452         return NETDEV_TX_OK;
1453
1454  fail:
1455         spin_unlock_irqrestore(&dev->lock, flags);
1456
1457         if (ptask)
1458                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1459
1460         if (skb != NULL)
1461                 dev_kfree_skb(skb);
1462
1463         net->stats.tx_dropped++;
1464         net->stats.tx_errors++;
1465
1466         /*
1467          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1468          * causes serious problems" here, allegedly.  Before that patch,
1469          * -ERRNO was returned which is not appropriate under Linux 2.6.
1470          * Perhaps more needs to be done?  Stop the queue in serious
1471          * conditions and restart it elsewhere?
1472          */
1473         return NETDEV_TX_OK;
1474 }
1475
1476 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1477 {
1478         if (new_mtu < 68)
1479                 return -EINVAL;
1480
1481         net->mtu = new_mtu;
1482         return 0;
1483 }
1484
1485 static const struct ethtool_ops fwnet_ethtool_ops = {
1486         .get_link       = ethtool_op_get_link,
1487 };
1488
1489 static const struct net_device_ops fwnet_netdev_ops = {
1490         .ndo_open       = fwnet_open,
1491         .ndo_stop       = fwnet_stop,
1492         .ndo_start_xmit = fwnet_tx,
1493         .ndo_change_mtu = fwnet_change_mtu,
1494 };
1495
1496 static void fwnet_init_dev(struct net_device *net)
1497 {
1498         net->header_ops         = &fwnet_header_ops;
1499         net->netdev_ops         = &fwnet_netdev_ops;
1500         net->watchdog_timeo     = 2 * HZ;
1501         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1502         net->features           = NETIF_F_HIGHDMA;
1503         net->addr_len           = FWNET_ALEN;
1504         net->hard_header_len    = FWNET_HLEN;
1505         net->type               = ARPHRD_IEEE1394;
1506         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1507         net->ethtool_ops        = &fwnet_ethtool_ops;
1508 }
1509
1510 /* caller must hold fwnet_device_mutex */
1511 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1512 {
1513         struct fwnet_device *dev;
1514
1515         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1516                 if (dev->card == card)
1517                         return dev;
1518
1519         return NULL;
1520 }
1521
1522 static int fwnet_add_peer(struct fwnet_device *dev,
1523                           struct fw_unit *unit, struct fw_device *device)
1524 {
1525         struct fwnet_peer *peer;
1526
1527         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1528         if (!peer)
1529                 return -ENOMEM;
1530
1531         dev_set_drvdata(&unit->device, peer);
1532
1533         peer->dev = dev;
1534         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1535         peer->fifo = FWNET_NO_FIFO_ADDR;
1536         peer->ip = 0;
1537         INIT_LIST_HEAD(&peer->pd_list);
1538         peer->pdg_size = 0;
1539         peer->datagram_label = 0;
1540         peer->speed = device->max_speed;
1541         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1542
1543         peer->generation = device->generation;
1544         smp_rmb();
1545         peer->node_id = device->node_id;
1546
1547         spin_lock_irq(&dev->lock);
1548         list_add_tail(&peer->peer_link, &dev->peer_list);
1549         dev->peer_count++;
1550         set_carrier_state(dev);
1551         spin_unlock_irq(&dev->lock);
1552
1553         return 0;
1554 }
1555
1556 static int fwnet_probe(struct device *_dev)
1557 {
1558         struct fw_unit *unit = fw_unit(_dev);
1559         struct fw_device *device = fw_parent_device(unit);
1560         struct fw_card *card = device->card;
1561         struct net_device *net;
1562         bool allocated_netdev = false;
1563         struct fwnet_device *dev;
1564         unsigned max_mtu;
1565         int ret;
1566
1567         mutex_lock(&fwnet_device_mutex);
1568
1569         dev = fwnet_dev_find(card);
1570         if (dev) {
1571                 net = dev->netdev;
1572                 goto have_dev;
1573         }
1574
1575         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1576         if (net == NULL) {
1577                 ret = -ENOMEM;
1578                 goto out;
1579         }
1580
1581         allocated_netdev = true;
1582         SET_NETDEV_DEV(net, card->device);
1583         dev = netdev_priv(net);
1584
1585         spin_lock_init(&dev->lock);
1586         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1587         dev->broadcast_rcv_context = NULL;
1588         dev->broadcast_xmt_max_payload = 0;
1589         dev->broadcast_xmt_datagramlabel = 0;
1590         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1591         dev->queued_datagrams = 0;
1592         INIT_LIST_HEAD(&dev->peer_list);
1593         dev->card = card;
1594         dev->netdev = net;
1595
1596         /*
1597          * Use the RFC 2734 default 1500 octets or the maximum payload
1598          * as initial MTU
1599          */
1600         max_mtu = (1 << (card->max_receive + 1))
1601                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1602         net->mtu = min(1500U, max_mtu);
1603
1604         /* Set our hardware address while we're at it */
1605         put_unaligned_be64(card->guid, net->dev_addr);
1606         put_unaligned_be64(~0ULL, net->broadcast);
1607         ret = register_netdev(net);
1608         if (ret)
1609                 goto out;
1610
1611         list_add_tail(&dev->dev_link, &fwnet_device_list);
1612         dev_notice(&net->dev, "IPv4 over IEEE 1394 on card %s\n",
1613                    dev_name(card->device));
1614  have_dev:
1615         ret = fwnet_add_peer(dev, unit, device);
1616         if (ret && allocated_netdev) {
1617                 unregister_netdev(net);
1618                 list_del(&dev->dev_link);
1619         }
1620  out:
1621         if (ret && allocated_netdev)
1622                 free_netdev(net);
1623
1624         mutex_unlock(&fwnet_device_mutex);
1625
1626         return ret;
1627 }
1628
1629 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1630 {
1631         struct fwnet_partial_datagram *pd, *pd_next;
1632
1633         spin_lock_irq(&dev->lock);
1634         list_del(&peer->peer_link);
1635         dev->peer_count--;
1636         set_carrier_state(dev);
1637         spin_unlock_irq(&dev->lock);
1638
1639         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1640                 fwnet_pd_delete(pd);
1641
1642         kfree(peer);
1643 }
1644
1645 static int fwnet_remove(struct device *_dev)
1646 {
1647         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1648         struct fwnet_device *dev = peer->dev;
1649         struct net_device *net;
1650         int i;
1651
1652         mutex_lock(&fwnet_device_mutex);
1653
1654         net = dev->netdev;
1655         if (net && peer->ip)
1656                 arp_invalidate(net, peer->ip);
1657
1658         fwnet_remove_peer(peer, dev);
1659
1660         if (list_empty(&dev->peer_list)) {
1661                 unregister_netdev(net);
1662
1663                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1664                         ssleep(1);
1665                 WARN_ON(dev->queued_datagrams);
1666                 list_del(&dev->dev_link);
1667
1668                 free_netdev(net);
1669         }
1670
1671         mutex_unlock(&fwnet_device_mutex);
1672
1673         return 0;
1674 }
1675
1676 /*
1677  * FIXME abort partially sent fragmented datagrams,
1678  * discard partially received fragmented datagrams
1679  */
1680 static void fwnet_update(struct fw_unit *unit)
1681 {
1682         struct fw_device *device = fw_parent_device(unit);
1683         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1684         int generation;
1685
1686         generation = device->generation;
1687
1688         spin_lock_irq(&peer->dev->lock);
1689         peer->node_id    = device->node_id;
1690         peer->generation = generation;
1691         spin_unlock_irq(&peer->dev->lock);
1692 }
1693
1694 static const struct ieee1394_device_id fwnet_id_table[] = {
1695         {
1696                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1697                                 IEEE1394_MATCH_VERSION,
1698                 .specifier_id = IANA_SPECIFIER_ID,
1699                 .version      = RFC2734_SW_VERSION,
1700         },
1701         { }
1702 };
1703
1704 static struct fw_driver fwnet_driver = {
1705         .driver = {
1706                 .owner  = THIS_MODULE,
1707                 .name   = KBUILD_MODNAME,
1708                 .bus    = &fw_bus_type,
1709                 .probe  = fwnet_probe,
1710                 .remove = fwnet_remove,
1711         },
1712         .update   = fwnet_update,
1713         .id_table = fwnet_id_table,
1714 };
1715
1716 static const u32 rfc2374_unit_directory_data[] = {
1717         0x00040000,     /* directory_length             */
1718         0x1200005e,     /* unit_specifier_id: IANA      */
1719         0x81000003,     /* textual descriptor offset    */
1720         0x13000001,     /* unit_sw_version: RFC 2734    */
1721         0x81000005,     /* textual descriptor offset    */
1722         0x00030000,     /* descriptor_length            */
1723         0x00000000,     /* text                         */
1724         0x00000000,     /* minimal ASCII, en            */
1725         0x49414e41,     /* I A N A                      */
1726         0x00030000,     /* descriptor_length            */
1727         0x00000000,     /* text                         */
1728         0x00000000,     /* minimal ASCII, en            */
1729         0x49507634,     /* I P v 4                      */
1730 };
1731
1732 static struct fw_descriptor rfc2374_unit_directory = {
1733         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1734         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1735         .data   = rfc2374_unit_directory_data
1736 };
1737
1738 static int __init fwnet_init(void)
1739 {
1740         int err;
1741
1742         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1743         if (err)
1744                 return err;
1745
1746         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1747                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1748         if (!fwnet_packet_task_cache) {
1749                 err = -ENOMEM;
1750                 goto out;
1751         }
1752
1753         err = driver_register(&fwnet_driver.driver);
1754         if (!err)
1755                 return 0;
1756
1757         kmem_cache_destroy(fwnet_packet_task_cache);
1758 out:
1759         fw_core_remove_descriptor(&rfc2374_unit_directory);
1760
1761         return err;
1762 }
1763 module_init(fwnet_init);
1764
1765 static void __exit fwnet_cleanup(void)
1766 {
1767         driver_unregister(&fwnet_driver.driver);
1768         kmem_cache_destroy(fwnet_packet_task_cache);
1769         fw_core_remove_descriptor(&rfc2374_unit_directory);
1770 }
1771 module_exit(fwnet_cleanup);
1772
1773 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1774 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1775 MODULE_LICENSE("GPL");
1776 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);