firewire net: Ignore spd and max_payload advertised by ARP.
[firefly-linux-kernel-4.4.55.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
31
32 /* rx limits */
33 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
34 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
35
36 /* tx limits */
37 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
38 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
39 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
40
41 #define IEEE1394_BROADCAST_CHANNEL      31
42 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
43 #define IEEE1394_MAX_PAYLOAD_S100       512
44 #define FWNET_NO_FIFO_ADDR              (~0ULL)
45
46 #define IANA_SPECIFIER_ID               0x00005eU
47 #define RFC2734_SW_VERSION              0x000001U
48
49 #define IEEE1394_GASP_HDR_SIZE  8
50
51 #define RFC2374_UNFRAG_HDR_SIZE 4
52 #define RFC2374_FRAG_HDR_SIZE   8
53 #define RFC2374_FRAG_OVERHEAD   4
54
55 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
56 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
57 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
58 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
59
60 #define RFC2734_HW_ADDR_LEN     16
61
62 struct rfc2734_arp {
63         __be16 hw_type;         /* 0x0018       */
64         __be16 proto_type;      /* 0x0806       */
65         u8 hw_addr_len;         /* 16           */
66         u8 ip_addr_len;         /* 4            */
67         __be16 opcode;          /* ARP Opcode   */
68         /* Above is exactly the same format as struct arphdr */
69
70         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
71         u8 max_rec;             /* Sender's max packet size             */
72         u8 sspd;                /* Sender's max speed                   */
73         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
74         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
75         __be32 sip;             /* Sender's IP Address                  */
76         __be32 tip;             /* IP Address of requested hw addr      */
77 } __packed;
78
79 /* This header format is specific to this driver implementation. */
80 #define FWNET_ALEN      8
81 #define FWNET_HLEN      10
82 struct fwnet_header {
83         u8 h_dest[FWNET_ALEN];  /* destination address */
84         __be16 h_proto;         /* packet type ID field */
85 } __packed;
86
87 static bool fwnet_hwaddr_is_multicast(u8 *ha)
88 {
89         return !!(*ha & 1);
90 }
91
92 /* IPv4 and IPv6 encapsulation header */
93 struct rfc2734_header {
94         u32 w0;
95         u32 w1;
96 };
97
98 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
99 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
100 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
101 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
102 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
103
104 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
105 #define fwnet_set_hdr_ether_type(et)    (et)
106 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
107 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
108
109 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
110
111 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
112                 unsigned ether_type)
113 {
114         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
115                   | fwnet_set_hdr_ether_type(ether_type);
116 }
117
118 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
119                 unsigned ether_type, unsigned dg_size, unsigned dgl)
120 {
121         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
122                   | fwnet_set_hdr_dg_size(dg_size)
123                   | fwnet_set_hdr_ether_type(ether_type);
124         hdr->w1 = fwnet_set_hdr_dgl(dgl);
125 }
126
127 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
128                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
129 {
130         hdr->w0 = fwnet_set_hdr_lf(lf)
131                   | fwnet_set_hdr_dg_size(dg_size)
132                   | fwnet_set_hdr_fg_off(fg_off);
133         hdr->w1 = fwnet_set_hdr_dgl(dgl);
134 }
135
136 /* This list keeps track of what parts of the datagram have been filled in */
137 struct fwnet_fragment_info {
138         struct list_head fi_link;
139         u16 offset;
140         u16 len;
141 };
142
143 struct fwnet_partial_datagram {
144         struct list_head pd_link;
145         struct list_head fi_list;
146         struct sk_buff *skb;
147         /* FIXME Why not use skb->data? */
148         char *pbuf;
149         u16 datagram_label;
150         u16 ether_type;
151         u16 datagram_size;
152 };
153
154 static DEFINE_MUTEX(fwnet_device_mutex);
155 static LIST_HEAD(fwnet_device_list);
156
157 struct fwnet_device {
158         struct list_head dev_link;
159         spinlock_t lock;
160         enum {
161                 FWNET_BROADCAST_ERROR,
162                 FWNET_BROADCAST_RUNNING,
163                 FWNET_BROADCAST_STOPPED,
164         } broadcast_state;
165         struct fw_iso_context *broadcast_rcv_context;
166         struct fw_iso_buffer broadcast_rcv_buffer;
167         void **broadcast_rcv_buffer_ptrs;
168         unsigned broadcast_rcv_next_ptr;
169         unsigned num_broadcast_rcv_ptrs;
170         unsigned rcv_buffer_size;
171         /*
172          * This value is the maximum unfragmented datagram size that can be
173          * sent by the hardware.  It already has the GASP overhead and the
174          * unfragmented datagram header overhead calculated into it.
175          */
176         unsigned broadcast_xmt_max_payload;
177         u16 broadcast_xmt_datagramlabel;
178
179         /*
180          * The CSR address that remote nodes must send datagrams to for us to
181          * receive them.
182          */
183         struct fw_address_handler handler;
184         u64 local_fifo;
185
186         /* Number of tx datagrams that have been queued but not yet acked */
187         int queued_datagrams;
188
189         int peer_count;
190         struct list_head peer_list;
191         struct fw_card *card;
192         struct net_device *netdev;
193 };
194
195 struct fwnet_peer {
196         struct list_head peer_link;
197         struct fwnet_device *dev;
198         u64 guid;
199         u64 fifo;
200         __be32 ip;
201
202         /* guarded by dev->lock */
203         struct list_head pd_list; /* received partial datagrams */
204         unsigned pdg_size;        /* pd_list size */
205
206         u16 datagram_label;       /* outgoing datagram label */
207         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
208         int node_id;
209         int generation;
210         unsigned speed;
211 };
212
213 /* This is our task struct. It's used for the packet complete callback.  */
214 struct fwnet_packet_task {
215         struct fw_transaction transaction;
216         struct rfc2734_header hdr;
217         struct sk_buff *skb;
218         struct fwnet_device *dev;
219
220         int outstanding_pkts;
221         u64 fifo_addr;
222         u16 dest_node;
223         u16 max_payload;
224         u8 generation;
225         u8 speed;
226         u8 enqueued;
227 };
228
229 /*
230  * saddr == NULL means use device source address.
231  * daddr == NULL means leave destination address (eg unresolved arp).
232  */
233 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
234                         unsigned short type, const void *daddr,
235                         const void *saddr, unsigned len)
236 {
237         struct fwnet_header *h;
238
239         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
240         put_unaligned_be16(type, &h->h_proto);
241
242         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
243                 memset(h->h_dest, 0, net->addr_len);
244
245                 return net->hard_header_len;
246         }
247
248         if (daddr) {
249                 memcpy(h->h_dest, daddr, net->addr_len);
250
251                 return net->hard_header_len;
252         }
253
254         return -net->hard_header_len;
255 }
256
257 static int fwnet_header_rebuild(struct sk_buff *skb)
258 {
259         struct fwnet_header *h = (struct fwnet_header *)skb->data;
260
261         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
262                 return arp_find((unsigned char *)&h->h_dest, skb);
263
264         dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
265                    be16_to_cpu(h->h_proto));
266         return 0;
267 }
268
269 static int fwnet_header_cache(const struct neighbour *neigh,
270                               struct hh_cache *hh, __be16 type)
271 {
272         struct net_device *net;
273         struct fwnet_header *h;
274
275         if (type == cpu_to_be16(ETH_P_802_3))
276                 return -1;
277         net = neigh->dev;
278         h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
279         h->h_proto = type;
280         memcpy(h->h_dest, neigh->ha, net->addr_len);
281         hh->hh_len = FWNET_HLEN;
282
283         return 0;
284 }
285
286 /* Called by Address Resolution module to notify changes in address. */
287 static void fwnet_header_cache_update(struct hh_cache *hh,
288                 const struct net_device *net, const unsigned char *haddr)
289 {
290         memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
291 }
292
293 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
294 {
295         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
296
297         return FWNET_ALEN;
298 }
299
300 static const struct header_ops fwnet_header_ops = {
301         .create         = fwnet_header_create,
302         .rebuild        = fwnet_header_rebuild,
303         .cache          = fwnet_header_cache,
304         .cache_update   = fwnet_header_cache_update,
305         .parse          = fwnet_header_parse,
306 };
307
308 /* FIXME: is this correct for all cases? */
309 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
310                                unsigned offset, unsigned len)
311 {
312         struct fwnet_fragment_info *fi;
313         unsigned end = offset + len;
314
315         list_for_each_entry(fi, &pd->fi_list, fi_link)
316                 if (offset < fi->offset + fi->len && end > fi->offset)
317                         return true;
318
319         return false;
320 }
321
322 /* Assumes that new fragment does not overlap any existing fragments */
323 static struct fwnet_fragment_info *fwnet_frag_new(
324         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
325 {
326         struct fwnet_fragment_info *fi, *fi2, *new;
327         struct list_head *list;
328
329         list = &pd->fi_list;
330         list_for_each_entry(fi, &pd->fi_list, fi_link) {
331                 if (fi->offset + fi->len == offset) {
332                         /* The new fragment can be tacked on to the end */
333                         /* Did the new fragment plug a hole? */
334                         fi2 = list_entry(fi->fi_link.next,
335                                          struct fwnet_fragment_info, fi_link);
336                         if (fi->offset + fi->len == fi2->offset) {
337                                 /* glue fragments together */
338                                 fi->len += len + fi2->len;
339                                 list_del(&fi2->fi_link);
340                                 kfree(fi2);
341                         } else {
342                                 fi->len += len;
343                         }
344
345                         return fi;
346                 }
347                 if (offset + len == fi->offset) {
348                         /* The new fragment can be tacked on to the beginning */
349                         /* Did the new fragment plug a hole? */
350                         fi2 = list_entry(fi->fi_link.prev,
351                                          struct fwnet_fragment_info, fi_link);
352                         if (fi2->offset + fi2->len == fi->offset) {
353                                 /* glue fragments together */
354                                 fi2->len += fi->len + len;
355                                 list_del(&fi->fi_link);
356                                 kfree(fi);
357
358                                 return fi2;
359                         }
360                         fi->offset = offset;
361                         fi->len += len;
362
363                         return fi;
364                 }
365                 if (offset > fi->offset + fi->len) {
366                         list = &fi->fi_link;
367                         break;
368                 }
369                 if (offset + len < fi->offset) {
370                         list = fi->fi_link.prev;
371                         break;
372                 }
373         }
374
375         new = kmalloc(sizeof(*new), GFP_ATOMIC);
376         if (!new) {
377                 dev_err(&pd->skb->dev->dev, "out of memory\n");
378                 return NULL;
379         }
380
381         new->offset = offset;
382         new->len = len;
383         list_add(&new->fi_link, list);
384
385         return new;
386 }
387
388 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
389                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
390                 void *frag_buf, unsigned frag_off, unsigned frag_len)
391 {
392         struct fwnet_partial_datagram *new;
393         struct fwnet_fragment_info *fi;
394
395         new = kmalloc(sizeof(*new), GFP_ATOMIC);
396         if (!new)
397                 goto fail;
398
399         INIT_LIST_HEAD(&new->fi_list);
400         fi = fwnet_frag_new(new, frag_off, frag_len);
401         if (fi == NULL)
402                 goto fail_w_new;
403
404         new->datagram_label = datagram_label;
405         new->datagram_size = dg_size;
406         new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
407         if (new->skb == NULL)
408                 goto fail_w_fi;
409
410         skb_reserve(new->skb, LL_RESERVED_SPACE(net));
411         new->pbuf = skb_put(new->skb, dg_size);
412         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
413         list_add_tail(&new->pd_link, &peer->pd_list);
414
415         return new;
416
417 fail_w_fi:
418         kfree(fi);
419 fail_w_new:
420         kfree(new);
421 fail:
422         dev_err(&net->dev, "out of memory\n");
423
424         return NULL;
425 }
426
427 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
428                                                     u16 datagram_label)
429 {
430         struct fwnet_partial_datagram *pd;
431
432         list_for_each_entry(pd, &peer->pd_list, pd_link)
433                 if (pd->datagram_label == datagram_label)
434                         return pd;
435
436         return NULL;
437 }
438
439
440 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
441 {
442         struct fwnet_fragment_info *fi, *n;
443
444         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
445                 kfree(fi);
446
447         list_del(&old->pd_link);
448         dev_kfree_skb_any(old->skb);
449         kfree(old);
450 }
451
452 static bool fwnet_pd_update(struct fwnet_peer *peer,
453                 struct fwnet_partial_datagram *pd, void *frag_buf,
454                 unsigned frag_off, unsigned frag_len)
455 {
456         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
457                 return false;
458
459         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
460
461         /*
462          * Move list entry to beginning of list so that oldest partial
463          * datagrams percolate to the end of the list
464          */
465         list_move_tail(&pd->pd_link, &peer->pd_list);
466
467         return true;
468 }
469
470 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
471 {
472         struct fwnet_fragment_info *fi;
473
474         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
475
476         return fi->len == pd->datagram_size;
477 }
478
479 /* caller must hold dev->lock */
480 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
481                                                   u64 guid)
482 {
483         struct fwnet_peer *peer;
484
485         list_for_each_entry(peer, &dev->peer_list, peer_link)
486                 if (peer->guid == guid)
487                         return peer;
488
489         return NULL;
490 }
491
492 /* caller must hold dev->lock */
493 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
494                                                 int node_id, int generation)
495 {
496         struct fwnet_peer *peer;
497
498         list_for_each_entry(peer, &dev->peer_list, peer_link)
499                 if (peer->node_id    == node_id &&
500                     peer->generation == generation)
501                         return peer;
502
503         return NULL;
504 }
505
506 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
507 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
508 {
509         max_rec = min(max_rec, speed + 8);
510         max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
511
512         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
513 }
514
515
516 static int fwnet_finish_incoming_packet(struct net_device *net,
517                                         struct sk_buff *skb, u16 source_node_id,
518                                         bool is_broadcast, u16 ether_type)
519 {
520         struct fwnet_device *dev;
521         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
522         int status;
523         __be64 guid;
524
525         switch (ether_type) {
526         case ETH_P_ARP:
527         case ETH_P_IP:
528                 break;
529         default:
530                 goto err;
531         }
532
533         dev = netdev_priv(net);
534         /* Write metadata, and then pass to the receive level */
535         skb->dev = net;
536         skb->ip_summed = CHECKSUM_NONE;
537
538         /*
539          * Parse the encapsulation header. This actually does the job of
540          * converting to an ethernet frame header, as well as arp
541          * conversion if needed. ARP conversion is easier in this
542          * direction, since we are using ethernet as our backend.
543          */
544         /*
545          * If this is an ARP packet, convert it. First, we want to make
546          * use of some of the fields, since they tell us a little bit
547          * about the sending machine.
548          */
549         if (ether_type == ETH_P_ARP) {
550                 struct rfc2734_arp *arp1394;
551                 struct arphdr *arp;
552                 unsigned char *arp_ptr;
553                 u64 fifo_addr;
554                 u64 peer_guid;
555                 struct fwnet_peer *peer;
556                 unsigned long flags;
557
558                 arp1394   = (struct rfc2734_arp *)skb->data;
559                 arp       = (struct arphdr *)skb->data;
560                 arp_ptr   = (unsigned char *)(arp + 1);
561                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
562                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
563                                 | get_unaligned_be32(&arp1394->fifo_lo);
564
565                 spin_lock_irqsave(&dev->lock, flags);
566                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
567                 if (peer) {
568                         peer->fifo = fifo_addr;
569                         peer->ip = arp1394->sip;
570                 }
571                 spin_unlock_irqrestore(&dev->lock, flags);
572
573                 if (!peer) {
574                         dev_notice(&net->dev,
575                                    "no peer for ARP packet from %016llx\n",
576                                    (unsigned long long)peer_guid);
577                         goto no_peer;
578                 }
579
580                 /*
581                  * Now that we're done with the 1394 specific stuff, we'll
582                  * need to alter some of the data.  Believe it or not, all
583                  * that needs to be done is sender_IP_address needs to be
584                  * moved, the destination hardware address get stuffed
585                  * in and the hardware address length set to 8.
586                  *
587                  * IMPORTANT: The code below overwrites 1394 specific data
588                  * needed above so keep the munging of the data for the
589                  * higher level IP stack last.
590                  */
591
592                 arp->ar_hln = 8;
593                 /* skip over sender unique id */
594                 arp_ptr += arp->ar_hln;
595                 /* move sender IP addr */
596                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
597                 /* skip over sender IP addr */
598                 arp_ptr += arp->ar_pln;
599
600                 if (arp->ar_op == htons(ARPOP_REQUEST))
601                         memset(arp_ptr, 0, sizeof(u64));
602                 else
603                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
604         }
605
606         /* Now add the ethernet header. */
607         guid = cpu_to_be64(dev->card->guid);
608         if (dev_hard_header(skb, net, ether_type,
609                            is_broadcast ? &broadcast_hw : &guid,
610                            NULL, skb->len) >= 0) {
611                 struct fwnet_header *eth;
612                 u16 *rawp;
613                 __be16 protocol;
614
615                 skb_reset_mac_header(skb);
616                 skb_pull(skb, sizeof(*eth));
617                 eth = (struct fwnet_header *)skb_mac_header(skb);
618                 if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
619                         if (memcmp(eth->h_dest, net->broadcast,
620                                    net->addr_len) == 0)
621                                 skb->pkt_type = PACKET_BROADCAST;
622 #if 0
623                         else
624                                 skb->pkt_type = PACKET_MULTICAST;
625 #endif
626                 } else {
627                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
628                                 skb->pkt_type = PACKET_OTHERHOST;
629                 }
630                 if (ntohs(eth->h_proto) >= 1536) {
631                         protocol = eth->h_proto;
632                 } else {
633                         rawp = (u16 *)skb->data;
634                         if (*rawp == 0xffff)
635                                 protocol = htons(ETH_P_802_3);
636                         else
637                                 protocol = htons(ETH_P_802_2);
638                 }
639                 skb->protocol = protocol;
640         }
641         status = netif_rx(skb);
642         if (status == NET_RX_DROP) {
643                 net->stats.rx_errors++;
644                 net->stats.rx_dropped++;
645         } else {
646                 net->stats.rx_packets++;
647                 net->stats.rx_bytes += skb->len;
648         }
649
650         return 0;
651
652  no_peer:
653  err:
654         net->stats.rx_errors++;
655         net->stats.rx_dropped++;
656
657         dev_kfree_skb_any(skb);
658
659         return -ENOENT;
660 }
661
662 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
663                                  int source_node_id, int generation,
664                                  bool is_broadcast)
665 {
666         struct sk_buff *skb;
667         struct net_device *net = dev->netdev;
668         struct rfc2734_header hdr;
669         unsigned lf;
670         unsigned long flags;
671         struct fwnet_peer *peer;
672         struct fwnet_partial_datagram *pd;
673         int fg_off;
674         int dg_size;
675         u16 datagram_label;
676         int retval;
677         u16 ether_type;
678
679         hdr.w0 = be32_to_cpu(buf[0]);
680         lf = fwnet_get_hdr_lf(&hdr);
681         if (lf == RFC2374_HDR_UNFRAG) {
682                 /*
683                  * An unfragmented datagram has been received by the ieee1394
684                  * bus. Build an skbuff around it so we can pass it to the
685                  * high level network layer.
686                  */
687                 ether_type = fwnet_get_hdr_ether_type(&hdr);
688                 buf++;
689                 len -= RFC2374_UNFRAG_HDR_SIZE;
690
691                 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
692                 if (unlikely(!skb)) {
693                         dev_err(&net->dev, "out of memory\n");
694                         net->stats.rx_dropped++;
695
696                         return -ENOMEM;
697                 }
698                 skb_reserve(skb, LL_RESERVED_SPACE(net));
699                 memcpy(skb_put(skb, len), buf, len);
700
701                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
702                                                     is_broadcast, ether_type);
703         }
704         /* A datagram fragment has been received, now the fun begins. */
705         hdr.w1 = ntohl(buf[1]);
706         buf += 2;
707         len -= RFC2374_FRAG_HDR_SIZE;
708         if (lf == RFC2374_HDR_FIRSTFRAG) {
709                 ether_type = fwnet_get_hdr_ether_type(&hdr);
710                 fg_off = 0;
711         } else {
712                 ether_type = 0;
713                 fg_off = fwnet_get_hdr_fg_off(&hdr);
714         }
715         datagram_label = fwnet_get_hdr_dgl(&hdr);
716         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
717
718         spin_lock_irqsave(&dev->lock, flags);
719
720         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
721         if (!peer) {
722                 retval = -ENOENT;
723                 goto fail;
724         }
725
726         pd = fwnet_pd_find(peer, datagram_label);
727         if (pd == NULL) {
728                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
729                         /* remove the oldest */
730                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
731                                 struct fwnet_partial_datagram, pd_link));
732                         peer->pdg_size--;
733                 }
734                 pd = fwnet_pd_new(net, peer, datagram_label,
735                                   dg_size, buf, fg_off, len);
736                 if (pd == NULL) {
737                         retval = -ENOMEM;
738                         goto fail;
739                 }
740                 peer->pdg_size++;
741         } else {
742                 if (fwnet_frag_overlap(pd, fg_off, len) ||
743                     pd->datagram_size != dg_size) {
744                         /*
745                          * Differing datagram sizes or overlapping fragments,
746                          * discard old datagram and start a new one.
747                          */
748                         fwnet_pd_delete(pd);
749                         pd = fwnet_pd_new(net, peer, datagram_label,
750                                           dg_size, buf, fg_off, len);
751                         if (pd == NULL) {
752                                 peer->pdg_size--;
753                                 retval = -ENOMEM;
754                                 goto fail;
755                         }
756                 } else {
757                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
758                                 /*
759                                  * Couldn't save off fragment anyway
760                                  * so might as well obliterate the
761                                  * datagram now.
762                                  */
763                                 fwnet_pd_delete(pd);
764                                 peer->pdg_size--;
765                                 retval = -ENOMEM;
766                                 goto fail;
767                         }
768                 }
769         } /* new datagram or add to existing one */
770
771         if (lf == RFC2374_HDR_FIRSTFRAG)
772                 pd->ether_type = ether_type;
773
774         if (fwnet_pd_is_complete(pd)) {
775                 ether_type = pd->ether_type;
776                 peer->pdg_size--;
777                 skb = skb_get(pd->skb);
778                 fwnet_pd_delete(pd);
779
780                 spin_unlock_irqrestore(&dev->lock, flags);
781
782                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
783                                                     false, ether_type);
784         }
785         /*
786          * Datagram is not complete, we're done for the
787          * moment.
788          */
789         retval = 0;
790  fail:
791         spin_unlock_irqrestore(&dev->lock, flags);
792
793         return retval;
794 }
795
796 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
797                 int tcode, int destination, int source, int generation,
798                 unsigned long long offset, void *payload, size_t length,
799                 void *callback_data)
800 {
801         struct fwnet_device *dev = callback_data;
802         int rcode;
803
804         if (destination == IEEE1394_ALL_NODES) {
805                 kfree(r);
806
807                 return;
808         }
809
810         if (offset != dev->handler.offset)
811                 rcode = RCODE_ADDRESS_ERROR;
812         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
813                 rcode = RCODE_TYPE_ERROR;
814         else if (fwnet_incoming_packet(dev, payload, length,
815                                        source, generation, false) != 0) {
816                 dev_err(&dev->netdev->dev, "incoming packet failure\n");
817                 rcode = RCODE_CONFLICT_ERROR;
818         } else
819                 rcode = RCODE_COMPLETE;
820
821         fw_send_response(card, r, rcode);
822 }
823
824 static void fwnet_receive_broadcast(struct fw_iso_context *context,
825                 u32 cycle, size_t header_length, void *header, void *data)
826 {
827         struct fwnet_device *dev;
828         struct fw_iso_packet packet;
829         __be16 *hdr_ptr;
830         __be32 *buf_ptr;
831         int retval;
832         u32 length;
833         u16 source_node_id;
834         u32 specifier_id;
835         u32 ver;
836         unsigned long offset;
837         unsigned long flags;
838
839         dev = data;
840         hdr_ptr = header;
841         length = be16_to_cpup(hdr_ptr);
842
843         spin_lock_irqsave(&dev->lock, flags);
844
845         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
846         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
847         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
848                 dev->broadcast_rcv_next_ptr = 0;
849
850         spin_unlock_irqrestore(&dev->lock, flags);
851
852         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
853                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
854         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
855         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
856
857         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
858                 buf_ptr += 2;
859                 length -= IEEE1394_GASP_HDR_SIZE;
860                 fwnet_incoming_packet(dev, buf_ptr, length, source_node_id,
861                                       context->card->generation, true);
862         }
863
864         packet.payload_length = dev->rcv_buffer_size;
865         packet.interrupt = 1;
866         packet.skip = 0;
867         packet.tag = 3;
868         packet.sy = 0;
869         packet.header_length = IEEE1394_GASP_HDR_SIZE;
870
871         spin_lock_irqsave(&dev->lock, flags);
872
873         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
874                                       &dev->broadcast_rcv_buffer, offset);
875
876         spin_unlock_irqrestore(&dev->lock, flags);
877
878         if (retval >= 0)
879                 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
880         else
881                 dev_err(&dev->netdev->dev, "requeue failed\n");
882 }
883
884 static struct kmem_cache *fwnet_packet_task_cache;
885
886 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
887 {
888         dev_kfree_skb_any(ptask->skb);
889         kmem_cache_free(fwnet_packet_task_cache, ptask);
890 }
891
892 /* Caller must hold dev->lock. */
893 static void dec_queued_datagrams(struct fwnet_device *dev)
894 {
895         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
896                 netif_wake_queue(dev->netdev);
897 }
898
899 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
900
901 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
902 {
903         struct fwnet_device *dev = ptask->dev;
904         struct sk_buff *skb = ptask->skb;
905         unsigned long flags;
906         bool free;
907
908         spin_lock_irqsave(&dev->lock, flags);
909
910         ptask->outstanding_pkts--;
911
912         /* Check whether we or the networking TX soft-IRQ is last user. */
913         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
914         if (free)
915                 dec_queued_datagrams(dev);
916
917         if (ptask->outstanding_pkts == 0) {
918                 dev->netdev->stats.tx_packets++;
919                 dev->netdev->stats.tx_bytes += skb->len;
920         }
921
922         spin_unlock_irqrestore(&dev->lock, flags);
923
924         if (ptask->outstanding_pkts > 0) {
925                 u16 dg_size;
926                 u16 fg_off;
927                 u16 datagram_label;
928                 u16 lf;
929
930                 /* Update the ptask to point to the next fragment and send it */
931                 lf = fwnet_get_hdr_lf(&ptask->hdr);
932                 switch (lf) {
933                 case RFC2374_HDR_LASTFRAG:
934                 case RFC2374_HDR_UNFRAG:
935                 default:
936                         dev_err(&dev->netdev->dev,
937                                 "outstanding packet %x lf %x, header %x,%x\n",
938                                 ptask->outstanding_pkts, lf, ptask->hdr.w0,
939                                 ptask->hdr.w1);
940                         BUG();
941
942                 case RFC2374_HDR_FIRSTFRAG:
943                         /* Set frag type here for future interior fragments */
944                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
945                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
946                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
947                         break;
948
949                 case RFC2374_HDR_INTFRAG:
950                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
951                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
952                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
953                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
954                         break;
955                 }
956
957                 if (ptask->dest_node == IEEE1394_ALL_NODES) {
958                         skb_pull(skb,
959                                  ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
960                 } else {
961                         skb_pull(skb, ptask->max_payload);
962                 }
963                 if (ptask->outstanding_pkts > 1) {
964                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
965                                           dg_size, fg_off, datagram_label);
966                 } else {
967                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
968                                           dg_size, fg_off, datagram_label);
969                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
970                 }
971                 fwnet_send_packet(ptask);
972         }
973
974         if (free)
975                 fwnet_free_ptask(ptask);
976 }
977
978 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
979 {
980         struct fwnet_device *dev = ptask->dev;
981         unsigned long flags;
982         bool free;
983
984         spin_lock_irqsave(&dev->lock, flags);
985
986         /* One fragment failed; don't try to send remaining fragments. */
987         ptask->outstanding_pkts = 0;
988
989         /* Check whether we or the networking TX soft-IRQ is last user. */
990         free = ptask->enqueued;
991         if (free)
992                 dec_queued_datagrams(dev);
993
994         dev->netdev->stats.tx_dropped++;
995         dev->netdev->stats.tx_errors++;
996
997         spin_unlock_irqrestore(&dev->lock, flags);
998
999         if (free)
1000                 fwnet_free_ptask(ptask);
1001 }
1002
1003 static void fwnet_write_complete(struct fw_card *card, int rcode,
1004                                  void *payload, size_t length, void *data)
1005 {
1006         struct fwnet_packet_task *ptask = data;
1007         static unsigned long j;
1008         static int last_rcode, errors_skipped;
1009
1010         if (rcode == RCODE_COMPLETE) {
1011                 fwnet_transmit_packet_done(ptask);
1012         } else {
1013                 fwnet_transmit_packet_failed(ptask);
1014
1015                 if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1016                         dev_err(&ptask->dev->netdev->dev,
1017                                 "fwnet_write_complete failed: %x (skipped %d)\n",
1018                                 rcode, errors_skipped);
1019
1020                         errors_skipped = 0;
1021                         last_rcode = rcode;
1022                 } else
1023                         errors_skipped++;
1024         }
1025 }
1026
1027 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1028 {
1029         struct fwnet_device *dev;
1030         unsigned tx_len;
1031         struct rfc2734_header *bufhdr;
1032         unsigned long flags;
1033         bool free;
1034
1035         dev = ptask->dev;
1036         tx_len = ptask->max_payload;
1037         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1038         case RFC2374_HDR_UNFRAG:
1039                 bufhdr = (struct rfc2734_header *)
1040                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1041                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1042                 break;
1043
1044         case RFC2374_HDR_FIRSTFRAG:
1045         case RFC2374_HDR_INTFRAG:
1046         case RFC2374_HDR_LASTFRAG:
1047                 bufhdr = (struct rfc2734_header *)
1048                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1049                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1050                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1051                 break;
1052
1053         default:
1054                 BUG();
1055         }
1056         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1057                 u8 *p;
1058                 int generation;
1059                 int node_id;
1060
1061                 /* ptask->generation may not have been set yet */
1062                 generation = dev->card->generation;
1063                 smp_rmb();
1064                 node_id = dev->card->node_id;
1065
1066                 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
1067                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1068                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1069                                                 | RFC2734_SW_VERSION, &p[4]);
1070
1071                 /* We should not transmit if broadcast_channel.valid == 0. */
1072                 fw_send_request(dev->card, &ptask->transaction,
1073                                 TCODE_STREAM_DATA,
1074                                 fw_stream_packet_destination_id(3,
1075                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1076                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1077                                 tx_len + 8, fwnet_write_complete, ptask);
1078
1079                 spin_lock_irqsave(&dev->lock, flags);
1080
1081                 /* If the AT tasklet already ran, we may be last user. */
1082                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1083                 if (!free)
1084                         ptask->enqueued = true;
1085                 else
1086                         dec_queued_datagrams(dev);
1087
1088                 spin_unlock_irqrestore(&dev->lock, flags);
1089
1090                 goto out;
1091         }
1092
1093         fw_send_request(dev->card, &ptask->transaction,
1094                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1095                         ptask->generation, ptask->speed, ptask->fifo_addr,
1096                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1097
1098         spin_lock_irqsave(&dev->lock, flags);
1099
1100         /* If the AT tasklet already ran, we may be last user. */
1101         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1102         if (!free)
1103                 ptask->enqueued = true;
1104         else
1105                 dec_queued_datagrams(dev);
1106
1107         spin_unlock_irqrestore(&dev->lock, flags);
1108
1109         dev->netdev->trans_start = jiffies;
1110  out:
1111         if (free)
1112                 fwnet_free_ptask(ptask);
1113
1114         return 0;
1115 }
1116
1117 static void fwnet_fifo_stop(struct fwnet_device *dev)
1118 {
1119         if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1120                 return;
1121
1122         fw_core_remove_address_handler(&dev->handler);
1123         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1124 }
1125
1126 static int fwnet_fifo_start(struct fwnet_device *dev)
1127 {
1128         int retval;
1129
1130         if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1131                 return 0;
1132
1133         dev->handler.length = 4096;
1134         dev->handler.address_callback = fwnet_receive_packet;
1135         dev->handler.callback_data = dev;
1136
1137         retval = fw_core_add_address_handler(&dev->handler,
1138                                              &fw_high_memory_region);
1139         if (retval < 0)
1140                 return retval;
1141
1142         dev->local_fifo = dev->handler.offset;
1143
1144         return 0;
1145 }
1146
1147 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1148 {
1149         unsigned u;
1150
1151         if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1152                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1153                         kunmap(dev->broadcast_rcv_buffer.pages[u]);
1154                 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1155         }
1156         if (dev->broadcast_rcv_context) {
1157                 fw_iso_context_destroy(dev->broadcast_rcv_context);
1158                 dev->broadcast_rcv_context = NULL;
1159         }
1160         kfree(dev->broadcast_rcv_buffer_ptrs);
1161         dev->broadcast_rcv_buffer_ptrs = NULL;
1162         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1163 }
1164
1165 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1166 {
1167         if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1168                 return;
1169         fw_iso_context_stop(dev->broadcast_rcv_context);
1170         __fwnet_broadcast_stop(dev);
1171 }
1172
1173 static int fwnet_broadcast_start(struct fwnet_device *dev)
1174 {
1175         struct fw_iso_context *context;
1176         int retval;
1177         unsigned num_packets;
1178         unsigned max_receive;
1179         struct fw_iso_packet packet;
1180         unsigned long offset;
1181         void **ptrptr;
1182         unsigned u;
1183
1184         if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1185                 return 0;
1186
1187         max_receive = 1U << (dev->card->max_receive + 1);
1188         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1189
1190         ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1191         if (!ptrptr) {
1192                 retval = -ENOMEM;
1193                 goto failed;
1194         }
1195         dev->broadcast_rcv_buffer_ptrs = ptrptr;
1196
1197         context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1198                                         IEEE1394_BROADCAST_CHANNEL,
1199                                         dev->card->link_speed, 8,
1200                                         fwnet_receive_broadcast, dev);
1201         if (IS_ERR(context)) {
1202                 retval = PTR_ERR(context);
1203                 goto failed;
1204         }
1205
1206         retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1207                                     FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1208         if (retval < 0)
1209                 goto failed;
1210
1211         dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1212
1213         for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1214                 void *ptr;
1215                 unsigned v;
1216
1217                 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1218                 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1219                         *ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1220         }
1221         dev->broadcast_rcv_context = context;
1222
1223         packet.payload_length = max_receive;
1224         packet.interrupt = 1;
1225         packet.skip = 0;
1226         packet.tag = 3;
1227         packet.sy = 0;
1228         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1229         offset = 0;
1230
1231         for (u = 0; u < num_packets; u++) {
1232                 retval = fw_iso_context_queue(context, &packet,
1233                                 &dev->broadcast_rcv_buffer, offset);
1234                 if (retval < 0)
1235                         goto failed;
1236
1237                 offset += max_receive;
1238         }
1239         dev->num_broadcast_rcv_ptrs = num_packets;
1240         dev->rcv_buffer_size = max_receive;
1241         dev->broadcast_rcv_next_ptr = 0U;
1242         retval = fw_iso_context_start(context, -1, 0,
1243                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1244         if (retval < 0)
1245                 goto failed;
1246
1247         /* FIXME: adjust it according to the min. speed of all known peers? */
1248         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1249                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1250         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1251
1252         return 0;
1253
1254  failed:
1255         __fwnet_broadcast_stop(dev);
1256         return retval;
1257 }
1258
1259 static void set_carrier_state(struct fwnet_device *dev)
1260 {
1261         if (dev->peer_count > 1)
1262                 netif_carrier_on(dev->netdev);
1263         else
1264                 netif_carrier_off(dev->netdev);
1265 }
1266
1267 /* ifup */
1268 static int fwnet_open(struct net_device *net)
1269 {
1270         struct fwnet_device *dev = netdev_priv(net);
1271         int ret;
1272
1273         ret = fwnet_broadcast_start(dev);
1274         if (ret)
1275                 return ret;
1276
1277         netif_start_queue(net);
1278
1279         spin_lock_irq(&dev->lock);
1280         set_carrier_state(dev);
1281         spin_unlock_irq(&dev->lock);
1282
1283         return 0;
1284 }
1285
1286 /* ifdown */
1287 static int fwnet_stop(struct net_device *net)
1288 {
1289         struct fwnet_device *dev = netdev_priv(net);
1290
1291         netif_stop_queue(net);
1292         fwnet_broadcast_stop(dev);
1293
1294         return 0;
1295 }
1296
1297 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1298 {
1299         struct fwnet_header hdr_buf;
1300         struct fwnet_device *dev = netdev_priv(net);
1301         __be16 proto;
1302         u16 dest_node;
1303         unsigned max_payload;
1304         u16 dg_size;
1305         u16 *datagram_label_ptr;
1306         struct fwnet_packet_task *ptask;
1307         struct fwnet_peer *peer;
1308         unsigned long flags;
1309
1310         spin_lock_irqsave(&dev->lock, flags);
1311
1312         /* Can this happen? */
1313         if (netif_queue_stopped(dev->netdev)) {
1314                 spin_unlock_irqrestore(&dev->lock, flags);
1315
1316                 return NETDEV_TX_BUSY;
1317         }
1318
1319         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1320         if (ptask == NULL)
1321                 goto fail;
1322
1323         skb = skb_share_check(skb, GFP_ATOMIC);
1324         if (!skb)
1325                 goto fail;
1326
1327         /*
1328          * Make a copy of the driver-specific header.
1329          * We might need to rebuild the header on tx failure.
1330          */
1331         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1332         proto = hdr_buf.h_proto;
1333
1334         switch (proto) {
1335         case htons(ETH_P_ARP):
1336         case htons(ETH_P_IP):
1337                 break;
1338         default:
1339                 goto fail;
1340         }
1341
1342         skb_pull(skb, sizeof(hdr_buf));
1343         dg_size = skb->len;
1344
1345         /*
1346          * Set the transmission type for the packet.  ARP packets and IP
1347          * broadcast packets are sent via GASP.
1348          */
1349         if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1350                 max_payload        = dev->broadcast_xmt_max_payload;
1351                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1352
1353                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1354                 ptask->generation  = 0;
1355                 ptask->dest_node   = IEEE1394_ALL_NODES;
1356                 ptask->speed       = SCODE_100;
1357         } else {
1358                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1359                 u8 generation;
1360
1361                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1362                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1363                         goto fail;
1364
1365                 generation         = peer->generation;
1366                 dest_node          = peer->node_id;
1367                 max_payload        = peer->max_payload;
1368                 datagram_label_ptr = &peer->datagram_label;
1369
1370                 ptask->fifo_addr   = peer->fifo;
1371                 ptask->generation  = generation;
1372                 ptask->dest_node   = dest_node;
1373                 ptask->speed       = peer->speed;
1374         }
1375
1376         /* If this is an ARP packet, convert it */
1377         if (proto == htons(ETH_P_ARP)) {
1378                 struct arphdr *arp = (struct arphdr *)skb->data;
1379                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1380                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1381                 __be32 ipaddr;
1382
1383                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1384
1385                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1386                 arp1394->max_rec        = dev->card->max_receive;
1387                 arp1394->sspd           = dev->card->link_speed;
1388
1389                 put_unaligned_be16(dev->local_fifo >> 32,
1390                                    &arp1394->fifo_hi);
1391                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1392                                    &arp1394->fifo_lo);
1393                 put_unaligned(ipaddr, &arp1394->sip);
1394         }
1395
1396         ptask->hdr.w0 = 0;
1397         ptask->hdr.w1 = 0;
1398         ptask->skb = skb;
1399         ptask->dev = dev;
1400
1401         /* Does it all fit in one packet? */
1402         if (dg_size <= max_payload) {
1403                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1404                 ptask->outstanding_pkts = 1;
1405                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1406         } else {
1407                 u16 datagram_label;
1408
1409                 max_payload -= RFC2374_FRAG_OVERHEAD;
1410                 datagram_label = (*datagram_label_ptr)++;
1411                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1412                                   datagram_label);
1413                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1414                 max_payload += RFC2374_FRAG_HDR_SIZE;
1415         }
1416
1417         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1418                 netif_stop_queue(dev->netdev);
1419
1420         spin_unlock_irqrestore(&dev->lock, flags);
1421
1422         ptask->max_payload = max_payload;
1423         ptask->enqueued    = 0;
1424
1425         fwnet_send_packet(ptask);
1426
1427         return NETDEV_TX_OK;
1428
1429  fail:
1430         spin_unlock_irqrestore(&dev->lock, flags);
1431
1432         if (ptask)
1433                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1434
1435         if (skb != NULL)
1436                 dev_kfree_skb(skb);
1437
1438         net->stats.tx_dropped++;
1439         net->stats.tx_errors++;
1440
1441         /*
1442          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1443          * causes serious problems" here, allegedly.  Before that patch,
1444          * -ERRNO was returned which is not appropriate under Linux 2.6.
1445          * Perhaps more needs to be done?  Stop the queue in serious
1446          * conditions and restart it elsewhere?
1447          */
1448         return NETDEV_TX_OK;
1449 }
1450
1451 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1452 {
1453         if (new_mtu < 68)
1454                 return -EINVAL;
1455
1456         net->mtu = new_mtu;
1457         return 0;
1458 }
1459
1460 static const struct ethtool_ops fwnet_ethtool_ops = {
1461         .get_link       = ethtool_op_get_link,
1462 };
1463
1464 static const struct net_device_ops fwnet_netdev_ops = {
1465         .ndo_open       = fwnet_open,
1466         .ndo_stop       = fwnet_stop,
1467         .ndo_start_xmit = fwnet_tx,
1468         .ndo_change_mtu = fwnet_change_mtu,
1469 };
1470
1471 static void fwnet_init_dev(struct net_device *net)
1472 {
1473         net->header_ops         = &fwnet_header_ops;
1474         net->netdev_ops         = &fwnet_netdev_ops;
1475         net->watchdog_timeo     = 2 * HZ;
1476         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1477         net->features           = NETIF_F_HIGHDMA;
1478         net->addr_len           = FWNET_ALEN;
1479         net->hard_header_len    = FWNET_HLEN;
1480         net->type               = ARPHRD_IEEE1394;
1481         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1482         net->ethtool_ops        = &fwnet_ethtool_ops;
1483 }
1484
1485 /* caller must hold fwnet_device_mutex */
1486 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1487 {
1488         struct fwnet_device *dev;
1489
1490         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1491                 if (dev->card == card)
1492                         return dev;
1493
1494         return NULL;
1495 }
1496
1497 static int fwnet_add_peer(struct fwnet_device *dev,
1498                           struct fw_unit *unit, struct fw_device *device)
1499 {
1500         struct fwnet_peer *peer;
1501
1502         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1503         if (!peer)
1504                 return -ENOMEM;
1505
1506         dev_set_drvdata(&unit->device, peer);
1507
1508         peer->dev = dev;
1509         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1510         peer->fifo = FWNET_NO_FIFO_ADDR;
1511         peer->ip = 0;
1512         INIT_LIST_HEAD(&peer->pd_list);
1513         peer->pdg_size = 0;
1514         peer->datagram_label = 0;
1515         peer->speed = device->max_speed;
1516         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1517
1518         peer->generation = device->generation;
1519         smp_rmb();
1520         peer->node_id = device->node_id;
1521
1522         spin_lock_irq(&dev->lock);
1523         list_add_tail(&peer->peer_link, &dev->peer_list);
1524         dev->peer_count++;
1525         set_carrier_state(dev);
1526         spin_unlock_irq(&dev->lock);
1527
1528         return 0;
1529 }
1530
1531 static int fwnet_probe(struct device *_dev)
1532 {
1533         struct fw_unit *unit = fw_unit(_dev);
1534         struct fw_device *device = fw_parent_device(unit);
1535         struct fw_card *card = device->card;
1536         struct net_device *net;
1537         bool allocated_netdev = false;
1538         struct fwnet_device *dev;
1539         unsigned max_mtu;
1540         int ret;
1541
1542         mutex_lock(&fwnet_device_mutex);
1543
1544         dev = fwnet_dev_find(card);
1545         if (dev) {
1546                 net = dev->netdev;
1547                 goto have_dev;
1548         }
1549
1550         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1551         if (net == NULL) {
1552                 ret = -ENOMEM;
1553                 goto out;
1554         }
1555
1556         allocated_netdev = true;
1557         SET_NETDEV_DEV(net, card->device);
1558         dev = netdev_priv(net);
1559
1560         spin_lock_init(&dev->lock);
1561         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1562         dev->broadcast_rcv_context = NULL;
1563         dev->broadcast_xmt_max_payload = 0;
1564         dev->broadcast_xmt_datagramlabel = 0;
1565         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1566         dev->queued_datagrams = 0;
1567         INIT_LIST_HEAD(&dev->peer_list);
1568         dev->card = card;
1569         dev->netdev = net;
1570
1571         ret = fwnet_fifo_start(dev);
1572         if (ret < 0)
1573                 goto out;
1574         dev->local_fifo = dev->handler.offset;
1575
1576         /*
1577          * Use the RFC 2734 default 1500 octets or the maximum payload
1578          * as initial MTU
1579          */
1580         max_mtu = (1 << (card->max_receive + 1))
1581                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1582         net->mtu = min(1500U, max_mtu);
1583
1584         /* Set our hardware address while we're at it */
1585         put_unaligned_be64(card->guid, net->dev_addr);
1586         put_unaligned_be64(~0ULL, net->broadcast);
1587         ret = register_netdev(net);
1588         if (ret)
1589                 goto out;
1590
1591         list_add_tail(&dev->dev_link, &fwnet_device_list);
1592         dev_notice(&net->dev, "IPv4 over IEEE 1394 on card %s\n",
1593                    dev_name(card->device));
1594  have_dev:
1595         ret = fwnet_add_peer(dev, unit, device);
1596         if (ret && allocated_netdev) {
1597                 unregister_netdev(net);
1598                 list_del(&dev->dev_link);
1599  out:
1600                 fwnet_fifo_stop(dev);
1601                 free_netdev(net);
1602         }
1603
1604         mutex_unlock(&fwnet_device_mutex);
1605
1606         return ret;
1607 }
1608
1609 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1610 {
1611         struct fwnet_partial_datagram *pd, *pd_next;
1612
1613         spin_lock_irq(&dev->lock);
1614         list_del(&peer->peer_link);
1615         dev->peer_count--;
1616         set_carrier_state(dev);
1617         spin_unlock_irq(&dev->lock);
1618
1619         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1620                 fwnet_pd_delete(pd);
1621
1622         kfree(peer);
1623 }
1624
1625 static int fwnet_remove(struct device *_dev)
1626 {
1627         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1628         struct fwnet_device *dev = peer->dev;
1629         struct net_device *net;
1630         int i;
1631
1632         mutex_lock(&fwnet_device_mutex);
1633
1634         net = dev->netdev;
1635         if (net && peer->ip)
1636                 arp_invalidate(net, peer->ip);
1637
1638         fwnet_remove_peer(peer, dev);
1639
1640         if (list_empty(&dev->peer_list)) {
1641                 unregister_netdev(net);
1642
1643                 fwnet_fifo_stop(dev);
1644
1645                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1646                         ssleep(1);
1647                 WARN_ON(dev->queued_datagrams);
1648                 list_del(&dev->dev_link);
1649
1650                 free_netdev(net);
1651         }
1652
1653         mutex_unlock(&fwnet_device_mutex);
1654
1655         return 0;
1656 }
1657
1658 /*
1659  * FIXME abort partially sent fragmented datagrams,
1660  * discard partially received fragmented datagrams
1661  */
1662 static void fwnet_update(struct fw_unit *unit)
1663 {
1664         struct fw_device *device = fw_parent_device(unit);
1665         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1666         int generation;
1667
1668         generation = device->generation;
1669
1670         spin_lock_irq(&peer->dev->lock);
1671         peer->node_id    = device->node_id;
1672         peer->generation = generation;
1673         spin_unlock_irq(&peer->dev->lock);
1674 }
1675
1676 static const struct ieee1394_device_id fwnet_id_table[] = {
1677         {
1678                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1679                                 IEEE1394_MATCH_VERSION,
1680                 .specifier_id = IANA_SPECIFIER_ID,
1681                 .version      = RFC2734_SW_VERSION,
1682         },
1683         { }
1684 };
1685
1686 static struct fw_driver fwnet_driver = {
1687         .driver = {
1688                 .owner  = THIS_MODULE,
1689                 .name   = KBUILD_MODNAME,
1690                 .bus    = &fw_bus_type,
1691                 .probe  = fwnet_probe,
1692                 .remove = fwnet_remove,
1693         },
1694         .update   = fwnet_update,
1695         .id_table = fwnet_id_table,
1696 };
1697
1698 static const u32 rfc2374_unit_directory_data[] = {
1699         0x00040000,     /* directory_length             */
1700         0x1200005e,     /* unit_specifier_id: IANA      */
1701         0x81000003,     /* textual descriptor offset    */
1702         0x13000001,     /* unit_sw_version: RFC 2734    */
1703         0x81000005,     /* textual descriptor offset    */
1704         0x00030000,     /* descriptor_length            */
1705         0x00000000,     /* text                         */
1706         0x00000000,     /* minimal ASCII, en            */
1707         0x49414e41,     /* I A N A                      */
1708         0x00030000,     /* descriptor_length            */
1709         0x00000000,     /* text                         */
1710         0x00000000,     /* minimal ASCII, en            */
1711         0x49507634,     /* I P v 4                      */
1712 };
1713
1714 static struct fw_descriptor rfc2374_unit_directory = {
1715         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1716         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1717         .data   = rfc2374_unit_directory_data
1718 };
1719
1720 static int __init fwnet_init(void)
1721 {
1722         int err;
1723
1724         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1725         if (err)
1726                 return err;
1727
1728         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1729                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1730         if (!fwnet_packet_task_cache) {
1731                 err = -ENOMEM;
1732                 goto out;
1733         }
1734
1735         err = driver_register(&fwnet_driver.driver);
1736         if (!err)
1737                 return 0;
1738
1739         kmem_cache_destroy(fwnet_packet_task_cache);
1740 out:
1741         fw_core_remove_descriptor(&rfc2374_unit_directory);
1742
1743         return err;
1744 }
1745 module_init(fwnet_init);
1746
1747 static void __exit fwnet_cleanup(void)
1748 {
1749         driver_unregister(&fwnet_driver.driver);
1750         kmem_cache_destroy(fwnet_packet_task_cache);
1751         fw_core_remove_descriptor(&rfc2374_unit_directory);
1752 }
1753 module_exit(fwnet_cleanup);
1754
1755 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1756 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1757 MODULE_LICENSE("GPL");
1758 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);