drm/i915: apply timing generator bug workaround on CPT and PPT
[firefly-linux-kernel-4.4.55.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define DESCRIPTOR_OUTPUT_MORE          0
58 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
61 #define DESCRIPTOR_STATUS               (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
63 #define DESCRIPTOR_PING                 (1 << 7)
64 #define DESCRIPTOR_YY                   (1 << 6)
65 #define DESCRIPTOR_NO_IRQ               (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
69 #define DESCRIPTOR_WAIT                 (3 << 0)
70
71 struct descriptor {
72         __le16 req_count;
73         __le16 control;
74         __le32 data_address;
75         __le32 branch_address;
76         __le16 res_count;
77         __le16 transfer_status;
78 } __attribute__((aligned(16)));
79
80 #define CONTROL_SET(regs)       (regs)
81 #define CONTROL_CLEAR(regs)     ((regs) + 4)
82 #define COMMAND_PTR(regs)       ((regs) + 12)
83 #define CONTEXT_MATCH(regs)     ((regs) + 16)
84
85 #define AR_BUFFER_SIZE  (32*1024)
86 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90 #define MAX_ASYNC_PAYLOAD       4096
91 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94 struct ar_context {
95         struct fw_ohci *ohci;
96         struct page *pages[AR_BUFFERS];
97         void *buffer;
98         struct descriptor *descriptors;
99         dma_addr_t descriptors_bus;
100         void *pointer;
101         unsigned int last_buffer_index;
102         u32 regs;
103         struct tasklet_struct tasklet;
104 };
105
106 struct context;
107
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109                                      struct descriptor *d,
110                                      struct descriptor *last);
111
112 /*
113  * A buffer that contains a block of DMA-able coherent memory used for
114  * storing a portion of a DMA descriptor program.
115  */
116 struct descriptor_buffer {
117         struct list_head list;
118         dma_addr_t buffer_bus;
119         size_t buffer_size;
120         size_t used;
121         struct descriptor buffer[0];
122 };
123
124 struct context {
125         struct fw_ohci *ohci;
126         u32 regs;
127         int total_allocation;
128         bool running;
129         bool flushing;
130
131         /*
132          * List of page-sized buffers for storing DMA descriptors.
133          * Head of list contains buffers in use and tail of list contains
134          * free buffers.
135          */
136         struct list_head buffer_list;
137
138         /*
139          * Pointer to a buffer inside buffer_list that contains the tail
140          * end of the current DMA program.
141          */
142         struct descriptor_buffer *buffer_tail;
143
144         /*
145          * The descriptor containing the branch address of the first
146          * descriptor that has not yet been filled by the device.
147          */
148         struct descriptor *last;
149
150         /*
151          * The last descriptor in the DMA program.  It contains the branch
152          * address that must be updated upon appending a new descriptor.
153          */
154         struct descriptor *prev;
155
156         descriptor_callback_t callback;
157
158         struct tasklet_struct tasklet;
159 };
160
161 #define IT_HEADER_SY(v)          ((v) <<  0)
162 #define IT_HEADER_TCODE(v)       ((v) <<  4)
163 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
164 #define IT_HEADER_TAG(v)         ((v) << 14)
165 #define IT_HEADER_SPEED(v)       ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167
168 struct iso_context {
169         struct fw_iso_context base;
170         struct context context;
171         int excess_bytes;
172         void *header;
173         size_t header_length;
174
175         u8 sync;
176         u8 tags;
177 };
178
179 #define CONFIG_ROM_SIZE 1024
180
181 struct fw_ohci {
182         struct fw_card card;
183
184         __iomem char *registers;
185         int node_id;
186         int generation;
187         int request_generation; /* for timestamping incoming requests */
188         unsigned quirks;
189         unsigned int pri_req_max;
190         u32 bus_time;
191         bool is_root;
192         bool csr_state_setclear_abdicate;
193         int n_ir;
194         int n_it;
195         /*
196          * Spinlock for accessing fw_ohci data.  Never call out of
197          * this driver with this lock held.
198          */
199         spinlock_t lock;
200
201         struct mutex phy_reg_mutex;
202
203         void *misc_buffer;
204         dma_addr_t misc_buffer_bus;
205
206         struct ar_context ar_request_ctx;
207         struct ar_context ar_response_ctx;
208         struct context at_request_ctx;
209         struct context at_response_ctx;
210
211         u32 it_context_support;
212         u32 it_context_mask;     /* unoccupied IT contexts */
213         struct iso_context *it_context_list;
214         u64 ir_context_channels; /* unoccupied channels */
215         u32 ir_context_support;
216         u32 ir_context_mask;     /* unoccupied IR contexts */
217         struct iso_context *ir_context_list;
218         u64 mc_channels; /* channels in use by the multichannel IR context */
219         bool mc_allocated;
220
221         __be32    *config_rom;
222         dma_addr_t config_rom_bus;
223         __be32    *next_config_rom;
224         dma_addr_t next_config_rom_bus;
225         __be32     next_header;
226
227         __le32    *self_id_cpu;
228         dma_addr_t self_id_bus;
229         struct tasklet_struct bus_reset_tasklet;
230
231         u32 self_id_buffer[512];
232 };
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236         return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
240 #define IR_CONTEXT_BUFFER_FILL          0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
245
246 #define CONTEXT_RUN     0x8000
247 #define CONTEXT_WAKE    0x1000
248 #define CONTEXT_DEAD    0x0800
249 #define CONTEXT_ACTIVE  0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
254
255 #define OHCI1394_REGISTER_SIZE          0x800
256 #define OHCI_LOOP_COUNT                 500
257 #define OHCI1394_PCI_HCI_Control        0x40
258 #define SELF_ID_BUF_SIZE                0x800
259 #define OHCI_TCODE_PHY_PACKET           0x0e
260 #define OHCI_VERSION_1_1                0x010010
261
262 static char ohci_driver_name[] = KBUILD_MODNAME;
263
264 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
268 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
269
270 #define QUIRK_CYCLE_TIMER               1
271 #define QUIRK_RESET_PACKET              2
272 #define QUIRK_BE_HEADERS                4
273 #define QUIRK_NO_1394A                  8
274 #define QUIRK_NO_MSI                    16
275
276 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
277 static const struct {
278         unsigned short vendor, device, revision, flags;
279 } ohci_quirks[] = {
280         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
281                 QUIRK_CYCLE_TIMER},
282
283         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
284                 QUIRK_BE_HEADERS},
285
286         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
287                 QUIRK_NO_MSI},
288
289         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
290                 QUIRK_RESET_PACKET},
291
292         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
293                 QUIRK_NO_MSI},
294
295         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
296                 QUIRK_CYCLE_TIMER},
297
298         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
299                 QUIRK_NO_MSI},
300
301         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
302                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
303
304         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
305                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
306
307         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
308                 QUIRK_RESET_PACKET},
309
310         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
311                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
312 };
313
314 /* This overrides anything that was found in ohci_quirks[]. */
315 static int param_quirks;
316 module_param_named(quirks, param_quirks, int, 0644);
317 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
318         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
319         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
320         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
321         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
322         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
323         ")");
324
325 #define OHCI_PARAM_DEBUG_AT_AR          1
326 #define OHCI_PARAM_DEBUG_SELFIDS        2
327 #define OHCI_PARAM_DEBUG_IRQS           4
328 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
329
330 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
331
332 static int param_debug;
333 module_param_named(debug, param_debug, int, 0644);
334 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
335         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
336         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
337         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
338         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
339         ", or a combination, or all = -1)");
340
341 static void log_irqs(u32 evt)
342 {
343         if (likely(!(param_debug &
344                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
345                 return;
346
347         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
348             !(evt & OHCI1394_busReset))
349                 return;
350
351         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
352             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
353             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
354             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
355             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
356             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
357             evt & OHCI1394_isochRx              ? " IR"                 : "",
358             evt & OHCI1394_isochTx              ? " IT"                 : "",
359             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
360             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
361             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
362             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
363             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
364             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
365             evt & OHCI1394_busReset             ? " busReset"           : "",
366             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
367                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
368                     OHCI1394_respTxComplete | OHCI1394_isochRx |
369                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
370                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
371                     OHCI1394_cycleInconsistent |
372                     OHCI1394_regAccessFail | OHCI1394_busReset)
373                                                 ? " ?"                  : "");
374 }
375
376 static const char *speed[] = {
377         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
378 };
379 static const char *power[] = {
380         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
381         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
382 };
383 static const char port[] = { '.', '-', 'p', 'c', };
384
385 static char _p(u32 *s, int shift)
386 {
387         return port[*s >> shift & 3];
388 }
389
390 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
391 {
392         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
393                 return;
394
395         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
396                   self_id_count, generation, node_id);
397
398         for (; self_id_count--; ++s)
399                 if ((*s & 1 << 23) == 0)
400                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
401                             "%s gc=%d %s %s%s%s\n",
402                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
403                             speed[*s >> 14 & 3], *s >> 16 & 63,
404                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
405                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
406                 else
407                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
408                             *s, *s >> 24 & 63,
409                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
410                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
411 }
412
413 static const char *evts[] = {
414         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
415         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
416         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
417         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
418         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
419         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
420         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
421         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
422         [0x10] = "-reserved-",          [0x11] = "ack_complete",
423         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
424         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
425         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
426         [0x18] = "-reserved-",          [0x19] = "-reserved-",
427         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
428         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
429         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
430         [0x20] = "pending/cancelled",
431 };
432 static const char *tcodes[] = {
433         [0x0] = "QW req",               [0x1] = "BW req",
434         [0x2] = "W resp",               [0x3] = "-reserved-",
435         [0x4] = "QR req",               [0x5] = "BR req",
436         [0x6] = "QR resp",              [0x7] = "BR resp",
437         [0x8] = "cycle start",          [0x9] = "Lk req",
438         [0xa] = "async stream packet",  [0xb] = "Lk resp",
439         [0xc] = "-reserved-",           [0xd] = "-reserved-",
440         [0xe] = "link internal",        [0xf] = "-reserved-",
441 };
442
443 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
444 {
445         int tcode = header[0] >> 4 & 0xf;
446         char specific[12];
447
448         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
449                 return;
450
451         if (unlikely(evt >= ARRAY_SIZE(evts)))
452                         evt = 0x1f;
453
454         if (evt == OHCI1394_evt_bus_reset) {
455                 fw_notify("A%c evt_bus_reset, generation %d\n",
456                     dir, (header[2] >> 16) & 0xff);
457                 return;
458         }
459
460         switch (tcode) {
461         case 0x0: case 0x6: case 0x8:
462                 snprintf(specific, sizeof(specific), " = %08x",
463                          be32_to_cpu((__force __be32)header[3]));
464                 break;
465         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
466                 snprintf(specific, sizeof(specific), " %x,%x",
467                          header[3] >> 16, header[3] & 0xffff);
468                 break;
469         default:
470                 specific[0] = '\0';
471         }
472
473         switch (tcode) {
474         case 0xa:
475                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
476                 break;
477         case 0xe:
478                 fw_notify("A%c %s, PHY %08x %08x\n",
479                           dir, evts[evt], header[1], header[2]);
480                 break;
481         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
482                 fw_notify("A%c spd %x tl %02x, "
483                     "%04x -> %04x, %s, "
484                     "%s, %04x%08x%s\n",
485                     dir, speed, header[0] >> 10 & 0x3f,
486                     header[1] >> 16, header[0] >> 16, evts[evt],
487                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
488                 break;
489         default:
490                 fw_notify("A%c spd %x tl %02x, "
491                     "%04x -> %04x, %s, "
492                     "%s%s\n",
493                     dir, speed, header[0] >> 10 & 0x3f,
494                     header[1] >> 16, header[0] >> 16, evts[evt],
495                     tcodes[tcode], specific);
496         }
497 }
498
499 #else
500
501 #define param_debug 0
502 static inline void log_irqs(u32 evt) {}
503 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
504 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
505
506 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
507
508 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
509 {
510         writel(data, ohci->registers + offset);
511 }
512
513 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
514 {
515         return readl(ohci->registers + offset);
516 }
517
518 static inline void flush_writes(const struct fw_ohci *ohci)
519 {
520         /* Do a dummy read to flush writes. */
521         reg_read(ohci, OHCI1394_Version);
522 }
523
524 static int read_phy_reg(struct fw_ohci *ohci, int addr)
525 {
526         u32 val;
527         int i;
528
529         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
530         for (i = 0; i < 3 + 100; i++) {
531                 val = reg_read(ohci, OHCI1394_PhyControl);
532                 if (val & OHCI1394_PhyControl_ReadDone)
533                         return OHCI1394_PhyControl_ReadData(val);
534
535                 /*
536                  * Try a few times without waiting.  Sleeping is necessary
537                  * only when the link/PHY interface is busy.
538                  */
539                 if (i >= 3)
540                         msleep(1);
541         }
542         fw_error("failed to read phy reg\n");
543
544         return -EBUSY;
545 }
546
547 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
548 {
549         int i;
550
551         reg_write(ohci, OHCI1394_PhyControl,
552                   OHCI1394_PhyControl_Write(addr, val));
553         for (i = 0; i < 3 + 100; i++) {
554                 val = reg_read(ohci, OHCI1394_PhyControl);
555                 if (!(val & OHCI1394_PhyControl_WritePending))
556                         return 0;
557
558                 if (i >= 3)
559                         msleep(1);
560         }
561         fw_error("failed to write phy reg\n");
562
563         return -EBUSY;
564 }
565
566 static int update_phy_reg(struct fw_ohci *ohci, int addr,
567                           int clear_bits, int set_bits)
568 {
569         int ret = read_phy_reg(ohci, addr);
570         if (ret < 0)
571                 return ret;
572
573         /*
574          * The interrupt status bits are cleared by writing a one bit.
575          * Avoid clearing them unless explicitly requested in set_bits.
576          */
577         if (addr == 5)
578                 clear_bits |= PHY_INT_STATUS_BITS;
579
580         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
581 }
582
583 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
584 {
585         int ret;
586
587         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
588         if (ret < 0)
589                 return ret;
590
591         return read_phy_reg(ohci, addr);
592 }
593
594 static int ohci_read_phy_reg(struct fw_card *card, int addr)
595 {
596         struct fw_ohci *ohci = fw_ohci(card);
597         int ret;
598
599         mutex_lock(&ohci->phy_reg_mutex);
600         ret = read_phy_reg(ohci, addr);
601         mutex_unlock(&ohci->phy_reg_mutex);
602
603         return ret;
604 }
605
606 static int ohci_update_phy_reg(struct fw_card *card, int addr,
607                                int clear_bits, int set_bits)
608 {
609         struct fw_ohci *ohci = fw_ohci(card);
610         int ret;
611
612         mutex_lock(&ohci->phy_reg_mutex);
613         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
614         mutex_unlock(&ohci->phy_reg_mutex);
615
616         return ret;
617 }
618
619 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
620 {
621         return page_private(ctx->pages[i]);
622 }
623
624 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
625 {
626         struct descriptor *d;
627
628         d = &ctx->descriptors[index];
629         d->branch_address  &= cpu_to_le32(~0xf);
630         d->res_count       =  cpu_to_le16(PAGE_SIZE);
631         d->transfer_status =  0;
632
633         wmb(); /* finish init of new descriptors before branch_address update */
634         d = &ctx->descriptors[ctx->last_buffer_index];
635         d->branch_address  |= cpu_to_le32(1);
636
637         ctx->last_buffer_index = index;
638
639         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
640         flush_writes(ctx->ohci);
641 }
642
643 static void ar_context_release(struct ar_context *ctx)
644 {
645         unsigned int i;
646
647         if (ctx->buffer)
648                 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
649
650         for (i = 0; i < AR_BUFFERS; i++)
651                 if (ctx->pages[i]) {
652                         dma_unmap_page(ctx->ohci->card.device,
653                                        ar_buffer_bus(ctx, i),
654                                        PAGE_SIZE, DMA_FROM_DEVICE);
655                         __free_page(ctx->pages[i]);
656                 }
657 }
658
659 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
660 {
661         if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
662                 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
663                 flush_writes(ctx->ohci);
664
665                 fw_error("AR error: %s; DMA stopped\n", error_msg);
666         }
667         /* FIXME: restart? */
668 }
669
670 static inline unsigned int ar_next_buffer_index(unsigned int index)
671 {
672         return (index + 1) % AR_BUFFERS;
673 }
674
675 static inline unsigned int ar_prev_buffer_index(unsigned int index)
676 {
677         return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
678 }
679
680 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
681 {
682         return ar_next_buffer_index(ctx->last_buffer_index);
683 }
684
685 /*
686  * We search for the buffer that contains the last AR packet DMA data written
687  * by the controller.
688  */
689 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
690                                                  unsigned int *buffer_offset)
691 {
692         unsigned int i, next_i, last = ctx->last_buffer_index;
693         __le16 res_count, next_res_count;
694
695         i = ar_first_buffer_index(ctx);
696         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
697
698         /* A buffer that is not yet completely filled must be the last one. */
699         while (i != last && res_count == 0) {
700
701                 /* Peek at the next descriptor. */
702                 next_i = ar_next_buffer_index(i);
703                 rmb(); /* read descriptors in order */
704                 next_res_count = ACCESS_ONCE(
705                                 ctx->descriptors[next_i].res_count);
706                 /*
707                  * If the next descriptor is still empty, we must stop at this
708                  * descriptor.
709                  */
710                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
711                         /*
712                          * The exception is when the DMA data for one packet is
713                          * split over three buffers; in this case, the middle
714                          * buffer's descriptor might be never updated by the
715                          * controller and look still empty, and we have to peek
716                          * at the third one.
717                          */
718                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
719                                 next_i = ar_next_buffer_index(next_i);
720                                 rmb();
721                                 next_res_count = ACCESS_ONCE(
722                                         ctx->descriptors[next_i].res_count);
723                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
724                                         goto next_buffer_is_active;
725                         }
726
727                         break;
728                 }
729
730 next_buffer_is_active:
731                 i = next_i;
732                 res_count = next_res_count;
733         }
734
735         rmb(); /* read res_count before the DMA data */
736
737         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
738         if (*buffer_offset > PAGE_SIZE) {
739                 *buffer_offset = 0;
740                 ar_context_abort(ctx, "corrupted descriptor");
741         }
742
743         return i;
744 }
745
746 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
747                                     unsigned int end_buffer_index,
748                                     unsigned int end_buffer_offset)
749 {
750         unsigned int i;
751
752         i = ar_first_buffer_index(ctx);
753         while (i != end_buffer_index) {
754                 dma_sync_single_for_cpu(ctx->ohci->card.device,
755                                         ar_buffer_bus(ctx, i),
756                                         PAGE_SIZE, DMA_FROM_DEVICE);
757                 i = ar_next_buffer_index(i);
758         }
759         if (end_buffer_offset > 0)
760                 dma_sync_single_for_cpu(ctx->ohci->card.device,
761                                         ar_buffer_bus(ctx, i),
762                                         end_buffer_offset, DMA_FROM_DEVICE);
763 }
764
765 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
766 #define cond_le32_to_cpu(v) \
767         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
768 #else
769 #define cond_le32_to_cpu(v) le32_to_cpu(v)
770 #endif
771
772 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
773 {
774         struct fw_ohci *ohci = ctx->ohci;
775         struct fw_packet p;
776         u32 status, length, tcode;
777         int evt;
778
779         p.header[0] = cond_le32_to_cpu(buffer[0]);
780         p.header[1] = cond_le32_to_cpu(buffer[1]);
781         p.header[2] = cond_le32_to_cpu(buffer[2]);
782
783         tcode = (p.header[0] >> 4) & 0x0f;
784         switch (tcode) {
785         case TCODE_WRITE_QUADLET_REQUEST:
786         case TCODE_READ_QUADLET_RESPONSE:
787                 p.header[3] = (__force __u32) buffer[3];
788                 p.header_length = 16;
789                 p.payload_length = 0;
790                 break;
791
792         case TCODE_READ_BLOCK_REQUEST :
793                 p.header[3] = cond_le32_to_cpu(buffer[3]);
794                 p.header_length = 16;
795                 p.payload_length = 0;
796                 break;
797
798         case TCODE_WRITE_BLOCK_REQUEST:
799         case TCODE_READ_BLOCK_RESPONSE:
800         case TCODE_LOCK_REQUEST:
801         case TCODE_LOCK_RESPONSE:
802                 p.header[3] = cond_le32_to_cpu(buffer[3]);
803                 p.header_length = 16;
804                 p.payload_length = p.header[3] >> 16;
805                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
806                         ar_context_abort(ctx, "invalid packet length");
807                         return NULL;
808                 }
809                 break;
810
811         case TCODE_WRITE_RESPONSE:
812         case TCODE_READ_QUADLET_REQUEST:
813         case OHCI_TCODE_PHY_PACKET:
814                 p.header_length = 12;
815                 p.payload_length = 0;
816                 break;
817
818         default:
819                 ar_context_abort(ctx, "invalid tcode");
820                 return NULL;
821         }
822
823         p.payload = (void *) buffer + p.header_length;
824
825         /* FIXME: What to do about evt_* errors? */
826         length = (p.header_length + p.payload_length + 3) / 4;
827         status = cond_le32_to_cpu(buffer[length]);
828         evt    = (status >> 16) & 0x1f;
829
830         p.ack        = evt - 16;
831         p.speed      = (status >> 21) & 0x7;
832         p.timestamp  = status & 0xffff;
833         p.generation = ohci->request_generation;
834
835         log_ar_at_event('R', p.speed, p.header, evt);
836
837         /*
838          * Several controllers, notably from NEC and VIA, forget to
839          * write ack_complete status at PHY packet reception.
840          */
841         if (evt == OHCI1394_evt_no_status &&
842             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
843                 p.ack = ACK_COMPLETE;
844
845         /*
846          * The OHCI bus reset handler synthesizes a PHY packet with
847          * the new generation number when a bus reset happens (see
848          * section 8.4.2.3).  This helps us determine when a request
849          * was received and make sure we send the response in the same
850          * generation.  We only need this for requests; for responses
851          * we use the unique tlabel for finding the matching
852          * request.
853          *
854          * Alas some chips sometimes emit bus reset packets with a
855          * wrong generation.  We set the correct generation for these
856          * at a slightly incorrect time (in bus_reset_tasklet).
857          */
858         if (evt == OHCI1394_evt_bus_reset) {
859                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
860                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
861         } else if (ctx == &ohci->ar_request_ctx) {
862                 fw_core_handle_request(&ohci->card, &p);
863         } else {
864                 fw_core_handle_response(&ohci->card, &p);
865         }
866
867         return buffer + length + 1;
868 }
869
870 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
871 {
872         void *next;
873
874         while (p < end) {
875                 next = handle_ar_packet(ctx, p);
876                 if (!next)
877                         return p;
878                 p = next;
879         }
880
881         return p;
882 }
883
884 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
885 {
886         unsigned int i;
887
888         i = ar_first_buffer_index(ctx);
889         while (i != end_buffer) {
890                 dma_sync_single_for_device(ctx->ohci->card.device,
891                                            ar_buffer_bus(ctx, i),
892                                            PAGE_SIZE, DMA_FROM_DEVICE);
893                 ar_context_link_page(ctx, i);
894                 i = ar_next_buffer_index(i);
895         }
896 }
897
898 static void ar_context_tasklet(unsigned long data)
899 {
900         struct ar_context *ctx = (struct ar_context *)data;
901         unsigned int end_buffer_index, end_buffer_offset;
902         void *p, *end;
903
904         p = ctx->pointer;
905         if (!p)
906                 return;
907
908         end_buffer_index = ar_search_last_active_buffer(ctx,
909                                                         &end_buffer_offset);
910         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
911         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
912
913         if (end_buffer_index < ar_first_buffer_index(ctx)) {
914                 /*
915                  * The filled part of the overall buffer wraps around; handle
916                  * all packets up to the buffer end here.  If the last packet
917                  * wraps around, its tail will be visible after the buffer end
918                  * because the buffer start pages are mapped there again.
919                  */
920                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
921                 p = handle_ar_packets(ctx, p, buffer_end);
922                 if (p < buffer_end)
923                         goto error;
924                 /* adjust p to point back into the actual buffer */
925                 p -= AR_BUFFERS * PAGE_SIZE;
926         }
927
928         p = handle_ar_packets(ctx, p, end);
929         if (p != end) {
930                 if (p > end)
931                         ar_context_abort(ctx, "inconsistent descriptor");
932                 goto error;
933         }
934
935         ctx->pointer = p;
936         ar_recycle_buffers(ctx, end_buffer_index);
937
938         return;
939
940 error:
941         ctx->pointer = NULL;
942 }
943
944 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
945                            unsigned int descriptors_offset, u32 regs)
946 {
947         unsigned int i;
948         dma_addr_t dma_addr;
949         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
950         struct descriptor *d;
951
952         ctx->regs        = regs;
953         ctx->ohci        = ohci;
954         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
955
956         for (i = 0; i < AR_BUFFERS; i++) {
957                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
958                 if (!ctx->pages[i])
959                         goto out_of_memory;
960                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
961                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
962                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
963                         __free_page(ctx->pages[i]);
964                         ctx->pages[i] = NULL;
965                         goto out_of_memory;
966                 }
967                 set_page_private(ctx->pages[i], dma_addr);
968         }
969
970         for (i = 0; i < AR_BUFFERS; i++)
971                 pages[i]              = ctx->pages[i];
972         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
973                 pages[AR_BUFFERS + i] = ctx->pages[i];
974         ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
975                                  -1, PAGE_KERNEL);
976         if (!ctx->buffer)
977                 goto out_of_memory;
978
979         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
980         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
981
982         for (i = 0; i < AR_BUFFERS; i++) {
983                 d = &ctx->descriptors[i];
984                 d->req_count      = cpu_to_le16(PAGE_SIZE);
985                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
986                                                 DESCRIPTOR_STATUS |
987                                                 DESCRIPTOR_BRANCH_ALWAYS);
988                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
989                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
990                         ar_next_buffer_index(i) * sizeof(struct descriptor));
991         }
992
993         return 0;
994
995 out_of_memory:
996         ar_context_release(ctx);
997
998         return -ENOMEM;
999 }
1000
1001 static void ar_context_run(struct ar_context *ctx)
1002 {
1003         unsigned int i;
1004
1005         for (i = 0; i < AR_BUFFERS; i++)
1006                 ar_context_link_page(ctx, i);
1007
1008         ctx->pointer = ctx->buffer;
1009
1010         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1011         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1012         flush_writes(ctx->ohci);
1013 }
1014
1015 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1016 {
1017         __le16 branch;
1018
1019         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1020
1021         /* figure out which descriptor the branch address goes in */
1022         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1023                 return d;
1024         else
1025                 return d + z - 1;
1026 }
1027
1028 static void context_tasklet(unsigned long data)
1029 {
1030         struct context *ctx = (struct context *) data;
1031         struct descriptor *d, *last;
1032         u32 address;
1033         int z;
1034         struct descriptor_buffer *desc;
1035
1036         desc = list_entry(ctx->buffer_list.next,
1037                         struct descriptor_buffer, list);
1038         last = ctx->last;
1039         while (last->branch_address != 0) {
1040                 struct descriptor_buffer *old_desc = desc;
1041                 address = le32_to_cpu(last->branch_address);
1042                 z = address & 0xf;
1043                 address &= ~0xf;
1044
1045                 /* If the branch address points to a buffer outside of the
1046                  * current buffer, advance to the next buffer. */
1047                 if (address < desc->buffer_bus ||
1048                                 address >= desc->buffer_bus + desc->used)
1049                         desc = list_entry(desc->list.next,
1050                                         struct descriptor_buffer, list);
1051                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1052                 last = find_branch_descriptor(d, z);
1053
1054                 if (!ctx->callback(ctx, d, last))
1055                         break;
1056
1057                 if (old_desc != desc) {
1058                         /* If we've advanced to the next buffer, move the
1059                          * previous buffer to the free list. */
1060                         unsigned long flags;
1061                         old_desc->used = 0;
1062                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1063                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1064                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1065                 }
1066                 ctx->last = last;
1067         }
1068 }
1069
1070 /*
1071  * Allocate a new buffer and add it to the list of free buffers for this
1072  * context.  Must be called with ohci->lock held.
1073  */
1074 static int context_add_buffer(struct context *ctx)
1075 {
1076         struct descriptor_buffer *desc;
1077         dma_addr_t uninitialized_var(bus_addr);
1078         int offset;
1079
1080         /*
1081          * 16MB of descriptors should be far more than enough for any DMA
1082          * program.  This will catch run-away userspace or DoS attacks.
1083          */
1084         if (ctx->total_allocation >= 16*1024*1024)
1085                 return -ENOMEM;
1086
1087         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1088                         &bus_addr, GFP_ATOMIC);
1089         if (!desc)
1090                 return -ENOMEM;
1091
1092         offset = (void *)&desc->buffer - (void *)desc;
1093         desc->buffer_size = PAGE_SIZE - offset;
1094         desc->buffer_bus = bus_addr + offset;
1095         desc->used = 0;
1096
1097         list_add_tail(&desc->list, &ctx->buffer_list);
1098         ctx->total_allocation += PAGE_SIZE;
1099
1100         return 0;
1101 }
1102
1103 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1104                         u32 regs, descriptor_callback_t callback)
1105 {
1106         ctx->ohci = ohci;
1107         ctx->regs = regs;
1108         ctx->total_allocation = 0;
1109
1110         INIT_LIST_HEAD(&ctx->buffer_list);
1111         if (context_add_buffer(ctx) < 0)
1112                 return -ENOMEM;
1113
1114         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1115                         struct descriptor_buffer, list);
1116
1117         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1118         ctx->callback = callback;
1119
1120         /*
1121          * We put a dummy descriptor in the buffer that has a NULL
1122          * branch address and looks like it's been sent.  That way we
1123          * have a descriptor to append DMA programs to.
1124          */
1125         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1126         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1127         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1128         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1129         ctx->last = ctx->buffer_tail->buffer;
1130         ctx->prev = ctx->buffer_tail->buffer;
1131
1132         return 0;
1133 }
1134
1135 static void context_release(struct context *ctx)
1136 {
1137         struct fw_card *card = &ctx->ohci->card;
1138         struct descriptor_buffer *desc, *tmp;
1139
1140         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1141                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1142                         desc->buffer_bus -
1143                         ((void *)&desc->buffer - (void *)desc));
1144 }
1145
1146 /* Must be called with ohci->lock held */
1147 static struct descriptor *context_get_descriptors(struct context *ctx,
1148                                                   int z, dma_addr_t *d_bus)
1149 {
1150         struct descriptor *d = NULL;
1151         struct descriptor_buffer *desc = ctx->buffer_tail;
1152
1153         if (z * sizeof(*d) > desc->buffer_size)
1154                 return NULL;
1155
1156         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1157                 /* No room for the descriptor in this buffer, so advance to the
1158                  * next one. */
1159
1160                 if (desc->list.next == &ctx->buffer_list) {
1161                         /* If there is no free buffer next in the list,
1162                          * allocate one. */
1163                         if (context_add_buffer(ctx) < 0)
1164                                 return NULL;
1165                 }
1166                 desc = list_entry(desc->list.next,
1167                                 struct descriptor_buffer, list);
1168                 ctx->buffer_tail = desc;
1169         }
1170
1171         d = desc->buffer + desc->used / sizeof(*d);
1172         memset(d, 0, z * sizeof(*d));
1173         *d_bus = desc->buffer_bus + desc->used;
1174
1175         return d;
1176 }
1177
1178 static void context_run(struct context *ctx, u32 extra)
1179 {
1180         struct fw_ohci *ohci = ctx->ohci;
1181
1182         reg_write(ohci, COMMAND_PTR(ctx->regs),
1183                   le32_to_cpu(ctx->last->branch_address));
1184         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1185         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1186         ctx->running = true;
1187         flush_writes(ohci);
1188 }
1189
1190 static void context_append(struct context *ctx,
1191                            struct descriptor *d, int z, int extra)
1192 {
1193         dma_addr_t d_bus;
1194         struct descriptor_buffer *desc = ctx->buffer_tail;
1195
1196         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1197
1198         desc->used += (z + extra) * sizeof(*d);
1199
1200         wmb(); /* finish init of new descriptors before branch_address update */
1201         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1202         ctx->prev = find_branch_descriptor(d, z);
1203 }
1204
1205 static void context_stop(struct context *ctx)
1206 {
1207         u32 reg;
1208         int i;
1209
1210         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1211         ctx->running = false;
1212         flush_writes(ctx->ohci);
1213
1214         for (i = 0; i < 10; i++) {
1215                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1216                 if ((reg & CONTEXT_ACTIVE) == 0)
1217                         return;
1218
1219                 mdelay(1);
1220         }
1221         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1222 }
1223
1224 struct driver_data {
1225         u8 inline_data[8];
1226         struct fw_packet *packet;
1227 };
1228
1229 /*
1230  * This function apppends a packet to the DMA queue for transmission.
1231  * Must always be called with the ochi->lock held to ensure proper
1232  * generation handling and locking around packet queue manipulation.
1233  */
1234 static int at_context_queue_packet(struct context *ctx,
1235                                    struct fw_packet *packet)
1236 {
1237         struct fw_ohci *ohci = ctx->ohci;
1238         dma_addr_t d_bus, uninitialized_var(payload_bus);
1239         struct driver_data *driver_data;
1240         struct descriptor *d, *last;
1241         __le32 *header;
1242         int z, tcode;
1243
1244         d = context_get_descriptors(ctx, 4, &d_bus);
1245         if (d == NULL) {
1246                 packet->ack = RCODE_SEND_ERROR;
1247                 return -1;
1248         }
1249
1250         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1251         d[0].res_count = cpu_to_le16(packet->timestamp);
1252
1253         /*
1254          * The DMA format for asyncronous link packets is different
1255          * from the IEEE1394 layout, so shift the fields around
1256          * accordingly.
1257          */
1258
1259         tcode = (packet->header[0] >> 4) & 0x0f;
1260         header = (__le32 *) &d[1];
1261         switch (tcode) {
1262         case TCODE_WRITE_QUADLET_REQUEST:
1263         case TCODE_WRITE_BLOCK_REQUEST:
1264         case TCODE_WRITE_RESPONSE:
1265         case TCODE_READ_QUADLET_REQUEST:
1266         case TCODE_READ_BLOCK_REQUEST:
1267         case TCODE_READ_QUADLET_RESPONSE:
1268         case TCODE_READ_BLOCK_RESPONSE:
1269         case TCODE_LOCK_REQUEST:
1270         case TCODE_LOCK_RESPONSE:
1271                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1272                                         (packet->speed << 16));
1273                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1274                                         (packet->header[0] & 0xffff0000));
1275                 header[2] = cpu_to_le32(packet->header[2]);
1276
1277                 if (TCODE_IS_BLOCK_PACKET(tcode))
1278                         header[3] = cpu_to_le32(packet->header[3]);
1279                 else
1280                         header[3] = (__force __le32) packet->header[3];
1281
1282                 d[0].req_count = cpu_to_le16(packet->header_length);
1283                 break;
1284
1285         case TCODE_LINK_INTERNAL:
1286                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1287                                         (packet->speed << 16));
1288                 header[1] = cpu_to_le32(packet->header[1]);
1289                 header[2] = cpu_to_le32(packet->header[2]);
1290                 d[0].req_count = cpu_to_le16(12);
1291
1292                 if (is_ping_packet(&packet->header[1]))
1293                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1294                 break;
1295
1296         case TCODE_STREAM_DATA:
1297                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1298                                         (packet->speed << 16));
1299                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1300                 d[0].req_count = cpu_to_le16(8);
1301                 break;
1302
1303         default:
1304                 /* BUG(); */
1305                 packet->ack = RCODE_SEND_ERROR;
1306                 return -1;
1307         }
1308
1309         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1310         driver_data = (struct driver_data *) &d[3];
1311         driver_data->packet = packet;
1312         packet->driver_data = driver_data;
1313
1314         if (packet->payload_length > 0) {
1315                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1316                         payload_bus = dma_map_single(ohci->card.device,
1317                                                      packet->payload,
1318                                                      packet->payload_length,
1319                                                      DMA_TO_DEVICE);
1320                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1321                                 packet->ack = RCODE_SEND_ERROR;
1322                                 return -1;
1323                         }
1324                         packet->payload_bus     = payload_bus;
1325                         packet->payload_mapped  = true;
1326                 } else {
1327                         memcpy(driver_data->inline_data, packet->payload,
1328                                packet->payload_length);
1329                         payload_bus = d_bus + 3 * sizeof(*d);
1330                 }
1331
1332                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1333                 d[2].data_address = cpu_to_le32(payload_bus);
1334                 last = &d[2];
1335                 z = 3;
1336         } else {
1337                 last = &d[0];
1338                 z = 2;
1339         }
1340
1341         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1342                                      DESCRIPTOR_IRQ_ALWAYS |
1343                                      DESCRIPTOR_BRANCH_ALWAYS);
1344
1345         /* FIXME: Document how the locking works. */
1346         if (ohci->generation != packet->generation) {
1347                 if (packet->payload_mapped)
1348                         dma_unmap_single(ohci->card.device, payload_bus,
1349                                          packet->payload_length, DMA_TO_DEVICE);
1350                 packet->ack = RCODE_GENERATION;
1351                 return -1;
1352         }
1353
1354         context_append(ctx, d, z, 4 - z);
1355
1356         if (ctx->running) {
1357                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1358                 flush_writes(ohci);
1359         } else {
1360                 context_run(ctx, 0);
1361         }
1362
1363         return 0;
1364 }
1365
1366 static void at_context_flush(struct context *ctx)
1367 {
1368         tasklet_disable(&ctx->tasklet);
1369
1370         ctx->flushing = true;
1371         context_tasklet((unsigned long)ctx);
1372         ctx->flushing = false;
1373
1374         tasklet_enable(&ctx->tasklet);
1375 }
1376
1377 static int handle_at_packet(struct context *context,
1378                             struct descriptor *d,
1379                             struct descriptor *last)
1380 {
1381         struct driver_data *driver_data;
1382         struct fw_packet *packet;
1383         struct fw_ohci *ohci = context->ohci;
1384         int evt;
1385
1386         if (last->transfer_status == 0 && !context->flushing)
1387                 /* This descriptor isn't done yet, stop iteration. */
1388                 return 0;
1389
1390         driver_data = (struct driver_data *) &d[3];
1391         packet = driver_data->packet;
1392         if (packet == NULL)
1393                 /* This packet was cancelled, just continue. */
1394                 return 1;
1395
1396         if (packet->payload_mapped)
1397                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1398                                  packet->payload_length, DMA_TO_DEVICE);
1399
1400         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1401         packet->timestamp = le16_to_cpu(last->res_count);
1402
1403         log_ar_at_event('T', packet->speed, packet->header, evt);
1404
1405         switch (evt) {
1406         case OHCI1394_evt_timeout:
1407                 /* Async response transmit timed out. */
1408                 packet->ack = RCODE_CANCELLED;
1409                 break;
1410
1411         case OHCI1394_evt_flushed:
1412                 /*
1413                  * The packet was flushed should give same error as
1414                  * when we try to use a stale generation count.
1415                  */
1416                 packet->ack = RCODE_GENERATION;
1417                 break;
1418
1419         case OHCI1394_evt_missing_ack:
1420                 if (context->flushing)
1421                         packet->ack = RCODE_GENERATION;
1422                 else {
1423                         /*
1424                          * Using a valid (current) generation count, but the
1425                          * node is not on the bus or not sending acks.
1426                          */
1427                         packet->ack = RCODE_NO_ACK;
1428                 }
1429                 break;
1430
1431         case ACK_COMPLETE + 0x10:
1432         case ACK_PENDING + 0x10:
1433         case ACK_BUSY_X + 0x10:
1434         case ACK_BUSY_A + 0x10:
1435         case ACK_BUSY_B + 0x10:
1436         case ACK_DATA_ERROR + 0x10:
1437         case ACK_TYPE_ERROR + 0x10:
1438                 packet->ack = evt - 0x10;
1439                 break;
1440
1441         case OHCI1394_evt_no_status:
1442                 if (context->flushing) {
1443                         packet->ack = RCODE_GENERATION;
1444                         break;
1445                 }
1446                 /* fall through */
1447
1448         default:
1449                 packet->ack = RCODE_SEND_ERROR;
1450                 break;
1451         }
1452
1453         packet->callback(packet, &ohci->card, packet->ack);
1454
1455         return 1;
1456 }
1457
1458 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1459 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1460 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1461 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1462 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1463
1464 static void handle_local_rom(struct fw_ohci *ohci,
1465                              struct fw_packet *packet, u32 csr)
1466 {
1467         struct fw_packet response;
1468         int tcode, length, i;
1469
1470         tcode = HEADER_GET_TCODE(packet->header[0]);
1471         if (TCODE_IS_BLOCK_PACKET(tcode))
1472                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1473         else
1474                 length = 4;
1475
1476         i = csr - CSR_CONFIG_ROM;
1477         if (i + length > CONFIG_ROM_SIZE) {
1478                 fw_fill_response(&response, packet->header,
1479                                  RCODE_ADDRESS_ERROR, NULL, 0);
1480         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1481                 fw_fill_response(&response, packet->header,
1482                                  RCODE_TYPE_ERROR, NULL, 0);
1483         } else {
1484                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1485                                  (void *) ohci->config_rom + i, length);
1486         }
1487
1488         fw_core_handle_response(&ohci->card, &response);
1489 }
1490
1491 static void handle_local_lock(struct fw_ohci *ohci,
1492                               struct fw_packet *packet, u32 csr)
1493 {
1494         struct fw_packet response;
1495         int tcode, length, ext_tcode, sel, try;
1496         __be32 *payload, lock_old;
1497         u32 lock_arg, lock_data;
1498
1499         tcode = HEADER_GET_TCODE(packet->header[0]);
1500         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1501         payload = packet->payload;
1502         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1503
1504         if (tcode == TCODE_LOCK_REQUEST &&
1505             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1506                 lock_arg = be32_to_cpu(payload[0]);
1507                 lock_data = be32_to_cpu(payload[1]);
1508         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1509                 lock_arg = 0;
1510                 lock_data = 0;
1511         } else {
1512                 fw_fill_response(&response, packet->header,
1513                                  RCODE_TYPE_ERROR, NULL, 0);
1514                 goto out;
1515         }
1516
1517         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1518         reg_write(ohci, OHCI1394_CSRData, lock_data);
1519         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1520         reg_write(ohci, OHCI1394_CSRControl, sel);
1521
1522         for (try = 0; try < 20; try++)
1523                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1524                         lock_old = cpu_to_be32(reg_read(ohci,
1525                                                         OHCI1394_CSRData));
1526                         fw_fill_response(&response, packet->header,
1527                                          RCODE_COMPLETE,
1528                                          &lock_old, sizeof(lock_old));
1529                         goto out;
1530                 }
1531
1532         fw_error("swap not done (CSR lock timeout)\n");
1533         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1534
1535  out:
1536         fw_core_handle_response(&ohci->card, &response);
1537 }
1538
1539 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1540 {
1541         u64 offset, csr;
1542
1543         if (ctx == &ctx->ohci->at_request_ctx) {
1544                 packet->ack = ACK_PENDING;
1545                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1546         }
1547
1548         offset =
1549                 ((unsigned long long)
1550                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1551                 packet->header[2];
1552         csr = offset - CSR_REGISTER_BASE;
1553
1554         /* Handle config rom reads. */
1555         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1556                 handle_local_rom(ctx->ohci, packet, csr);
1557         else switch (csr) {
1558         case CSR_BUS_MANAGER_ID:
1559         case CSR_BANDWIDTH_AVAILABLE:
1560         case CSR_CHANNELS_AVAILABLE_HI:
1561         case CSR_CHANNELS_AVAILABLE_LO:
1562                 handle_local_lock(ctx->ohci, packet, csr);
1563                 break;
1564         default:
1565                 if (ctx == &ctx->ohci->at_request_ctx)
1566                         fw_core_handle_request(&ctx->ohci->card, packet);
1567                 else
1568                         fw_core_handle_response(&ctx->ohci->card, packet);
1569                 break;
1570         }
1571
1572         if (ctx == &ctx->ohci->at_response_ctx) {
1573                 packet->ack = ACK_COMPLETE;
1574                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1575         }
1576 }
1577
1578 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1579 {
1580         unsigned long flags;
1581         int ret;
1582
1583         spin_lock_irqsave(&ctx->ohci->lock, flags);
1584
1585         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1586             ctx->ohci->generation == packet->generation) {
1587                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1588                 handle_local_request(ctx, packet);
1589                 return;
1590         }
1591
1592         ret = at_context_queue_packet(ctx, packet);
1593         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1594
1595         if (ret < 0)
1596                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1597
1598 }
1599
1600 static void detect_dead_context(struct fw_ohci *ohci,
1601                                 const char *name, unsigned int regs)
1602 {
1603         u32 ctl;
1604
1605         ctl = reg_read(ohci, CONTROL_SET(regs));
1606         if (ctl & CONTEXT_DEAD) {
1607 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1608                 fw_error("DMA context %s has stopped, error code: %s\n",
1609                          name, evts[ctl & 0x1f]);
1610 #else
1611                 fw_error("DMA context %s has stopped, error code: %#x\n",
1612                          name, ctl & 0x1f);
1613 #endif
1614         }
1615 }
1616
1617 static void handle_dead_contexts(struct fw_ohci *ohci)
1618 {
1619         unsigned int i;
1620         char name[8];
1621
1622         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1623         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1624         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1625         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1626         for (i = 0; i < 32; ++i) {
1627                 if (!(ohci->it_context_support & (1 << i)))
1628                         continue;
1629                 sprintf(name, "IT%u", i);
1630                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1631         }
1632         for (i = 0; i < 32; ++i) {
1633                 if (!(ohci->ir_context_support & (1 << i)))
1634                         continue;
1635                 sprintf(name, "IR%u", i);
1636                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1637         }
1638         /* TODO: maybe try to flush and restart the dead contexts */
1639 }
1640
1641 static u32 cycle_timer_ticks(u32 cycle_timer)
1642 {
1643         u32 ticks;
1644
1645         ticks = cycle_timer & 0xfff;
1646         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1647         ticks += (3072 * 8000) * (cycle_timer >> 25);
1648
1649         return ticks;
1650 }
1651
1652 /*
1653  * Some controllers exhibit one or more of the following bugs when updating the
1654  * iso cycle timer register:
1655  *  - When the lowest six bits are wrapping around to zero, a read that happens
1656  *    at the same time will return garbage in the lowest ten bits.
1657  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1658  *    not incremented for about 60 ns.
1659  *  - Occasionally, the entire register reads zero.
1660  *
1661  * To catch these, we read the register three times and ensure that the
1662  * difference between each two consecutive reads is approximately the same, i.e.
1663  * less than twice the other.  Furthermore, any negative difference indicates an
1664  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1665  * execute, so we have enough precision to compute the ratio of the differences.)
1666  */
1667 static u32 get_cycle_time(struct fw_ohci *ohci)
1668 {
1669         u32 c0, c1, c2;
1670         u32 t0, t1, t2;
1671         s32 diff01, diff12;
1672         int i;
1673
1674         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1675
1676         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1677                 i = 0;
1678                 c1 = c2;
1679                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1680                 do {
1681                         c0 = c1;
1682                         c1 = c2;
1683                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1684                         t0 = cycle_timer_ticks(c0);
1685                         t1 = cycle_timer_ticks(c1);
1686                         t2 = cycle_timer_ticks(c2);
1687                         diff01 = t1 - t0;
1688                         diff12 = t2 - t1;
1689                 } while ((diff01 <= 0 || diff12 <= 0 ||
1690                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1691                          && i++ < 20);
1692         }
1693
1694         return c2;
1695 }
1696
1697 /*
1698  * This function has to be called at least every 64 seconds.  The bus_time
1699  * field stores not only the upper 25 bits of the BUS_TIME register but also
1700  * the most significant bit of the cycle timer in bit 6 so that we can detect
1701  * changes in this bit.
1702  */
1703 static u32 update_bus_time(struct fw_ohci *ohci)
1704 {
1705         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1706
1707         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1708                 ohci->bus_time += 0x40;
1709
1710         return ohci->bus_time | cycle_time_seconds;
1711 }
1712
1713 static void bus_reset_tasklet(unsigned long data)
1714 {
1715         struct fw_ohci *ohci = (struct fw_ohci *)data;
1716         int self_id_count, i, j, reg;
1717         int generation, new_generation;
1718         unsigned long flags;
1719         void *free_rom = NULL;
1720         dma_addr_t free_rom_bus = 0;
1721         bool is_new_root;
1722
1723         reg = reg_read(ohci, OHCI1394_NodeID);
1724         if (!(reg & OHCI1394_NodeID_idValid)) {
1725                 fw_notify("node ID not valid, new bus reset in progress\n");
1726                 return;
1727         }
1728         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1729                 fw_notify("malconfigured bus\n");
1730                 return;
1731         }
1732         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1733                                OHCI1394_NodeID_nodeNumber);
1734
1735         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1736         if (!(ohci->is_root && is_new_root))
1737                 reg_write(ohci, OHCI1394_LinkControlSet,
1738                           OHCI1394_LinkControl_cycleMaster);
1739         ohci->is_root = is_new_root;
1740
1741         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1742         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1743                 fw_notify("inconsistent self IDs\n");
1744                 return;
1745         }
1746         /*
1747          * The count in the SelfIDCount register is the number of
1748          * bytes in the self ID receive buffer.  Since we also receive
1749          * the inverted quadlets and a header quadlet, we shift one
1750          * bit extra to get the actual number of self IDs.
1751          */
1752         self_id_count = (reg >> 3) & 0xff;
1753         if (self_id_count == 0 || self_id_count > 252) {
1754                 fw_notify("inconsistent self IDs\n");
1755                 return;
1756         }
1757         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1758         rmb();
1759
1760         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1761                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1762                         fw_notify("inconsistent self IDs\n");
1763                         return;
1764                 }
1765                 ohci->self_id_buffer[j] =
1766                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1767         }
1768         rmb();
1769
1770         /*
1771          * Check the consistency of the self IDs we just read.  The
1772          * problem we face is that a new bus reset can start while we
1773          * read out the self IDs from the DMA buffer. If this happens,
1774          * the DMA buffer will be overwritten with new self IDs and we
1775          * will read out inconsistent data.  The OHCI specification
1776          * (section 11.2) recommends a technique similar to
1777          * linux/seqlock.h, where we remember the generation of the
1778          * self IDs in the buffer before reading them out and compare
1779          * it to the current generation after reading them out.  If
1780          * the two generations match we know we have a consistent set
1781          * of self IDs.
1782          */
1783
1784         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1785         if (new_generation != generation) {
1786                 fw_notify("recursive bus reset detected, "
1787                           "discarding self ids\n");
1788                 return;
1789         }
1790
1791         /* FIXME: Document how the locking works. */
1792         spin_lock_irqsave(&ohci->lock, flags);
1793
1794         ohci->generation = -1; /* prevent AT packet queueing */
1795         context_stop(&ohci->at_request_ctx);
1796         context_stop(&ohci->at_response_ctx);
1797
1798         spin_unlock_irqrestore(&ohci->lock, flags);
1799
1800         /*
1801          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1802          * packets in the AT queues and software needs to drain them.
1803          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1804          */
1805         at_context_flush(&ohci->at_request_ctx);
1806         at_context_flush(&ohci->at_response_ctx);
1807
1808         spin_lock_irqsave(&ohci->lock, flags);
1809
1810         ohci->generation = generation;
1811         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1812
1813         if (ohci->quirks & QUIRK_RESET_PACKET)
1814                 ohci->request_generation = generation;
1815
1816         /*
1817          * This next bit is unrelated to the AT context stuff but we
1818          * have to do it under the spinlock also.  If a new config rom
1819          * was set up before this reset, the old one is now no longer
1820          * in use and we can free it. Update the config rom pointers
1821          * to point to the current config rom and clear the
1822          * next_config_rom pointer so a new update can take place.
1823          */
1824
1825         if (ohci->next_config_rom != NULL) {
1826                 if (ohci->next_config_rom != ohci->config_rom) {
1827                         free_rom      = ohci->config_rom;
1828                         free_rom_bus  = ohci->config_rom_bus;
1829                 }
1830                 ohci->config_rom      = ohci->next_config_rom;
1831                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1832                 ohci->next_config_rom = NULL;
1833
1834                 /*
1835                  * Restore config_rom image and manually update
1836                  * config_rom registers.  Writing the header quadlet
1837                  * will indicate that the config rom is ready, so we
1838                  * do that last.
1839                  */
1840                 reg_write(ohci, OHCI1394_BusOptions,
1841                           be32_to_cpu(ohci->config_rom[2]));
1842                 ohci->config_rom[0] = ohci->next_header;
1843                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1844                           be32_to_cpu(ohci->next_header));
1845         }
1846
1847 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1848         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1849         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1850 #endif
1851
1852         spin_unlock_irqrestore(&ohci->lock, flags);
1853
1854         if (free_rom)
1855                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1856                                   free_rom, free_rom_bus);
1857
1858         log_selfids(ohci->node_id, generation,
1859                     self_id_count, ohci->self_id_buffer);
1860
1861         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1862                                  self_id_count, ohci->self_id_buffer,
1863                                  ohci->csr_state_setclear_abdicate);
1864         ohci->csr_state_setclear_abdicate = false;
1865 }
1866
1867 static irqreturn_t irq_handler(int irq, void *data)
1868 {
1869         struct fw_ohci *ohci = data;
1870         u32 event, iso_event;
1871         int i;
1872
1873         event = reg_read(ohci, OHCI1394_IntEventClear);
1874
1875         if (!event || !~event)
1876                 return IRQ_NONE;
1877
1878         /*
1879          * busReset and postedWriteErr must not be cleared yet
1880          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1881          */
1882         reg_write(ohci, OHCI1394_IntEventClear,
1883                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1884         log_irqs(event);
1885
1886         if (event & OHCI1394_selfIDComplete)
1887                 tasklet_schedule(&ohci->bus_reset_tasklet);
1888
1889         if (event & OHCI1394_RQPkt)
1890                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1891
1892         if (event & OHCI1394_RSPkt)
1893                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1894
1895         if (event & OHCI1394_reqTxComplete)
1896                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1897
1898         if (event & OHCI1394_respTxComplete)
1899                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1900
1901         if (event & OHCI1394_isochRx) {
1902                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1903                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1904
1905                 while (iso_event) {
1906                         i = ffs(iso_event) - 1;
1907                         tasklet_schedule(
1908                                 &ohci->ir_context_list[i].context.tasklet);
1909                         iso_event &= ~(1 << i);
1910                 }
1911         }
1912
1913         if (event & OHCI1394_isochTx) {
1914                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1915                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1916
1917                 while (iso_event) {
1918                         i = ffs(iso_event) - 1;
1919                         tasklet_schedule(
1920                                 &ohci->it_context_list[i].context.tasklet);
1921                         iso_event &= ~(1 << i);
1922                 }
1923         }
1924
1925         if (unlikely(event & OHCI1394_regAccessFail))
1926                 fw_error("Register access failure - "
1927                          "please notify linux1394-devel@lists.sf.net\n");
1928
1929         if (unlikely(event & OHCI1394_postedWriteErr)) {
1930                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1931                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1932                 reg_write(ohci, OHCI1394_IntEventClear,
1933                           OHCI1394_postedWriteErr);
1934                 fw_error("PCI posted write error\n");
1935         }
1936
1937         if (unlikely(event & OHCI1394_cycleTooLong)) {
1938                 if (printk_ratelimit())
1939                         fw_notify("isochronous cycle too long\n");
1940                 reg_write(ohci, OHCI1394_LinkControlSet,
1941                           OHCI1394_LinkControl_cycleMaster);
1942         }
1943
1944         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1945                 /*
1946                  * We need to clear this event bit in order to make
1947                  * cycleMatch isochronous I/O work.  In theory we should
1948                  * stop active cycleMatch iso contexts now and restart
1949                  * them at least two cycles later.  (FIXME?)
1950                  */
1951                 if (printk_ratelimit())
1952                         fw_notify("isochronous cycle inconsistent\n");
1953         }
1954
1955         if (unlikely(event & OHCI1394_unrecoverableError))
1956                 handle_dead_contexts(ohci);
1957
1958         if (event & OHCI1394_cycle64Seconds) {
1959                 spin_lock(&ohci->lock);
1960                 update_bus_time(ohci);
1961                 spin_unlock(&ohci->lock);
1962         } else
1963                 flush_writes(ohci);
1964
1965         return IRQ_HANDLED;
1966 }
1967
1968 static int software_reset(struct fw_ohci *ohci)
1969 {
1970         int i;
1971
1972         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1973
1974         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1975                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1976                      OHCI1394_HCControl_softReset) == 0)
1977                         return 0;
1978                 msleep(1);
1979         }
1980
1981         return -EBUSY;
1982 }
1983
1984 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1985 {
1986         size_t size = length * 4;
1987
1988         memcpy(dest, src, size);
1989         if (size < CONFIG_ROM_SIZE)
1990                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1991 }
1992
1993 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1994 {
1995         bool enable_1394a;
1996         int ret, clear, set, offset;
1997
1998         /* Check if the driver should configure link and PHY. */
1999         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2000               OHCI1394_HCControl_programPhyEnable))
2001                 return 0;
2002
2003         /* Paranoia: check whether the PHY supports 1394a, too. */
2004         enable_1394a = false;
2005         ret = read_phy_reg(ohci, 2);
2006         if (ret < 0)
2007                 return ret;
2008         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2009                 ret = read_paged_phy_reg(ohci, 1, 8);
2010                 if (ret < 0)
2011                         return ret;
2012                 if (ret >= 1)
2013                         enable_1394a = true;
2014         }
2015
2016         if (ohci->quirks & QUIRK_NO_1394A)
2017                 enable_1394a = false;
2018
2019         /* Configure PHY and link consistently. */
2020         if (enable_1394a) {
2021                 clear = 0;
2022                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2023         } else {
2024                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2025                 set = 0;
2026         }
2027         ret = update_phy_reg(ohci, 5, clear, set);
2028         if (ret < 0)
2029                 return ret;
2030
2031         if (enable_1394a)
2032                 offset = OHCI1394_HCControlSet;
2033         else
2034                 offset = OHCI1394_HCControlClear;
2035         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2036
2037         /* Clean up: configuration has been taken care of. */
2038         reg_write(ohci, OHCI1394_HCControlClear,
2039                   OHCI1394_HCControl_programPhyEnable);
2040
2041         return 0;
2042 }
2043
2044 static int ohci_enable(struct fw_card *card,
2045                        const __be32 *config_rom, size_t length)
2046 {
2047         struct fw_ohci *ohci = fw_ohci(card);
2048         struct pci_dev *dev = to_pci_dev(card->device);
2049         u32 lps, seconds, version, irqs;
2050         int i, ret;
2051
2052         if (software_reset(ohci)) {
2053                 fw_error("Failed to reset ohci card.\n");
2054                 return -EBUSY;
2055         }
2056
2057         /*
2058          * Now enable LPS, which we need in order to start accessing
2059          * most of the registers.  In fact, on some cards (ALI M5251),
2060          * accessing registers in the SClk domain without LPS enabled
2061          * will lock up the machine.  Wait 50msec to make sure we have
2062          * full link enabled.  However, with some cards (well, at least
2063          * a JMicron PCIe card), we have to try again sometimes.
2064          */
2065         reg_write(ohci, OHCI1394_HCControlSet,
2066                   OHCI1394_HCControl_LPS |
2067                   OHCI1394_HCControl_postedWriteEnable);
2068         flush_writes(ohci);
2069
2070         for (lps = 0, i = 0; !lps && i < 3; i++) {
2071                 msleep(50);
2072                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2073                       OHCI1394_HCControl_LPS;
2074         }
2075
2076         if (!lps) {
2077                 fw_error("Failed to set Link Power Status\n");
2078                 return -EIO;
2079         }
2080
2081         reg_write(ohci, OHCI1394_HCControlClear,
2082                   OHCI1394_HCControl_noByteSwapData);
2083
2084         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2085         reg_write(ohci, OHCI1394_LinkControlSet,
2086                   OHCI1394_LinkControl_cycleTimerEnable |
2087                   OHCI1394_LinkControl_cycleMaster);
2088
2089         reg_write(ohci, OHCI1394_ATRetries,
2090                   OHCI1394_MAX_AT_REQ_RETRIES |
2091                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2092                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2093                   (200 << 16));
2094
2095         seconds = lower_32_bits(get_seconds());
2096         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2097         ohci->bus_time = seconds & ~0x3f;
2098
2099         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2100         if (version >= OHCI_VERSION_1_1) {
2101                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2102                           0xfffffffe);
2103                 card->broadcast_channel_auto_allocated = true;
2104         }
2105
2106         /* Get implemented bits of the priority arbitration request counter. */
2107         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2108         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2109         reg_write(ohci, OHCI1394_FairnessControl, 0);
2110         card->priority_budget_implemented = ohci->pri_req_max != 0;
2111
2112         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2113         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2114         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2115
2116         ret = configure_1394a_enhancements(ohci);
2117         if (ret < 0)
2118                 return ret;
2119
2120         /* Activate link_on bit and contender bit in our self ID packets.*/
2121         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2122         if (ret < 0)
2123                 return ret;
2124
2125         /*
2126          * When the link is not yet enabled, the atomic config rom
2127          * update mechanism described below in ohci_set_config_rom()
2128          * is not active.  We have to update ConfigRomHeader and
2129          * BusOptions manually, and the write to ConfigROMmap takes
2130          * effect immediately.  We tie this to the enabling of the
2131          * link, so we have a valid config rom before enabling - the
2132          * OHCI requires that ConfigROMhdr and BusOptions have valid
2133          * values before enabling.
2134          *
2135          * However, when the ConfigROMmap is written, some controllers
2136          * always read back quadlets 0 and 2 from the config rom to
2137          * the ConfigRomHeader and BusOptions registers on bus reset.
2138          * They shouldn't do that in this initial case where the link
2139          * isn't enabled.  This means we have to use the same
2140          * workaround here, setting the bus header to 0 and then write
2141          * the right values in the bus reset tasklet.
2142          */
2143
2144         if (config_rom) {
2145                 ohci->next_config_rom =
2146                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2147                                            &ohci->next_config_rom_bus,
2148                                            GFP_KERNEL);
2149                 if (ohci->next_config_rom == NULL)
2150                         return -ENOMEM;
2151
2152                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2153         } else {
2154                 /*
2155                  * In the suspend case, config_rom is NULL, which
2156                  * means that we just reuse the old config rom.
2157                  */
2158                 ohci->next_config_rom = ohci->config_rom;
2159                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2160         }
2161
2162         ohci->next_header = ohci->next_config_rom[0];
2163         ohci->next_config_rom[0] = 0;
2164         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2165         reg_write(ohci, OHCI1394_BusOptions,
2166                   be32_to_cpu(ohci->next_config_rom[2]));
2167         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2168
2169         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2170
2171         if (!(ohci->quirks & QUIRK_NO_MSI))
2172                 pci_enable_msi(dev);
2173         if (request_irq(dev->irq, irq_handler,
2174                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2175                         ohci_driver_name, ohci)) {
2176                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2177                 pci_disable_msi(dev);
2178                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2179                                   ohci->config_rom, ohci->config_rom_bus);
2180                 return -EIO;
2181         }
2182
2183         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2184                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2185                 OHCI1394_isochTx | OHCI1394_isochRx |
2186                 OHCI1394_postedWriteErr |
2187                 OHCI1394_selfIDComplete |
2188                 OHCI1394_regAccessFail |
2189                 OHCI1394_cycle64Seconds |
2190                 OHCI1394_cycleInconsistent |
2191                 OHCI1394_unrecoverableError |
2192                 OHCI1394_cycleTooLong |
2193                 OHCI1394_masterIntEnable;
2194         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2195                 irqs |= OHCI1394_busReset;
2196         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2197
2198         reg_write(ohci, OHCI1394_HCControlSet,
2199                   OHCI1394_HCControl_linkEnable |
2200                   OHCI1394_HCControl_BIBimageValid);
2201
2202         reg_write(ohci, OHCI1394_LinkControlSet,
2203                   OHCI1394_LinkControl_rcvSelfID |
2204                   OHCI1394_LinkControl_rcvPhyPkt);
2205
2206         ar_context_run(&ohci->ar_request_ctx);
2207         ar_context_run(&ohci->ar_response_ctx); /* also flushes writes */
2208
2209         /* We are ready to go, reset bus to finish initialization. */
2210         fw_schedule_bus_reset(&ohci->card, false, true);
2211
2212         return 0;
2213 }
2214
2215 static int ohci_set_config_rom(struct fw_card *card,
2216                                const __be32 *config_rom, size_t length)
2217 {
2218         struct fw_ohci *ohci;
2219         unsigned long flags;
2220         __be32 *next_config_rom;
2221         dma_addr_t uninitialized_var(next_config_rom_bus);
2222
2223         ohci = fw_ohci(card);
2224
2225         /*
2226          * When the OHCI controller is enabled, the config rom update
2227          * mechanism is a bit tricky, but easy enough to use.  See
2228          * section 5.5.6 in the OHCI specification.
2229          *
2230          * The OHCI controller caches the new config rom address in a
2231          * shadow register (ConfigROMmapNext) and needs a bus reset
2232          * for the changes to take place.  When the bus reset is
2233          * detected, the controller loads the new values for the
2234          * ConfigRomHeader and BusOptions registers from the specified
2235          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2236          * shadow register. All automatically and atomically.
2237          *
2238          * Now, there's a twist to this story.  The automatic load of
2239          * ConfigRomHeader and BusOptions doesn't honor the
2240          * noByteSwapData bit, so with a be32 config rom, the
2241          * controller will load be32 values in to these registers
2242          * during the atomic update, even on litte endian
2243          * architectures.  The workaround we use is to put a 0 in the
2244          * header quadlet; 0 is endian agnostic and means that the
2245          * config rom isn't ready yet.  In the bus reset tasklet we
2246          * then set up the real values for the two registers.
2247          *
2248          * We use ohci->lock to avoid racing with the code that sets
2249          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2250          */
2251
2252         next_config_rom =
2253                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2254                                    &next_config_rom_bus, GFP_KERNEL);
2255         if (next_config_rom == NULL)
2256                 return -ENOMEM;
2257
2258         spin_lock_irqsave(&ohci->lock, flags);
2259
2260         /*
2261          * If there is not an already pending config_rom update,
2262          * push our new allocation into the ohci->next_config_rom
2263          * and then mark the local variable as null so that we
2264          * won't deallocate the new buffer.
2265          *
2266          * OTOH, if there is a pending config_rom update, just
2267          * use that buffer with the new config_rom data, and
2268          * let this routine free the unused DMA allocation.
2269          */
2270
2271         if (ohci->next_config_rom == NULL) {
2272                 ohci->next_config_rom = next_config_rom;
2273                 ohci->next_config_rom_bus = next_config_rom_bus;
2274                 next_config_rom = NULL;
2275         }
2276
2277         copy_config_rom(ohci->next_config_rom, config_rom, length);
2278
2279         ohci->next_header = config_rom[0];
2280         ohci->next_config_rom[0] = 0;
2281
2282         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2283
2284         spin_unlock_irqrestore(&ohci->lock, flags);
2285
2286         /* If we didn't use the DMA allocation, delete it. */
2287         if (next_config_rom != NULL)
2288                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2289                                   next_config_rom, next_config_rom_bus);
2290
2291         /*
2292          * Now initiate a bus reset to have the changes take
2293          * effect. We clean up the old config rom memory and DMA
2294          * mappings in the bus reset tasklet, since the OHCI
2295          * controller could need to access it before the bus reset
2296          * takes effect.
2297          */
2298
2299         fw_schedule_bus_reset(&ohci->card, true, true);
2300
2301         return 0;
2302 }
2303
2304 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2305 {
2306         struct fw_ohci *ohci = fw_ohci(card);
2307
2308         at_context_transmit(&ohci->at_request_ctx, packet);
2309 }
2310
2311 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2312 {
2313         struct fw_ohci *ohci = fw_ohci(card);
2314
2315         at_context_transmit(&ohci->at_response_ctx, packet);
2316 }
2317
2318 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2319 {
2320         struct fw_ohci *ohci = fw_ohci(card);
2321         struct context *ctx = &ohci->at_request_ctx;
2322         struct driver_data *driver_data = packet->driver_data;
2323         int ret = -ENOENT;
2324
2325         tasklet_disable(&ctx->tasklet);
2326
2327         if (packet->ack != 0)
2328                 goto out;
2329
2330         if (packet->payload_mapped)
2331                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2332                                  packet->payload_length, DMA_TO_DEVICE);
2333
2334         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2335         driver_data->packet = NULL;
2336         packet->ack = RCODE_CANCELLED;
2337         packet->callback(packet, &ohci->card, packet->ack);
2338         ret = 0;
2339  out:
2340         tasklet_enable(&ctx->tasklet);
2341
2342         return ret;
2343 }
2344
2345 static int ohci_enable_phys_dma(struct fw_card *card,
2346                                 int node_id, int generation)
2347 {
2348 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2349         return 0;
2350 #else
2351         struct fw_ohci *ohci = fw_ohci(card);
2352         unsigned long flags;
2353         int n, ret = 0;
2354
2355         /*
2356          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2357          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2358          */
2359
2360         spin_lock_irqsave(&ohci->lock, flags);
2361
2362         if (ohci->generation != generation) {
2363                 ret = -ESTALE;
2364                 goto out;
2365         }
2366
2367         /*
2368          * Note, if the node ID contains a non-local bus ID, physical DMA is
2369          * enabled for _all_ nodes on remote buses.
2370          */
2371
2372         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2373         if (n < 32)
2374                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2375         else
2376                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2377
2378         flush_writes(ohci);
2379  out:
2380         spin_unlock_irqrestore(&ohci->lock, flags);
2381
2382         return ret;
2383 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2384 }
2385
2386 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2387 {
2388         struct fw_ohci *ohci = fw_ohci(card);
2389         unsigned long flags;
2390         u32 value;
2391
2392         switch (csr_offset) {
2393         case CSR_STATE_CLEAR:
2394         case CSR_STATE_SET:
2395                 if (ohci->is_root &&
2396                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2397                      OHCI1394_LinkControl_cycleMaster))
2398                         value = CSR_STATE_BIT_CMSTR;
2399                 else
2400                         value = 0;
2401                 if (ohci->csr_state_setclear_abdicate)
2402                         value |= CSR_STATE_BIT_ABDICATE;
2403
2404                 return value;
2405
2406         case CSR_NODE_IDS:
2407                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2408
2409         case CSR_CYCLE_TIME:
2410                 return get_cycle_time(ohci);
2411
2412         case CSR_BUS_TIME:
2413                 /*
2414                  * We might be called just after the cycle timer has wrapped
2415                  * around but just before the cycle64Seconds handler, so we
2416                  * better check here, too, if the bus time needs to be updated.
2417                  */
2418                 spin_lock_irqsave(&ohci->lock, flags);
2419                 value = update_bus_time(ohci);
2420                 spin_unlock_irqrestore(&ohci->lock, flags);
2421                 return value;
2422
2423         case CSR_BUSY_TIMEOUT:
2424                 value = reg_read(ohci, OHCI1394_ATRetries);
2425                 return (value >> 4) & 0x0ffff00f;
2426
2427         case CSR_PRIORITY_BUDGET:
2428                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2429                         (ohci->pri_req_max << 8);
2430
2431         default:
2432                 WARN_ON(1);
2433                 return 0;
2434         }
2435 }
2436
2437 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2438 {
2439         struct fw_ohci *ohci = fw_ohci(card);
2440         unsigned long flags;
2441
2442         switch (csr_offset) {
2443         case CSR_STATE_CLEAR:
2444                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2445                         reg_write(ohci, OHCI1394_LinkControlClear,
2446                                   OHCI1394_LinkControl_cycleMaster);
2447                         flush_writes(ohci);
2448                 }
2449                 if (value & CSR_STATE_BIT_ABDICATE)
2450                         ohci->csr_state_setclear_abdicate = false;
2451                 break;
2452
2453         case CSR_STATE_SET:
2454                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2455                         reg_write(ohci, OHCI1394_LinkControlSet,
2456                                   OHCI1394_LinkControl_cycleMaster);
2457                         flush_writes(ohci);
2458                 }
2459                 if (value & CSR_STATE_BIT_ABDICATE)
2460                         ohci->csr_state_setclear_abdicate = true;
2461                 break;
2462
2463         case CSR_NODE_IDS:
2464                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2465                 flush_writes(ohci);
2466                 break;
2467
2468         case CSR_CYCLE_TIME:
2469                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2470                 reg_write(ohci, OHCI1394_IntEventSet,
2471                           OHCI1394_cycleInconsistent);
2472                 flush_writes(ohci);
2473                 break;
2474
2475         case CSR_BUS_TIME:
2476                 spin_lock_irqsave(&ohci->lock, flags);
2477                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2478                 spin_unlock_irqrestore(&ohci->lock, flags);
2479                 break;
2480
2481         case CSR_BUSY_TIMEOUT:
2482                 value = (value & 0xf) | ((value & 0xf) << 4) |
2483                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2484                 reg_write(ohci, OHCI1394_ATRetries, value);
2485                 flush_writes(ohci);
2486                 break;
2487
2488         case CSR_PRIORITY_BUDGET:
2489                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2490                 flush_writes(ohci);
2491                 break;
2492
2493         default:
2494                 WARN_ON(1);
2495                 break;
2496         }
2497 }
2498
2499 static void copy_iso_headers(struct iso_context *ctx, void *p)
2500 {
2501         int i = ctx->header_length;
2502
2503         if (i + ctx->base.header_size > PAGE_SIZE)
2504                 return;
2505
2506         /*
2507          * The iso header is byteswapped to little endian by
2508          * the controller, but the remaining header quadlets
2509          * are big endian.  We want to present all the headers
2510          * as big endian, so we have to swap the first quadlet.
2511          */
2512         if (ctx->base.header_size > 0)
2513                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2514         if (ctx->base.header_size > 4)
2515                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2516         if (ctx->base.header_size > 8)
2517                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2518         ctx->header_length += ctx->base.header_size;
2519 }
2520
2521 static int handle_ir_packet_per_buffer(struct context *context,
2522                                        struct descriptor *d,
2523                                        struct descriptor *last)
2524 {
2525         struct iso_context *ctx =
2526                 container_of(context, struct iso_context, context);
2527         struct descriptor *pd;
2528         __le32 *ir_header;
2529         void *p;
2530
2531         for (pd = d; pd <= last; pd++)
2532                 if (pd->transfer_status)
2533                         break;
2534         if (pd > last)
2535                 /* Descriptor(s) not done yet, stop iteration */
2536                 return 0;
2537
2538         p = last + 1;
2539         copy_iso_headers(ctx, p);
2540
2541         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2542                 ir_header = (__le32 *) p;
2543                 ctx->base.callback.sc(&ctx->base,
2544                                       le32_to_cpu(ir_header[0]) & 0xffff,
2545                                       ctx->header_length, ctx->header,
2546                                       ctx->base.callback_data);
2547                 ctx->header_length = 0;
2548         }
2549
2550         return 1;
2551 }
2552
2553 /* d == last because each descriptor block is only a single descriptor. */
2554 static int handle_ir_buffer_fill(struct context *context,
2555                                  struct descriptor *d,
2556                                  struct descriptor *last)
2557 {
2558         struct iso_context *ctx =
2559                 container_of(context, struct iso_context, context);
2560
2561         if (last->res_count != 0)
2562                 /* Descriptor(s) not done yet, stop iteration */
2563                 return 0;
2564
2565         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2566                 ctx->base.callback.mc(&ctx->base,
2567                                       le32_to_cpu(last->data_address) +
2568                                       le16_to_cpu(last->req_count),
2569                                       ctx->base.callback_data);
2570
2571         return 1;
2572 }
2573
2574 static int handle_it_packet(struct context *context,
2575                             struct descriptor *d,
2576                             struct descriptor *last)
2577 {
2578         struct iso_context *ctx =
2579                 container_of(context, struct iso_context, context);
2580         int i;
2581         struct descriptor *pd;
2582
2583         for (pd = d; pd <= last; pd++)
2584                 if (pd->transfer_status)
2585                         break;
2586         if (pd > last)
2587                 /* Descriptor(s) not done yet, stop iteration */
2588                 return 0;
2589
2590         i = ctx->header_length;
2591         if (i + 4 < PAGE_SIZE) {
2592                 /* Present this value as big-endian to match the receive code */
2593                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2594                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2595                                 le16_to_cpu(pd->res_count));
2596                 ctx->header_length += 4;
2597         }
2598         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2599                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2600                                       ctx->header_length, ctx->header,
2601                                       ctx->base.callback_data);
2602                 ctx->header_length = 0;
2603         }
2604         return 1;
2605 }
2606
2607 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2608 {
2609         u32 hi = channels >> 32, lo = channels;
2610
2611         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2612         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2613         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2614         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2615         mmiowb();
2616         ohci->mc_channels = channels;
2617 }
2618
2619 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2620                                 int type, int channel, size_t header_size)
2621 {
2622         struct fw_ohci *ohci = fw_ohci(card);
2623         struct iso_context *uninitialized_var(ctx);
2624         descriptor_callback_t uninitialized_var(callback);
2625         u64 *uninitialized_var(channels);
2626         u32 *uninitialized_var(mask), uninitialized_var(regs);
2627         unsigned long flags;
2628         int index, ret = -EBUSY;
2629
2630         spin_lock_irqsave(&ohci->lock, flags);
2631
2632         switch (type) {
2633         case FW_ISO_CONTEXT_TRANSMIT:
2634                 mask     = &ohci->it_context_mask;
2635                 callback = handle_it_packet;
2636                 index    = ffs(*mask) - 1;
2637                 if (index >= 0) {
2638                         *mask &= ~(1 << index);
2639                         regs = OHCI1394_IsoXmitContextBase(index);
2640                         ctx  = &ohci->it_context_list[index];
2641                 }
2642                 break;
2643
2644         case FW_ISO_CONTEXT_RECEIVE:
2645                 channels = &ohci->ir_context_channels;
2646                 mask     = &ohci->ir_context_mask;
2647                 callback = handle_ir_packet_per_buffer;
2648                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2649                 if (index >= 0) {
2650                         *channels &= ~(1ULL << channel);
2651                         *mask     &= ~(1 << index);
2652                         regs = OHCI1394_IsoRcvContextBase(index);
2653                         ctx  = &ohci->ir_context_list[index];
2654                 }
2655                 break;
2656
2657         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2658                 mask     = &ohci->ir_context_mask;
2659                 callback = handle_ir_buffer_fill;
2660                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2661                 if (index >= 0) {
2662                         ohci->mc_allocated = true;
2663                         *mask &= ~(1 << index);
2664                         regs = OHCI1394_IsoRcvContextBase(index);
2665                         ctx  = &ohci->ir_context_list[index];
2666                 }
2667                 break;
2668
2669         default:
2670                 index = -1;
2671                 ret = -ENOSYS;
2672         }
2673
2674         spin_unlock_irqrestore(&ohci->lock, flags);
2675
2676         if (index < 0)
2677                 return ERR_PTR(ret);
2678
2679         memset(ctx, 0, sizeof(*ctx));
2680         ctx->header_length = 0;
2681         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2682         if (ctx->header == NULL) {
2683                 ret = -ENOMEM;
2684                 goto out;
2685         }
2686         ret = context_init(&ctx->context, ohci, regs, callback);
2687         if (ret < 0)
2688                 goto out_with_header;
2689
2690         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2691                 set_multichannel_mask(ohci, 0);
2692
2693         return &ctx->base;
2694
2695  out_with_header:
2696         free_page((unsigned long)ctx->header);
2697  out:
2698         spin_lock_irqsave(&ohci->lock, flags);
2699
2700         switch (type) {
2701         case FW_ISO_CONTEXT_RECEIVE:
2702                 *channels |= 1ULL << channel;
2703                 break;
2704
2705         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2706                 ohci->mc_allocated = false;
2707                 break;
2708         }
2709         *mask |= 1 << index;
2710
2711         spin_unlock_irqrestore(&ohci->lock, flags);
2712
2713         return ERR_PTR(ret);
2714 }
2715
2716 static int ohci_start_iso(struct fw_iso_context *base,
2717                           s32 cycle, u32 sync, u32 tags)
2718 {
2719         struct iso_context *ctx = container_of(base, struct iso_context, base);
2720         struct fw_ohci *ohci = ctx->context.ohci;
2721         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2722         int index;
2723
2724         /* the controller cannot start without any queued packets */
2725         if (ctx->context.last->branch_address == 0)
2726                 return -ENODATA;
2727
2728         switch (ctx->base.type) {
2729         case FW_ISO_CONTEXT_TRANSMIT:
2730                 index = ctx - ohci->it_context_list;
2731                 match = 0;
2732                 if (cycle >= 0)
2733                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2734                                 (cycle & 0x7fff) << 16;
2735
2736                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2737                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2738                 context_run(&ctx->context, match);
2739                 break;
2740
2741         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2742                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2743                 /* fall through */
2744         case FW_ISO_CONTEXT_RECEIVE:
2745                 index = ctx - ohci->ir_context_list;
2746                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2747                 if (cycle >= 0) {
2748                         match |= (cycle & 0x07fff) << 12;
2749                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2750                 }
2751
2752                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2753                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2754                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2755                 context_run(&ctx->context, control);
2756
2757                 ctx->sync = sync;
2758                 ctx->tags = tags;
2759
2760                 break;
2761         }
2762
2763         return 0;
2764 }
2765
2766 static int ohci_stop_iso(struct fw_iso_context *base)
2767 {
2768         struct fw_ohci *ohci = fw_ohci(base->card);
2769         struct iso_context *ctx = container_of(base, struct iso_context, base);
2770         int index;
2771
2772         switch (ctx->base.type) {
2773         case FW_ISO_CONTEXT_TRANSMIT:
2774                 index = ctx - ohci->it_context_list;
2775                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2776                 break;
2777
2778         case FW_ISO_CONTEXT_RECEIVE:
2779         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2780                 index = ctx - ohci->ir_context_list;
2781                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2782                 break;
2783         }
2784         flush_writes(ohci);
2785         context_stop(&ctx->context);
2786         tasklet_kill(&ctx->context.tasklet);
2787
2788         return 0;
2789 }
2790
2791 static void ohci_free_iso_context(struct fw_iso_context *base)
2792 {
2793         struct fw_ohci *ohci = fw_ohci(base->card);
2794         struct iso_context *ctx = container_of(base, struct iso_context, base);
2795         unsigned long flags;
2796         int index;
2797
2798         ohci_stop_iso(base);
2799         context_release(&ctx->context);
2800         free_page((unsigned long)ctx->header);
2801
2802         spin_lock_irqsave(&ohci->lock, flags);
2803
2804         switch (base->type) {
2805         case FW_ISO_CONTEXT_TRANSMIT:
2806                 index = ctx - ohci->it_context_list;
2807                 ohci->it_context_mask |= 1 << index;
2808                 break;
2809
2810         case FW_ISO_CONTEXT_RECEIVE:
2811                 index = ctx - ohci->ir_context_list;
2812                 ohci->ir_context_mask |= 1 << index;
2813                 ohci->ir_context_channels |= 1ULL << base->channel;
2814                 break;
2815
2816         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2817                 index = ctx - ohci->ir_context_list;
2818                 ohci->ir_context_mask |= 1 << index;
2819                 ohci->ir_context_channels |= ohci->mc_channels;
2820                 ohci->mc_channels = 0;
2821                 ohci->mc_allocated = false;
2822                 break;
2823         }
2824
2825         spin_unlock_irqrestore(&ohci->lock, flags);
2826 }
2827
2828 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2829 {
2830         struct fw_ohci *ohci = fw_ohci(base->card);
2831         unsigned long flags;
2832         int ret;
2833
2834         switch (base->type) {
2835         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2836
2837                 spin_lock_irqsave(&ohci->lock, flags);
2838
2839                 /* Don't allow multichannel to grab other contexts' channels. */
2840                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2841                         *channels = ohci->ir_context_channels;
2842                         ret = -EBUSY;
2843                 } else {
2844                         set_multichannel_mask(ohci, *channels);
2845                         ret = 0;
2846                 }
2847
2848                 spin_unlock_irqrestore(&ohci->lock, flags);
2849
2850                 break;
2851         default:
2852                 ret = -EINVAL;
2853         }
2854
2855         return ret;
2856 }
2857
2858 #ifdef CONFIG_PM
2859 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2860 {
2861         int i;
2862         struct iso_context *ctx;
2863
2864         for (i = 0 ; i < ohci->n_ir ; i++) {
2865                 ctx = &ohci->ir_context_list[i];
2866                 if (ctx->context.running)
2867                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2868         }
2869
2870         for (i = 0 ; i < ohci->n_it ; i++) {
2871                 ctx = &ohci->it_context_list[i];
2872                 if (ctx->context.running)
2873                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2874         }
2875 }
2876 #endif
2877
2878 static int queue_iso_transmit(struct iso_context *ctx,
2879                               struct fw_iso_packet *packet,
2880                               struct fw_iso_buffer *buffer,
2881                               unsigned long payload)
2882 {
2883         struct descriptor *d, *last, *pd;
2884         struct fw_iso_packet *p;
2885         __le32 *header;
2886         dma_addr_t d_bus, page_bus;
2887         u32 z, header_z, payload_z, irq;
2888         u32 payload_index, payload_end_index, next_page_index;
2889         int page, end_page, i, length, offset;
2890
2891         p = packet;
2892         payload_index = payload;
2893
2894         if (p->skip)
2895                 z = 1;
2896         else
2897                 z = 2;
2898         if (p->header_length > 0)
2899                 z++;
2900
2901         /* Determine the first page the payload isn't contained in. */
2902         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2903         if (p->payload_length > 0)
2904                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2905         else
2906                 payload_z = 0;
2907
2908         z += payload_z;
2909
2910         /* Get header size in number of descriptors. */
2911         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2912
2913         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2914         if (d == NULL)
2915                 return -ENOMEM;
2916
2917         if (!p->skip) {
2918                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2919                 d[0].req_count = cpu_to_le16(8);
2920                 /*
2921                  * Link the skip address to this descriptor itself.  This causes
2922                  * a context to skip a cycle whenever lost cycles or FIFO
2923                  * overruns occur, without dropping the data.  The application
2924                  * should then decide whether this is an error condition or not.
2925                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2926                  */
2927                 d[0].branch_address = cpu_to_le32(d_bus | z);
2928
2929                 header = (__le32 *) &d[1];
2930                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2931                                         IT_HEADER_TAG(p->tag) |
2932                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2933                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2934                                         IT_HEADER_SPEED(ctx->base.speed));
2935                 header[1] =
2936                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2937                                                           p->payload_length));
2938         }
2939
2940         if (p->header_length > 0) {
2941                 d[2].req_count    = cpu_to_le16(p->header_length);
2942                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2943                 memcpy(&d[z], p->header, p->header_length);
2944         }
2945
2946         pd = d + z - payload_z;
2947         payload_end_index = payload_index + p->payload_length;
2948         for (i = 0; i < payload_z; i++) {
2949                 page               = payload_index >> PAGE_SHIFT;
2950                 offset             = payload_index & ~PAGE_MASK;
2951                 next_page_index    = (page + 1) << PAGE_SHIFT;
2952                 length             =
2953                         min(next_page_index, payload_end_index) - payload_index;
2954                 pd[i].req_count    = cpu_to_le16(length);
2955
2956                 page_bus = page_private(buffer->pages[page]);
2957                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2958
2959                 payload_index += length;
2960         }
2961
2962         if (p->interrupt)
2963                 irq = DESCRIPTOR_IRQ_ALWAYS;
2964         else
2965                 irq = DESCRIPTOR_NO_IRQ;
2966
2967         last = z == 2 ? d : d + z - 1;
2968         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2969                                      DESCRIPTOR_STATUS |
2970                                      DESCRIPTOR_BRANCH_ALWAYS |
2971                                      irq);
2972
2973         context_append(&ctx->context, d, z, header_z);
2974
2975         return 0;
2976 }
2977
2978 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2979                                        struct fw_iso_packet *packet,
2980                                        struct fw_iso_buffer *buffer,
2981                                        unsigned long payload)
2982 {
2983         struct descriptor *d, *pd;
2984         dma_addr_t d_bus, page_bus;
2985         u32 z, header_z, rest;
2986         int i, j, length;
2987         int page, offset, packet_count, header_size, payload_per_buffer;
2988
2989         /*
2990          * The OHCI controller puts the isochronous header and trailer in the
2991          * buffer, so we need at least 8 bytes.
2992          */
2993         packet_count = packet->header_length / ctx->base.header_size;
2994         header_size  = max(ctx->base.header_size, (size_t)8);
2995
2996         /* Get header size in number of descriptors. */
2997         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2998         page     = payload >> PAGE_SHIFT;
2999         offset   = payload & ~PAGE_MASK;
3000         payload_per_buffer = packet->payload_length / packet_count;
3001
3002         for (i = 0; i < packet_count; i++) {
3003                 /* d points to the header descriptor */
3004                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3005                 d = context_get_descriptors(&ctx->context,
3006                                 z + header_z, &d_bus);
3007                 if (d == NULL)
3008                         return -ENOMEM;
3009
3010                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3011                                               DESCRIPTOR_INPUT_MORE);
3012                 if (packet->skip && i == 0)
3013                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3014                 d->req_count    = cpu_to_le16(header_size);
3015                 d->res_count    = d->req_count;
3016                 d->transfer_status = 0;
3017                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3018
3019                 rest = payload_per_buffer;
3020                 pd = d;
3021                 for (j = 1; j < z; j++) {
3022                         pd++;
3023                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3024                                                   DESCRIPTOR_INPUT_MORE);
3025
3026                         if (offset + rest < PAGE_SIZE)
3027                                 length = rest;
3028                         else
3029                                 length = PAGE_SIZE - offset;
3030                         pd->req_count = cpu_to_le16(length);
3031                         pd->res_count = pd->req_count;
3032                         pd->transfer_status = 0;
3033
3034                         page_bus = page_private(buffer->pages[page]);
3035                         pd->data_address = cpu_to_le32(page_bus + offset);
3036
3037                         offset = (offset + length) & ~PAGE_MASK;
3038                         rest -= length;
3039                         if (offset == 0)
3040                                 page++;
3041                 }
3042                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3043                                           DESCRIPTOR_INPUT_LAST |
3044                                           DESCRIPTOR_BRANCH_ALWAYS);
3045                 if (packet->interrupt && i == packet_count - 1)
3046                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3047
3048                 context_append(&ctx->context, d, z, header_z);
3049         }
3050
3051         return 0;
3052 }
3053
3054 static int queue_iso_buffer_fill(struct iso_context *ctx,
3055                                  struct fw_iso_packet *packet,
3056                                  struct fw_iso_buffer *buffer,
3057                                  unsigned long payload)
3058 {
3059         struct descriptor *d;
3060         dma_addr_t d_bus, page_bus;
3061         int page, offset, rest, z, i, length;
3062
3063         page   = payload >> PAGE_SHIFT;
3064         offset = payload & ~PAGE_MASK;
3065         rest   = packet->payload_length;
3066
3067         /* We need one descriptor for each page in the buffer. */
3068         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3069
3070         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3071                 return -EFAULT;
3072
3073         for (i = 0; i < z; i++) {
3074                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3075                 if (d == NULL)
3076                         return -ENOMEM;
3077
3078                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3079                                          DESCRIPTOR_BRANCH_ALWAYS);
3080                 if (packet->skip && i == 0)
3081                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3082                 if (packet->interrupt && i == z - 1)
3083                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3084
3085                 if (offset + rest < PAGE_SIZE)
3086                         length = rest;
3087                 else
3088                         length = PAGE_SIZE - offset;
3089                 d->req_count = cpu_to_le16(length);
3090                 d->res_count = d->req_count;
3091                 d->transfer_status = 0;
3092
3093                 page_bus = page_private(buffer->pages[page]);
3094                 d->data_address = cpu_to_le32(page_bus + offset);
3095
3096                 rest -= length;
3097                 offset = 0;
3098                 page++;
3099
3100                 context_append(&ctx->context, d, 1, 0);
3101         }
3102
3103         return 0;
3104 }
3105
3106 static int ohci_queue_iso(struct fw_iso_context *base,
3107                           struct fw_iso_packet *packet,
3108                           struct fw_iso_buffer *buffer,
3109                           unsigned long payload)
3110 {
3111         struct iso_context *ctx = container_of(base, struct iso_context, base);
3112         unsigned long flags;
3113         int ret = -ENOSYS;
3114
3115         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3116         switch (base->type) {
3117         case FW_ISO_CONTEXT_TRANSMIT:
3118                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3119                 break;
3120         case FW_ISO_CONTEXT_RECEIVE:
3121                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3122                 break;
3123         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3124                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3125                 break;
3126         }
3127         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3128
3129         return ret;
3130 }
3131
3132 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3133 {
3134         struct context *ctx =
3135                         &container_of(base, struct iso_context, base)->context;
3136
3137         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3138         flush_writes(ctx->ohci);
3139 }
3140
3141 static const struct fw_card_driver ohci_driver = {
3142         .enable                 = ohci_enable,
3143         .read_phy_reg           = ohci_read_phy_reg,
3144         .update_phy_reg         = ohci_update_phy_reg,
3145         .set_config_rom         = ohci_set_config_rom,
3146         .send_request           = ohci_send_request,
3147         .send_response          = ohci_send_response,
3148         .cancel_packet          = ohci_cancel_packet,
3149         .enable_phys_dma        = ohci_enable_phys_dma,
3150         .read_csr               = ohci_read_csr,
3151         .write_csr              = ohci_write_csr,
3152
3153         .allocate_iso_context   = ohci_allocate_iso_context,
3154         .free_iso_context       = ohci_free_iso_context,
3155         .set_iso_channels       = ohci_set_iso_channels,
3156         .queue_iso              = ohci_queue_iso,
3157         .flush_queue_iso        = ohci_flush_queue_iso,
3158         .start_iso              = ohci_start_iso,
3159         .stop_iso               = ohci_stop_iso,
3160 };
3161
3162 #ifdef CONFIG_PPC_PMAC
3163 static void pmac_ohci_on(struct pci_dev *dev)
3164 {
3165         if (machine_is(powermac)) {
3166                 struct device_node *ofn = pci_device_to_OF_node(dev);
3167
3168                 if (ofn) {
3169                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3170                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3171                 }
3172         }
3173 }
3174
3175 static void pmac_ohci_off(struct pci_dev *dev)
3176 {
3177         if (machine_is(powermac)) {
3178                 struct device_node *ofn = pci_device_to_OF_node(dev);
3179
3180                 if (ofn) {
3181                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3182                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3183                 }
3184         }
3185 }
3186 #else
3187 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3188 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3189 #endif /* CONFIG_PPC_PMAC */
3190
3191 static int __devinit pci_probe(struct pci_dev *dev,
3192                                const struct pci_device_id *ent)
3193 {
3194         struct fw_ohci *ohci;
3195         u32 bus_options, max_receive, link_speed, version;
3196         u64 guid;
3197         int i, err;
3198         size_t size;
3199
3200         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3201                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3202                 return -ENOSYS;
3203         }
3204
3205         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3206         if (ohci == NULL) {
3207                 err = -ENOMEM;
3208                 goto fail;
3209         }
3210
3211         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3212
3213         pmac_ohci_on(dev);
3214
3215         err = pci_enable_device(dev);
3216         if (err) {
3217                 fw_error("Failed to enable OHCI hardware\n");
3218                 goto fail_free;
3219         }
3220
3221         pci_set_master(dev);
3222         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3223         pci_set_drvdata(dev, ohci);
3224
3225         spin_lock_init(&ohci->lock);
3226         mutex_init(&ohci->phy_reg_mutex);
3227
3228         tasklet_init(&ohci->bus_reset_tasklet,
3229                      bus_reset_tasklet, (unsigned long)ohci);
3230
3231         err = pci_request_region(dev, 0, ohci_driver_name);
3232         if (err) {
3233                 fw_error("MMIO resource unavailable\n");
3234                 goto fail_disable;
3235         }
3236
3237         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3238         if (ohci->registers == NULL) {
3239                 fw_error("Failed to remap registers\n");
3240                 err = -ENXIO;
3241                 goto fail_iomem;
3242         }
3243
3244         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3245                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3246                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3247                      ohci_quirks[i].device == dev->device) &&
3248                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3249                      ohci_quirks[i].revision >= dev->revision)) {
3250                         ohci->quirks = ohci_quirks[i].flags;
3251                         break;
3252                 }
3253         if (param_quirks)
3254                 ohci->quirks = param_quirks;
3255
3256         /*
3257          * Because dma_alloc_coherent() allocates at least one page,
3258          * we save space by using a common buffer for the AR request/
3259          * response descriptors and the self IDs buffer.
3260          */
3261         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3262         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3263         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3264                                                PAGE_SIZE,
3265                                                &ohci->misc_buffer_bus,
3266                                                GFP_KERNEL);
3267         if (!ohci->misc_buffer) {
3268                 err = -ENOMEM;
3269                 goto fail_iounmap;
3270         }
3271
3272         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3273                               OHCI1394_AsReqRcvContextControlSet);
3274         if (err < 0)
3275                 goto fail_misc_buf;
3276
3277         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3278                               OHCI1394_AsRspRcvContextControlSet);
3279         if (err < 0)
3280                 goto fail_arreq_ctx;
3281
3282         err = context_init(&ohci->at_request_ctx, ohci,
3283                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3284         if (err < 0)
3285                 goto fail_arrsp_ctx;
3286
3287         err = context_init(&ohci->at_response_ctx, ohci,
3288                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3289         if (err < 0)
3290                 goto fail_atreq_ctx;
3291
3292         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3293         ohci->ir_context_channels = ~0ULL;
3294         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3295         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3296         ohci->ir_context_mask = ohci->ir_context_support;
3297         ohci->n_ir = hweight32(ohci->ir_context_mask);
3298         size = sizeof(struct iso_context) * ohci->n_ir;
3299         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3300
3301         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3302         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3303         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3304         ohci->it_context_mask = ohci->it_context_support;
3305         ohci->n_it = hweight32(ohci->it_context_mask);
3306         size = sizeof(struct iso_context) * ohci->n_it;
3307         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3308
3309         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3310                 err = -ENOMEM;
3311                 goto fail_contexts;
3312         }
3313
3314         ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3315         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3316
3317         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3318         max_receive = (bus_options >> 12) & 0xf;
3319         link_speed = bus_options & 0x7;
3320         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3321                 reg_read(ohci, OHCI1394_GUIDLo);
3322
3323         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3324         if (err)
3325                 goto fail_contexts;
3326
3327         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3328         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3329                   "%d IR + %d IT contexts, quirks 0x%x\n",
3330                   dev_name(&dev->dev), version >> 16, version & 0xff,
3331                   ohci->n_ir, ohci->n_it, ohci->quirks);
3332
3333         return 0;
3334
3335  fail_contexts:
3336         kfree(ohci->ir_context_list);
3337         kfree(ohci->it_context_list);
3338         context_release(&ohci->at_response_ctx);
3339  fail_atreq_ctx:
3340         context_release(&ohci->at_request_ctx);
3341  fail_arrsp_ctx:
3342         ar_context_release(&ohci->ar_response_ctx);
3343  fail_arreq_ctx:
3344         ar_context_release(&ohci->ar_request_ctx);
3345  fail_misc_buf:
3346         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3347                           ohci->misc_buffer, ohci->misc_buffer_bus);
3348  fail_iounmap:
3349         pci_iounmap(dev, ohci->registers);
3350  fail_iomem:
3351         pci_release_region(dev, 0);
3352  fail_disable:
3353         pci_disable_device(dev);
3354  fail_free:
3355         kfree(ohci);
3356         pmac_ohci_off(dev);
3357  fail:
3358         if (err == -ENOMEM)
3359                 fw_error("Out of memory\n");
3360
3361         return err;
3362 }
3363
3364 static void pci_remove(struct pci_dev *dev)
3365 {
3366         struct fw_ohci *ohci;
3367
3368         ohci = pci_get_drvdata(dev);
3369         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3370         flush_writes(ohci);
3371         fw_core_remove_card(&ohci->card);
3372
3373         /*
3374          * FIXME: Fail all pending packets here, now that the upper
3375          * layers can't queue any more.
3376          */
3377
3378         software_reset(ohci);
3379         free_irq(dev->irq, ohci);
3380
3381         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3382                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3383                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3384         if (ohci->config_rom)
3385                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3386                                   ohci->config_rom, ohci->config_rom_bus);
3387         ar_context_release(&ohci->ar_request_ctx);
3388         ar_context_release(&ohci->ar_response_ctx);
3389         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3390                           ohci->misc_buffer, ohci->misc_buffer_bus);
3391         context_release(&ohci->at_request_ctx);
3392         context_release(&ohci->at_response_ctx);
3393         kfree(ohci->it_context_list);
3394         kfree(ohci->ir_context_list);
3395         pci_disable_msi(dev);
3396         pci_iounmap(dev, ohci->registers);
3397         pci_release_region(dev, 0);
3398         pci_disable_device(dev);
3399         kfree(ohci);
3400         pmac_ohci_off(dev);
3401
3402         fw_notify("Removed fw-ohci device.\n");
3403 }
3404
3405 #ifdef CONFIG_PM
3406 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3407 {
3408         struct fw_ohci *ohci = pci_get_drvdata(dev);
3409         int err;
3410
3411         software_reset(ohci);
3412         free_irq(dev->irq, ohci);
3413         pci_disable_msi(dev);
3414         err = pci_save_state(dev);
3415         if (err) {
3416                 fw_error("pci_save_state failed\n");
3417                 return err;
3418         }
3419         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3420         if (err)
3421                 fw_error("pci_set_power_state failed with %d\n", err);
3422         pmac_ohci_off(dev);
3423
3424         return 0;
3425 }
3426
3427 static int pci_resume(struct pci_dev *dev)
3428 {
3429         struct fw_ohci *ohci = pci_get_drvdata(dev);
3430         int err;
3431
3432         pmac_ohci_on(dev);
3433         pci_set_power_state(dev, PCI_D0);
3434         pci_restore_state(dev);
3435         err = pci_enable_device(dev);
3436         if (err) {
3437                 fw_error("pci_enable_device failed\n");
3438                 return err;
3439         }
3440
3441         /* Some systems don't setup GUID register on resume from ram  */
3442         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3443                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3444                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3445                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3446         }
3447
3448         err = ohci_enable(&ohci->card, NULL, 0);
3449         if (err)
3450                 return err;
3451
3452         ohci_resume_iso_dma(ohci);
3453
3454         return 0;
3455 }
3456 #endif
3457
3458 static const struct pci_device_id pci_table[] = {
3459         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3460         { }
3461 };
3462
3463 MODULE_DEVICE_TABLE(pci, pci_table);
3464
3465 static struct pci_driver fw_ohci_pci_driver = {
3466         .name           = ohci_driver_name,
3467         .id_table       = pci_table,
3468         .probe          = pci_probe,
3469         .remove         = pci_remove,
3470 #ifdef CONFIG_PM
3471         .resume         = pci_resume,
3472         .suspend        = pci_suspend,
3473 #endif
3474 };
3475
3476 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3477 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3478 MODULE_LICENSE("GPL");
3479
3480 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3481 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3482 MODULE_ALIAS("ohci1394");
3483 #endif
3484
3485 static int __init fw_ohci_init(void)
3486 {
3487         return pci_register_driver(&fw_ohci_pci_driver);
3488 }
3489
3490 static void __exit fw_ohci_cleanup(void)
3491 {
3492         pci_unregister_driver(&fw_ohci_pci_driver);
3493 }
3494
3495 module_init(fw_ohci_init);
3496 module_exit(fw_ohci_cleanup);