Merge tag 'v4.4.63' into linux-linaro-lsk-v4.4
[firefly-linux-kernel-4.4.55.git] / drivers / firmware / efi / libstub / fdt.c
1 /*
2  * FDT related Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2013 Linaro Limited; author Roy Franz
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16
17 #include "efistub.h"
18
19 efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
20                         unsigned long orig_fdt_size,
21                         void *fdt, int new_fdt_size, char *cmdline_ptr,
22                         u64 initrd_addr, u64 initrd_size,
23                         efi_memory_desc_t *memory_map,
24                         unsigned long map_size, unsigned long desc_size,
25                         u32 desc_ver)
26 {
27         int node, prev, num_rsv;
28         int status;
29         u32 fdt_val32;
30         u64 fdt_val64;
31
32         /* Do some checks on provided FDT, if it exists*/
33         if (orig_fdt) {
34                 if (fdt_check_header(orig_fdt)) {
35                         pr_efi_err(sys_table, "Device Tree header not valid!\n");
36                         return EFI_LOAD_ERROR;
37                 }
38                 /*
39                  * We don't get the size of the FDT if we get if from a
40                  * configuration table.
41                  */
42                 if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
43                         pr_efi_err(sys_table, "Truncated device tree! foo!\n");
44                         return EFI_LOAD_ERROR;
45                 }
46         }
47
48         if (orig_fdt)
49                 status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
50         else
51                 status = fdt_create_empty_tree(fdt, new_fdt_size);
52
53         if (status != 0)
54                 goto fdt_set_fail;
55
56         /*
57          * Delete any memory nodes present. We must delete nodes which
58          * early_init_dt_scan_memory may try to use.
59          */
60         prev = 0;
61         for (;;) {
62                 const char *type;
63                 int len;
64
65                 node = fdt_next_node(fdt, prev, NULL);
66                 if (node < 0)
67                         break;
68
69                 type = fdt_getprop(fdt, node, "device_type", &len);
70                 if (type && strncmp(type, "memory", len) == 0) {
71                         fdt_del_node(fdt, node);
72                         continue;
73                 }
74
75                 prev = node;
76         }
77
78         /*
79          * Delete all memory reserve map entries. When booting via UEFI,
80          * kernel will use the UEFI memory map to find reserved regions.
81          */
82         num_rsv = fdt_num_mem_rsv(fdt);
83         while (num_rsv-- > 0)
84                 fdt_del_mem_rsv(fdt, num_rsv);
85
86         node = fdt_subnode_offset(fdt, 0, "chosen");
87         if (node < 0) {
88                 node = fdt_add_subnode(fdt, 0, "chosen");
89                 if (node < 0) {
90                         status = node; /* node is error code when negative */
91                         goto fdt_set_fail;
92                 }
93         }
94
95         if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
96                 status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
97                                      strlen(cmdline_ptr) + 1);
98                 if (status)
99                         goto fdt_set_fail;
100         }
101
102         /* Set initrd address/end in device tree, if present */
103         if (initrd_size != 0) {
104                 u64 initrd_image_end;
105                 u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
106
107                 status = fdt_setprop(fdt, node, "linux,initrd-start",
108                                      &initrd_image_start, sizeof(u64));
109                 if (status)
110                         goto fdt_set_fail;
111                 initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
112                 status = fdt_setprop(fdt, node, "linux,initrd-end",
113                                      &initrd_image_end, sizeof(u64));
114                 if (status)
115                         goto fdt_set_fail;
116         }
117
118         /* Add FDT entries for EFI runtime services in chosen node. */
119         node = fdt_subnode_offset(fdt, 0, "chosen");
120         fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
121         status = fdt_setprop(fdt, node, "linux,uefi-system-table",
122                              &fdt_val64, sizeof(fdt_val64));
123         if (status)
124                 goto fdt_set_fail;
125
126         fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
127         status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
128                              &fdt_val64,  sizeof(fdt_val64));
129         if (status)
130                 goto fdt_set_fail;
131
132         fdt_val32 = cpu_to_fdt32(map_size);
133         status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
134                              &fdt_val32,  sizeof(fdt_val32));
135         if (status)
136                 goto fdt_set_fail;
137
138         fdt_val32 = cpu_to_fdt32(desc_size);
139         status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
140                              &fdt_val32, sizeof(fdt_val32));
141         if (status)
142                 goto fdt_set_fail;
143
144         fdt_val32 = cpu_to_fdt32(desc_ver);
145         status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
146                              &fdt_val32, sizeof(fdt_val32));
147         if (status)
148                 goto fdt_set_fail;
149
150         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
151                 efi_status_t efi_status;
152
153                 efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
154                                                   (u8 *)&fdt_val64);
155                 if (efi_status == EFI_SUCCESS) {
156                         status = fdt_setprop(fdt, node, "kaslr-seed",
157                                              &fdt_val64, sizeof(fdt_val64));
158                         if (status)
159                                 goto fdt_set_fail;
160                 } else if (efi_status != EFI_NOT_FOUND) {
161                         return efi_status;
162                 }
163         }
164         return EFI_SUCCESS;
165
166 fdt_set_fail:
167         if (status == -FDT_ERR_NOSPACE)
168                 return EFI_BUFFER_TOO_SMALL;
169
170         return EFI_LOAD_ERROR;
171 }
172
173 #ifndef EFI_FDT_ALIGN
174 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
175 #endif
176
177 /*
178  * Allocate memory for a new FDT, then add EFI, commandline, and
179  * initrd related fields to the FDT.  This routine increases the
180  * FDT allocation size until the allocated memory is large
181  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
182  * which are fixed at 4K bytes, so in most cases the first
183  * allocation should succeed.
184  * EFI boot services are exited at the end of this function.
185  * There must be no allocations between the get_memory_map()
186  * call and the exit_boot_services() call, so the exiting of
187  * boot services is very tightly tied to the creation of the FDT
188  * with the final memory map in it.
189  */
190
191 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
192                                             void *handle,
193                                             unsigned long *new_fdt_addr,
194                                             unsigned long max_addr,
195                                             u64 initrd_addr, u64 initrd_size,
196                                             char *cmdline_ptr,
197                                             unsigned long fdt_addr,
198                                             unsigned long fdt_size)
199 {
200         unsigned long map_size, desc_size;
201         u32 desc_ver;
202         unsigned long mmap_key;
203         efi_memory_desc_t *memory_map, *runtime_map;
204         unsigned long new_fdt_size;
205         efi_status_t status;
206         int runtime_entry_count = 0;
207
208         /*
209          * Get a copy of the current memory map that we will use to prepare
210          * the input for SetVirtualAddressMap(). We don't have to worry about
211          * subsequent allocations adding entries, since they could not affect
212          * the number of EFI_MEMORY_RUNTIME regions.
213          */
214         status = efi_get_memory_map(sys_table, &runtime_map, &map_size,
215                                     &desc_size, &desc_ver, &mmap_key);
216         if (status != EFI_SUCCESS) {
217                 pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
218                 return status;
219         }
220
221         pr_efi(sys_table,
222                "Exiting boot services and installing virtual address map...\n");
223
224         /*
225          * Estimate size of new FDT, and allocate memory for it. We
226          * will allocate a bigger buffer if this ends up being too
227          * small, so a rough guess is OK here.
228          */
229         new_fdt_size = fdt_size + EFI_PAGE_SIZE;
230         while (1) {
231                 status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
232                                         new_fdt_addr, max_addr);
233                 if (status != EFI_SUCCESS) {
234                         pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
235                         goto fail;
236                 }
237
238                 /*
239                  * Now that we have done our final memory allocation (and free)
240                  * we can get the memory map key  needed for
241                  * exit_boot_services().
242                  */
243                 status = efi_get_memory_map(sys_table, &memory_map, &map_size,
244                                             &desc_size, &desc_ver, &mmap_key);
245                 if (status != EFI_SUCCESS)
246                         goto fail_free_new_fdt;
247
248                 status = update_fdt(sys_table,
249                                     (void *)fdt_addr, fdt_size,
250                                     (void *)*new_fdt_addr, new_fdt_size,
251                                     cmdline_ptr, initrd_addr, initrd_size,
252                                     memory_map, map_size, desc_size, desc_ver);
253
254                 /* Succeeding the first time is the expected case. */
255                 if (status == EFI_SUCCESS)
256                         break;
257
258                 if (status == EFI_BUFFER_TOO_SMALL) {
259                         /*
260                          * We need to allocate more space for the new
261                          * device tree, so free existing buffer that is
262                          * too small.  Also free memory map, as we will need
263                          * to get new one that reflects the free/alloc we do
264                          * on the device tree buffer.
265                          */
266                         efi_free(sys_table, new_fdt_size, *new_fdt_addr);
267                         sys_table->boottime->free_pool(memory_map);
268                         new_fdt_size += EFI_PAGE_SIZE;
269                 } else {
270                         pr_efi_err(sys_table, "Unable to constuct new device tree.\n");
271                         goto fail_free_mmap;
272                 }
273         }
274
275         /*
276          * Update the memory map with virtual addresses. The function will also
277          * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
278          * entries so that we can pass it straight into SetVirtualAddressMap()
279          */
280         efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
281                         &runtime_entry_count);
282
283         /* Now we are ready to exit_boot_services.*/
284         status = sys_table->boottime->exit_boot_services(handle, mmap_key);
285
286         if (status == EFI_SUCCESS) {
287                 efi_set_virtual_address_map_t *svam;
288
289                 /* Install the new virtual address map */
290                 svam = sys_table->runtime->set_virtual_address_map;
291                 status = svam(runtime_entry_count * desc_size, desc_size,
292                               desc_ver, runtime_map);
293
294                 /*
295                  * We are beyond the point of no return here, so if the call to
296                  * SetVirtualAddressMap() failed, we need to signal that to the
297                  * incoming kernel but proceed normally otherwise.
298                  */
299                 if (status != EFI_SUCCESS) {
300                         int l;
301
302                         /*
303                          * Set the virtual address field of all
304                          * EFI_MEMORY_RUNTIME entries to 0. This will signal
305                          * the incoming kernel that no virtual translation has
306                          * been installed.
307                          */
308                         for (l = 0; l < map_size; l += desc_size) {
309                                 efi_memory_desc_t *p = (void *)memory_map + l;
310
311                                 if (p->attribute & EFI_MEMORY_RUNTIME)
312                                         p->virt_addr = 0;
313                         }
314                 }
315                 return EFI_SUCCESS;
316         }
317
318         pr_efi_err(sys_table, "Exit boot services failed.\n");
319
320 fail_free_mmap:
321         sys_table->boottime->free_pool(memory_map);
322
323 fail_free_new_fdt:
324         efi_free(sys_table, new_fdt_size, *new_fdt_addr);
325
326 fail:
327         sys_table->boottime->free_pool(runtime_map);
328         return EFI_LOAD_ERROR;
329 }
330
331 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
332 {
333         efi_guid_t fdt_guid = DEVICE_TREE_GUID;
334         efi_config_table_t *tables;
335         void *fdt;
336         int i;
337
338         tables = (efi_config_table_t *) sys_table->tables;
339         fdt = NULL;
340
341         for (i = 0; i < sys_table->nr_tables; i++)
342                 if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
343                         fdt = (void *) tables[i].table;
344                         if (fdt_check_header(fdt) != 0) {
345                                 pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
346                                 return NULL;
347                         }
348                         *fdt_size = fdt_totalsize(fdt);
349                         break;
350          }
351
352         return fdt;
353 }