Merge tag 'at91-dt-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/mripard...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->user_pin_count > 0)
100                 return "P";
101         else if (i915_gem_obj_is_pinned(obj))
102                 return "p";
103         else
104                 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109         switch (obj->tiling_mode) {
110         default:
111         case I915_TILING_NONE: return " ";
112         case I915_TILING_X: return "X";
113         case I915_TILING_Y: return "Y";
114         }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         struct i915_vma *vma;
126         int pin_count = 0;
127
128         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129                    &obj->base,
130                    get_pin_flag(obj),
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    obj->base.size / 1024,
134                    obj->base.read_domains,
135                    obj->base.write_domain,
136                    obj->last_read_seqno,
137                    obj->last_write_seqno,
138                    obj->last_fenced_seqno,
139                    i915_cache_level_str(obj->cache_level),
140                    obj->dirty ? " dirty" : "",
141                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142         if (obj->base.name)
143                 seq_printf(m, " (name: %d)", obj->base.name);
144         list_for_each_entry(vma, &obj->vma_list, vma_link)
145                 if (vma->pin_count > 0)
146                         pin_count++;
147                 seq_printf(m, " (pinned x %d)", pin_count);
148         if (obj->pin_display)
149                 seq_printf(m, " (display)");
150         if (obj->fence_reg != I915_FENCE_REG_NONE)
151                 seq_printf(m, " (fence: %d)", obj->fence_reg);
152         list_for_each_entry(vma, &obj->vma_list, vma_link) {
153                 if (!i915_is_ggtt(vma->vm))
154                         seq_puts(m, " (pp");
155                 else
156                         seq_puts(m, " (g");
157                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158                            vma->node.start, vma->node.size);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->ring != NULL)
172                 seq_printf(m, " (%s)", obj->ring->name);
173         if (obj->frontbuffer_bits)
174                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181         seq_putc(m, ' ');
182 }
183
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186         struct drm_info_node *node = m->private;
187         uintptr_t list = (uintptr_t) node->info_ent->data;
188         struct list_head *head;
189         struct drm_device *dev = node->minor->dev;
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         struct i915_address_space *vm = &dev_priv->gtt.base;
192         struct i915_vma *vma;
193         size_t total_obj_size, total_gtt_size;
194         int count, ret;
195
196         ret = mutex_lock_interruptible(&dev->struct_mutex);
197         if (ret)
198                 return ret;
199
200         /* FIXME: the user of this interface might want more than just GGTT */
201         switch (list) {
202         case ACTIVE_LIST:
203                 seq_puts(m, "Active:\n");
204                 head = &vm->active_list;
205                 break;
206         case INACTIVE_LIST:
207                 seq_puts(m, "Inactive:\n");
208                 head = &vm->inactive_list;
209                 break;
210         default:
211                 mutex_unlock(&dev->struct_mutex);
212                 return -EINVAL;
213         }
214
215         total_obj_size = total_gtt_size = count = 0;
216         list_for_each_entry(vma, head, mm_list) {
217                 seq_printf(m, "   ");
218                 describe_obj(m, vma->obj);
219                 seq_printf(m, "\n");
220                 total_obj_size += vma->obj->base.size;
221                 total_gtt_size += vma->node.size;
222                 count++;
223         }
224         mutex_unlock(&dev->struct_mutex);
225
226         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227                    count, total_obj_size, total_gtt_size);
228         return 0;
229 }
230
231 static int obj_rank_by_stolen(void *priv,
232                               struct list_head *A, struct list_head *B)
233 {
234         struct drm_i915_gem_object *a =
235                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
236         struct drm_i915_gem_object *b =
237                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
238
239         return a->stolen->start - b->stolen->start;
240 }
241
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244         struct drm_info_node *node = m->private;
245         struct drm_device *dev = node->minor->dev;
246         struct drm_i915_private *dev_priv = dev->dev_private;
247         struct drm_i915_gem_object *obj;
248         size_t total_obj_size, total_gtt_size;
249         LIST_HEAD(stolen);
250         int count, ret;
251
252         ret = mutex_lock_interruptible(&dev->struct_mutex);
253         if (ret)
254                 return ret;
255
256         total_obj_size = total_gtt_size = count = 0;
257         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258                 if (obj->stolen == NULL)
259                         continue;
260
261                 list_add(&obj->obj_exec_link, &stolen);
262
263                 total_obj_size += obj->base.size;
264                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
265                 count++;
266         }
267         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268                 if (obj->stolen == NULL)
269                         continue;
270
271                 list_add(&obj->obj_exec_link, &stolen);
272
273                 total_obj_size += obj->base.size;
274                 count++;
275         }
276         list_sort(NULL, &stolen, obj_rank_by_stolen);
277         seq_puts(m, "Stolen:\n");
278         while (!list_empty(&stolen)) {
279                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280                 seq_puts(m, "   ");
281                 describe_obj(m, obj);
282                 seq_putc(m, '\n');
283                 list_del_init(&obj->obj_exec_link);
284         }
285         mutex_unlock(&dev->struct_mutex);
286
287         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288                    count, total_obj_size, total_gtt_size);
289         return 0;
290 }
291
292 #define count_objects(list, member) do { \
293         list_for_each_entry(obj, list, member) { \
294                 size += i915_gem_obj_ggtt_size(obj); \
295                 ++count; \
296                 if (obj->map_and_fenceable) { \
297                         mappable_size += i915_gem_obj_ggtt_size(obj); \
298                         ++mappable_count; \
299                 } \
300         } \
301 } while (0)
302
303 struct file_stats {
304         struct drm_i915_file_private *file_priv;
305         int count;
306         size_t total, unbound;
307         size_t global, shared;
308         size_t active, inactive;
309 };
310
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313         struct drm_i915_gem_object *obj = ptr;
314         struct file_stats *stats = data;
315         struct i915_vma *vma;
316
317         stats->count++;
318         stats->total += obj->base.size;
319
320         if (obj->base.name || obj->base.dma_buf)
321                 stats->shared += obj->base.size;
322
323         if (USES_FULL_PPGTT(obj->base.dev)) {
324                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
325                         struct i915_hw_ppgtt *ppgtt;
326
327                         if (!drm_mm_node_allocated(&vma->node))
328                                 continue;
329
330                         if (i915_is_ggtt(vma->vm)) {
331                                 stats->global += obj->base.size;
332                                 continue;
333                         }
334
335                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336                         if (ppgtt->ctx && ppgtt->ctx->file_priv != stats->file_priv)
337                                 continue;
338
339                         if (obj->ring) /* XXX per-vma statistic */
340                                 stats->active += obj->base.size;
341                         else
342                                 stats->inactive += obj->base.size;
343
344                         return 0;
345                 }
346         } else {
347                 if (i915_gem_obj_ggtt_bound(obj)) {
348                         stats->global += obj->base.size;
349                         if (obj->ring)
350                                 stats->active += obj->base.size;
351                         else
352                                 stats->inactive += obj->base.size;
353                         return 0;
354                 }
355         }
356
357         if (!list_empty(&obj->global_list))
358                 stats->unbound += obj->base.size;
359
360         return 0;
361 }
362
363 #define count_vmas(list, member) do { \
364         list_for_each_entry(vma, list, member) { \
365                 size += i915_gem_obj_ggtt_size(vma->obj); \
366                 ++count; \
367                 if (vma->obj->map_and_fenceable) { \
368                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
369                         ++mappable_count; \
370                 } \
371         } \
372 } while (0)
373
374 static int i915_gem_object_info(struct seq_file *m, void* data)
375 {
376         struct drm_info_node *node = m->private;
377         struct drm_device *dev = node->minor->dev;
378         struct drm_i915_private *dev_priv = dev->dev_private;
379         u32 count, mappable_count, purgeable_count;
380         size_t size, mappable_size, purgeable_size;
381         struct drm_i915_gem_object *obj;
382         struct i915_address_space *vm = &dev_priv->gtt.base;
383         struct drm_file *file;
384         struct i915_vma *vma;
385         int ret;
386
387         ret = mutex_lock_interruptible(&dev->struct_mutex);
388         if (ret)
389                 return ret;
390
391         seq_printf(m, "%u objects, %zu bytes\n",
392                    dev_priv->mm.object_count,
393                    dev_priv->mm.object_memory);
394
395         size = count = mappable_size = mappable_count = 0;
396         count_objects(&dev_priv->mm.bound_list, global_list);
397         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
398                    count, mappable_count, size, mappable_size);
399
400         size = count = mappable_size = mappable_count = 0;
401         count_vmas(&vm->active_list, mm_list);
402         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
403                    count, mappable_count, size, mappable_size);
404
405         size = count = mappable_size = mappable_count = 0;
406         count_vmas(&vm->inactive_list, mm_list);
407         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
408                    count, mappable_count, size, mappable_size);
409
410         size = count = purgeable_size = purgeable_count = 0;
411         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
412                 size += obj->base.size, ++count;
413                 if (obj->madv == I915_MADV_DONTNEED)
414                         purgeable_size += obj->base.size, ++purgeable_count;
415         }
416         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
417
418         size = count = mappable_size = mappable_count = 0;
419         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420                 if (obj->fault_mappable) {
421                         size += i915_gem_obj_ggtt_size(obj);
422                         ++count;
423                 }
424                 if (obj->pin_mappable) {
425                         mappable_size += i915_gem_obj_ggtt_size(obj);
426                         ++mappable_count;
427                 }
428                 if (obj->madv == I915_MADV_DONTNEED) {
429                         purgeable_size += obj->base.size;
430                         ++purgeable_count;
431                 }
432         }
433         seq_printf(m, "%u purgeable objects, %zu bytes\n",
434                    purgeable_count, purgeable_size);
435         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
436                    mappable_count, mappable_size);
437         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
438                    count, size);
439
440         seq_printf(m, "%zu [%lu] gtt total\n",
441                    dev_priv->gtt.base.total,
442                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
443
444         seq_putc(m, '\n');
445         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
446                 struct file_stats stats;
447                 struct task_struct *task;
448
449                 memset(&stats, 0, sizeof(stats));
450                 stats.file_priv = file->driver_priv;
451                 spin_lock(&file->table_lock);
452                 idr_for_each(&file->object_idr, per_file_stats, &stats);
453                 spin_unlock(&file->table_lock);
454                 /*
455                  * Although we have a valid reference on file->pid, that does
456                  * not guarantee that the task_struct who called get_pid() is
457                  * still alive (e.g. get_pid(current) => fork() => exit()).
458                  * Therefore, we need to protect this ->comm access using RCU.
459                  */
460                 rcu_read_lock();
461                 task = pid_task(file->pid, PIDTYPE_PID);
462                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
463                            task ? task->comm : "<unknown>",
464                            stats.count,
465                            stats.total,
466                            stats.active,
467                            stats.inactive,
468                            stats.global,
469                            stats.shared,
470                            stats.unbound);
471                 rcu_read_unlock();
472         }
473
474         mutex_unlock(&dev->struct_mutex);
475
476         return 0;
477 }
478
479 static int i915_gem_gtt_info(struct seq_file *m, void *data)
480 {
481         struct drm_info_node *node = m->private;
482         struct drm_device *dev = node->minor->dev;
483         uintptr_t list = (uintptr_t) node->info_ent->data;
484         struct drm_i915_private *dev_priv = dev->dev_private;
485         struct drm_i915_gem_object *obj;
486         size_t total_obj_size, total_gtt_size;
487         int count, ret;
488
489         ret = mutex_lock_interruptible(&dev->struct_mutex);
490         if (ret)
491                 return ret;
492
493         total_obj_size = total_gtt_size = count = 0;
494         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
495                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
496                         continue;
497
498                 seq_puts(m, "   ");
499                 describe_obj(m, obj);
500                 seq_putc(m, '\n');
501                 total_obj_size += obj->base.size;
502                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
503                 count++;
504         }
505
506         mutex_unlock(&dev->struct_mutex);
507
508         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
509                    count, total_obj_size, total_gtt_size);
510
511         return 0;
512 }
513
514 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
515 {
516         struct drm_info_node *node = m->private;
517         struct drm_device *dev = node->minor->dev;
518         unsigned long flags;
519         struct intel_crtc *crtc;
520         int ret;
521
522         ret = mutex_lock_interruptible(&dev->struct_mutex);
523         if (ret)
524                 return ret;
525
526         for_each_intel_crtc(dev, crtc) {
527                 const char pipe = pipe_name(crtc->pipe);
528                 const char plane = plane_name(crtc->plane);
529                 struct intel_unpin_work *work;
530
531                 spin_lock_irqsave(&dev->event_lock, flags);
532                 work = crtc->unpin_work;
533                 if (work == NULL) {
534                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
535                                    pipe, plane);
536                 } else {
537                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
538                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
539                                            pipe, plane);
540                         } else {
541                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
542                                            pipe, plane);
543                         }
544                         if (work->enable_stall_check)
545                                 seq_puts(m, "Stall check enabled, ");
546                         else
547                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
548                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
549
550                         if (work->old_fb_obj) {
551                                 struct drm_i915_gem_object *obj = work->old_fb_obj;
552                                 if (obj)
553                                         seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
554                                                    i915_gem_obj_ggtt_offset(obj));
555                         }
556                         if (work->pending_flip_obj) {
557                                 struct drm_i915_gem_object *obj = work->pending_flip_obj;
558                                 if (obj)
559                                         seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
560                                                    i915_gem_obj_ggtt_offset(obj));
561                         }
562                 }
563                 spin_unlock_irqrestore(&dev->event_lock, flags);
564         }
565
566         mutex_unlock(&dev->struct_mutex);
567
568         return 0;
569 }
570
571 static int i915_gem_request_info(struct seq_file *m, void *data)
572 {
573         struct drm_info_node *node = m->private;
574         struct drm_device *dev = node->minor->dev;
575         struct drm_i915_private *dev_priv = dev->dev_private;
576         struct intel_engine_cs *ring;
577         struct drm_i915_gem_request *gem_request;
578         int ret, count, i;
579
580         ret = mutex_lock_interruptible(&dev->struct_mutex);
581         if (ret)
582                 return ret;
583
584         count = 0;
585         for_each_ring(ring, dev_priv, i) {
586                 if (list_empty(&ring->request_list))
587                         continue;
588
589                 seq_printf(m, "%s requests:\n", ring->name);
590                 list_for_each_entry(gem_request,
591                                     &ring->request_list,
592                                     list) {
593                         seq_printf(m, "    %d @ %d\n",
594                                    gem_request->seqno,
595                                    (int) (jiffies - gem_request->emitted_jiffies));
596                 }
597                 count++;
598         }
599         mutex_unlock(&dev->struct_mutex);
600
601         if (count == 0)
602                 seq_puts(m, "No requests\n");
603
604         return 0;
605 }
606
607 static void i915_ring_seqno_info(struct seq_file *m,
608                                  struct intel_engine_cs *ring)
609 {
610         if (ring->get_seqno) {
611                 seq_printf(m, "Current sequence (%s): %u\n",
612                            ring->name, ring->get_seqno(ring, false));
613         }
614 }
615
616 static int i915_gem_seqno_info(struct seq_file *m, void *data)
617 {
618         struct drm_info_node *node = m->private;
619         struct drm_device *dev = node->minor->dev;
620         struct drm_i915_private *dev_priv = dev->dev_private;
621         struct intel_engine_cs *ring;
622         int ret, i;
623
624         ret = mutex_lock_interruptible(&dev->struct_mutex);
625         if (ret)
626                 return ret;
627         intel_runtime_pm_get(dev_priv);
628
629         for_each_ring(ring, dev_priv, i)
630                 i915_ring_seqno_info(m, ring);
631
632         intel_runtime_pm_put(dev_priv);
633         mutex_unlock(&dev->struct_mutex);
634
635         return 0;
636 }
637
638
639 static int i915_interrupt_info(struct seq_file *m, void *data)
640 {
641         struct drm_info_node *node = m->private;
642         struct drm_device *dev = node->minor->dev;
643         struct drm_i915_private *dev_priv = dev->dev_private;
644         struct intel_engine_cs *ring;
645         int ret, i, pipe;
646
647         ret = mutex_lock_interruptible(&dev->struct_mutex);
648         if (ret)
649                 return ret;
650         intel_runtime_pm_get(dev_priv);
651
652         if (IS_CHERRYVIEW(dev)) {
653                 int i;
654                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
655                            I915_READ(GEN8_MASTER_IRQ));
656
657                 seq_printf(m, "Display IER:\t%08x\n",
658                            I915_READ(VLV_IER));
659                 seq_printf(m, "Display IIR:\t%08x\n",
660                            I915_READ(VLV_IIR));
661                 seq_printf(m, "Display IIR_RW:\t%08x\n",
662                            I915_READ(VLV_IIR_RW));
663                 seq_printf(m, "Display IMR:\t%08x\n",
664                            I915_READ(VLV_IMR));
665                 for_each_pipe(pipe)
666                         seq_printf(m, "Pipe %c stat:\t%08x\n",
667                                    pipe_name(pipe),
668                                    I915_READ(PIPESTAT(pipe)));
669
670                 seq_printf(m, "Port hotplug:\t%08x\n",
671                            I915_READ(PORT_HOTPLUG_EN));
672                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
673                            I915_READ(VLV_DPFLIPSTAT));
674                 seq_printf(m, "DPINVGTT:\t%08x\n",
675                            I915_READ(DPINVGTT));
676
677                 for (i = 0; i < 4; i++) {
678                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
679                                    i, I915_READ(GEN8_GT_IMR(i)));
680                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
681                                    i, I915_READ(GEN8_GT_IIR(i)));
682                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
683                                    i, I915_READ(GEN8_GT_IER(i)));
684                 }
685
686                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
687                            I915_READ(GEN8_PCU_IMR));
688                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
689                            I915_READ(GEN8_PCU_IIR));
690                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
691                            I915_READ(GEN8_PCU_IER));
692         } else if (INTEL_INFO(dev)->gen >= 8) {
693                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
694                            I915_READ(GEN8_MASTER_IRQ));
695
696                 for (i = 0; i < 4; i++) {
697                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
698                                    i, I915_READ(GEN8_GT_IMR(i)));
699                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
700                                    i, I915_READ(GEN8_GT_IIR(i)));
701                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
702                                    i, I915_READ(GEN8_GT_IER(i)));
703                 }
704
705                 for_each_pipe(pipe) {
706                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
707                                    pipe_name(pipe),
708                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
709                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
710                                    pipe_name(pipe),
711                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
712                         seq_printf(m, "Pipe %c IER:\t%08x\n",
713                                    pipe_name(pipe),
714                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
715                 }
716
717                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
718                            I915_READ(GEN8_DE_PORT_IMR));
719                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
720                            I915_READ(GEN8_DE_PORT_IIR));
721                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
722                            I915_READ(GEN8_DE_PORT_IER));
723
724                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
725                            I915_READ(GEN8_DE_MISC_IMR));
726                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
727                            I915_READ(GEN8_DE_MISC_IIR));
728                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
729                            I915_READ(GEN8_DE_MISC_IER));
730
731                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
732                            I915_READ(GEN8_PCU_IMR));
733                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
734                            I915_READ(GEN8_PCU_IIR));
735                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
736                            I915_READ(GEN8_PCU_IER));
737         } else if (IS_VALLEYVIEW(dev)) {
738                 seq_printf(m, "Display IER:\t%08x\n",
739                            I915_READ(VLV_IER));
740                 seq_printf(m, "Display IIR:\t%08x\n",
741                            I915_READ(VLV_IIR));
742                 seq_printf(m, "Display IIR_RW:\t%08x\n",
743                            I915_READ(VLV_IIR_RW));
744                 seq_printf(m, "Display IMR:\t%08x\n",
745                            I915_READ(VLV_IMR));
746                 for_each_pipe(pipe)
747                         seq_printf(m, "Pipe %c stat:\t%08x\n",
748                                    pipe_name(pipe),
749                                    I915_READ(PIPESTAT(pipe)));
750
751                 seq_printf(m, "Master IER:\t%08x\n",
752                            I915_READ(VLV_MASTER_IER));
753
754                 seq_printf(m, "Render IER:\t%08x\n",
755                            I915_READ(GTIER));
756                 seq_printf(m, "Render IIR:\t%08x\n",
757                            I915_READ(GTIIR));
758                 seq_printf(m, "Render IMR:\t%08x\n",
759                            I915_READ(GTIMR));
760
761                 seq_printf(m, "PM IER:\t\t%08x\n",
762                            I915_READ(GEN6_PMIER));
763                 seq_printf(m, "PM IIR:\t\t%08x\n",
764                            I915_READ(GEN6_PMIIR));
765                 seq_printf(m, "PM IMR:\t\t%08x\n",
766                            I915_READ(GEN6_PMIMR));
767
768                 seq_printf(m, "Port hotplug:\t%08x\n",
769                            I915_READ(PORT_HOTPLUG_EN));
770                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
771                            I915_READ(VLV_DPFLIPSTAT));
772                 seq_printf(m, "DPINVGTT:\t%08x\n",
773                            I915_READ(DPINVGTT));
774
775         } else if (!HAS_PCH_SPLIT(dev)) {
776                 seq_printf(m, "Interrupt enable:    %08x\n",
777                            I915_READ(IER));
778                 seq_printf(m, "Interrupt identity:  %08x\n",
779                            I915_READ(IIR));
780                 seq_printf(m, "Interrupt mask:      %08x\n",
781                            I915_READ(IMR));
782                 for_each_pipe(pipe)
783                         seq_printf(m, "Pipe %c stat:         %08x\n",
784                                    pipe_name(pipe),
785                                    I915_READ(PIPESTAT(pipe)));
786         } else {
787                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
788                            I915_READ(DEIER));
789                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
790                            I915_READ(DEIIR));
791                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
792                            I915_READ(DEIMR));
793                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
794                            I915_READ(SDEIER));
795                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
796                            I915_READ(SDEIIR));
797                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
798                            I915_READ(SDEIMR));
799                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
800                            I915_READ(GTIER));
801                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
802                            I915_READ(GTIIR));
803                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
804                            I915_READ(GTIMR));
805         }
806         for_each_ring(ring, dev_priv, i) {
807                 if (INTEL_INFO(dev)->gen >= 6) {
808                         seq_printf(m,
809                                    "Graphics Interrupt mask (%s):       %08x\n",
810                                    ring->name, I915_READ_IMR(ring));
811                 }
812                 i915_ring_seqno_info(m, ring);
813         }
814         intel_runtime_pm_put(dev_priv);
815         mutex_unlock(&dev->struct_mutex);
816
817         return 0;
818 }
819
820 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
821 {
822         struct drm_info_node *node = m->private;
823         struct drm_device *dev = node->minor->dev;
824         struct drm_i915_private *dev_priv = dev->dev_private;
825         int i, ret;
826
827         ret = mutex_lock_interruptible(&dev->struct_mutex);
828         if (ret)
829                 return ret;
830
831         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
832         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
833         for (i = 0; i < dev_priv->num_fence_regs; i++) {
834                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
835
836                 seq_printf(m, "Fence %d, pin count = %d, object = ",
837                            i, dev_priv->fence_regs[i].pin_count);
838                 if (obj == NULL)
839                         seq_puts(m, "unused");
840                 else
841                         describe_obj(m, obj);
842                 seq_putc(m, '\n');
843         }
844
845         mutex_unlock(&dev->struct_mutex);
846         return 0;
847 }
848
849 static int i915_hws_info(struct seq_file *m, void *data)
850 {
851         struct drm_info_node *node = m->private;
852         struct drm_device *dev = node->minor->dev;
853         struct drm_i915_private *dev_priv = dev->dev_private;
854         struct intel_engine_cs *ring;
855         const u32 *hws;
856         int i;
857
858         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
859         hws = ring->status_page.page_addr;
860         if (hws == NULL)
861                 return 0;
862
863         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
864                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
865                            i * 4,
866                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
867         }
868         return 0;
869 }
870
871 static ssize_t
872 i915_error_state_write(struct file *filp,
873                        const char __user *ubuf,
874                        size_t cnt,
875                        loff_t *ppos)
876 {
877         struct i915_error_state_file_priv *error_priv = filp->private_data;
878         struct drm_device *dev = error_priv->dev;
879         int ret;
880
881         DRM_DEBUG_DRIVER("Resetting error state\n");
882
883         ret = mutex_lock_interruptible(&dev->struct_mutex);
884         if (ret)
885                 return ret;
886
887         i915_destroy_error_state(dev);
888         mutex_unlock(&dev->struct_mutex);
889
890         return cnt;
891 }
892
893 static int i915_error_state_open(struct inode *inode, struct file *file)
894 {
895         struct drm_device *dev = inode->i_private;
896         struct i915_error_state_file_priv *error_priv;
897
898         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
899         if (!error_priv)
900                 return -ENOMEM;
901
902         error_priv->dev = dev;
903
904         i915_error_state_get(dev, error_priv);
905
906         file->private_data = error_priv;
907
908         return 0;
909 }
910
911 static int i915_error_state_release(struct inode *inode, struct file *file)
912 {
913         struct i915_error_state_file_priv *error_priv = file->private_data;
914
915         i915_error_state_put(error_priv);
916         kfree(error_priv);
917
918         return 0;
919 }
920
921 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
922                                      size_t count, loff_t *pos)
923 {
924         struct i915_error_state_file_priv *error_priv = file->private_data;
925         struct drm_i915_error_state_buf error_str;
926         loff_t tmp_pos = 0;
927         ssize_t ret_count = 0;
928         int ret;
929
930         ret = i915_error_state_buf_init(&error_str, count, *pos);
931         if (ret)
932                 return ret;
933
934         ret = i915_error_state_to_str(&error_str, error_priv);
935         if (ret)
936                 goto out;
937
938         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
939                                             error_str.buf,
940                                             error_str.bytes);
941
942         if (ret_count < 0)
943                 ret = ret_count;
944         else
945                 *pos = error_str.start + ret_count;
946 out:
947         i915_error_state_buf_release(&error_str);
948         return ret ?: ret_count;
949 }
950
951 static const struct file_operations i915_error_state_fops = {
952         .owner = THIS_MODULE,
953         .open = i915_error_state_open,
954         .read = i915_error_state_read,
955         .write = i915_error_state_write,
956         .llseek = default_llseek,
957         .release = i915_error_state_release,
958 };
959
960 static int
961 i915_next_seqno_get(void *data, u64 *val)
962 {
963         struct drm_device *dev = data;
964         struct drm_i915_private *dev_priv = dev->dev_private;
965         int ret;
966
967         ret = mutex_lock_interruptible(&dev->struct_mutex);
968         if (ret)
969                 return ret;
970
971         *val = dev_priv->next_seqno;
972         mutex_unlock(&dev->struct_mutex);
973
974         return 0;
975 }
976
977 static int
978 i915_next_seqno_set(void *data, u64 val)
979 {
980         struct drm_device *dev = data;
981         int ret;
982
983         ret = mutex_lock_interruptible(&dev->struct_mutex);
984         if (ret)
985                 return ret;
986
987         ret = i915_gem_set_seqno(dev, val);
988         mutex_unlock(&dev->struct_mutex);
989
990         return ret;
991 }
992
993 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
994                         i915_next_seqno_get, i915_next_seqno_set,
995                         "0x%llx\n");
996
997 static int i915_frequency_info(struct seq_file *m, void *unused)
998 {
999         struct drm_info_node *node = m->private;
1000         struct drm_device *dev = node->minor->dev;
1001         struct drm_i915_private *dev_priv = dev->dev_private;
1002         int ret = 0;
1003
1004         intel_runtime_pm_get(dev_priv);
1005
1006         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1007
1008         if (IS_GEN5(dev)) {
1009                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1010                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1011
1012                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1013                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1014                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1015                            MEMSTAT_VID_SHIFT);
1016                 seq_printf(m, "Current P-state: %d\n",
1017                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1018         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1019                    IS_BROADWELL(dev)) {
1020                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1021                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1022                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1023                 u32 rpmodectl, rpinclimit, rpdeclimit;
1024                 u32 rpstat, cagf, reqf;
1025                 u32 rpupei, rpcurup, rpprevup;
1026                 u32 rpdownei, rpcurdown, rpprevdown;
1027                 int max_freq;
1028
1029                 /* RPSTAT1 is in the GT power well */
1030                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1031                 if (ret)
1032                         goto out;
1033
1034                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1035
1036                 reqf = I915_READ(GEN6_RPNSWREQ);
1037                 reqf &= ~GEN6_TURBO_DISABLE;
1038                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1039                         reqf >>= 24;
1040                 else
1041                         reqf >>= 25;
1042                 reqf *= GT_FREQUENCY_MULTIPLIER;
1043
1044                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1045                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1046                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1047
1048                 rpstat = I915_READ(GEN6_RPSTAT1);
1049                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1050                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1051                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1052                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1053                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1054                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1055                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1056                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1057                 else
1058                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1059                 cagf *= GT_FREQUENCY_MULTIPLIER;
1060
1061                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1062                 mutex_unlock(&dev->struct_mutex);
1063
1064                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1065                            I915_READ(GEN6_PMIER),
1066                            I915_READ(GEN6_PMIMR),
1067                            I915_READ(GEN6_PMISR),
1068                            I915_READ(GEN6_PMIIR),
1069                            I915_READ(GEN6_PMINTRMSK));
1070                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1071                 seq_printf(m, "Render p-state ratio: %d\n",
1072                            (gt_perf_status & 0xff00) >> 8);
1073                 seq_printf(m, "Render p-state VID: %d\n",
1074                            gt_perf_status & 0xff);
1075                 seq_printf(m, "Render p-state limit: %d\n",
1076                            rp_state_limits & 0xff);
1077                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1078                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1079                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1080                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1081                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1082                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1083                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1084                            GEN6_CURICONT_MASK);
1085                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1086                            GEN6_CURBSYTAVG_MASK);
1087                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1088                            GEN6_CURBSYTAVG_MASK);
1089                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1090                            GEN6_CURIAVG_MASK);
1091                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1092                            GEN6_CURBSYTAVG_MASK);
1093                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1094                            GEN6_CURBSYTAVG_MASK);
1095
1096                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1097                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1098                            max_freq * GT_FREQUENCY_MULTIPLIER);
1099
1100                 max_freq = (rp_state_cap & 0xff00) >> 8;
1101                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1102                            max_freq * GT_FREQUENCY_MULTIPLIER);
1103
1104                 max_freq = rp_state_cap & 0xff;
1105                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1106                            max_freq * GT_FREQUENCY_MULTIPLIER);
1107
1108                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1109                            dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1110         } else if (IS_VALLEYVIEW(dev)) {
1111                 u32 freq_sts;
1112
1113                 mutex_lock(&dev_priv->rps.hw_lock);
1114                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1115                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1116                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1117
1118                 seq_printf(m, "max GPU freq: %d MHz\n",
1119                            vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1120
1121                 seq_printf(m, "min GPU freq: %d MHz\n",
1122                            vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1123
1124                 seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1125                            vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1126
1127                 seq_printf(m, "current GPU freq: %d MHz\n",
1128                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1129                 mutex_unlock(&dev_priv->rps.hw_lock);
1130         } else {
1131                 seq_puts(m, "no P-state info available\n");
1132         }
1133
1134 out:
1135         intel_runtime_pm_put(dev_priv);
1136         return ret;
1137 }
1138
1139 static int ironlake_drpc_info(struct seq_file *m)
1140 {
1141         struct drm_info_node *node = m->private;
1142         struct drm_device *dev = node->minor->dev;
1143         struct drm_i915_private *dev_priv = dev->dev_private;
1144         u32 rgvmodectl, rstdbyctl;
1145         u16 crstandvid;
1146         int ret;
1147
1148         ret = mutex_lock_interruptible(&dev->struct_mutex);
1149         if (ret)
1150                 return ret;
1151         intel_runtime_pm_get(dev_priv);
1152
1153         rgvmodectl = I915_READ(MEMMODECTL);
1154         rstdbyctl = I915_READ(RSTDBYCTL);
1155         crstandvid = I915_READ16(CRSTANDVID);
1156
1157         intel_runtime_pm_put(dev_priv);
1158         mutex_unlock(&dev->struct_mutex);
1159
1160         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1161                    "yes" : "no");
1162         seq_printf(m, "Boost freq: %d\n",
1163                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1164                    MEMMODE_BOOST_FREQ_SHIFT);
1165         seq_printf(m, "HW control enabled: %s\n",
1166                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1167         seq_printf(m, "SW control enabled: %s\n",
1168                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1169         seq_printf(m, "Gated voltage change: %s\n",
1170                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1171         seq_printf(m, "Starting frequency: P%d\n",
1172                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1173         seq_printf(m, "Max P-state: P%d\n",
1174                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1175         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1176         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1177         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1178         seq_printf(m, "Render standby enabled: %s\n",
1179                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1180         seq_puts(m, "Current RS state: ");
1181         switch (rstdbyctl & RSX_STATUS_MASK) {
1182         case RSX_STATUS_ON:
1183                 seq_puts(m, "on\n");
1184                 break;
1185         case RSX_STATUS_RC1:
1186                 seq_puts(m, "RC1\n");
1187                 break;
1188         case RSX_STATUS_RC1E:
1189                 seq_puts(m, "RC1E\n");
1190                 break;
1191         case RSX_STATUS_RS1:
1192                 seq_puts(m, "RS1\n");
1193                 break;
1194         case RSX_STATUS_RS2:
1195                 seq_puts(m, "RS2 (RC6)\n");
1196                 break;
1197         case RSX_STATUS_RS3:
1198                 seq_puts(m, "RC3 (RC6+)\n");
1199                 break;
1200         default:
1201                 seq_puts(m, "unknown\n");
1202                 break;
1203         }
1204
1205         return 0;
1206 }
1207
1208 static int vlv_drpc_info(struct seq_file *m)
1209 {
1210
1211         struct drm_info_node *node = m->private;
1212         struct drm_device *dev = node->minor->dev;
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214         u32 rpmodectl1, rcctl1;
1215         unsigned fw_rendercount = 0, fw_mediacount = 0;
1216
1217         intel_runtime_pm_get(dev_priv);
1218
1219         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1220         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1221
1222         intel_runtime_pm_put(dev_priv);
1223
1224         seq_printf(m, "Video Turbo Mode: %s\n",
1225                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1226         seq_printf(m, "Turbo enabled: %s\n",
1227                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1228         seq_printf(m, "HW control enabled: %s\n",
1229                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1230         seq_printf(m, "SW control enabled: %s\n",
1231                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1232                           GEN6_RP_MEDIA_SW_MODE));
1233         seq_printf(m, "RC6 Enabled: %s\n",
1234                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1235                                         GEN6_RC_CTL_EI_MODE(1))));
1236         seq_printf(m, "Render Power Well: %s\n",
1237                         (I915_READ(VLV_GTLC_PW_STATUS) &
1238                                 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1239         seq_printf(m, "Media Power Well: %s\n",
1240                         (I915_READ(VLV_GTLC_PW_STATUS) &
1241                                 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1242
1243         seq_printf(m, "Render RC6 residency since boot: %u\n",
1244                    I915_READ(VLV_GT_RENDER_RC6));
1245         seq_printf(m, "Media RC6 residency since boot: %u\n",
1246                    I915_READ(VLV_GT_MEDIA_RC6));
1247
1248         spin_lock_irq(&dev_priv->uncore.lock);
1249         fw_rendercount = dev_priv->uncore.fw_rendercount;
1250         fw_mediacount = dev_priv->uncore.fw_mediacount;
1251         spin_unlock_irq(&dev_priv->uncore.lock);
1252
1253         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1254         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1255
1256
1257         return 0;
1258 }
1259
1260
1261 static int gen6_drpc_info(struct seq_file *m)
1262 {
1263
1264         struct drm_info_node *node = m->private;
1265         struct drm_device *dev = node->minor->dev;
1266         struct drm_i915_private *dev_priv = dev->dev_private;
1267         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1268         unsigned forcewake_count;
1269         int count = 0, ret;
1270
1271         ret = mutex_lock_interruptible(&dev->struct_mutex);
1272         if (ret)
1273                 return ret;
1274         intel_runtime_pm_get(dev_priv);
1275
1276         spin_lock_irq(&dev_priv->uncore.lock);
1277         forcewake_count = dev_priv->uncore.forcewake_count;
1278         spin_unlock_irq(&dev_priv->uncore.lock);
1279
1280         if (forcewake_count) {
1281                 seq_puts(m, "RC information inaccurate because somebody "
1282                             "holds a forcewake reference \n");
1283         } else {
1284                 /* NB: we cannot use forcewake, else we read the wrong values */
1285                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1286                         udelay(10);
1287                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1288         }
1289
1290         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1291         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1292
1293         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1294         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1295         mutex_unlock(&dev->struct_mutex);
1296         mutex_lock(&dev_priv->rps.hw_lock);
1297         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1298         mutex_unlock(&dev_priv->rps.hw_lock);
1299
1300         intel_runtime_pm_put(dev_priv);
1301
1302         seq_printf(m, "Video Turbo Mode: %s\n",
1303                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1304         seq_printf(m, "HW control enabled: %s\n",
1305                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1306         seq_printf(m, "SW control enabled: %s\n",
1307                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1308                           GEN6_RP_MEDIA_SW_MODE));
1309         seq_printf(m, "RC1e Enabled: %s\n",
1310                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1311         seq_printf(m, "RC6 Enabled: %s\n",
1312                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1313         seq_printf(m, "Deep RC6 Enabled: %s\n",
1314                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1315         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1316                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1317         seq_puts(m, "Current RC state: ");
1318         switch (gt_core_status & GEN6_RCn_MASK) {
1319         case GEN6_RC0:
1320                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1321                         seq_puts(m, "Core Power Down\n");
1322                 else
1323                         seq_puts(m, "on\n");
1324                 break;
1325         case GEN6_RC3:
1326                 seq_puts(m, "RC3\n");
1327                 break;
1328         case GEN6_RC6:
1329                 seq_puts(m, "RC6\n");
1330                 break;
1331         case GEN6_RC7:
1332                 seq_puts(m, "RC7\n");
1333                 break;
1334         default:
1335                 seq_puts(m, "Unknown\n");
1336                 break;
1337         }
1338
1339         seq_printf(m, "Core Power Down: %s\n",
1340                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1341
1342         /* Not exactly sure what this is */
1343         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1344                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1345         seq_printf(m, "RC6 residency since boot: %u\n",
1346                    I915_READ(GEN6_GT_GFX_RC6));
1347         seq_printf(m, "RC6+ residency since boot: %u\n",
1348                    I915_READ(GEN6_GT_GFX_RC6p));
1349         seq_printf(m, "RC6++ residency since boot: %u\n",
1350                    I915_READ(GEN6_GT_GFX_RC6pp));
1351
1352         seq_printf(m, "RC6   voltage: %dmV\n",
1353                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1354         seq_printf(m, "RC6+  voltage: %dmV\n",
1355                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1356         seq_printf(m, "RC6++ voltage: %dmV\n",
1357                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1358         return 0;
1359 }
1360
1361 static int i915_drpc_info(struct seq_file *m, void *unused)
1362 {
1363         struct drm_info_node *node = m->private;
1364         struct drm_device *dev = node->minor->dev;
1365
1366         if (IS_VALLEYVIEW(dev))
1367                 return vlv_drpc_info(m);
1368         else if (IS_GEN6(dev) || IS_GEN7(dev))
1369                 return gen6_drpc_info(m);
1370         else
1371                 return ironlake_drpc_info(m);
1372 }
1373
1374 static int i915_fbc_status(struct seq_file *m, void *unused)
1375 {
1376         struct drm_info_node *node = m->private;
1377         struct drm_device *dev = node->minor->dev;
1378         struct drm_i915_private *dev_priv = dev->dev_private;
1379
1380         if (!HAS_FBC(dev)) {
1381                 seq_puts(m, "FBC unsupported on this chipset\n");
1382                 return 0;
1383         }
1384
1385         intel_runtime_pm_get(dev_priv);
1386
1387         if (intel_fbc_enabled(dev)) {
1388                 seq_puts(m, "FBC enabled\n");
1389         } else {
1390                 seq_puts(m, "FBC disabled: ");
1391                 switch (dev_priv->fbc.no_fbc_reason) {
1392                 case FBC_OK:
1393                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1394                         break;
1395                 case FBC_UNSUPPORTED:
1396                         seq_puts(m, "unsupported by this chipset");
1397                         break;
1398                 case FBC_NO_OUTPUT:
1399                         seq_puts(m, "no outputs");
1400                         break;
1401                 case FBC_STOLEN_TOO_SMALL:
1402                         seq_puts(m, "not enough stolen memory");
1403                         break;
1404                 case FBC_UNSUPPORTED_MODE:
1405                         seq_puts(m, "mode not supported");
1406                         break;
1407                 case FBC_MODE_TOO_LARGE:
1408                         seq_puts(m, "mode too large");
1409                         break;
1410                 case FBC_BAD_PLANE:
1411                         seq_puts(m, "FBC unsupported on plane");
1412                         break;
1413                 case FBC_NOT_TILED:
1414                         seq_puts(m, "scanout buffer not tiled");
1415                         break;
1416                 case FBC_MULTIPLE_PIPES:
1417                         seq_puts(m, "multiple pipes are enabled");
1418                         break;
1419                 case FBC_MODULE_PARAM:
1420                         seq_puts(m, "disabled per module param (default off)");
1421                         break;
1422                 case FBC_CHIP_DEFAULT:
1423                         seq_puts(m, "disabled per chip default");
1424                         break;
1425                 default:
1426                         seq_puts(m, "unknown reason");
1427                 }
1428                 seq_putc(m, '\n');
1429         }
1430
1431         intel_runtime_pm_put(dev_priv);
1432
1433         return 0;
1434 }
1435
1436 static int i915_ips_status(struct seq_file *m, void *unused)
1437 {
1438         struct drm_info_node *node = m->private;
1439         struct drm_device *dev = node->minor->dev;
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441
1442         if (!HAS_IPS(dev)) {
1443                 seq_puts(m, "not supported\n");
1444                 return 0;
1445         }
1446
1447         intel_runtime_pm_get(dev_priv);
1448
1449         seq_printf(m, "Enabled by kernel parameter: %s\n",
1450                    yesno(i915.enable_ips));
1451
1452         if (INTEL_INFO(dev)->gen >= 8) {
1453                 seq_puts(m, "Currently: unknown\n");
1454         } else {
1455                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1456                         seq_puts(m, "Currently: enabled\n");
1457                 else
1458                         seq_puts(m, "Currently: disabled\n");
1459         }
1460
1461         intel_runtime_pm_put(dev_priv);
1462
1463         return 0;
1464 }
1465
1466 static int i915_sr_status(struct seq_file *m, void *unused)
1467 {
1468         struct drm_info_node *node = m->private;
1469         struct drm_device *dev = node->minor->dev;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         bool sr_enabled = false;
1472
1473         intel_runtime_pm_get(dev_priv);
1474
1475         if (HAS_PCH_SPLIT(dev))
1476                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1477         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1478                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1479         else if (IS_I915GM(dev))
1480                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1481         else if (IS_PINEVIEW(dev))
1482                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1483
1484         intel_runtime_pm_put(dev_priv);
1485
1486         seq_printf(m, "self-refresh: %s\n",
1487                    sr_enabled ? "enabled" : "disabled");
1488
1489         return 0;
1490 }
1491
1492 static int i915_emon_status(struct seq_file *m, void *unused)
1493 {
1494         struct drm_info_node *node = m->private;
1495         struct drm_device *dev = node->minor->dev;
1496         struct drm_i915_private *dev_priv = dev->dev_private;
1497         unsigned long temp, chipset, gfx;
1498         int ret;
1499
1500         if (!IS_GEN5(dev))
1501                 return -ENODEV;
1502
1503         ret = mutex_lock_interruptible(&dev->struct_mutex);
1504         if (ret)
1505                 return ret;
1506
1507         temp = i915_mch_val(dev_priv);
1508         chipset = i915_chipset_val(dev_priv);
1509         gfx = i915_gfx_val(dev_priv);
1510         mutex_unlock(&dev->struct_mutex);
1511
1512         seq_printf(m, "GMCH temp: %ld\n", temp);
1513         seq_printf(m, "Chipset power: %ld\n", chipset);
1514         seq_printf(m, "GFX power: %ld\n", gfx);
1515         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1516
1517         return 0;
1518 }
1519
1520 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1521 {
1522         struct drm_info_node *node = m->private;
1523         struct drm_device *dev = node->minor->dev;
1524         struct drm_i915_private *dev_priv = dev->dev_private;
1525         int ret = 0;
1526         int gpu_freq, ia_freq;
1527
1528         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1529                 seq_puts(m, "unsupported on this chipset\n");
1530                 return 0;
1531         }
1532
1533         intel_runtime_pm_get(dev_priv);
1534
1535         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1536
1537         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1538         if (ret)
1539                 goto out;
1540
1541         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1542
1543         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1544              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1545              gpu_freq++) {
1546                 ia_freq = gpu_freq;
1547                 sandybridge_pcode_read(dev_priv,
1548                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1549                                        &ia_freq);
1550                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1551                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1552                            ((ia_freq >> 0) & 0xff) * 100,
1553                            ((ia_freq >> 8) & 0xff) * 100);
1554         }
1555
1556         mutex_unlock(&dev_priv->rps.hw_lock);
1557
1558 out:
1559         intel_runtime_pm_put(dev_priv);
1560         return ret;
1561 }
1562
1563 static int i915_opregion(struct seq_file *m, void *unused)
1564 {
1565         struct drm_info_node *node = m->private;
1566         struct drm_device *dev = node->minor->dev;
1567         struct drm_i915_private *dev_priv = dev->dev_private;
1568         struct intel_opregion *opregion = &dev_priv->opregion;
1569         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1570         int ret;
1571
1572         if (data == NULL)
1573                 return -ENOMEM;
1574
1575         ret = mutex_lock_interruptible(&dev->struct_mutex);
1576         if (ret)
1577                 goto out;
1578
1579         if (opregion->header) {
1580                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1581                 seq_write(m, data, OPREGION_SIZE);
1582         }
1583
1584         mutex_unlock(&dev->struct_mutex);
1585
1586 out:
1587         kfree(data);
1588         return 0;
1589 }
1590
1591 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1592 {
1593         struct drm_info_node *node = m->private;
1594         struct drm_device *dev = node->minor->dev;
1595         struct intel_fbdev *ifbdev = NULL;
1596         struct intel_framebuffer *fb;
1597
1598 #ifdef CONFIG_DRM_I915_FBDEV
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600
1601         ifbdev = dev_priv->fbdev;
1602         fb = to_intel_framebuffer(ifbdev->helper.fb);
1603
1604         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1605                    fb->base.width,
1606                    fb->base.height,
1607                    fb->base.depth,
1608                    fb->base.bits_per_pixel,
1609                    atomic_read(&fb->base.refcount.refcount));
1610         describe_obj(m, fb->obj);
1611         seq_putc(m, '\n');
1612 #endif
1613
1614         mutex_lock(&dev->mode_config.fb_lock);
1615         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1616                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1617                         continue;
1618
1619                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1620                            fb->base.width,
1621                            fb->base.height,
1622                            fb->base.depth,
1623                            fb->base.bits_per_pixel,
1624                            atomic_read(&fb->base.refcount.refcount));
1625                 describe_obj(m, fb->obj);
1626                 seq_putc(m, '\n');
1627         }
1628         mutex_unlock(&dev->mode_config.fb_lock);
1629
1630         return 0;
1631 }
1632
1633 static int i915_context_status(struct seq_file *m, void *unused)
1634 {
1635         struct drm_info_node *node = m->private;
1636         struct drm_device *dev = node->minor->dev;
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638         struct intel_engine_cs *ring;
1639         struct intel_context *ctx;
1640         int ret, i;
1641
1642         ret = mutex_lock_interruptible(&dev->struct_mutex);
1643         if (ret)
1644                 return ret;
1645
1646         if (dev_priv->ips.pwrctx) {
1647                 seq_puts(m, "power context ");
1648                 describe_obj(m, dev_priv->ips.pwrctx);
1649                 seq_putc(m, '\n');
1650         }
1651
1652         if (dev_priv->ips.renderctx) {
1653                 seq_puts(m, "render context ");
1654                 describe_obj(m, dev_priv->ips.renderctx);
1655                 seq_putc(m, '\n');
1656         }
1657
1658         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1659                 if (ctx->legacy_hw_ctx.rcs_state == NULL)
1660                         continue;
1661
1662                 seq_puts(m, "HW context ");
1663                 describe_ctx(m, ctx);
1664                 for_each_ring(ring, dev_priv, i)
1665                         if (ring->default_context == ctx)
1666                                 seq_printf(m, "(default context %s) ", ring->name);
1667
1668                 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1669                 seq_putc(m, '\n');
1670         }
1671
1672         mutex_unlock(&dev->struct_mutex);
1673
1674         return 0;
1675 }
1676
1677 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1678 {
1679         struct drm_info_node *node = m->private;
1680         struct drm_device *dev = node->minor->dev;
1681         struct drm_i915_private *dev_priv = dev->dev_private;
1682         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1683
1684         spin_lock_irq(&dev_priv->uncore.lock);
1685         if (IS_VALLEYVIEW(dev)) {
1686                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1687                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1688         } else
1689                 forcewake_count = dev_priv->uncore.forcewake_count;
1690         spin_unlock_irq(&dev_priv->uncore.lock);
1691
1692         if (IS_VALLEYVIEW(dev)) {
1693                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1694                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1695         } else
1696                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1697
1698         return 0;
1699 }
1700
1701 static const char *swizzle_string(unsigned swizzle)
1702 {
1703         switch (swizzle) {
1704         case I915_BIT_6_SWIZZLE_NONE:
1705                 return "none";
1706         case I915_BIT_6_SWIZZLE_9:
1707                 return "bit9";
1708         case I915_BIT_6_SWIZZLE_9_10:
1709                 return "bit9/bit10";
1710         case I915_BIT_6_SWIZZLE_9_11:
1711                 return "bit9/bit11";
1712         case I915_BIT_6_SWIZZLE_9_10_11:
1713                 return "bit9/bit10/bit11";
1714         case I915_BIT_6_SWIZZLE_9_17:
1715                 return "bit9/bit17";
1716         case I915_BIT_6_SWIZZLE_9_10_17:
1717                 return "bit9/bit10/bit17";
1718         case I915_BIT_6_SWIZZLE_UNKNOWN:
1719                 return "unknown";
1720         }
1721
1722         return "bug";
1723 }
1724
1725 static int i915_swizzle_info(struct seq_file *m, void *data)
1726 {
1727         struct drm_info_node *node = m->private;
1728         struct drm_device *dev = node->minor->dev;
1729         struct drm_i915_private *dev_priv = dev->dev_private;
1730         int ret;
1731
1732         ret = mutex_lock_interruptible(&dev->struct_mutex);
1733         if (ret)
1734                 return ret;
1735         intel_runtime_pm_get(dev_priv);
1736
1737         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1738                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1739         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1740                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1741
1742         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1743                 seq_printf(m, "DDC = 0x%08x\n",
1744                            I915_READ(DCC));
1745                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1746                            I915_READ16(C0DRB3));
1747                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1748                            I915_READ16(C1DRB3));
1749         } else if (INTEL_INFO(dev)->gen >= 6) {
1750                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1751                            I915_READ(MAD_DIMM_C0));
1752                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1753                            I915_READ(MAD_DIMM_C1));
1754                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1755                            I915_READ(MAD_DIMM_C2));
1756                 seq_printf(m, "TILECTL = 0x%08x\n",
1757                            I915_READ(TILECTL));
1758                 if (IS_GEN8(dev))
1759                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1760                                    I915_READ(GAMTARBMODE));
1761                 else
1762                         seq_printf(m, "ARB_MODE = 0x%08x\n",
1763                                    I915_READ(ARB_MODE));
1764                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1765                            I915_READ(DISP_ARB_CTL));
1766         }
1767         intel_runtime_pm_put(dev_priv);
1768         mutex_unlock(&dev->struct_mutex);
1769
1770         return 0;
1771 }
1772
1773 static int per_file_ctx(int id, void *ptr, void *data)
1774 {
1775         struct intel_context *ctx = ptr;
1776         struct seq_file *m = data;
1777         struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
1778
1779         if (i915_gem_context_is_default(ctx))
1780                 seq_puts(m, "  default context:\n");
1781         else
1782                 seq_printf(m, "  context %d:\n", ctx->user_handle);
1783         ppgtt->debug_dump(ppgtt, m);
1784
1785         return 0;
1786 }
1787
1788 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1789 {
1790         struct drm_i915_private *dev_priv = dev->dev_private;
1791         struct intel_engine_cs *ring;
1792         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1793         int unused, i;
1794
1795         if (!ppgtt)
1796                 return;
1797
1798         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1799         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
1800         for_each_ring(ring, dev_priv, unused) {
1801                 seq_printf(m, "%s\n", ring->name);
1802                 for (i = 0; i < 4; i++) {
1803                         u32 offset = 0x270 + i * 8;
1804                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1805                         pdp <<= 32;
1806                         pdp |= I915_READ(ring->mmio_base + offset);
1807                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1808                 }
1809         }
1810 }
1811
1812 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1813 {
1814         struct drm_i915_private *dev_priv = dev->dev_private;
1815         struct intel_engine_cs *ring;
1816         struct drm_file *file;
1817         int i;
1818
1819         if (INTEL_INFO(dev)->gen == 6)
1820                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1821
1822         for_each_ring(ring, dev_priv, i) {
1823                 seq_printf(m, "%s\n", ring->name);
1824                 if (INTEL_INFO(dev)->gen == 7)
1825                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1826                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1827                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1828                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1829         }
1830         if (dev_priv->mm.aliasing_ppgtt) {
1831                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1832
1833                 seq_puts(m, "aliasing PPGTT:\n");
1834                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1835
1836                 ppgtt->debug_dump(ppgtt, m);
1837         } else
1838                 return;
1839
1840         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
1841                 struct drm_i915_file_private *file_priv = file->driver_priv;
1842
1843                 seq_printf(m, "proc: %s\n",
1844                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
1845                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
1846         }
1847         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1848 }
1849
1850 static int i915_ppgtt_info(struct seq_file *m, void *data)
1851 {
1852         struct drm_info_node *node = m->private;
1853         struct drm_device *dev = node->minor->dev;
1854         struct drm_i915_private *dev_priv = dev->dev_private;
1855
1856         int ret = mutex_lock_interruptible(&dev->struct_mutex);
1857         if (ret)
1858                 return ret;
1859         intel_runtime_pm_get(dev_priv);
1860
1861         if (INTEL_INFO(dev)->gen >= 8)
1862                 gen8_ppgtt_info(m, dev);
1863         else if (INTEL_INFO(dev)->gen >= 6)
1864                 gen6_ppgtt_info(m, dev);
1865
1866         intel_runtime_pm_put(dev_priv);
1867         mutex_unlock(&dev->struct_mutex);
1868
1869         return 0;
1870 }
1871
1872 static int i915_llc(struct seq_file *m, void *data)
1873 {
1874         struct drm_info_node *node = m->private;
1875         struct drm_device *dev = node->minor->dev;
1876         struct drm_i915_private *dev_priv = dev->dev_private;
1877
1878         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
1879         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1880         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1881
1882         return 0;
1883 }
1884
1885 static int i915_edp_psr_status(struct seq_file *m, void *data)
1886 {
1887         struct drm_info_node *node = m->private;
1888         struct drm_device *dev = node->minor->dev;
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         u32 psrperf = 0;
1891         bool enabled = false;
1892
1893         intel_runtime_pm_get(dev_priv);
1894
1895         mutex_lock(&dev_priv->psr.lock);
1896         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1897         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1898         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
1899         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
1900         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
1901                    dev_priv->psr.busy_frontbuffer_bits);
1902         seq_printf(m, "Re-enable work scheduled: %s\n",
1903                    yesno(work_busy(&dev_priv->psr.work.work)));
1904
1905         enabled = HAS_PSR(dev) &&
1906                 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1907         seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
1908
1909         if (HAS_PSR(dev))
1910                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1911                         EDP_PSR_PERF_CNT_MASK;
1912         seq_printf(m, "Performance_Counter: %u\n", psrperf);
1913         mutex_unlock(&dev_priv->psr.lock);
1914
1915         intel_runtime_pm_put(dev_priv);
1916         return 0;
1917 }
1918
1919 static int i915_sink_crc(struct seq_file *m, void *data)
1920 {
1921         struct drm_info_node *node = m->private;
1922         struct drm_device *dev = node->minor->dev;
1923         struct intel_encoder *encoder;
1924         struct intel_connector *connector;
1925         struct intel_dp *intel_dp = NULL;
1926         int ret;
1927         u8 crc[6];
1928
1929         drm_modeset_lock_all(dev);
1930         list_for_each_entry(connector, &dev->mode_config.connector_list,
1931                             base.head) {
1932
1933                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
1934                         continue;
1935
1936                 if (!connector->base.encoder)
1937                         continue;
1938
1939                 encoder = to_intel_encoder(connector->base.encoder);
1940                 if (encoder->type != INTEL_OUTPUT_EDP)
1941                         continue;
1942
1943                 intel_dp = enc_to_intel_dp(&encoder->base);
1944
1945                 ret = intel_dp_sink_crc(intel_dp, crc);
1946                 if (ret)
1947                         goto out;
1948
1949                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
1950                            crc[0], crc[1], crc[2],
1951                            crc[3], crc[4], crc[5]);
1952                 goto out;
1953         }
1954         ret = -ENODEV;
1955 out:
1956         drm_modeset_unlock_all(dev);
1957         return ret;
1958 }
1959
1960 static int i915_energy_uJ(struct seq_file *m, void *data)
1961 {
1962         struct drm_info_node *node = m->private;
1963         struct drm_device *dev = node->minor->dev;
1964         struct drm_i915_private *dev_priv = dev->dev_private;
1965         u64 power;
1966         u32 units;
1967
1968         if (INTEL_INFO(dev)->gen < 6)
1969                 return -ENODEV;
1970
1971         intel_runtime_pm_get(dev_priv);
1972
1973         rdmsrl(MSR_RAPL_POWER_UNIT, power);
1974         power = (power & 0x1f00) >> 8;
1975         units = 1000000 / (1 << power); /* convert to uJ */
1976         power = I915_READ(MCH_SECP_NRG_STTS);
1977         power *= units;
1978
1979         intel_runtime_pm_put(dev_priv);
1980
1981         seq_printf(m, "%llu", (long long unsigned)power);
1982
1983         return 0;
1984 }
1985
1986 static int i915_pc8_status(struct seq_file *m, void *unused)
1987 {
1988         struct drm_info_node *node = m->private;
1989         struct drm_device *dev = node->minor->dev;
1990         struct drm_i915_private *dev_priv = dev->dev_private;
1991
1992         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
1993                 seq_puts(m, "not supported\n");
1994                 return 0;
1995         }
1996
1997         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
1998         seq_printf(m, "IRQs disabled: %s\n",
1999                    yesno(!intel_irqs_enabled(dev_priv)));
2000
2001         return 0;
2002 }
2003
2004 static const char *power_domain_str(enum intel_display_power_domain domain)
2005 {
2006         switch (domain) {
2007         case POWER_DOMAIN_PIPE_A:
2008                 return "PIPE_A";
2009         case POWER_DOMAIN_PIPE_B:
2010                 return "PIPE_B";
2011         case POWER_DOMAIN_PIPE_C:
2012                 return "PIPE_C";
2013         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2014                 return "PIPE_A_PANEL_FITTER";
2015         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2016                 return "PIPE_B_PANEL_FITTER";
2017         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2018                 return "PIPE_C_PANEL_FITTER";
2019         case POWER_DOMAIN_TRANSCODER_A:
2020                 return "TRANSCODER_A";
2021         case POWER_DOMAIN_TRANSCODER_B:
2022                 return "TRANSCODER_B";
2023         case POWER_DOMAIN_TRANSCODER_C:
2024                 return "TRANSCODER_C";
2025         case POWER_DOMAIN_TRANSCODER_EDP:
2026                 return "TRANSCODER_EDP";
2027         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2028                 return "PORT_DDI_A_2_LANES";
2029         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2030                 return "PORT_DDI_A_4_LANES";
2031         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2032                 return "PORT_DDI_B_2_LANES";
2033         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2034                 return "PORT_DDI_B_4_LANES";
2035         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2036                 return "PORT_DDI_C_2_LANES";
2037         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2038                 return "PORT_DDI_C_4_LANES";
2039         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2040                 return "PORT_DDI_D_2_LANES";
2041         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2042                 return "PORT_DDI_D_4_LANES";
2043         case POWER_DOMAIN_PORT_DSI:
2044                 return "PORT_DSI";
2045         case POWER_DOMAIN_PORT_CRT:
2046                 return "PORT_CRT";
2047         case POWER_DOMAIN_PORT_OTHER:
2048                 return "PORT_OTHER";
2049         case POWER_DOMAIN_VGA:
2050                 return "VGA";
2051         case POWER_DOMAIN_AUDIO:
2052                 return "AUDIO";
2053         case POWER_DOMAIN_PLLS:
2054                 return "PLLS";
2055         case POWER_DOMAIN_INIT:
2056                 return "INIT";
2057         default:
2058                 WARN_ON(1);
2059                 return "?";
2060         }
2061 }
2062
2063 static int i915_power_domain_info(struct seq_file *m, void *unused)
2064 {
2065         struct drm_info_node *node = m->private;
2066         struct drm_device *dev = node->minor->dev;
2067         struct drm_i915_private *dev_priv = dev->dev_private;
2068         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2069         int i;
2070
2071         mutex_lock(&power_domains->lock);
2072
2073         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2074         for (i = 0; i < power_domains->power_well_count; i++) {
2075                 struct i915_power_well *power_well;
2076                 enum intel_display_power_domain power_domain;
2077
2078                 power_well = &power_domains->power_wells[i];
2079                 seq_printf(m, "%-25s %d\n", power_well->name,
2080                            power_well->count);
2081
2082                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2083                      power_domain++) {
2084                         if (!(BIT(power_domain) & power_well->domains))
2085                                 continue;
2086
2087                         seq_printf(m, "  %-23s %d\n",
2088                                  power_domain_str(power_domain),
2089                                  power_domains->domain_use_count[power_domain]);
2090                 }
2091         }
2092
2093         mutex_unlock(&power_domains->lock);
2094
2095         return 0;
2096 }
2097
2098 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2099                                  struct drm_display_mode *mode)
2100 {
2101         int i;
2102
2103         for (i = 0; i < tabs; i++)
2104                 seq_putc(m, '\t');
2105
2106         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2107                    mode->base.id, mode->name,
2108                    mode->vrefresh, mode->clock,
2109                    mode->hdisplay, mode->hsync_start,
2110                    mode->hsync_end, mode->htotal,
2111                    mode->vdisplay, mode->vsync_start,
2112                    mode->vsync_end, mode->vtotal,
2113                    mode->type, mode->flags);
2114 }
2115
2116 static void intel_encoder_info(struct seq_file *m,
2117                                struct intel_crtc *intel_crtc,
2118                                struct intel_encoder *intel_encoder)
2119 {
2120         struct drm_info_node *node = m->private;
2121         struct drm_device *dev = node->minor->dev;
2122         struct drm_crtc *crtc = &intel_crtc->base;
2123         struct intel_connector *intel_connector;
2124         struct drm_encoder *encoder;
2125
2126         encoder = &intel_encoder->base;
2127         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2128                    encoder->base.id, encoder->name);
2129         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2130                 struct drm_connector *connector = &intel_connector->base;
2131                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2132                            connector->base.id,
2133                            connector->name,
2134                            drm_get_connector_status_name(connector->status));
2135                 if (connector->status == connector_status_connected) {
2136                         struct drm_display_mode *mode = &crtc->mode;
2137                         seq_printf(m, ", mode:\n");
2138                         intel_seq_print_mode(m, 2, mode);
2139                 } else {
2140                         seq_putc(m, '\n');
2141                 }
2142         }
2143 }
2144
2145 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2146 {
2147         struct drm_info_node *node = m->private;
2148         struct drm_device *dev = node->minor->dev;
2149         struct drm_crtc *crtc = &intel_crtc->base;
2150         struct intel_encoder *intel_encoder;
2151
2152         if (crtc->primary->fb)
2153                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2154                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2155                            crtc->primary->fb->width, crtc->primary->fb->height);
2156         else
2157                 seq_puts(m, "\tprimary plane disabled\n");
2158         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2159                 intel_encoder_info(m, intel_crtc, intel_encoder);
2160 }
2161
2162 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2163 {
2164         struct drm_display_mode *mode = panel->fixed_mode;
2165
2166         seq_printf(m, "\tfixed mode:\n");
2167         intel_seq_print_mode(m, 2, mode);
2168 }
2169
2170 static void intel_dp_info(struct seq_file *m,
2171                           struct intel_connector *intel_connector)
2172 {
2173         struct intel_encoder *intel_encoder = intel_connector->encoder;
2174         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2175
2176         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2177         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2178                    "no");
2179         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2180                 intel_panel_info(m, &intel_connector->panel);
2181 }
2182
2183 static void intel_hdmi_info(struct seq_file *m,
2184                             struct intel_connector *intel_connector)
2185 {
2186         struct intel_encoder *intel_encoder = intel_connector->encoder;
2187         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2188
2189         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2190                    "no");
2191 }
2192
2193 static void intel_lvds_info(struct seq_file *m,
2194                             struct intel_connector *intel_connector)
2195 {
2196         intel_panel_info(m, &intel_connector->panel);
2197 }
2198
2199 static void intel_connector_info(struct seq_file *m,
2200                                  struct drm_connector *connector)
2201 {
2202         struct intel_connector *intel_connector = to_intel_connector(connector);
2203         struct intel_encoder *intel_encoder = intel_connector->encoder;
2204         struct drm_display_mode *mode;
2205
2206         seq_printf(m, "connector %d: type %s, status: %s\n",
2207                    connector->base.id, connector->name,
2208                    drm_get_connector_status_name(connector->status));
2209         if (connector->status == connector_status_connected) {
2210                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2211                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2212                            connector->display_info.width_mm,
2213                            connector->display_info.height_mm);
2214                 seq_printf(m, "\tsubpixel order: %s\n",
2215                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2216                 seq_printf(m, "\tCEA rev: %d\n",
2217                            connector->display_info.cea_rev);
2218         }
2219         if (intel_encoder) {
2220                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2221                     intel_encoder->type == INTEL_OUTPUT_EDP)
2222                         intel_dp_info(m, intel_connector);
2223                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2224                         intel_hdmi_info(m, intel_connector);
2225                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2226                         intel_lvds_info(m, intel_connector);
2227         }
2228
2229         seq_printf(m, "\tmodes:\n");
2230         list_for_each_entry(mode, &connector->modes, head)
2231                 intel_seq_print_mode(m, 2, mode);
2232 }
2233
2234 static bool cursor_active(struct drm_device *dev, int pipe)
2235 {
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237         u32 state;
2238
2239         if (IS_845G(dev) || IS_I865G(dev))
2240                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2241         else
2242                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2243
2244         return state;
2245 }
2246
2247 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2248 {
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250         u32 pos;
2251
2252         pos = I915_READ(CURPOS(pipe));
2253
2254         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2255         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2256                 *x = -*x;
2257
2258         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2259         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2260                 *y = -*y;
2261
2262         return cursor_active(dev, pipe);
2263 }
2264
2265 static int i915_display_info(struct seq_file *m, void *unused)
2266 {
2267         struct drm_info_node *node = m->private;
2268         struct drm_device *dev = node->minor->dev;
2269         struct drm_i915_private *dev_priv = dev->dev_private;
2270         struct intel_crtc *crtc;
2271         struct drm_connector *connector;
2272
2273         intel_runtime_pm_get(dev_priv);
2274         drm_modeset_lock_all(dev);
2275         seq_printf(m, "CRTC info\n");
2276         seq_printf(m, "---------\n");
2277         for_each_intel_crtc(dev, crtc) {
2278                 bool active;
2279                 int x, y;
2280
2281                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2282                            crtc->base.base.id, pipe_name(crtc->pipe),
2283                            yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2284                 if (crtc->active) {
2285                         intel_crtc_info(m, crtc);
2286
2287                         active = cursor_position(dev, crtc->pipe, &x, &y);
2288                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2289                                    yesno(crtc->cursor_base),
2290                                    x, y, crtc->cursor_width, crtc->cursor_height,
2291                                    crtc->cursor_addr, yesno(active));
2292                 }
2293
2294                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2295                            yesno(!crtc->cpu_fifo_underrun_disabled),
2296                            yesno(!crtc->pch_fifo_underrun_disabled));
2297         }
2298
2299         seq_printf(m, "\n");
2300         seq_printf(m, "Connector info\n");
2301         seq_printf(m, "--------------\n");
2302         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2303                 intel_connector_info(m, connector);
2304         }
2305         drm_modeset_unlock_all(dev);
2306         intel_runtime_pm_put(dev_priv);
2307
2308         return 0;
2309 }
2310
2311 static int i915_semaphore_status(struct seq_file *m, void *unused)
2312 {
2313         struct drm_info_node *node = (struct drm_info_node *) m->private;
2314         struct drm_device *dev = node->minor->dev;
2315         struct drm_i915_private *dev_priv = dev->dev_private;
2316         struct intel_engine_cs *ring;
2317         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2318         int i, j, ret;
2319
2320         if (!i915_semaphore_is_enabled(dev)) {
2321                 seq_puts(m, "Semaphores are disabled\n");
2322                 return 0;
2323         }
2324
2325         ret = mutex_lock_interruptible(&dev->struct_mutex);
2326         if (ret)
2327                 return ret;
2328         intel_runtime_pm_get(dev_priv);
2329
2330         if (IS_BROADWELL(dev)) {
2331                 struct page *page;
2332                 uint64_t *seqno;
2333
2334                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2335
2336                 seqno = (uint64_t *)kmap_atomic(page);
2337                 for_each_ring(ring, dev_priv, i) {
2338                         uint64_t offset;
2339
2340                         seq_printf(m, "%s\n", ring->name);
2341
2342                         seq_puts(m, "  Last signal:");
2343                         for (j = 0; j < num_rings; j++) {
2344                                 offset = i * I915_NUM_RINGS + j;
2345                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2346                                            seqno[offset], offset * 8);
2347                         }
2348                         seq_putc(m, '\n');
2349
2350                         seq_puts(m, "  Last wait:  ");
2351                         for (j = 0; j < num_rings; j++) {
2352                                 offset = i + (j * I915_NUM_RINGS);
2353                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2354                                            seqno[offset], offset * 8);
2355                         }
2356                         seq_putc(m, '\n');
2357
2358                 }
2359                 kunmap_atomic(seqno);
2360         } else {
2361                 seq_puts(m, "  Last signal:");
2362                 for_each_ring(ring, dev_priv, i)
2363                         for (j = 0; j < num_rings; j++)
2364                                 seq_printf(m, "0x%08x\n",
2365                                            I915_READ(ring->semaphore.mbox.signal[j]));
2366                 seq_putc(m, '\n');
2367         }
2368
2369         seq_puts(m, "\nSync seqno:\n");
2370         for_each_ring(ring, dev_priv, i) {
2371                 for (j = 0; j < num_rings; j++) {
2372                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2373                 }
2374                 seq_putc(m, '\n');
2375         }
2376         seq_putc(m, '\n');
2377
2378         intel_runtime_pm_put(dev_priv);
2379         mutex_unlock(&dev->struct_mutex);
2380         return 0;
2381 }
2382
2383 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2384 {
2385         struct drm_info_node *node = (struct drm_info_node *) m->private;
2386         struct drm_device *dev = node->minor->dev;
2387         struct drm_i915_private *dev_priv = dev->dev_private;
2388         int i;
2389
2390         drm_modeset_lock_all(dev);
2391         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2392                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2393
2394                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2395                 seq_printf(m, " refcount: %i, active: %i, on: %s\n", pll->refcount,
2396                            pll->active, yesno(pll->on));
2397                 seq_printf(m, " tracked hardware state:\n");
2398                 seq_printf(m, " dpll:    0x%08x\n", pll->hw_state.dpll);
2399                 seq_printf(m, " dpll_md: 0x%08x\n", pll->hw_state.dpll_md);
2400                 seq_printf(m, " fp0:     0x%08x\n", pll->hw_state.fp0);
2401                 seq_printf(m, " fp1:     0x%08x\n", pll->hw_state.fp1);
2402                 seq_printf(m, " wrpll:   0x%08x\n", pll->hw_state.wrpll);
2403         }
2404         drm_modeset_unlock_all(dev);
2405
2406         return 0;
2407 }
2408
2409 struct pipe_crc_info {
2410         const char *name;
2411         struct drm_device *dev;
2412         enum pipe pipe;
2413 };
2414
2415 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2416 {
2417         struct drm_info_node *node = (struct drm_info_node *) m->private;
2418         struct drm_device *dev = node->minor->dev;
2419         struct drm_encoder *encoder;
2420         struct intel_encoder *intel_encoder;
2421         struct intel_digital_port *intel_dig_port;
2422         drm_modeset_lock_all(dev);
2423         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2424                 intel_encoder = to_intel_encoder(encoder);
2425                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2426                         continue;
2427                 intel_dig_port = enc_to_dig_port(encoder);
2428                 if (!intel_dig_port->dp.can_mst)
2429                         continue;
2430
2431                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2432         }
2433         drm_modeset_unlock_all(dev);
2434         return 0;
2435 }
2436
2437 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2438 {
2439         struct pipe_crc_info *info = inode->i_private;
2440         struct drm_i915_private *dev_priv = info->dev->dev_private;
2441         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2442
2443         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2444                 return -ENODEV;
2445
2446         spin_lock_irq(&pipe_crc->lock);
2447
2448         if (pipe_crc->opened) {
2449                 spin_unlock_irq(&pipe_crc->lock);
2450                 return -EBUSY; /* already open */
2451         }
2452
2453         pipe_crc->opened = true;
2454         filep->private_data = inode->i_private;
2455
2456         spin_unlock_irq(&pipe_crc->lock);
2457
2458         return 0;
2459 }
2460
2461 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2462 {
2463         struct pipe_crc_info *info = inode->i_private;
2464         struct drm_i915_private *dev_priv = info->dev->dev_private;
2465         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2466
2467         spin_lock_irq(&pipe_crc->lock);
2468         pipe_crc->opened = false;
2469         spin_unlock_irq(&pipe_crc->lock);
2470
2471         return 0;
2472 }
2473
2474 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2475 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2476 /* account for \'0' */
2477 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2478
2479 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2480 {
2481         assert_spin_locked(&pipe_crc->lock);
2482         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2483                         INTEL_PIPE_CRC_ENTRIES_NR);
2484 }
2485
2486 static ssize_t
2487 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2488                    loff_t *pos)
2489 {
2490         struct pipe_crc_info *info = filep->private_data;
2491         struct drm_device *dev = info->dev;
2492         struct drm_i915_private *dev_priv = dev->dev_private;
2493         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2494         char buf[PIPE_CRC_BUFFER_LEN];
2495         int head, tail, n_entries, n;
2496         ssize_t bytes_read;
2497
2498         /*
2499          * Don't allow user space to provide buffers not big enough to hold
2500          * a line of data.
2501          */
2502         if (count < PIPE_CRC_LINE_LEN)
2503                 return -EINVAL;
2504
2505         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2506                 return 0;
2507
2508         /* nothing to read */
2509         spin_lock_irq(&pipe_crc->lock);
2510         while (pipe_crc_data_count(pipe_crc) == 0) {
2511                 int ret;
2512
2513                 if (filep->f_flags & O_NONBLOCK) {
2514                         spin_unlock_irq(&pipe_crc->lock);
2515                         return -EAGAIN;
2516                 }
2517
2518                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2519                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2520                 if (ret) {
2521                         spin_unlock_irq(&pipe_crc->lock);
2522                         return ret;
2523                 }
2524         }
2525
2526         /* We now have one or more entries to read */
2527         head = pipe_crc->head;
2528         tail = pipe_crc->tail;
2529         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2530                         count / PIPE_CRC_LINE_LEN);
2531         spin_unlock_irq(&pipe_crc->lock);
2532
2533         bytes_read = 0;
2534         n = 0;
2535         do {
2536                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2537                 int ret;
2538
2539                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2540                                        "%8u %8x %8x %8x %8x %8x\n",
2541                                        entry->frame, entry->crc[0],
2542                                        entry->crc[1], entry->crc[2],
2543                                        entry->crc[3], entry->crc[4]);
2544
2545                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2546                                    buf, PIPE_CRC_LINE_LEN);
2547                 if (ret == PIPE_CRC_LINE_LEN)
2548                         return -EFAULT;
2549
2550                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2551                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2552                 n++;
2553         } while (--n_entries);
2554
2555         spin_lock_irq(&pipe_crc->lock);
2556         pipe_crc->tail = tail;
2557         spin_unlock_irq(&pipe_crc->lock);
2558
2559         return bytes_read;
2560 }
2561
2562 static const struct file_operations i915_pipe_crc_fops = {
2563         .owner = THIS_MODULE,
2564         .open = i915_pipe_crc_open,
2565         .read = i915_pipe_crc_read,
2566         .release = i915_pipe_crc_release,
2567 };
2568
2569 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2570         {
2571                 .name = "i915_pipe_A_crc",
2572                 .pipe = PIPE_A,
2573         },
2574         {
2575                 .name = "i915_pipe_B_crc",
2576                 .pipe = PIPE_B,
2577         },
2578         {
2579                 .name = "i915_pipe_C_crc",
2580                 .pipe = PIPE_C,
2581         },
2582 };
2583
2584 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2585                                 enum pipe pipe)
2586 {
2587         struct drm_device *dev = minor->dev;
2588         struct dentry *ent;
2589         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2590
2591         info->dev = dev;
2592         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2593                                   &i915_pipe_crc_fops);
2594         if (!ent)
2595                 return -ENOMEM;
2596
2597         return drm_add_fake_info_node(minor, ent, info);
2598 }
2599
2600 static const char * const pipe_crc_sources[] = {
2601         "none",
2602         "plane1",
2603         "plane2",
2604         "pf",
2605         "pipe",
2606         "TV",
2607         "DP-B",
2608         "DP-C",
2609         "DP-D",
2610         "auto",
2611 };
2612
2613 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2614 {
2615         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2616         return pipe_crc_sources[source];
2617 }
2618
2619 static int display_crc_ctl_show(struct seq_file *m, void *data)
2620 {
2621         struct drm_device *dev = m->private;
2622         struct drm_i915_private *dev_priv = dev->dev_private;
2623         int i;
2624
2625         for (i = 0; i < I915_MAX_PIPES; i++)
2626                 seq_printf(m, "%c %s\n", pipe_name(i),
2627                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2628
2629         return 0;
2630 }
2631
2632 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2633 {
2634         struct drm_device *dev = inode->i_private;
2635
2636         return single_open(file, display_crc_ctl_show, dev);
2637 }
2638
2639 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2640                                  uint32_t *val)
2641 {
2642         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2643                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2644
2645         switch (*source) {
2646         case INTEL_PIPE_CRC_SOURCE_PIPE:
2647                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2648                 break;
2649         case INTEL_PIPE_CRC_SOURCE_NONE:
2650                 *val = 0;
2651                 break;
2652         default:
2653                 return -EINVAL;
2654         }
2655
2656         return 0;
2657 }
2658
2659 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2660                                      enum intel_pipe_crc_source *source)
2661 {
2662         struct intel_encoder *encoder;
2663         struct intel_crtc *crtc;
2664         struct intel_digital_port *dig_port;
2665         int ret = 0;
2666
2667         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2668
2669         drm_modeset_lock_all(dev);
2670         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2671                             base.head) {
2672                 if (!encoder->base.crtc)
2673                         continue;
2674
2675                 crtc = to_intel_crtc(encoder->base.crtc);
2676
2677                 if (crtc->pipe != pipe)
2678                         continue;
2679
2680                 switch (encoder->type) {
2681                 case INTEL_OUTPUT_TVOUT:
2682                         *source = INTEL_PIPE_CRC_SOURCE_TV;
2683                         break;
2684                 case INTEL_OUTPUT_DISPLAYPORT:
2685                 case INTEL_OUTPUT_EDP:
2686                         dig_port = enc_to_dig_port(&encoder->base);
2687                         switch (dig_port->port) {
2688                         case PORT_B:
2689                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2690                                 break;
2691                         case PORT_C:
2692                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2693                                 break;
2694                         case PORT_D:
2695                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2696                                 break;
2697                         default:
2698                                 WARN(1, "nonexisting DP port %c\n",
2699                                      port_name(dig_port->port));
2700                                 break;
2701                         }
2702                         break;
2703                 }
2704         }
2705         drm_modeset_unlock_all(dev);
2706
2707         return ret;
2708 }
2709
2710 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2711                                 enum pipe pipe,
2712                                 enum intel_pipe_crc_source *source,
2713                                 uint32_t *val)
2714 {
2715         struct drm_i915_private *dev_priv = dev->dev_private;
2716         bool need_stable_symbols = false;
2717
2718         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2719                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2720                 if (ret)
2721                         return ret;
2722         }
2723
2724         switch (*source) {
2725         case INTEL_PIPE_CRC_SOURCE_PIPE:
2726                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2727                 break;
2728         case INTEL_PIPE_CRC_SOURCE_DP_B:
2729                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2730                 need_stable_symbols = true;
2731                 break;
2732         case INTEL_PIPE_CRC_SOURCE_DP_C:
2733                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2734                 need_stable_symbols = true;
2735                 break;
2736         case INTEL_PIPE_CRC_SOURCE_NONE:
2737                 *val = 0;
2738                 break;
2739         default:
2740                 return -EINVAL;
2741         }
2742
2743         /*
2744          * When the pipe CRC tap point is after the transcoders we need
2745          * to tweak symbol-level features to produce a deterministic series of
2746          * symbols for a given frame. We need to reset those features only once
2747          * a frame (instead of every nth symbol):
2748          *   - DC-balance: used to ensure a better clock recovery from the data
2749          *     link (SDVO)
2750          *   - DisplayPort scrambling: used for EMI reduction
2751          */
2752         if (need_stable_symbols) {
2753                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2754
2755                 tmp |= DC_BALANCE_RESET_VLV;
2756                 if (pipe == PIPE_A)
2757                         tmp |= PIPE_A_SCRAMBLE_RESET;
2758                 else
2759                         tmp |= PIPE_B_SCRAMBLE_RESET;
2760
2761                 I915_WRITE(PORT_DFT2_G4X, tmp);
2762         }
2763
2764         return 0;
2765 }
2766
2767 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2768                                  enum pipe pipe,
2769                                  enum intel_pipe_crc_source *source,
2770                                  uint32_t *val)
2771 {
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         bool need_stable_symbols = false;
2774
2775         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2776                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2777                 if (ret)
2778                         return ret;
2779         }
2780
2781         switch (*source) {
2782         case INTEL_PIPE_CRC_SOURCE_PIPE:
2783                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2784                 break;
2785         case INTEL_PIPE_CRC_SOURCE_TV:
2786                 if (!SUPPORTS_TV(dev))
2787                         return -EINVAL;
2788                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2789                 break;
2790         case INTEL_PIPE_CRC_SOURCE_DP_B:
2791                 if (!IS_G4X(dev))
2792                         return -EINVAL;
2793                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2794                 need_stable_symbols = true;
2795                 break;
2796         case INTEL_PIPE_CRC_SOURCE_DP_C:
2797                 if (!IS_G4X(dev))
2798                         return -EINVAL;
2799                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2800                 need_stable_symbols = true;
2801                 break;
2802         case INTEL_PIPE_CRC_SOURCE_DP_D:
2803                 if (!IS_G4X(dev))
2804                         return -EINVAL;
2805                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2806                 need_stable_symbols = true;
2807                 break;
2808         case INTEL_PIPE_CRC_SOURCE_NONE:
2809                 *val = 0;
2810                 break;
2811         default:
2812                 return -EINVAL;
2813         }
2814
2815         /*
2816          * When the pipe CRC tap point is after the transcoders we need
2817          * to tweak symbol-level features to produce a deterministic series of
2818          * symbols for a given frame. We need to reset those features only once
2819          * a frame (instead of every nth symbol):
2820          *   - DC-balance: used to ensure a better clock recovery from the data
2821          *     link (SDVO)
2822          *   - DisplayPort scrambling: used for EMI reduction
2823          */
2824         if (need_stable_symbols) {
2825                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2826
2827                 WARN_ON(!IS_G4X(dev));
2828
2829                 I915_WRITE(PORT_DFT_I9XX,
2830                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2831
2832                 if (pipe == PIPE_A)
2833                         tmp |= PIPE_A_SCRAMBLE_RESET;
2834                 else
2835                         tmp |= PIPE_B_SCRAMBLE_RESET;
2836
2837                 I915_WRITE(PORT_DFT2_G4X, tmp);
2838         }
2839
2840         return 0;
2841 }
2842
2843 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2844                                          enum pipe pipe)
2845 {
2846         struct drm_i915_private *dev_priv = dev->dev_private;
2847         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2848
2849         if (pipe == PIPE_A)
2850                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2851         else
2852                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2853         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2854                 tmp &= ~DC_BALANCE_RESET_VLV;
2855         I915_WRITE(PORT_DFT2_G4X, tmp);
2856
2857 }
2858
2859 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2860                                          enum pipe pipe)
2861 {
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2864
2865         if (pipe == PIPE_A)
2866                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2867         else
2868                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2869         I915_WRITE(PORT_DFT2_G4X, tmp);
2870
2871         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2872                 I915_WRITE(PORT_DFT_I9XX,
2873                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2874         }
2875 }
2876
2877 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2878                                 uint32_t *val)
2879 {
2880         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2881                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2882
2883         switch (*source) {
2884         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2885                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2886                 break;
2887         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2888                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2889                 break;
2890         case INTEL_PIPE_CRC_SOURCE_PIPE:
2891                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2892                 break;
2893         case INTEL_PIPE_CRC_SOURCE_NONE:
2894                 *val = 0;
2895                 break;
2896         default:
2897                 return -EINVAL;
2898         }
2899
2900         return 0;
2901 }
2902
2903 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
2904 {
2905         struct drm_i915_private *dev_priv = dev->dev_private;
2906         struct intel_crtc *crtc =
2907                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
2908
2909         drm_modeset_lock_all(dev);
2910         /*
2911          * If we use the eDP transcoder we need to make sure that we don't
2912          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
2913          * relevant on hsw with pipe A when using the always-on power well
2914          * routing.
2915          */
2916         if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
2917             !crtc->config.pch_pfit.enabled) {
2918                 crtc->config.pch_pfit.force_thru = true;
2919
2920                 intel_display_power_get(dev_priv,
2921                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
2922
2923                 dev_priv->display.crtc_disable(&crtc->base);
2924                 dev_priv->display.crtc_enable(&crtc->base);
2925         }
2926         drm_modeset_unlock_all(dev);
2927 }
2928
2929 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
2930 {
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         struct intel_crtc *crtc =
2933                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
2934
2935         drm_modeset_lock_all(dev);
2936         /*
2937          * If we use the eDP transcoder we need to make sure that we don't
2938          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
2939          * relevant on hsw with pipe A when using the always-on power well
2940          * routing.
2941          */
2942         if (crtc->config.pch_pfit.force_thru) {
2943                 crtc->config.pch_pfit.force_thru = false;
2944
2945                 dev_priv->display.crtc_disable(&crtc->base);
2946                 dev_priv->display.crtc_enable(&crtc->base);
2947
2948                 intel_display_power_put(dev_priv,
2949                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
2950         }
2951         drm_modeset_unlock_all(dev);
2952 }
2953
2954 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
2955                                 enum pipe pipe,
2956                                 enum intel_pipe_crc_source *source,
2957                                 uint32_t *val)
2958 {
2959         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2960                 *source = INTEL_PIPE_CRC_SOURCE_PF;
2961
2962         switch (*source) {
2963         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2964                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2965                 break;
2966         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2967                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2968                 break;
2969         case INTEL_PIPE_CRC_SOURCE_PF:
2970                 if (IS_HASWELL(dev) && pipe == PIPE_A)
2971                         hsw_trans_edp_pipe_A_crc_wa(dev);
2972
2973                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2974                 break;
2975         case INTEL_PIPE_CRC_SOURCE_NONE:
2976                 *val = 0;
2977                 break;
2978         default:
2979                 return -EINVAL;
2980         }
2981
2982         return 0;
2983 }
2984
2985 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2986                                enum intel_pipe_crc_source source)
2987 {
2988         struct drm_i915_private *dev_priv = dev->dev_private;
2989         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2990         u32 val = 0; /* shut up gcc */
2991         int ret;
2992
2993         if (pipe_crc->source == source)
2994                 return 0;
2995
2996         /* forbid changing the source without going back to 'none' */
2997         if (pipe_crc->source && source)
2998                 return -EINVAL;
2999
3000         if (IS_GEN2(dev))
3001                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3002         else if (INTEL_INFO(dev)->gen < 5)
3003                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3004         else if (IS_VALLEYVIEW(dev))
3005                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3006         else if (IS_GEN5(dev) || IS_GEN6(dev))
3007                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3008         else
3009                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3010
3011         if (ret != 0)
3012                 return ret;
3013
3014         /* none -> real source transition */
3015         if (source) {
3016                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3017                                  pipe_name(pipe), pipe_crc_source_name(source));
3018
3019                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
3020                                             INTEL_PIPE_CRC_ENTRIES_NR,
3021                                             GFP_KERNEL);
3022                 if (!pipe_crc->entries)
3023                         return -ENOMEM;
3024
3025                 spin_lock_irq(&pipe_crc->lock);
3026                 pipe_crc->head = 0;
3027                 pipe_crc->tail = 0;
3028                 spin_unlock_irq(&pipe_crc->lock);
3029         }
3030
3031         pipe_crc->source = source;
3032
3033         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3034         POSTING_READ(PIPE_CRC_CTL(pipe));
3035
3036         /* real source -> none transition */
3037         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3038                 struct intel_pipe_crc_entry *entries;
3039                 struct intel_crtc *crtc =
3040                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3041
3042                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3043                                  pipe_name(pipe));
3044
3045                 drm_modeset_lock(&crtc->base.mutex, NULL);
3046                 if (crtc->active)
3047                         intel_wait_for_vblank(dev, pipe);
3048                 drm_modeset_unlock(&crtc->base.mutex);
3049
3050                 spin_lock_irq(&pipe_crc->lock);
3051                 entries = pipe_crc->entries;
3052                 pipe_crc->entries = NULL;
3053                 spin_unlock_irq(&pipe_crc->lock);
3054
3055                 kfree(entries);
3056
3057                 if (IS_G4X(dev))
3058                         g4x_undo_pipe_scramble_reset(dev, pipe);
3059                 else if (IS_VALLEYVIEW(dev))
3060                         vlv_undo_pipe_scramble_reset(dev, pipe);
3061                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3062                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3063         }
3064
3065         return 0;
3066 }
3067
3068 /*
3069  * Parse pipe CRC command strings:
3070  *   command: wsp* object wsp+ name wsp+ source wsp*
3071  *   object: 'pipe'
3072  *   name: (A | B | C)
3073  *   source: (none | plane1 | plane2 | pf)
3074  *   wsp: (#0x20 | #0x9 | #0xA)+
3075  *
3076  * eg.:
3077  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3078  *  "pipe A none"    ->  Stop CRC
3079  */
3080 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3081 {
3082         int n_words = 0;
3083
3084         while (*buf) {
3085                 char *end;
3086
3087                 /* skip leading white space */
3088                 buf = skip_spaces(buf);
3089                 if (!*buf)
3090                         break;  /* end of buffer */
3091
3092                 /* find end of word */
3093                 for (end = buf; *end && !isspace(*end); end++)
3094                         ;
3095
3096                 if (n_words == max_words) {
3097                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3098                                          max_words);
3099                         return -EINVAL; /* ran out of words[] before bytes */
3100                 }
3101
3102                 if (*end)
3103                         *end++ = '\0';
3104                 words[n_words++] = buf;
3105                 buf = end;
3106         }
3107
3108         return n_words;
3109 }
3110
3111 enum intel_pipe_crc_object {
3112         PIPE_CRC_OBJECT_PIPE,
3113 };
3114
3115 static const char * const pipe_crc_objects[] = {
3116         "pipe",
3117 };
3118
3119 static int
3120 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3121 {
3122         int i;
3123
3124         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3125                 if (!strcmp(buf, pipe_crc_objects[i])) {
3126                         *o = i;
3127                         return 0;
3128                     }
3129
3130         return -EINVAL;
3131 }
3132
3133 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3134 {
3135         const char name = buf[0];
3136
3137         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3138                 return -EINVAL;
3139
3140         *pipe = name - 'A';
3141
3142         return 0;
3143 }
3144
3145 static int
3146 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3147 {
3148         int i;
3149
3150         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3151                 if (!strcmp(buf, pipe_crc_sources[i])) {
3152                         *s = i;
3153                         return 0;
3154                     }
3155
3156         return -EINVAL;
3157 }
3158
3159 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3160 {
3161 #define N_WORDS 3
3162         int n_words;
3163         char *words[N_WORDS];
3164         enum pipe pipe;
3165         enum intel_pipe_crc_object object;
3166         enum intel_pipe_crc_source source;
3167
3168         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3169         if (n_words != N_WORDS) {
3170                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3171                                  N_WORDS);
3172                 return -EINVAL;
3173         }
3174
3175         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3176                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3177                 return -EINVAL;
3178         }
3179
3180         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3181                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3182                 return -EINVAL;
3183         }
3184
3185         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3186                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3187                 return -EINVAL;
3188         }
3189
3190         return pipe_crc_set_source(dev, pipe, source);
3191 }
3192
3193 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3194                                      size_t len, loff_t *offp)
3195 {
3196         struct seq_file *m = file->private_data;
3197         struct drm_device *dev = m->private;
3198         char *tmpbuf;
3199         int ret;
3200
3201         if (len == 0)
3202                 return 0;
3203
3204         if (len > PAGE_SIZE - 1) {
3205                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3206                                  PAGE_SIZE);
3207                 return -E2BIG;
3208         }
3209
3210         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3211         if (!tmpbuf)
3212                 return -ENOMEM;
3213
3214         if (copy_from_user(tmpbuf, ubuf, len)) {
3215                 ret = -EFAULT;
3216                 goto out;
3217         }
3218         tmpbuf[len] = '\0';
3219
3220         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3221
3222 out:
3223         kfree(tmpbuf);
3224         if (ret < 0)
3225                 return ret;
3226
3227         *offp += len;
3228         return len;
3229 }
3230
3231 static const struct file_operations i915_display_crc_ctl_fops = {
3232         .owner = THIS_MODULE,
3233         .open = display_crc_ctl_open,
3234         .read = seq_read,
3235         .llseek = seq_lseek,
3236         .release = single_release,
3237         .write = display_crc_ctl_write
3238 };
3239
3240 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3241 {
3242         struct drm_device *dev = m->private;
3243         int num_levels = ilk_wm_max_level(dev) + 1;
3244         int level;
3245
3246         drm_modeset_lock_all(dev);
3247
3248         for (level = 0; level < num_levels; level++) {
3249                 unsigned int latency = wm[level];
3250
3251                 /* WM1+ latency values in 0.5us units */
3252                 if (level > 0)
3253                         latency *= 5;
3254
3255                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3256                            level, wm[level],
3257                            latency / 10, latency % 10);
3258         }
3259
3260         drm_modeset_unlock_all(dev);
3261 }
3262
3263 static int pri_wm_latency_show(struct seq_file *m, void *data)
3264 {
3265         struct drm_device *dev = m->private;
3266
3267         wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3268
3269         return 0;
3270 }
3271
3272 static int spr_wm_latency_show(struct seq_file *m, void *data)
3273 {
3274         struct drm_device *dev = m->private;
3275
3276         wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3277
3278         return 0;
3279 }
3280
3281 static int cur_wm_latency_show(struct seq_file *m, void *data)
3282 {
3283         struct drm_device *dev = m->private;
3284
3285         wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3286
3287         return 0;
3288 }
3289
3290 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3291 {
3292         struct drm_device *dev = inode->i_private;
3293
3294         if (HAS_GMCH_DISPLAY(dev))
3295                 return -ENODEV;
3296
3297         return single_open(file, pri_wm_latency_show, dev);
3298 }
3299
3300 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3301 {
3302         struct drm_device *dev = inode->i_private;
3303
3304         if (HAS_GMCH_DISPLAY(dev))
3305                 return -ENODEV;
3306
3307         return single_open(file, spr_wm_latency_show, dev);
3308 }
3309
3310 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3311 {
3312         struct drm_device *dev = inode->i_private;
3313
3314         if (HAS_GMCH_DISPLAY(dev))
3315                 return -ENODEV;
3316
3317         return single_open(file, cur_wm_latency_show, dev);
3318 }
3319
3320 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3321                                 size_t len, loff_t *offp, uint16_t wm[5])
3322 {
3323         struct seq_file *m = file->private_data;
3324         struct drm_device *dev = m->private;
3325         uint16_t new[5] = { 0 };
3326         int num_levels = ilk_wm_max_level(dev) + 1;
3327         int level;
3328         int ret;
3329         char tmp[32];
3330
3331         if (len >= sizeof(tmp))
3332                 return -EINVAL;
3333
3334         if (copy_from_user(tmp, ubuf, len))
3335                 return -EFAULT;
3336
3337         tmp[len] = '\0';
3338
3339         ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3340         if (ret != num_levels)
3341                 return -EINVAL;
3342
3343         drm_modeset_lock_all(dev);
3344
3345         for (level = 0; level < num_levels; level++)
3346                 wm[level] = new[level];
3347
3348         drm_modeset_unlock_all(dev);
3349
3350         return len;
3351 }
3352
3353
3354 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3355                                     size_t len, loff_t *offp)
3356 {
3357         struct seq_file *m = file->private_data;
3358         struct drm_device *dev = m->private;
3359
3360         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3361 }
3362
3363 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3364                                     size_t len, loff_t *offp)
3365 {
3366         struct seq_file *m = file->private_data;
3367         struct drm_device *dev = m->private;
3368
3369         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3370 }
3371
3372 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3373                                     size_t len, loff_t *offp)
3374 {
3375         struct seq_file *m = file->private_data;
3376         struct drm_device *dev = m->private;
3377
3378         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3379 }
3380
3381 static const struct file_operations i915_pri_wm_latency_fops = {
3382         .owner = THIS_MODULE,
3383         .open = pri_wm_latency_open,
3384         .read = seq_read,
3385         .llseek = seq_lseek,
3386         .release = single_release,
3387         .write = pri_wm_latency_write
3388 };
3389
3390 static const struct file_operations i915_spr_wm_latency_fops = {
3391         .owner = THIS_MODULE,
3392         .open = spr_wm_latency_open,
3393         .read = seq_read,
3394         .llseek = seq_lseek,
3395         .release = single_release,
3396         .write = spr_wm_latency_write
3397 };
3398
3399 static const struct file_operations i915_cur_wm_latency_fops = {
3400         .owner = THIS_MODULE,
3401         .open = cur_wm_latency_open,
3402         .read = seq_read,
3403         .llseek = seq_lseek,
3404         .release = single_release,
3405         .write = cur_wm_latency_write
3406 };
3407
3408 static int
3409 i915_wedged_get(void *data, u64 *val)
3410 {
3411         struct drm_device *dev = data;
3412         struct drm_i915_private *dev_priv = dev->dev_private;
3413
3414         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3415
3416         return 0;
3417 }
3418
3419 static int
3420 i915_wedged_set(void *data, u64 val)
3421 {
3422         struct drm_device *dev = data;
3423         struct drm_i915_private *dev_priv = dev->dev_private;
3424
3425         intel_runtime_pm_get(dev_priv);
3426
3427         i915_handle_error(dev, val,
3428                           "Manually setting wedged to %llu", val);
3429
3430         intel_runtime_pm_put(dev_priv);
3431
3432         return 0;
3433 }
3434
3435 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3436                         i915_wedged_get, i915_wedged_set,
3437                         "%llu\n");
3438
3439 static int
3440 i915_ring_stop_get(void *data, u64 *val)
3441 {
3442         struct drm_device *dev = data;
3443         struct drm_i915_private *dev_priv = dev->dev_private;
3444
3445         *val = dev_priv->gpu_error.stop_rings;
3446
3447         return 0;
3448 }
3449
3450 static int
3451 i915_ring_stop_set(void *data, u64 val)
3452 {
3453         struct drm_device *dev = data;
3454         struct drm_i915_private *dev_priv = dev->dev_private;
3455         int ret;
3456
3457         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3458
3459         ret = mutex_lock_interruptible(&dev->struct_mutex);
3460         if (ret)
3461                 return ret;
3462
3463         dev_priv->gpu_error.stop_rings = val;
3464         mutex_unlock(&dev->struct_mutex);
3465
3466         return 0;
3467 }
3468
3469 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3470                         i915_ring_stop_get, i915_ring_stop_set,
3471                         "0x%08llx\n");
3472
3473 static int
3474 i915_ring_missed_irq_get(void *data, u64 *val)
3475 {
3476         struct drm_device *dev = data;
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478
3479         *val = dev_priv->gpu_error.missed_irq_rings;
3480         return 0;
3481 }
3482
3483 static int
3484 i915_ring_missed_irq_set(void *data, u64 val)
3485 {
3486         struct drm_device *dev = data;
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488         int ret;
3489
3490         /* Lock against concurrent debugfs callers */
3491         ret = mutex_lock_interruptible(&dev->struct_mutex);
3492         if (ret)
3493                 return ret;
3494         dev_priv->gpu_error.missed_irq_rings = val;
3495         mutex_unlock(&dev->struct_mutex);
3496
3497         return 0;
3498 }
3499
3500 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3501                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3502                         "0x%08llx\n");
3503
3504 static int
3505 i915_ring_test_irq_get(void *data, u64 *val)
3506 {
3507         struct drm_device *dev = data;
3508         struct drm_i915_private *dev_priv = dev->dev_private;
3509
3510         *val = dev_priv->gpu_error.test_irq_rings;
3511
3512         return 0;
3513 }
3514
3515 static int
3516 i915_ring_test_irq_set(void *data, u64 val)
3517 {
3518         struct drm_device *dev = data;
3519         struct drm_i915_private *dev_priv = dev->dev_private;
3520         int ret;
3521
3522         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3523
3524         /* Lock against concurrent debugfs callers */
3525         ret = mutex_lock_interruptible(&dev->struct_mutex);
3526         if (ret)
3527                 return ret;
3528
3529         dev_priv->gpu_error.test_irq_rings = val;
3530         mutex_unlock(&dev->struct_mutex);
3531
3532         return 0;
3533 }
3534
3535 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3536                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3537                         "0x%08llx\n");
3538
3539 #define DROP_UNBOUND 0x1
3540 #define DROP_BOUND 0x2
3541 #define DROP_RETIRE 0x4
3542 #define DROP_ACTIVE 0x8
3543 #define DROP_ALL (DROP_UNBOUND | \
3544                   DROP_BOUND | \
3545                   DROP_RETIRE | \
3546                   DROP_ACTIVE)
3547 static int
3548 i915_drop_caches_get(void *data, u64 *val)
3549 {
3550         *val = DROP_ALL;
3551
3552         return 0;
3553 }
3554
3555 static int
3556 i915_drop_caches_set(void *data, u64 val)
3557 {
3558         struct drm_device *dev = data;
3559         struct drm_i915_private *dev_priv = dev->dev_private;
3560         struct drm_i915_gem_object *obj, *next;
3561         struct i915_address_space *vm;
3562         struct i915_vma *vma, *x;
3563         int ret;
3564
3565         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3566
3567         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3568          * on ioctls on -EAGAIN. */
3569         ret = mutex_lock_interruptible(&dev->struct_mutex);
3570         if (ret)
3571                 return ret;
3572
3573         if (val & DROP_ACTIVE) {
3574                 ret = i915_gpu_idle(dev);
3575                 if (ret)
3576                         goto unlock;
3577         }
3578
3579         if (val & (DROP_RETIRE | DROP_ACTIVE))
3580                 i915_gem_retire_requests(dev);
3581
3582         if (val & DROP_BOUND) {
3583                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3584                         list_for_each_entry_safe(vma, x, &vm->inactive_list,
3585                                                  mm_list) {
3586                                 if (vma->pin_count)
3587                                         continue;
3588
3589                                 ret = i915_vma_unbind(vma);
3590                                 if (ret)
3591                                         goto unlock;
3592                         }
3593                 }
3594         }
3595
3596         if (val & DROP_UNBOUND) {
3597                 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
3598                                          global_list)
3599                         if (obj->pages_pin_count == 0) {
3600                                 ret = i915_gem_object_put_pages(obj);
3601                                 if (ret)
3602                                         goto unlock;
3603                         }
3604         }
3605
3606 unlock:
3607         mutex_unlock(&dev->struct_mutex);
3608
3609         return ret;
3610 }
3611
3612 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3613                         i915_drop_caches_get, i915_drop_caches_set,
3614                         "0x%08llx\n");
3615
3616 static int
3617 i915_max_freq_get(void *data, u64 *val)
3618 {
3619         struct drm_device *dev = data;
3620         struct drm_i915_private *dev_priv = dev->dev_private;
3621         int ret;
3622
3623         if (INTEL_INFO(dev)->gen < 6)
3624                 return -ENODEV;
3625
3626         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3627
3628         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3629         if (ret)
3630                 return ret;
3631
3632         if (IS_VALLEYVIEW(dev))
3633                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3634         else
3635                 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3636         mutex_unlock(&dev_priv->rps.hw_lock);
3637
3638         return 0;
3639 }
3640
3641 static int
3642 i915_max_freq_set(void *data, u64 val)
3643 {
3644         struct drm_device *dev = data;
3645         struct drm_i915_private *dev_priv = dev->dev_private;
3646         u32 rp_state_cap, hw_max, hw_min;
3647         int ret;
3648
3649         if (INTEL_INFO(dev)->gen < 6)
3650                 return -ENODEV;
3651
3652         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3653
3654         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3655
3656         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3657         if (ret)
3658                 return ret;
3659
3660         /*
3661          * Turbo will still be enabled, but won't go above the set value.
3662          */
3663         if (IS_VALLEYVIEW(dev)) {
3664                 val = vlv_freq_opcode(dev_priv, val);
3665
3666                 hw_max = dev_priv->rps.max_freq;
3667                 hw_min = dev_priv->rps.min_freq;
3668         } else {
3669                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3670
3671                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3672                 hw_max = dev_priv->rps.max_freq;
3673                 hw_min = (rp_state_cap >> 16) & 0xff;
3674         }
3675
3676         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3677                 mutex_unlock(&dev_priv->rps.hw_lock);
3678                 return -EINVAL;
3679         }
3680
3681         dev_priv->rps.max_freq_softlimit = val;
3682
3683         if (IS_VALLEYVIEW(dev))
3684                 valleyview_set_rps(dev, val);
3685         else
3686                 gen6_set_rps(dev, val);
3687
3688         mutex_unlock(&dev_priv->rps.hw_lock);
3689
3690         return 0;
3691 }
3692
3693 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3694                         i915_max_freq_get, i915_max_freq_set,
3695                         "%llu\n");
3696
3697 static int
3698 i915_min_freq_get(void *data, u64 *val)
3699 {
3700         struct drm_device *dev = data;
3701         struct drm_i915_private *dev_priv = dev->dev_private;
3702         int ret;
3703
3704         if (INTEL_INFO(dev)->gen < 6)
3705                 return -ENODEV;
3706
3707         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3708
3709         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3710         if (ret)
3711                 return ret;
3712
3713         if (IS_VALLEYVIEW(dev))
3714                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3715         else
3716                 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3717         mutex_unlock(&dev_priv->rps.hw_lock);
3718
3719         return 0;
3720 }
3721
3722 static int
3723 i915_min_freq_set(void *data, u64 val)
3724 {
3725         struct drm_device *dev = data;
3726         struct drm_i915_private *dev_priv = dev->dev_private;
3727         u32 rp_state_cap, hw_max, hw_min;
3728         int ret;
3729
3730         if (INTEL_INFO(dev)->gen < 6)
3731                 return -ENODEV;
3732
3733         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3734
3735         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3736
3737         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3738         if (ret)
3739                 return ret;
3740
3741         /*
3742          * Turbo will still be enabled, but won't go below the set value.
3743          */
3744         if (IS_VALLEYVIEW(dev)) {
3745                 val = vlv_freq_opcode(dev_priv, val);
3746
3747                 hw_max = dev_priv->rps.max_freq;
3748                 hw_min = dev_priv->rps.min_freq;
3749         } else {
3750                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3751
3752                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3753                 hw_max = dev_priv->rps.max_freq;
3754                 hw_min = (rp_state_cap >> 16) & 0xff;
3755         }
3756
3757         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
3758                 mutex_unlock(&dev_priv->rps.hw_lock);
3759                 return -EINVAL;
3760         }
3761
3762         dev_priv->rps.min_freq_softlimit = val;
3763
3764         if (IS_VALLEYVIEW(dev))
3765                 valleyview_set_rps(dev, val);
3766         else
3767                 gen6_set_rps(dev, val);
3768
3769         mutex_unlock(&dev_priv->rps.hw_lock);
3770
3771         return 0;
3772 }
3773
3774 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3775                         i915_min_freq_get, i915_min_freq_set,
3776                         "%llu\n");
3777
3778 static int
3779 i915_cache_sharing_get(void *data, u64 *val)
3780 {
3781         struct drm_device *dev = data;
3782         struct drm_i915_private *dev_priv = dev->dev_private;
3783         u32 snpcr;
3784         int ret;
3785
3786         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3787                 return -ENODEV;
3788
3789         ret = mutex_lock_interruptible(&dev->struct_mutex);
3790         if (ret)
3791                 return ret;
3792         intel_runtime_pm_get(dev_priv);
3793
3794         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3795
3796         intel_runtime_pm_put(dev_priv);
3797         mutex_unlock(&dev_priv->dev->struct_mutex);
3798
3799         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3800
3801         return 0;
3802 }
3803
3804 static int
3805 i915_cache_sharing_set(void *data, u64 val)
3806 {
3807         struct drm_device *dev = data;
3808         struct drm_i915_private *dev_priv = dev->dev_private;
3809         u32 snpcr;
3810
3811         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3812                 return -ENODEV;
3813
3814         if (val > 3)
3815                 return -EINVAL;
3816
3817         intel_runtime_pm_get(dev_priv);
3818         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3819
3820         /* Update the cache sharing policy here as well */
3821         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3822         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3823         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3824         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3825
3826         intel_runtime_pm_put(dev_priv);
3827         return 0;
3828 }
3829
3830 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3831                         i915_cache_sharing_get, i915_cache_sharing_set,
3832                         "%llu\n");
3833
3834 static int i915_forcewake_open(struct inode *inode, struct file *file)
3835 {
3836         struct drm_device *dev = inode->i_private;
3837         struct drm_i915_private *dev_priv = dev->dev_private;
3838
3839         if (INTEL_INFO(dev)->gen < 6)
3840                 return 0;
3841
3842         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3843
3844         return 0;
3845 }
3846
3847 static int i915_forcewake_release(struct inode *inode, struct file *file)
3848 {
3849         struct drm_device *dev = inode->i_private;
3850         struct drm_i915_private *dev_priv = dev->dev_private;
3851
3852         if (INTEL_INFO(dev)->gen < 6)
3853                 return 0;
3854
3855         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3856
3857         return 0;
3858 }
3859
3860 static const struct file_operations i915_forcewake_fops = {
3861         .owner = THIS_MODULE,
3862         .open = i915_forcewake_open,
3863         .release = i915_forcewake_release,
3864 };
3865
3866 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3867 {
3868         struct drm_device *dev = minor->dev;
3869         struct dentry *ent;
3870
3871         ent = debugfs_create_file("i915_forcewake_user",
3872                                   S_IRUSR,
3873                                   root, dev,
3874                                   &i915_forcewake_fops);
3875         if (!ent)
3876                 return -ENOMEM;
3877
3878         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3879 }
3880
3881 static int i915_debugfs_create(struct dentry *root,
3882                                struct drm_minor *minor,
3883                                const char *name,
3884                                const struct file_operations *fops)
3885 {
3886         struct drm_device *dev = minor->dev;
3887         struct dentry *ent;
3888
3889         ent = debugfs_create_file(name,
3890                                   S_IRUGO | S_IWUSR,
3891                                   root, dev,
3892                                   fops);
3893         if (!ent)
3894                 return -ENOMEM;
3895
3896         return drm_add_fake_info_node(minor, ent, fops);
3897 }
3898
3899 static const struct drm_info_list i915_debugfs_list[] = {
3900         {"i915_capabilities", i915_capabilities, 0},
3901         {"i915_gem_objects", i915_gem_object_info, 0},
3902         {"i915_gem_gtt", i915_gem_gtt_info, 0},
3903         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3904         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3905         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3906         {"i915_gem_stolen", i915_gem_stolen_list_info },
3907         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3908         {"i915_gem_request", i915_gem_request_info, 0},
3909         {"i915_gem_seqno", i915_gem_seqno_info, 0},
3910         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3911         {"i915_gem_interrupt", i915_interrupt_info, 0},
3912         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3913         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3914         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3915         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3916         {"i915_frequency_info", i915_frequency_info, 0},
3917         {"i915_drpc_info", i915_drpc_info, 0},
3918         {"i915_emon_status", i915_emon_status, 0},
3919         {"i915_ring_freq_table", i915_ring_freq_table, 0},
3920         {"i915_fbc_status", i915_fbc_status, 0},
3921         {"i915_ips_status", i915_ips_status, 0},
3922         {"i915_sr_status", i915_sr_status, 0},
3923         {"i915_opregion", i915_opregion, 0},
3924         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3925         {"i915_context_status", i915_context_status, 0},
3926         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3927         {"i915_swizzle_info", i915_swizzle_info, 0},
3928         {"i915_ppgtt_info", i915_ppgtt_info, 0},
3929         {"i915_llc", i915_llc, 0},
3930         {"i915_edp_psr_status", i915_edp_psr_status, 0},
3931         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
3932         {"i915_energy_uJ", i915_energy_uJ, 0},
3933         {"i915_pc8_status", i915_pc8_status, 0},
3934         {"i915_power_domain_info", i915_power_domain_info, 0},
3935         {"i915_display_info", i915_display_info, 0},
3936         {"i915_semaphore_status", i915_semaphore_status, 0},
3937         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
3938         {"i915_dp_mst_info", i915_dp_mst_info, 0},
3939 };
3940 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3941
3942 static const struct i915_debugfs_files {
3943         const char *name;
3944         const struct file_operations *fops;
3945 } i915_debugfs_files[] = {
3946         {"i915_wedged", &i915_wedged_fops},
3947         {"i915_max_freq", &i915_max_freq_fops},
3948         {"i915_min_freq", &i915_min_freq_fops},
3949         {"i915_cache_sharing", &i915_cache_sharing_fops},
3950         {"i915_ring_stop", &i915_ring_stop_fops},
3951         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3952         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
3953         {"i915_gem_drop_caches", &i915_drop_caches_fops},
3954         {"i915_error_state", &i915_error_state_fops},
3955         {"i915_next_seqno", &i915_next_seqno_fops},
3956         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3957         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
3958         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
3959         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
3960 };
3961
3962 void intel_display_crc_init(struct drm_device *dev)
3963 {
3964         struct drm_i915_private *dev_priv = dev->dev_private;
3965         enum pipe pipe;
3966
3967         for_each_pipe(pipe) {
3968                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3969
3970                 pipe_crc->opened = false;
3971                 spin_lock_init(&pipe_crc->lock);
3972                 init_waitqueue_head(&pipe_crc->wq);
3973         }
3974 }
3975
3976 int i915_debugfs_init(struct drm_minor *minor)
3977 {
3978         int ret, i;
3979
3980         ret = i915_forcewake_create(minor->debugfs_root, minor);
3981         if (ret)
3982                 return ret;
3983
3984         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3985                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3986                 if (ret)
3987                         return ret;
3988         }
3989
3990         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3991                 ret = i915_debugfs_create(minor->debugfs_root, minor,
3992                                           i915_debugfs_files[i].name,
3993                                           i915_debugfs_files[i].fops);
3994                 if (ret)
3995                         return ret;
3996         }
3997
3998         return drm_debugfs_create_files(i915_debugfs_list,
3999                                         I915_DEBUGFS_ENTRIES,
4000                                         minor->debugfs_root, minor);
4001 }
4002
4003 void i915_debugfs_cleanup(struct drm_minor *minor)
4004 {
4005         int i;
4006
4007         drm_debugfs_remove_files(i915_debugfs_list,
4008                                  I915_DEBUGFS_ENTRIES, minor);
4009
4010         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4011                                  1, minor);
4012
4013         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4014                 struct drm_info_list *info_list =
4015                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4016
4017                 drm_debugfs_remove_files(info_list, 1, minor);
4018         }
4019
4020         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4021                 struct drm_info_list *info_list =
4022                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4023
4024                 drm_debugfs_remove_files(info_list, 1, minor);
4025         }
4026 }