drm/i915: Remove user pinning code
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (i915_gem_obj_is_pinned(obj))
100                 return "p";
101         else
102                 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107         switch (obj->tiling_mode) {
108         default:
109         case I915_TILING_NONE: return " ";
110         case I915_TILING_X: return "X";
111         case I915_TILING_Y: return "Y";
112         }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123         struct i915_vma *vma;
124         int pin_count = 0;
125
126         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
127                    &obj->base,
128                    get_pin_flag(obj),
129                    get_tiling_flag(obj),
130                    get_global_flag(obj),
131                    obj->base.size / 1024,
132                    obj->base.read_domains,
133                    obj->base.write_domain,
134                    obj->last_read_seqno,
135                    obj->last_write_seqno,
136                    obj->last_fenced_seqno,
137                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138                    obj->dirty ? " dirty" : "",
139                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140         if (obj->base.name)
141                 seq_printf(m, " (name: %d)", obj->base.name);
142         list_for_each_entry(vma, &obj->vma_list, vma_link)
143                 if (vma->pin_count > 0)
144                         pin_count++;
145                 seq_printf(m, " (pinned x %d)", pin_count);
146         if (obj->pin_display)
147                 seq_printf(m, " (display)");
148         if (obj->fence_reg != I915_FENCE_REG_NONE)
149                 seq_printf(m, " (fence: %d)", obj->fence_reg);
150         list_for_each_entry(vma, &obj->vma_list, vma_link) {
151                 if (!i915_is_ggtt(vma->vm))
152                         seq_puts(m, " (pp");
153                 else
154                         seq_puts(m, " (g");
155                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
156                            vma->node.start, vma->node.size);
157         }
158         if (obj->stolen)
159                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
160         if (obj->pin_mappable || obj->fault_mappable) {
161                 char s[3], *t = s;
162                 if (obj->pin_mappable)
163                         *t++ = 'p';
164                 if (obj->fault_mappable)
165                         *t++ = 'f';
166                 *t = '\0';
167                 seq_printf(m, " (%s mappable)", s);
168         }
169         if (obj->ring != NULL)
170                 seq_printf(m, " (%s)", obj->ring->name);
171         if (obj->frontbuffer_bits)
172                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
173 }
174
175 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
176 {
177         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
178         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
179         seq_putc(m, ' ');
180 }
181
182 static int i915_gem_object_list_info(struct seq_file *m, void *data)
183 {
184         struct drm_info_node *node = m->private;
185         uintptr_t list = (uintptr_t) node->info_ent->data;
186         struct list_head *head;
187         struct drm_device *dev = node->minor->dev;
188         struct drm_i915_private *dev_priv = dev->dev_private;
189         struct i915_address_space *vm = &dev_priv->gtt.base;
190         struct i915_vma *vma;
191         size_t total_obj_size, total_gtt_size;
192         int count, ret;
193
194         ret = mutex_lock_interruptible(&dev->struct_mutex);
195         if (ret)
196                 return ret;
197
198         /* FIXME: the user of this interface might want more than just GGTT */
199         switch (list) {
200         case ACTIVE_LIST:
201                 seq_puts(m, "Active:\n");
202                 head = &vm->active_list;
203                 break;
204         case INACTIVE_LIST:
205                 seq_puts(m, "Inactive:\n");
206                 head = &vm->inactive_list;
207                 break;
208         default:
209                 mutex_unlock(&dev->struct_mutex);
210                 return -EINVAL;
211         }
212
213         total_obj_size = total_gtt_size = count = 0;
214         list_for_each_entry(vma, head, mm_list) {
215                 seq_printf(m, "   ");
216                 describe_obj(m, vma->obj);
217                 seq_printf(m, "\n");
218                 total_obj_size += vma->obj->base.size;
219                 total_gtt_size += vma->node.size;
220                 count++;
221         }
222         mutex_unlock(&dev->struct_mutex);
223
224         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
225                    count, total_obj_size, total_gtt_size);
226         return 0;
227 }
228
229 static int obj_rank_by_stolen(void *priv,
230                               struct list_head *A, struct list_head *B)
231 {
232         struct drm_i915_gem_object *a =
233                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
234         struct drm_i915_gem_object *b =
235                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
236
237         return a->stolen->start - b->stolen->start;
238 }
239
240 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
241 {
242         struct drm_info_node *node = m->private;
243         struct drm_device *dev = node->minor->dev;
244         struct drm_i915_private *dev_priv = dev->dev_private;
245         struct drm_i915_gem_object *obj;
246         size_t total_obj_size, total_gtt_size;
247         LIST_HEAD(stolen);
248         int count, ret;
249
250         ret = mutex_lock_interruptible(&dev->struct_mutex);
251         if (ret)
252                 return ret;
253
254         total_obj_size = total_gtt_size = count = 0;
255         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
256                 if (obj->stolen == NULL)
257                         continue;
258
259                 list_add(&obj->obj_exec_link, &stolen);
260
261                 total_obj_size += obj->base.size;
262                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
263                 count++;
264         }
265         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
266                 if (obj->stolen == NULL)
267                         continue;
268
269                 list_add(&obj->obj_exec_link, &stolen);
270
271                 total_obj_size += obj->base.size;
272                 count++;
273         }
274         list_sort(NULL, &stolen, obj_rank_by_stolen);
275         seq_puts(m, "Stolen:\n");
276         while (!list_empty(&stolen)) {
277                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
278                 seq_puts(m, "   ");
279                 describe_obj(m, obj);
280                 seq_putc(m, '\n');
281                 list_del_init(&obj->obj_exec_link);
282         }
283         mutex_unlock(&dev->struct_mutex);
284
285         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
286                    count, total_obj_size, total_gtt_size);
287         return 0;
288 }
289
290 #define count_objects(list, member) do { \
291         list_for_each_entry(obj, list, member) { \
292                 size += i915_gem_obj_ggtt_size(obj); \
293                 ++count; \
294                 if (obj->map_and_fenceable) { \
295                         mappable_size += i915_gem_obj_ggtt_size(obj); \
296                         ++mappable_count; \
297                 } \
298         } \
299 } while (0)
300
301 struct file_stats {
302         struct drm_i915_file_private *file_priv;
303         int count;
304         size_t total, unbound;
305         size_t global, shared;
306         size_t active, inactive;
307 };
308
309 static int per_file_stats(int id, void *ptr, void *data)
310 {
311         struct drm_i915_gem_object *obj = ptr;
312         struct file_stats *stats = data;
313         struct i915_vma *vma;
314
315         stats->count++;
316         stats->total += obj->base.size;
317
318         if (obj->base.name || obj->base.dma_buf)
319                 stats->shared += obj->base.size;
320
321         if (USES_FULL_PPGTT(obj->base.dev)) {
322                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
323                         struct i915_hw_ppgtt *ppgtt;
324
325                         if (!drm_mm_node_allocated(&vma->node))
326                                 continue;
327
328                         if (i915_is_ggtt(vma->vm)) {
329                                 stats->global += obj->base.size;
330                                 continue;
331                         }
332
333                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
334                         if (ppgtt->file_priv != stats->file_priv)
335                                 continue;
336
337                         if (obj->ring) /* XXX per-vma statistic */
338                                 stats->active += obj->base.size;
339                         else
340                                 stats->inactive += obj->base.size;
341
342                         return 0;
343                 }
344         } else {
345                 if (i915_gem_obj_ggtt_bound(obj)) {
346                         stats->global += obj->base.size;
347                         if (obj->ring)
348                                 stats->active += obj->base.size;
349                         else
350                                 stats->inactive += obj->base.size;
351                         return 0;
352                 }
353         }
354
355         if (!list_empty(&obj->global_list))
356                 stats->unbound += obj->base.size;
357
358         return 0;
359 }
360
361 #define count_vmas(list, member) do { \
362         list_for_each_entry(vma, list, member) { \
363                 size += i915_gem_obj_ggtt_size(vma->obj); \
364                 ++count; \
365                 if (vma->obj->map_and_fenceable) { \
366                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
367                         ++mappable_count; \
368                 } \
369         } \
370 } while (0)
371
372 static int i915_gem_object_info(struct seq_file *m, void* data)
373 {
374         struct drm_info_node *node = m->private;
375         struct drm_device *dev = node->minor->dev;
376         struct drm_i915_private *dev_priv = dev->dev_private;
377         u32 count, mappable_count, purgeable_count;
378         size_t size, mappable_size, purgeable_size;
379         struct drm_i915_gem_object *obj;
380         struct i915_address_space *vm = &dev_priv->gtt.base;
381         struct drm_file *file;
382         struct i915_vma *vma;
383         int ret;
384
385         ret = mutex_lock_interruptible(&dev->struct_mutex);
386         if (ret)
387                 return ret;
388
389         seq_printf(m, "%u objects, %zu bytes\n",
390                    dev_priv->mm.object_count,
391                    dev_priv->mm.object_memory);
392
393         size = count = mappable_size = mappable_count = 0;
394         count_objects(&dev_priv->mm.bound_list, global_list);
395         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
396                    count, mappable_count, size, mappable_size);
397
398         size = count = mappable_size = mappable_count = 0;
399         count_vmas(&vm->active_list, mm_list);
400         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
401                    count, mappable_count, size, mappable_size);
402
403         size = count = mappable_size = mappable_count = 0;
404         count_vmas(&vm->inactive_list, mm_list);
405         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
406                    count, mappable_count, size, mappable_size);
407
408         size = count = purgeable_size = purgeable_count = 0;
409         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
410                 size += obj->base.size, ++count;
411                 if (obj->madv == I915_MADV_DONTNEED)
412                         purgeable_size += obj->base.size, ++purgeable_count;
413         }
414         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
415
416         size = count = mappable_size = mappable_count = 0;
417         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
418                 if (obj->fault_mappable) {
419                         size += i915_gem_obj_ggtt_size(obj);
420                         ++count;
421                 }
422                 if (obj->pin_mappable) {
423                         mappable_size += i915_gem_obj_ggtt_size(obj);
424                         ++mappable_count;
425                 }
426                 if (obj->madv == I915_MADV_DONTNEED) {
427                         purgeable_size += obj->base.size;
428                         ++purgeable_count;
429                 }
430         }
431         seq_printf(m, "%u purgeable objects, %zu bytes\n",
432                    purgeable_count, purgeable_size);
433         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
434                    mappable_count, mappable_size);
435         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
436                    count, size);
437
438         seq_printf(m, "%zu [%lu] gtt total\n",
439                    dev_priv->gtt.base.total,
440                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
441
442         seq_putc(m, '\n');
443         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
444                 struct file_stats stats;
445                 struct task_struct *task;
446
447                 memset(&stats, 0, sizeof(stats));
448                 stats.file_priv = file->driver_priv;
449                 spin_lock(&file->table_lock);
450                 idr_for_each(&file->object_idr, per_file_stats, &stats);
451                 spin_unlock(&file->table_lock);
452                 /*
453                  * Although we have a valid reference on file->pid, that does
454                  * not guarantee that the task_struct who called get_pid() is
455                  * still alive (e.g. get_pid(current) => fork() => exit()).
456                  * Therefore, we need to protect this ->comm access using RCU.
457                  */
458                 rcu_read_lock();
459                 task = pid_task(file->pid, PIDTYPE_PID);
460                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
461                            task ? task->comm : "<unknown>",
462                            stats.count,
463                            stats.total,
464                            stats.active,
465                            stats.inactive,
466                            stats.global,
467                            stats.shared,
468                            stats.unbound);
469                 rcu_read_unlock();
470         }
471
472         mutex_unlock(&dev->struct_mutex);
473
474         return 0;
475 }
476
477 static int i915_gem_gtt_info(struct seq_file *m, void *data)
478 {
479         struct drm_info_node *node = m->private;
480         struct drm_device *dev = node->minor->dev;
481         uintptr_t list = (uintptr_t) node->info_ent->data;
482         struct drm_i915_private *dev_priv = dev->dev_private;
483         struct drm_i915_gem_object *obj;
484         size_t total_obj_size, total_gtt_size;
485         int count, ret;
486
487         ret = mutex_lock_interruptible(&dev->struct_mutex);
488         if (ret)
489                 return ret;
490
491         total_obj_size = total_gtt_size = count = 0;
492         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
493                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
494                         continue;
495
496                 seq_puts(m, "   ");
497                 describe_obj(m, obj);
498                 seq_putc(m, '\n');
499                 total_obj_size += obj->base.size;
500                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
501                 count++;
502         }
503
504         mutex_unlock(&dev->struct_mutex);
505
506         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
507                    count, total_obj_size, total_gtt_size);
508
509         return 0;
510 }
511
512 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
513 {
514         struct drm_info_node *node = m->private;
515         struct drm_device *dev = node->minor->dev;
516         struct drm_i915_private *dev_priv = dev->dev_private;
517         struct intel_crtc *crtc;
518         int ret;
519
520         ret = mutex_lock_interruptible(&dev->struct_mutex);
521         if (ret)
522                 return ret;
523
524         for_each_intel_crtc(dev, crtc) {
525                 const char pipe = pipe_name(crtc->pipe);
526                 const char plane = plane_name(crtc->plane);
527                 struct intel_unpin_work *work;
528
529                 spin_lock_irq(&dev->event_lock);
530                 work = crtc->unpin_work;
531                 if (work == NULL) {
532                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
533                                    pipe, plane);
534                 } else {
535                         u32 addr;
536
537                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
538                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
539                                            pipe, plane);
540                         } else {
541                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
542                                            pipe, plane);
543                         }
544                         if (work->flip_queued_ring) {
545                                 seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
546                                            work->flip_queued_ring->name,
547                                            work->flip_queued_seqno,
548                                            dev_priv->next_seqno,
549                                            work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
550                                            i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
551                                                              work->flip_queued_seqno));
552                         } else
553                                 seq_printf(m, "Flip not associated with any ring\n");
554                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
555                                    work->flip_queued_vblank,
556                                    work->flip_ready_vblank,
557                                    drm_vblank_count(dev, crtc->pipe));
558                         if (work->enable_stall_check)
559                                 seq_puts(m, "Stall check enabled, ");
560                         else
561                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
562                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
563
564                         if (INTEL_INFO(dev)->gen >= 4)
565                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
566                         else
567                                 addr = I915_READ(DSPADDR(crtc->plane));
568                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
569
570                         if (work->pending_flip_obj) {
571                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
572                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
573                         }
574                 }
575                 spin_unlock_irq(&dev->event_lock);
576         }
577
578         mutex_unlock(&dev->struct_mutex);
579
580         return 0;
581 }
582
583 static int i915_gem_request_info(struct seq_file *m, void *data)
584 {
585         struct drm_info_node *node = m->private;
586         struct drm_device *dev = node->minor->dev;
587         struct drm_i915_private *dev_priv = dev->dev_private;
588         struct intel_engine_cs *ring;
589         struct drm_i915_gem_request *gem_request;
590         int ret, count, i;
591
592         ret = mutex_lock_interruptible(&dev->struct_mutex);
593         if (ret)
594                 return ret;
595
596         count = 0;
597         for_each_ring(ring, dev_priv, i) {
598                 if (list_empty(&ring->request_list))
599                         continue;
600
601                 seq_printf(m, "%s requests:\n", ring->name);
602                 list_for_each_entry(gem_request,
603                                     &ring->request_list,
604                                     list) {
605                         seq_printf(m, "    %d @ %d\n",
606                                    gem_request->seqno,
607                                    (int) (jiffies - gem_request->emitted_jiffies));
608                 }
609                 count++;
610         }
611         mutex_unlock(&dev->struct_mutex);
612
613         if (count == 0)
614                 seq_puts(m, "No requests\n");
615
616         return 0;
617 }
618
619 static void i915_ring_seqno_info(struct seq_file *m,
620                                  struct intel_engine_cs *ring)
621 {
622         if (ring->get_seqno) {
623                 seq_printf(m, "Current sequence (%s): %u\n",
624                            ring->name, ring->get_seqno(ring, false));
625         }
626 }
627
628 static int i915_gem_seqno_info(struct seq_file *m, void *data)
629 {
630         struct drm_info_node *node = m->private;
631         struct drm_device *dev = node->minor->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         struct intel_engine_cs *ring;
634         int ret, i;
635
636         ret = mutex_lock_interruptible(&dev->struct_mutex);
637         if (ret)
638                 return ret;
639         intel_runtime_pm_get(dev_priv);
640
641         for_each_ring(ring, dev_priv, i)
642                 i915_ring_seqno_info(m, ring);
643
644         intel_runtime_pm_put(dev_priv);
645         mutex_unlock(&dev->struct_mutex);
646
647         return 0;
648 }
649
650
651 static int i915_interrupt_info(struct seq_file *m, void *data)
652 {
653         struct drm_info_node *node = m->private;
654         struct drm_device *dev = node->minor->dev;
655         struct drm_i915_private *dev_priv = dev->dev_private;
656         struct intel_engine_cs *ring;
657         int ret, i, pipe;
658
659         ret = mutex_lock_interruptible(&dev->struct_mutex);
660         if (ret)
661                 return ret;
662         intel_runtime_pm_get(dev_priv);
663
664         if (IS_CHERRYVIEW(dev)) {
665                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
666                            I915_READ(GEN8_MASTER_IRQ));
667
668                 seq_printf(m, "Display IER:\t%08x\n",
669                            I915_READ(VLV_IER));
670                 seq_printf(m, "Display IIR:\t%08x\n",
671                            I915_READ(VLV_IIR));
672                 seq_printf(m, "Display IIR_RW:\t%08x\n",
673                            I915_READ(VLV_IIR_RW));
674                 seq_printf(m, "Display IMR:\t%08x\n",
675                            I915_READ(VLV_IMR));
676                 for_each_pipe(dev_priv, pipe)
677                         seq_printf(m, "Pipe %c stat:\t%08x\n",
678                                    pipe_name(pipe),
679                                    I915_READ(PIPESTAT(pipe)));
680
681                 seq_printf(m, "Port hotplug:\t%08x\n",
682                            I915_READ(PORT_HOTPLUG_EN));
683                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
684                            I915_READ(VLV_DPFLIPSTAT));
685                 seq_printf(m, "DPINVGTT:\t%08x\n",
686                            I915_READ(DPINVGTT));
687
688                 for (i = 0; i < 4; i++) {
689                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
690                                    i, I915_READ(GEN8_GT_IMR(i)));
691                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
692                                    i, I915_READ(GEN8_GT_IIR(i)));
693                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
694                                    i, I915_READ(GEN8_GT_IER(i)));
695                 }
696
697                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
698                            I915_READ(GEN8_PCU_IMR));
699                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
700                            I915_READ(GEN8_PCU_IIR));
701                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
702                            I915_READ(GEN8_PCU_IER));
703         } else if (INTEL_INFO(dev)->gen >= 8) {
704                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
705                            I915_READ(GEN8_MASTER_IRQ));
706
707                 for (i = 0; i < 4; i++) {
708                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
709                                    i, I915_READ(GEN8_GT_IMR(i)));
710                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
711                                    i, I915_READ(GEN8_GT_IIR(i)));
712                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
713                                    i, I915_READ(GEN8_GT_IER(i)));
714                 }
715
716                 for_each_pipe(dev_priv, pipe) {
717                         if (!intel_display_power_is_enabled(dev_priv,
718                                                 POWER_DOMAIN_PIPE(pipe))) {
719                                 seq_printf(m, "Pipe %c power disabled\n",
720                                            pipe_name(pipe));
721                                 continue;
722                         }
723                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
724                                    pipe_name(pipe),
725                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
726                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
727                                    pipe_name(pipe),
728                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
729                         seq_printf(m, "Pipe %c IER:\t%08x\n",
730                                    pipe_name(pipe),
731                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
732                 }
733
734                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
735                            I915_READ(GEN8_DE_PORT_IMR));
736                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
737                            I915_READ(GEN8_DE_PORT_IIR));
738                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
739                            I915_READ(GEN8_DE_PORT_IER));
740
741                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
742                            I915_READ(GEN8_DE_MISC_IMR));
743                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
744                            I915_READ(GEN8_DE_MISC_IIR));
745                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
746                            I915_READ(GEN8_DE_MISC_IER));
747
748                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
749                            I915_READ(GEN8_PCU_IMR));
750                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
751                            I915_READ(GEN8_PCU_IIR));
752                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
753                            I915_READ(GEN8_PCU_IER));
754         } else if (IS_VALLEYVIEW(dev)) {
755                 seq_printf(m, "Display IER:\t%08x\n",
756                            I915_READ(VLV_IER));
757                 seq_printf(m, "Display IIR:\t%08x\n",
758                            I915_READ(VLV_IIR));
759                 seq_printf(m, "Display IIR_RW:\t%08x\n",
760                            I915_READ(VLV_IIR_RW));
761                 seq_printf(m, "Display IMR:\t%08x\n",
762                            I915_READ(VLV_IMR));
763                 for_each_pipe(dev_priv, pipe)
764                         seq_printf(m, "Pipe %c stat:\t%08x\n",
765                                    pipe_name(pipe),
766                                    I915_READ(PIPESTAT(pipe)));
767
768                 seq_printf(m, "Master IER:\t%08x\n",
769                            I915_READ(VLV_MASTER_IER));
770
771                 seq_printf(m, "Render IER:\t%08x\n",
772                            I915_READ(GTIER));
773                 seq_printf(m, "Render IIR:\t%08x\n",
774                            I915_READ(GTIIR));
775                 seq_printf(m, "Render IMR:\t%08x\n",
776                            I915_READ(GTIMR));
777
778                 seq_printf(m, "PM IER:\t\t%08x\n",
779                            I915_READ(GEN6_PMIER));
780                 seq_printf(m, "PM IIR:\t\t%08x\n",
781                            I915_READ(GEN6_PMIIR));
782                 seq_printf(m, "PM IMR:\t\t%08x\n",
783                            I915_READ(GEN6_PMIMR));
784
785                 seq_printf(m, "Port hotplug:\t%08x\n",
786                            I915_READ(PORT_HOTPLUG_EN));
787                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
788                            I915_READ(VLV_DPFLIPSTAT));
789                 seq_printf(m, "DPINVGTT:\t%08x\n",
790                            I915_READ(DPINVGTT));
791
792         } else if (!HAS_PCH_SPLIT(dev)) {
793                 seq_printf(m, "Interrupt enable:    %08x\n",
794                            I915_READ(IER));
795                 seq_printf(m, "Interrupt identity:  %08x\n",
796                            I915_READ(IIR));
797                 seq_printf(m, "Interrupt mask:      %08x\n",
798                            I915_READ(IMR));
799                 for_each_pipe(dev_priv, pipe)
800                         seq_printf(m, "Pipe %c stat:         %08x\n",
801                                    pipe_name(pipe),
802                                    I915_READ(PIPESTAT(pipe)));
803         } else {
804                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
805                            I915_READ(DEIER));
806                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
807                            I915_READ(DEIIR));
808                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
809                            I915_READ(DEIMR));
810                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
811                            I915_READ(SDEIER));
812                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
813                            I915_READ(SDEIIR));
814                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
815                            I915_READ(SDEIMR));
816                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
817                            I915_READ(GTIER));
818                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
819                            I915_READ(GTIIR));
820                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
821                            I915_READ(GTIMR));
822         }
823         for_each_ring(ring, dev_priv, i) {
824                 if (INTEL_INFO(dev)->gen >= 6) {
825                         seq_printf(m,
826                                    "Graphics Interrupt mask (%s):       %08x\n",
827                                    ring->name, I915_READ_IMR(ring));
828                 }
829                 i915_ring_seqno_info(m, ring);
830         }
831         intel_runtime_pm_put(dev_priv);
832         mutex_unlock(&dev->struct_mutex);
833
834         return 0;
835 }
836
837 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
838 {
839         struct drm_info_node *node = m->private;
840         struct drm_device *dev = node->minor->dev;
841         struct drm_i915_private *dev_priv = dev->dev_private;
842         int i, ret;
843
844         ret = mutex_lock_interruptible(&dev->struct_mutex);
845         if (ret)
846                 return ret;
847
848         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
849         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
850         for (i = 0; i < dev_priv->num_fence_regs; i++) {
851                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
852
853                 seq_printf(m, "Fence %d, pin count = %d, object = ",
854                            i, dev_priv->fence_regs[i].pin_count);
855                 if (obj == NULL)
856                         seq_puts(m, "unused");
857                 else
858                         describe_obj(m, obj);
859                 seq_putc(m, '\n');
860         }
861
862         mutex_unlock(&dev->struct_mutex);
863         return 0;
864 }
865
866 static int i915_hws_info(struct seq_file *m, void *data)
867 {
868         struct drm_info_node *node = m->private;
869         struct drm_device *dev = node->minor->dev;
870         struct drm_i915_private *dev_priv = dev->dev_private;
871         struct intel_engine_cs *ring;
872         const u32 *hws;
873         int i;
874
875         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
876         hws = ring->status_page.page_addr;
877         if (hws == NULL)
878                 return 0;
879
880         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
881                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
882                            i * 4,
883                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
884         }
885         return 0;
886 }
887
888 static ssize_t
889 i915_error_state_write(struct file *filp,
890                        const char __user *ubuf,
891                        size_t cnt,
892                        loff_t *ppos)
893 {
894         struct i915_error_state_file_priv *error_priv = filp->private_data;
895         struct drm_device *dev = error_priv->dev;
896         int ret;
897
898         DRM_DEBUG_DRIVER("Resetting error state\n");
899
900         ret = mutex_lock_interruptible(&dev->struct_mutex);
901         if (ret)
902                 return ret;
903
904         i915_destroy_error_state(dev);
905         mutex_unlock(&dev->struct_mutex);
906
907         return cnt;
908 }
909
910 static int i915_error_state_open(struct inode *inode, struct file *file)
911 {
912         struct drm_device *dev = inode->i_private;
913         struct i915_error_state_file_priv *error_priv;
914
915         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
916         if (!error_priv)
917                 return -ENOMEM;
918
919         error_priv->dev = dev;
920
921         i915_error_state_get(dev, error_priv);
922
923         file->private_data = error_priv;
924
925         return 0;
926 }
927
928 static int i915_error_state_release(struct inode *inode, struct file *file)
929 {
930         struct i915_error_state_file_priv *error_priv = file->private_data;
931
932         i915_error_state_put(error_priv);
933         kfree(error_priv);
934
935         return 0;
936 }
937
938 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
939                                      size_t count, loff_t *pos)
940 {
941         struct i915_error_state_file_priv *error_priv = file->private_data;
942         struct drm_i915_error_state_buf error_str;
943         loff_t tmp_pos = 0;
944         ssize_t ret_count = 0;
945         int ret;
946
947         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
948         if (ret)
949                 return ret;
950
951         ret = i915_error_state_to_str(&error_str, error_priv);
952         if (ret)
953                 goto out;
954
955         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
956                                             error_str.buf,
957                                             error_str.bytes);
958
959         if (ret_count < 0)
960                 ret = ret_count;
961         else
962                 *pos = error_str.start + ret_count;
963 out:
964         i915_error_state_buf_release(&error_str);
965         return ret ?: ret_count;
966 }
967
968 static const struct file_operations i915_error_state_fops = {
969         .owner = THIS_MODULE,
970         .open = i915_error_state_open,
971         .read = i915_error_state_read,
972         .write = i915_error_state_write,
973         .llseek = default_llseek,
974         .release = i915_error_state_release,
975 };
976
977 static int
978 i915_next_seqno_get(void *data, u64 *val)
979 {
980         struct drm_device *dev = data;
981         struct drm_i915_private *dev_priv = dev->dev_private;
982         int ret;
983
984         ret = mutex_lock_interruptible(&dev->struct_mutex);
985         if (ret)
986                 return ret;
987
988         *val = dev_priv->next_seqno;
989         mutex_unlock(&dev->struct_mutex);
990
991         return 0;
992 }
993
994 static int
995 i915_next_seqno_set(void *data, u64 val)
996 {
997         struct drm_device *dev = data;
998         int ret;
999
1000         ret = mutex_lock_interruptible(&dev->struct_mutex);
1001         if (ret)
1002                 return ret;
1003
1004         ret = i915_gem_set_seqno(dev, val);
1005         mutex_unlock(&dev->struct_mutex);
1006
1007         return ret;
1008 }
1009
1010 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1011                         i915_next_seqno_get, i915_next_seqno_set,
1012                         "0x%llx\n");
1013
1014 static int i915_frequency_info(struct seq_file *m, void *unused)
1015 {
1016         struct drm_info_node *node = m->private;
1017         struct drm_device *dev = node->minor->dev;
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         int ret = 0;
1020
1021         intel_runtime_pm_get(dev_priv);
1022
1023         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1024
1025         if (IS_GEN5(dev)) {
1026                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1027                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1028
1029                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1030                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1031                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1032                            MEMSTAT_VID_SHIFT);
1033                 seq_printf(m, "Current P-state: %d\n",
1034                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1035         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1036                    IS_BROADWELL(dev)) {
1037                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1038                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1039                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1040                 u32 rpmodectl, rpinclimit, rpdeclimit;
1041                 u32 rpstat, cagf, reqf;
1042                 u32 rpupei, rpcurup, rpprevup;
1043                 u32 rpdownei, rpcurdown, rpprevdown;
1044                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1045                 int max_freq;
1046
1047                 /* RPSTAT1 is in the GT power well */
1048                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1049                 if (ret)
1050                         goto out;
1051
1052                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1053
1054                 reqf = I915_READ(GEN6_RPNSWREQ);
1055                 reqf &= ~GEN6_TURBO_DISABLE;
1056                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1057                         reqf >>= 24;
1058                 else
1059                         reqf >>= 25;
1060                 reqf *= GT_FREQUENCY_MULTIPLIER;
1061
1062                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1063                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1064                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1065
1066                 rpstat = I915_READ(GEN6_RPSTAT1);
1067                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1068                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1069                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1070                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1071                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1072                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1073                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1074                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1075                 else
1076                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1077                 cagf *= GT_FREQUENCY_MULTIPLIER;
1078
1079                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1080                 mutex_unlock(&dev->struct_mutex);
1081
1082                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1083                         pm_ier = I915_READ(GEN6_PMIER);
1084                         pm_imr = I915_READ(GEN6_PMIMR);
1085                         pm_isr = I915_READ(GEN6_PMISR);
1086                         pm_iir = I915_READ(GEN6_PMIIR);
1087                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1088                 } else {
1089                         pm_ier = I915_READ(GEN8_GT_IER(2));
1090                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1091                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1092                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1093                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1094                 }
1095                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1096                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1097                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1098                 seq_printf(m, "Render p-state ratio: %d\n",
1099                            (gt_perf_status & 0xff00) >> 8);
1100                 seq_printf(m, "Render p-state VID: %d\n",
1101                            gt_perf_status & 0xff);
1102                 seq_printf(m, "Render p-state limit: %d\n",
1103                            rp_state_limits & 0xff);
1104                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1105                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1106                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1107                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1108                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1109                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1110                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1111                            GEN6_CURICONT_MASK);
1112                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1113                            GEN6_CURBSYTAVG_MASK);
1114                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1115                            GEN6_CURBSYTAVG_MASK);
1116                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1117                            GEN6_CURIAVG_MASK);
1118                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1119                            GEN6_CURBSYTAVG_MASK);
1120                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1121                            GEN6_CURBSYTAVG_MASK);
1122
1123                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1124                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1125                            max_freq * GT_FREQUENCY_MULTIPLIER);
1126
1127                 max_freq = (rp_state_cap & 0xff00) >> 8;
1128                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1129                            max_freq * GT_FREQUENCY_MULTIPLIER);
1130
1131                 max_freq = rp_state_cap & 0xff;
1132                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1133                            max_freq * GT_FREQUENCY_MULTIPLIER);
1134
1135                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1136                            dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1137         } else if (IS_VALLEYVIEW(dev)) {
1138                 u32 freq_sts;
1139
1140                 mutex_lock(&dev_priv->rps.hw_lock);
1141                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1142                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1143                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1144
1145                 seq_printf(m, "max GPU freq: %d MHz\n",
1146                            vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1147
1148                 seq_printf(m, "min GPU freq: %d MHz\n",
1149                            vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1150
1151                 seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1152                            vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1153
1154                 seq_printf(m, "current GPU freq: %d MHz\n",
1155                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1156                 mutex_unlock(&dev_priv->rps.hw_lock);
1157         } else {
1158                 seq_puts(m, "no P-state info available\n");
1159         }
1160
1161 out:
1162         intel_runtime_pm_put(dev_priv);
1163         return ret;
1164 }
1165
1166 static int ironlake_drpc_info(struct seq_file *m)
1167 {
1168         struct drm_info_node *node = m->private;
1169         struct drm_device *dev = node->minor->dev;
1170         struct drm_i915_private *dev_priv = dev->dev_private;
1171         u32 rgvmodectl, rstdbyctl;
1172         u16 crstandvid;
1173         int ret;
1174
1175         ret = mutex_lock_interruptible(&dev->struct_mutex);
1176         if (ret)
1177                 return ret;
1178         intel_runtime_pm_get(dev_priv);
1179
1180         rgvmodectl = I915_READ(MEMMODECTL);
1181         rstdbyctl = I915_READ(RSTDBYCTL);
1182         crstandvid = I915_READ16(CRSTANDVID);
1183
1184         intel_runtime_pm_put(dev_priv);
1185         mutex_unlock(&dev->struct_mutex);
1186
1187         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1188                    "yes" : "no");
1189         seq_printf(m, "Boost freq: %d\n",
1190                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1191                    MEMMODE_BOOST_FREQ_SHIFT);
1192         seq_printf(m, "HW control enabled: %s\n",
1193                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1194         seq_printf(m, "SW control enabled: %s\n",
1195                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1196         seq_printf(m, "Gated voltage change: %s\n",
1197                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1198         seq_printf(m, "Starting frequency: P%d\n",
1199                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1200         seq_printf(m, "Max P-state: P%d\n",
1201                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1202         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1203         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1204         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1205         seq_printf(m, "Render standby enabled: %s\n",
1206                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1207         seq_puts(m, "Current RS state: ");
1208         switch (rstdbyctl & RSX_STATUS_MASK) {
1209         case RSX_STATUS_ON:
1210                 seq_puts(m, "on\n");
1211                 break;
1212         case RSX_STATUS_RC1:
1213                 seq_puts(m, "RC1\n");
1214                 break;
1215         case RSX_STATUS_RC1E:
1216                 seq_puts(m, "RC1E\n");
1217                 break;
1218         case RSX_STATUS_RS1:
1219                 seq_puts(m, "RS1\n");
1220                 break;
1221         case RSX_STATUS_RS2:
1222                 seq_puts(m, "RS2 (RC6)\n");
1223                 break;
1224         case RSX_STATUS_RS3:
1225                 seq_puts(m, "RC3 (RC6+)\n");
1226                 break;
1227         default:
1228                 seq_puts(m, "unknown\n");
1229                 break;
1230         }
1231
1232         return 0;
1233 }
1234
1235 static int vlv_drpc_info(struct seq_file *m)
1236 {
1237
1238         struct drm_info_node *node = m->private;
1239         struct drm_device *dev = node->minor->dev;
1240         struct drm_i915_private *dev_priv = dev->dev_private;
1241         u32 rpmodectl1, rcctl1, pw_status;
1242         unsigned fw_rendercount = 0, fw_mediacount = 0;
1243
1244         intel_runtime_pm_get(dev_priv);
1245
1246         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1247         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1248         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1249
1250         intel_runtime_pm_put(dev_priv);
1251
1252         seq_printf(m, "Video Turbo Mode: %s\n",
1253                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1254         seq_printf(m, "Turbo enabled: %s\n",
1255                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1256         seq_printf(m, "HW control enabled: %s\n",
1257                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1258         seq_printf(m, "SW control enabled: %s\n",
1259                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1260                           GEN6_RP_MEDIA_SW_MODE));
1261         seq_printf(m, "RC6 Enabled: %s\n",
1262                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1263                                         GEN6_RC_CTL_EI_MODE(1))));
1264         seq_printf(m, "Render Power Well: %s\n",
1265                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1266         seq_printf(m, "Media Power Well: %s\n",
1267                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1268
1269         seq_printf(m, "Render RC6 residency since boot: %u\n",
1270                    I915_READ(VLV_GT_RENDER_RC6));
1271         seq_printf(m, "Media RC6 residency since boot: %u\n",
1272                    I915_READ(VLV_GT_MEDIA_RC6));
1273
1274         spin_lock_irq(&dev_priv->uncore.lock);
1275         fw_rendercount = dev_priv->uncore.fw_rendercount;
1276         fw_mediacount = dev_priv->uncore.fw_mediacount;
1277         spin_unlock_irq(&dev_priv->uncore.lock);
1278
1279         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1280         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1281
1282
1283         return 0;
1284 }
1285
1286
1287 static int gen6_drpc_info(struct seq_file *m)
1288 {
1289
1290         struct drm_info_node *node = m->private;
1291         struct drm_device *dev = node->minor->dev;
1292         struct drm_i915_private *dev_priv = dev->dev_private;
1293         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1294         unsigned forcewake_count;
1295         int count = 0, ret;
1296
1297         ret = mutex_lock_interruptible(&dev->struct_mutex);
1298         if (ret)
1299                 return ret;
1300         intel_runtime_pm_get(dev_priv);
1301
1302         spin_lock_irq(&dev_priv->uncore.lock);
1303         forcewake_count = dev_priv->uncore.forcewake_count;
1304         spin_unlock_irq(&dev_priv->uncore.lock);
1305
1306         if (forcewake_count) {
1307                 seq_puts(m, "RC information inaccurate because somebody "
1308                             "holds a forcewake reference \n");
1309         } else {
1310                 /* NB: we cannot use forcewake, else we read the wrong values */
1311                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1312                         udelay(10);
1313                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1314         }
1315
1316         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1317         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1318
1319         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1320         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1321         mutex_unlock(&dev->struct_mutex);
1322         mutex_lock(&dev_priv->rps.hw_lock);
1323         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1324         mutex_unlock(&dev_priv->rps.hw_lock);
1325
1326         intel_runtime_pm_put(dev_priv);
1327
1328         seq_printf(m, "Video Turbo Mode: %s\n",
1329                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1330         seq_printf(m, "HW control enabled: %s\n",
1331                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1332         seq_printf(m, "SW control enabled: %s\n",
1333                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1334                           GEN6_RP_MEDIA_SW_MODE));
1335         seq_printf(m, "RC1e Enabled: %s\n",
1336                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1337         seq_printf(m, "RC6 Enabled: %s\n",
1338                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1339         seq_printf(m, "Deep RC6 Enabled: %s\n",
1340                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1341         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1342                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1343         seq_puts(m, "Current RC state: ");
1344         switch (gt_core_status & GEN6_RCn_MASK) {
1345         case GEN6_RC0:
1346                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1347                         seq_puts(m, "Core Power Down\n");
1348                 else
1349                         seq_puts(m, "on\n");
1350                 break;
1351         case GEN6_RC3:
1352                 seq_puts(m, "RC3\n");
1353                 break;
1354         case GEN6_RC6:
1355                 seq_puts(m, "RC6\n");
1356                 break;
1357         case GEN6_RC7:
1358                 seq_puts(m, "RC7\n");
1359                 break;
1360         default:
1361                 seq_puts(m, "Unknown\n");
1362                 break;
1363         }
1364
1365         seq_printf(m, "Core Power Down: %s\n",
1366                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1367
1368         /* Not exactly sure what this is */
1369         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1370                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1371         seq_printf(m, "RC6 residency since boot: %u\n",
1372                    I915_READ(GEN6_GT_GFX_RC6));
1373         seq_printf(m, "RC6+ residency since boot: %u\n",
1374                    I915_READ(GEN6_GT_GFX_RC6p));
1375         seq_printf(m, "RC6++ residency since boot: %u\n",
1376                    I915_READ(GEN6_GT_GFX_RC6pp));
1377
1378         seq_printf(m, "RC6   voltage: %dmV\n",
1379                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1380         seq_printf(m, "RC6+  voltage: %dmV\n",
1381                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1382         seq_printf(m, "RC6++ voltage: %dmV\n",
1383                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1384         return 0;
1385 }
1386
1387 static int i915_drpc_info(struct seq_file *m, void *unused)
1388 {
1389         struct drm_info_node *node = m->private;
1390         struct drm_device *dev = node->minor->dev;
1391
1392         if (IS_VALLEYVIEW(dev))
1393                 return vlv_drpc_info(m);
1394         else if (INTEL_INFO(dev)->gen >= 6)
1395                 return gen6_drpc_info(m);
1396         else
1397                 return ironlake_drpc_info(m);
1398 }
1399
1400 static int i915_fbc_status(struct seq_file *m, void *unused)
1401 {
1402         struct drm_info_node *node = m->private;
1403         struct drm_device *dev = node->minor->dev;
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405
1406         if (!HAS_FBC(dev)) {
1407                 seq_puts(m, "FBC unsupported on this chipset\n");
1408                 return 0;
1409         }
1410
1411         intel_runtime_pm_get(dev_priv);
1412
1413         if (intel_fbc_enabled(dev)) {
1414                 seq_puts(m, "FBC enabled\n");
1415         } else {
1416                 seq_puts(m, "FBC disabled: ");
1417                 switch (dev_priv->fbc.no_fbc_reason) {
1418                 case FBC_OK:
1419                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1420                         break;
1421                 case FBC_UNSUPPORTED:
1422                         seq_puts(m, "unsupported by this chipset");
1423                         break;
1424                 case FBC_NO_OUTPUT:
1425                         seq_puts(m, "no outputs");
1426                         break;
1427                 case FBC_STOLEN_TOO_SMALL:
1428                         seq_puts(m, "not enough stolen memory");
1429                         break;
1430                 case FBC_UNSUPPORTED_MODE:
1431                         seq_puts(m, "mode not supported");
1432                         break;
1433                 case FBC_MODE_TOO_LARGE:
1434                         seq_puts(m, "mode too large");
1435                         break;
1436                 case FBC_BAD_PLANE:
1437                         seq_puts(m, "FBC unsupported on plane");
1438                         break;
1439                 case FBC_NOT_TILED:
1440                         seq_puts(m, "scanout buffer not tiled");
1441                         break;
1442                 case FBC_MULTIPLE_PIPES:
1443                         seq_puts(m, "multiple pipes are enabled");
1444                         break;
1445                 case FBC_MODULE_PARAM:
1446                         seq_puts(m, "disabled per module param (default off)");
1447                         break;
1448                 case FBC_CHIP_DEFAULT:
1449                         seq_puts(m, "disabled per chip default");
1450                         break;
1451                 default:
1452                         seq_puts(m, "unknown reason");
1453                 }
1454                 seq_putc(m, '\n');
1455         }
1456
1457         intel_runtime_pm_put(dev_priv);
1458
1459         return 0;
1460 }
1461
1462 static int i915_fbc_fc_get(void *data, u64 *val)
1463 {
1464         struct drm_device *dev = data;
1465         struct drm_i915_private *dev_priv = dev->dev_private;
1466
1467         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1468                 return -ENODEV;
1469
1470         drm_modeset_lock_all(dev);
1471         *val = dev_priv->fbc.false_color;
1472         drm_modeset_unlock_all(dev);
1473
1474         return 0;
1475 }
1476
1477 static int i915_fbc_fc_set(void *data, u64 val)
1478 {
1479         struct drm_device *dev = data;
1480         struct drm_i915_private *dev_priv = dev->dev_private;
1481         u32 reg;
1482
1483         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1484                 return -ENODEV;
1485
1486         drm_modeset_lock_all(dev);
1487
1488         reg = I915_READ(ILK_DPFC_CONTROL);
1489         dev_priv->fbc.false_color = val;
1490
1491         I915_WRITE(ILK_DPFC_CONTROL, val ?
1492                    (reg | FBC_CTL_FALSE_COLOR) :
1493                    (reg & ~FBC_CTL_FALSE_COLOR));
1494
1495         drm_modeset_unlock_all(dev);
1496         return 0;
1497 }
1498
1499 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1500                         i915_fbc_fc_get, i915_fbc_fc_set,
1501                         "%llu\n");
1502
1503 static int i915_ips_status(struct seq_file *m, void *unused)
1504 {
1505         struct drm_info_node *node = m->private;
1506         struct drm_device *dev = node->minor->dev;
1507         struct drm_i915_private *dev_priv = dev->dev_private;
1508
1509         if (!HAS_IPS(dev)) {
1510                 seq_puts(m, "not supported\n");
1511                 return 0;
1512         }
1513
1514         intel_runtime_pm_get(dev_priv);
1515
1516         seq_printf(m, "Enabled by kernel parameter: %s\n",
1517                    yesno(i915.enable_ips));
1518
1519         if (INTEL_INFO(dev)->gen >= 8) {
1520                 seq_puts(m, "Currently: unknown\n");
1521         } else {
1522                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1523                         seq_puts(m, "Currently: enabled\n");
1524                 else
1525                         seq_puts(m, "Currently: disabled\n");
1526         }
1527
1528         intel_runtime_pm_put(dev_priv);
1529
1530         return 0;
1531 }
1532
1533 static int i915_sr_status(struct seq_file *m, void *unused)
1534 {
1535         struct drm_info_node *node = m->private;
1536         struct drm_device *dev = node->minor->dev;
1537         struct drm_i915_private *dev_priv = dev->dev_private;
1538         bool sr_enabled = false;
1539
1540         intel_runtime_pm_get(dev_priv);
1541
1542         if (HAS_PCH_SPLIT(dev))
1543                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1544         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1545                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1546         else if (IS_I915GM(dev))
1547                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1548         else if (IS_PINEVIEW(dev))
1549                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1550
1551         intel_runtime_pm_put(dev_priv);
1552
1553         seq_printf(m, "self-refresh: %s\n",
1554                    sr_enabled ? "enabled" : "disabled");
1555
1556         return 0;
1557 }
1558
1559 static int i915_emon_status(struct seq_file *m, void *unused)
1560 {
1561         struct drm_info_node *node = m->private;
1562         struct drm_device *dev = node->minor->dev;
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         unsigned long temp, chipset, gfx;
1565         int ret;
1566
1567         if (!IS_GEN5(dev))
1568                 return -ENODEV;
1569
1570         ret = mutex_lock_interruptible(&dev->struct_mutex);
1571         if (ret)
1572                 return ret;
1573
1574         temp = i915_mch_val(dev_priv);
1575         chipset = i915_chipset_val(dev_priv);
1576         gfx = i915_gfx_val(dev_priv);
1577         mutex_unlock(&dev->struct_mutex);
1578
1579         seq_printf(m, "GMCH temp: %ld\n", temp);
1580         seq_printf(m, "Chipset power: %ld\n", chipset);
1581         seq_printf(m, "GFX power: %ld\n", gfx);
1582         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1583
1584         return 0;
1585 }
1586
1587 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1588 {
1589         struct drm_info_node *node = m->private;
1590         struct drm_device *dev = node->minor->dev;
1591         struct drm_i915_private *dev_priv = dev->dev_private;
1592         int ret = 0;
1593         int gpu_freq, ia_freq;
1594
1595         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1596                 seq_puts(m, "unsupported on this chipset\n");
1597                 return 0;
1598         }
1599
1600         intel_runtime_pm_get(dev_priv);
1601
1602         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1603
1604         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1605         if (ret)
1606                 goto out;
1607
1608         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1609
1610         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1611              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1612              gpu_freq++) {
1613                 ia_freq = gpu_freq;
1614                 sandybridge_pcode_read(dev_priv,
1615                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1616                                        &ia_freq);
1617                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1618                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1619                            ((ia_freq >> 0) & 0xff) * 100,
1620                            ((ia_freq >> 8) & 0xff) * 100);
1621         }
1622
1623         mutex_unlock(&dev_priv->rps.hw_lock);
1624
1625 out:
1626         intel_runtime_pm_put(dev_priv);
1627         return ret;
1628 }
1629
1630 static int i915_opregion(struct seq_file *m, void *unused)
1631 {
1632         struct drm_info_node *node = m->private;
1633         struct drm_device *dev = node->minor->dev;
1634         struct drm_i915_private *dev_priv = dev->dev_private;
1635         struct intel_opregion *opregion = &dev_priv->opregion;
1636         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1637         int ret;
1638
1639         if (data == NULL)
1640                 return -ENOMEM;
1641
1642         ret = mutex_lock_interruptible(&dev->struct_mutex);
1643         if (ret)
1644                 goto out;
1645
1646         if (opregion->header) {
1647                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1648                 seq_write(m, data, OPREGION_SIZE);
1649         }
1650
1651         mutex_unlock(&dev->struct_mutex);
1652
1653 out:
1654         kfree(data);
1655         return 0;
1656 }
1657
1658 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1659 {
1660         struct drm_info_node *node = m->private;
1661         struct drm_device *dev = node->minor->dev;
1662         struct intel_fbdev *ifbdev = NULL;
1663         struct intel_framebuffer *fb;
1664
1665 #ifdef CONFIG_DRM_I915_FBDEV
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667
1668         ifbdev = dev_priv->fbdev;
1669         fb = to_intel_framebuffer(ifbdev->helper.fb);
1670
1671         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1672                    fb->base.width,
1673                    fb->base.height,
1674                    fb->base.depth,
1675                    fb->base.bits_per_pixel,
1676                    atomic_read(&fb->base.refcount.refcount));
1677         describe_obj(m, fb->obj);
1678         seq_putc(m, '\n');
1679 #endif
1680
1681         mutex_lock(&dev->mode_config.fb_lock);
1682         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1683                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1684                         continue;
1685
1686                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1687                            fb->base.width,
1688                            fb->base.height,
1689                            fb->base.depth,
1690                            fb->base.bits_per_pixel,
1691                            atomic_read(&fb->base.refcount.refcount));
1692                 describe_obj(m, fb->obj);
1693                 seq_putc(m, '\n');
1694         }
1695         mutex_unlock(&dev->mode_config.fb_lock);
1696
1697         return 0;
1698 }
1699
1700 static void describe_ctx_ringbuf(struct seq_file *m,
1701                                  struct intel_ringbuffer *ringbuf)
1702 {
1703         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1704                    ringbuf->space, ringbuf->head, ringbuf->tail,
1705                    ringbuf->last_retired_head);
1706 }
1707
1708 static int i915_context_status(struct seq_file *m, void *unused)
1709 {
1710         struct drm_info_node *node = m->private;
1711         struct drm_device *dev = node->minor->dev;
1712         struct drm_i915_private *dev_priv = dev->dev_private;
1713         struct intel_engine_cs *ring;
1714         struct intel_context *ctx;
1715         int ret, i;
1716
1717         ret = mutex_lock_interruptible(&dev->struct_mutex);
1718         if (ret)
1719                 return ret;
1720
1721         if (dev_priv->ips.pwrctx) {
1722                 seq_puts(m, "power context ");
1723                 describe_obj(m, dev_priv->ips.pwrctx);
1724                 seq_putc(m, '\n');
1725         }
1726
1727         if (dev_priv->ips.renderctx) {
1728                 seq_puts(m, "render context ");
1729                 describe_obj(m, dev_priv->ips.renderctx);
1730                 seq_putc(m, '\n');
1731         }
1732
1733         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1734                 if (!i915.enable_execlists &&
1735                     ctx->legacy_hw_ctx.rcs_state == NULL)
1736                         continue;
1737
1738                 seq_puts(m, "HW context ");
1739                 describe_ctx(m, ctx);
1740                 for_each_ring(ring, dev_priv, i) {
1741                         if (ring->default_context == ctx)
1742                                 seq_printf(m, "(default context %s) ",
1743                                            ring->name);
1744                 }
1745
1746                 if (i915.enable_execlists) {
1747                         seq_putc(m, '\n');
1748                         for_each_ring(ring, dev_priv, i) {
1749                                 struct drm_i915_gem_object *ctx_obj =
1750                                         ctx->engine[i].state;
1751                                 struct intel_ringbuffer *ringbuf =
1752                                         ctx->engine[i].ringbuf;
1753
1754                                 seq_printf(m, "%s: ", ring->name);
1755                                 if (ctx_obj)
1756                                         describe_obj(m, ctx_obj);
1757                                 if (ringbuf)
1758                                         describe_ctx_ringbuf(m, ringbuf);
1759                                 seq_putc(m, '\n');
1760                         }
1761                 } else {
1762                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1763                 }
1764
1765                 seq_putc(m, '\n');
1766         }
1767
1768         mutex_unlock(&dev->struct_mutex);
1769
1770         return 0;
1771 }
1772
1773 static void i915_dump_lrc_obj(struct seq_file *m,
1774                               struct intel_engine_cs *ring,
1775                               struct drm_i915_gem_object *ctx_obj)
1776 {
1777         struct page *page;
1778         uint32_t *reg_state;
1779         int j;
1780         unsigned long ggtt_offset = 0;
1781
1782         if (ctx_obj == NULL) {
1783                 seq_printf(m, "Context on %s with no gem object\n",
1784                            ring->name);
1785                 return;
1786         }
1787
1788         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1789                    intel_execlists_ctx_id(ctx_obj));
1790
1791         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1792                 seq_puts(m, "\tNot bound in GGTT\n");
1793         else
1794                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1795
1796         if (i915_gem_object_get_pages(ctx_obj)) {
1797                 seq_puts(m, "\tFailed to get pages for context object\n");
1798                 return;
1799         }
1800
1801         page = i915_gem_object_get_page(ctx_obj, 1);
1802         if (!WARN_ON(page == NULL)) {
1803                 reg_state = kmap_atomic(page);
1804
1805                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1806                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1807                                    ggtt_offset + 4096 + (j * 4),
1808                                    reg_state[j], reg_state[j + 1],
1809                                    reg_state[j + 2], reg_state[j + 3]);
1810                 }
1811                 kunmap_atomic(reg_state);
1812         }
1813
1814         seq_putc(m, '\n');
1815 }
1816
1817 static int i915_dump_lrc(struct seq_file *m, void *unused)
1818 {
1819         struct drm_info_node *node = (struct drm_info_node *) m->private;
1820         struct drm_device *dev = node->minor->dev;
1821         struct drm_i915_private *dev_priv = dev->dev_private;
1822         struct intel_engine_cs *ring;
1823         struct intel_context *ctx;
1824         int ret, i;
1825
1826         if (!i915.enable_execlists) {
1827                 seq_printf(m, "Logical Ring Contexts are disabled\n");
1828                 return 0;
1829         }
1830
1831         ret = mutex_lock_interruptible(&dev->struct_mutex);
1832         if (ret)
1833                 return ret;
1834
1835         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1836                 for_each_ring(ring, dev_priv, i) {
1837                         if (ring->default_context != ctx)
1838                                 i915_dump_lrc_obj(m, ring,
1839                                                   ctx->engine[i].state);
1840                 }
1841         }
1842
1843         mutex_unlock(&dev->struct_mutex);
1844
1845         return 0;
1846 }
1847
1848 static int i915_execlists(struct seq_file *m, void *data)
1849 {
1850         struct drm_info_node *node = (struct drm_info_node *)m->private;
1851         struct drm_device *dev = node->minor->dev;
1852         struct drm_i915_private *dev_priv = dev->dev_private;
1853         struct intel_engine_cs *ring;
1854         u32 status_pointer;
1855         u8 read_pointer;
1856         u8 write_pointer;
1857         u32 status;
1858         u32 ctx_id;
1859         struct list_head *cursor;
1860         int ring_id, i;
1861         int ret;
1862
1863         if (!i915.enable_execlists) {
1864                 seq_puts(m, "Logical Ring Contexts are disabled\n");
1865                 return 0;
1866         }
1867
1868         ret = mutex_lock_interruptible(&dev->struct_mutex);
1869         if (ret)
1870                 return ret;
1871
1872         intel_runtime_pm_get(dev_priv);
1873
1874         for_each_ring(ring, dev_priv, ring_id) {
1875                 struct intel_ctx_submit_request *head_req = NULL;
1876                 int count = 0;
1877                 unsigned long flags;
1878
1879                 seq_printf(m, "%s\n", ring->name);
1880
1881                 status = I915_READ(RING_EXECLIST_STATUS(ring));
1882                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1883                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1884                            status, ctx_id);
1885
1886                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1887                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1888
1889                 read_pointer = ring->next_context_status_buffer;
1890                 write_pointer = status_pointer & 0x07;
1891                 if (read_pointer > write_pointer)
1892                         write_pointer += 6;
1893                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1894                            read_pointer, write_pointer);
1895
1896                 for (i = 0; i < 6; i++) {
1897                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1898                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1899
1900                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1901                                    i, status, ctx_id);
1902                 }
1903
1904                 spin_lock_irqsave(&ring->execlist_lock, flags);
1905                 list_for_each(cursor, &ring->execlist_queue)
1906                         count++;
1907                 head_req = list_first_entry_or_null(&ring->execlist_queue,
1908                                 struct intel_ctx_submit_request, execlist_link);
1909                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
1910
1911                 seq_printf(m, "\t%d requests in queue\n", count);
1912                 if (head_req) {
1913                         struct drm_i915_gem_object *ctx_obj;
1914
1915                         ctx_obj = head_req->ctx->engine[ring_id].state;
1916                         seq_printf(m, "\tHead request id: %u\n",
1917                                    intel_execlists_ctx_id(ctx_obj));
1918                         seq_printf(m, "\tHead request tail: %u\n",
1919                                    head_req->tail);
1920                 }
1921
1922                 seq_putc(m, '\n');
1923         }
1924
1925         intel_runtime_pm_put(dev_priv);
1926         mutex_unlock(&dev->struct_mutex);
1927
1928         return 0;
1929 }
1930
1931 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1932 {
1933         struct drm_info_node *node = m->private;
1934         struct drm_device *dev = node->minor->dev;
1935         struct drm_i915_private *dev_priv = dev->dev_private;
1936         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1937
1938         spin_lock_irq(&dev_priv->uncore.lock);
1939         if (IS_VALLEYVIEW(dev)) {
1940                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1941                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1942         } else
1943                 forcewake_count = dev_priv->uncore.forcewake_count;
1944         spin_unlock_irq(&dev_priv->uncore.lock);
1945
1946         if (IS_VALLEYVIEW(dev)) {
1947                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1948                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1949         } else
1950                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1951
1952         return 0;
1953 }
1954
1955 static const char *swizzle_string(unsigned swizzle)
1956 {
1957         switch (swizzle) {
1958         case I915_BIT_6_SWIZZLE_NONE:
1959                 return "none";
1960         case I915_BIT_6_SWIZZLE_9:
1961                 return "bit9";
1962         case I915_BIT_6_SWIZZLE_9_10:
1963                 return "bit9/bit10";
1964         case I915_BIT_6_SWIZZLE_9_11:
1965                 return "bit9/bit11";
1966         case I915_BIT_6_SWIZZLE_9_10_11:
1967                 return "bit9/bit10/bit11";
1968         case I915_BIT_6_SWIZZLE_9_17:
1969                 return "bit9/bit17";
1970         case I915_BIT_6_SWIZZLE_9_10_17:
1971                 return "bit9/bit10/bit17";
1972         case I915_BIT_6_SWIZZLE_UNKNOWN:
1973                 return "unknown";
1974         }
1975
1976         return "bug";
1977 }
1978
1979 static int i915_swizzle_info(struct seq_file *m, void *data)
1980 {
1981         struct drm_info_node *node = m->private;
1982         struct drm_device *dev = node->minor->dev;
1983         struct drm_i915_private *dev_priv = dev->dev_private;
1984         int ret;
1985
1986         ret = mutex_lock_interruptible(&dev->struct_mutex);
1987         if (ret)
1988                 return ret;
1989         intel_runtime_pm_get(dev_priv);
1990
1991         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1992                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1993         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1994                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1995
1996         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1997                 seq_printf(m, "DDC = 0x%08x\n",
1998                            I915_READ(DCC));
1999                 seq_printf(m, "DDC2 = 0x%08x\n",
2000                            I915_READ(DCC2));
2001                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2002                            I915_READ16(C0DRB3));
2003                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2004                            I915_READ16(C1DRB3));
2005         } else if (INTEL_INFO(dev)->gen >= 6) {
2006                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2007                            I915_READ(MAD_DIMM_C0));
2008                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2009                            I915_READ(MAD_DIMM_C1));
2010                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2011                            I915_READ(MAD_DIMM_C2));
2012                 seq_printf(m, "TILECTL = 0x%08x\n",
2013                            I915_READ(TILECTL));
2014                 if (INTEL_INFO(dev)->gen >= 8)
2015                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2016                                    I915_READ(GAMTARBMODE));
2017                 else
2018                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2019                                    I915_READ(ARB_MODE));
2020                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2021                            I915_READ(DISP_ARB_CTL));
2022         }
2023
2024         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2025                 seq_puts(m, "L-shaped memory detected\n");
2026
2027         intel_runtime_pm_put(dev_priv);
2028         mutex_unlock(&dev->struct_mutex);
2029
2030         return 0;
2031 }
2032
2033 static int per_file_ctx(int id, void *ptr, void *data)
2034 {
2035         struct intel_context *ctx = ptr;
2036         struct seq_file *m = data;
2037         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2038
2039         if (!ppgtt) {
2040                 seq_printf(m, "  no ppgtt for context %d\n",
2041                            ctx->user_handle);
2042                 return 0;
2043         }
2044
2045         if (i915_gem_context_is_default(ctx))
2046                 seq_puts(m, "  default context:\n");
2047         else
2048                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2049         ppgtt->debug_dump(ppgtt, m);
2050
2051         return 0;
2052 }
2053
2054 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2055 {
2056         struct drm_i915_private *dev_priv = dev->dev_private;
2057         struct intel_engine_cs *ring;
2058         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2059         int unused, i;
2060
2061         if (!ppgtt)
2062                 return;
2063
2064         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2065         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2066         for_each_ring(ring, dev_priv, unused) {
2067                 seq_printf(m, "%s\n", ring->name);
2068                 for (i = 0; i < 4; i++) {
2069                         u32 offset = 0x270 + i * 8;
2070                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2071                         pdp <<= 32;
2072                         pdp |= I915_READ(ring->mmio_base + offset);
2073                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2074                 }
2075         }
2076 }
2077
2078 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2079 {
2080         struct drm_i915_private *dev_priv = dev->dev_private;
2081         struct intel_engine_cs *ring;
2082         struct drm_file *file;
2083         int i;
2084
2085         if (INTEL_INFO(dev)->gen == 6)
2086                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2087
2088         for_each_ring(ring, dev_priv, i) {
2089                 seq_printf(m, "%s\n", ring->name);
2090                 if (INTEL_INFO(dev)->gen == 7)
2091                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2092                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2093                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2094                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2095         }
2096         if (dev_priv->mm.aliasing_ppgtt) {
2097                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2098
2099                 seq_puts(m, "aliasing PPGTT:\n");
2100                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2101
2102                 ppgtt->debug_dump(ppgtt, m);
2103         }
2104
2105         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2106                 struct drm_i915_file_private *file_priv = file->driver_priv;
2107
2108                 seq_printf(m, "proc: %s\n",
2109                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2110                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2111         }
2112         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2113 }
2114
2115 static int i915_ppgtt_info(struct seq_file *m, void *data)
2116 {
2117         struct drm_info_node *node = m->private;
2118         struct drm_device *dev = node->minor->dev;
2119         struct drm_i915_private *dev_priv = dev->dev_private;
2120
2121         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2122         if (ret)
2123                 return ret;
2124         intel_runtime_pm_get(dev_priv);
2125
2126         if (INTEL_INFO(dev)->gen >= 8)
2127                 gen8_ppgtt_info(m, dev);
2128         else if (INTEL_INFO(dev)->gen >= 6)
2129                 gen6_ppgtt_info(m, dev);
2130
2131         intel_runtime_pm_put(dev_priv);
2132         mutex_unlock(&dev->struct_mutex);
2133
2134         return 0;
2135 }
2136
2137 static int i915_llc(struct seq_file *m, void *data)
2138 {
2139         struct drm_info_node *node = m->private;
2140         struct drm_device *dev = node->minor->dev;
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142
2143         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2144         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2145         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2146
2147         return 0;
2148 }
2149
2150 static int i915_edp_psr_status(struct seq_file *m, void *data)
2151 {
2152         struct drm_info_node *node = m->private;
2153         struct drm_device *dev = node->minor->dev;
2154         struct drm_i915_private *dev_priv = dev->dev_private;
2155         u32 psrperf = 0;
2156         u32 stat[3];
2157         enum pipe pipe;
2158         bool enabled = false;
2159
2160         intel_runtime_pm_get(dev_priv);
2161
2162         mutex_lock(&dev_priv->psr.lock);
2163         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2164         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2165         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2166         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2167         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2168                    dev_priv->psr.busy_frontbuffer_bits);
2169         seq_printf(m, "Re-enable work scheduled: %s\n",
2170                    yesno(work_busy(&dev_priv->psr.work.work)));
2171
2172         if (HAS_PSR(dev)) {
2173                 if (HAS_DDI(dev))
2174                         enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2175                 else {
2176                         for_each_pipe(dev_priv, pipe) {
2177                                 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2178                                         VLV_EDP_PSR_CURR_STATE_MASK;
2179                                 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2180                                     (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2181                                         enabled = true;
2182                         }
2183                 }
2184         }
2185         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2186
2187         if (!HAS_DDI(dev))
2188                 for_each_pipe(dev_priv, pipe) {
2189                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2190                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2191                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2192                 }
2193         seq_puts(m, "\n");
2194
2195         /* CHV PSR has no kind of performance counter */
2196         if (HAS_PSR(dev) && HAS_DDI(dev)) {
2197                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2198                         EDP_PSR_PERF_CNT_MASK;
2199
2200                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2201         }
2202         mutex_unlock(&dev_priv->psr.lock);
2203
2204         intel_runtime_pm_put(dev_priv);
2205         return 0;
2206 }
2207
2208 static int i915_sink_crc(struct seq_file *m, void *data)
2209 {
2210         struct drm_info_node *node = m->private;
2211         struct drm_device *dev = node->minor->dev;
2212         struct intel_encoder *encoder;
2213         struct intel_connector *connector;
2214         struct intel_dp *intel_dp = NULL;
2215         int ret;
2216         u8 crc[6];
2217
2218         drm_modeset_lock_all(dev);
2219         list_for_each_entry(connector, &dev->mode_config.connector_list,
2220                             base.head) {
2221
2222                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2223                         continue;
2224
2225                 if (!connector->base.encoder)
2226                         continue;
2227
2228                 encoder = to_intel_encoder(connector->base.encoder);
2229                 if (encoder->type != INTEL_OUTPUT_EDP)
2230                         continue;
2231
2232                 intel_dp = enc_to_intel_dp(&encoder->base);
2233
2234                 ret = intel_dp_sink_crc(intel_dp, crc);
2235                 if (ret)
2236                         goto out;
2237
2238                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2239                            crc[0], crc[1], crc[2],
2240                            crc[3], crc[4], crc[5]);
2241                 goto out;
2242         }
2243         ret = -ENODEV;
2244 out:
2245         drm_modeset_unlock_all(dev);
2246         return ret;
2247 }
2248
2249 static int i915_energy_uJ(struct seq_file *m, void *data)
2250 {
2251         struct drm_info_node *node = m->private;
2252         struct drm_device *dev = node->minor->dev;
2253         struct drm_i915_private *dev_priv = dev->dev_private;
2254         u64 power;
2255         u32 units;
2256
2257         if (INTEL_INFO(dev)->gen < 6)
2258                 return -ENODEV;
2259
2260         intel_runtime_pm_get(dev_priv);
2261
2262         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2263         power = (power & 0x1f00) >> 8;
2264         units = 1000000 / (1 << power); /* convert to uJ */
2265         power = I915_READ(MCH_SECP_NRG_STTS);
2266         power *= units;
2267
2268         intel_runtime_pm_put(dev_priv);
2269
2270         seq_printf(m, "%llu", (long long unsigned)power);
2271
2272         return 0;
2273 }
2274
2275 static int i915_pc8_status(struct seq_file *m, void *unused)
2276 {
2277         struct drm_info_node *node = m->private;
2278         struct drm_device *dev = node->minor->dev;
2279         struct drm_i915_private *dev_priv = dev->dev_private;
2280
2281         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2282                 seq_puts(m, "not supported\n");
2283                 return 0;
2284         }
2285
2286         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2287         seq_printf(m, "IRQs disabled: %s\n",
2288                    yesno(!intel_irqs_enabled(dev_priv)));
2289
2290         return 0;
2291 }
2292
2293 static const char *power_domain_str(enum intel_display_power_domain domain)
2294 {
2295         switch (domain) {
2296         case POWER_DOMAIN_PIPE_A:
2297                 return "PIPE_A";
2298         case POWER_DOMAIN_PIPE_B:
2299                 return "PIPE_B";
2300         case POWER_DOMAIN_PIPE_C:
2301                 return "PIPE_C";
2302         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2303                 return "PIPE_A_PANEL_FITTER";
2304         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2305                 return "PIPE_B_PANEL_FITTER";
2306         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2307                 return "PIPE_C_PANEL_FITTER";
2308         case POWER_DOMAIN_TRANSCODER_A:
2309                 return "TRANSCODER_A";
2310         case POWER_DOMAIN_TRANSCODER_B:
2311                 return "TRANSCODER_B";
2312         case POWER_DOMAIN_TRANSCODER_C:
2313                 return "TRANSCODER_C";
2314         case POWER_DOMAIN_TRANSCODER_EDP:
2315                 return "TRANSCODER_EDP";
2316         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2317                 return "PORT_DDI_A_2_LANES";
2318         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2319                 return "PORT_DDI_A_4_LANES";
2320         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2321                 return "PORT_DDI_B_2_LANES";
2322         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2323                 return "PORT_DDI_B_4_LANES";
2324         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2325                 return "PORT_DDI_C_2_LANES";
2326         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2327                 return "PORT_DDI_C_4_LANES";
2328         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2329                 return "PORT_DDI_D_2_LANES";
2330         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2331                 return "PORT_DDI_D_4_LANES";
2332         case POWER_DOMAIN_PORT_DSI:
2333                 return "PORT_DSI";
2334         case POWER_DOMAIN_PORT_CRT:
2335                 return "PORT_CRT";
2336         case POWER_DOMAIN_PORT_OTHER:
2337                 return "PORT_OTHER";
2338         case POWER_DOMAIN_VGA:
2339                 return "VGA";
2340         case POWER_DOMAIN_AUDIO:
2341                 return "AUDIO";
2342         case POWER_DOMAIN_PLLS:
2343                 return "PLLS";
2344         case POWER_DOMAIN_INIT:
2345                 return "INIT";
2346         default:
2347                 WARN_ON(1);
2348                 return "?";
2349         }
2350 }
2351
2352 static int i915_power_domain_info(struct seq_file *m, void *unused)
2353 {
2354         struct drm_info_node *node = m->private;
2355         struct drm_device *dev = node->minor->dev;
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2358         int i;
2359
2360         mutex_lock(&power_domains->lock);
2361
2362         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2363         for (i = 0; i < power_domains->power_well_count; i++) {
2364                 struct i915_power_well *power_well;
2365                 enum intel_display_power_domain power_domain;
2366
2367                 power_well = &power_domains->power_wells[i];
2368                 seq_printf(m, "%-25s %d\n", power_well->name,
2369                            power_well->count);
2370
2371                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2372                      power_domain++) {
2373                         if (!(BIT(power_domain) & power_well->domains))
2374                                 continue;
2375
2376                         seq_printf(m, "  %-23s %d\n",
2377                                  power_domain_str(power_domain),
2378                                  power_domains->domain_use_count[power_domain]);
2379                 }
2380         }
2381
2382         mutex_unlock(&power_domains->lock);
2383
2384         return 0;
2385 }
2386
2387 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2388                                  struct drm_display_mode *mode)
2389 {
2390         int i;
2391
2392         for (i = 0; i < tabs; i++)
2393                 seq_putc(m, '\t');
2394
2395         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2396                    mode->base.id, mode->name,
2397                    mode->vrefresh, mode->clock,
2398                    mode->hdisplay, mode->hsync_start,
2399                    mode->hsync_end, mode->htotal,
2400                    mode->vdisplay, mode->vsync_start,
2401                    mode->vsync_end, mode->vtotal,
2402                    mode->type, mode->flags);
2403 }
2404
2405 static void intel_encoder_info(struct seq_file *m,
2406                                struct intel_crtc *intel_crtc,
2407                                struct intel_encoder *intel_encoder)
2408 {
2409         struct drm_info_node *node = m->private;
2410         struct drm_device *dev = node->minor->dev;
2411         struct drm_crtc *crtc = &intel_crtc->base;
2412         struct intel_connector *intel_connector;
2413         struct drm_encoder *encoder;
2414
2415         encoder = &intel_encoder->base;
2416         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2417                    encoder->base.id, encoder->name);
2418         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2419                 struct drm_connector *connector = &intel_connector->base;
2420                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2421                            connector->base.id,
2422                            connector->name,
2423                            drm_get_connector_status_name(connector->status));
2424                 if (connector->status == connector_status_connected) {
2425                         struct drm_display_mode *mode = &crtc->mode;
2426                         seq_printf(m, ", mode:\n");
2427                         intel_seq_print_mode(m, 2, mode);
2428                 } else {
2429                         seq_putc(m, '\n');
2430                 }
2431         }
2432 }
2433
2434 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2435 {
2436         struct drm_info_node *node = m->private;
2437         struct drm_device *dev = node->minor->dev;
2438         struct drm_crtc *crtc = &intel_crtc->base;
2439         struct intel_encoder *intel_encoder;
2440
2441         if (crtc->primary->fb)
2442                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2443                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2444                            crtc->primary->fb->width, crtc->primary->fb->height);
2445         else
2446                 seq_puts(m, "\tprimary plane disabled\n");
2447         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2448                 intel_encoder_info(m, intel_crtc, intel_encoder);
2449 }
2450
2451 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2452 {
2453         struct drm_display_mode *mode = panel->fixed_mode;
2454
2455         seq_printf(m, "\tfixed mode:\n");
2456         intel_seq_print_mode(m, 2, mode);
2457 }
2458
2459 static void intel_dp_info(struct seq_file *m,
2460                           struct intel_connector *intel_connector)
2461 {
2462         struct intel_encoder *intel_encoder = intel_connector->encoder;
2463         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2464
2465         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2466         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2467                    "no");
2468         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2469                 intel_panel_info(m, &intel_connector->panel);
2470 }
2471
2472 static void intel_hdmi_info(struct seq_file *m,
2473                             struct intel_connector *intel_connector)
2474 {
2475         struct intel_encoder *intel_encoder = intel_connector->encoder;
2476         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2477
2478         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2479                    "no");
2480 }
2481
2482 static void intel_lvds_info(struct seq_file *m,
2483                             struct intel_connector *intel_connector)
2484 {
2485         intel_panel_info(m, &intel_connector->panel);
2486 }
2487
2488 static void intel_connector_info(struct seq_file *m,
2489                                  struct drm_connector *connector)
2490 {
2491         struct intel_connector *intel_connector = to_intel_connector(connector);
2492         struct intel_encoder *intel_encoder = intel_connector->encoder;
2493         struct drm_display_mode *mode;
2494
2495         seq_printf(m, "connector %d: type %s, status: %s\n",
2496                    connector->base.id, connector->name,
2497                    drm_get_connector_status_name(connector->status));
2498         if (connector->status == connector_status_connected) {
2499                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2500                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2501                            connector->display_info.width_mm,
2502                            connector->display_info.height_mm);
2503                 seq_printf(m, "\tsubpixel order: %s\n",
2504                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2505                 seq_printf(m, "\tCEA rev: %d\n",
2506                            connector->display_info.cea_rev);
2507         }
2508         if (intel_encoder) {
2509                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2510                     intel_encoder->type == INTEL_OUTPUT_EDP)
2511                         intel_dp_info(m, intel_connector);
2512                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2513                         intel_hdmi_info(m, intel_connector);
2514                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2515                         intel_lvds_info(m, intel_connector);
2516         }
2517
2518         seq_printf(m, "\tmodes:\n");
2519         list_for_each_entry(mode, &connector->modes, head)
2520                 intel_seq_print_mode(m, 2, mode);
2521 }
2522
2523 static bool cursor_active(struct drm_device *dev, int pipe)
2524 {
2525         struct drm_i915_private *dev_priv = dev->dev_private;
2526         u32 state;
2527
2528         if (IS_845G(dev) || IS_I865G(dev))
2529                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2530         else
2531                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2532
2533         return state;
2534 }
2535
2536 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2537 {
2538         struct drm_i915_private *dev_priv = dev->dev_private;
2539         u32 pos;
2540
2541         pos = I915_READ(CURPOS(pipe));
2542
2543         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2544         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2545                 *x = -*x;
2546
2547         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2548         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2549                 *y = -*y;
2550
2551         return cursor_active(dev, pipe);
2552 }
2553
2554 static int i915_display_info(struct seq_file *m, void *unused)
2555 {
2556         struct drm_info_node *node = m->private;
2557         struct drm_device *dev = node->minor->dev;
2558         struct drm_i915_private *dev_priv = dev->dev_private;
2559         struct intel_crtc *crtc;
2560         struct drm_connector *connector;
2561
2562         intel_runtime_pm_get(dev_priv);
2563         drm_modeset_lock_all(dev);
2564         seq_printf(m, "CRTC info\n");
2565         seq_printf(m, "---------\n");
2566         for_each_intel_crtc(dev, crtc) {
2567                 bool active;
2568                 int x, y;
2569
2570                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2571                            crtc->base.base.id, pipe_name(crtc->pipe),
2572                            yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2573                 if (crtc->active) {
2574                         intel_crtc_info(m, crtc);
2575
2576                         active = cursor_position(dev, crtc->pipe, &x, &y);
2577                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2578                                    yesno(crtc->cursor_base),
2579                                    x, y, crtc->cursor_width, crtc->cursor_height,
2580                                    crtc->cursor_addr, yesno(active));
2581                 }
2582
2583                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2584                            yesno(!crtc->cpu_fifo_underrun_disabled),
2585                            yesno(!crtc->pch_fifo_underrun_disabled));
2586         }
2587
2588         seq_printf(m, "\n");
2589         seq_printf(m, "Connector info\n");
2590         seq_printf(m, "--------------\n");
2591         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2592                 intel_connector_info(m, connector);
2593         }
2594         drm_modeset_unlock_all(dev);
2595         intel_runtime_pm_put(dev_priv);
2596
2597         return 0;
2598 }
2599
2600 static int i915_semaphore_status(struct seq_file *m, void *unused)
2601 {
2602         struct drm_info_node *node = (struct drm_info_node *) m->private;
2603         struct drm_device *dev = node->minor->dev;
2604         struct drm_i915_private *dev_priv = dev->dev_private;
2605         struct intel_engine_cs *ring;
2606         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2607         int i, j, ret;
2608
2609         if (!i915_semaphore_is_enabled(dev)) {
2610                 seq_puts(m, "Semaphores are disabled\n");
2611                 return 0;
2612         }
2613
2614         ret = mutex_lock_interruptible(&dev->struct_mutex);
2615         if (ret)
2616                 return ret;
2617         intel_runtime_pm_get(dev_priv);
2618
2619         if (IS_BROADWELL(dev)) {
2620                 struct page *page;
2621                 uint64_t *seqno;
2622
2623                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2624
2625                 seqno = (uint64_t *)kmap_atomic(page);
2626                 for_each_ring(ring, dev_priv, i) {
2627                         uint64_t offset;
2628
2629                         seq_printf(m, "%s\n", ring->name);
2630
2631                         seq_puts(m, "  Last signal:");
2632                         for (j = 0; j < num_rings; j++) {
2633                                 offset = i * I915_NUM_RINGS + j;
2634                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2635                                            seqno[offset], offset * 8);
2636                         }
2637                         seq_putc(m, '\n');
2638
2639                         seq_puts(m, "  Last wait:  ");
2640                         for (j = 0; j < num_rings; j++) {
2641                                 offset = i + (j * I915_NUM_RINGS);
2642                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2643                                            seqno[offset], offset * 8);
2644                         }
2645                         seq_putc(m, '\n');
2646
2647                 }
2648                 kunmap_atomic(seqno);
2649         } else {
2650                 seq_puts(m, "  Last signal:");
2651                 for_each_ring(ring, dev_priv, i)
2652                         for (j = 0; j < num_rings; j++)
2653                                 seq_printf(m, "0x%08x\n",
2654                                            I915_READ(ring->semaphore.mbox.signal[j]));
2655                 seq_putc(m, '\n');
2656         }
2657
2658         seq_puts(m, "\nSync seqno:\n");
2659         for_each_ring(ring, dev_priv, i) {
2660                 for (j = 0; j < num_rings; j++) {
2661                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2662                 }
2663                 seq_putc(m, '\n');
2664         }
2665         seq_putc(m, '\n');
2666
2667         intel_runtime_pm_put(dev_priv);
2668         mutex_unlock(&dev->struct_mutex);
2669         return 0;
2670 }
2671
2672 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2673 {
2674         struct drm_info_node *node = (struct drm_info_node *) m->private;
2675         struct drm_device *dev = node->minor->dev;
2676         struct drm_i915_private *dev_priv = dev->dev_private;
2677         int i;
2678
2679         drm_modeset_lock_all(dev);
2680         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2681                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2682
2683                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2684                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2685                            pll->config.crtc_mask, pll->active, yesno(pll->on));
2686                 seq_printf(m, " tracked hardware state:\n");
2687                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2688                 seq_printf(m, " dpll_md: 0x%08x\n",
2689                            pll->config.hw_state.dpll_md);
2690                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2691                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2692                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2693         }
2694         drm_modeset_unlock_all(dev);
2695
2696         return 0;
2697 }
2698
2699 static int i915_wa_registers(struct seq_file *m, void *unused)
2700 {
2701         int i;
2702         int ret;
2703         struct drm_info_node *node = (struct drm_info_node *) m->private;
2704         struct drm_device *dev = node->minor->dev;
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706
2707         ret = mutex_lock_interruptible(&dev->struct_mutex);
2708         if (ret)
2709                 return ret;
2710
2711         intel_runtime_pm_get(dev_priv);
2712
2713         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2714         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2715                 u32 addr, mask, value, read;
2716                 bool ok;
2717
2718                 addr = dev_priv->workarounds.reg[i].addr;
2719                 mask = dev_priv->workarounds.reg[i].mask;
2720                 value = dev_priv->workarounds.reg[i].value;
2721                 read = I915_READ(addr);
2722                 ok = (value & mask) == (read & mask);
2723                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2724                            addr, value, mask, read, ok ? "OK" : "FAIL");
2725         }
2726
2727         intel_runtime_pm_put(dev_priv);
2728         mutex_unlock(&dev->struct_mutex);
2729
2730         return 0;
2731 }
2732
2733 static int i915_ddb_info(struct seq_file *m, void *unused)
2734 {
2735         struct drm_info_node *node = m->private;
2736         struct drm_device *dev = node->minor->dev;
2737         struct drm_i915_private *dev_priv = dev->dev_private;
2738         struct skl_ddb_allocation *ddb;
2739         struct skl_ddb_entry *entry;
2740         enum pipe pipe;
2741         int plane;
2742
2743         drm_modeset_lock_all(dev);
2744
2745         ddb = &dev_priv->wm.skl_hw.ddb;
2746
2747         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2748
2749         for_each_pipe(dev_priv, pipe) {
2750                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2751
2752                 for_each_plane(pipe, plane) {
2753                         entry = &ddb->plane[pipe][plane];
2754                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2755                                    entry->start, entry->end,
2756                                    skl_ddb_entry_size(entry));
2757                 }
2758
2759                 entry = &ddb->cursor[pipe];
2760                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2761                            entry->end, skl_ddb_entry_size(entry));
2762         }
2763
2764         drm_modeset_unlock_all(dev);
2765
2766         return 0;
2767 }
2768
2769 struct pipe_crc_info {
2770         const char *name;
2771         struct drm_device *dev;
2772         enum pipe pipe;
2773 };
2774
2775 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2776 {
2777         struct drm_info_node *node = (struct drm_info_node *) m->private;
2778         struct drm_device *dev = node->minor->dev;
2779         struct drm_encoder *encoder;
2780         struct intel_encoder *intel_encoder;
2781         struct intel_digital_port *intel_dig_port;
2782         drm_modeset_lock_all(dev);
2783         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2784                 intel_encoder = to_intel_encoder(encoder);
2785                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2786                         continue;
2787                 intel_dig_port = enc_to_dig_port(encoder);
2788                 if (!intel_dig_port->dp.can_mst)
2789                         continue;
2790
2791                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2792         }
2793         drm_modeset_unlock_all(dev);
2794         return 0;
2795 }
2796
2797 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2798 {
2799         struct pipe_crc_info *info = inode->i_private;
2800         struct drm_i915_private *dev_priv = info->dev->dev_private;
2801         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2802
2803         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2804                 return -ENODEV;
2805
2806         spin_lock_irq(&pipe_crc->lock);
2807
2808         if (pipe_crc->opened) {
2809                 spin_unlock_irq(&pipe_crc->lock);
2810                 return -EBUSY; /* already open */
2811         }
2812
2813         pipe_crc->opened = true;
2814         filep->private_data = inode->i_private;
2815
2816         spin_unlock_irq(&pipe_crc->lock);
2817
2818         return 0;
2819 }
2820
2821 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2822 {
2823         struct pipe_crc_info *info = inode->i_private;
2824         struct drm_i915_private *dev_priv = info->dev->dev_private;
2825         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2826
2827         spin_lock_irq(&pipe_crc->lock);
2828         pipe_crc->opened = false;
2829         spin_unlock_irq(&pipe_crc->lock);
2830
2831         return 0;
2832 }
2833
2834 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2835 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2836 /* account for \'0' */
2837 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2838
2839 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2840 {
2841         assert_spin_locked(&pipe_crc->lock);
2842         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2843                         INTEL_PIPE_CRC_ENTRIES_NR);
2844 }
2845
2846 static ssize_t
2847 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2848                    loff_t *pos)
2849 {
2850         struct pipe_crc_info *info = filep->private_data;
2851         struct drm_device *dev = info->dev;
2852         struct drm_i915_private *dev_priv = dev->dev_private;
2853         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2854         char buf[PIPE_CRC_BUFFER_LEN];
2855         int head, tail, n_entries, n;
2856         ssize_t bytes_read;
2857
2858         /*
2859          * Don't allow user space to provide buffers not big enough to hold
2860          * a line of data.
2861          */
2862         if (count < PIPE_CRC_LINE_LEN)
2863                 return -EINVAL;
2864
2865         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2866                 return 0;
2867
2868         /* nothing to read */
2869         spin_lock_irq(&pipe_crc->lock);
2870         while (pipe_crc_data_count(pipe_crc) == 0) {
2871                 int ret;
2872
2873                 if (filep->f_flags & O_NONBLOCK) {
2874                         spin_unlock_irq(&pipe_crc->lock);
2875                         return -EAGAIN;
2876                 }
2877
2878                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2879                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2880                 if (ret) {
2881                         spin_unlock_irq(&pipe_crc->lock);
2882                         return ret;
2883                 }
2884         }
2885
2886         /* We now have one or more entries to read */
2887         head = pipe_crc->head;
2888         tail = pipe_crc->tail;
2889         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2890                         count / PIPE_CRC_LINE_LEN);
2891         spin_unlock_irq(&pipe_crc->lock);
2892
2893         bytes_read = 0;
2894         n = 0;
2895         do {
2896                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2897                 int ret;
2898
2899                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2900                                        "%8u %8x %8x %8x %8x %8x\n",
2901                                        entry->frame, entry->crc[0],
2902                                        entry->crc[1], entry->crc[2],
2903                                        entry->crc[3], entry->crc[4]);
2904
2905                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2906                                    buf, PIPE_CRC_LINE_LEN);
2907                 if (ret == PIPE_CRC_LINE_LEN)
2908                         return -EFAULT;
2909
2910                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2911                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2912                 n++;
2913         } while (--n_entries);
2914
2915         spin_lock_irq(&pipe_crc->lock);
2916         pipe_crc->tail = tail;
2917         spin_unlock_irq(&pipe_crc->lock);
2918
2919         return bytes_read;
2920 }
2921
2922 static const struct file_operations i915_pipe_crc_fops = {
2923         .owner = THIS_MODULE,
2924         .open = i915_pipe_crc_open,
2925         .read = i915_pipe_crc_read,
2926         .release = i915_pipe_crc_release,
2927 };
2928
2929 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2930         {
2931                 .name = "i915_pipe_A_crc",
2932                 .pipe = PIPE_A,
2933         },
2934         {
2935                 .name = "i915_pipe_B_crc",
2936                 .pipe = PIPE_B,
2937         },
2938         {
2939                 .name = "i915_pipe_C_crc",
2940                 .pipe = PIPE_C,
2941         },
2942 };
2943
2944 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2945                                 enum pipe pipe)
2946 {
2947         struct drm_device *dev = minor->dev;
2948         struct dentry *ent;
2949         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2950
2951         info->dev = dev;
2952         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2953                                   &i915_pipe_crc_fops);
2954         if (!ent)
2955                 return -ENOMEM;
2956
2957         return drm_add_fake_info_node(minor, ent, info);
2958 }
2959
2960 static const char * const pipe_crc_sources[] = {
2961         "none",
2962         "plane1",
2963         "plane2",
2964         "pf",
2965         "pipe",
2966         "TV",
2967         "DP-B",
2968         "DP-C",
2969         "DP-D",
2970         "auto",
2971 };
2972
2973 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2974 {
2975         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2976         return pipe_crc_sources[source];
2977 }
2978
2979 static int display_crc_ctl_show(struct seq_file *m, void *data)
2980 {
2981         struct drm_device *dev = m->private;
2982         struct drm_i915_private *dev_priv = dev->dev_private;
2983         int i;
2984
2985         for (i = 0; i < I915_MAX_PIPES; i++)
2986                 seq_printf(m, "%c %s\n", pipe_name(i),
2987                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2988
2989         return 0;
2990 }
2991
2992 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2993 {
2994         struct drm_device *dev = inode->i_private;
2995
2996         return single_open(file, display_crc_ctl_show, dev);
2997 }
2998
2999 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3000                                  uint32_t *val)
3001 {
3002         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3003                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3004
3005         switch (*source) {
3006         case INTEL_PIPE_CRC_SOURCE_PIPE:
3007                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3008                 break;
3009         case INTEL_PIPE_CRC_SOURCE_NONE:
3010                 *val = 0;
3011                 break;
3012         default:
3013                 return -EINVAL;
3014         }
3015
3016         return 0;
3017 }
3018
3019 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3020                                      enum intel_pipe_crc_source *source)
3021 {
3022         struct intel_encoder *encoder;
3023         struct intel_crtc *crtc;
3024         struct intel_digital_port *dig_port;
3025         int ret = 0;
3026
3027         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3028
3029         drm_modeset_lock_all(dev);
3030         for_each_intel_encoder(dev, encoder) {
3031                 if (!encoder->base.crtc)
3032                         continue;
3033
3034                 crtc = to_intel_crtc(encoder->base.crtc);
3035
3036                 if (crtc->pipe != pipe)
3037                         continue;
3038
3039                 switch (encoder->type) {
3040                 case INTEL_OUTPUT_TVOUT:
3041                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3042                         break;
3043                 case INTEL_OUTPUT_DISPLAYPORT:
3044                 case INTEL_OUTPUT_EDP:
3045                         dig_port = enc_to_dig_port(&encoder->base);
3046                         switch (dig_port->port) {
3047                         case PORT_B:
3048                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3049                                 break;
3050                         case PORT_C:
3051                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3052                                 break;
3053                         case PORT_D:
3054                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3055                                 break;
3056                         default:
3057                                 WARN(1, "nonexisting DP port %c\n",
3058                                      port_name(dig_port->port));
3059                                 break;
3060                         }
3061                         break;
3062                 default:
3063                         break;
3064                 }
3065         }
3066         drm_modeset_unlock_all(dev);
3067
3068         return ret;
3069 }
3070
3071 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3072                                 enum pipe pipe,
3073                                 enum intel_pipe_crc_source *source,
3074                                 uint32_t *val)
3075 {
3076         struct drm_i915_private *dev_priv = dev->dev_private;
3077         bool need_stable_symbols = false;
3078
3079         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3080                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3081                 if (ret)
3082                         return ret;
3083         }
3084
3085         switch (*source) {
3086         case INTEL_PIPE_CRC_SOURCE_PIPE:
3087                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3088                 break;
3089         case INTEL_PIPE_CRC_SOURCE_DP_B:
3090                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3091                 need_stable_symbols = true;
3092                 break;
3093         case INTEL_PIPE_CRC_SOURCE_DP_C:
3094                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3095                 need_stable_symbols = true;
3096                 break;
3097         case INTEL_PIPE_CRC_SOURCE_NONE:
3098                 *val = 0;
3099                 break;
3100         default:
3101                 return -EINVAL;
3102         }
3103
3104         /*
3105          * When the pipe CRC tap point is after the transcoders we need
3106          * to tweak symbol-level features to produce a deterministic series of
3107          * symbols for a given frame. We need to reset those features only once
3108          * a frame (instead of every nth symbol):
3109          *   - DC-balance: used to ensure a better clock recovery from the data
3110          *     link (SDVO)
3111          *   - DisplayPort scrambling: used for EMI reduction
3112          */
3113         if (need_stable_symbols) {
3114                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3115
3116                 tmp |= DC_BALANCE_RESET_VLV;
3117                 if (pipe == PIPE_A)
3118                         tmp |= PIPE_A_SCRAMBLE_RESET;
3119                 else
3120                         tmp |= PIPE_B_SCRAMBLE_RESET;
3121
3122                 I915_WRITE(PORT_DFT2_G4X, tmp);
3123         }
3124
3125         return 0;
3126 }
3127
3128 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3129                                  enum pipe pipe,
3130                                  enum intel_pipe_crc_source *source,
3131                                  uint32_t *val)
3132 {
3133         struct drm_i915_private *dev_priv = dev->dev_private;
3134         bool need_stable_symbols = false;
3135
3136         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3137                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3138                 if (ret)
3139                         return ret;
3140         }
3141
3142         switch (*source) {
3143         case INTEL_PIPE_CRC_SOURCE_PIPE:
3144                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3145                 break;
3146         case INTEL_PIPE_CRC_SOURCE_TV:
3147                 if (!SUPPORTS_TV(dev))
3148                         return -EINVAL;
3149                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3150                 break;
3151         case INTEL_PIPE_CRC_SOURCE_DP_B:
3152                 if (!IS_G4X(dev))
3153                         return -EINVAL;
3154                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3155                 need_stable_symbols = true;
3156                 break;
3157         case INTEL_PIPE_CRC_SOURCE_DP_C:
3158                 if (!IS_G4X(dev))
3159                         return -EINVAL;
3160                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3161                 need_stable_symbols = true;
3162                 break;
3163         case INTEL_PIPE_CRC_SOURCE_DP_D:
3164                 if (!IS_G4X(dev))
3165                         return -EINVAL;
3166                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3167                 need_stable_symbols = true;
3168                 break;
3169         case INTEL_PIPE_CRC_SOURCE_NONE:
3170                 *val = 0;
3171                 break;
3172         default:
3173                 return -EINVAL;
3174         }
3175
3176         /*
3177          * When the pipe CRC tap point is after the transcoders we need
3178          * to tweak symbol-level features to produce a deterministic series of
3179          * symbols for a given frame. We need to reset those features only once
3180          * a frame (instead of every nth symbol):
3181          *   - DC-balance: used to ensure a better clock recovery from the data
3182          *     link (SDVO)
3183          *   - DisplayPort scrambling: used for EMI reduction
3184          */
3185         if (need_stable_symbols) {
3186                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3187
3188                 WARN_ON(!IS_G4X(dev));
3189
3190                 I915_WRITE(PORT_DFT_I9XX,
3191                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3192
3193                 if (pipe == PIPE_A)
3194                         tmp |= PIPE_A_SCRAMBLE_RESET;
3195                 else
3196                         tmp |= PIPE_B_SCRAMBLE_RESET;
3197
3198                 I915_WRITE(PORT_DFT2_G4X, tmp);
3199         }
3200
3201         return 0;
3202 }
3203
3204 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3205                                          enum pipe pipe)
3206 {
3207         struct drm_i915_private *dev_priv = dev->dev_private;
3208         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3209
3210         if (pipe == PIPE_A)
3211                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3212         else
3213                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3214         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3215                 tmp &= ~DC_BALANCE_RESET_VLV;
3216         I915_WRITE(PORT_DFT2_G4X, tmp);
3217
3218 }
3219
3220 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3221                                          enum pipe pipe)
3222 {
3223         struct drm_i915_private *dev_priv = dev->dev_private;
3224         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3225
3226         if (pipe == PIPE_A)
3227                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3228         else
3229                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3230         I915_WRITE(PORT_DFT2_G4X, tmp);
3231
3232         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3233                 I915_WRITE(PORT_DFT_I9XX,
3234                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3235         }
3236 }
3237
3238 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3239                                 uint32_t *val)
3240 {
3241         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3242                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3243
3244         switch (*source) {
3245         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3246                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3247                 break;
3248         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3249                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3250                 break;
3251         case INTEL_PIPE_CRC_SOURCE_PIPE:
3252                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3253                 break;
3254         case INTEL_PIPE_CRC_SOURCE_NONE:
3255                 *val = 0;
3256                 break;
3257         default:
3258                 return -EINVAL;
3259         }
3260
3261         return 0;
3262 }
3263
3264 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3265 {
3266         struct drm_i915_private *dev_priv = dev->dev_private;
3267         struct intel_crtc *crtc =
3268                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3269
3270         drm_modeset_lock_all(dev);
3271         /*
3272          * If we use the eDP transcoder we need to make sure that we don't
3273          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3274          * relevant on hsw with pipe A when using the always-on power well
3275          * routing.
3276          */
3277         if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
3278             !crtc->config.pch_pfit.enabled) {
3279                 crtc->config.pch_pfit.force_thru = true;
3280
3281                 intel_display_power_get(dev_priv,
3282                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3283
3284                 dev_priv->display.crtc_disable(&crtc->base);
3285                 dev_priv->display.crtc_enable(&crtc->base);
3286         }
3287         drm_modeset_unlock_all(dev);
3288 }
3289
3290 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3291 {
3292         struct drm_i915_private *dev_priv = dev->dev_private;
3293         struct intel_crtc *crtc =
3294                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3295
3296         drm_modeset_lock_all(dev);
3297         /*
3298          * If we use the eDP transcoder we need to make sure that we don't
3299          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3300          * relevant on hsw with pipe A when using the always-on power well
3301          * routing.
3302          */
3303         if (crtc->config.pch_pfit.force_thru) {
3304                 crtc->config.pch_pfit.force_thru = false;
3305
3306                 dev_priv->display.crtc_disable(&crtc->base);
3307                 dev_priv->display.crtc_enable(&crtc->base);
3308
3309                 intel_display_power_put(dev_priv,
3310                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3311         }
3312         drm_modeset_unlock_all(dev);
3313 }
3314
3315 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3316                                 enum pipe pipe,
3317                                 enum intel_pipe_crc_source *source,
3318                                 uint32_t *val)
3319 {
3320         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3321                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3322
3323         switch (*source) {
3324         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3325                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3326                 break;
3327         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3328                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3329                 break;
3330         case INTEL_PIPE_CRC_SOURCE_PF:
3331                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3332                         hsw_trans_edp_pipe_A_crc_wa(dev);
3333
3334                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3335                 break;
3336         case INTEL_PIPE_CRC_SOURCE_NONE:
3337                 *val = 0;
3338                 break;
3339         default:
3340                 return -EINVAL;
3341         }
3342
3343         return 0;
3344 }
3345
3346 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3347                                enum intel_pipe_crc_source source)
3348 {
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3351         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3352                                                                         pipe));
3353         u32 val = 0; /* shut up gcc */
3354         int ret;
3355
3356         if (pipe_crc->source == source)
3357                 return 0;
3358
3359         /* forbid changing the source without going back to 'none' */
3360         if (pipe_crc->source && source)
3361                 return -EINVAL;
3362
3363         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3364                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3365                 return -EIO;
3366         }
3367
3368         if (IS_GEN2(dev))
3369                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3370         else if (INTEL_INFO(dev)->gen < 5)
3371                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3372         else if (IS_VALLEYVIEW(dev))
3373                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3374         else if (IS_GEN5(dev) || IS_GEN6(dev))
3375                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3376         else
3377                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3378
3379         if (ret != 0)
3380                 return ret;
3381
3382         /* none -> real source transition */
3383         if (source) {
3384                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3385                                  pipe_name(pipe), pipe_crc_source_name(source));
3386
3387                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
3388                                             INTEL_PIPE_CRC_ENTRIES_NR,
3389                                             GFP_KERNEL);
3390                 if (!pipe_crc->entries)
3391                         return -ENOMEM;
3392
3393                 /*
3394                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3395                  * enabled and disabled dynamically based on package C states,
3396                  * user space can't make reliable use of the CRCs, so let's just
3397                  * completely disable it.
3398                  */
3399                 hsw_disable_ips(crtc);
3400
3401                 spin_lock_irq(&pipe_crc->lock);
3402                 pipe_crc->head = 0;
3403                 pipe_crc->tail = 0;
3404                 spin_unlock_irq(&pipe_crc->lock);
3405         }
3406
3407         pipe_crc->source = source;
3408
3409         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3410         POSTING_READ(PIPE_CRC_CTL(pipe));
3411
3412         /* real source -> none transition */
3413         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3414                 struct intel_pipe_crc_entry *entries;
3415                 struct intel_crtc *crtc =
3416                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3417
3418                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3419                                  pipe_name(pipe));
3420
3421                 drm_modeset_lock(&crtc->base.mutex, NULL);
3422                 if (crtc->active)
3423                         intel_wait_for_vblank(dev, pipe);
3424                 drm_modeset_unlock(&crtc->base.mutex);
3425
3426                 spin_lock_irq(&pipe_crc->lock);
3427                 entries = pipe_crc->entries;
3428                 pipe_crc->entries = NULL;
3429                 spin_unlock_irq(&pipe_crc->lock);
3430
3431                 kfree(entries);
3432
3433                 if (IS_G4X(dev))
3434                         g4x_undo_pipe_scramble_reset(dev, pipe);
3435                 else if (IS_VALLEYVIEW(dev))
3436                         vlv_undo_pipe_scramble_reset(dev, pipe);
3437                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3438                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3439
3440                 hsw_enable_ips(crtc);
3441         }
3442
3443         return 0;
3444 }
3445
3446 /*
3447  * Parse pipe CRC command strings:
3448  *   command: wsp* object wsp+ name wsp+ source wsp*
3449  *   object: 'pipe'
3450  *   name: (A | B | C)
3451  *   source: (none | plane1 | plane2 | pf)
3452  *   wsp: (#0x20 | #0x9 | #0xA)+
3453  *
3454  * eg.:
3455  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3456  *  "pipe A none"    ->  Stop CRC
3457  */
3458 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3459 {
3460         int n_words = 0;
3461
3462         while (*buf) {
3463                 char *end;
3464
3465                 /* skip leading white space */
3466                 buf = skip_spaces(buf);
3467                 if (!*buf)
3468                         break;  /* end of buffer */
3469
3470                 /* find end of word */
3471                 for (end = buf; *end && !isspace(*end); end++)
3472                         ;
3473
3474                 if (n_words == max_words) {
3475                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3476                                          max_words);
3477                         return -EINVAL; /* ran out of words[] before bytes */
3478                 }
3479
3480                 if (*end)
3481                         *end++ = '\0';
3482                 words[n_words++] = buf;
3483                 buf = end;
3484         }
3485
3486         return n_words;
3487 }
3488
3489 enum intel_pipe_crc_object {
3490         PIPE_CRC_OBJECT_PIPE,
3491 };
3492
3493 static const char * const pipe_crc_objects[] = {
3494         "pipe",
3495 };
3496
3497 static int
3498 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3499 {
3500         int i;
3501
3502         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3503                 if (!strcmp(buf, pipe_crc_objects[i])) {
3504                         *o = i;
3505                         return 0;
3506                     }
3507
3508         return -EINVAL;
3509 }
3510
3511 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3512 {
3513         const char name = buf[0];
3514
3515         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3516                 return -EINVAL;
3517
3518         *pipe = name - 'A';
3519
3520         return 0;
3521 }
3522
3523 static int
3524 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3525 {
3526         int i;
3527
3528         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3529                 if (!strcmp(buf, pipe_crc_sources[i])) {
3530                         *s = i;
3531                         return 0;
3532                     }
3533
3534         return -EINVAL;
3535 }
3536
3537 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3538 {
3539 #define N_WORDS 3
3540         int n_words;
3541         char *words[N_WORDS];
3542         enum pipe pipe;
3543         enum intel_pipe_crc_object object;
3544         enum intel_pipe_crc_source source;
3545
3546         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3547         if (n_words != N_WORDS) {
3548                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3549                                  N_WORDS);
3550                 return -EINVAL;
3551         }
3552
3553         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3554                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3555                 return -EINVAL;
3556         }
3557
3558         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3559                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3560                 return -EINVAL;
3561         }
3562
3563         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3564                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3565                 return -EINVAL;
3566         }
3567
3568         return pipe_crc_set_source(dev, pipe, source);
3569 }
3570
3571 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3572                                      size_t len, loff_t *offp)
3573 {
3574         struct seq_file *m = file->private_data;
3575         struct drm_device *dev = m->private;
3576         char *tmpbuf;
3577         int ret;
3578
3579         if (len == 0)
3580                 return 0;
3581
3582         if (len > PAGE_SIZE - 1) {
3583                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3584                                  PAGE_SIZE);
3585                 return -E2BIG;
3586         }
3587
3588         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3589         if (!tmpbuf)
3590                 return -ENOMEM;
3591
3592         if (copy_from_user(tmpbuf, ubuf, len)) {
3593                 ret = -EFAULT;
3594                 goto out;
3595         }
3596         tmpbuf[len] = '\0';
3597
3598         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3599
3600 out:
3601         kfree(tmpbuf);
3602         if (ret < 0)
3603                 return ret;
3604
3605         *offp += len;
3606         return len;
3607 }
3608
3609 static const struct file_operations i915_display_crc_ctl_fops = {
3610         .owner = THIS_MODULE,
3611         .open = display_crc_ctl_open,
3612         .read = seq_read,
3613         .llseek = seq_lseek,
3614         .release = single_release,
3615         .write = display_crc_ctl_write
3616 };
3617
3618 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3619 {
3620         struct drm_device *dev = m->private;
3621         int num_levels = ilk_wm_max_level(dev) + 1;
3622         int level;
3623
3624         drm_modeset_lock_all(dev);
3625
3626         for (level = 0; level < num_levels; level++) {
3627                 unsigned int latency = wm[level];
3628
3629                 /*
3630                  * - WM1+ latency values in 0.5us units
3631                  * - latencies are in us on gen9
3632                  */
3633                 if (INTEL_INFO(dev)->gen >= 9)
3634                         latency *= 10;
3635                 else if (level > 0)
3636                         latency *= 5;
3637
3638                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3639                            level, wm[level], latency / 10, latency % 10);
3640         }
3641
3642         drm_modeset_unlock_all(dev);
3643 }
3644
3645 static int pri_wm_latency_show(struct seq_file *m, void *data)
3646 {
3647         struct drm_device *dev = m->private;
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649         const uint16_t *latencies;
3650
3651         if (INTEL_INFO(dev)->gen >= 9)
3652                 latencies = dev_priv->wm.skl_latency;
3653         else
3654                 latencies = to_i915(dev)->wm.pri_latency;
3655
3656         wm_latency_show(m, latencies);
3657
3658         return 0;
3659 }
3660
3661 static int spr_wm_latency_show(struct seq_file *m, void *data)
3662 {
3663         struct drm_device *dev = m->private;
3664         struct drm_i915_private *dev_priv = dev->dev_private;
3665         const uint16_t *latencies;
3666
3667         if (INTEL_INFO(dev)->gen >= 9)
3668                 latencies = dev_priv->wm.skl_latency;
3669         else
3670                 latencies = to_i915(dev)->wm.spr_latency;
3671
3672         wm_latency_show(m, latencies);
3673
3674         return 0;
3675 }
3676
3677 static int cur_wm_latency_show(struct seq_file *m, void *data)
3678 {
3679         struct drm_device *dev = m->private;
3680         struct drm_i915_private *dev_priv = dev->dev_private;
3681         const uint16_t *latencies;
3682
3683         if (INTEL_INFO(dev)->gen >= 9)
3684                 latencies = dev_priv->wm.skl_latency;
3685         else
3686                 latencies = to_i915(dev)->wm.cur_latency;
3687
3688         wm_latency_show(m, latencies);
3689
3690         return 0;
3691 }
3692
3693 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3694 {
3695         struct drm_device *dev = inode->i_private;
3696
3697         if (HAS_GMCH_DISPLAY(dev))
3698                 return -ENODEV;
3699
3700         return single_open(file, pri_wm_latency_show, dev);
3701 }
3702
3703 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3704 {
3705         struct drm_device *dev = inode->i_private;
3706
3707         if (HAS_GMCH_DISPLAY(dev))
3708                 return -ENODEV;
3709
3710         return single_open(file, spr_wm_latency_show, dev);
3711 }
3712
3713 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3714 {
3715         struct drm_device *dev = inode->i_private;
3716
3717         if (HAS_GMCH_DISPLAY(dev))
3718                 return -ENODEV;
3719
3720         return single_open(file, cur_wm_latency_show, dev);
3721 }
3722
3723 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3724                                 size_t len, loff_t *offp, uint16_t wm[8])
3725 {
3726         struct seq_file *m = file->private_data;
3727         struct drm_device *dev = m->private;
3728         uint16_t new[8] = { 0 };
3729         int num_levels = ilk_wm_max_level(dev) + 1;
3730         int level;
3731         int ret;
3732         char tmp[32];
3733
3734         if (len >= sizeof(tmp))
3735                 return -EINVAL;
3736
3737         if (copy_from_user(tmp, ubuf, len))
3738                 return -EFAULT;
3739
3740         tmp[len] = '\0';
3741
3742         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3743                      &new[0], &new[1], &new[2], &new[3],
3744                      &new[4], &new[5], &new[6], &new[7]);
3745         if (ret != num_levels)
3746                 return -EINVAL;
3747
3748         drm_modeset_lock_all(dev);
3749
3750         for (level = 0; level < num_levels; level++)
3751                 wm[level] = new[level];
3752
3753         drm_modeset_unlock_all(dev);
3754
3755         return len;
3756 }
3757
3758
3759 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3760                                     size_t len, loff_t *offp)
3761 {
3762         struct seq_file *m = file->private_data;
3763         struct drm_device *dev = m->private;
3764         struct drm_i915_private *dev_priv = dev->dev_private;
3765         uint16_t *latencies;
3766
3767         if (INTEL_INFO(dev)->gen >= 9)
3768                 latencies = dev_priv->wm.skl_latency;
3769         else
3770                 latencies = to_i915(dev)->wm.pri_latency;
3771
3772         return wm_latency_write(file, ubuf, len, offp, latencies);
3773 }
3774
3775 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3776                                     size_t len, loff_t *offp)
3777 {
3778         struct seq_file *m = file->private_data;
3779         struct drm_device *dev = m->private;
3780         struct drm_i915_private *dev_priv = dev->dev_private;
3781         uint16_t *latencies;
3782
3783         if (INTEL_INFO(dev)->gen >= 9)
3784                 latencies = dev_priv->wm.skl_latency;
3785         else
3786                 latencies = to_i915(dev)->wm.spr_latency;
3787
3788         return wm_latency_write(file, ubuf, len, offp, latencies);
3789 }
3790
3791 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3792                                     size_t len, loff_t *offp)
3793 {
3794         struct seq_file *m = file->private_data;
3795         struct drm_device *dev = m->private;
3796         struct drm_i915_private *dev_priv = dev->dev_private;
3797         uint16_t *latencies;
3798
3799         if (INTEL_INFO(dev)->gen >= 9)
3800                 latencies = dev_priv->wm.skl_latency;
3801         else
3802                 latencies = to_i915(dev)->wm.cur_latency;
3803
3804         return wm_latency_write(file, ubuf, len, offp, latencies);
3805 }
3806
3807 static const struct file_operations i915_pri_wm_latency_fops = {
3808         .owner = THIS_MODULE,
3809         .open = pri_wm_latency_open,
3810         .read = seq_read,
3811         .llseek = seq_lseek,
3812         .release = single_release,
3813         .write = pri_wm_latency_write
3814 };
3815
3816 static const struct file_operations i915_spr_wm_latency_fops = {
3817         .owner = THIS_MODULE,
3818         .open = spr_wm_latency_open,
3819         .read = seq_read,
3820         .llseek = seq_lseek,
3821         .release = single_release,
3822         .write = spr_wm_latency_write
3823 };
3824
3825 static const struct file_operations i915_cur_wm_latency_fops = {
3826         .owner = THIS_MODULE,
3827         .open = cur_wm_latency_open,
3828         .read = seq_read,
3829         .llseek = seq_lseek,
3830         .release = single_release,
3831         .write = cur_wm_latency_write
3832 };
3833
3834 static int
3835 i915_wedged_get(void *data, u64 *val)
3836 {
3837         struct drm_device *dev = data;
3838         struct drm_i915_private *dev_priv = dev->dev_private;
3839
3840         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3841
3842         return 0;
3843 }
3844
3845 static int
3846 i915_wedged_set(void *data, u64 val)
3847 {
3848         struct drm_device *dev = data;
3849         struct drm_i915_private *dev_priv = dev->dev_private;
3850
3851         intel_runtime_pm_get(dev_priv);
3852
3853         i915_handle_error(dev, val,
3854                           "Manually setting wedged to %llu", val);
3855
3856         intel_runtime_pm_put(dev_priv);
3857
3858         return 0;
3859 }
3860
3861 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3862                         i915_wedged_get, i915_wedged_set,
3863                         "%llu\n");
3864
3865 static int
3866 i915_ring_stop_get(void *data, u64 *val)
3867 {
3868         struct drm_device *dev = data;
3869         struct drm_i915_private *dev_priv = dev->dev_private;
3870
3871         *val = dev_priv->gpu_error.stop_rings;
3872
3873         return 0;
3874 }
3875
3876 static int
3877 i915_ring_stop_set(void *data, u64 val)
3878 {
3879         struct drm_device *dev = data;
3880         struct drm_i915_private *dev_priv = dev->dev_private;
3881         int ret;
3882
3883         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3884
3885         ret = mutex_lock_interruptible(&dev->struct_mutex);
3886         if (ret)
3887                 return ret;
3888
3889         dev_priv->gpu_error.stop_rings = val;
3890         mutex_unlock(&dev->struct_mutex);
3891
3892         return 0;
3893 }
3894
3895 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3896                         i915_ring_stop_get, i915_ring_stop_set,
3897                         "0x%08llx\n");
3898
3899 static int
3900 i915_ring_missed_irq_get(void *data, u64 *val)
3901 {
3902         struct drm_device *dev = data;
3903         struct drm_i915_private *dev_priv = dev->dev_private;
3904
3905         *val = dev_priv->gpu_error.missed_irq_rings;
3906         return 0;
3907 }
3908
3909 static int
3910 i915_ring_missed_irq_set(void *data, u64 val)
3911 {
3912         struct drm_device *dev = data;
3913         struct drm_i915_private *dev_priv = dev->dev_private;
3914         int ret;
3915
3916         /* Lock against concurrent debugfs callers */
3917         ret = mutex_lock_interruptible(&dev->struct_mutex);
3918         if (ret)
3919                 return ret;
3920         dev_priv->gpu_error.missed_irq_rings = val;
3921         mutex_unlock(&dev->struct_mutex);
3922
3923         return 0;
3924 }
3925
3926 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3927                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3928                         "0x%08llx\n");
3929
3930 static int
3931 i915_ring_test_irq_get(void *data, u64 *val)
3932 {
3933         struct drm_device *dev = data;
3934         struct drm_i915_private *dev_priv = dev->dev_private;
3935
3936         *val = dev_priv->gpu_error.test_irq_rings;
3937
3938         return 0;
3939 }
3940
3941 static int
3942 i915_ring_test_irq_set(void *data, u64 val)
3943 {
3944         struct drm_device *dev = data;
3945         struct drm_i915_private *dev_priv = dev->dev_private;
3946         int ret;
3947
3948         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3949
3950         /* Lock against concurrent debugfs callers */
3951         ret = mutex_lock_interruptible(&dev->struct_mutex);
3952         if (ret)
3953                 return ret;
3954
3955         dev_priv->gpu_error.test_irq_rings = val;
3956         mutex_unlock(&dev->struct_mutex);
3957
3958         return 0;
3959 }
3960
3961 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3962                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3963                         "0x%08llx\n");
3964
3965 #define DROP_UNBOUND 0x1
3966 #define DROP_BOUND 0x2
3967 #define DROP_RETIRE 0x4
3968 #define DROP_ACTIVE 0x8
3969 #define DROP_ALL (DROP_UNBOUND | \
3970                   DROP_BOUND | \
3971                   DROP_RETIRE | \
3972                   DROP_ACTIVE)
3973 static int
3974 i915_drop_caches_get(void *data, u64 *val)
3975 {
3976         *val = DROP_ALL;
3977
3978         return 0;
3979 }
3980
3981 static int
3982 i915_drop_caches_set(void *data, u64 val)
3983 {
3984         struct drm_device *dev = data;
3985         struct drm_i915_private *dev_priv = dev->dev_private;
3986         int ret;
3987
3988         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3989
3990         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3991          * on ioctls on -EAGAIN. */
3992         ret = mutex_lock_interruptible(&dev->struct_mutex);
3993         if (ret)
3994                 return ret;
3995
3996         if (val & DROP_ACTIVE) {
3997                 ret = i915_gpu_idle(dev);
3998                 if (ret)
3999                         goto unlock;
4000         }
4001
4002         if (val & (DROP_RETIRE | DROP_ACTIVE))
4003                 i915_gem_retire_requests(dev);
4004
4005         if (val & DROP_BOUND)
4006                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4007
4008         if (val & DROP_UNBOUND)
4009                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4010
4011 unlock:
4012         mutex_unlock(&dev->struct_mutex);
4013
4014         return ret;
4015 }
4016
4017 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4018                         i915_drop_caches_get, i915_drop_caches_set,
4019                         "0x%08llx\n");
4020
4021 static int
4022 i915_max_freq_get(void *data, u64 *val)
4023 {
4024         struct drm_device *dev = data;
4025         struct drm_i915_private *dev_priv = dev->dev_private;
4026         int ret;
4027
4028         if (INTEL_INFO(dev)->gen < 6)
4029                 return -ENODEV;
4030
4031         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4032
4033         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4034         if (ret)
4035                 return ret;
4036
4037         if (IS_VALLEYVIEW(dev))
4038                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4039         else
4040                 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
4041         mutex_unlock(&dev_priv->rps.hw_lock);
4042
4043         return 0;
4044 }
4045
4046 static int
4047 i915_max_freq_set(void *data, u64 val)
4048 {
4049         struct drm_device *dev = data;
4050         struct drm_i915_private *dev_priv = dev->dev_private;
4051         u32 rp_state_cap, hw_max, hw_min;
4052         int ret;
4053
4054         if (INTEL_INFO(dev)->gen < 6)
4055                 return -ENODEV;
4056
4057         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4058
4059         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4060
4061         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4062         if (ret)
4063                 return ret;
4064
4065         /*
4066          * Turbo will still be enabled, but won't go above the set value.
4067          */
4068         if (IS_VALLEYVIEW(dev)) {
4069                 val = vlv_freq_opcode(dev_priv, val);
4070
4071                 hw_max = dev_priv->rps.max_freq;
4072                 hw_min = dev_priv->rps.min_freq;
4073         } else {
4074                 do_div(val, GT_FREQUENCY_MULTIPLIER);
4075
4076                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4077                 hw_max = dev_priv->rps.max_freq;
4078                 hw_min = (rp_state_cap >> 16) & 0xff;
4079         }
4080
4081         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4082                 mutex_unlock(&dev_priv->rps.hw_lock);
4083                 return -EINVAL;
4084         }
4085
4086         dev_priv->rps.max_freq_softlimit = val;
4087
4088         if (IS_VALLEYVIEW(dev))
4089                 valleyview_set_rps(dev, val);
4090         else
4091                 gen6_set_rps(dev, val);
4092
4093         mutex_unlock(&dev_priv->rps.hw_lock);
4094
4095         return 0;
4096 }
4097
4098 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4099                         i915_max_freq_get, i915_max_freq_set,
4100                         "%llu\n");
4101
4102 static int
4103 i915_min_freq_get(void *data, u64 *val)
4104 {
4105         struct drm_device *dev = data;
4106         struct drm_i915_private *dev_priv = dev->dev_private;
4107         int ret;
4108
4109         if (INTEL_INFO(dev)->gen < 6)
4110                 return -ENODEV;
4111
4112         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4113
4114         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4115         if (ret)
4116                 return ret;
4117
4118         if (IS_VALLEYVIEW(dev))
4119                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4120         else
4121                 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
4122         mutex_unlock(&dev_priv->rps.hw_lock);
4123
4124         return 0;
4125 }
4126
4127 static int
4128 i915_min_freq_set(void *data, u64 val)
4129 {
4130         struct drm_device *dev = data;
4131         struct drm_i915_private *dev_priv = dev->dev_private;
4132         u32 rp_state_cap, hw_max, hw_min;
4133         int ret;
4134
4135         if (INTEL_INFO(dev)->gen < 6)
4136                 return -ENODEV;
4137
4138         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4139
4140         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4141
4142         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4143         if (ret)
4144                 return ret;
4145
4146         /*
4147          * Turbo will still be enabled, but won't go below the set value.
4148          */
4149         if (IS_VALLEYVIEW(dev)) {
4150                 val = vlv_freq_opcode(dev_priv, val);
4151
4152                 hw_max = dev_priv->rps.max_freq;
4153                 hw_min = dev_priv->rps.min_freq;
4154         } else {
4155                 do_div(val, GT_FREQUENCY_MULTIPLIER);
4156
4157                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4158                 hw_max = dev_priv->rps.max_freq;
4159                 hw_min = (rp_state_cap >> 16) & 0xff;
4160         }
4161
4162         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4163                 mutex_unlock(&dev_priv->rps.hw_lock);
4164                 return -EINVAL;
4165         }
4166
4167         dev_priv->rps.min_freq_softlimit = val;
4168
4169         if (IS_VALLEYVIEW(dev))
4170                 valleyview_set_rps(dev, val);
4171         else
4172                 gen6_set_rps(dev, val);
4173
4174         mutex_unlock(&dev_priv->rps.hw_lock);
4175
4176         return 0;
4177 }
4178
4179 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4180                         i915_min_freq_get, i915_min_freq_set,
4181                         "%llu\n");
4182
4183 static int
4184 i915_cache_sharing_get(void *data, u64 *val)
4185 {
4186         struct drm_device *dev = data;
4187         struct drm_i915_private *dev_priv = dev->dev_private;
4188         u32 snpcr;
4189         int ret;
4190
4191         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4192                 return -ENODEV;
4193
4194         ret = mutex_lock_interruptible(&dev->struct_mutex);
4195         if (ret)
4196                 return ret;
4197         intel_runtime_pm_get(dev_priv);
4198
4199         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4200
4201         intel_runtime_pm_put(dev_priv);
4202         mutex_unlock(&dev_priv->dev->struct_mutex);
4203
4204         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4205
4206         return 0;
4207 }
4208
4209 static int
4210 i915_cache_sharing_set(void *data, u64 val)
4211 {
4212         struct drm_device *dev = data;
4213         struct drm_i915_private *dev_priv = dev->dev_private;
4214         u32 snpcr;
4215
4216         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4217                 return -ENODEV;
4218
4219         if (val > 3)
4220                 return -EINVAL;
4221
4222         intel_runtime_pm_get(dev_priv);
4223         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4224
4225         /* Update the cache sharing policy here as well */
4226         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4227         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4228         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4229         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4230
4231         intel_runtime_pm_put(dev_priv);
4232         return 0;
4233 }
4234
4235 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4236                         i915_cache_sharing_get, i915_cache_sharing_set,
4237                         "%llu\n");
4238
4239 static int i915_forcewake_open(struct inode *inode, struct file *file)
4240 {
4241         struct drm_device *dev = inode->i_private;
4242         struct drm_i915_private *dev_priv = dev->dev_private;
4243
4244         if (INTEL_INFO(dev)->gen < 6)
4245                 return 0;
4246
4247         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4248
4249         return 0;
4250 }
4251
4252 static int i915_forcewake_release(struct inode *inode, struct file *file)
4253 {
4254         struct drm_device *dev = inode->i_private;
4255         struct drm_i915_private *dev_priv = dev->dev_private;
4256
4257         if (INTEL_INFO(dev)->gen < 6)
4258                 return 0;
4259
4260         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4261
4262         return 0;
4263 }
4264
4265 static const struct file_operations i915_forcewake_fops = {
4266         .owner = THIS_MODULE,
4267         .open = i915_forcewake_open,
4268         .release = i915_forcewake_release,
4269 };
4270
4271 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4272 {
4273         struct drm_device *dev = minor->dev;
4274         struct dentry *ent;
4275
4276         ent = debugfs_create_file("i915_forcewake_user",
4277                                   S_IRUSR,
4278                                   root, dev,
4279                                   &i915_forcewake_fops);
4280         if (!ent)
4281                 return -ENOMEM;
4282
4283         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4284 }
4285
4286 static int i915_debugfs_create(struct dentry *root,
4287                                struct drm_minor *minor,
4288                                const char *name,
4289                                const struct file_operations *fops)
4290 {
4291         struct drm_device *dev = minor->dev;
4292         struct dentry *ent;
4293
4294         ent = debugfs_create_file(name,
4295                                   S_IRUGO | S_IWUSR,
4296                                   root, dev,
4297                                   fops);
4298         if (!ent)
4299                 return -ENOMEM;
4300
4301         return drm_add_fake_info_node(minor, ent, fops);
4302 }
4303
4304 static const struct drm_info_list i915_debugfs_list[] = {
4305         {"i915_capabilities", i915_capabilities, 0},
4306         {"i915_gem_objects", i915_gem_object_info, 0},
4307         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4308         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4309         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4310         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4311         {"i915_gem_stolen", i915_gem_stolen_list_info },
4312         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4313         {"i915_gem_request", i915_gem_request_info, 0},
4314         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4315         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4316         {"i915_gem_interrupt", i915_interrupt_info, 0},
4317         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4318         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4319         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4320         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4321         {"i915_frequency_info", i915_frequency_info, 0},
4322         {"i915_drpc_info", i915_drpc_info, 0},
4323         {"i915_emon_status", i915_emon_status, 0},
4324         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4325         {"i915_fbc_status", i915_fbc_status, 0},
4326         {"i915_ips_status", i915_ips_status, 0},
4327         {"i915_sr_status", i915_sr_status, 0},
4328         {"i915_opregion", i915_opregion, 0},
4329         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4330         {"i915_context_status", i915_context_status, 0},
4331         {"i915_dump_lrc", i915_dump_lrc, 0},
4332         {"i915_execlists", i915_execlists, 0},
4333         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
4334         {"i915_swizzle_info", i915_swizzle_info, 0},
4335         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4336         {"i915_llc", i915_llc, 0},
4337         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4338         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4339         {"i915_energy_uJ", i915_energy_uJ, 0},
4340         {"i915_pc8_status", i915_pc8_status, 0},
4341         {"i915_power_domain_info", i915_power_domain_info, 0},
4342         {"i915_display_info", i915_display_info, 0},
4343         {"i915_semaphore_status", i915_semaphore_status, 0},
4344         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4345         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4346         {"i915_wa_registers", i915_wa_registers, 0},
4347         {"i915_ddb_info", i915_ddb_info, 0},
4348 };
4349 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4350
4351 static const struct i915_debugfs_files {
4352         const char *name;
4353         const struct file_operations *fops;
4354 } i915_debugfs_files[] = {
4355         {"i915_wedged", &i915_wedged_fops},
4356         {"i915_max_freq", &i915_max_freq_fops},
4357         {"i915_min_freq", &i915_min_freq_fops},
4358         {"i915_cache_sharing", &i915_cache_sharing_fops},
4359         {"i915_ring_stop", &i915_ring_stop_fops},
4360         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4361         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4362         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4363         {"i915_error_state", &i915_error_state_fops},
4364         {"i915_next_seqno", &i915_next_seqno_fops},
4365         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4366         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4367         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4368         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4369         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4370 };
4371
4372 void intel_display_crc_init(struct drm_device *dev)
4373 {
4374         struct drm_i915_private *dev_priv = dev->dev_private;
4375         enum pipe pipe;
4376
4377         for_each_pipe(dev_priv, pipe) {
4378                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4379
4380                 pipe_crc->opened = false;
4381                 spin_lock_init(&pipe_crc->lock);
4382                 init_waitqueue_head(&pipe_crc->wq);
4383         }
4384 }
4385
4386 int i915_debugfs_init(struct drm_minor *minor)
4387 {
4388         int ret, i;
4389
4390         ret = i915_forcewake_create(minor->debugfs_root, minor);
4391         if (ret)
4392                 return ret;
4393
4394         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4395                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4396                 if (ret)
4397                         return ret;
4398         }
4399
4400         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4401                 ret = i915_debugfs_create(minor->debugfs_root, minor,
4402                                           i915_debugfs_files[i].name,
4403                                           i915_debugfs_files[i].fops);
4404                 if (ret)
4405                         return ret;
4406         }
4407
4408         return drm_debugfs_create_files(i915_debugfs_list,
4409                                         I915_DEBUGFS_ENTRIES,
4410                                         minor->debugfs_root, minor);
4411 }
4412
4413 void i915_debugfs_cleanup(struct drm_minor *minor)
4414 {
4415         int i;
4416
4417         drm_debugfs_remove_files(i915_debugfs_list,
4418                                  I915_DEBUGFS_ENTRIES, minor);
4419
4420         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4421                                  1, minor);
4422
4423         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4424                 struct drm_info_list *info_list =
4425                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4426
4427                 drm_debugfs_remove_files(info_list, 1, minor);
4428         }
4429
4430         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4431                 struct drm_info_list *info_list =
4432                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4433
4434                 drm_debugfs_remove_files(info_list, 1, minor);
4435         }
4436 }