Merge tag 'topic/atomic-helpers-2014-11-09' of git://anongit.freedesktop.org/drm...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->user_pin_count > 0)
100                 return "P";
101         else if (i915_gem_obj_is_pinned(obj))
102                 return "p";
103         else
104                 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109         switch (obj->tiling_mode) {
110         default:
111         case I915_TILING_NONE: return " ";
112         case I915_TILING_X: return "X";
113         case I915_TILING_Y: return "Y";
114         }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         struct i915_vma *vma;
126         int pin_count = 0;
127
128         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129                    &obj->base,
130                    get_pin_flag(obj),
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    obj->base.size / 1024,
134                    obj->base.read_domains,
135                    obj->base.write_domain,
136                    obj->last_read_seqno,
137                    obj->last_write_seqno,
138                    obj->last_fenced_seqno,
139                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
140                    obj->dirty ? " dirty" : "",
141                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142         if (obj->base.name)
143                 seq_printf(m, " (name: %d)", obj->base.name);
144         list_for_each_entry(vma, &obj->vma_list, vma_link)
145                 if (vma->pin_count > 0)
146                         pin_count++;
147                 seq_printf(m, " (pinned x %d)", pin_count);
148         if (obj->pin_display)
149                 seq_printf(m, " (display)");
150         if (obj->fence_reg != I915_FENCE_REG_NONE)
151                 seq_printf(m, " (fence: %d)", obj->fence_reg);
152         list_for_each_entry(vma, &obj->vma_list, vma_link) {
153                 if (!i915_is_ggtt(vma->vm))
154                         seq_puts(m, " (pp");
155                 else
156                         seq_puts(m, " (g");
157                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158                            vma->node.start, vma->node.size);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->ring != NULL)
172                 seq_printf(m, " (%s)", obj->ring->name);
173         if (obj->frontbuffer_bits)
174                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181         seq_putc(m, ' ');
182 }
183
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186         struct drm_info_node *node = m->private;
187         uintptr_t list = (uintptr_t) node->info_ent->data;
188         struct list_head *head;
189         struct drm_device *dev = node->minor->dev;
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         struct i915_address_space *vm = &dev_priv->gtt.base;
192         struct i915_vma *vma;
193         size_t total_obj_size, total_gtt_size;
194         int count, ret;
195
196         ret = mutex_lock_interruptible(&dev->struct_mutex);
197         if (ret)
198                 return ret;
199
200         /* FIXME: the user of this interface might want more than just GGTT */
201         switch (list) {
202         case ACTIVE_LIST:
203                 seq_puts(m, "Active:\n");
204                 head = &vm->active_list;
205                 break;
206         case INACTIVE_LIST:
207                 seq_puts(m, "Inactive:\n");
208                 head = &vm->inactive_list;
209                 break;
210         default:
211                 mutex_unlock(&dev->struct_mutex);
212                 return -EINVAL;
213         }
214
215         total_obj_size = total_gtt_size = count = 0;
216         list_for_each_entry(vma, head, mm_list) {
217                 seq_printf(m, "   ");
218                 describe_obj(m, vma->obj);
219                 seq_printf(m, "\n");
220                 total_obj_size += vma->obj->base.size;
221                 total_gtt_size += vma->node.size;
222                 count++;
223         }
224         mutex_unlock(&dev->struct_mutex);
225
226         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227                    count, total_obj_size, total_gtt_size);
228         return 0;
229 }
230
231 static int obj_rank_by_stolen(void *priv,
232                               struct list_head *A, struct list_head *B)
233 {
234         struct drm_i915_gem_object *a =
235                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
236         struct drm_i915_gem_object *b =
237                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
238
239         return a->stolen->start - b->stolen->start;
240 }
241
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244         struct drm_info_node *node = m->private;
245         struct drm_device *dev = node->minor->dev;
246         struct drm_i915_private *dev_priv = dev->dev_private;
247         struct drm_i915_gem_object *obj;
248         size_t total_obj_size, total_gtt_size;
249         LIST_HEAD(stolen);
250         int count, ret;
251
252         ret = mutex_lock_interruptible(&dev->struct_mutex);
253         if (ret)
254                 return ret;
255
256         total_obj_size = total_gtt_size = count = 0;
257         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258                 if (obj->stolen == NULL)
259                         continue;
260
261                 list_add(&obj->obj_exec_link, &stolen);
262
263                 total_obj_size += obj->base.size;
264                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
265                 count++;
266         }
267         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268                 if (obj->stolen == NULL)
269                         continue;
270
271                 list_add(&obj->obj_exec_link, &stolen);
272
273                 total_obj_size += obj->base.size;
274                 count++;
275         }
276         list_sort(NULL, &stolen, obj_rank_by_stolen);
277         seq_puts(m, "Stolen:\n");
278         while (!list_empty(&stolen)) {
279                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280                 seq_puts(m, "   ");
281                 describe_obj(m, obj);
282                 seq_putc(m, '\n');
283                 list_del_init(&obj->obj_exec_link);
284         }
285         mutex_unlock(&dev->struct_mutex);
286
287         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288                    count, total_obj_size, total_gtt_size);
289         return 0;
290 }
291
292 #define count_objects(list, member) do { \
293         list_for_each_entry(obj, list, member) { \
294                 size += i915_gem_obj_ggtt_size(obj); \
295                 ++count; \
296                 if (obj->map_and_fenceable) { \
297                         mappable_size += i915_gem_obj_ggtt_size(obj); \
298                         ++mappable_count; \
299                 } \
300         } \
301 } while (0)
302
303 struct file_stats {
304         struct drm_i915_file_private *file_priv;
305         int count;
306         size_t total, unbound;
307         size_t global, shared;
308         size_t active, inactive;
309 };
310
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313         struct drm_i915_gem_object *obj = ptr;
314         struct file_stats *stats = data;
315         struct i915_vma *vma;
316
317         stats->count++;
318         stats->total += obj->base.size;
319
320         if (obj->base.name || obj->base.dma_buf)
321                 stats->shared += obj->base.size;
322
323         if (USES_FULL_PPGTT(obj->base.dev)) {
324                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
325                         struct i915_hw_ppgtt *ppgtt;
326
327                         if (!drm_mm_node_allocated(&vma->node))
328                                 continue;
329
330                         if (i915_is_ggtt(vma->vm)) {
331                                 stats->global += obj->base.size;
332                                 continue;
333                         }
334
335                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336                         if (ppgtt->file_priv != stats->file_priv)
337                                 continue;
338
339                         if (obj->ring) /* XXX per-vma statistic */
340                                 stats->active += obj->base.size;
341                         else
342                                 stats->inactive += obj->base.size;
343
344                         return 0;
345                 }
346         } else {
347                 if (i915_gem_obj_ggtt_bound(obj)) {
348                         stats->global += obj->base.size;
349                         if (obj->ring)
350                                 stats->active += obj->base.size;
351                         else
352                                 stats->inactive += obj->base.size;
353                         return 0;
354                 }
355         }
356
357         if (!list_empty(&obj->global_list))
358                 stats->unbound += obj->base.size;
359
360         return 0;
361 }
362
363 #define count_vmas(list, member) do { \
364         list_for_each_entry(vma, list, member) { \
365                 size += i915_gem_obj_ggtt_size(vma->obj); \
366                 ++count; \
367                 if (vma->obj->map_and_fenceable) { \
368                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
369                         ++mappable_count; \
370                 } \
371         } \
372 } while (0)
373
374 static int i915_gem_object_info(struct seq_file *m, void* data)
375 {
376         struct drm_info_node *node = m->private;
377         struct drm_device *dev = node->minor->dev;
378         struct drm_i915_private *dev_priv = dev->dev_private;
379         u32 count, mappable_count, purgeable_count;
380         size_t size, mappable_size, purgeable_size;
381         struct drm_i915_gem_object *obj;
382         struct i915_address_space *vm = &dev_priv->gtt.base;
383         struct drm_file *file;
384         struct i915_vma *vma;
385         int ret;
386
387         ret = mutex_lock_interruptible(&dev->struct_mutex);
388         if (ret)
389                 return ret;
390
391         seq_printf(m, "%u objects, %zu bytes\n",
392                    dev_priv->mm.object_count,
393                    dev_priv->mm.object_memory);
394
395         size = count = mappable_size = mappable_count = 0;
396         count_objects(&dev_priv->mm.bound_list, global_list);
397         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
398                    count, mappable_count, size, mappable_size);
399
400         size = count = mappable_size = mappable_count = 0;
401         count_vmas(&vm->active_list, mm_list);
402         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
403                    count, mappable_count, size, mappable_size);
404
405         size = count = mappable_size = mappable_count = 0;
406         count_vmas(&vm->inactive_list, mm_list);
407         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
408                    count, mappable_count, size, mappable_size);
409
410         size = count = purgeable_size = purgeable_count = 0;
411         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
412                 size += obj->base.size, ++count;
413                 if (obj->madv == I915_MADV_DONTNEED)
414                         purgeable_size += obj->base.size, ++purgeable_count;
415         }
416         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
417
418         size = count = mappable_size = mappable_count = 0;
419         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420                 if (obj->fault_mappable) {
421                         size += i915_gem_obj_ggtt_size(obj);
422                         ++count;
423                 }
424                 if (obj->pin_mappable) {
425                         mappable_size += i915_gem_obj_ggtt_size(obj);
426                         ++mappable_count;
427                 }
428                 if (obj->madv == I915_MADV_DONTNEED) {
429                         purgeable_size += obj->base.size;
430                         ++purgeable_count;
431                 }
432         }
433         seq_printf(m, "%u purgeable objects, %zu bytes\n",
434                    purgeable_count, purgeable_size);
435         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
436                    mappable_count, mappable_size);
437         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
438                    count, size);
439
440         seq_printf(m, "%zu [%lu] gtt total\n",
441                    dev_priv->gtt.base.total,
442                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
443
444         seq_putc(m, '\n');
445         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
446                 struct file_stats stats;
447                 struct task_struct *task;
448
449                 memset(&stats, 0, sizeof(stats));
450                 stats.file_priv = file->driver_priv;
451                 spin_lock(&file->table_lock);
452                 idr_for_each(&file->object_idr, per_file_stats, &stats);
453                 spin_unlock(&file->table_lock);
454                 /*
455                  * Although we have a valid reference on file->pid, that does
456                  * not guarantee that the task_struct who called get_pid() is
457                  * still alive (e.g. get_pid(current) => fork() => exit()).
458                  * Therefore, we need to protect this ->comm access using RCU.
459                  */
460                 rcu_read_lock();
461                 task = pid_task(file->pid, PIDTYPE_PID);
462                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
463                            task ? task->comm : "<unknown>",
464                            stats.count,
465                            stats.total,
466                            stats.active,
467                            stats.inactive,
468                            stats.global,
469                            stats.shared,
470                            stats.unbound);
471                 rcu_read_unlock();
472         }
473
474         mutex_unlock(&dev->struct_mutex);
475
476         return 0;
477 }
478
479 static int i915_gem_gtt_info(struct seq_file *m, void *data)
480 {
481         struct drm_info_node *node = m->private;
482         struct drm_device *dev = node->minor->dev;
483         uintptr_t list = (uintptr_t) node->info_ent->data;
484         struct drm_i915_private *dev_priv = dev->dev_private;
485         struct drm_i915_gem_object *obj;
486         size_t total_obj_size, total_gtt_size;
487         int count, ret;
488
489         ret = mutex_lock_interruptible(&dev->struct_mutex);
490         if (ret)
491                 return ret;
492
493         total_obj_size = total_gtt_size = count = 0;
494         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
495                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
496                         continue;
497
498                 seq_puts(m, "   ");
499                 describe_obj(m, obj);
500                 seq_putc(m, '\n');
501                 total_obj_size += obj->base.size;
502                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
503                 count++;
504         }
505
506         mutex_unlock(&dev->struct_mutex);
507
508         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
509                    count, total_obj_size, total_gtt_size);
510
511         return 0;
512 }
513
514 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
515 {
516         struct drm_info_node *node = m->private;
517         struct drm_device *dev = node->minor->dev;
518         struct drm_i915_private *dev_priv = dev->dev_private;
519         struct intel_crtc *crtc;
520         int ret;
521
522         ret = mutex_lock_interruptible(&dev->struct_mutex);
523         if (ret)
524                 return ret;
525
526         for_each_intel_crtc(dev, crtc) {
527                 const char pipe = pipe_name(crtc->pipe);
528                 const char plane = plane_name(crtc->plane);
529                 struct intel_unpin_work *work;
530
531                 spin_lock_irq(&dev->event_lock);
532                 work = crtc->unpin_work;
533                 if (work == NULL) {
534                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
535                                    pipe, plane);
536                 } else {
537                         u32 addr;
538
539                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
540                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
541                                            pipe, plane);
542                         } else {
543                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
544                                            pipe, plane);
545                         }
546                         if (work->flip_queued_ring) {
547                                 seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
548                                            work->flip_queued_ring->name,
549                                            work->flip_queued_seqno,
550                                            dev_priv->next_seqno,
551                                            work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
552                                            i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
553                                                              work->flip_queued_seqno));
554                         } else
555                                 seq_printf(m, "Flip not associated with any ring\n");
556                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
557                                    work->flip_queued_vblank,
558                                    work->flip_ready_vblank,
559                                    drm_vblank_count(dev, crtc->pipe));
560                         if (work->enable_stall_check)
561                                 seq_puts(m, "Stall check enabled, ");
562                         else
563                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
564                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
565
566                         if (INTEL_INFO(dev)->gen >= 4)
567                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
568                         else
569                                 addr = I915_READ(DSPADDR(crtc->plane));
570                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
571
572                         if (work->pending_flip_obj) {
573                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
574                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
575                         }
576                 }
577                 spin_unlock_irq(&dev->event_lock);
578         }
579
580         mutex_unlock(&dev->struct_mutex);
581
582         return 0;
583 }
584
585 static int i915_gem_request_info(struct seq_file *m, void *data)
586 {
587         struct drm_info_node *node = m->private;
588         struct drm_device *dev = node->minor->dev;
589         struct drm_i915_private *dev_priv = dev->dev_private;
590         struct intel_engine_cs *ring;
591         struct drm_i915_gem_request *gem_request;
592         int ret, count, i;
593
594         ret = mutex_lock_interruptible(&dev->struct_mutex);
595         if (ret)
596                 return ret;
597
598         count = 0;
599         for_each_ring(ring, dev_priv, i) {
600                 if (list_empty(&ring->request_list))
601                         continue;
602
603                 seq_printf(m, "%s requests:\n", ring->name);
604                 list_for_each_entry(gem_request,
605                                     &ring->request_list,
606                                     list) {
607                         seq_printf(m, "    %d @ %d\n",
608                                    gem_request->seqno,
609                                    (int) (jiffies - gem_request->emitted_jiffies));
610                 }
611                 count++;
612         }
613         mutex_unlock(&dev->struct_mutex);
614
615         if (count == 0)
616                 seq_puts(m, "No requests\n");
617
618         return 0;
619 }
620
621 static void i915_ring_seqno_info(struct seq_file *m,
622                                  struct intel_engine_cs *ring)
623 {
624         if (ring->get_seqno) {
625                 seq_printf(m, "Current sequence (%s): %u\n",
626                            ring->name, ring->get_seqno(ring, false));
627         }
628 }
629
630 static int i915_gem_seqno_info(struct seq_file *m, void *data)
631 {
632         struct drm_info_node *node = m->private;
633         struct drm_device *dev = node->minor->dev;
634         struct drm_i915_private *dev_priv = dev->dev_private;
635         struct intel_engine_cs *ring;
636         int ret, i;
637
638         ret = mutex_lock_interruptible(&dev->struct_mutex);
639         if (ret)
640                 return ret;
641         intel_runtime_pm_get(dev_priv);
642
643         for_each_ring(ring, dev_priv, i)
644                 i915_ring_seqno_info(m, ring);
645
646         intel_runtime_pm_put(dev_priv);
647         mutex_unlock(&dev->struct_mutex);
648
649         return 0;
650 }
651
652
653 static int i915_interrupt_info(struct seq_file *m, void *data)
654 {
655         struct drm_info_node *node = m->private;
656         struct drm_device *dev = node->minor->dev;
657         struct drm_i915_private *dev_priv = dev->dev_private;
658         struct intel_engine_cs *ring;
659         int ret, i, pipe;
660
661         ret = mutex_lock_interruptible(&dev->struct_mutex);
662         if (ret)
663                 return ret;
664         intel_runtime_pm_get(dev_priv);
665
666         if (IS_CHERRYVIEW(dev)) {
667                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
668                            I915_READ(GEN8_MASTER_IRQ));
669
670                 seq_printf(m, "Display IER:\t%08x\n",
671                            I915_READ(VLV_IER));
672                 seq_printf(m, "Display IIR:\t%08x\n",
673                            I915_READ(VLV_IIR));
674                 seq_printf(m, "Display IIR_RW:\t%08x\n",
675                            I915_READ(VLV_IIR_RW));
676                 seq_printf(m, "Display IMR:\t%08x\n",
677                            I915_READ(VLV_IMR));
678                 for_each_pipe(dev_priv, pipe)
679                         seq_printf(m, "Pipe %c stat:\t%08x\n",
680                                    pipe_name(pipe),
681                                    I915_READ(PIPESTAT(pipe)));
682
683                 seq_printf(m, "Port hotplug:\t%08x\n",
684                            I915_READ(PORT_HOTPLUG_EN));
685                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
686                            I915_READ(VLV_DPFLIPSTAT));
687                 seq_printf(m, "DPINVGTT:\t%08x\n",
688                            I915_READ(DPINVGTT));
689
690                 for (i = 0; i < 4; i++) {
691                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
692                                    i, I915_READ(GEN8_GT_IMR(i)));
693                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
694                                    i, I915_READ(GEN8_GT_IIR(i)));
695                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
696                                    i, I915_READ(GEN8_GT_IER(i)));
697                 }
698
699                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
700                            I915_READ(GEN8_PCU_IMR));
701                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
702                            I915_READ(GEN8_PCU_IIR));
703                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
704                            I915_READ(GEN8_PCU_IER));
705         } else if (INTEL_INFO(dev)->gen >= 8) {
706                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
707                            I915_READ(GEN8_MASTER_IRQ));
708
709                 for (i = 0; i < 4; i++) {
710                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
711                                    i, I915_READ(GEN8_GT_IMR(i)));
712                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
713                                    i, I915_READ(GEN8_GT_IIR(i)));
714                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
715                                    i, I915_READ(GEN8_GT_IER(i)));
716                 }
717
718                 for_each_pipe(dev_priv, pipe) {
719                         if (!intel_display_power_is_enabled(dev_priv,
720                                                 POWER_DOMAIN_PIPE(pipe))) {
721                                 seq_printf(m, "Pipe %c power disabled\n",
722                                            pipe_name(pipe));
723                                 continue;
724                         }
725                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
726                                    pipe_name(pipe),
727                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
728                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
729                                    pipe_name(pipe),
730                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
731                         seq_printf(m, "Pipe %c IER:\t%08x\n",
732                                    pipe_name(pipe),
733                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
734                 }
735
736                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
737                            I915_READ(GEN8_DE_PORT_IMR));
738                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
739                            I915_READ(GEN8_DE_PORT_IIR));
740                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
741                            I915_READ(GEN8_DE_PORT_IER));
742
743                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
744                            I915_READ(GEN8_DE_MISC_IMR));
745                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
746                            I915_READ(GEN8_DE_MISC_IIR));
747                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
748                            I915_READ(GEN8_DE_MISC_IER));
749
750                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
751                            I915_READ(GEN8_PCU_IMR));
752                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
753                            I915_READ(GEN8_PCU_IIR));
754                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
755                            I915_READ(GEN8_PCU_IER));
756         } else if (IS_VALLEYVIEW(dev)) {
757                 seq_printf(m, "Display IER:\t%08x\n",
758                            I915_READ(VLV_IER));
759                 seq_printf(m, "Display IIR:\t%08x\n",
760                            I915_READ(VLV_IIR));
761                 seq_printf(m, "Display IIR_RW:\t%08x\n",
762                            I915_READ(VLV_IIR_RW));
763                 seq_printf(m, "Display IMR:\t%08x\n",
764                            I915_READ(VLV_IMR));
765                 for_each_pipe(dev_priv, pipe)
766                         seq_printf(m, "Pipe %c stat:\t%08x\n",
767                                    pipe_name(pipe),
768                                    I915_READ(PIPESTAT(pipe)));
769
770                 seq_printf(m, "Master IER:\t%08x\n",
771                            I915_READ(VLV_MASTER_IER));
772
773                 seq_printf(m, "Render IER:\t%08x\n",
774                            I915_READ(GTIER));
775                 seq_printf(m, "Render IIR:\t%08x\n",
776                            I915_READ(GTIIR));
777                 seq_printf(m, "Render IMR:\t%08x\n",
778                            I915_READ(GTIMR));
779
780                 seq_printf(m, "PM IER:\t\t%08x\n",
781                            I915_READ(GEN6_PMIER));
782                 seq_printf(m, "PM IIR:\t\t%08x\n",
783                            I915_READ(GEN6_PMIIR));
784                 seq_printf(m, "PM IMR:\t\t%08x\n",
785                            I915_READ(GEN6_PMIMR));
786
787                 seq_printf(m, "Port hotplug:\t%08x\n",
788                            I915_READ(PORT_HOTPLUG_EN));
789                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
790                            I915_READ(VLV_DPFLIPSTAT));
791                 seq_printf(m, "DPINVGTT:\t%08x\n",
792                            I915_READ(DPINVGTT));
793
794         } else if (!HAS_PCH_SPLIT(dev)) {
795                 seq_printf(m, "Interrupt enable:    %08x\n",
796                            I915_READ(IER));
797                 seq_printf(m, "Interrupt identity:  %08x\n",
798                            I915_READ(IIR));
799                 seq_printf(m, "Interrupt mask:      %08x\n",
800                            I915_READ(IMR));
801                 for_each_pipe(dev_priv, pipe)
802                         seq_printf(m, "Pipe %c stat:         %08x\n",
803                                    pipe_name(pipe),
804                                    I915_READ(PIPESTAT(pipe)));
805         } else {
806                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
807                            I915_READ(DEIER));
808                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
809                            I915_READ(DEIIR));
810                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
811                            I915_READ(DEIMR));
812                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
813                            I915_READ(SDEIER));
814                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
815                            I915_READ(SDEIIR));
816                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
817                            I915_READ(SDEIMR));
818                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
819                            I915_READ(GTIER));
820                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
821                            I915_READ(GTIIR));
822                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
823                            I915_READ(GTIMR));
824         }
825         for_each_ring(ring, dev_priv, i) {
826                 if (INTEL_INFO(dev)->gen >= 6) {
827                         seq_printf(m,
828                                    "Graphics Interrupt mask (%s):       %08x\n",
829                                    ring->name, I915_READ_IMR(ring));
830                 }
831                 i915_ring_seqno_info(m, ring);
832         }
833         intel_runtime_pm_put(dev_priv);
834         mutex_unlock(&dev->struct_mutex);
835
836         return 0;
837 }
838
839 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
840 {
841         struct drm_info_node *node = m->private;
842         struct drm_device *dev = node->minor->dev;
843         struct drm_i915_private *dev_priv = dev->dev_private;
844         int i, ret;
845
846         ret = mutex_lock_interruptible(&dev->struct_mutex);
847         if (ret)
848                 return ret;
849
850         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
851         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
852         for (i = 0; i < dev_priv->num_fence_regs; i++) {
853                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
854
855                 seq_printf(m, "Fence %d, pin count = %d, object = ",
856                            i, dev_priv->fence_regs[i].pin_count);
857                 if (obj == NULL)
858                         seq_puts(m, "unused");
859                 else
860                         describe_obj(m, obj);
861                 seq_putc(m, '\n');
862         }
863
864         mutex_unlock(&dev->struct_mutex);
865         return 0;
866 }
867
868 static int i915_hws_info(struct seq_file *m, void *data)
869 {
870         struct drm_info_node *node = m->private;
871         struct drm_device *dev = node->minor->dev;
872         struct drm_i915_private *dev_priv = dev->dev_private;
873         struct intel_engine_cs *ring;
874         const u32 *hws;
875         int i;
876
877         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
878         hws = ring->status_page.page_addr;
879         if (hws == NULL)
880                 return 0;
881
882         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
883                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
884                            i * 4,
885                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
886         }
887         return 0;
888 }
889
890 static ssize_t
891 i915_error_state_write(struct file *filp,
892                        const char __user *ubuf,
893                        size_t cnt,
894                        loff_t *ppos)
895 {
896         struct i915_error_state_file_priv *error_priv = filp->private_data;
897         struct drm_device *dev = error_priv->dev;
898         int ret;
899
900         DRM_DEBUG_DRIVER("Resetting error state\n");
901
902         ret = mutex_lock_interruptible(&dev->struct_mutex);
903         if (ret)
904                 return ret;
905
906         i915_destroy_error_state(dev);
907         mutex_unlock(&dev->struct_mutex);
908
909         return cnt;
910 }
911
912 static int i915_error_state_open(struct inode *inode, struct file *file)
913 {
914         struct drm_device *dev = inode->i_private;
915         struct i915_error_state_file_priv *error_priv;
916
917         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
918         if (!error_priv)
919                 return -ENOMEM;
920
921         error_priv->dev = dev;
922
923         i915_error_state_get(dev, error_priv);
924
925         file->private_data = error_priv;
926
927         return 0;
928 }
929
930 static int i915_error_state_release(struct inode *inode, struct file *file)
931 {
932         struct i915_error_state_file_priv *error_priv = file->private_data;
933
934         i915_error_state_put(error_priv);
935         kfree(error_priv);
936
937         return 0;
938 }
939
940 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
941                                      size_t count, loff_t *pos)
942 {
943         struct i915_error_state_file_priv *error_priv = file->private_data;
944         struct drm_i915_error_state_buf error_str;
945         loff_t tmp_pos = 0;
946         ssize_t ret_count = 0;
947         int ret;
948
949         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
950         if (ret)
951                 return ret;
952
953         ret = i915_error_state_to_str(&error_str, error_priv);
954         if (ret)
955                 goto out;
956
957         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
958                                             error_str.buf,
959                                             error_str.bytes);
960
961         if (ret_count < 0)
962                 ret = ret_count;
963         else
964                 *pos = error_str.start + ret_count;
965 out:
966         i915_error_state_buf_release(&error_str);
967         return ret ?: ret_count;
968 }
969
970 static const struct file_operations i915_error_state_fops = {
971         .owner = THIS_MODULE,
972         .open = i915_error_state_open,
973         .read = i915_error_state_read,
974         .write = i915_error_state_write,
975         .llseek = default_llseek,
976         .release = i915_error_state_release,
977 };
978
979 static int
980 i915_next_seqno_get(void *data, u64 *val)
981 {
982         struct drm_device *dev = data;
983         struct drm_i915_private *dev_priv = dev->dev_private;
984         int ret;
985
986         ret = mutex_lock_interruptible(&dev->struct_mutex);
987         if (ret)
988                 return ret;
989
990         *val = dev_priv->next_seqno;
991         mutex_unlock(&dev->struct_mutex);
992
993         return 0;
994 }
995
996 static int
997 i915_next_seqno_set(void *data, u64 val)
998 {
999         struct drm_device *dev = data;
1000         int ret;
1001
1002         ret = mutex_lock_interruptible(&dev->struct_mutex);
1003         if (ret)
1004                 return ret;
1005
1006         ret = i915_gem_set_seqno(dev, val);
1007         mutex_unlock(&dev->struct_mutex);
1008
1009         return ret;
1010 }
1011
1012 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1013                         i915_next_seqno_get, i915_next_seqno_set,
1014                         "0x%llx\n");
1015
1016 static int i915_frequency_info(struct seq_file *m, void *unused)
1017 {
1018         struct drm_info_node *node = m->private;
1019         struct drm_device *dev = node->minor->dev;
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         int ret = 0;
1022
1023         intel_runtime_pm_get(dev_priv);
1024
1025         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1026
1027         if (IS_GEN5(dev)) {
1028                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1029                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1030
1031                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1032                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1033                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1034                            MEMSTAT_VID_SHIFT);
1035                 seq_printf(m, "Current P-state: %d\n",
1036                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1037         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1038                    IS_BROADWELL(dev)) {
1039                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1040                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1041                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1042                 u32 rpmodectl, rpinclimit, rpdeclimit;
1043                 u32 rpstat, cagf, reqf;
1044                 u32 rpupei, rpcurup, rpprevup;
1045                 u32 rpdownei, rpcurdown, rpprevdown;
1046                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1047                 int max_freq;
1048
1049                 /* RPSTAT1 is in the GT power well */
1050                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1051                 if (ret)
1052                         goto out;
1053
1054                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1055
1056                 reqf = I915_READ(GEN6_RPNSWREQ);
1057                 reqf &= ~GEN6_TURBO_DISABLE;
1058                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1059                         reqf >>= 24;
1060                 else
1061                         reqf >>= 25;
1062                 reqf *= GT_FREQUENCY_MULTIPLIER;
1063
1064                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1065                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1066                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1067
1068                 rpstat = I915_READ(GEN6_RPSTAT1);
1069                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1070                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1071                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1072                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1073                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1074                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1075                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1076                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1077                 else
1078                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1079                 cagf *= GT_FREQUENCY_MULTIPLIER;
1080
1081                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1082                 mutex_unlock(&dev->struct_mutex);
1083
1084                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1085                         pm_ier = I915_READ(GEN6_PMIER);
1086                         pm_imr = I915_READ(GEN6_PMIMR);
1087                         pm_isr = I915_READ(GEN6_PMISR);
1088                         pm_iir = I915_READ(GEN6_PMIIR);
1089                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1090                 } else {
1091                         pm_ier = I915_READ(GEN8_GT_IER(2));
1092                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1093                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1094                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1095                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1096                 }
1097                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1098                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1099                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1100                 seq_printf(m, "Render p-state ratio: %d\n",
1101                            (gt_perf_status & 0xff00) >> 8);
1102                 seq_printf(m, "Render p-state VID: %d\n",
1103                            gt_perf_status & 0xff);
1104                 seq_printf(m, "Render p-state limit: %d\n",
1105                            rp_state_limits & 0xff);
1106                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1107                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1108                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1109                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1110                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1111                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1112                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1113                            GEN6_CURICONT_MASK);
1114                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1115                            GEN6_CURBSYTAVG_MASK);
1116                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1117                            GEN6_CURBSYTAVG_MASK);
1118                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1119                            GEN6_CURIAVG_MASK);
1120                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1121                            GEN6_CURBSYTAVG_MASK);
1122                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1123                            GEN6_CURBSYTAVG_MASK);
1124
1125                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1126                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1127                            max_freq * GT_FREQUENCY_MULTIPLIER);
1128
1129                 max_freq = (rp_state_cap & 0xff00) >> 8;
1130                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1131                            max_freq * GT_FREQUENCY_MULTIPLIER);
1132
1133                 max_freq = rp_state_cap & 0xff;
1134                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1135                            max_freq * GT_FREQUENCY_MULTIPLIER);
1136
1137                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1138                            dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1139         } else if (IS_VALLEYVIEW(dev)) {
1140                 u32 freq_sts;
1141
1142                 mutex_lock(&dev_priv->rps.hw_lock);
1143                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1144                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1145                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1146
1147                 seq_printf(m, "max GPU freq: %d MHz\n",
1148                            vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1149
1150                 seq_printf(m, "min GPU freq: %d MHz\n",
1151                            vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1152
1153                 seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1154                            vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1155
1156                 seq_printf(m, "current GPU freq: %d MHz\n",
1157                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1158                 mutex_unlock(&dev_priv->rps.hw_lock);
1159         } else {
1160                 seq_puts(m, "no P-state info available\n");
1161         }
1162
1163 out:
1164         intel_runtime_pm_put(dev_priv);
1165         return ret;
1166 }
1167
1168 static int ironlake_drpc_info(struct seq_file *m)
1169 {
1170         struct drm_info_node *node = m->private;
1171         struct drm_device *dev = node->minor->dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173         u32 rgvmodectl, rstdbyctl;
1174         u16 crstandvid;
1175         int ret;
1176
1177         ret = mutex_lock_interruptible(&dev->struct_mutex);
1178         if (ret)
1179                 return ret;
1180         intel_runtime_pm_get(dev_priv);
1181
1182         rgvmodectl = I915_READ(MEMMODECTL);
1183         rstdbyctl = I915_READ(RSTDBYCTL);
1184         crstandvid = I915_READ16(CRSTANDVID);
1185
1186         intel_runtime_pm_put(dev_priv);
1187         mutex_unlock(&dev->struct_mutex);
1188
1189         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1190                    "yes" : "no");
1191         seq_printf(m, "Boost freq: %d\n",
1192                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1193                    MEMMODE_BOOST_FREQ_SHIFT);
1194         seq_printf(m, "HW control enabled: %s\n",
1195                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1196         seq_printf(m, "SW control enabled: %s\n",
1197                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1198         seq_printf(m, "Gated voltage change: %s\n",
1199                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1200         seq_printf(m, "Starting frequency: P%d\n",
1201                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1202         seq_printf(m, "Max P-state: P%d\n",
1203                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1204         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1205         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1206         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1207         seq_printf(m, "Render standby enabled: %s\n",
1208                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1209         seq_puts(m, "Current RS state: ");
1210         switch (rstdbyctl & RSX_STATUS_MASK) {
1211         case RSX_STATUS_ON:
1212                 seq_puts(m, "on\n");
1213                 break;
1214         case RSX_STATUS_RC1:
1215                 seq_puts(m, "RC1\n");
1216                 break;
1217         case RSX_STATUS_RC1E:
1218                 seq_puts(m, "RC1E\n");
1219                 break;
1220         case RSX_STATUS_RS1:
1221                 seq_puts(m, "RS1\n");
1222                 break;
1223         case RSX_STATUS_RS2:
1224                 seq_puts(m, "RS2 (RC6)\n");
1225                 break;
1226         case RSX_STATUS_RS3:
1227                 seq_puts(m, "RC3 (RC6+)\n");
1228                 break;
1229         default:
1230                 seq_puts(m, "unknown\n");
1231                 break;
1232         }
1233
1234         return 0;
1235 }
1236
1237 static int vlv_drpc_info(struct seq_file *m)
1238 {
1239
1240         struct drm_info_node *node = m->private;
1241         struct drm_device *dev = node->minor->dev;
1242         struct drm_i915_private *dev_priv = dev->dev_private;
1243         u32 rpmodectl1, rcctl1;
1244         unsigned fw_rendercount = 0, fw_mediacount = 0;
1245
1246         intel_runtime_pm_get(dev_priv);
1247
1248         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1249         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1250
1251         intel_runtime_pm_put(dev_priv);
1252
1253         seq_printf(m, "Video Turbo Mode: %s\n",
1254                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1255         seq_printf(m, "Turbo enabled: %s\n",
1256                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1257         seq_printf(m, "HW control enabled: %s\n",
1258                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1259         seq_printf(m, "SW control enabled: %s\n",
1260                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1261                           GEN6_RP_MEDIA_SW_MODE));
1262         seq_printf(m, "RC6 Enabled: %s\n",
1263                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1264                                         GEN6_RC_CTL_EI_MODE(1))));
1265         seq_printf(m, "Render Power Well: %s\n",
1266                         (I915_READ(VLV_GTLC_PW_STATUS) &
1267                                 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1268         seq_printf(m, "Media Power Well: %s\n",
1269                         (I915_READ(VLV_GTLC_PW_STATUS) &
1270                                 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1271
1272         seq_printf(m, "Render RC6 residency since boot: %u\n",
1273                    I915_READ(VLV_GT_RENDER_RC6));
1274         seq_printf(m, "Media RC6 residency since boot: %u\n",
1275                    I915_READ(VLV_GT_MEDIA_RC6));
1276
1277         spin_lock_irq(&dev_priv->uncore.lock);
1278         fw_rendercount = dev_priv->uncore.fw_rendercount;
1279         fw_mediacount = dev_priv->uncore.fw_mediacount;
1280         spin_unlock_irq(&dev_priv->uncore.lock);
1281
1282         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1283         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1284
1285
1286         return 0;
1287 }
1288
1289
1290 static int gen6_drpc_info(struct seq_file *m)
1291 {
1292
1293         struct drm_info_node *node = m->private;
1294         struct drm_device *dev = node->minor->dev;
1295         struct drm_i915_private *dev_priv = dev->dev_private;
1296         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1297         unsigned forcewake_count;
1298         int count = 0, ret;
1299
1300         ret = mutex_lock_interruptible(&dev->struct_mutex);
1301         if (ret)
1302                 return ret;
1303         intel_runtime_pm_get(dev_priv);
1304
1305         spin_lock_irq(&dev_priv->uncore.lock);
1306         forcewake_count = dev_priv->uncore.forcewake_count;
1307         spin_unlock_irq(&dev_priv->uncore.lock);
1308
1309         if (forcewake_count) {
1310                 seq_puts(m, "RC information inaccurate because somebody "
1311                             "holds a forcewake reference \n");
1312         } else {
1313                 /* NB: we cannot use forcewake, else we read the wrong values */
1314                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1315                         udelay(10);
1316                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1317         }
1318
1319         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1320         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1321
1322         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1323         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1324         mutex_unlock(&dev->struct_mutex);
1325         mutex_lock(&dev_priv->rps.hw_lock);
1326         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1327         mutex_unlock(&dev_priv->rps.hw_lock);
1328
1329         intel_runtime_pm_put(dev_priv);
1330
1331         seq_printf(m, "Video Turbo Mode: %s\n",
1332                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1333         seq_printf(m, "HW control enabled: %s\n",
1334                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1335         seq_printf(m, "SW control enabled: %s\n",
1336                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1337                           GEN6_RP_MEDIA_SW_MODE));
1338         seq_printf(m, "RC1e Enabled: %s\n",
1339                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1340         seq_printf(m, "RC6 Enabled: %s\n",
1341                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1342         seq_printf(m, "Deep RC6 Enabled: %s\n",
1343                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1344         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1345                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1346         seq_puts(m, "Current RC state: ");
1347         switch (gt_core_status & GEN6_RCn_MASK) {
1348         case GEN6_RC0:
1349                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1350                         seq_puts(m, "Core Power Down\n");
1351                 else
1352                         seq_puts(m, "on\n");
1353                 break;
1354         case GEN6_RC3:
1355                 seq_puts(m, "RC3\n");
1356                 break;
1357         case GEN6_RC6:
1358                 seq_puts(m, "RC6\n");
1359                 break;
1360         case GEN6_RC7:
1361                 seq_puts(m, "RC7\n");
1362                 break;
1363         default:
1364                 seq_puts(m, "Unknown\n");
1365                 break;
1366         }
1367
1368         seq_printf(m, "Core Power Down: %s\n",
1369                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1370
1371         /* Not exactly sure what this is */
1372         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1373                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1374         seq_printf(m, "RC6 residency since boot: %u\n",
1375                    I915_READ(GEN6_GT_GFX_RC6));
1376         seq_printf(m, "RC6+ residency since boot: %u\n",
1377                    I915_READ(GEN6_GT_GFX_RC6p));
1378         seq_printf(m, "RC6++ residency since boot: %u\n",
1379                    I915_READ(GEN6_GT_GFX_RC6pp));
1380
1381         seq_printf(m, "RC6   voltage: %dmV\n",
1382                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1383         seq_printf(m, "RC6+  voltage: %dmV\n",
1384                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1385         seq_printf(m, "RC6++ voltage: %dmV\n",
1386                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1387         return 0;
1388 }
1389
1390 static int i915_drpc_info(struct seq_file *m, void *unused)
1391 {
1392         struct drm_info_node *node = m->private;
1393         struct drm_device *dev = node->minor->dev;
1394
1395         if (IS_VALLEYVIEW(dev))
1396                 return vlv_drpc_info(m);
1397         else if (INTEL_INFO(dev)->gen >= 6)
1398                 return gen6_drpc_info(m);
1399         else
1400                 return ironlake_drpc_info(m);
1401 }
1402
1403 static int i915_fbc_status(struct seq_file *m, void *unused)
1404 {
1405         struct drm_info_node *node = m->private;
1406         struct drm_device *dev = node->minor->dev;
1407         struct drm_i915_private *dev_priv = dev->dev_private;
1408
1409         if (!HAS_FBC(dev)) {
1410                 seq_puts(m, "FBC unsupported on this chipset\n");
1411                 return 0;
1412         }
1413
1414         intel_runtime_pm_get(dev_priv);
1415
1416         if (intel_fbc_enabled(dev)) {
1417                 seq_puts(m, "FBC enabled\n");
1418         } else {
1419                 seq_puts(m, "FBC disabled: ");
1420                 switch (dev_priv->fbc.no_fbc_reason) {
1421                 case FBC_OK:
1422                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1423                         break;
1424                 case FBC_UNSUPPORTED:
1425                         seq_puts(m, "unsupported by this chipset");
1426                         break;
1427                 case FBC_NO_OUTPUT:
1428                         seq_puts(m, "no outputs");
1429                         break;
1430                 case FBC_STOLEN_TOO_SMALL:
1431                         seq_puts(m, "not enough stolen memory");
1432                         break;
1433                 case FBC_UNSUPPORTED_MODE:
1434                         seq_puts(m, "mode not supported");
1435                         break;
1436                 case FBC_MODE_TOO_LARGE:
1437                         seq_puts(m, "mode too large");
1438                         break;
1439                 case FBC_BAD_PLANE:
1440                         seq_puts(m, "FBC unsupported on plane");
1441                         break;
1442                 case FBC_NOT_TILED:
1443                         seq_puts(m, "scanout buffer not tiled");
1444                         break;
1445                 case FBC_MULTIPLE_PIPES:
1446                         seq_puts(m, "multiple pipes are enabled");
1447                         break;
1448                 case FBC_MODULE_PARAM:
1449                         seq_puts(m, "disabled per module param (default off)");
1450                         break;
1451                 case FBC_CHIP_DEFAULT:
1452                         seq_puts(m, "disabled per chip default");
1453                         break;
1454                 default:
1455                         seq_puts(m, "unknown reason");
1456                 }
1457                 seq_putc(m, '\n');
1458         }
1459
1460         intel_runtime_pm_put(dev_priv);
1461
1462         return 0;
1463 }
1464
1465 static int i915_fbc_fc_get(void *data, u64 *val)
1466 {
1467         struct drm_device *dev = data;
1468         struct drm_i915_private *dev_priv = dev->dev_private;
1469
1470         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1471                 return -ENODEV;
1472
1473         drm_modeset_lock_all(dev);
1474         *val = dev_priv->fbc.false_color;
1475         drm_modeset_unlock_all(dev);
1476
1477         return 0;
1478 }
1479
1480 static int i915_fbc_fc_set(void *data, u64 val)
1481 {
1482         struct drm_device *dev = data;
1483         struct drm_i915_private *dev_priv = dev->dev_private;
1484         u32 reg;
1485
1486         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1487                 return -ENODEV;
1488
1489         drm_modeset_lock_all(dev);
1490
1491         reg = I915_READ(ILK_DPFC_CONTROL);
1492         dev_priv->fbc.false_color = val;
1493
1494         I915_WRITE(ILK_DPFC_CONTROL, val ?
1495                    (reg | FBC_CTL_FALSE_COLOR) :
1496                    (reg & ~FBC_CTL_FALSE_COLOR));
1497
1498         drm_modeset_unlock_all(dev);
1499         return 0;
1500 }
1501
1502 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1503                         i915_fbc_fc_get, i915_fbc_fc_set,
1504                         "%llu\n");
1505
1506 static int i915_ips_status(struct seq_file *m, void *unused)
1507 {
1508         struct drm_info_node *node = m->private;
1509         struct drm_device *dev = node->minor->dev;
1510         struct drm_i915_private *dev_priv = dev->dev_private;
1511
1512         if (!HAS_IPS(dev)) {
1513                 seq_puts(m, "not supported\n");
1514                 return 0;
1515         }
1516
1517         intel_runtime_pm_get(dev_priv);
1518
1519         seq_printf(m, "Enabled by kernel parameter: %s\n",
1520                    yesno(i915.enable_ips));
1521
1522         if (INTEL_INFO(dev)->gen >= 8) {
1523                 seq_puts(m, "Currently: unknown\n");
1524         } else {
1525                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1526                         seq_puts(m, "Currently: enabled\n");
1527                 else
1528                         seq_puts(m, "Currently: disabled\n");
1529         }
1530
1531         intel_runtime_pm_put(dev_priv);
1532
1533         return 0;
1534 }
1535
1536 static int i915_sr_status(struct seq_file *m, void *unused)
1537 {
1538         struct drm_info_node *node = m->private;
1539         struct drm_device *dev = node->minor->dev;
1540         struct drm_i915_private *dev_priv = dev->dev_private;
1541         bool sr_enabled = false;
1542
1543         intel_runtime_pm_get(dev_priv);
1544
1545         if (HAS_PCH_SPLIT(dev))
1546                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1547         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1548                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1549         else if (IS_I915GM(dev))
1550                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1551         else if (IS_PINEVIEW(dev))
1552                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1553
1554         intel_runtime_pm_put(dev_priv);
1555
1556         seq_printf(m, "self-refresh: %s\n",
1557                    sr_enabled ? "enabled" : "disabled");
1558
1559         return 0;
1560 }
1561
1562 static int i915_emon_status(struct seq_file *m, void *unused)
1563 {
1564         struct drm_info_node *node = m->private;
1565         struct drm_device *dev = node->minor->dev;
1566         struct drm_i915_private *dev_priv = dev->dev_private;
1567         unsigned long temp, chipset, gfx;
1568         int ret;
1569
1570         if (!IS_GEN5(dev))
1571                 return -ENODEV;
1572
1573         ret = mutex_lock_interruptible(&dev->struct_mutex);
1574         if (ret)
1575                 return ret;
1576
1577         temp = i915_mch_val(dev_priv);
1578         chipset = i915_chipset_val(dev_priv);
1579         gfx = i915_gfx_val(dev_priv);
1580         mutex_unlock(&dev->struct_mutex);
1581
1582         seq_printf(m, "GMCH temp: %ld\n", temp);
1583         seq_printf(m, "Chipset power: %ld\n", chipset);
1584         seq_printf(m, "GFX power: %ld\n", gfx);
1585         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1586
1587         return 0;
1588 }
1589
1590 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1591 {
1592         struct drm_info_node *node = m->private;
1593         struct drm_device *dev = node->minor->dev;
1594         struct drm_i915_private *dev_priv = dev->dev_private;
1595         int ret = 0;
1596         int gpu_freq, ia_freq;
1597
1598         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1599                 seq_puts(m, "unsupported on this chipset\n");
1600                 return 0;
1601         }
1602
1603         intel_runtime_pm_get(dev_priv);
1604
1605         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1606
1607         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1608         if (ret)
1609                 goto out;
1610
1611         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1612
1613         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1614              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1615              gpu_freq++) {
1616                 ia_freq = gpu_freq;
1617                 sandybridge_pcode_read(dev_priv,
1618                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1619                                        &ia_freq);
1620                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1621                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1622                            ((ia_freq >> 0) & 0xff) * 100,
1623                            ((ia_freq >> 8) & 0xff) * 100);
1624         }
1625
1626         mutex_unlock(&dev_priv->rps.hw_lock);
1627
1628 out:
1629         intel_runtime_pm_put(dev_priv);
1630         return ret;
1631 }
1632
1633 static int i915_opregion(struct seq_file *m, void *unused)
1634 {
1635         struct drm_info_node *node = m->private;
1636         struct drm_device *dev = node->minor->dev;
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638         struct intel_opregion *opregion = &dev_priv->opregion;
1639         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1640         int ret;
1641
1642         if (data == NULL)
1643                 return -ENOMEM;
1644
1645         ret = mutex_lock_interruptible(&dev->struct_mutex);
1646         if (ret)
1647                 goto out;
1648
1649         if (opregion->header) {
1650                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1651                 seq_write(m, data, OPREGION_SIZE);
1652         }
1653
1654         mutex_unlock(&dev->struct_mutex);
1655
1656 out:
1657         kfree(data);
1658         return 0;
1659 }
1660
1661 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1662 {
1663         struct drm_info_node *node = m->private;
1664         struct drm_device *dev = node->minor->dev;
1665         struct intel_fbdev *ifbdev = NULL;
1666         struct intel_framebuffer *fb;
1667
1668 #ifdef CONFIG_DRM_I915_FBDEV
1669         struct drm_i915_private *dev_priv = dev->dev_private;
1670
1671         ifbdev = dev_priv->fbdev;
1672         fb = to_intel_framebuffer(ifbdev->helper.fb);
1673
1674         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1675                    fb->base.width,
1676                    fb->base.height,
1677                    fb->base.depth,
1678                    fb->base.bits_per_pixel,
1679                    atomic_read(&fb->base.refcount.refcount));
1680         describe_obj(m, fb->obj);
1681         seq_putc(m, '\n');
1682 #endif
1683
1684         mutex_lock(&dev->mode_config.fb_lock);
1685         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1686                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1687                         continue;
1688
1689                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1690                            fb->base.width,
1691                            fb->base.height,
1692                            fb->base.depth,
1693                            fb->base.bits_per_pixel,
1694                            atomic_read(&fb->base.refcount.refcount));
1695                 describe_obj(m, fb->obj);
1696                 seq_putc(m, '\n');
1697         }
1698         mutex_unlock(&dev->mode_config.fb_lock);
1699
1700         return 0;
1701 }
1702
1703 static void describe_ctx_ringbuf(struct seq_file *m,
1704                                  struct intel_ringbuffer *ringbuf)
1705 {
1706         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1707                    ringbuf->space, ringbuf->head, ringbuf->tail,
1708                    ringbuf->last_retired_head);
1709 }
1710
1711 static int i915_context_status(struct seq_file *m, void *unused)
1712 {
1713         struct drm_info_node *node = m->private;
1714         struct drm_device *dev = node->minor->dev;
1715         struct drm_i915_private *dev_priv = dev->dev_private;
1716         struct intel_engine_cs *ring;
1717         struct intel_context *ctx;
1718         int ret, i;
1719
1720         ret = mutex_lock_interruptible(&dev->struct_mutex);
1721         if (ret)
1722                 return ret;
1723
1724         if (dev_priv->ips.pwrctx) {
1725                 seq_puts(m, "power context ");
1726                 describe_obj(m, dev_priv->ips.pwrctx);
1727                 seq_putc(m, '\n');
1728         }
1729
1730         if (dev_priv->ips.renderctx) {
1731                 seq_puts(m, "render context ");
1732                 describe_obj(m, dev_priv->ips.renderctx);
1733                 seq_putc(m, '\n');
1734         }
1735
1736         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1737                 if (!i915.enable_execlists &&
1738                     ctx->legacy_hw_ctx.rcs_state == NULL)
1739                         continue;
1740
1741                 seq_puts(m, "HW context ");
1742                 describe_ctx(m, ctx);
1743                 for_each_ring(ring, dev_priv, i) {
1744                         if (ring->default_context == ctx)
1745                                 seq_printf(m, "(default context %s) ",
1746                                            ring->name);
1747                 }
1748
1749                 if (i915.enable_execlists) {
1750                         seq_putc(m, '\n');
1751                         for_each_ring(ring, dev_priv, i) {
1752                                 struct drm_i915_gem_object *ctx_obj =
1753                                         ctx->engine[i].state;
1754                                 struct intel_ringbuffer *ringbuf =
1755                                         ctx->engine[i].ringbuf;
1756
1757                                 seq_printf(m, "%s: ", ring->name);
1758                                 if (ctx_obj)
1759                                         describe_obj(m, ctx_obj);
1760                                 if (ringbuf)
1761                                         describe_ctx_ringbuf(m, ringbuf);
1762                                 seq_putc(m, '\n');
1763                         }
1764                 } else {
1765                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1766                 }
1767
1768                 seq_putc(m, '\n');
1769         }
1770
1771         mutex_unlock(&dev->struct_mutex);
1772
1773         return 0;
1774 }
1775
1776 static int i915_dump_lrc(struct seq_file *m, void *unused)
1777 {
1778         struct drm_info_node *node = (struct drm_info_node *) m->private;
1779         struct drm_device *dev = node->minor->dev;
1780         struct drm_i915_private *dev_priv = dev->dev_private;
1781         struct intel_engine_cs *ring;
1782         struct intel_context *ctx;
1783         int ret, i;
1784
1785         if (!i915.enable_execlists) {
1786                 seq_printf(m, "Logical Ring Contexts are disabled\n");
1787                 return 0;
1788         }
1789
1790         ret = mutex_lock_interruptible(&dev->struct_mutex);
1791         if (ret)
1792                 return ret;
1793
1794         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1795                 for_each_ring(ring, dev_priv, i) {
1796                         struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1797
1798                         if (ring->default_context == ctx)
1799                                 continue;
1800
1801                         if (ctx_obj) {
1802                                 struct page *page = i915_gem_object_get_page(ctx_obj, 1);
1803                                 uint32_t *reg_state = kmap_atomic(page);
1804                                 int j;
1805
1806                                 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1807                                                 intel_execlists_ctx_id(ctx_obj));
1808
1809                                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1810                                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1811                                         i915_gem_obj_ggtt_offset(ctx_obj) + 4096 + (j * 4),
1812                                         reg_state[j], reg_state[j + 1],
1813                                         reg_state[j + 2], reg_state[j + 3]);
1814                                 }
1815                                 kunmap_atomic(reg_state);
1816
1817                                 seq_putc(m, '\n');
1818                         }
1819                 }
1820         }
1821
1822         mutex_unlock(&dev->struct_mutex);
1823
1824         return 0;
1825 }
1826
1827 static int i915_execlists(struct seq_file *m, void *data)
1828 {
1829         struct drm_info_node *node = (struct drm_info_node *)m->private;
1830         struct drm_device *dev = node->minor->dev;
1831         struct drm_i915_private *dev_priv = dev->dev_private;
1832         struct intel_engine_cs *ring;
1833         u32 status_pointer;
1834         u8 read_pointer;
1835         u8 write_pointer;
1836         u32 status;
1837         u32 ctx_id;
1838         struct list_head *cursor;
1839         int ring_id, i;
1840         int ret;
1841
1842         if (!i915.enable_execlists) {
1843                 seq_puts(m, "Logical Ring Contexts are disabled\n");
1844                 return 0;
1845         }
1846
1847         ret = mutex_lock_interruptible(&dev->struct_mutex);
1848         if (ret)
1849                 return ret;
1850
1851         intel_runtime_pm_get(dev_priv);
1852
1853         for_each_ring(ring, dev_priv, ring_id) {
1854                 struct intel_ctx_submit_request *head_req = NULL;
1855                 int count = 0;
1856                 unsigned long flags;
1857
1858                 seq_printf(m, "%s\n", ring->name);
1859
1860                 status = I915_READ(RING_EXECLIST_STATUS(ring));
1861                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1862                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1863                            status, ctx_id);
1864
1865                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1866                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1867
1868                 read_pointer = ring->next_context_status_buffer;
1869                 write_pointer = status_pointer & 0x07;
1870                 if (read_pointer > write_pointer)
1871                         write_pointer += 6;
1872                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1873                            read_pointer, write_pointer);
1874
1875                 for (i = 0; i < 6; i++) {
1876                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1877                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1878
1879                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1880                                    i, status, ctx_id);
1881                 }
1882
1883                 spin_lock_irqsave(&ring->execlist_lock, flags);
1884                 list_for_each(cursor, &ring->execlist_queue)
1885                         count++;
1886                 head_req = list_first_entry_or_null(&ring->execlist_queue,
1887                                 struct intel_ctx_submit_request, execlist_link);
1888                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
1889
1890                 seq_printf(m, "\t%d requests in queue\n", count);
1891                 if (head_req) {
1892                         struct drm_i915_gem_object *ctx_obj;
1893
1894                         ctx_obj = head_req->ctx->engine[ring_id].state;
1895                         seq_printf(m, "\tHead request id: %u\n",
1896                                    intel_execlists_ctx_id(ctx_obj));
1897                         seq_printf(m, "\tHead request tail: %u\n",
1898                                    head_req->tail);
1899                 }
1900
1901                 seq_putc(m, '\n');
1902         }
1903
1904         intel_runtime_pm_put(dev_priv);
1905         mutex_unlock(&dev->struct_mutex);
1906
1907         return 0;
1908 }
1909
1910 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1911 {
1912         struct drm_info_node *node = m->private;
1913         struct drm_device *dev = node->minor->dev;
1914         struct drm_i915_private *dev_priv = dev->dev_private;
1915         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1916
1917         spin_lock_irq(&dev_priv->uncore.lock);
1918         if (IS_VALLEYVIEW(dev)) {
1919                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1920                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1921         } else
1922                 forcewake_count = dev_priv->uncore.forcewake_count;
1923         spin_unlock_irq(&dev_priv->uncore.lock);
1924
1925         if (IS_VALLEYVIEW(dev)) {
1926                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1927                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1928         } else
1929                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1930
1931         return 0;
1932 }
1933
1934 static const char *swizzle_string(unsigned swizzle)
1935 {
1936         switch (swizzle) {
1937         case I915_BIT_6_SWIZZLE_NONE:
1938                 return "none";
1939         case I915_BIT_6_SWIZZLE_9:
1940                 return "bit9";
1941         case I915_BIT_6_SWIZZLE_9_10:
1942                 return "bit9/bit10";
1943         case I915_BIT_6_SWIZZLE_9_11:
1944                 return "bit9/bit11";
1945         case I915_BIT_6_SWIZZLE_9_10_11:
1946                 return "bit9/bit10/bit11";
1947         case I915_BIT_6_SWIZZLE_9_17:
1948                 return "bit9/bit17";
1949         case I915_BIT_6_SWIZZLE_9_10_17:
1950                 return "bit9/bit10/bit17";
1951         case I915_BIT_6_SWIZZLE_UNKNOWN:
1952                 return "unknown";
1953         }
1954
1955         return "bug";
1956 }
1957
1958 static int i915_swizzle_info(struct seq_file *m, void *data)
1959 {
1960         struct drm_info_node *node = m->private;
1961         struct drm_device *dev = node->minor->dev;
1962         struct drm_i915_private *dev_priv = dev->dev_private;
1963         int ret;
1964
1965         ret = mutex_lock_interruptible(&dev->struct_mutex);
1966         if (ret)
1967                 return ret;
1968         intel_runtime_pm_get(dev_priv);
1969
1970         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1971                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1972         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1973                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1974
1975         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1976                 seq_printf(m, "DDC = 0x%08x\n",
1977                            I915_READ(DCC));
1978                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1979                            I915_READ16(C0DRB3));
1980                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1981                            I915_READ16(C1DRB3));
1982         } else if (INTEL_INFO(dev)->gen >= 6) {
1983                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1984                            I915_READ(MAD_DIMM_C0));
1985                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1986                            I915_READ(MAD_DIMM_C1));
1987                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1988                            I915_READ(MAD_DIMM_C2));
1989                 seq_printf(m, "TILECTL = 0x%08x\n",
1990                            I915_READ(TILECTL));
1991                 if (INTEL_INFO(dev)->gen >= 8)
1992                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1993                                    I915_READ(GAMTARBMODE));
1994                 else
1995                         seq_printf(m, "ARB_MODE = 0x%08x\n",
1996                                    I915_READ(ARB_MODE));
1997                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1998                            I915_READ(DISP_ARB_CTL));
1999         }
2000         intel_runtime_pm_put(dev_priv);
2001         mutex_unlock(&dev->struct_mutex);
2002
2003         return 0;
2004 }
2005
2006 static int per_file_ctx(int id, void *ptr, void *data)
2007 {
2008         struct intel_context *ctx = ptr;
2009         struct seq_file *m = data;
2010         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2011
2012         if (!ppgtt) {
2013                 seq_printf(m, "  no ppgtt for context %d\n",
2014                            ctx->user_handle);
2015                 return 0;
2016         }
2017
2018         if (i915_gem_context_is_default(ctx))
2019                 seq_puts(m, "  default context:\n");
2020         else
2021                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2022         ppgtt->debug_dump(ppgtt, m);
2023
2024         return 0;
2025 }
2026
2027 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2028 {
2029         struct drm_i915_private *dev_priv = dev->dev_private;
2030         struct intel_engine_cs *ring;
2031         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2032         int unused, i;
2033
2034         if (!ppgtt)
2035                 return;
2036
2037         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2038         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2039         for_each_ring(ring, dev_priv, unused) {
2040                 seq_printf(m, "%s\n", ring->name);
2041                 for (i = 0; i < 4; i++) {
2042                         u32 offset = 0x270 + i * 8;
2043                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2044                         pdp <<= 32;
2045                         pdp |= I915_READ(ring->mmio_base + offset);
2046                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2047                 }
2048         }
2049 }
2050
2051 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2052 {
2053         struct drm_i915_private *dev_priv = dev->dev_private;
2054         struct intel_engine_cs *ring;
2055         struct drm_file *file;
2056         int i;
2057
2058         if (INTEL_INFO(dev)->gen == 6)
2059                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2060
2061         for_each_ring(ring, dev_priv, i) {
2062                 seq_printf(m, "%s\n", ring->name);
2063                 if (INTEL_INFO(dev)->gen == 7)
2064                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2065                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2066                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2067                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2068         }
2069         if (dev_priv->mm.aliasing_ppgtt) {
2070                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2071
2072                 seq_puts(m, "aliasing PPGTT:\n");
2073                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2074
2075                 ppgtt->debug_dump(ppgtt, m);
2076         }
2077
2078         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2079                 struct drm_i915_file_private *file_priv = file->driver_priv;
2080
2081                 seq_printf(m, "proc: %s\n",
2082                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2083                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2084         }
2085         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2086 }
2087
2088 static int i915_ppgtt_info(struct seq_file *m, void *data)
2089 {
2090         struct drm_info_node *node = m->private;
2091         struct drm_device *dev = node->minor->dev;
2092         struct drm_i915_private *dev_priv = dev->dev_private;
2093
2094         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2095         if (ret)
2096                 return ret;
2097         intel_runtime_pm_get(dev_priv);
2098
2099         if (INTEL_INFO(dev)->gen >= 8)
2100                 gen8_ppgtt_info(m, dev);
2101         else if (INTEL_INFO(dev)->gen >= 6)
2102                 gen6_ppgtt_info(m, dev);
2103
2104         intel_runtime_pm_put(dev_priv);
2105         mutex_unlock(&dev->struct_mutex);
2106
2107         return 0;
2108 }
2109
2110 static int i915_llc(struct seq_file *m, void *data)
2111 {
2112         struct drm_info_node *node = m->private;
2113         struct drm_device *dev = node->minor->dev;
2114         struct drm_i915_private *dev_priv = dev->dev_private;
2115
2116         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2117         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2118         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2119
2120         return 0;
2121 }
2122
2123 static int i915_edp_psr_status(struct seq_file *m, void *data)
2124 {
2125         struct drm_info_node *node = m->private;
2126         struct drm_device *dev = node->minor->dev;
2127         struct drm_i915_private *dev_priv = dev->dev_private;
2128         u32 psrperf = 0;
2129         bool enabled = false;
2130
2131         intel_runtime_pm_get(dev_priv);
2132
2133         mutex_lock(&dev_priv->psr.lock);
2134         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2135         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2136         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2137         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2138         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2139                    dev_priv->psr.busy_frontbuffer_bits);
2140         seq_printf(m, "Re-enable work scheduled: %s\n",
2141                    yesno(work_busy(&dev_priv->psr.work.work)));
2142
2143         enabled = HAS_PSR(dev) &&
2144                 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2145         seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
2146
2147         if (HAS_PSR(dev))
2148                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2149                         EDP_PSR_PERF_CNT_MASK;
2150         seq_printf(m, "Performance_Counter: %u\n", psrperf);
2151         mutex_unlock(&dev_priv->psr.lock);
2152
2153         intel_runtime_pm_put(dev_priv);
2154         return 0;
2155 }
2156
2157 static int i915_sink_crc(struct seq_file *m, void *data)
2158 {
2159         struct drm_info_node *node = m->private;
2160         struct drm_device *dev = node->minor->dev;
2161         struct intel_encoder *encoder;
2162         struct intel_connector *connector;
2163         struct intel_dp *intel_dp = NULL;
2164         int ret;
2165         u8 crc[6];
2166
2167         drm_modeset_lock_all(dev);
2168         list_for_each_entry(connector, &dev->mode_config.connector_list,
2169                             base.head) {
2170
2171                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2172                         continue;
2173
2174                 if (!connector->base.encoder)
2175                         continue;
2176
2177                 encoder = to_intel_encoder(connector->base.encoder);
2178                 if (encoder->type != INTEL_OUTPUT_EDP)
2179                         continue;
2180
2181                 intel_dp = enc_to_intel_dp(&encoder->base);
2182
2183                 ret = intel_dp_sink_crc(intel_dp, crc);
2184                 if (ret)
2185                         goto out;
2186
2187                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2188                            crc[0], crc[1], crc[2],
2189                            crc[3], crc[4], crc[5]);
2190                 goto out;
2191         }
2192         ret = -ENODEV;
2193 out:
2194         drm_modeset_unlock_all(dev);
2195         return ret;
2196 }
2197
2198 static int i915_energy_uJ(struct seq_file *m, void *data)
2199 {
2200         struct drm_info_node *node = m->private;
2201         struct drm_device *dev = node->minor->dev;
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         u64 power;
2204         u32 units;
2205
2206         if (INTEL_INFO(dev)->gen < 6)
2207                 return -ENODEV;
2208
2209         intel_runtime_pm_get(dev_priv);
2210
2211         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2212         power = (power & 0x1f00) >> 8;
2213         units = 1000000 / (1 << power); /* convert to uJ */
2214         power = I915_READ(MCH_SECP_NRG_STTS);
2215         power *= units;
2216
2217         intel_runtime_pm_put(dev_priv);
2218
2219         seq_printf(m, "%llu", (long long unsigned)power);
2220
2221         return 0;
2222 }
2223
2224 static int i915_pc8_status(struct seq_file *m, void *unused)
2225 {
2226         struct drm_info_node *node = m->private;
2227         struct drm_device *dev = node->minor->dev;
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229
2230         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2231                 seq_puts(m, "not supported\n");
2232                 return 0;
2233         }
2234
2235         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2236         seq_printf(m, "IRQs disabled: %s\n",
2237                    yesno(!intel_irqs_enabled(dev_priv)));
2238
2239         return 0;
2240 }
2241
2242 static const char *power_domain_str(enum intel_display_power_domain domain)
2243 {
2244         switch (domain) {
2245         case POWER_DOMAIN_PIPE_A:
2246                 return "PIPE_A";
2247         case POWER_DOMAIN_PIPE_B:
2248                 return "PIPE_B";
2249         case POWER_DOMAIN_PIPE_C:
2250                 return "PIPE_C";
2251         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2252                 return "PIPE_A_PANEL_FITTER";
2253         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2254                 return "PIPE_B_PANEL_FITTER";
2255         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2256                 return "PIPE_C_PANEL_FITTER";
2257         case POWER_DOMAIN_TRANSCODER_A:
2258                 return "TRANSCODER_A";
2259         case POWER_DOMAIN_TRANSCODER_B:
2260                 return "TRANSCODER_B";
2261         case POWER_DOMAIN_TRANSCODER_C:
2262                 return "TRANSCODER_C";
2263         case POWER_DOMAIN_TRANSCODER_EDP:
2264                 return "TRANSCODER_EDP";
2265         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2266                 return "PORT_DDI_A_2_LANES";
2267         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2268                 return "PORT_DDI_A_4_LANES";
2269         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2270                 return "PORT_DDI_B_2_LANES";
2271         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2272                 return "PORT_DDI_B_4_LANES";
2273         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2274                 return "PORT_DDI_C_2_LANES";
2275         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2276                 return "PORT_DDI_C_4_LANES";
2277         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2278                 return "PORT_DDI_D_2_LANES";
2279         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2280                 return "PORT_DDI_D_4_LANES";
2281         case POWER_DOMAIN_PORT_DSI:
2282                 return "PORT_DSI";
2283         case POWER_DOMAIN_PORT_CRT:
2284                 return "PORT_CRT";
2285         case POWER_DOMAIN_PORT_OTHER:
2286                 return "PORT_OTHER";
2287         case POWER_DOMAIN_VGA:
2288                 return "VGA";
2289         case POWER_DOMAIN_AUDIO:
2290                 return "AUDIO";
2291         case POWER_DOMAIN_PLLS:
2292                 return "PLLS";
2293         case POWER_DOMAIN_INIT:
2294                 return "INIT";
2295         default:
2296                 WARN_ON(1);
2297                 return "?";
2298         }
2299 }
2300
2301 static int i915_power_domain_info(struct seq_file *m, void *unused)
2302 {
2303         struct drm_info_node *node = m->private;
2304         struct drm_device *dev = node->minor->dev;
2305         struct drm_i915_private *dev_priv = dev->dev_private;
2306         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2307         int i;
2308
2309         mutex_lock(&power_domains->lock);
2310
2311         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2312         for (i = 0; i < power_domains->power_well_count; i++) {
2313                 struct i915_power_well *power_well;
2314                 enum intel_display_power_domain power_domain;
2315
2316                 power_well = &power_domains->power_wells[i];
2317                 seq_printf(m, "%-25s %d\n", power_well->name,
2318                            power_well->count);
2319
2320                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2321                      power_domain++) {
2322                         if (!(BIT(power_domain) & power_well->domains))
2323                                 continue;
2324
2325                         seq_printf(m, "  %-23s %d\n",
2326                                  power_domain_str(power_domain),
2327                                  power_domains->domain_use_count[power_domain]);
2328                 }
2329         }
2330
2331         mutex_unlock(&power_domains->lock);
2332
2333         return 0;
2334 }
2335
2336 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2337                                  struct drm_display_mode *mode)
2338 {
2339         int i;
2340
2341         for (i = 0; i < tabs; i++)
2342                 seq_putc(m, '\t');
2343
2344         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2345                    mode->base.id, mode->name,
2346                    mode->vrefresh, mode->clock,
2347                    mode->hdisplay, mode->hsync_start,
2348                    mode->hsync_end, mode->htotal,
2349                    mode->vdisplay, mode->vsync_start,
2350                    mode->vsync_end, mode->vtotal,
2351                    mode->type, mode->flags);
2352 }
2353
2354 static void intel_encoder_info(struct seq_file *m,
2355                                struct intel_crtc *intel_crtc,
2356                                struct intel_encoder *intel_encoder)
2357 {
2358         struct drm_info_node *node = m->private;
2359         struct drm_device *dev = node->minor->dev;
2360         struct drm_crtc *crtc = &intel_crtc->base;
2361         struct intel_connector *intel_connector;
2362         struct drm_encoder *encoder;
2363
2364         encoder = &intel_encoder->base;
2365         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2366                    encoder->base.id, encoder->name);
2367         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2368                 struct drm_connector *connector = &intel_connector->base;
2369                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2370                            connector->base.id,
2371                            connector->name,
2372                            drm_get_connector_status_name(connector->status));
2373                 if (connector->status == connector_status_connected) {
2374                         struct drm_display_mode *mode = &crtc->mode;
2375                         seq_printf(m, ", mode:\n");
2376                         intel_seq_print_mode(m, 2, mode);
2377                 } else {
2378                         seq_putc(m, '\n');
2379                 }
2380         }
2381 }
2382
2383 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2384 {
2385         struct drm_info_node *node = m->private;
2386         struct drm_device *dev = node->minor->dev;
2387         struct drm_crtc *crtc = &intel_crtc->base;
2388         struct intel_encoder *intel_encoder;
2389
2390         if (crtc->primary->fb)
2391                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2392                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2393                            crtc->primary->fb->width, crtc->primary->fb->height);
2394         else
2395                 seq_puts(m, "\tprimary plane disabled\n");
2396         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2397                 intel_encoder_info(m, intel_crtc, intel_encoder);
2398 }
2399
2400 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2401 {
2402         struct drm_display_mode *mode = panel->fixed_mode;
2403
2404         seq_printf(m, "\tfixed mode:\n");
2405         intel_seq_print_mode(m, 2, mode);
2406 }
2407
2408 static void intel_dp_info(struct seq_file *m,
2409                           struct intel_connector *intel_connector)
2410 {
2411         struct intel_encoder *intel_encoder = intel_connector->encoder;
2412         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2413
2414         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2415         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2416                    "no");
2417         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2418                 intel_panel_info(m, &intel_connector->panel);
2419 }
2420
2421 static void intel_hdmi_info(struct seq_file *m,
2422                             struct intel_connector *intel_connector)
2423 {
2424         struct intel_encoder *intel_encoder = intel_connector->encoder;
2425         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2426
2427         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2428                    "no");
2429 }
2430
2431 static void intel_lvds_info(struct seq_file *m,
2432                             struct intel_connector *intel_connector)
2433 {
2434         intel_panel_info(m, &intel_connector->panel);
2435 }
2436
2437 static void intel_connector_info(struct seq_file *m,
2438                                  struct drm_connector *connector)
2439 {
2440         struct intel_connector *intel_connector = to_intel_connector(connector);
2441         struct intel_encoder *intel_encoder = intel_connector->encoder;
2442         struct drm_display_mode *mode;
2443
2444         seq_printf(m, "connector %d: type %s, status: %s\n",
2445                    connector->base.id, connector->name,
2446                    drm_get_connector_status_name(connector->status));
2447         if (connector->status == connector_status_connected) {
2448                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2449                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2450                            connector->display_info.width_mm,
2451                            connector->display_info.height_mm);
2452                 seq_printf(m, "\tsubpixel order: %s\n",
2453                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2454                 seq_printf(m, "\tCEA rev: %d\n",
2455                            connector->display_info.cea_rev);
2456         }
2457         if (intel_encoder) {
2458                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2459                     intel_encoder->type == INTEL_OUTPUT_EDP)
2460                         intel_dp_info(m, intel_connector);
2461                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2462                         intel_hdmi_info(m, intel_connector);
2463                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2464                         intel_lvds_info(m, intel_connector);
2465         }
2466
2467         seq_printf(m, "\tmodes:\n");
2468         list_for_each_entry(mode, &connector->modes, head)
2469                 intel_seq_print_mode(m, 2, mode);
2470 }
2471
2472 static bool cursor_active(struct drm_device *dev, int pipe)
2473 {
2474         struct drm_i915_private *dev_priv = dev->dev_private;
2475         u32 state;
2476
2477         if (IS_845G(dev) || IS_I865G(dev))
2478                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2479         else
2480                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2481
2482         return state;
2483 }
2484
2485 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2486 {
2487         struct drm_i915_private *dev_priv = dev->dev_private;
2488         u32 pos;
2489
2490         pos = I915_READ(CURPOS(pipe));
2491
2492         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2493         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2494                 *x = -*x;
2495
2496         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2497         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2498                 *y = -*y;
2499
2500         return cursor_active(dev, pipe);
2501 }
2502
2503 static int i915_display_info(struct seq_file *m, void *unused)
2504 {
2505         struct drm_info_node *node = m->private;
2506         struct drm_device *dev = node->minor->dev;
2507         struct drm_i915_private *dev_priv = dev->dev_private;
2508         struct intel_crtc *crtc;
2509         struct drm_connector *connector;
2510
2511         intel_runtime_pm_get(dev_priv);
2512         drm_modeset_lock_all(dev);
2513         seq_printf(m, "CRTC info\n");
2514         seq_printf(m, "---------\n");
2515         for_each_intel_crtc(dev, crtc) {
2516                 bool active;
2517                 int x, y;
2518
2519                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2520                            crtc->base.base.id, pipe_name(crtc->pipe),
2521                            yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2522                 if (crtc->active) {
2523                         intel_crtc_info(m, crtc);
2524
2525                         active = cursor_position(dev, crtc->pipe, &x, &y);
2526                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2527                                    yesno(crtc->cursor_base),
2528                                    x, y, crtc->cursor_width, crtc->cursor_height,
2529                                    crtc->cursor_addr, yesno(active));
2530                 }
2531
2532                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2533                            yesno(!crtc->cpu_fifo_underrun_disabled),
2534                            yesno(!crtc->pch_fifo_underrun_disabled));
2535         }
2536
2537         seq_printf(m, "\n");
2538         seq_printf(m, "Connector info\n");
2539         seq_printf(m, "--------------\n");
2540         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2541                 intel_connector_info(m, connector);
2542         }
2543         drm_modeset_unlock_all(dev);
2544         intel_runtime_pm_put(dev_priv);
2545
2546         return 0;
2547 }
2548
2549 static int i915_semaphore_status(struct seq_file *m, void *unused)
2550 {
2551         struct drm_info_node *node = (struct drm_info_node *) m->private;
2552         struct drm_device *dev = node->minor->dev;
2553         struct drm_i915_private *dev_priv = dev->dev_private;
2554         struct intel_engine_cs *ring;
2555         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2556         int i, j, ret;
2557
2558         if (!i915_semaphore_is_enabled(dev)) {
2559                 seq_puts(m, "Semaphores are disabled\n");
2560                 return 0;
2561         }
2562
2563         ret = mutex_lock_interruptible(&dev->struct_mutex);
2564         if (ret)
2565                 return ret;
2566         intel_runtime_pm_get(dev_priv);
2567
2568         if (IS_BROADWELL(dev)) {
2569                 struct page *page;
2570                 uint64_t *seqno;
2571
2572                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2573
2574                 seqno = (uint64_t *)kmap_atomic(page);
2575                 for_each_ring(ring, dev_priv, i) {
2576                         uint64_t offset;
2577
2578                         seq_printf(m, "%s\n", ring->name);
2579
2580                         seq_puts(m, "  Last signal:");
2581                         for (j = 0; j < num_rings; j++) {
2582                                 offset = i * I915_NUM_RINGS + j;
2583                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2584                                            seqno[offset], offset * 8);
2585                         }
2586                         seq_putc(m, '\n');
2587
2588                         seq_puts(m, "  Last wait:  ");
2589                         for (j = 0; j < num_rings; j++) {
2590                                 offset = i + (j * I915_NUM_RINGS);
2591                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2592                                            seqno[offset], offset * 8);
2593                         }
2594                         seq_putc(m, '\n');
2595
2596                 }
2597                 kunmap_atomic(seqno);
2598         } else {
2599                 seq_puts(m, "  Last signal:");
2600                 for_each_ring(ring, dev_priv, i)
2601                         for (j = 0; j < num_rings; j++)
2602                                 seq_printf(m, "0x%08x\n",
2603                                            I915_READ(ring->semaphore.mbox.signal[j]));
2604                 seq_putc(m, '\n');
2605         }
2606
2607         seq_puts(m, "\nSync seqno:\n");
2608         for_each_ring(ring, dev_priv, i) {
2609                 for (j = 0; j < num_rings; j++) {
2610                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2611                 }
2612                 seq_putc(m, '\n');
2613         }
2614         seq_putc(m, '\n');
2615
2616         intel_runtime_pm_put(dev_priv);
2617         mutex_unlock(&dev->struct_mutex);
2618         return 0;
2619 }
2620
2621 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2622 {
2623         struct drm_info_node *node = (struct drm_info_node *) m->private;
2624         struct drm_device *dev = node->minor->dev;
2625         struct drm_i915_private *dev_priv = dev->dev_private;
2626         int i;
2627
2628         drm_modeset_lock_all(dev);
2629         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2630                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2631
2632                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2633                 seq_printf(m, " refcount: %i, active: %i, on: %s\n", pll->refcount,
2634                            pll->active, yesno(pll->on));
2635                 seq_printf(m, " tracked hardware state:\n");
2636                 seq_printf(m, " dpll:    0x%08x\n", pll->hw_state.dpll);
2637                 seq_printf(m, " dpll_md: 0x%08x\n", pll->hw_state.dpll_md);
2638                 seq_printf(m, " fp0:     0x%08x\n", pll->hw_state.fp0);
2639                 seq_printf(m, " fp1:     0x%08x\n", pll->hw_state.fp1);
2640                 seq_printf(m, " wrpll:   0x%08x\n", pll->hw_state.wrpll);
2641         }
2642         drm_modeset_unlock_all(dev);
2643
2644         return 0;
2645 }
2646
2647 static int i915_wa_registers(struct seq_file *m, void *unused)
2648 {
2649         int i;
2650         int ret;
2651         struct drm_info_node *node = (struct drm_info_node *) m->private;
2652         struct drm_device *dev = node->minor->dev;
2653         struct drm_i915_private *dev_priv = dev->dev_private;
2654
2655         ret = mutex_lock_interruptible(&dev->struct_mutex);
2656         if (ret)
2657                 return ret;
2658
2659         intel_runtime_pm_get(dev_priv);
2660
2661         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2662         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2663                 u32 addr, mask, value, read;
2664                 bool ok;
2665
2666                 addr = dev_priv->workarounds.reg[i].addr;
2667                 mask = dev_priv->workarounds.reg[i].mask;
2668                 value = dev_priv->workarounds.reg[i].value;
2669                 read = I915_READ(addr);
2670                 ok = (value & mask) == (read & mask);
2671                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2672                            addr, value, mask, read, ok ? "OK" : "FAIL");
2673         }
2674
2675         intel_runtime_pm_put(dev_priv);
2676         mutex_unlock(&dev->struct_mutex);
2677
2678         return 0;
2679 }
2680
2681 struct pipe_crc_info {
2682         const char *name;
2683         struct drm_device *dev;
2684         enum pipe pipe;
2685 };
2686
2687 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2688 {
2689         struct drm_info_node *node = (struct drm_info_node *) m->private;
2690         struct drm_device *dev = node->minor->dev;
2691         struct drm_encoder *encoder;
2692         struct intel_encoder *intel_encoder;
2693         struct intel_digital_port *intel_dig_port;
2694         drm_modeset_lock_all(dev);
2695         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2696                 intel_encoder = to_intel_encoder(encoder);
2697                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2698                         continue;
2699                 intel_dig_port = enc_to_dig_port(encoder);
2700                 if (!intel_dig_port->dp.can_mst)
2701                         continue;
2702
2703                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2704         }
2705         drm_modeset_unlock_all(dev);
2706         return 0;
2707 }
2708
2709 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2710 {
2711         struct pipe_crc_info *info = inode->i_private;
2712         struct drm_i915_private *dev_priv = info->dev->dev_private;
2713         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2714
2715         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2716                 return -ENODEV;
2717
2718         spin_lock_irq(&pipe_crc->lock);
2719
2720         if (pipe_crc->opened) {
2721                 spin_unlock_irq(&pipe_crc->lock);
2722                 return -EBUSY; /* already open */
2723         }
2724
2725         pipe_crc->opened = true;
2726         filep->private_data = inode->i_private;
2727
2728         spin_unlock_irq(&pipe_crc->lock);
2729
2730         return 0;
2731 }
2732
2733 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2734 {
2735         struct pipe_crc_info *info = inode->i_private;
2736         struct drm_i915_private *dev_priv = info->dev->dev_private;
2737         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2738
2739         spin_lock_irq(&pipe_crc->lock);
2740         pipe_crc->opened = false;
2741         spin_unlock_irq(&pipe_crc->lock);
2742
2743         return 0;
2744 }
2745
2746 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2747 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2748 /* account for \'0' */
2749 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2750
2751 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2752 {
2753         assert_spin_locked(&pipe_crc->lock);
2754         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2755                         INTEL_PIPE_CRC_ENTRIES_NR);
2756 }
2757
2758 static ssize_t
2759 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2760                    loff_t *pos)
2761 {
2762         struct pipe_crc_info *info = filep->private_data;
2763         struct drm_device *dev = info->dev;
2764         struct drm_i915_private *dev_priv = dev->dev_private;
2765         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2766         char buf[PIPE_CRC_BUFFER_LEN];
2767         int head, tail, n_entries, n;
2768         ssize_t bytes_read;
2769
2770         /*
2771          * Don't allow user space to provide buffers not big enough to hold
2772          * a line of data.
2773          */
2774         if (count < PIPE_CRC_LINE_LEN)
2775                 return -EINVAL;
2776
2777         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2778                 return 0;
2779
2780         /* nothing to read */
2781         spin_lock_irq(&pipe_crc->lock);
2782         while (pipe_crc_data_count(pipe_crc) == 0) {
2783                 int ret;
2784
2785                 if (filep->f_flags & O_NONBLOCK) {
2786                         spin_unlock_irq(&pipe_crc->lock);
2787                         return -EAGAIN;
2788                 }
2789
2790                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2791                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2792                 if (ret) {
2793                         spin_unlock_irq(&pipe_crc->lock);
2794                         return ret;
2795                 }
2796         }
2797
2798         /* We now have one or more entries to read */
2799         head = pipe_crc->head;
2800         tail = pipe_crc->tail;
2801         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2802                         count / PIPE_CRC_LINE_LEN);
2803         spin_unlock_irq(&pipe_crc->lock);
2804
2805         bytes_read = 0;
2806         n = 0;
2807         do {
2808                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2809                 int ret;
2810
2811                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2812                                        "%8u %8x %8x %8x %8x %8x\n",
2813                                        entry->frame, entry->crc[0],
2814                                        entry->crc[1], entry->crc[2],
2815                                        entry->crc[3], entry->crc[4]);
2816
2817                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2818                                    buf, PIPE_CRC_LINE_LEN);
2819                 if (ret == PIPE_CRC_LINE_LEN)
2820                         return -EFAULT;
2821
2822                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2823                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2824                 n++;
2825         } while (--n_entries);
2826
2827         spin_lock_irq(&pipe_crc->lock);
2828         pipe_crc->tail = tail;
2829         spin_unlock_irq(&pipe_crc->lock);
2830
2831         return bytes_read;
2832 }
2833
2834 static const struct file_operations i915_pipe_crc_fops = {
2835         .owner = THIS_MODULE,
2836         .open = i915_pipe_crc_open,
2837         .read = i915_pipe_crc_read,
2838         .release = i915_pipe_crc_release,
2839 };
2840
2841 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2842         {
2843                 .name = "i915_pipe_A_crc",
2844                 .pipe = PIPE_A,
2845         },
2846         {
2847                 .name = "i915_pipe_B_crc",
2848                 .pipe = PIPE_B,
2849         },
2850         {
2851                 .name = "i915_pipe_C_crc",
2852                 .pipe = PIPE_C,
2853         },
2854 };
2855
2856 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2857                                 enum pipe pipe)
2858 {
2859         struct drm_device *dev = minor->dev;
2860         struct dentry *ent;
2861         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2862
2863         info->dev = dev;
2864         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2865                                   &i915_pipe_crc_fops);
2866         if (!ent)
2867                 return -ENOMEM;
2868
2869         return drm_add_fake_info_node(minor, ent, info);
2870 }
2871
2872 static const char * const pipe_crc_sources[] = {
2873         "none",
2874         "plane1",
2875         "plane2",
2876         "pf",
2877         "pipe",
2878         "TV",
2879         "DP-B",
2880         "DP-C",
2881         "DP-D",
2882         "auto",
2883 };
2884
2885 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2886 {
2887         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2888         return pipe_crc_sources[source];
2889 }
2890
2891 static int display_crc_ctl_show(struct seq_file *m, void *data)
2892 {
2893         struct drm_device *dev = m->private;
2894         struct drm_i915_private *dev_priv = dev->dev_private;
2895         int i;
2896
2897         for (i = 0; i < I915_MAX_PIPES; i++)
2898                 seq_printf(m, "%c %s\n", pipe_name(i),
2899                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2900
2901         return 0;
2902 }
2903
2904 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2905 {
2906         struct drm_device *dev = inode->i_private;
2907
2908         return single_open(file, display_crc_ctl_show, dev);
2909 }
2910
2911 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2912                                  uint32_t *val)
2913 {
2914         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2915                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2916
2917         switch (*source) {
2918         case INTEL_PIPE_CRC_SOURCE_PIPE:
2919                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2920                 break;
2921         case INTEL_PIPE_CRC_SOURCE_NONE:
2922                 *val = 0;
2923                 break;
2924         default:
2925                 return -EINVAL;
2926         }
2927
2928         return 0;
2929 }
2930
2931 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2932                                      enum intel_pipe_crc_source *source)
2933 {
2934         struct intel_encoder *encoder;
2935         struct intel_crtc *crtc;
2936         struct intel_digital_port *dig_port;
2937         int ret = 0;
2938
2939         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2940
2941         drm_modeset_lock_all(dev);
2942         for_each_intel_encoder(dev, encoder) {
2943                 if (!encoder->base.crtc)
2944                         continue;
2945
2946                 crtc = to_intel_crtc(encoder->base.crtc);
2947
2948                 if (crtc->pipe != pipe)
2949                         continue;
2950
2951                 switch (encoder->type) {
2952                 case INTEL_OUTPUT_TVOUT:
2953                         *source = INTEL_PIPE_CRC_SOURCE_TV;
2954                         break;
2955                 case INTEL_OUTPUT_DISPLAYPORT:
2956                 case INTEL_OUTPUT_EDP:
2957                         dig_port = enc_to_dig_port(&encoder->base);
2958                         switch (dig_port->port) {
2959                         case PORT_B:
2960                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2961                                 break;
2962                         case PORT_C:
2963                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2964                                 break;
2965                         case PORT_D:
2966                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2967                                 break;
2968                         default:
2969                                 WARN(1, "nonexisting DP port %c\n",
2970                                      port_name(dig_port->port));
2971                                 break;
2972                         }
2973                         break;
2974                 }
2975         }
2976         drm_modeset_unlock_all(dev);
2977
2978         return ret;
2979 }
2980
2981 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2982                                 enum pipe pipe,
2983                                 enum intel_pipe_crc_source *source,
2984                                 uint32_t *val)
2985 {
2986         struct drm_i915_private *dev_priv = dev->dev_private;
2987         bool need_stable_symbols = false;
2988
2989         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2990                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2991                 if (ret)
2992                         return ret;
2993         }
2994
2995         switch (*source) {
2996         case INTEL_PIPE_CRC_SOURCE_PIPE:
2997                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2998                 break;
2999         case INTEL_PIPE_CRC_SOURCE_DP_B:
3000                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3001                 need_stable_symbols = true;
3002                 break;
3003         case INTEL_PIPE_CRC_SOURCE_DP_C:
3004                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3005                 need_stable_symbols = true;
3006                 break;
3007         case INTEL_PIPE_CRC_SOURCE_NONE:
3008                 *val = 0;
3009                 break;
3010         default:
3011                 return -EINVAL;
3012         }
3013
3014         /*
3015          * When the pipe CRC tap point is after the transcoders we need
3016          * to tweak symbol-level features to produce a deterministic series of
3017          * symbols for a given frame. We need to reset those features only once
3018          * a frame (instead of every nth symbol):
3019          *   - DC-balance: used to ensure a better clock recovery from the data
3020          *     link (SDVO)
3021          *   - DisplayPort scrambling: used for EMI reduction
3022          */
3023         if (need_stable_symbols) {
3024                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3025
3026                 tmp |= DC_BALANCE_RESET_VLV;
3027                 if (pipe == PIPE_A)
3028                         tmp |= PIPE_A_SCRAMBLE_RESET;
3029                 else
3030                         tmp |= PIPE_B_SCRAMBLE_RESET;
3031
3032                 I915_WRITE(PORT_DFT2_G4X, tmp);
3033         }
3034
3035         return 0;
3036 }
3037
3038 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3039                                  enum pipe pipe,
3040                                  enum intel_pipe_crc_source *source,
3041                                  uint32_t *val)
3042 {
3043         struct drm_i915_private *dev_priv = dev->dev_private;
3044         bool need_stable_symbols = false;
3045
3046         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3047                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3048                 if (ret)
3049                         return ret;
3050         }
3051
3052         switch (*source) {
3053         case INTEL_PIPE_CRC_SOURCE_PIPE:
3054                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3055                 break;
3056         case INTEL_PIPE_CRC_SOURCE_TV:
3057                 if (!SUPPORTS_TV(dev))
3058                         return -EINVAL;
3059                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3060                 break;
3061         case INTEL_PIPE_CRC_SOURCE_DP_B:
3062                 if (!IS_G4X(dev))
3063                         return -EINVAL;
3064                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3065                 need_stable_symbols = true;
3066                 break;
3067         case INTEL_PIPE_CRC_SOURCE_DP_C:
3068                 if (!IS_G4X(dev))
3069                         return -EINVAL;
3070                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3071                 need_stable_symbols = true;
3072                 break;
3073         case INTEL_PIPE_CRC_SOURCE_DP_D:
3074                 if (!IS_G4X(dev))
3075                         return -EINVAL;
3076                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3077                 need_stable_symbols = true;
3078                 break;
3079         case INTEL_PIPE_CRC_SOURCE_NONE:
3080                 *val = 0;
3081                 break;
3082         default:
3083                 return -EINVAL;
3084         }
3085
3086         /*
3087          * When the pipe CRC tap point is after the transcoders we need
3088          * to tweak symbol-level features to produce a deterministic series of
3089          * symbols for a given frame. We need to reset those features only once
3090          * a frame (instead of every nth symbol):
3091          *   - DC-balance: used to ensure a better clock recovery from the data
3092          *     link (SDVO)
3093          *   - DisplayPort scrambling: used for EMI reduction
3094          */
3095         if (need_stable_symbols) {
3096                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3097
3098                 WARN_ON(!IS_G4X(dev));
3099
3100                 I915_WRITE(PORT_DFT_I9XX,
3101                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3102
3103                 if (pipe == PIPE_A)
3104                         tmp |= PIPE_A_SCRAMBLE_RESET;
3105                 else
3106                         tmp |= PIPE_B_SCRAMBLE_RESET;
3107
3108                 I915_WRITE(PORT_DFT2_G4X, tmp);
3109         }
3110
3111         return 0;
3112 }
3113
3114 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3115                                          enum pipe pipe)
3116 {
3117         struct drm_i915_private *dev_priv = dev->dev_private;
3118         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3119
3120         if (pipe == PIPE_A)
3121                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3122         else
3123                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3124         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3125                 tmp &= ~DC_BALANCE_RESET_VLV;
3126         I915_WRITE(PORT_DFT2_G4X, tmp);
3127
3128 }
3129
3130 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3131                                          enum pipe pipe)
3132 {
3133         struct drm_i915_private *dev_priv = dev->dev_private;
3134         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3135
3136         if (pipe == PIPE_A)
3137                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3138         else
3139                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3140         I915_WRITE(PORT_DFT2_G4X, tmp);
3141
3142         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3143                 I915_WRITE(PORT_DFT_I9XX,
3144                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3145         }
3146 }
3147
3148 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3149                                 uint32_t *val)
3150 {
3151         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3152                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3153
3154         switch (*source) {
3155         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3156                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3157                 break;
3158         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3159                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3160                 break;
3161         case INTEL_PIPE_CRC_SOURCE_PIPE:
3162                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3163                 break;
3164         case INTEL_PIPE_CRC_SOURCE_NONE:
3165                 *val = 0;
3166                 break;
3167         default:
3168                 return -EINVAL;
3169         }
3170
3171         return 0;
3172 }
3173
3174 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3175 {
3176         struct drm_i915_private *dev_priv = dev->dev_private;
3177         struct intel_crtc *crtc =
3178                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3179
3180         drm_modeset_lock_all(dev);
3181         /*
3182          * If we use the eDP transcoder we need to make sure that we don't
3183          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3184          * relevant on hsw with pipe A when using the always-on power well
3185          * routing.
3186          */
3187         if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
3188             !crtc->config.pch_pfit.enabled) {
3189                 crtc->config.pch_pfit.force_thru = true;
3190
3191                 intel_display_power_get(dev_priv,
3192                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3193
3194                 dev_priv->display.crtc_disable(&crtc->base);
3195                 dev_priv->display.crtc_enable(&crtc->base);
3196         }
3197         drm_modeset_unlock_all(dev);
3198 }
3199
3200 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3201 {
3202         struct drm_i915_private *dev_priv = dev->dev_private;
3203         struct intel_crtc *crtc =
3204                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3205
3206         drm_modeset_lock_all(dev);
3207         /*
3208          * If we use the eDP transcoder we need to make sure that we don't
3209          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3210          * relevant on hsw with pipe A when using the always-on power well
3211          * routing.
3212          */
3213         if (crtc->config.pch_pfit.force_thru) {
3214                 crtc->config.pch_pfit.force_thru = false;
3215
3216                 dev_priv->display.crtc_disable(&crtc->base);
3217                 dev_priv->display.crtc_enable(&crtc->base);
3218
3219                 intel_display_power_put(dev_priv,
3220                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3221         }
3222         drm_modeset_unlock_all(dev);
3223 }
3224
3225 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3226                                 enum pipe pipe,
3227                                 enum intel_pipe_crc_source *source,
3228                                 uint32_t *val)
3229 {
3230         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3231                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3232
3233         switch (*source) {
3234         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3235                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3236                 break;
3237         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3238                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3239                 break;
3240         case INTEL_PIPE_CRC_SOURCE_PF:
3241                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3242                         hsw_trans_edp_pipe_A_crc_wa(dev);
3243
3244                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3245                 break;
3246         case INTEL_PIPE_CRC_SOURCE_NONE:
3247                 *val = 0;
3248                 break;
3249         default:
3250                 return -EINVAL;
3251         }
3252
3253         return 0;
3254 }
3255
3256 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3257                                enum intel_pipe_crc_source source)
3258 {
3259         struct drm_i915_private *dev_priv = dev->dev_private;
3260         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3261         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3262                                                                         pipe));
3263         u32 val = 0; /* shut up gcc */
3264         int ret;
3265
3266         if (pipe_crc->source == source)
3267                 return 0;
3268
3269         /* forbid changing the source without going back to 'none' */
3270         if (pipe_crc->source && source)
3271                 return -EINVAL;
3272
3273         if (IS_GEN2(dev))
3274                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3275         else if (INTEL_INFO(dev)->gen < 5)
3276                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3277         else if (IS_VALLEYVIEW(dev))
3278                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3279         else if (IS_GEN5(dev) || IS_GEN6(dev))
3280                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3281         else
3282                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3283
3284         if (ret != 0)
3285                 return ret;
3286
3287         /* none -> real source transition */
3288         if (source) {
3289                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3290                                  pipe_name(pipe), pipe_crc_source_name(source));
3291
3292                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
3293                                             INTEL_PIPE_CRC_ENTRIES_NR,
3294                                             GFP_KERNEL);
3295                 if (!pipe_crc->entries)
3296                         return -ENOMEM;
3297
3298                 /*
3299                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3300                  * enabled and disabled dynamically based on package C states,
3301                  * user space can't make reliable use of the CRCs, so let's just
3302                  * completely disable it.
3303                  */
3304                 hsw_disable_ips(crtc);
3305
3306                 spin_lock_irq(&pipe_crc->lock);
3307                 pipe_crc->head = 0;
3308                 pipe_crc->tail = 0;
3309                 spin_unlock_irq(&pipe_crc->lock);
3310         }
3311
3312         pipe_crc->source = source;
3313
3314         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3315         POSTING_READ(PIPE_CRC_CTL(pipe));
3316
3317         /* real source -> none transition */
3318         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3319                 struct intel_pipe_crc_entry *entries;
3320                 struct intel_crtc *crtc =
3321                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3322
3323                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3324                                  pipe_name(pipe));
3325
3326                 drm_modeset_lock(&crtc->base.mutex, NULL);
3327                 if (crtc->active)
3328                         intel_wait_for_vblank(dev, pipe);
3329                 drm_modeset_unlock(&crtc->base.mutex);
3330
3331                 spin_lock_irq(&pipe_crc->lock);
3332                 entries = pipe_crc->entries;
3333                 pipe_crc->entries = NULL;
3334                 spin_unlock_irq(&pipe_crc->lock);
3335
3336                 kfree(entries);
3337
3338                 if (IS_G4X(dev))
3339                         g4x_undo_pipe_scramble_reset(dev, pipe);
3340                 else if (IS_VALLEYVIEW(dev))
3341                         vlv_undo_pipe_scramble_reset(dev, pipe);
3342                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3343                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3344
3345                 hsw_enable_ips(crtc);
3346         }
3347
3348         return 0;
3349 }
3350
3351 /*
3352  * Parse pipe CRC command strings:
3353  *   command: wsp* object wsp+ name wsp+ source wsp*
3354  *   object: 'pipe'
3355  *   name: (A | B | C)
3356  *   source: (none | plane1 | plane2 | pf)
3357  *   wsp: (#0x20 | #0x9 | #0xA)+
3358  *
3359  * eg.:
3360  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3361  *  "pipe A none"    ->  Stop CRC
3362  */
3363 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3364 {
3365         int n_words = 0;
3366
3367         while (*buf) {
3368                 char *end;
3369
3370                 /* skip leading white space */
3371                 buf = skip_spaces(buf);
3372                 if (!*buf)
3373                         break;  /* end of buffer */
3374
3375                 /* find end of word */
3376                 for (end = buf; *end && !isspace(*end); end++)
3377                         ;
3378
3379                 if (n_words == max_words) {
3380                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3381                                          max_words);
3382                         return -EINVAL; /* ran out of words[] before bytes */
3383                 }
3384
3385                 if (*end)
3386                         *end++ = '\0';
3387                 words[n_words++] = buf;
3388                 buf = end;
3389         }
3390
3391         return n_words;
3392 }
3393
3394 enum intel_pipe_crc_object {
3395         PIPE_CRC_OBJECT_PIPE,
3396 };
3397
3398 static const char * const pipe_crc_objects[] = {
3399         "pipe",
3400 };
3401
3402 static int
3403 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3404 {
3405         int i;
3406
3407         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3408                 if (!strcmp(buf, pipe_crc_objects[i])) {
3409                         *o = i;
3410                         return 0;
3411                     }
3412
3413         return -EINVAL;
3414 }
3415
3416 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3417 {
3418         const char name = buf[0];
3419
3420         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3421                 return -EINVAL;
3422
3423         *pipe = name - 'A';
3424
3425         return 0;
3426 }
3427
3428 static int
3429 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3430 {
3431         int i;
3432
3433         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3434                 if (!strcmp(buf, pipe_crc_sources[i])) {
3435                         *s = i;
3436                         return 0;
3437                     }
3438
3439         return -EINVAL;
3440 }
3441
3442 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3443 {
3444 #define N_WORDS 3
3445         int n_words;
3446         char *words[N_WORDS];
3447         enum pipe pipe;
3448         enum intel_pipe_crc_object object;
3449         enum intel_pipe_crc_source source;
3450
3451         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3452         if (n_words != N_WORDS) {
3453                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3454                                  N_WORDS);
3455                 return -EINVAL;
3456         }
3457
3458         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3459                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3460                 return -EINVAL;
3461         }
3462
3463         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3464                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3465                 return -EINVAL;
3466         }
3467
3468         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3469                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3470                 return -EINVAL;
3471         }
3472
3473         return pipe_crc_set_source(dev, pipe, source);
3474 }
3475
3476 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3477                                      size_t len, loff_t *offp)
3478 {
3479         struct seq_file *m = file->private_data;
3480         struct drm_device *dev = m->private;
3481         char *tmpbuf;
3482         int ret;
3483
3484         if (len == 0)
3485                 return 0;
3486
3487         if (len > PAGE_SIZE - 1) {
3488                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3489                                  PAGE_SIZE);
3490                 return -E2BIG;
3491         }
3492
3493         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3494         if (!tmpbuf)
3495                 return -ENOMEM;
3496
3497         if (copy_from_user(tmpbuf, ubuf, len)) {
3498                 ret = -EFAULT;
3499                 goto out;
3500         }
3501         tmpbuf[len] = '\0';
3502
3503         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3504
3505 out:
3506         kfree(tmpbuf);
3507         if (ret < 0)
3508                 return ret;
3509
3510         *offp += len;
3511         return len;
3512 }
3513
3514 static const struct file_operations i915_display_crc_ctl_fops = {
3515         .owner = THIS_MODULE,
3516         .open = display_crc_ctl_open,
3517         .read = seq_read,
3518         .llseek = seq_lseek,
3519         .release = single_release,
3520         .write = display_crc_ctl_write
3521 };
3522
3523 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3524 {
3525         struct drm_device *dev = m->private;
3526         int num_levels = ilk_wm_max_level(dev) + 1;
3527         int level;
3528
3529         drm_modeset_lock_all(dev);
3530
3531         for (level = 0; level < num_levels; level++) {
3532                 unsigned int latency = wm[level];
3533
3534                 /* WM1+ latency values in 0.5us units */
3535                 if (level > 0)
3536                         latency *= 5;
3537
3538                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3539                            level, wm[level],
3540                            latency / 10, latency % 10);
3541         }
3542
3543         drm_modeset_unlock_all(dev);
3544 }
3545
3546 static int pri_wm_latency_show(struct seq_file *m, void *data)
3547 {
3548         struct drm_device *dev = m->private;
3549
3550         wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3551
3552         return 0;
3553 }
3554
3555 static int spr_wm_latency_show(struct seq_file *m, void *data)
3556 {
3557         struct drm_device *dev = m->private;
3558
3559         wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3560
3561         return 0;
3562 }
3563
3564 static int cur_wm_latency_show(struct seq_file *m, void *data)
3565 {
3566         struct drm_device *dev = m->private;
3567
3568         wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3569
3570         return 0;
3571 }
3572
3573 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3574 {
3575         struct drm_device *dev = inode->i_private;
3576
3577         if (HAS_GMCH_DISPLAY(dev))
3578                 return -ENODEV;
3579
3580         return single_open(file, pri_wm_latency_show, dev);
3581 }
3582
3583 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3584 {
3585         struct drm_device *dev = inode->i_private;
3586
3587         if (HAS_GMCH_DISPLAY(dev))
3588                 return -ENODEV;
3589
3590         return single_open(file, spr_wm_latency_show, dev);
3591 }
3592
3593 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3594 {
3595         struct drm_device *dev = inode->i_private;
3596
3597         if (HAS_GMCH_DISPLAY(dev))
3598                 return -ENODEV;
3599
3600         return single_open(file, cur_wm_latency_show, dev);
3601 }
3602
3603 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3604                                 size_t len, loff_t *offp, uint16_t wm[5])
3605 {
3606         struct seq_file *m = file->private_data;
3607         struct drm_device *dev = m->private;
3608         uint16_t new[5] = { 0 };
3609         int num_levels = ilk_wm_max_level(dev) + 1;
3610         int level;
3611         int ret;
3612         char tmp[32];
3613
3614         if (len >= sizeof(tmp))
3615                 return -EINVAL;
3616
3617         if (copy_from_user(tmp, ubuf, len))
3618                 return -EFAULT;
3619
3620         tmp[len] = '\0';
3621
3622         ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3623         if (ret != num_levels)
3624                 return -EINVAL;
3625
3626         drm_modeset_lock_all(dev);
3627
3628         for (level = 0; level < num_levels; level++)
3629                 wm[level] = new[level];
3630
3631         drm_modeset_unlock_all(dev);
3632
3633         return len;
3634 }
3635
3636
3637 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3638                                     size_t len, loff_t *offp)
3639 {
3640         struct seq_file *m = file->private_data;
3641         struct drm_device *dev = m->private;
3642
3643         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3644 }
3645
3646 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3647                                     size_t len, loff_t *offp)
3648 {
3649         struct seq_file *m = file->private_data;
3650         struct drm_device *dev = m->private;
3651
3652         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3653 }
3654
3655 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3656                                     size_t len, loff_t *offp)
3657 {
3658         struct seq_file *m = file->private_data;
3659         struct drm_device *dev = m->private;
3660
3661         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3662 }
3663
3664 static const struct file_operations i915_pri_wm_latency_fops = {
3665         .owner = THIS_MODULE,
3666         .open = pri_wm_latency_open,
3667         .read = seq_read,
3668         .llseek = seq_lseek,
3669         .release = single_release,
3670         .write = pri_wm_latency_write
3671 };
3672
3673 static const struct file_operations i915_spr_wm_latency_fops = {
3674         .owner = THIS_MODULE,
3675         .open = spr_wm_latency_open,
3676         .read = seq_read,
3677         .llseek = seq_lseek,
3678         .release = single_release,
3679         .write = spr_wm_latency_write
3680 };
3681
3682 static const struct file_operations i915_cur_wm_latency_fops = {
3683         .owner = THIS_MODULE,
3684         .open = cur_wm_latency_open,
3685         .read = seq_read,
3686         .llseek = seq_lseek,
3687         .release = single_release,
3688         .write = cur_wm_latency_write
3689 };
3690
3691 static int
3692 i915_wedged_get(void *data, u64 *val)
3693 {
3694         struct drm_device *dev = data;
3695         struct drm_i915_private *dev_priv = dev->dev_private;
3696
3697         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3698
3699         return 0;
3700 }
3701
3702 static int
3703 i915_wedged_set(void *data, u64 val)
3704 {
3705         struct drm_device *dev = data;
3706         struct drm_i915_private *dev_priv = dev->dev_private;
3707
3708         intel_runtime_pm_get(dev_priv);
3709
3710         i915_handle_error(dev, val,
3711                           "Manually setting wedged to %llu", val);
3712
3713         intel_runtime_pm_put(dev_priv);
3714
3715         return 0;
3716 }
3717
3718 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3719                         i915_wedged_get, i915_wedged_set,
3720                         "%llu\n");
3721
3722 static int
3723 i915_ring_stop_get(void *data, u64 *val)
3724 {
3725         struct drm_device *dev = data;
3726         struct drm_i915_private *dev_priv = dev->dev_private;
3727
3728         *val = dev_priv->gpu_error.stop_rings;
3729
3730         return 0;
3731 }
3732
3733 static int
3734 i915_ring_stop_set(void *data, u64 val)
3735 {
3736         struct drm_device *dev = data;
3737         struct drm_i915_private *dev_priv = dev->dev_private;
3738         int ret;
3739
3740         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3741
3742         ret = mutex_lock_interruptible(&dev->struct_mutex);
3743         if (ret)
3744                 return ret;
3745
3746         dev_priv->gpu_error.stop_rings = val;
3747         mutex_unlock(&dev->struct_mutex);
3748
3749         return 0;
3750 }
3751
3752 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3753                         i915_ring_stop_get, i915_ring_stop_set,
3754                         "0x%08llx\n");
3755
3756 static int
3757 i915_ring_missed_irq_get(void *data, u64 *val)
3758 {
3759         struct drm_device *dev = data;
3760         struct drm_i915_private *dev_priv = dev->dev_private;
3761
3762         *val = dev_priv->gpu_error.missed_irq_rings;
3763         return 0;
3764 }
3765
3766 static int
3767 i915_ring_missed_irq_set(void *data, u64 val)
3768 {
3769         struct drm_device *dev = data;
3770         struct drm_i915_private *dev_priv = dev->dev_private;
3771         int ret;
3772
3773         /* Lock against concurrent debugfs callers */
3774         ret = mutex_lock_interruptible(&dev->struct_mutex);
3775         if (ret)
3776                 return ret;
3777         dev_priv->gpu_error.missed_irq_rings = val;
3778         mutex_unlock(&dev->struct_mutex);
3779
3780         return 0;
3781 }
3782
3783 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3784                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3785                         "0x%08llx\n");
3786
3787 static int
3788 i915_ring_test_irq_get(void *data, u64 *val)
3789 {
3790         struct drm_device *dev = data;
3791         struct drm_i915_private *dev_priv = dev->dev_private;
3792
3793         *val = dev_priv->gpu_error.test_irq_rings;
3794
3795         return 0;
3796 }
3797
3798 static int
3799 i915_ring_test_irq_set(void *data, u64 val)
3800 {
3801         struct drm_device *dev = data;
3802         struct drm_i915_private *dev_priv = dev->dev_private;
3803         int ret;
3804
3805         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3806
3807         /* Lock against concurrent debugfs callers */
3808         ret = mutex_lock_interruptible(&dev->struct_mutex);
3809         if (ret)
3810                 return ret;
3811
3812         dev_priv->gpu_error.test_irq_rings = val;
3813         mutex_unlock(&dev->struct_mutex);
3814
3815         return 0;
3816 }
3817
3818 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3819                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3820                         "0x%08llx\n");
3821
3822 #define DROP_UNBOUND 0x1
3823 #define DROP_BOUND 0x2
3824 #define DROP_RETIRE 0x4
3825 #define DROP_ACTIVE 0x8
3826 #define DROP_ALL (DROP_UNBOUND | \
3827                   DROP_BOUND | \
3828                   DROP_RETIRE | \
3829                   DROP_ACTIVE)
3830 static int
3831 i915_drop_caches_get(void *data, u64 *val)
3832 {
3833         *val = DROP_ALL;
3834
3835         return 0;
3836 }
3837
3838 static int
3839 i915_drop_caches_set(void *data, u64 val)
3840 {
3841         struct drm_device *dev = data;
3842         struct drm_i915_private *dev_priv = dev->dev_private;
3843         int ret;
3844
3845         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3846
3847         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3848          * on ioctls on -EAGAIN. */
3849         ret = mutex_lock_interruptible(&dev->struct_mutex);
3850         if (ret)
3851                 return ret;
3852
3853         if (val & DROP_ACTIVE) {
3854                 ret = i915_gpu_idle(dev);
3855                 if (ret)
3856                         goto unlock;
3857         }
3858
3859         if (val & (DROP_RETIRE | DROP_ACTIVE))
3860                 i915_gem_retire_requests(dev);
3861
3862         if (val & DROP_BOUND)
3863                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
3864
3865         if (val & DROP_UNBOUND)
3866                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
3867
3868 unlock:
3869         mutex_unlock(&dev->struct_mutex);
3870
3871         return ret;
3872 }
3873
3874 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3875                         i915_drop_caches_get, i915_drop_caches_set,
3876                         "0x%08llx\n");
3877
3878 static int
3879 i915_max_freq_get(void *data, u64 *val)
3880 {
3881         struct drm_device *dev = data;
3882         struct drm_i915_private *dev_priv = dev->dev_private;
3883         int ret;
3884
3885         if (INTEL_INFO(dev)->gen < 6)
3886                 return -ENODEV;
3887
3888         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3889
3890         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3891         if (ret)
3892                 return ret;
3893
3894         if (IS_VALLEYVIEW(dev))
3895                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3896         else
3897                 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3898         mutex_unlock(&dev_priv->rps.hw_lock);
3899
3900         return 0;
3901 }
3902
3903 static int
3904 i915_max_freq_set(void *data, u64 val)
3905 {
3906         struct drm_device *dev = data;
3907         struct drm_i915_private *dev_priv = dev->dev_private;
3908         u32 rp_state_cap, hw_max, hw_min;
3909         int ret;
3910
3911         if (INTEL_INFO(dev)->gen < 6)
3912                 return -ENODEV;
3913
3914         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3915
3916         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3917
3918         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3919         if (ret)
3920                 return ret;
3921
3922         /*
3923          * Turbo will still be enabled, but won't go above the set value.
3924          */
3925         if (IS_VALLEYVIEW(dev)) {
3926                 val = vlv_freq_opcode(dev_priv, val);
3927
3928                 hw_max = dev_priv->rps.max_freq;
3929                 hw_min = dev_priv->rps.min_freq;
3930         } else {
3931                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3932
3933                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3934                 hw_max = dev_priv->rps.max_freq;
3935                 hw_min = (rp_state_cap >> 16) & 0xff;
3936         }
3937
3938         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3939                 mutex_unlock(&dev_priv->rps.hw_lock);
3940                 return -EINVAL;
3941         }
3942
3943         dev_priv->rps.max_freq_softlimit = val;
3944
3945         if (IS_VALLEYVIEW(dev))
3946                 valleyview_set_rps(dev, val);
3947         else
3948                 gen6_set_rps(dev, val);
3949
3950         mutex_unlock(&dev_priv->rps.hw_lock);
3951
3952         return 0;
3953 }
3954
3955 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3956                         i915_max_freq_get, i915_max_freq_set,
3957                         "%llu\n");
3958
3959 static int
3960 i915_min_freq_get(void *data, u64 *val)
3961 {
3962         struct drm_device *dev = data;
3963         struct drm_i915_private *dev_priv = dev->dev_private;
3964         int ret;
3965
3966         if (INTEL_INFO(dev)->gen < 6)
3967                 return -ENODEV;
3968
3969         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3970
3971         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3972         if (ret)
3973                 return ret;
3974
3975         if (IS_VALLEYVIEW(dev))
3976                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3977         else
3978                 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3979         mutex_unlock(&dev_priv->rps.hw_lock);
3980
3981         return 0;
3982 }
3983
3984 static int
3985 i915_min_freq_set(void *data, u64 val)
3986 {
3987         struct drm_device *dev = data;
3988         struct drm_i915_private *dev_priv = dev->dev_private;
3989         u32 rp_state_cap, hw_max, hw_min;
3990         int ret;
3991
3992         if (INTEL_INFO(dev)->gen < 6)
3993                 return -ENODEV;
3994
3995         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3996
3997         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3998
3999         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4000         if (ret)
4001                 return ret;
4002
4003         /*
4004          * Turbo will still be enabled, but won't go below the set value.
4005          */
4006         if (IS_VALLEYVIEW(dev)) {
4007                 val = vlv_freq_opcode(dev_priv, val);
4008
4009                 hw_max = dev_priv->rps.max_freq;
4010                 hw_min = dev_priv->rps.min_freq;
4011         } else {
4012                 do_div(val, GT_FREQUENCY_MULTIPLIER);
4013
4014                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4015                 hw_max = dev_priv->rps.max_freq;
4016                 hw_min = (rp_state_cap >> 16) & 0xff;
4017         }
4018
4019         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4020                 mutex_unlock(&dev_priv->rps.hw_lock);
4021                 return -EINVAL;
4022         }
4023
4024         dev_priv->rps.min_freq_softlimit = val;
4025
4026         if (IS_VALLEYVIEW(dev))
4027                 valleyview_set_rps(dev, val);
4028         else
4029                 gen6_set_rps(dev, val);
4030
4031         mutex_unlock(&dev_priv->rps.hw_lock);
4032
4033         return 0;
4034 }
4035
4036 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4037                         i915_min_freq_get, i915_min_freq_set,
4038                         "%llu\n");
4039
4040 static int
4041 i915_cache_sharing_get(void *data, u64 *val)
4042 {
4043         struct drm_device *dev = data;
4044         struct drm_i915_private *dev_priv = dev->dev_private;
4045         u32 snpcr;
4046         int ret;
4047
4048         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4049                 return -ENODEV;
4050
4051         ret = mutex_lock_interruptible(&dev->struct_mutex);
4052         if (ret)
4053                 return ret;
4054         intel_runtime_pm_get(dev_priv);
4055
4056         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4057
4058         intel_runtime_pm_put(dev_priv);
4059         mutex_unlock(&dev_priv->dev->struct_mutex);
4060
4061         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4062
4063         return 0;
4064 }
4065
4066 static int
4067 i915_cache_sharing_set(void *data, u64 val)
4068 {
4069         struct drm_device *dev = data;
4070         struct drm_i915_private *dev_priv = dev->dev_private;
4071         u32 snpcr;
4072
4073         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4074                 return -ENODEV;
4075
4076         if (val > 3)
4077                 return -EINVAL;
4078
4079         intel_runtime_pm_get(dev_priv);
4080         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4081
4082         /* Update the cache sharing policy here as well */
4083         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4084         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4085         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4086         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4087
4088         intel_runtime_pm_put(dev_priv);
4089         return 0;
4090 }
4091
4092 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4093                         i915_cache_sharing_get, i915_cache_sharing_set,
4094                         "%llu\n");
4095
4096 static int i915_forcewake_open(struct inode *inode, struct file *file)
4097 {
4098         struct drm_device *dev = inode->i_private;
4099         struct drm_i915_private *dev_priv = dev->dev_private;
4100
4101         if (INTEL_INFO(dev)->gen < 6)
4102                 return 0;
4103
4104         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4105
4106         return 0;
4107 }
4108
4109 static int i915_forcewake_release(struct inode *inode, struct file *file)
4110 {
4111         struct drm_device *dev = inode->i_private;
4112         struct drm_i915_private *dev_priv = dev->dev_private;
4113
4114         if (INTEL_INFO(dev)->gen < 6)
4115                 return 0;
4116
4117         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4118
4119         return 0;
4120 }
4121
4122 static const struct file_operations i915_forcewake_fops = {
4123         .owner = THIS_MODULE,
4124         .open = i915_forcewake_open,
4125         .release = i915_forcewake_release,
4126 };
4127
4128 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4129 {
4130         struct drm_device *dev = minor->dev;
4131         struct dentry *ent;
4132
4133         ent = debugfs_create_file("i915_forcewake_user",
4134                                   S_IRUSR,
4135                                   root, dev,
4136                                   &i915_forcewake_fops);
4137         if (!ent)
4138                 return -ENOMEM;
4139
4140         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4141 }
4142
4143 static int i915_debugfs_create(struct dentry *root,
4144                                struct drm_minor *minor,
4145                                const char *name,
4146                                const struct file_operations *fops)
4147 {
4148         struct drm_device *dev = minor->dev;
4149         struct dentry *ent;
4150
4151         ent = debugfs_create_file(name,
4152                                   S_IRUGO | S_IWUSR,
4153                                   root, dev,
4154                                   fops);
4155         if (!ent)
4156                 return -ENOMEM;
4157
4158         return drm_add_fake_info_node(minor, ent, fops);
4159 }
4160
4161 static const struct drm_info_list i915_debugfs_list[] = {
4162         {"i915_capabilities", i915_capabilities, 0},
4163         {"i915_gem_objects", i915_gem_object_info, 0},
4164         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4165         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4166         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4167         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4168         {"i915_gem_stolen", i915_gem_stolen_list_info },
4169         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4170         {"i915_gem_request", i915_gem_request_info, 0},
4171         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4172         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4173         {"i915_gem_interrupt", i915_interrupt_info, 0},
4174         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4175         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4176         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4177         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4178         {"i915_frequency_info", i915_frequency_info, 0},
4179         {"i915_drpc_info", i915_drpc_info, 0},
4180         {"i915_emon_status", i915_emon_status, 0},
4181         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4182         {"i915_fbc_status", i915_fbc_status, 0},
4183         {"i915_ips_status", i915_ips_status, 0},
4184         {"i915_sr_status", i915_sr_status, 0},
4185         {"i915_opregion", i915_opregion, 0},
4186         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4187         {"i915_context_status", i915_context_status, 0},
4188         {"i915_dump_lrc", i915_dump_lrc, 0},
4189         {"i915_execlists", i915_execlists, 0},
4190         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
4191         {"i915_swizzle_info", i915_swizzle_info, 0},
4192         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4193         {"i915_llc", i915_llc, 0},
4194         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4195         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4196         {"i915_energy_uJ", i915_energy_uJ, 0},
4197         {"i915_pc8_status", i915_pc8_status, 0},
4198         {"i915_power_domain_info", i915_power_domain_info, 0},
4199         {"i915_display_info", i915_display_info, 0},
4200         {"i915_semaphore_status", i915_semaphore_status, 0},
4201         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4202         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4203         {"i915_wa_registers", i915_wa_registers, 0},
4204 };
4205 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4206
4207 static const struct i915_debugfs_files {
4208         const char *name;
4209         const struct file_operations *fops;
4210 } i915_debugfs_files[] = {
4211         {"i915_wedged", &i915_wedged_fops},
4212         {"i915_max_freq", &i915_max_freq_fops},
4213         {"i915_min_freq", &i915_min_freq_fops},
4214         {"i915_cache_sharing", &i915_cache_sharing_fops},
4215         {"i915_ring_stop", &i915_ring_stop_fops},
4216         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4217         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4218         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4219         {"i915_error_state", &i915_error_state_fops},
4220         {"i915_next_seqno", &i915_next_seqno_fops},
4221         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4222         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4223         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4224         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4225         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4226 };
4227
4228 void intel_display_crc_init(struct drm_device *dev)
4229 {
4230         struct drm_i915_private *dev_priv = dev->dev_private;
4231         enum pipe pipe;
4232
4233         for_each_pipe(dev_priv, pipe) {
4234                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4235
4236                 pipe_crc->opened = false;
4237                 spin_lock_init(&pipe_crc->lock);
4238                 init_waitqueue_head(&pipe_crc->wq);
4239         }
4240 }
4241
4242 int i915_debugfs_init(struct drm_minor *minor)
4243 {
4244         int ret, i;
4245
4246         ret = i915_forcewake_create(minor->debugfs_root, minor);
4247         if (ret)
4248                 return ret;
4249
4250         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4251                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4252                 if (ret)
4253                         return ret;
4254         }
4255
4256         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4257                 ret = i915_debugfs_create(minor->debugfs_root, minor,
4258                                           i915_debugfs_files[i].name,
4259                                           i915_debugfs_files[i].fops);
4260                 if (ret)
4261                         return ret;
4262         }
4263
4264         return drm_debugfs_create_files(i915_debugfs_list,
4265                                         I915_DEBUGFS_ENTRIES,
4266                                         minor->debugfs_root, minor);
4267 }
4268
4269 void i915_debugfs_cleanup(struct drm_minor *minor)
4270 {
4271         int i;
4272
4273         drm_debugfs_remove_files(i915_debugfs_list,
4274                                  I915_DEBUGFS_ENTRIES, minor);
4275
4276         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4277                                  1, minor);
4278
4279         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4280                 struct drm_info_list *info_list =
4281                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4282
4283                 drm_debugfs_remove_files(info_list, 1, minor);
4284         }
4285
4286         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4287                 struct drm_info_list *info_list =
4288                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4289
4290                 drm_debugfs_remove_files(info_list, 1, minor);
4291         }
4292 }