drm/i915: Pin tiled objects for L-shaped configs
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164                             struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_get_aperture *args = data;
168         struct drm_i915_gem_object *obj;
169         size_t pinned;
170
171         pinned = 0;
172         mutex_lock(&dev->struct_mutex);
173         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
174                 if (i915_gem_obj_is_pinned(obj))
175                         pinned += i915_gem_obj_ggtt_size(obj);
176         mutex_unlock(&dev->struct_mutex);
177
178         args->aper_size = dev_priv->gtt.base.total;
179         args->aper_available_size = args->aper_size - pinned;
180
181         return 0;
182 }
183
184 static int
185 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186 {
187         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188         char *vaddr = obj->phys_handle->vaddr;
189         struct sg_table *st;
190         struct scatterlist *sg;
191         int i;
192
193         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194                 return -EINVAL;
195
196         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197                 struct page *page;
198                 char *src;
199
200                 page = shmem_read_mapping_page(mapping, i);
201                 if (IS_ERR(page))
202                         return PTR_ERR(page);
203
204                 src = kmap_atomic(page);
205                 memcpy(vaddr, src, PAGE_SIZE);
206                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207                 kunmap_atomic(src);
208
209                 page_cache_release(page);
210                 vaddr += PAGE_SIZE;
211         }
212
213         i915_gem_chipset_flush(obj->base.dev);
214
215         st = kmalloc(sizeof(*st), GFP_KERNEL);
216         if (st == NULL)
217                 return -ENOMEM;
218
219         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220                 kfree(st);
221                 return -ENOMEM;
222         }
223
224         sg = st->sgl;
225         sg->offset = 0;
226         sg->length = obj->base.size;
227
228         sg_dma_address(sg) = obj->phys_handle->busaddr;
229         sg_dma_len(sg) = obj->base.size;
230
231         obj->pages = st;
232         obj->has_dma_mapping = true;
233         return 0;
234 }
235
236 static void
237 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238 {
239         int ret;
240
241         BUG_ON(obj->madv == __I915_MADV_PURGED);
242
243         ret = i915_gem_object_set_to_cpu_domain(obj, true);
244         if (ret) {
245                 /* In the event of a disaster, abandon all caches and
246                  * hope for the best.
247                  */
248                 WARN_ON(ret != -EIO);
249                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250         }
251
252         if (obj->madv == I915_MADV_DONTNEED)
253                 obj->dirty = 0;
254
255         if (obj->dirty) {
256                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257                 char *vaddr = obj->phys_handle->vaddr;
258                 int i;
259
260                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261                         struct page *page;
262                         char *dst;
263
264                         page = shmem_read_mapping_page(mapping, i);
265                         if (IS_ERR(page))
266                                 continue;
267
268                         dst = kmap_atomic(page);
269                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
270                         memcpy(dst, vaddr, PAGE_SIZE);
271                         kunmap_atomic(dst);
272
273                         set_page_dirty(page);
274                         if (obj->madv == I915_MADV_WILLNEED)
275                                 mark_page_accessed(page);
276                         page_cache_release(page);
277                         vaddr += PAGE_SIZE;
278                 }
279                 obj->dirty = 0;
280         }
281
282         sg_free_table(obj->pages);
283         kfree(obj->pages);
284
285         obj->has_dma_mapping = false;
286 }
287
288 static void
289 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290 {
291         drm_pci_free(obj->base.dev, obj->phys_handle);
292 }
293
294 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295         .get_pages = i915_gem_object_get_pages_phys,
296         .put_pages = i915_gem_object_put_pages_phys,
297         .release = i915_gem_object_release_phys,
298 };
299
300 static int
301 drop_pages(struct drm_i915_gem_object *obj)
302 {
303         struct i915_vma *vma, *next;
304         int ret;
305
306         drm_gem_object_reference(&obj->base);
307         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308                 if (i915_vma_unbind(vma))
309                         break;
310
311         ret = i915_gem_object_put_pages(obj);
312         drm_gem_object_unreference(&obj->base);
313
314         return ret;
315 }
316
317 int
318 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319                             int align)
320 {
321         drm_dma_handle_t *phys;
322         int ret;
323
324         if (obj->phys_handle) {
325                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326                         return -EBUSY;
327
328                 return 0;
329         }
330
331         if (obj->madv != I915_MADV_WILLNEED)
332                 return -EFAULT;
333
334         if (obj->base.filp == NULL)
335                 return -EINVAL;
336
337         ret = drop_pages(obj);
338         if (ret)
339                 return ret;
340
341         /* create a new object */
342         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343         if (!phys)
344                 return -ENOMEM;
345
346         obj->phys_handle = phys;
347         obj->ops = &i915_gem_phys_ops;
348
349         return i915_gem_object_get_pages(obj);
350 }
351
352 static int
353 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354                      struct drm_i915_gem_pwrite *args,
355                      struct drm_file *file_priv)
356 {
357         struct drm_device *dev = obj->base.dev;
358         void *vaddr = obj->phys_handle->vaddr + args->offset;
359         char __user *user_data = to_user_ptr(args->data_ptr);
360         int ret;
361
362         /* We manually control the domain here and pretend that it
363          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364          */
365         ret = i915_gem_object_wait_rendering(obj, false);
366         if (ret)
367                 return ret;
368
369         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370                 unsigned long unwritten;
371
372                 /* The physical object once assigned is fixed for the lifetime
373                  * of the obj, so we can safely drop the lock and continue
374                  * to access vaddr.
375                  */
376                 mutex_unlock(&dev->struct_mutex);
377                 unwritten = copy_from_user(vaddr, user_data, args->size);
378                 mutex_lock(&dev->struct_mutex);
379                 if (unwritten)
380                         return -EFAULT;
381         }
382
383         drm_clflush_virt_range(vaddr, args->size);
384         i915_gem_chipset_flush(dev);
385         return 0;
386 }
387
388 void *i915_gem_object_alloc(struct drm_device *dev)
389 {
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 }
393
394 void i915_gem_object_free(struct drm_i915_gem_object *obj)
395 {
396         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397         kmem_cache_free(dev_priv->slab, obj);
398 }
399
400 static int
401 i915_gem_create(struct drm_file *file,
402                 struct drm_device *dev,
403                 uint64_t size,
404                 uint32_t *handle_p)
405 {
406         struct drm_i915_gem_object *obj;
407         int ret;
408         u32 handle;
409
410         size = roundup(size, PAGE_SIZE);
411         if (size == 0)
412                 return -EINVAL;
413
414         /* Allocate the new object */
415         obj = i915_gem_alloc_object(dev, size);
416         if (obj == NULL)
417                 return -ENOMEM;
418
419         ret = drm_gem_handle_create(file, &obj->base, &handle);
420         /* drop reference from allocate - handle holds it now */
421         drm_gem_object_unreference_unlocked(&obj->base);
422         if (ret)
423                 return ret;
424
425         *handle_p = handle;
426         return 0;
427 }
428
429 int
430 i915_gem_dumb_create(struct drm_file *file,
431                      struct drm_device *dev,
432                      struct drm_mode_create_dumb *args)
433 {
434         /* have to work out size/pitch and return them */
435         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
436         args->size = args->pitch * args->height;
437         return i915_gem_create(file, dev,
438                                args->size, &args->handle);
439 }
440
441 /**
442  * Creates a new mm object and returns a handle to it.
443  */
444 int
445 i915_gem_create_ioctl(struct drm_device *dev, void *data,
446                       struct drm_file *file)
447 {
448         struct drm_i915_gem_create *args = data;
449
450         return i915_gem_create(file, dev,
451                                args->size, &args->handle);
452 }
453
454 static inline int
455 __copy_to_user_swizzled(char __user *cpu_vaddr,
456                         const char *gpu_vaddr, int gpu_offset,
457                         int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
467                                      gpu_vaddr + swizzled_gpu_offset,
468                                      this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 static inline int
481 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
482                           const char __user *cpu_vaddr,
483                           int length)
484 {
485         int ret, cpu_offset = 0;
486
487         while (length > 0) {
488                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
489                 int this_length = min(cacheline_end - gpu_offset, length);
490                 int swizzled_gpu_offset = gpu_offset ^ 64;
491
492                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
493                                        cpu_vaddr + cpu_offset,
494                                        this_length);
495                 if (ret)
496                         return ret + length;
497
498                 cpu_offset += this_length;
499                 gpu_offset += this_length;
500                 length -= this_length;
501         }
502
503         return 0;
504 }
505
506 /*
507  * Pins the specified object's pages and synchronizes the object with
508  * GPU accesses. Sets needs_clflush to non-zero if the caller should
509  * flush the object from the CPU cache.
510  */
511 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
512                                     int *needs_clflush)
513 {
514         int ret;
515
516         *needs_clflush = 0;
517
518         if (!obj->base.filp)
519                 return -EINVAL;
520
521         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
522                 /* If we're not in the cpu read domain, set ourself into the gtt
523                  * read domain and manually flush cachelines (if required). This
524                  * optimizes for the case when the gpu will dirty the data
525                  * anyway again before the next pread happens. */
526                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
527                                                         obj->cache_level);
528                 ret = i915_gem_object_wait_rendering(obj, true);
529                 if (ret)
530                         return ret;
531
532                 i915_gem_object_retire(obj);
533         }
534
535         ret = i915_gem_object_get_pages(obj);
536         if (ret)
537                 return ret;
538
539         i915_gem_object_pin_pages(obj);
540
541         return ret;
542 }
543
544 /* Per-page copy function for the shmem pread fastpath.
545  * Flushes invalid cachelines before reading the target if
546  * needs_clflush is set. */
547 static int
548 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
549                  char __user *user_data,
550                  bool page_do_bit17_swizzling, bool needs_clflush)
551 {
552         char *vaddr;
553         int ret;
554
555         if (unlikely(page_do_bit17_swizzling))
556                 return -EINVAL;
557
558         vaddr = kmap_atomic(page);
559         if (needs_clflush)
560                 drm_clflush_virt_range(vaddr + shmem_page_offset,
561                                        page_length);
562         ret = __copy_to_user_inatomic(user_data,
563                                       vaddr + shmem_page_offset,
564                                       page_length);
565         kunmap_atomic(vaddr);
566
567         return ret ? -EFAULT : 0;
568 }
569
570 static void
571 shmem_clflush_swizzled_range(char *addr, unsigned long length,
572                              bool swizzled)
573 {
574         if (unlikely(swizzled)) {
575                 unsigned long start = (unsigned long) addr;
576                 unsigned long end = (unsigned long) addr + length;
577
578                 /* For swizzling simply ensure that we always flush both
579                  * channels. Lame, but simple and it works. Swizzled
580                  * pwrite/pread is far from a hotpath - current userspace
581                  * doesn't use it at all. */
582                 start = round_down(start, 128);
583                 end = round_up(end, 128);
584
585                 drm_clflush_virt_range((void *)start, end - start);
586         } else {
587                 drm_clflush_virt_range(addr, length);
588         }
589
590 }
591
592 /* Only difference to the fast-path function is that this can handle bit17
593  * and uses non-atomic copy and kmap functions. */
594 static int
595 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
596                  char __user *user_data,
597                  bool page_do_bit17_swizzling, bool needs_clflush)
598 {
599         char *vaddr;
600         int ret;
601
602         vaddr = kmap(page);
603         if (needs_clflush)
604                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
605                                              page_length,
606                                              page_do_bit17_swizzling);
607
608         if (page_do_bit17_swizzling)
609                 ret = __copy_to_user_swizzled(user_data,
610                                               vaddr, shmem_page_offset,
611                                               page_length);
612         else
613                 ret = __copy_to_user(user_data,
614                                      vaddr + shmem_page_offset,
615                                      page_length);
616         kunmap(page);
617
618         return ret ? - EFAULT : 0;
619 }
620
621 static int
622 i915_gem_shmem_pread(struct drm_device *dev,
623                      struct drm_i915_gem_object *obj,
624                      struct drm_i915_gem_pread *args,
625                      struct drm_file *file)
626 {
627         char __user *user_data;
628         ssize_t remain;
629         loff_t offset;
630         int shmem_page_offset, page_length, ret = 0;
631         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
632         int prefaulted = 0;
633         int needs_clflush = 0;
634         struct sg_page_iter sg_iter;
635
636         user_data = to_user_ptr(args->data_ptr);
637         remain = args->size;
638
639         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
640
641         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
642         if (ret)
643                 return ret;
644
645         offset = args->offset;
646
647         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
648                          offset >> PAGE_SHIFT) {
649                 struct page *page = sg_page_iter_page(&sg_iter);
650
651                 if (remain <= 0)
652                         break;
653
654                 /* Operation in this page
655                  *
656                  * shmem_page_offset = offset within page in shmem file
657                  * page_length = bytes to copy for this page
658                  */
659                 shmem_page_offset = offset_in_page(offset);
660                 page_length = remain;
661                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
662                         page_length = PAGE_SIZE - shmem_page_offset;
663
664                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
665                         (page_to_phys(page) & (1 << 17)) != 0;
666
667                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
668                                        user_data, page_do_bit17_swizzling,
669                                        needs_clflush);
670                 if (ret == 0)
671                         goto next_page;
672
673                 mutex_unlock(&dev->struct_mutex);
674
675                 if (likely(!i915.prefault_disable) && !prefaulted) {
676                         ret = fault_in_multipages_writeable(user_data, remain);
677                         /* Userspace is tricking us, but we've already clobbered
678                          * its pages with the prefault and promised to write the
679                          * data up to the first fault. Hence ignore any errors
680                          * and just continue. */
681                         (void)ret;
682                         prefaulted = 1;
683                 }
684
685                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
686                                        user_data, page_do_bit17_swizzling,
687                                        needs_clflush);
688
689                 mutex_lock(&dev->struct_mutex);
690
691                 if (ret)
692                         goto out;
693
694 next_page:
695                 remain -= page_length;
696                 user_data += page_length;
697                 offset += page_length;
698         }
699
700 out:
701         i915_gem_object_unpin_pages(obj);
702
703         return ret;
704 }
705
706 /**
707  * Reads data from the object referenced by handle.
708  *
709  * On error, the contents of *data are undefined.
710  */
711 int
712 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
713                      struct drm_file *file)
714 {
715         struct drm_i915_gem_pread *args = data;
716         struct drm_i915_gem_object *obj;
717         int ret = 0;
718
719         if (args->size == 0)
720                 return 0;
721
722         if (!access_ok(VERIFY_WRITE,
723                        to_user_ptr(args->data_ptr),
724                        args->size))
725                 return -EFAULT;
726
727         ret = i915_mutex_lock_interruptible(dev);
728         if (ret)
729                 return ret;
730
731         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
732         if (&obj->base == NULL) {
733                 ret = -ENOENT;
734                 goto unlock;
735         }
736
737         /* Bounds check source.  */
738         if (args->offset > obj->base.size ||
739             args->size > obj->base.size - args->offset) {
740                 ret = -EINVAL;
741                 goto out;
742         }
743
744         /* prime objects have no backing filp to GEM pread/pwrite
745          * pages from.
746          */
747         if (!obj->base.filp) {
748                 ret = -EINVAL;
749                 goto out;
750         }
751
752         trace_i915_gem_object_pread(obj, args->offset, args->size);
753
754         ret = i915_gem_shmem_pread(dev, obj, args, file);
755
756 out:
757         drm_gem_object_unreference(&obj->base);
758 unlock:
759         mutex_unlock(&dev->struct_mutex);
760         return ret;
761 }
762
763 /* This is the fast write path which cannot handle
764  * page faults in the source data
765  */
766
767 static inline int
768 fast_user_write(struct io_mapping *mapping,
769                 loff_t page_base, int page_offset,
770                 char __user *user_data,
771                 int length)
772 {
773         void __iomem *vaddr_atomic;
774         void *vaddr;
775         unsigned long unwritten;
776
777         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
778         /* We can use the cpu mem copy function because this is X86. */
779         vaddr = (void __force*)vaddr_atomic + page_offset;
780         unwritten = __copy_from_user_inatomic_nocache(vaddr,
781                                                       user_data, length);
782         io_mapping_unmap_atomic(vaddr_atomic);
783         return unwritten;
784 }
785
786 /**
787  * This is the fast pwrite path, where we copy the data directly from the
788  * user into the GTT, uncached.
789  */
790 static int
791 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
792                          struct drm_i915_gem_object *obj,
793                          struct drm_i915_gem_pwrite *args,
794                          struct drm_file *file)
795 {
796         struct drm_i915_private *dev_priv = dev->dev_private;
797         ssize_t remain;
798         loff_t offset, page_base;
799         char __user *user_data;
800         int page_offset, page_length, ret;
801
802         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
803         if (ret)
804                 goto out;
805
806         ret = i915_gem_object_set_to_gtt_domain(obj, true);
807         if (ret)
808                 goto out_unpin;
809
810         ret = i915_gem_object_put_fence(obj);
811         if (ret)
812                 goto out_unpin;
813
814         user_data = to_user_ptr(args->data_ptr);
815         remain = args->size;
816
817         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
818
819         while (remain > 0) {
820                 /* Operation in this page
821                  *
822                  * page_base = page offset within aperture
823                  * page_offset = offset within page
824                  * page_length = bytes to copy for this page
825                  */
826                 page_base = offset & PAGE_MASK;
827                 page_offset = offset_in_page(offset);
828                 page_length = remain;
829                 if ((page_offset + remain) > PAGE_SIZE)
830                         page_length = PAGE_SIZE - page_offset;
831
832                 /* If we get a fault while copying data, then (presumably) our
833                  * source page isn't available.  Return the error and we'll
834                  * retry in the slow path.
835                  */
836                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
837                                     page_offset, user_data, page_length)) {
838                         ret = -EFAULT;
839                         goto out_unpin;
840                 }
841
842                 remain -= page_length;
843                 user_data += page_length;
844                 offset += page_length;
845         }
846
847 out_unpin:
848         i915_gem_object_ggtt_unpin(obj);
849 out:
850         return ret;
851 }
852
853 /* Per-page copy function for the shmem pwrite fastpath.
854  * Flushes invalid cachelines before writing to the target if
855  * needs_clflush_before is set and flushes out any written cachelines after
856  * writing if needs_clflush is set. */
857 static int
858 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
859                   char __user *user_data,
860                   bool page_do_bit17_swizzling,
861                   bool needs_clflush_before,
862                   bool needs_clflush_after)
863 {
864         char *vaddr;
865         int ret;
866
867         if (unlikely(page_do_bit17_swizzling))
868                 return -EINVAL;
869
870         vaddr = kmap_atomic(page);
871         if (needs_clflush_before)
872                 drm_clflush_virt_range(vaddr + shmem_page_offset,
873                                        page_length);
874         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
875                                         user_data, page_length);
876         if (needs_clflush_after)
877                 drm_clflush_virt_range(vaddr + shmem_page_offset,
878                                        page_length);
879         kunmap_atomic(vaddr);
880
881         return ret ? -EFAULT : 0;
882 }
883
884 /* Only difference to the fast-path function is that this can handle bit17
885  * and uses non-atomic copy and kmap functions. */
886 static int
887 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
888                   char __user *user_data,
889                   bool page_do_bit17_swizzling,
890                   bool needs_clflush_before,
891                   bool needs_clflush_after)
892 {
893         char *vaddr;
894         int ret;
895
896         vaddr = kmap(page);
897         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
898                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
899                                              page_length,
900                                              page_do_bit17_swizzling);
901         if (page_do_bit17_swizzling)
902                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
903                                                 user_data,
904                                                 page_length);
905         else
906                 ret = __copy_from_user(vaddr + shmem_page_offset,
907                                        user_data,
908                                        page_length);
909         if (needs_clflush_after)
910                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
911                                              page_length,
912                                              page_do_bit17_swizzling);
913         kunmap(page);
914
915         return ret ? -EFAULT : 0;
916 }
917
918 static int
919 i915_gem_shmem_pwrite(struct drm_device *dev,
920                       struct drm_i915_gem_object *obj,
921                       struct drm_i915_gem_pwrite *args,
922                       struct drm_file *file)
923 {
924         ssize_t remain;
925         loff_t offset;
926         char __user *user_data;
927         int shmem_page_offset, page_length, ret = 0;
928         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
929         int hit_slowpath = 0;
930         int needs_clflush_after = 0;
931         int needs_clflush_before = 0;
932         struct sg_page_iter sg_iter;
933
934         user_data = to_user_ptr(args->data_ptr);
935         remain = args->size;
936
937         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
938
939         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
940                 /* If we're not in the cpu write domain, set ourself into the gtt
941                  * write domain and manually flush cachelines (if required). This
942                  * optimizes for the case when the gpu will use the data
943                  * right away and we therefore have to clflush anyway. */
944                 needs_clflush_after = cpu_write_needs_clflush(obj);
945                 ret = i915_gem_object_wait_rendering(obj, false);
946                 if (ret)
947                         return ret;
948
949                 i915_gem_object_retire(obj);
950         }
951         /* Same trick applies to invalidate partially written cachelines read
952          * before writing. */
953         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
954                 needs_clflush_before =
955                         !cpu_cache_is_coherent(dev, obj->cache_level);
956
957         ret = i915_gem_object_get_pages(obj);
958         if (ret)
959                 return ret;
960
961         i915_gem_object_pin_pages(obj);
962
963         offset = args->offset;
964         obj->dirty = 1;
965
966         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
967                          offset >> PAGE_SHIFT) {
968                 struct page *page = sg_page_iter_page(&sg_iter);
969                 int partial_cacheline_write;
970
971                 if (remain <= 0)
972                         break;
973
974                 /* Operation in this page
975                  *
976                  * shmem_page_offset = offset within page in shmem file
977                  * page_length = bytes to copy for this page
978                  */
979                 shmem_page_offset = offset_in_page(offset);
980
981                 page_length = remain;
982                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
983                         page_length = PAGE_SIZE - shmem_page_offset;
984
985                 /* If we don't overwrite a cacheline completely we need to be
986                  * careful to have up-to-date data by first clflushing. Don't
987                  * overcomplicate things and flush the entire patch. */
988                 partial_cacheline_write = needs_clflush_before &&
989                         ((shmem_page_offset | page_length)
990                                 & (boot_cpu_data.x86_clflush_size - 1));
991
992                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
993                         (page_to_phys(page) & (1 << 17)) != 0;
994
995                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
996                                         user_data, page_do_bit17_swizzling,
997                                         partial_cacheline_write,
998                                         needs_clflush_after);
999                 if (ret == 0)
1000                         goto next_page;
1001
1002                 hit_slowpath = 1;
1003                 mutex_unlock(&dev->struct_mutex);
1004                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1005                                         user_data, page_do_bit17_swizzling,
1006                                         partial_cacheline_write,
1007                                         needs_clflush_after);
1008
1009                 mutex_lock(&dev->struct_mutex);
1010
1011                 if (ret)
1012                         goto out;
1013
1014 next_page:
1015                 remain -= page_length;
1016                 user_data += page_length;
1017                 offset += page_length;
1018         }
1019
1020 out:
1021         i915_gem_object_unpin_pages(obj);
1022
1023         if (hit_slowpath) {
1024                 /*
1025                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1026                  * cachelines in-line while writing and the object moved
1027                  * out of the cpu write domain while we've dropped the lock.
1028                  */
1029                 if (!needs_clflush_after &&
1030                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1031                         if (i915_gem_clflush_object(obj, obj->pin_display))
1032                                 i915_gem_chipset_flush(dev);
1033                 }
1034         }
1035
1036         if (needs_clflush_after)
1037                 i915_gem_chipset_flush(dev);
1038
1039         return ret;
1040 }
1041
1042 /**
1043  * Writes data to the object referenced by handle.
1044  *
1045  * On error, the contents of the buffer that were to be modified are undefined.
1046  */
1047 int
1048 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1049                       struct drm_file *file)
1050 {
1051         struct drm_i915_gem_pwrite *args = data;
1052         struct drm_i915_gem_object *obj;
1053         int ret;
1054
1055         if (args->size == 0)
1056                 return 0;
1057
1058         if (!access_ok(VERIFY_READ,
1059                        to_user_ptr(args->data_ptr),
1060                        args->size))
1061                 return -EFAULT;
1062
1063         if (likely(!i915.prefault_disable)) {
1064                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1065                                                    args->size);
1066                 if (ret)
1067                         return -EFAULT;
1068         }
1069
1070         ret = i915_mutex_lock_interruptible(dev);
1071         if (ret)
1072                 return ret;
1073
1074         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075         if (&obj->base == NULL) {
1076                 ret = -ENOENT;
1077                 goto unlock;
1078         }
1079
1080         /* Bounds check destination. */
1081         if (args->offset > obj->base.size ||
1082             args->size > obj->base.size - args->offset) {
1083                 ret = -EINVAL;
1084                 goto out;
1085         }
1086
1087         /* prime objects have no backing filp to GEM pread/pwrite
1088          * pages from.
1089          */
1090         if (!obj->base.filp) {
1091                 ret = -EINVAL;
1092                 goto out;
1093         }
1094
1095         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097         ret = -EFAULT;
1098         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099          * it would end up going through the fenced access, and we'll get
1100          * different detiling behavior between reading and writing.
1101          * pread/pwrite currently are reading and writing from the CPU
1102          * perspective, requiring manual detiling by the client.
1103          */
1104         if (obj->tiling_mode == I915_TILING_NONE &&
1105             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106             cpu_write_needs_clflush(obj)) {
1107                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108                 /* Note that the gtt paths might fail with non-page-backed user
1109                  * pointers (e.g. gtt mappings when moving data between
1110                  * textures). Fallback to the shmem path in that case. */
1111         }
1112
1113         if (ret == -EFAULT || ret == -ENOSPC) {
1114                 if (obj->phys_handle)
1115                         ret = i915_gem_phys_pwrite(obj, args, file);
1116                 else
1117                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118         }
1119
1120 out:
1121         drm_gem_object_unreference(&obj->base);
1122 unlock:
1123         mutex_unlock(&dev->struct_mutex);
1124         return ret;
1125 }
1126
1127 int
1128 i915_gem_check_wedge(struct i915_gpu_error *error,
1129                      bool interruptible)
1130 {
1131         if (i915_reset_in_progress(error)) {
1132                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133                  * -EIO unconditionally for these. */
1134                 if (!interruptible)
1135                         return -EIO;
1136
1137                 /* Recovery complete, but the reset failed ... */
1138                 if (i915_terminally_wedged(error))
1139                         return -EIO;
1140
1141                 /*
1142                  * Check if GPU Reset is in progress - we need intel_ring_begin
1143                  * to work properly to reinit the hw state while the gpu is
1144                  * still marked as reset-in-progress. Handle this with a flag.
1145                  */
1146                 if (!error->reload_in_reset)
1147                         return -EAGAIN;
1148         }
1149
1150         return 0;
1151 }
1152
1153 /*
1154  * Compare seqno against outstanding lazy request. Emit a request if they are
1155  * equal.
1156  */
1157 int
1158 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1159 {
1160         int ret;
1161
1162         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1163
1164         ret = 0;
1165         if (seqno == ring->outstanding_lazy_seqno)
1166                 ret = i915_add_request(ring, NULL);
1167
1168         return ret;
1169 }
1170
1171 static void fake_irq(unsigned long data)
1172 {
1173         wake_up_process((struct task_struct *)data);
1174 }
1175
1176 static bool missed_irq(struct drm_i915_private *dev_priv,
1177                        struct intel_engine_cs *ring)
1178 {
1179         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1180 }
1181
1182 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1183 {
1184         if (file_priv == NULL)
1185                 return true;
1186
1187         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1188 }
1189
1190 /**
1191  * __i915_wait_seqno - wait until execution of seqno has finished
1192  * @ring: the ring expected to report seqno
1193  * @seqno: duh!
1194  * @reset_counter: reset sequence associated with the given seqno
1195  * @interruptible: do an interruptible wait (normally yes)
1196  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1197  *
1198  * Note: It is of utmost importance that the passed in seqno and reset_counter
1199  * values have been read by the caller in an smp safe manner. Where read-side
1200  * locks are involved, it is sufficient to read the reset_counter before
1201  * unlocking the lock that protects the seqno. For lockless tricks, the
1202  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1203  * inserted.
1204  *
1205  * Returns 0 if the seqno was found within the alloted time. Else returns the
1206  * errno with remaining time filled in timeout argument.
1207  */
1208 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1209                         unsigned reset_counter,
1210                         bool interruptible,
1211                         s64 *timeout,
1212                         struct drm_i915_file_private *file_priv)
1213 {
1214         struct drm_device *dev = ring->dev;
1215         struct drm_i915_private *dev_priv = dev->dev_private;
1216         const bool irq_test_in_progress =
1217                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1218         DEFINE_WAIT(wait);
1219         unsigned long timeout_expire;
1220         s64 before, now;
1221         int ret;
1222
1223         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1224
1225         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1226                 return 0;
1227
1228         timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1229
1230         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1231                 gen6_rps_boost(dev_priv);
1232                 if (file_priv)
1233                         mod_delayed_work(dev_priv->wq,
1234                                          &file_priv->mm.idle_work,
1235                                          msecs_to_jiffies(100));
1236         }
1237
1238         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1239                 return -ENODEV;
1240
1241         /* Record current time in case interrupted by signal, or wedged */
1242         trace_i915_gem_request_wait_begin(ring, seqno);
1243         before = ktime_get_raw_ns();
1244         for (;;) {
1245                 struct timer_list timer;
1246
1247                 prepare_to_wait(&ring->irq_queue, &wait,
1248                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1249
1250                 /* We need to check whether any gpu reset happened in between
1251                  * the caller grabbing the seqno and now ... */
1252                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254                          * is truely gone. */
1255                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256                         if (ret == 0)
1257                                 ret = -EAGAIN;
1258                         break;
1259                 }
1260
1261                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1262                         ret = 0;
1263                         break;
1264                 }
1265
1266                 if (interruptible && signal_pending(current)) {
1267                         ret = -ERESTARTSYS;
1268                         break;
1269                 }
1270
1271                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1272                         ret = -ETIME;
1273                         break;
1274                 }
1275
1276                 timer.function = NULL;
1277                 if (timeout || missed_irq(dev_priv, ring)) {
1278                         unsigned long expire;
1279
1280                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1281                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1282                         mod_timer(&timer, expire);
1283                 }
1284
1285                 io_schedule();
1286
1287                 if (timer.function) {
1288                         del_singleshot_timer_sync(&timer);
1289                         destroy_timer_on_stack(&timer);
1290                 }
1291         }
1292         now = ktime_get_raw_ns();
1293         trace_i915_gem_request_wait_end(ring, seqno);
1294
1295         if (!irq_test_in_progress)
1296                 ring->irq_put(ring);
1297
1298         finish_wait(&ring->irq_queue, &wait);
1299
1300         if (timeout) {
1301                 s64 tres = *timeout - (now - before);
1302
1303                 *timeout = tres < 0 ? 0 : tres;
1304         }
1305
1306         return ret;
1307 }
1308
1309 /**
1310  * Waits for a sequence number to be signaled, and cleans up the
1311  * request and object lists appropriately for that event.
1312  */
1313 int
1314 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1315 {
1316         struct drm_device *dev = ring->dev;
1317         struct drm_i915_private *dev_priv = dev->dev_private;
1318         bool interruptible = dev_priv->mm.interruptible;
1319         unsigned reset_counter;
1320         int ret;
1321
1322         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1323         BUG_ON(seqno == 0);
1324
1325         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1326         if (ret)
1327                 return ret;
1328
1329         ret = i915_gem_check_olr(ring, seqno);
1330         if (ret)
1331                 return ret;
1332
1333         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1334         return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1335                                  NULL, NULL);
1336 }
1337
1338 static int
1339 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1340 {
1341         if (!obj->active)
1342                 return 0;
1343
1344         /* Manually manage the write flush as we may have not yet
1345          * retired the buffer.
1346          *
1347          * Note that the last_write_seqno is always the earlier of
1348          * the two (read/write) seqno, so if we haved successfully waited,
1349          * we know we have passed the last write.
1350          */
1351         obj->last_write_seqno = 0;
1352
1353         return 0;
1354 }
1355
1356 /**
1357  * Ensures that all rendering to the object has completed and the object is
1358  * safe to unbind from the GTT or access from the CPU.
1359  */
1360 static __must_check int
1361 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1362                                bool readonly)
1363 {
1364         struct intel_engine_cs *ring = obj->ring;
1365         u32 seqno;
1366         int ret;
1367
1368         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1369         if (seqno == 0)
1370                 return 0;
1371
1372         ret = i915_wait_seqno(ring, seqno);
1373         if (ret)
1374                 return ret;
1375
1376         return i915_gem_object_wait_rendering__tail(obj);
1377 }
1378
1379 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1380  * as the object state may change during this call.
1381  */
1382 static __must_check int
1383 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1384                                             struct drm_i915_file_private *file_priv,
1385                                             bool readonly)
1386 {
1387         struct drm_device *dev = obj->base.dev;
1388         struct drm_i915_private *dev_priv = dev->dev_private;
1389         struct intel_engine_cs *ring = obj->ring;
1390         unsigned reset_counter;
1391         u32 seqno;
1392         int ret;
1393
1394         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1395         BUG_ON(!dev_priv->mm.interruptible);
1396
1397         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1398         if (seqno == 0)
1399                 return 0;
1400
1401         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1402         if (ret)
1403                 return ret;
1404
1405         ret = i915_gem_check_olr(ring, seqno);
1406         if (ret)
1407                 return ret;
1408
1409         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1410         mutex_unlock(&dev->struct_mutex);
1411         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1412                                 file_priv);
1413         mutex_lock(&dev->struct_mutex);
1414         if (ret)
1415                 return ret;
1416
1417         return i915_gem_object_wait_rendering__tail(obj);
1418 }
1419
1420 /**
1421  * Called when user space prepares to use an object with the CPU, either
1422  * through the mmap ioctl's mapping or a GTT mapping.
1423  */
1424 int
1425 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1426                           struct drm_file *file)
1427 {
1428         struct drm_i915_gem_set_domain *args = data;
1429         struct drm_i915_gem_object *obj;
1430         uint32_t read_domains = args->read_domains;
1431         uint32_t write_domain = args->write_domain;
1432         int ret;
1433
1434         /* Only handle setting domains to types used by the CPU. */
1435         if (write_domain & I915_GEM_GPU_DOMAINS)
1436                 return -EINVAL;
1437
1438         if (read_domains & I915_GEM_GPU_DOMAINS)
1439                 return -EINVAL;
1440
1441         /* Having something in the write domain implies it's in the read
1442          * domain, and only that read domain.  Enforce that in the request.
1443          */
1444         if (write_domain != 0 && read_domains != write_domain)
1445                 return -EINVAL;
1446
1447         ret = i915_mutex_lock_interruptible(dev);
1448         if (ret)
1449                 return ret;
1450
1451         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1452         if (&obj->base == NULL) {
1453                 ret = -ENOENT;
1454                 goto unlock;
1455         }
1456
1457         /* Try to flush the object off the GPU without holding the lock.
1458          * We will repeat the flush holding the lock in the normal manner
1459          * to catch cases where we are gazumped.
1460          */
1461         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1462                                                           file->driver_priv,
1463                                                           !write_domain);
1464         if (ret)
1465                 goto unref;
1466
1467         if (read_domains & I915_GEM_DOMAIN_GTT) {
1468                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1469
1470                 /* Silently promote "you're not bound, there was nothing to do"
1471                  * to success, since the client was just asking us to
1472                  * make sure everything was done.
1473                  */
1474                 if (ret == -EINVAL)
1475                         ret = 0;
1476         } else {
1477                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1478         }
1479
1480 unref:
1481         drm_gem_object_unreference(&obj->base);
1482 unlock:
1483         mutex_unlock(&dev->struct_mutex);
1484         return ret;
1485 }
1486
1487 /**
1488  * Called when user space has done writes to this buffer
1489  */
1490 int
1491 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1492                          struct drm_file *file)
1493 {
1494         struct drm_i915_gem_sw_finish *args = data;
1495         struct drm_i915_gem_object *obj;
1496         int ret = 0;
1497
1498         ret = i915_mutex_lock_interruptible(dev);
1499         if (ret)
1500                 return ret;
1501
1502         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1503         if (&obj->base == NULL) {
1504                 ret = -ENOENT;
1505                 goto unlock;
1506         }
1507
1508         /* Pinned buffers may be scanout, so flush the cache */
1509         if (obj->pin_display)
1510                 i915_gem_object_flush_cpu_write_domain(obj, true);
1511
1512         drm_gem_object_unreference(&obj->base);
1513 unlock:
1514         mutex_unlock(&dev->struct_mutex);
1515         return ret;
1516 }
1517
1518 /**
1519  * Maps the contents of an object, returning the address it is mapped
1520  * into.
1521  *
1522  * While the mapping holds a reference on the contents of the object, it doesn't
1523  * imply a ref on the object itself.
1524  *
1525  * IMPORTANT:
1526  *
1527  * DRM driver writers who look a this function as an example for how to do GEM
1528  * mmap support, please don't implement mmap support like here. The modern way
1529  * to implement DRM mmap support is with an mmap offset ioctl (like
1530  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1531  * That way debug tooling like valgrind will understand what's going on, hiding
1532  * the mmap call in a driver private ioctl will break that. The i915 driver only
1533  * does cpu mmaps this way because we didn't know better.
1534  */
1535 int
1536 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1537                     struct drm_file *file)
1538 {
1539         struct drm_i915_gem_mmap *args = data;
1540         struct drm_gem_object *obj;
1541         unsigned long addr;
1542
1543         obj = drm_gem_object_lookup(dev, file, args->handle);
1544         if (obj == NULL)
1545                 return -ENOENT;
1546
1547         /* prime objects have no backing filp to GEM mmap
1548          * pages from.
1549          */
1550         if (!obj->filp) {
1551                 drm_gem_object_unreference_unlocked(obj);
1552                 return -EINVAL;
1553         }
1554
1555         addr = vm_mmap(obj->filp, 0, args->size,
1556                        PROT_READ | PROT_WRITE, MAP_SHARED,
1557                        args->offset);
1558         drm_gem_object_unreference_unlocked(obj);
1559         if (IS_ERR((void *)addr))
1560                 return addr;
1561
1562         args->addr_ptr = (uint64_t) addr;
1563
1564         return 0;
1565 }
1566
1567 /**
1568  * i915_gem_fault - fault a page into the GTT
1569  * vma: VMA in question
1570  * vmf: fault info
1571  *
1572  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1573  * from userspace.  The fault handler takes care of binding the object to
1574  * the GTT (if needed), allocating and programming a fence register (again,
1575  * only if needed based on whether the old reg is still valid or the object
1576  * is tiled) and inserting a new PTE into the faulting process.
1577  *
1578  * Note that the faulting process may involve evicting existing objects
1579  * from the GTT and/or fence registers to make room.  So performance may
1580  * suffer if the GTT working set is large or there are few fence registers
1581  * left.
1582  */
1583 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1584 {
1585         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1586         struct drm_device *dev = obj->base.dev;
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588         pgoff_t page_offset;
1589         unsigned long pfn;
1590         int ret = 0;
1591         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1592
1593         intel_runtime_pm_get(dev_priv);
1594
1595         /* We don't use vmf->pgoff since that has the fake offset */
1596         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1597                 PAGE_SHIFT;
1598
1599         ret = i915_mutex_lock_interruptible(dev);
1600         if (ret)
1601                 goto out;
1602
1603         trace_i915_gem_object_fault(obj, page_offset, true, write);
1604
1605         /* Try to flush the object off the GPU first without holding the lock.
1606          * Upon reacquiring the lock, we will perform our sanity checks and then
1607          * repeat the flush holding the lock in the normal manner to catch cases
1608          * where we are gazumped.
1609          */
1610         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1611         if (ret)
1612                 goto unlock;
1613
1614         /* Access to snoopable pages through the GTT is incoherent. */
1615         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1616                 ret = -EFAULT;
1617                 goto unlock;
1618         }
1619
1620         /* Now bind it into the GTT if needed */
1621         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1622         if (ret)
1623                 goto unlock;
1624
1625         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1626         if (ret)
1627                 goto unpin;
1628
1629         ret = i915_gem_object_get_fence(obj);
1630         if (ret)
1631                 goto unpin;
1632
1633         /* Finally, remap it using the new GTT offset */
1634         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1635         pfn >>= PAGE_SHIFT;
1636
1637         if (!obj->fault_mappable) {
1638                 unsigned long size = min_t(unsigned long,
1639                                            vma->vm_end - vma->vm_start,
1640                                            obj->base.size);
1641                 int i;
1642
1643                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1644                         ret = vm_insert_pfn(vma,
1645                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1646                                             pfn + i);
1647                         if (ret)
1648                                 break;
1649                 }
1650
1651                 obj->fault_mappable = true;
1652         } else
1653                 ret = vm_insert_pfn(vma,
1654                                     (unsigned long)vmf->virtual_address,
1655                                     pfn + page_offset);
1656 unpin:
1657         i915_gem_object_ggtt_unpin(obj);
1658 unlock:
1659         mutex_unlock(&dev->struct_mutex);
1660 out:
1661         switch (ret) {
1662         case -EIO:
1663                 /*
1664                  * We eat errors when the gpu is terminally wedged to avoid
1665                  * userspace unduly crashing (gl has no provisions for mmaps to
1666                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1667                  * and so needs to be reported.
1668                  */
1669                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1670                         ret = VM_FAULT_SIGBUS;
1671                         break;
1672                 }
1673         case -EAGAIN:
1674                 /*
1675                  * EAGAIN means the gpu is hung and we'll wait for the error
1676                  * handler to reset everything when re-faulting in
1677                  * i915_mutex_lock_interruptible.
1678                  */
1679         case 0:
1680         case -ERESTARTSYS:
1681         case -EINTR:
1682         case -EBUSY:
1683                 /*
1684                  * EBUSY is ok: this just means that another thread
1685                  * already did the job.
1686                  */
1687                 ret = VM_FAULT_NOPAGE;
1688                 break;
1689         case -ENOMEM:
1690                 ret = VM_FAULT_OOM;
1691                 break;
1692         case -ENOSPC:
1693         case -EFAULT:
1694                 ret = VM_FAULT_SIGBUS;
1695                 break;
1696         default:
1697                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1698                 ret = VM_FAULT_SIGBUS;
1699                 break;
1700         }
1701
1702         intel_runtime_pm_put(dev_priv);
1703         return ret;
1704 }
1705
1706 /**
1707  * i915_gem_release_mmap - remove physical page mappings
1708  * @obj: obj in question
1709  *
1710  * Preserve the reservation of the mmapping with the DRM core code, but
1711  * relinquish ownership of the pages back to the system.
1712  *
1713  * It is vital that we remove the page mapping if we have mapped a tiled
1714  * object through the GTT and then lose the fence register due to
1715  * resource pressure. Similarly if the object has been moved out of the
1716  * aperture, than pages mapped into userspace must be revoked. Removing the
1717  * mapping will then trigger a page fault on the next user access, allowing
1718  * fixup by i915_gem_fault().
1719  */
1720 void
1721 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1722 {
1723         if (!obj->fault_mappable)
1724                 return;
1725
1726         drm_vma_node_unmap(&obj->base.vma_node,
1727                            obj->base.dev->anon_inode->i_mapping);
1728         obj->fault_mappable = false;
1729 }
1730
1731 void
1732 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1733 {
1734         struct drm_i915_gem_object *obj;
1735
1736         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1737                 i915_gem_release_mmap(obj);
1738 }
1739
1740 uint32_t
1741 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1742 {
1743         uint32_t gtt_size;
1744
1745         if (INTEL_INFO(dev)->gen >= 4 ||
1746             tiling_mode == I915_TILING_NONE)
1747                 return size;
1748
1749         /* Previous chips need a power-of-two fence region when tiling */
1750         if (INTEL_INFO(dev)->gen == 3)
1751                 gtt_size = 1024*1024;
1752         else
1753                 gtt_size = 512*1024;
1754
1755         while (gtt_size < size)
1756                 gtt_size <<= 1;
1757
1758         return gtt_size;
1759 }
1760
1761 /**
1762  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1763  * @obj: object to check
1764  *
1765  * Return the required GTT alignment for an object, taking into account
1766  * potential fence register mapping.
1767  */
1768 uint32_t
1769 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1770                            int tiling_mode, bool fenced)
1771 {
1772         /*
1773          * Minimum alignment is 4k (GTT page size), but might be greater
1774          * if a fence register is needed for the object.
1775          */
1776         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1777             tiling_mode == I915_TILING_NONE)
1778                 return 4096;
1779
1780         /*
1781          * Previous chips need to be aligned to the size of the smallest
1782          * fence register that can contain the object.
1783          */
1784         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1785 }
1786
1787 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1788 {
1789         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1790         int ret;
1791
1792         if (drm_vma_node_has_offset(&obj->base.vma_node))
1793                 return 0;
1794
1795         dev_priv->mm.shrinker_no_lock_stealing = true;
1796
1797         ret = drm_gem_create_mmap_offset(&obj->base);
1798         if (ret != -ENOSPC)
1799                 goto out;
1800
1801         /* Badly fragmented mmap space? The only way we can recover
1802          * space is by destroying unwanted objects. We can't randomly release
1803          * mmap_offsets as userspace expects them to be persistent for the
1804          * lifetime of the objects. The closest we can is to release the
1805          * offsets on purgeable objects by truncating it and marking it purged,
1806          * which prevents userspace from ever using that object again.
1807          */
1808         i915_gem_shrink(dev_priv,
1809                         obj->base.size >> PAGE_SHIFT,
1810                         I915_SHRINK_BOUND |
1811                         I915_SHRINK_UNBOUND |
1812                         I915_SHRINK_PURGEABLE);
1813         ret = drm_gem_create_mmap_offset(&obj->base);
1814         if (ret != -ENOSPC)
1815                 goto out;
1816
1817         i915_gem_shrink_all(dev_priv);
1818         ret = drm_gem_create_mmap_offset(&obj->base);
1819 out:
1820         dev_priv->mm.shrinker_no_lock_stealing = false;
1821
1822         return ret;
1823 }
1824
1825 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1826 {
1827         drm_gem_free_mmap_offset(&obj->base);
1828 }
1829
1830 int
1831 i915_gem_mmap_gtt(struct drm_file *file,
1832                   struct drm_device *dev,
1833                   uint32_t handle,
1834                   uint64_t *offset)
1835 {
1836         struct drm_i915_private *dev_priv = dev->dev_private;
1837         struct drm_i915_gem_object *obj;
1838         int ret;
1839
1840         ret = i915_mutex_lock_interruptible(dev);
1841         if (ret)
1842                 return ret;
1843
1844         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1845         if (&obj->base == NULL) {
1846                 ret = -ENOENT;
1847                 goto unlock;
1848         }
1849
1850         if (obj->base.size > dev_priv->gtt.mappable_end) {
1851                 ret = -E2BIG;
1852                 goto out;
1853         }
1854
1855         if (obj->madv != I915_MADV_WILLNEED) {
1856                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1857                 ret = -EFAULT;
1858                 goto out;
1859         }
1860
1861         ret = i915_gem_object_create_mmap_offset(obj);
1862         if (ret)
1863                 goto out;
1864
1865         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1866
1867 out:
1868         drm_gem_object_unreference(&obj->base);
1869 unlock:
1870         mutex_unlock(&dev->struct_mutex);
1871         return ret;
1872 }
1873
1874 /**
1875  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1876  * @dev: DRM device
1877  * @data: GTT mapping ioctl data
1878  * @file: GEM object info
1879  *
1880  * Simply returns the fake offset to userspace so it can mmap it.
1881  * The mmap call will end up in drm_gem_mmap(), which will set things
1882  * up so we can get faults in the handler above.
1883  *
1884  * The fault handler will take care of binding the object into the GTT
1885  * (since it may have been evicted to make room for something), allocating
1886  * a fence register, and mapping the appropriate aperture address into
1887  * userspace.
1888  */
1889 int
1890 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1891                         struct drm_file *file)
1892 {
1893         struct drm_i915_gem_mmap_gtt *args = data;
1894
1895         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1896 }
1897
1898 static inline int
1899 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1900 {
1901         return obj->madv == I915_MADV_DONTNEED;
1902 }
1903
1904 /* Immediately discard the backing storage */
1905 static void
1906 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1907 {
1908         i915_gem_object_free_mmap_offset(obj);
1909
1910         if (obj->base.filp == NULL)
1911                 return;
1912
1913         /* Our goal here is to return as much of the memory as
1914          * is possible back to the system as we are called from OOM.
1915          * To do this we must instruct the shmfs to drop all of its
1916          * backing pages, *now*.
1917          */
1918         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1919         obj->madv = __I915_MADV_PURGED;
1920 }
1921
1922 /* Try to discard unwanted pages */
1923 static void
1924 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1925 {
1926         struct address_space *mapping;
1927
1928         switch (obj->madv) {
1929         case I915_MADV_DONTNEED:
1930                 i915_gem_object_truncate(obj);
1931         case __I915_MADV_PURGED:
1932                 return;
1933         }
1934
1935         if (obj->base.filp == NULL)
1936                 return;
1937
1938         mapping = file_inode(obj->base.filp)->i_mapping,
1939         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1940 }
1941
1942 static void
1943 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1944 {
1945         struct sg_page_iter sg_iter;
1946         int ret;
1947
1948         BUG_ON(obj->madv == __I915_MADV_PURGED);
1949
1950         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1951         if (ret) {
1952                 /* In the event of a disaster, abandon all caches and
1953                  * hope for the best.
1954                  */
1955                 WARN_ON(ret != -EIO);
1956                 i915_gem_clflush_object(obj, true);
1957                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1958         }
1959
1960         if (i915_gem_object_needs_bit17_swizzle(obj))
1961                 i915_gem_object_save_bit_17_swizzle(obj);
1962
1963         if (obj->madv == I915_MADV_DONTNEED)
1964                 obj->dirty = 0;
1965
1966         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1967                 struct page *page = sg_page_iter_page(&sg_iter);
1968
1969                 if (obj->dirty)
1970                         set_page_dirty(page);
1971
1972                 if (obj->madv == I915_MADV_WILLNEED)
1973                         mark_page_accessed(page);
1974
1975                 page_cache_release(page);
1976         }
1977         obj->dirty = 0;
1978
1979         sg_free_table(obj->pages);
1980         kfree(obj->pages);
1981 }
1982
1983 int
1984 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1985 {
1986         const struct drm_i915_gem_object_ops *ops = obj->ops;
1987
1988         if (obj->pages == NULL)
1989                 return 0;
1990
1991         if (obj->pages_pin_count)
1992                 return -EBUSY;
1993
1994         BUG_ON(i915_gem_obj_bound_any(obj));
1995
1996         /* ->put_pages might need to allocate memory for the bit17 swizzle
1997          * array, hence protect them from being reaped by removing them from gtt
1998          * lists early. */
1999         list_del(&obj->global_list);
2000
2001         ops->put_pages(obj);
2002         obj->pages = NULL;
2003
2004         i915_gem_object_invalidate(obj);
2005
2006         return 0;
2007 }
2008
2009 unsigned long
2010 i915_gem_shrink(struct drm_i915_private *dev_priv,
2011                 long target, unsigned flags)
2012 {
2013         const struct {
2014                 struct list_head *list;
2015                 unsigned int bit;
2016         } phases[] = {
2017                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2018                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2019                 { NULL, 0 },
2020         }, *phase;
2021         unsigned long count = 0;
2022
2023         /*
2024          * As we may completely rewrite the (un)bound list whilst unbinding
2025          * (due to retiring requests) we have to strictly process only
2026          * one element of the list at the time, and recheck the list
2027          * on every iteration.
2028          *
2029          * In particular, we must hold a reference whilst removing the
2030          * object as we may end up waiting for and/or retiring the objects.
2031          * This might release the final reference (held by the active list)
2032          * and result in the object being freed from under us. This is
2033          * similar to the precautions the eviction code must take whilst
2034          * removing objects.
2035          *
2036          * Also note that although these lists do not hold a reference to
2037          * the object we can safely grab one here: The final object
2038          * unreferencing and the bound_list are both protected by the
2039          * dev->struct_mutex and so we won't ever be able to observe an
2040          * object on the bound_list with a reference count equals 0.
2041          */
2042         for (phase = phases; phase->list; phase++) {
2043                 struct list_head still_in_list;
2044
2045                 if ((flags & phase->bit) == 0)
2046                         continue;
2047
2048                 INIT_LIST_HEAD(&still_in_list);
2049                 while (count < target && !list_empty(phase->list)) {
2050                         struct drm_i915_gem_object *obj;
2051                         struct i915_vma *vma, *v;
2052
2053                         obj = list_first_entry(phase->list,
2054                                                typeof(*obj), global_list);
2055                         list_move_tail(&obj->global_list, &still_in_list);
2056
2057                         if (flags & I915_SHRINK_PURGEABLE &&
2058                             !i915_gem_object_is_purgeable(obj))
2059                                 continue;
2060
2061                         drm_gem_object_reference(&obj->base);
2062
2063                         /* For the unbound phase, this should be a no-op! */
2064                         list_for_each_entry_safe(vma, v,
2065                                                  &obj->vma_list, vma_link)
2066                                 if (i915_vma_unbind(vma))
2067                                         break;
2068
2069                         if (i915_gem_object_put_pages(obj) == 0)
2070                                 count += obj->base.size >> PAGE_SHIFT;
2071
2072                         drm_gem_object_unreference(&obj->base);
2073                 }
2074                 list_splice(&still_in_list, phase->list);
2075         }
2076
2077         return count;
2078 }
2079
2080 static unsigned long
2081 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2082 {
2083         i915_gem_evict_everything(dev_priv->dev);
2084         return i915_gem_shrink(dev_priv, LONG_MAX,
2085                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2086 }
2087
2088 static int
2089 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2090 {
2091         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2092         int page_count, i;
2093         struct address_space *mapping;
2094         struct sg_table *st;
2095         struct scatterlist *sg;
2096         struct sg_page_iter sg_iter;
2097         struct page *page;
2098         unsigned long last_pfn = 0;     /* suppress gcc warning */
2099         gfp_t gfp;
2100
2101         /* Assert that the object is not currently in any GPU domain. As it
2102          * wasn't in the GTT, there shouldn't be any way it could have been in
2103          * a GPU cache
2104          */
2105         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2106         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2107
2108         st = kmalloc(sizeof(*st), GFP_KERNEL);
2109         if (st == NULL)
2110                 return -ENOMEM;
2111
2112         page_count = obj->base.size / PAGE_SIZE;
2113         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2114                 kfree(st);
2115                 return -ENOMEM;
2116         }
2117
2118         /* Get the list of pages out of our struct file.  They'll be pinned
2119          * at this point until we release them.
2120          *
2121          * Fail silently without starting the shrinker
2122          */
2123         mapping = file_inode(obj->base.filp)->i_mapping;
2124         gfp = mapping_gfp_mask(mapping);
2125         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2126         gfp &= ~(__GFP_IO | __GFP_WAIT);
2127         sg = st->sgl;
2128         st->nents = 0;
2129         for (i = 0; i < page_count; i++) {
2130                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2131                 if (IS_ERR(page)) {
2132                         i915_gem_shrink(dev_priv,
2133                                         page_count,
2134                                         I915_SHRINK_BOUND |
2135                                         I915_SHRINK_UNBOUND |
2136                                         I915_SHRINK_PURGEABLE);
2137                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2138                 }
2139                 if (IS_ERR(page)) {
2140                         /* We've tried hard to allocate the memory by reaping
2141                          * our own buffer, now let the real VM do its job and
2142                          * go down in flames if truly OOM.
2143                          */
2144                         i915_gem_shrink_all(dev_priv);
2145                         page = shmem_read_mapping_page(mapping, i);
2146                         if (IS_ERR(page))
2147                                 goto err_pages;
2148                 }
2149 #ifdef CONFIG_SWIOTLB
2150                 if (swiotlb_nr_tbl()) {
2151                         st->nents++;
2152                         sg_set_page(sg, page, PAGE_SIZE, 0);
2153                         sg = sg_next(sg);
2154                         continue;
2155                 }
2156 #endif
2157                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2158                         if (i)
2159                                 sg = sg_next(sg);
2160                         st->nents++;
2161                         sg_set_page(sg, page, PAGE_SIZE, 0);
2162                 } else {
2163                         sg->length += PAGE_SIZE;
2164                 }
2165                 last_pfn = page_to_pfn(page);
2166
2167                 /* Check that the i965g/gm workaround works. */
2168                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2169         }
2170 #ifdef CONFIG_SWIOTLB
2171         if (!swiotlb_nr_tbl())
2172 #endif
2173                 sg_mark_end(sg);
2174         obj->pages = st;
2175
2176         if (i915_gem_object_needs_bit17_swizzle(obj))
2177                 i915_gem_object_do_bit_17_swizzle(obj);
2178
2179         if (obj->tiling_mode != I915_TILING_NONE &&
2180             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2181                 i915_gem_object_pin_pages(obj);
2182
2183         return 0;
2184
2185 err_pages:
2186         sg_mark_end(sg);
2187         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2188                 page_cache_release(sg_page_iter_page(&sg_iter));
2189         sg_free_table(st);
2190         kfree(st);
2191
2192         /* shmemfs first checks if there is enough memory to allocate the page
2193          * and reports ENOSPC should there be insufficient, along with the usual
2194          * ENOMEM for a genuine allocation failure.
2195          *
2196          * We use ENOSPC in our driver to mean that we have run out of aperture
2197          * space and so want to translate the error from shmemfs back to our
2198          * usual understanding of ENOMEM.
2199          */
2200         if (PTR_ERR(page) == -ENOSPC)
2201                 return -ENOMEM;
2202         else
2203                 return PTR_ERR(page);
2204 }
2205
2206 /* Ensure that the associated pages are gathered from the backing storage
2207  * and pinned into our object. i915_gem_object_get_pages() may be called
2208  * multiple times before they are released by a single call to
2209  * i915_gem_object_put_pages() - once the pages are no longer referenced
2210  * either as a result of memory pressure (reaping pages under the shrinker)
2211  * or as the object is itself released.
2212  */
2213 int
2214 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2215 {
2216         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2217         const struct drm_i915_gem_object_ops *ops = obj->ops;
2218         int ret;
2219
2220         if (obj->pages)
2221                 return 0;
2222
2223         if (obj->madv != I915_MADV_WILLNEED) {
2224                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2225                 return -EFAULT;
2226         }
2227
2228         BUG_ON(obj->pages_pin_count);
2229
2230         ret = ops->get_pages(obj);
2231         if (ret)
2232                 return ret;
2233
2234         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2235         return 0;
2236 }
2237
2238 static void
2239 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2240                                struct intel_engine_cs *ring)
2241 {
2242         u32 seqno = intel_ring_get_seqno(ring);
2243
2244         BUG_ON(ring == NULL);
2245         if (obj->ring != ring && obj->last_write_seqno) {
2246                 /* Keep the seqno relative to the current ring */
2247                 obj->last_write_seqno = seqno;
2248         }
2249         obj->ring = ring;
2250
2251         /* Add a reference if we're newly entering the active list. */
2252         if (!obj->active) {
2253                 drm_gem_object_reference(&obj->base);
2254                 obj->active = 1;
2255         }
2256
2257         list_move_tail(&obj->ring_list, &ring->active_list);
2258
2259         obj->last_read_seqno = seqno;
2260 }
2261
2262 void i915_vma_move_to_active(struct i915_vma *vma,
2263                              struct intel_engine_cs *ring)
2264 {
2265         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2266         return i915_gem_object_move_to_active(vma->obj, ring);
2267 }
2268
2269 static void
2270 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2271 {
2272         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2273         struct i915_address_space *vm;
2274         struct i915_vma *vma;
2275
2276         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2277         BUG_ON(!obj->active);
2278
2279         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2280                 vma = i915_gem_obj_to_vma(obj, vm);
2281                 if (vma && !list_empty(&vma->mm_list))
2282                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2283         }
2284
2285         intel_fb_obj_flush(obj, true);
2286
2287         list_del_init(&obj->ring_list);
2288         obj->ring = NULL;
2289
2290         obj->last_read_seqno = 0;
2291         obj->last_write_seqno = 0;
2292         obj->base.write_domain = 0;
2293
2294         obj->last_fenced_seqno = 0;
2295
2296         obj->active = 0;
2297         drm_gem_object_unreference(&obj->base);
2298
2299         WARN_ON(i915_verify_lists(dev));
2300 }
2301
2302 static void
2303 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2304 {
2305         struct intel_engine_cs *ring = obj->ring;
2306
2307         if (ring == NULL)
2308                 return;
2309
2310         if (i915_seqno_passed(ring->get_seqno(ring, true),
2311                               obj->last_read_seqno))
2312                 i915_gem_object_move_to_inactive(obj);
2313 }
2314
2315 static int
2316 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2317 {
2318         struct drm_i915_private *dev_priv = dev->dev_private;
2319         struct intel_engine_cs *ring;
2320         int ret, i, j;
2321
2322         /* Carefully retire all requests without writing to the rings */
2323         for_each_ring(ring, dev_priv, i) {
2324                 ret = intel_ring_idle(ring);
2325                 if (ret)
2326                         return ret;
2327         }
2328         i915_gem_retire_requests(dev);
2329
2330         /* Finally reset hw state */
2331         for_each_ring(ring, dev_priv, i) {
2332                 intel_ring_init_seqno(ring, seqno);
2333
2334                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2335                         ring->semaphore.sync_seqno[j] = 0;
2336         }
2337
2338         return 0;
2339 }
2340
2341 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2342 {
2343         struct drm_i915_private *dev_priv = dev->dev_private;
2344         int ret;
2345
2346         if (seqno == 0)
2347                 return -EINVAL;
2348
2349         /* HWS page needs to be set less than what we
2350          * will inject to ring
2351          */
2352         ret = i915_gem_init_seqno(dev, seqno - 1);
2353         if (ret)
2354                 return ret;
2355
2356         /* Carefully set the last_seqno value so that wrap
2357          * detection still works
2358          */
2359         dev_priv->next_seqno = seqno;
2360         dev_priv->last_seqno = seqno - 1;
2361         if (dev_priv->last_seqno == 0)
2362                 dev_priv->last_seqno--;
2363
2364         return 0;
2365 }
2366
2367 int
2368 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2369 {
2370         struct drm_i915_private *dev_priv = dev->dev_private;
2371
2372         /* reserve 0 for non-seqno */
2373         if (dev_priv->next_seqno == 0) {
2374                 int ret = i915_gem_init_seqno(dev, 0);
2375                 if (ret)
2376                         return ret;
2377
2378                 dev_priv->next_seqno = 1;
2379         }
2380
2381         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2382         return 0;
2383 }
2384
2385 int __i915_add_request(struct intel_engine_cs *ring,
2386                        struct drm_file *file,
2387                        struct drm_i915_gem_object *obj,
2388                        u32 *out_seqno)
2389 {
2390         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2391         struct drm_i915_gem_request *request;
2392         struct intel_ringbuffer *ringbuf;
2393         u32 request_ring_position, request_start;
2394         int ret;
2395
2396         request = ring->preallocated_lazy_request;
2397         if (WARN_ON(request == NULL))
2398                 return -ENOMEM;
2399
2400         if (i915.enable_execlists) {
2401                 struct intel_context *ctx = request->ctx;
2402                 ringbuf = ctx->engine[ring->id].ringbuf;
2403         } else
2404                 ringbuf = ring->buffer;
2405
2406         request_start = intel_ring_get_tail(ringbuf);
2407         /*
2408          * Emit any outstanding flushes - execbuf can fail to emit the flush
2409          * after having emitted the batchbuffer command. Hence we need to fix
2410          * things up similar to emitting the lazy request. The difference here
2411          * is that the flush _must_ happen before the next request, no matter
2412          * what.
2413          */
2414         if (i915.enable_execlists) {
2415                 ret = logical_ring_flush_all_caches(ringbuf);
2416                 if (ret)
2417                         return ret;
2418         } else {
2419                 ret = intel_ring_flush_all_caches(ring);
2420                 if (ret)
2421                         return ret;
2422         }
2423
2424         /* Record the position of the start of the request so that
2425          * should we detect the updated seqno part-way through the
2426          * GPU processing the request, we never over-estimate the
2427          * position of the head.
2428          */
2429         request_ring_position = intel_ring_get_tail(ringbuf);
2430
2431         if (i915.enable_execlists) {
2432                 ret = ring->emit_request(ringbuf);
2433                 if (ret)
2434                         return ret;
2435         } else {
2436                 ret = ring->add_request(ring);
2437                 if (ret)
2438                         return ret;
2439         }
2440
2441         request->seqno = intel_ring_get_seqno(ring);
2442         request->ring = ring;
2443         request->head = request_start;
2444         request->tail = request_ring_position;
2445
2446         /* Whilst this request exists, batch_obj will be on the
2447          * active_list, and so will hold the active reference. Only when this
2448          * request is retired will the the batch_obj be moved onto the
2449          * inactive_list and lose its active reference. Hence we do not need
2450          * to explicitly hold another reference here.
2451          */
2452         request->batch_obj = obj;
2453
2454         if (!i915.enable_execlists) {
2455                 /* Hold a reference to the current context so that we can inspect
2456                  * it later in case a hangcheck error event fires.
2457                  */
2458                 request->ctx = ring->last_context;
2459                 if (request->ctx)
2460                         i915_gem_context_reference(request->ctx);
2461         }
2462
2463         request->emitted_jiffies = jiffies;
2464         list_add_tail(&request->list, &ring->request_list);
2465         request->file_priv = NULL;
2466
2467         if (file) {
2468                 struct drm_i915_file_private *file_priv = file->driver_priv;
2469
2470                 spin_lock(&file_priv->mm.lock);
2471                 request->file_priv = file_priv;
2472                 list_add_tail(&request->client_list,
2473                               &file_priv->mm.request_list);
2474                 spin_unlock(&file_priv->mm.lock);
2475         }
2476
2477         trace_i915_gem_request_add(ring, request->seqno);
2478         ring->outstanding_lazy_seqno = 0;
2479         ring->preallocated_lazy_request = NULL;
2480
2481         i915_queue_hangcheck(ring->dev);
2482
2483         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2484         queue_delayed_work(dev_priv->wq,
2485                            &dev_priv->mm.retire_work,
2486                            round_jiffies_up_relative(HZ));
2487         intel_mark_busy(dev_priv->dev);
2488
2489         if (out_seqno)
2490                 *out_seqno = request->seqno;
2491         return 0;
2492 }
2493
2494 static inline void
2495 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2496 {
2497         struct drm_i915_file_private *file_priv = request->file_priv;
2498
2499         if (!file_priv)
2500                 return;
2501
2502         spin_lock(&file_priv->mm.lock);
2503         list_del(&request->client_list);
2504         request->file_priv = NULL;
2505         spin_unlock(&file_priv->mm.lock);
2506 }
2507
2508 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2509                                    const struct intel_context *ctx)
2510 {
2511         unsigned long elapsed;
2512
2513         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2514
2515         if (ctx->hang_stats.banned)
2516                 return true;
2517
2518         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2519                 if (!i915_gem_context_is_default(ctx)) {
2520                         DRM_DEBUG("context hanging too fast, banning!\n");
2521                         return true;
2522                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2523                         if (i915_stop_ring_allow_warn(dev_priv))
2524                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2525                         return true;
2526                 }
2527         }
2528
2529         return false;
2530 }
2531
2532 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2533                                   struct intel_context *ctx,
2534                                   const bool guilty)
2535 {
2536         struct i915_ctx_hang_stats *hs;
2537
2538         if (WARN_ON(!ctx))
2539                 return;
2540
2541         hs = &ctx->hang_stats;
2542
2543         if (guilty) {
2544                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2545                 hs->batch_active++;
2546                 hs->guilty_ts = get_seconds();
2547         } else {
2548                 hs->batch_pending++;
2549         }
2550 }
2551
2552 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2553 {
2554         struct intel_context *ctx = request->ctx;
2555
2556         list_del(&request->list);
2557         i915_gem_request_remove_from_client(request);
2558
2559         if (i915.enable_execlists && ctx) {
2560                 struct intel_engine_cs *ring = request->ring;
2561
2562                 if (ctx != ring->default_context)
2563                         intel_lr_context_unpin(ring, ctx);
2564                 i915_gem_context_unreference(ctx);
2565         }
2566         kfree(request);
2567 }
2568
2569 struct drm_i915_gem_request *
2570 i915_gem_find_active_request(struct intel_engine_cs *ring)
2571 {
2572         struct drm_i915_gem_request *request;
2573         u32 completed_seqno;
2574
2575         completed_seqno = ring->get_seqno(ring, false);
2576
2577         list_for_each_entry(request, &ring->request_list, list) {
2578                 if (i915_seqno_passed(completed_seqno, request->seqno))
2579                         continue;
2580
2581                 return request;
2582         }
2583
2584         return NULL;
2585 }
2586
2587 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2588                                        struct intel_engine_cs *ring)
2589 {
2590         struct drm_i915_gem_request *request;
2591         bool ring_hung;
2592
2593         request = i915_gem_find_active_request(ring);
2594
2595         if (request == NULL)
2596                 return;
2597
2598         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2599
2600         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2601
2602         list_for_each_entry_continue(request, &ring->request_list, list)
2603                 i915_set_reset_status(dev_priv, request->ctx, false);
2604 }
2605
2606 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2607                                         struct intel_engine_cs *ring)
2608 {
2609         while (!list_empty(&ring->active_list)) {
2610                 struct drm_i915_gem_object *obj;
2611
2612                 obj = list_first_entry(&ring->active_list,
2613                                        struct drm_i915_gem_object,
2614                                        ring_list);
2615
2616                 i915_gem_object_move_to_inactive(obj);
2617         }
2618
2619         /*
2620          * Clear the execlists queue up before freeing the requests, as those
2621          * are the ones that keep the context and ringbuffer backing objects
2622          * pinned in place.
2623          */
2624         while (!list_empty(&ring->execlist_queue)) {
2625                 struct intel_ctx_submit_request *submit_req;
2626
2627                 submit_req = list_first_entry(&ring->execlist_queue,
2628                                 struct intel_ctx_submit_request,
2629                                 execlist_link);
2630                 list_del(&submit_req->execlist_link);
2631                 intel_runtime_pm_put(dev_priv);
2632                 i915_gem_context_unreference(submit_req->ctx);
2633                 kfree(submit_req);
2634         }
2635
2636         /*
2637          * We must free the requests after all the corresponding objects have
2638          * been moved off active lists. Which is the same order as the normal
2639          * retire_requests function does. This is important if object hold
2640          * implicit references on things like e.g. ppgtt address spaces through
2641          * the request.
2642          */
2643         while (!list_empty(&ring->request_list)) {
2644                 struct drm_i915_gem_request *request;
2645
2646                 request = list_first_entry(&ring->request_list,
2647                                            struct drm_i915_gem_request,
2648                                            list);
2649
2650                 i915_gem_free_request(request);
2651         }
2652
2653         /* These may not have been flush before the reset, do so now */
2654         kfree(ring->preallocated_lazy_request);
2655         ring->preallocated_lazy_request = NULL;
2656         ring->outstanding_lazy_seqno = 0;
2657 }
2658
2659 void i915_gem_restore_fences(struct drm_device *dev)
2660 {
2661         struct drm_i915_private *dev_priv = dev->dev_private;
2662         int i;
2663
2664         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2665                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2666
2667                 /*
2668                  * Commit delayed tiling changes if we have an object still
2669                  * attached to the fence, otherwise just clear the fence.
2670                  */
2671                 if (reg->obj) {
2672                         i915_gem_object_update_fence(reg->obj, reg,
2673                                                      reg->obj->tiling_mode);
2674                 } else {
2675                         i915_gem_write_fence(dev, i, NULL);
2676                 }
2677         }
2678 }
2679
2680 void i915_gem_reset(struct drm_device *dev)
2681 {
2682         struct drm_i915_private *dev_priv = dev->dev_private;
2683         struct intel_engine_cs *ring;
2684         int i;
2685
2686         /*
2687          * Before we free the objects from the requests, we need to inspect
2688          * them for finding the guilty party. As the requests only borrow
2689          * their reference to the objects, the inspection must be done first.
2690          */
2691         for_each_ring(ring, dev_priv, i)
2692                 i915_gem_reset_ring_status(dev_priv, ring);
2693
2694         for_each_ring(ring, dev_priv, i)
2695                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2696
2697         i915_gem_context_reset(dev);
2698
2699         i915_gem_restore_fences(dev);
2700 }
2701
2702 /**
2703  * This function clears the request list as sequence numbers are passed.
2704  */
2705 void
2706 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2707 {
2708         uint32_t seqno;
2709
2710         if (list_empty(&ring->request_list))
2711                 return;
2712
2713         WARN_ON(i915_verify_lists(ring->dev));
2714
2715         seqno = ring->get_seqno(ring, true);
2716
2717         /* Move any buffers on the active list that are no longer referenced
2718          * by the ringbuffer to the flushing/inactive lists as appropriate,
2719          * before we free the context associated with the requests.
2720          */
2721         while (!list_empty(&ring->active_list)) {
2722                 struct drm_i915_gem_object *obj;
2723
2724                 obj = list_first_entry(&ring->active_list,
2725                                       struct drm_i915_gem_object,
2726                                       ring_list);
2727
2728                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2729                         break;
2730
2731                 i915_gem_object_move_to_inactive(obj);
2732         }
2733
2734
2735         while (!list_empty(&ring->request_list)) {
2736                 struct drm_i915_gem_request *request;
2737                 struct intel_ringbuffer *ringbuf;
2738
2739                 request = list_first_entry(&ring->request_list,
2740                                            struct drm_i915_gem_request,
2741                                            list);
2742
2743                 if (!i915_seqno_passed(seqno, request->seqno))
2744                         break;
2745
2746                 trace_i915_gem_request_retire(ring, request->seqno);
2747
2748                 /* This is one of the few common intersection points
2749                  * between legacy ringbuffer submission and execlists:
2750                  * we need to tell them apart in order to find the correct
2751                  * ringbuffer to which the request belongs to.
2752                  */
2753                 if (i915.enable_execlists) {
2754                         struct intel_context *ctx = request->ctx;
2755                         ringbuf = ctx->engine[ring->id].ringbuf;
2756                 } else
2757                         ringbuf = ring->buffer;
2758
2759                 /* We know the GPU must have read the request to have
2760                  * sent us the seqno + interrupt, so use the position
2761                  * of tail of the request to update the last known position
2762                  * of the GPU head.
2763                  */
2764                 ringbuf->last_retired_head = request->tail;
2765
2766                 i915_gem_free_request(request);
2767         }
2768
2769         if (unlikely(ring->trace_irq_seqno &&
2770                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2771                 ring->irq_put(ring);
2772                 ring->trace_irq_seqno = 0;
2773         }
2774
2775         WARN_ON(i915_verify_lists(ring->dev));
2776 }
2777
2778 bool
2779 i915_gem_retire_requests(struct drm_device *dev)
2780 {
2781         struct drm_i915_private *dev_priv = dev->dev_private;
2782         struct intel_engine_cs *ring;
2783         bool idle = true;
2784         int i;
2785
2786         for_each_ring(ring, dev_priv, i) {
2787                 i915_gem_retire_requests_ring(ring);
2788                 idle &= list_empty(&ring->request_list);
2789                 if (i915.enable_execlists) {
2790                         unsigned long flags;
2791
2792                         spin_lock_irqsave(&ring->execlist_lock, flags);
2793                         idle &= list_empty(&ring->execlist_queue);
2794                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2795
2796                         intel_execlists_retire_requests(ring);
2797                 }
2798         }
2799
2800         if (idle)
2801                 mod_delayed_work(dev_priv->wq,
2802                                    &dev_priv->mm.idle_work,
2803                                    msecs_to_jiffies(100));
2804
2805         return idle;
2806 }
2807
2808 static void
2809 i915_gem_retire_work_handler(struct work_struct *work)
2810 {
2811         struct drm_i915_private *dev_priv =
2812                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2813         struct drm_device *dev = dev_priv->dev;
2814         bool idle;
2815
2816         /* Come back later if the device is busy... */
2817         idle = false;
2818         if (mutex_trylock(&dev->struct_mutex)) {
2819                 idle = i915_gem_retire_requests(dev);
2820                 mutex_unlock(&dev->struct_mutex);
2821         }
2822         if (!idle)
2823                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2824                                    round_jiffies_up_relative(HZ));
2825 }
2826
2827 static void
2828 i915_gem_idle_work_handler(struct work_struct *work)
2829 {
2830         struct drm_i915_private *dev_priv =
2831                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2832
2833         intel_mark_idle(dev_priv->dev);
2834 }
2835
2836 /**
2837  * Ensures that an object will eventually get non-busy by flushing any required
2838  * write domains, emitting any outstanding lazy request and retiring and
2839  * completed requests.
2840  */
2841 static int
2842 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2843 {
2844         int ret;
2845
2846         if (obj->active) {
2847                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2848                 if (ret)
2849                         return ret;
2850
2851                 i915_gem_retire_requests_ring(obj->ring);
2852         }
2853
2854         return 0;
2855 }
2856
2857 /**
2858  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2859  * @DRM_IOCTL_ARGS: standard ioctl arguments
2860  *
2861  * Returns 0 if successful, else an error is returned with the remaining time in
2862  * the timeout parameter.
2863  *  -ETIME: object is still busy after timeout
2864  *  -ERESTARTSYS: signal interrupted the wait
2865  *  -ENONENT: object doesn't exist
2866  * Also possible, but rare:
2867  *  -EAGAIN: GPU wedged
2868  *  -ENOMEM: damn
2869  *  -ENODEV: Internal IRQ fail
2870  *  -E?: The add request failed
2871  *
2872  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2873  * non-zero timeout parameter the wait ioctl will wait for the given number of
2874  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2875  * without holding struct_mutex the object may become re-busied before this
2876  * function completes. A similar but shorter * race condition exists in the busy
2877  * ioctl
2878  */
2879 int
2880 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2881 {
2882         struct drm_i915_private *dev_priv = dev->dev_private;
2883         struct drm_i915_gem_wait *args = data;
2884         struct drm_i915_gem_object *obj;
2885         struct intel_engine_cs *ring = NULL;
2886         unsigned reset_counter;
2887         u32 seqno = 0;
2888         int ret = 0;
2889
2890         if (args->flags != 0)
2891                 return -EINVAL;
2892
2893         ret = i915_mutex_lock_interruptible(dev);
2894         if (ret)
2895                 return ret;
2896
2897         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2898         if (&obj->base == NULL) {
2899                 mutex_unlock(&dev->struct_mutex);
2900                 return -ENOENT;
2901         }
2902
2903         /* Need to make sure the object gets inactive eventually. */
2904         ret = i915_gem_object_flush_active(obj);
2905         if (ret)
2906                 goto out;
2907
2908         if (obj->active) {
2909                 seqno = obj->last_read_seqno;
2910                 ring = obj->ring;
2911         }
2912
2913         if (seqno == 0)
2914                  goto out;
2915
2916         /* Do this after OLR check to make sure we make forward progress polling
2917          * on this IOCTL with a timeout <=0 (like busy ioctl)
2918          */
2919         if (args->timeout_ns <= 0) {
2920                 ret = -ETIME;
2921                 goto out;
2922         }
2923
2924         drm_gem_object_unreference(&obj->base);
2925         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2926         mutex_unlock(&dev->struct_mutex);
2927
2928         return __i915_wait_seqno(ring, seqno, reset_counter, true,
2929                                  &args->timeout_ns, file->driver_priv);
2930
2931 out:
2932         drm_gem_object_unreference(&obj->base);
2933         mutex_unlock(&dev->struct_mutex);
2934         return ret;
2935 }
2936
2937 /**
2938  * i915_gem_object_sync - sync an object to a ring.
2939  *
2940  * @obj: object which may be in use on another ring.
2941  * @to: ring we wish to use the object on. May be NULL.
2942  *
2943  * This code is meant to abstract object synchronization with the GPU.
2944  * Calling with NULL implies synchronizing the object with the CPU
2945  * rather than a particular GPU ring.
2946  *
2947  * Returns 0 if successful, else propagates up the lower layer error.
2948  */
2949 int
2950 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2951                      struct intel_engine_cs *to)
2952 {
2953         struct intel_engine_cs *from = obj->ring;
2954         u32 seqno;
2955         int ret, idx;
2956
2957         if (from == NULL || to == from)
2958                 return 0;
2959
2960         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2961                 return i915_gem_object_wait_rendering(obj, false);
2962
2963         idx = intel_ring_sync_index(from, to);
2964
2965         seqno = obj->last_read_seqno;
2966         /* Optimization: Avoid semaphore sync when we are sure we already
2967          * waited for an object with higher seqno */
2968         if (seqno <= from->semaphore.sync_seqno[idx])
2969                 return 0;
2970
2971         ret = i915_gem_check_olr(obj->ring, seqno);
2972         if (ret)
2973                 return ret;
2974
2975         trace_i915_gem_ring_sync_to(from, to, seqno);
2976         ret = to->semaphore.sync_to(to, from, seqno);
2977         if (!ret)
2978                 /* We use last_read_seqno because sync_to()
2979                  * might have just caused seqno wrap under
2980                  * the radar.
2981                  */
2982                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2983
2984         return ret;
2985 }
2986
2987 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2988 {
2989         u32 old_write_domain, old_read_domains;
2990
2991         /* Force a pagefault for domain tracking on next user access */
2992         i915_gem_release_mmap(obj);
2993
2994         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2995                 return;
2996
2997         /* Wait for any direct GTT access to complete */
2998         mb();
2999
3000         old_read_domains = obj->base.read_domains;
3001         old_write_domain = obj->base.write_domain;
3002
3003         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3004         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3005
3006         trace_i915_gem_object_change_domain(obj,
3007                                             old_read_domains,
3008                                             old_write_domain);
3009 }
3010
3011 int i915_vma_unbind(struct i915_vma *vma)
3012 {
3013         struct drm_i915_gem_object *obj = vma->obj;
3014         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3015         int ret;
3016
3017         if (list_empty(&vma->vma_link))
3018                 return 0;
3019
3020         if (!drm_mm_node_allocated(&vma->node)) {
3021                 i915_gem_vma_destroy(vma);
3022                 return 0;
3023         }
3024
3025         if (vma->pin_count)
3026                 return -EBUSY;
3027
3028         BUG_ON(obj->pages == NULL);
3029
3030         ret = i915_gem_object_finish_gpu(obj);
3031         if (ret)
3032                 return ret;
3033         /* Continue on if we fail due to EIO, the GPU is hung so we
3034          * should be safe and we need to cleanup or else we might
3035          * cause memory corruption through use-after-free.
3036          */
3037
3038         /* Throw away the active reference before moving to the unbound list */
3039         i915_gem_object_retire(obj);
3040
3041         if (i915_is_ggtt(vma->vm)) {
3042                 i915_gem_object_finish_gtt(obj);
3043
3044                 /* release the fence reg _after_ flushing */
3045                 ret = i915_gem_object_put_fence(obj);
3046                 if (ret)
3047                         return ret;
3048         }
3049
3050         trace_i915_vma_unbind(vma);
3051
3052         vma->unbind_vma(vma);
3053
3054         list_del_init(&vma->mm_list);
3055         if (i915_is_ggtt(vma->vm))
3056                 obj->map_and_fenceable = false;
3057
3058         drm_mm_remove_node(&vma->node);
3059         i915_gem_vma_destroy(vma);
3060
3061         /* Since the unbound list is global, only move to that list if
3062          * no more VMAs exist. */
3063         if (list_empty(&obj->vma_list)) {
3064                 i915_gem_gtt_finish_object(obj);
3065                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3066         }
3067
3068         /* And finally now the object is completely decoupled from this vma,
3069          * we can drop its hold on the backing storage and allow it to be
3070          * reaped by the shrinker.
3071          */
3072         i915_gem_object_unpin_pages(obj);
3073
3074         return 0;
3075 }
3076
3077 int i915_gpu_idle(struct drm_device *dev)
3078 {
3079         struct drm_i915_private *dev_priv = dev->dev_private;
3080         struct intel_engine_cs *ring;
3081         int ret, i;
3082
3083         /* Flush everything onto the inactive list. */
3084         for_each_ring(ring, dev_priv, i) {
3085                 if (!i915.enable_execlists) {
3086                         ret = i915_switch_context(ring, ring->default_context);
3087                         if (ret)
3088                                 return ret;
3089                 }
3090
3091                 ret = intel_ring_idle(ring);
3092                 if (ret)
3093                         return ret;
3094         }
3095
3096         return 0;
3097 }
3098
3099 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3100                                  struct drm_i915_gem_object *obj)
3101 {
3102         struct drm_i915_private *dev_priv = dev->dev_private;
3103         int fence_reg;
3104         int fence_pitch_shift;
3105
3106         if (INTEL_INFO(dev)->gen >= 6) {
3107                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3108                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3109         } else {
3110                 fence_reg = FENCE_REG_965_0;
3111                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3112         }
3113
3114         fence_reg += reg * 8;
3115
3116         /* To w/a incoherency with non-atomic 64-bit register updates,
3117          * we split the 64-bit update into two 32-bit writes. In order
3118          * for a partial fence not to be evaluated between writes, we
3119          * precede the update with write to turn off the fence register,
3120          * and only enable the fence as the last step.
3121          *
3122          * For extra levels of paranoia, we make sure each step lands
3123          * before applying the next step.
3124          */
3125         I915_WRITE(fence_reg, 0);
3126         POSTING_READ(fence_reg);
3127
3128         if (obj) {
3129                 u32 size = i915_gem_obj_ggtt_size(obj);
3130                 uint64_t val;
3131
3132                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3133                                  0xfffff000) << 32;
3134                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3135                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3136                 if (obj->tiling_mode == I915_TILING_Y)
3137                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3138                 val |= I965_FENCE_REG_VALID;
3139
3140                 I915_WRITE(fence_reg + 4, val >> 32);
3141                 POSTING_READ(fence_reg + 4);
3142
3143                 I915_WRITE(fence_reg + 0, val);
3144                 POSTING_READ(fence_reg);
3145         } else {
3146                 I915_WRITE(fence_reg + 4, 0);
3147                 POSTING_READ(fence_reg + 4);
3148         }
3149 }
3150
3151 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3152                                  struct drm_i915_gem_object *obj)
3153 {
3154         struct drm_i915_private *dev_priv = dev->dev_private;
3155         u32 val;
3156
3157         if (obj) {
3158                 u32 size = i915_gem_obj_ggtt_size(obj);
3159                 int pitch_val;
3160                 int tile_width;
3161
3162                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3163                      (size & -size) != size ||
3164                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3165                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3166                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3167
3168                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3169                         tile_width = 128;
3170                 else
3171                         tile_width = 512;
3172
3173                 /* Note: pitch better be a power of two tile widths */
3174                 pitch_val = obj->stride / tile_width;
3175                 pitch_val = ffs(pitch_val) - 1;
3176
3177                 val = i915_gem_obj_ggtt_offset(obj);
3178                 if (obj->tiling_mode == I915_TILING_Y)
3179                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3180                 val |= I915_FENCE_SIZE_BITS(size);
3181                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3182                 val |= I830_FENCE_REG_VALID;
3183         } else
3184                 val = 0;
3185
3186         if (reg < 8)
3187                 reg = FENCE_REG_830_0 + reg * 4;
3188         else
3189                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3190
3191         I915_WRITE(reg, val);
3192         POSTING_READ(reg);
3193 }
3194
3195 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3196                                 struct drm_i915_gem_object *obj)
3197 {
3198         struct drm_i915_private *dev_priv = dev->dev_private;
3199         uint32_t val;
3200
3201         if (obj) {
3202                 u32 size = i915_gem_obj_ggtt_size(obj);
3203                 uint32_t pitch_val;
3204
3205                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3206                      (size & -size) != size ||
3207                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3208                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3209                      i915_gem_obj_ggtt_offset(obj), size);
3210
3211                 pitch_val = obj->stride / 128;
3212                 pitch_val = ffs(pitch_val) - 1;
3213
3214                 val = i915_gem_obj_ggtt_offset(obj);
3215                 if (obj->tiling_mode == I915_TILING_Y)
3216                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3217                 val |= I830_FENCE_SIZE_BITS(size);
3218                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3219                 val |= I830_FENCE_REG_VALID;
3220         } else
3221                 val = 0;
3222
3223         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3224         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3225 }
3226
3227 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3228 {
3229         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3230 }
3231
3232 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3233                                  struct drm_i915_gem_object *obj)
3234 {
3235         struct drm_i915_private *dev_priv = dev->dev_private;
3236
3237         /* Ensure that all CPU reads are completed before installing a fence
3238          * and all writes before removing the fence.
3239          */
3240         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3241                 mb();
3242
3243         WARN(obj && (!obj->stride || !obj->tiling_mode),
3244              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3245              obj->stride, obj->tiling_mode);
3246
3247         switch (INTEL_INFO(dev)->gen) {
3248         case 9:
3249         case 8:
3250         case 7:
3251         case 6:
3252         case 5:
3253         case 4: i965_write_fence_reg(dev, reg, obj); break;
3254         case 3: i915_write_fence_reg(dev, reg, obj); break;
3255         case 2: i830_write_fence_reg(dev, reg, obj); break;
3256         default: BUG();
3257         }
3258
3259         /* And similarly be paranoid that no direct access to this region
3260          * is reordered to before the fence is installed.
3261          */
3262         if (i915_gem_object_needs_mb(obj))
3263                 mb();
3264 }
3265
3266 static inline int fence_number(struct drm_i915_private *dev_priv,
3267                                struct drm_i915_fence_reg *fence)
3268 {
3269         return fence - dev_priv->fence_regs;
3270 }
3271
3272 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3273                                          struct drm_i915_fence_reg *fence,
3274                                          bool enable)
3275 {
3276         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3277         int reg = fence_number(dev_priv, fence);
3278
3279         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3280
3281         if (enable) {
3282                 obj->fence_reg = reg;
3283                 fence->obj = obj;
3284                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3285         } else {
3286                 obj->fence_reg = I915_FENCE_REG_NONE;
3287                 fence->obj = NULL;
3288                 list_del_init(&fence->lru_list);
3289         }
3290         obj->fence_dirty = false;
3291 }
3292
3293 static int
3294 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3295 {
3296         if (obj->last_fenced_seqno) {
3297                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3298                 if (ret)
3299                         return ret;
3300
3301                 obj->last_fenced_seqno = 0;
3302         }
3303
3304         return 0;
3305 }
3306
3307 int
3308 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3309 {
3310         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3311         struct drm_i915_fence_reg *fence;
3312         int ret;
3313
3314         ret = i915_gem_object_wait_fence(obj);
3315         if (ret)
3316                 return ret;
3317
3318         if (obj->fence_reg == I915_FENCE_REG_NONE)
3319                 return 0;
3320
3321         fence = &dev_priv->fence_regs[obj->fence_reg];
3322
3323         if (WARN_ON(fence->pin_count))
3324                 return -EBUSY;
3325
3326         i915_gem_object_fence_lost(obj);
3327         i915_gem_object_update_fence(obj, fence, false);
3328
3329         return 0;
3330 }
3331
3332 static struct drm_i915_fence_reg *
3333 i915_find_fence_reg(struct drm_device *dev)
3334 {
3335         struct drm_i915_private *dev_priv = dev->dev_private;
3336         struct drm_i915_fence_reg *reg, *avail;
3337         int i;
3338
3339         /* First try to find a free reg */
3340         avail = NULL;
3341         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3342                 reg = &dev_priv->fence_regs[i];
3343                 if (!reg->obj)
3344                         return reg;
3345
3346                 if (!reg->pin_count)
3347                         avail = reg;
3348         }
3349
3350         if (avail == NULL)
3351                 goto deadlock;
3352
3353         /* None available, try to steal one or wait for a user to finish */
3354         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3355                 if (reg->pin_count)
3356                         continue;
3357
3358                 return reg;
3359         }
3360
3361 deadlock:
3362         /* Wait for completion of pending flips which consume fences */
3363         if (intel_has_pending_fb_unpin(dev))
3364                 return ERR_PTR(-EAGAIN);
3365
3366         return ERR_PTR(-EDEADLK);
3367 }
3368
3369 /**
3370  * i915_gem_object_get_fence - set up fencing for an object
3371  * @obj: object to map through a fence reg
3372  *
3373  * When mapping objects through the GTT, userspace wants to be able to write
3374  * to them without having to worry about swizzling if the object is tiled.
3375  * This function walks the fence regs looking for a free one for @obj,
3376  * stealing one if it can't find any.
3377  *
3378  * It then sets up the reg based on the object's properties: address, pitch
3379  * and tiling format.
3380  *
3381  * For an untiled surface, this removes any existing fence.
3382  */
3383 int
3384 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3385 {
3386         struct drm_device *dev = obj->base.dev;
3387         struct drm_i915_private *dev_priv = dev->dev_private;
3388         bool enable = obj->tiling_mode != I915_TILING_NONE;
3389         struct drm_i915_fence_reg *reg;
3390         int ret;
3391
3392         /* Have we updated the tiling parameters upon the object and so
3393          * will need to serialise the write to the associated fence register?
3394          */
3395         if (obj->fence_dirty) {
3396                 ret = i915_gem_object_wait_fence(obj);
3397                 if (ret)
3398                         return ret;
3399         }
3400
3401         /* Just update our place in the LRU if our fence is getting reused. */
3402         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3403                 reg = &dev_priv->fence_regs[obj->fence_reg];
3404                 if (!obj->fence_dirty) {
3405                         list_move_tail(&reg->lru_list,
3406                                        &dev_priv->mm.fence_list);
3407                         return 0;
3408                 }
3409         } else if (enable) {
3410                 if (WARN_ON(!obj->map_and_fenceable))
3411                         return -EINVAL;
3412
3413                 reg = i915_find_fence_reg(dev);
3414                 if (IS_ERR(reg))
3415                         return PTR_ERR(reg);
3416
3417                 if (reg->obj) {
3418                         struct drm_i915_gem_object *old = reg->obj;
3419
3420                         ret = i915_gem_object_wait_fence(old);
3421                         if (ret)
3422                                 return ret;
3423
3424                         i915_gem_object_fence_lost(old);
3425                 }
3426         } else
3427                 return 0;
3428
3429         i915_gem_object_update_fence(obj, reg, enable);
3430
3431         return 0;
3432 }
3433
3434 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3435                                      unsigned long cache_level)
3436 {
3437         struct drm_mm_node *gtt_space = &vma->node;
3438         struct drm_mm_node *other;
3439
3440         /*
3441          * On some machines we have to be careful when putting differing types
3442          * of snoopable memory together to avoid the prefetcher crossing memory
3443          * domains and dying. During vm initialisation, we decide whether or not
3444          * these constraints apply and set the drm_mm.color_adjust
3445          * appropriately.
3446          */
3447         if (vma->vm->mm.color_adjust == NULL)
3448                 return true;
3449
3450         if (!drm_mm_node_allocated(gtt_space))
3451                 return true;
3452
3453         if (list_empty(&gtt_space->node_list))
3454                 return true;
3455
3456         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3457         if (other->allocated && !other->hole_follows && other->color != cache_level)
3458                 return false;
3459
3460         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3461         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3462                 return false;
3463
3464         return true;
3465 }
3466
3467 /**
3468  * Finds free space in the GTT aperture and binds the object there.
3469  */
3470 static struct i915_vma *
3471 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3472                            struct i915_address_space *vm,
3473                            unsigned alignment,
3474                            uint64_t flags)
3475 {
3476         struct drm_device *dev = obj->base.dev;
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478         u32 size, fence_size, fence_alignment, unfenced_alignment;
3479         unsigned long start =
3480                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3481         unsigned long end =
3482                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3483         struct i915_vma *vma;
3484         int ret;
3485
3486         fence_size = i915_gem_get_gtt_size(dev,
3487                                            obj->base.size,
3488                                            obj->tiling_mode);
3489         fence_alignment = i915_gem_get_gtt_alignment(dev,
3490                                                      obj->base.size,
3491                                                      obj->tiling_mode, true);
3492         unfenced_alignment =
3493                 i915_gem_get_gtt_alignment(dev,
3494                                            obj->base.size,
3495                                            obj->tiling_mode, false);
3496
3497         if (alignment == 0)
3498                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3499                                                 unfenced_alignment;
3500         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3501                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3502                 return ERR_PTR(-EINVAL);
3503         }
3504
3505         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3506
3507         /* If the object is bigger than the entire aperture, reject it early
3508          * before evicting everything in a vain attempt to find space.
3509          */
3510         if (obj->base.size > end) {
3511                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3512                           obj->base.size,
3513                           flags & PIN_MAPPABLE ? "mappable" : "total",
3514                           end);
3515                 return ERR_PTR(-E2BIG);
3516         }
3517
3518         ret = i915_gem_object_get_pages(obj);
3519         if (ret)
3520                 return ERR_PTR(ret);
3521
3522         i915_gem_object_pin_pages(obj);
3523
3524         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3525         if (IS_ERR(vma))
3526                 goto err_unpin;
3527
3528 search_free:
3529         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3530                                                   size, alignment,
3531                                                   obj->cache_level,
3532                                                   start, end,
3533                                                   DRM_MM_SEARCH_DEFAULT,
3534                                                   DRM_MM_CREATE_DEFAULT);
3535         if (ret) {
3536                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3537                                                obj->cache_level,
3538                                                start, end,
3539                                                flags);
3540                 if (ret == 0)
3541                         goto search_free;
3542
3543                 goto err_free_vma;
3544         }
3545         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3546                 ret = -EINVAL;
3547                 goto err_remove_node;
3548         }
3549
3550         ret = i915_gem_gtt_prepare_object(obj);
3551         if (ret)
3552                 goto err_remove_node;
3553
3554         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3555         list_add_tail(&vma->mm_list, &vm->inactive_list);
3556
3557         trace_i915_vma_bind(vma, flags);
3558         vma->bind_vma(vma, obj->cache_level,
3559                       flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3560
3561         return vma;
3562
3563 err_remove_node:
3564         drm_mm_remove_node(&vma->node);
3565 err_free_vma:
3566         i915_gem_vma_destroy(vma);
3567         vma = ERR_PTR(ret);
3568 err_unpin:
3569         i915_gem_object_unpin_pages(obj);
3570         return vma;
3571 }
3572
3573 bool
3574 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3575                         bool force)
3576 {
3577         /* If we don't have a page list set up, then we're not pinned
3578          * to GPU, and we can ignore the cache flush because it'll happen
3579          * again at bind time.
3580          */
3581         if (obj->pages == NULL)
3582                 return false;
3583
3584         /*
3585          * Stolen memory is always coherent with the GPU as it is explicitly
3586          * marked as wc by the system, or the system is cache-coherent.
3587          */
3588         if (obj->stolen || obj->phys_handle)
3589                 return false;
3590
3591         /* If the GPU is snooping the contents of the CPU cache,
3592          * we do not need to manually clear the CPU cache lines.  However,
3593          * the caches are only snooped when the render cache is
3594          * flushed/invalidated.  As we always have to emit invalidations
3595          * and flushes when moving into and out of the RENDER domain, correct
3596          * snooping behaviour occurs naturally as the result of our domain
3597          * tracking.
3598          */
3599         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3600                 return false;
3601
3602         trace_i915_gem_object_clflush(obj);
3603         drm_clflush_sg(obj->pages);
3604
3605         return true;
3606 }
3607
3608 /** Flushes the GTT write domain for the object if it's dirty. */
3609 static void
3610 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3611 {
3612         uint32_t old_write_domain;
3613
3614         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3615                 return;
3616
3617         /* No actual flushing is required for the GTT write domain.  Writes
3618          * to it immediately go to main memory as far as we know, so there's
3619          * no chipset flush.  It also doesn't land in render cache.
3620          *
3621          * However, we do have to enforce the order so that all writes through
3622          * the GTT land before any writes to the device, such as updates to
3623          * the GATT itself.
3624          */
3625         wmb();
3626
3627         old_write_domain = obj->base.write_domain;
3628         obj->base.write_domain = 0;
3629
3630         intel_fb_obj_flush(obj, false);
3631
3632         trace_i915_gem_object_change_domain(obj,
3633                                             obj->base.read_domains,
3634                                             old_write_domain);
3635 }
3636
3637 /** Flushes the CPU write domain for the object if it's dirty. */
3638 static void
3639 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3640                                        bool force)
3641 {
3642         uint32_t old_write_domain;
3643
3644         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3645                 return;
3646
3647         if (i915_gem_clflush_object(obj, force))
3648                 i915_gem_chipset_flush(obj->base.dev);
3649
3650         old_write_domain = obj->base.write_domain;
3651         obj->base.write_domain = 0;
3652
3653         intel_fb_obj_flush(obj, false);
3654
3655         trace_i915_gem_object_change_domain(obj,
3656                                             obj->base.read_domains,
3657                                             old_write_domain);
3658 }
3659
3660 /**
3661  * Moves a single object to the GTT read, and possibly write domain.
3662  *
3663  * This function returns when the move is complete, including waiting on
3664  * flushes to occur.
3665  */
3666 int
3667 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3668 {
3669         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3670         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3671         uint32_t old_write_domain, old_read_domains;
3672         int ret;
3673
3674         /* Not valid to be called on unbound objects. */
3675         if (vma == NULL)
3676                 return -EINVAL;
3677
3678         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3679                 return 0;
3680
3681         ret = i915_gem_object_wait_rendering(obj, !write);
3682         if (ret)
3683                 return ret;
3684
3685         i915_gem_object_retire(obj);
3686         i915_gem_object_flush_cpu_write_domain(obj, false);
3687
3688         /* Serialise direct access to this object with the barriers for
3689          * coherent writes from the GPU, by effectively invalidating the
3690          * GTT domain upon first access.
3691          */
3692         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3693                 mb();
3694
3695         old_write_domain = obj->base.write_domain;
3696         old_read_domains = obj->base.read_domains;
3697
3698         /* It should now be out of any other write domains, and we can update
3699          * the domain values for our changes.
3700          */
3701         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3702         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3703         if (write) {
3704                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3705                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3706                 obj->dirty = 1;
3707         }
3708
3709         if (write)
3710                 intel_fb_obj_invalidate(obj, NULL);
3711
3712         trace_i915_gem_object_change_domain(obj,
3713                                             old_read_domains,
3714                                             old_write_domain);
3715
3716         /* And bump the LRU for this access */
3717         if (i915_gem_object_is_inactive(obj))
3718                 list_move_tail(&vma->mm_list,
3719                                &dev_priv->gtt.base.inactive_list);
3720
3721         return 0;
3722 }
3723
3724 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3725                                     enum i915_cache_level cache_level)
3726 {
3727         struct drm_device *dev = obj->base.dev;
3728         struct i915_vma *vma, *next;
3729         int ret;
3730
3731         if (obj->cache_level == cache_level)
3732                 return 0;
3733
3734         if (i915_gem_obj_is_pinned(obj)) {
3735                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3736                 return -EBUSY;
3737         }
3738
3739         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3740                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3741                         ret = i915_vma_unbind(vma);
3742                         if (ret)
3743                                 return ret;
3744                 }
3745         }
3746
3747         if (i915_gem_obj_bound_any(obj)) {
3748                 ret = i915_gem_object_finish_gpu(obj);
3749                 if (ret)
3750                         return ret;
3751
3752                 i915_gem_object_finish_gtt(obj);
3753
3754                 /* Before SandyBridge, you could not use tiling or fence
3755                  * registers with snooped memory, so relinquish any fences
3756                  * currently pointing to our region in the aperture.
3757                  */
3758                 if (INTEL_INFO(dev)->gen < 6) {
3759                         ret = i915_gem_object_put_fence(obj);
3760                         if (ret)
3761                                 return ret;
3762                 }
3763
3764                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3765                         if (drm_mm_node_allocated(&vma->node))
3766                                 vma->bind_vma(vma, cache_level,
3767                                                 vma->bound & GLOBAL_BIND);
3768         }
3769
3770         list_for_each_entry(vma, &obj->vma_list, vma_link)
3771                 vma->node.color = cache_level;
3772         obj->cache_level = cache_level;
3773
3774         if (cpu_write_needs_clflush(obj)) {
3775                 u32 old_read_domains, old_write_domain;
3776
3777                 /* If we're coming from LLC cached, then we haven't
3778                  * actually been tracking whether the data is in the
3779                  * CPU cache or not, since we only allow one bit set
3780                  * in obj->write_domain and have been skipping the clflushes.
3781                  * Just set it to the CPU cache for now.
3782                  */
3783                 i915_gem_object_retire(obj);
3784                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3785
3786                 old_read_domains = obj->base.read_domains;
3787                 old_write_domain = obj->base.write_domain;
3788
3789                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3790                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3791
3792                 trace_i915_gem_object_change_domain(obj,
3793                                                     old_read_domains,
3794                                                     old_write_domain);
3795         }
3796
3797         return 0;
3798 }
3799
3800 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3801                                struct drm_file *file)
3802 {
3803         struct drm_i915_gem_caching *args = data;
3804         struct drm_i915_gem_object *obj;
3805         int ret;
3806
3807         ret = i915_mutex_lock_interruptible(dev);
3808         if (ret)
3809                 return ret;
3810
3811         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3812         if (&obj->base == NULL) {
3813                 ret = -ENOENT;
3814                 goto unlock;
3815         }
3816
3817         switch (obj->cache_level) {
3818         case I915_CACHE_LLC:
3819         case I915_CACHE_L3_LLC:
3820                 args->caching = I915_CACHING_CACHED;
3821                 break;
3822
3823         case I915_CACHE_WT:
3824                 args->caching = I915_CACHING_DISPLAY;
3825                 break;
3826
3827         default:
3828                 args->caching = I915_CACHING_NONE;
3829                 break;
3830         }
3831
3832         drm_gem_object_unreference(&obj->base);
3833 unlock:
3834         mutex_unlock(&dev->struct_mutex);
3835         return ret;
3836 }
3837
3838 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3839                                struct drm_file *file)
3840 {
3841         struct drm_i915_gem_caching *args = data;
3842         struct drm_i915_gem_object *obj;
3843         enum i915_cache_level level;
3844         int ret;
3845
3846         switch (args->caching) {
3847         case I915_CACHING_NONE:
3848                 level = I915_CACHE_NONE;
3849                 break;
3850         case I915_CACHING_CACHED:
3851                 level = I915_CACHE_LLC;
3852                 break;
3853         case I915_CACHING_DISPLAY:
3854                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3855                 break;
3856         default:
3857                 return -EINVAL;
3858         }
3859
3860         ret = i915_mutex_lock_interruptible(dev);
3861         if (ret)
3862                 return ret;
3863
3864         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3865         if (&obj->base == NULL) {
3866                 ret = -ENOENT;
3867                 goto unlock;
3868         }
3869
3870         ret = i915_gem_object_set_cache_level(obj, level);
3871
3872         drm_gem_object_unreference(&obj->base);
3873 unlock:
3874         mutex_unlock(&dev->struct_mutex);
3875         return ret;
3876 }
3877
3878 static bool is_pin_display(struct drm_i915_gem_object *obj)
3879 {
3880         struct i915_vma *vma;
3881
3882         vma = i915_gem_obj_to_ggtt(obj);
3883         if (!vma)
3884                 return false;
3885
3886         /* There are 3 sources that pin objects:
3887          *   1. The display engine (scanouts, sprites, cursors);
3888          *   2. Reservations for execbuffer;
3889          *   3. The user.
3890          *
3891          * We can ignore reservations as we hold the struct_mutex and
3892          * are only called outside of the reservation path.  The user
3893          * can only increment pin_count once, and so if after
3894          * subtracting the potential reference by the user, any pin_count
3895          * remains, it must be due to another use by the display engine.
3896          */
3897         return vma->pin_count - !!obj->user_pin_count;
3898 }
3899
3900 /*
3901  * Prepare buffer for display plane (scanout, cursors, etc).
3902  * Can be called from an uninterruptible phase (modesetting) and allows
3903  * any flushes to be pipelined (for pageflips).
3904  */
3905 int
3906 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3907                                      u32 alignment,
3908                                      struct intel_engine_cs *pipelined)
3909 {
3910         u32 old_read_domains, old_write_domain;
3911         bool was_pin_display;
3912         int ret;
3913
3914         if (pipelined != obj->ring) {
3915                 ret = i915_gem_object_sync(obj, pipelined);
3916                 if (ret)
3917                         return ret;
3918         }
3919
3920         /* Mark the pin_display early so that we account for the
3921          * display coherency whilst setting up the cache domains.
3922          */
3923         was_pin_display = obj->pin_display;
3924         obj->pin_display = true;
3925
3926         /* The display engine is not coherent with the LLC cache on gen6.  As
3927          * a result, we make sure that the pinning that is about to occur is
3928          * done with uncached PTEs. This is lowest common denominator for all
3929          * chipsets.
3930          *
3931          * However for gen6+, we could do better by using the GFDT bit instead
3932          * of uncaching, which would allow us to flush all the LLC-cached data
3933          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3934          */
3935         ret = i915_gem_object_set_cache_level(obj,
3936                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3937         if (ret)
3938                 goto err_unpin_display;
3939
3940         /* As the user may map the buffer once pinned in the display plane
3941          * (e.g. libkms for the bootup splash), we have to ensure that we
3942          * always use map_and_fenceable for all scanout buffers.
3943          */
3944         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3945         if (ret)
3946                 goto err_unpin_display;
3947
3948         i915_gem_object_flush_cpu_write_domain(obj, true);
3949
3950         old_write_domain = obj->base.write_domain;
3951         old_read_domains = obj->base.read_domains;
3952
3953         /* It should now be out of any other write domains, and we can update
3954          * the domain values for our changes.
3955          */
3956         obj->base.write_domain = 0;
3957         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3958
3959         trace_i915_gem_object_change_domain(obj,
3960                                             old_read_domains,
3961                                             old_write_domain);
3962
3963         return 0;
3964
3965 err_unpin_display:
3966         WARN_ON(was_pin_display != is_pin_display(obj));
3967         obj->pin_display = was_pin_display;
3968         return ret;
3969 }
3970
3971 void
3972 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3973 {
3974         i915_gem_object_ggtt_unpin(obj);
3975         obj->pin_display = is_pin_display(obj);
3976 }
3977
3978 int
3979 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3980 {
3981         int ret;
3982
3983         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3984                 return 0;
3985
3986         ret = i915_gem_object_wait_rendering(obj, false);
3987         if (ret)
3988                 return ret;
3989
3990         /* Ensure that we invalidate the GPU's caches and TLBs. */
3991         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3992         return 0;
3993 }
3994
3995 /**
3996  * Moves a single object to the CPU read, and possibly write domain.
3997  *
3998  * This function returns when the move is complete, including waiting on
3999  * flushes to occur.
4000  */
4001 int
4002 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4003 {
4004         uint32_t old_write_domain, old_read_domains;
4005         int ret;
4006
4007         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4008                 return 0;
4009
4010         ret = i915_gem_object_wait_rendering(obj, !write);
4011         if (ret)
4012                 return ret;
4013
4014         i915_gem_object_retire(obj);
4015         i915_gem_object_flush_gtt_write_domain(obj);
4016
4017         old_write_domain = obj->base.write_domain;
4018         old_read_domains = obj->base.read_domains;
4019
4020         /* Flush the CPU cache if it's still invalid. */
4021         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4022                 i915_gem_clflush_object(obj, false);
4023
4024                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4025         }
4026
4027         /* It should now be out of any other write domains, and we can update
4028          * the domain values for our changes.
4029          */
4030         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4031
4032         /* If we're writing through the CPU, then the GPU read domains will
4033          * need to be invalidated at next use.
4034          */
4035         if (write) {
4036                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4037                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4038         }
4039
4040         if (write)
4041                 intel_fb_obj_invalidate(obj, NULL);
4042
4043         trace_i915_gem_object_change_domain(obj,
4044                                             old_read_domains,
4045                                             old_write_domain);
4046
4047         return 0;
4048 }
4049
4050 /* Throttle our rendering by waiting until the ring has completed our requests
4051  * emitted over 20 msec ago.
4052  *
4053  * Note that if we were to use the current jiffies each time around the loop,
4054  * we wouldn't escape the function with any frames outstanding if the time to
4055  * render a frame was over 20ms.
4056  *
4057  * This should get us reasonable parallelism between CPU and GPU but also
4058  * relatively low latency when blocking on a particular request to finish.
4059  */
4060 static int
4061 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4062 {
4063         struct drm_i915_private *dev_priv = dev->dev_private;
4064         struct drm_i915_file_private *file_priv = file->driver_priv;
4065         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4066         struct drm_i915_gem_request *request;
4067         struct intel_engine_cs *ring = NULL;
4068         unsigned reset_counter;
4069         u32 seqno = 0;
4070         int ret;
4071
4072         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4073         if (ret)
4074                 return ret;
4075
4076         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4077         if (ret)
4078                 return ret;
4079
4080         spin_lock(&file_priv->mm.lock);
4081         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4082                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4083                         break;
4084
4085                 ring = request->ring;
4086                 seqno = request->seqno;
4087         }
4088         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4089         spin_unlock(&file_priv->mm.lock);
4090
4091         if (seqno == 0)
4092                 return 0;
4093
4094         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4095         if (ret == 0)
4096                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4097
4098         return ret;
4099 }
4100
4101 static bool
4102 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4103 {
4104         struct drm_i915_gem_object *obj = vma->obj;
4105
4106         if (alignment &&
4107             vma->node.start & (alignment - 1))
4108                 return true;
4109
4110         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4111                 return true;
4112
4113         if (flags & PIN_OFFSET_BIAS &&
4114             vma->node.start < (flags & PIN_OFFSET_MASK))
4115                 return true;
4116
4117         return false;
4118 }
4119
4120 int
4121 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4122                     struct i915_address_space *vm,
4123                     uint32_t alignment,
4124                     uint64_t flags)
4125 {
4126         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4127         struct i915_vma *vma;
4128         unsigned bound;
4129         int ret;
4130
4131         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4132                 return -ENODEV;
4133
4134         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4135                 return -EINVAL;
4136
4137         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4138                 return -EINVAL;
4139
4140         vma = i915_gem_obj_to_vma(obj, vm);
4141         if (vma) {
4142                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4143                         return -EBUSY;
4144
4145                 if (i915_vma_misplaced(vma, alignment, flags)) {
4146                         WARN(vma->pin_count,
4147                              "bo is already pinned with incorrect alignment:"
4148                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4149                              " obj->map_and_fenceable=%d\n",
4150                              i915_gem_obj_offset(obj, vm), alignment,
4151                              !!(flags & PIN_MAPPABLE),
4152                              obj->map_and_fenceable);
4153                         ret = i915_vma_unbind(vma);
4154                         if (ret)
4155                                 return ret;
4156
4157                         vma = NULL;
4158                 }
4159         }
4160
4161         bound = vma ? vma->bound : 0;
4162         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4163                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4164                 if (IS_ERR(vma))
4165                         return PTR_ERR(vma);
4166         }
4167
4168         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4169                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4170
4171         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4172                 bool mappable, fenceable;
4173                 u32 fence_size, fence_alignment;
4174
4175                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4176                                                    obj->base.size,
4177                                                    obj->tiling_mode);
4178                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4179                                                              obj->base.size,
4180                                                              obj->tiling_mode,
4181                                                              true);
4182
4183                 fenceable = (vma->node.size == fence_size &&
4184                              (vma->node.start & (fence_alignment - 1)) == 0);
4185
4186                 mappable = (vma->node.start + obj->base.size <=
4187                             dev_priv->gtt.mappable_end);
4188
4189                 obj->map_and_fenceable = mappable && fenceable;
4190         }
4191
4192         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4193
4194         vma->pin_count++;
4195         if (flags & PIN_MAPPABLE)
4196                 obj->pin_mappable |= true;
4197
4198         return 0;
4199 }
4200
4201 void
4202 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4203 {
4204         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4205
4206         BUG_ON(!vma);
4207         BUG_ON(vma->pin_count == 0);
4208         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4209
4210         if (--vma->pin_count == 0)
4211                 obj->pin_mappable = false;
4212 }
4213
4214 bool
4215 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4216 {
4217         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4218                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4219                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4220
4221                 WARN_ON(!ggtt_vma ||
4222                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4223                         ggtt_vma->pin_count);
4224                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4225                 return true;
4226         } else
4227                 return false;
4228 }
4229
4230 void
4231 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4232 {
4233         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4234                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4235                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4236                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4237         }
4238 }
4239
4240 int
4241 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4242                    struct drm_file *file)
4243 {
4244         struct drm_i915_gem_pin *args = data;
4245         struct drm_i915_gem_object *obj;
4246         int ret;
4247
4248         if (INTEL_INFO(dev)->gen >= 6)
4249                 return -ENODEV;
4250
4251         ret = i915_mutex_lock_interruptible(dev);
4252         if (ret)
4253                 return ret;
4254
4255         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4256         if (&obj->base == NULL) {
4257                 ret = -ENOENT;
4258                 goto unlock;
4259         }
4260
4261         if (obj->madv != I915_MADV_WILLNEED) {
4262                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4263                 ret = -EFAULT;
4264                 goto out;
4265         }
4266
4267         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4268                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4269                           args->handle);
4270                 ret = -EINVAL;
4271                 goto out;
4272         }
4273
4274         if (obj->user_pin_count == ULONG_MAX) {
4275                 ret = -EBUSY;
4276                 goto out;
4277         }
4278
4279         if (obj->user_pin_count == 0) {
4280                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4281                 if (ret)
4282                         goto out;
4283         }
4284
4285         obj->user_pin_count++;
4286         obj->pin_filp = file;
4287
4288         args->offset = i915_gem_obj_ggtt_offset(obj);
4289 out:
4290         drm_gem_object_unreference(&obj->base);
4291 unlock:
4292         mutex_unlock(&dev->struct_mutex);
4293         return ret;
4294 }
4295
4296 int
4297 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4298                      struct drm_file *file)
4299 {
4300         struct drm_i915_gem_pin *args = data;
4301         struct drm_i915_gem_object *obj;
4302         int ret;
4303
4304         ret = i915_mutex_lock_interruptible(dev);
4305         if (ret)
4306                 return ret;
4307
4308         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4309         if (&obj->base == NULL) {
4310                 ret = -ENOENT;
4311                 goto unlock;
4312         }
4313
4314         if (obj->pin_filp != file) {
4315                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4316                           args->handle);
4317                 ret = -EINVAL;
4318                 goto out;
4319         }
4320         obj->user_pin_count--;
4321         if (obj->user_pin_count == 0) {
4322                 obj->pin_filp = NULL;
4323                 i915_gem_object_ggtt_unpin(obj);
4324         }
4325
4326 out:
4327         drm_gem_object_unreference(&obj->base);
4328 unlock:
4329         mutex_unlock(&dev->struct_mutex);
4330         return ret;
4331 }
4332
4333 int
4334 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4335                     struct drm_file *file)
4336 {
4337         struct drm_i915_gem_busy *args = data;
4338         struct drm_i915_gem_object *obj;
4339         int ret;
4340
4341         ret = i915_mutex_lock_interruptible(dev);
4342         if (ret)
4343                 return ret;
4344
4345         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4346         if (&obj->base == NULL) {
4347                 ret = -ENOENT;
4348                 goto unlock;
4349         }
4350
4351         /* Count all active objects as busy, even if they are currently not used
4352          * by the gpu. Users of this interface expect objects to eventually
4353          * become non-busy without any further actions, therefore emit any
4354          * necessary flushes here.
4355          */
4356         ret = i915_gem_object_flush_active(obj);
4357
4358         args->busy = obj->active;
4359         if (obj->ring) {
4360                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4361                 args->busy |= intel_ring_flag(obj->ring) << 16;
4362         }
4363
4364         drm_gem_object_unreference(&obj->base);
4365 unlock:
4366         mutex_unlock(&dev->struct_mutex);
4367         return ret;
4368 }
4369
4370 int
4371 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4372                         struct drm_file *file_priv)
4373 {
4374         return i915_gem_ring_throttle(dev, file_priv);
4375 }
4376
4377 int
4378 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4379                        struct drm_file *file_priv)
4380 {
4381         struct drm_i915_private *dev_priv = dev->dev_private;
4382         struct drm_i915_gem_madvise *args = data;
4383         struct drm_i915_gem_object *obj;
4384         int ret;
4385
4386         switch (args->madv) {
4387         case I915_MADV_DONTNEED:
4388         case I915_MADV_WILLNEED:
4389             break;
4390         default:
4391             return -EINVAL;
4392         }
4393
4394         ret = i915_mutex_lock_interruptible(dev);
4395         if (ret)
4396                 return ret;
4397
4398         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4399         if (&obj->base == NULL) {
4400                 ret = -ENOENT;
4401                 goto unlock;
4402         }
4403
4404         if (i915_gem_obj_is_pinned(obj)) {
4405                 ret = -EINVAL;
4406                 goto out;
4407         }
4408
4409         if (obj->pages &&
4410             obj->tiling_mode != I915_TILING_NONE &&
4411             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4412                 if (obj->madv == I915_MADV_WILLNEED)
4413                         i915_gem_object_unpin_pages(obj);
4414                 if (args->madv == I915_MADV_WILLNEED)
4415                         i915_gem_object_pin_pages(obj);
4416         }
4417
4418         if (obj->madv != __I915_MADV_PURGED)
4419                 obj->madv = args->madv;
4420
4421         /* if the object is no longer attached, discard its backing storage */
4422         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4423                 i915_gem_object_truncate(obj);
4424
4425         args->retained = obj->madv != __I915_MADV_PURGED;
4426
4427 out:
4428         drm_gem_object_unreference(&obj->base);
4429 unlock:
4430         mutex_unlock(&dev->struct_mutex);
4431         return ret;
4432 }
4433
4434 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4435                           const struct drm_i915_gem_object_ops *ops)
4436 {
4437         INIT_LIST_HEAD(&obj->global_list);
4438         INIT_LIST_HEAD(&obj->ring_list);
4439         INIT_LIST_HEAD(&obj->obj_exec_link);
4440         INIT_LIST_HEAD(&obj->vma_list);
4441
4442         obj->ops = ops;
4443
4444         obj->fence_reg = I915_FENCE_REG_NONE;
4445         obj->madv = I915_MADV_WILLNEED;
4446
4447         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4448 }
4449
4450 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4451         .get_pages = i915_gem_object_get_pages_gtt,
4452         .put_pages = i915_gem_object_put_pages_gtt,
4453 };
4454
4455 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4456                                                   size_t size)
4457 {
4458         struct drm_i915_gem_object *obj;
4459         struct address_space *mapping;
4460         gfp_t mask;
4461
4462         obj = i915_gem_object_alloc(dev);
4463         if (obj == NULL)
4464                 return NULL;
4465
4466         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4467                 i915_gem_object_free(obj);
4468                 return NULL;
4469         }
4470
4471         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4472         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4473                 /* 965gm cannot relocate objects above 4GiB. */
4474                 mask &= ~__GFP_HIGHMEM;
4475                 mask |= __GFP_DMA32;
4476         }
4477
4478         mapping = file_inode(obj->base.filp)->i_mapping;
4479         mapping_set_gfp_mask(mapping, mask);
4480
4481         i915_gem_object_init(obj, &i915_gem_object_ops);
4482
4483         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4484         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4485
4486         if (HAS_LLC(dev)) {
4487                 /* On some devices, we can have the GPU use the LLC (the CPU
4488                  * cache) for about a 10% performance improvement
4489                  * compared to uncached.  Graphics requests other than
4490                  * display scanout are coherent with the CPU in
4491                  * accessing this cache.  This means in this mode we
4492                  * don't need to clflush on the CPU side, and on the
4493                  * GPU side we only need to flush internal caches to
4494                  * get data visible to the CPU.
4495                  *
4496                  * However, we maintain the display planes as UC, and so
4497                  * need to rebind when first used as such.
4498                  */
4499                 obj->cache_level = I915_CACHE_LLC;
4500         } else
4501                 obj->cache_level = I915_CACHE_NONE;
4502
4503         trace_i915_gem_object_create(obj);
4504
4505         return obj;
4506 }
4507
4508 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4509 {
4510         /* If we are the last user of the backing storage (be it shmemfs
4511          * pages or stolen etc), we know that the pages are going to be
4512          * immediately released. In this case, we can then skip copying
4513          * back the contents from the GPU.
4514          */
4515
4516         if (obj->madv != I915_MADV_WILLNEED)
4517                 return false;
4518
4519         if (obj->base.filp == NULL)
4520                 return true;
4521
4522         /* At first glance, this looks racy, but then again so would be
4523          * userspace racing mmap against close. However, the first external
4524          * reference to the filp can only be obtained through the
4525          * i915_gem_mmap_ioctl() which safeguards us against the user
4526          * acquiring such a reference whilst we are in the middle of
4527          * freeing the object.
4528          */
4529         return atomic_long_read(&obj->base.filp->f_count) == 1;
4530 }
4531
4532 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4533 {
4534         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4535         struct drm_device *dev = obj->base.dev;
4536         struct drm_i915_private *dev_priv = dev->dev_private;
4537         struct i915_vma *vma, *next;
4538
4539         intel_runtime_pm_get(dev_priv);
4540
4541         trace_i915_gem_object_destroy(obj);
4542
4543         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4544                 int ret;
4545
4546                 vma->pin_count = 0;
4547                 ret = i915_vma_unbind(vma);
4548                 if (WARN_ON(ret == -ERESTARTSYS)) {
4549                         bool was_interruptible;
4550
4551                         was_interruptible = dev_priv->mm.interruptible;
4552                         dev_priv->mm.interruptible = false;
4553
4554                         WARN_ON(i915_vma_unbind(vma));
4555
4556                         dev_priv->mm.interruptible = was_interruptible;
4557                 }
4558         }
4559
4560         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4561          * before progressing. */
4562         if (obj->stolen)
4563                 i915_gem_object_unpin_pages(obj);
4564
4565         WARN_ON(obj->frontbuffer_bits);
4566
4567         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4568             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4569             obj->tiling_mode != I915_TILING_NONE)
4570                 i915_gem_object_unpin_pages(obj);
4571
4572         if (WARN_ON(obj->pages_pin_count))
4573                 obj->pages_pin_count = 0;
4574         if (discard_backing_storage(obj))
4575                 obj->madv = I915_MADV_DONTNEED;
4576         i915_gem_object_put_pages(obj);
4577         i915_gem_object_free_mmap_offset(obj);
4578
4579         BUG_ON(obj->pages);
4580
4581         if (obj->base.import_attach)
4582                 drm_prime_gem_destroy(&obj->base, NULL);
4583
4584         if (obj->ops->release)
4585                 obj->ops->release(obj);
4586
4587         drm_gem_object_release(&obj->base);
4588         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4589
4590         kfree(obj->bit_17);
4591         i915_gem_object_free(obj);
4592
4593         intel_runtime_pm_put(dev_priv);
4594 }
4595
4596 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4597                                      struct i915_address_space *vm)
4598 {
4599         struct i915_vma *vma;
4600         list_for_each_entry(vma, &obj->vma_list, vma_link)
4601                 if (vma->vm == vm)
4602                         return vma;
4603
4604         return NULL;
4605 }
4606
4607 void i915_gem_vma_destroy(struct i915_vma *vma)
4608 {
4609         struct i915_address_space *vm = NULL;
4610         WARN_ON(vma->node.allocated);
4611
4612         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4613         if (!list_empty(&vma->exec_list))
4614                 return;
4615
4616         vm = vma->vm;
4617
4618         if (!i915_is_ggtt(vm))
4619                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4620
4621         list_del(&vma->vma_link);
4622
4623         kfree(vma);
4624 }
4625
4626 static void
4627 i915_gem_stop_ringbuffers(struct drm_device *dev)
4628 {
4629         struct drm_i915_private *dev_priv = dev->dev_private;
4630         struct intel_engine_cs *ring;
4631         int i;
4632
4633         for_each_ring(ring, dev_priv, i)
4634                 dev_priv->gt.stop_ring(ring);
4635 }
4636
4637 int
4638 i915_gem_suspend(struct drm_device *dev)
4639 {
4640         struct drm_i915_private *dev_priv = dev->dev_private;
4641         int ret = 0;
4642
4643         mutex_lock(&dev->struct_mutex);
4644         ret = i915_gpu_idle(dev);
4645         if (ret)
4646                 goto err;
4647
4648         i915_gem_retire_requests(dev);
4649
4650         /* Under UMS, be paranoid and evict. */
4651         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4652                 i915_gem_evict_everything(dev);
4653
4654         i915_gem_stop_ringbuffers(dev);
4655         mutex_unlock(&dev->struct_mutex);
4656
4657         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4658         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4659         flush_delayed_work(&dev_priv->mm.idle_work);
4660
4661         return 0;
4662
4663 err:
4664         mutex_unlock(&dev->struct_mutex);
4665         return ret;
4666 }
4667
4668 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4669 {
4670         struct drm_device *dev = ring->dev;
4671         struct drm_i915_private *dev_priv = dev->dev_private;
4672         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4673         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4674         int i, ret;
4675
4676         if (!HAS_L3_DPF(dev) || !remap_info)
4677                 return 0;
4678
4679         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4680         if (ret)
4681                 return ret;
4682
4683         /*
4684          * Note: We do not worry about the concurrent register cacheline hang
4685          * here because no other code should access these registers other than
4686          * at initialization time.
4687          */
4688         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4689                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4690                 intel_ring_emit(ring, reg_base + i);
4691                 intel_ring_emit(ring, remap_info[i/4]);
4692         }
4693
4694         intel_ring_advance(ring);
4695
4696         return ret;
4697 }
4698
4699 void i915_gem_init_swizzling(struct drm_device *dev)
4700 {
4701         struct drm_i915_private *dev_priv = dev->dev_private;
4702
4703         if (INTEL_INFO(dev)->gen < 5 ||
4704             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4705                 return;
4706
4707         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4708                                  DISP_TILE_SURFACE_SWIZZLING);
4709
4710         if (IS_GEN5(dev))
4711                 return;
4712
4713         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4714         if (IS_GEN6(dev))
4715                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4716         else if (IS_GEN7(dev))
4717                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4718         else if (IS_GEN8(dev))
4719                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4720         else
4721                 BUG();
4722 }
4723
4724 static bool
4725 intel_enable_blt(struct drm_device *dev)
4726 {
4727         if (!HAS_BLT(dev))
4728                 return false;
4729
4730         /* The blitter was dysfunctional on early prototypes */
4731         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4732                 DRM_INFO("BLT not supported on this pre-production hardware;"
4733                          " graphics performance will be degraded.\n");
4734                 return false;
4735         }
4736
4737         return true;
4738 }
4739
4740 static void init_unused_ring(struct drm_device *dev, u32 base)
4741 {
4742         struct drm_i915_private *dev_priv = dev->dev_private;
4743
4744         I915_WRITE(RING_CTL(base), 0);
4745         I915_WRITE(RING_HEAD(base), 0);
4746         I915_WRITE(RING_TAIL(base), 0);
4747         I915_WRITE(RING_START(base), 0);
4748 }
4749
4750 static void init_unused_rings(struct drm_device *dev)
4751 {
4752         if (IS_I830(dev)) {
4753                 init_unused_ring(dev, PRB1_BASE);
4754                 init_unused_ring(dev, SRB0_BASE);
4755                 init_unused_ring(dev, SRB1_BASE);
4756                 init_unused_ring(dev, SRB2_BASE);
4757                 init_unused_ring(dev, SRB3_BASE);
4758         } else if (IS_GEN2(dev)) {
4759                 init_unused_ring(dev, SRB0_BASE);
4760                 init_unused_ring(dev, SRB1_BASE);
4761         } else if (IS_GEN3(dev)) {
4762                 init_unused_ring(dev, PRB1_BASE);
4763                 init_unused_ring(dev, PRB2_BASE);
4764         }
4765 }
4766
4767 int i915_gem_init_rings(struct drm_device *dev)
4768 {
4769         struct drm_i915_private *dev_priv = dev->dev_private;
4770         int ret;
4771
4772         /*
4773          * At least 830 can leave some of the unused rings
4774          * "active" (ie. head != tail) after resume which
4775          * will prevent c3 entry. Makes sure all unused rings
4776          * are totally idle.
4777          */
4778         init_unused_rings(dev);
4779
4780         ret = intel_init_render_ring_buffer(dev);
4781         if (ret)
4782                 return ret;
4783
4784         if (HAS_BSD(dev)) {
4785                 ret = intel_init_bsd_ring_buffer(dev);
4786                 if (ret)
4787                         goto cleanup_render_ring;
4788         }
4789
4790         if (intel_enable_blt(dev)) {
4791                 ret = intel_init_blt_ring_buffer(dev);
4792                 if (ret)
4793                         goto cleanup_bsd_ring;
4794         }
4795
4796         if (HAS_VEBOX(dev)) {
4797                 ret = intel_init_vebox_ring_buffer(dev);
4798                 if (ret)
4799                         goto cleanup_blt_ring;
4800         }
4801
4802         if (HAS_BSD2(dev)) {
4803                 ret = intel_init_bsd2_ring_buffer(dev);
4804                 if (ret)
4805                         goto cleanup_vebox_ring;
4806         }
4807
4808         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4809         if (ret)
4810                 goto cleanup_bsd2_ring;
4811
4812         return 0;
4813
4814 cleanup_bsd2_ring:
4815         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4816 cleanup_vebox_ring:
4817         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4818 cleanup_blt_ring:
4819         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4820 cleanup_bsd_ring:
4821         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4822 cleanup_render_ring:
4823         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4824
4825         return ret;
4826 }
4827
4828 int
4829 i915_gem_init_hw(struct drm_device *dev)
4830 {
4831         struct drm_i915_private *dev_priv = dev->dev_private;
4832         int ret, i;
4833
4834         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4835                 return -EIO;
4836
4837         if (dev_priv->ellc_size)
4838                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4839
4840         if (IS_HASWELL(dev))
4841                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4842                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4843
4844         if (HAS_PCH_NOP(dev)) {
4845                 if (IS_IVYBRIDGE(dev)) {
4846                         u32 temp = I915_READ(GEN7_MSG_CTL);
4847                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4848                         I915_WRITE(GEN7_MSG_CTL, temp);
4849                 } else if (INTEL_INFO(dev)->gen >= 7) {
4850                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4851                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4852                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4853                 }
4854         }
4855
4856         i915_gem_init_swizzling(dev);
4857
4858         ret = dev_priv->gt.init_rings(dev);
4859         if (ret)
4860                 return ret;
4861
4862         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4863                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4864
4865         /*
4866          * XXX: Contexts should only be initialized once. Doing a switch to the
4867          * default context switch however is something we'd like to do after
4868          * reset or thaw (the latter may not actually be necessary for HW, but
4869          * goes with our code better). Context switching requires rings (for
4870          * the do_switch), but before enabling PPGTT. So don't move this.
4871          */
4872         ret = i915_gem_context_enable(dev_priv);
4873         if (ret && ret != -EIO) {
4874                 DRM_ERROR("Context enable failed %d\n", ret);
4875                 i915_gem_cleanup_ringbuffer(dev);
4876
4877                 return ret;
4878         }
4879
4880         ret = i915_ppgtt_init_hw(dev);
4881         if (ret && ret != -EIO) {
4882                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4883                 i915_gem_cleanup_ringbuffer(dev);
4884         }
4885
4886         return ret;
4887 }
4888
4889 int i915_gem_init(struct drm_device *dev)
4890 {
4891         struct drm_i915_private *dev_priv = dev->dev_private;
4892         int ret;
4893
4894         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4895                         i915.enable_execlists);
4896
4897         mutex_lock(&dev->struct_mutex);
4898
4899         if (IS_VALLEYVIEW(dev)) {
4900                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4901                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4902                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4903                               VLV_GTLC_ALLOWWAKEACK), 10))
4904                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4905         }
4906
4907         if (!i915.enable_execlists) {
4908                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4909                 dev_priv->gt.init_rings = i915_gem_init_rings;
4910                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4911                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4912         } else {
4913                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4914                 dev_priv->gt.init_rings = intel_logical_rings_init;
4915                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4916                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4917         }
4918
4919         ret = i915_gem_init_userptr(dev);
4920         if (ret) {
4921                 mutex_unlock(&dev->struct_mutex);
4922                 return ret;
4923         }
4924
4925         i915_gem_init_global_gtt(dev);
4926
4927         ret = i915_gem_context_init(dev);
4928         if (ret) {
4929                 mutex_unlock(&dev->struct_mutex);
4930                 return ret;
4931         }
4932
4933         ret = i915_gem_init_hw(dev);
4934         if (ret == -EIO) {
4935                 /* Allow ring initialisation to fail by marking the GPU as
4936                  * wedged. But we only want to do this where the GPU is angry,
4937                  * for all other failure, such as an allocation failure, bail.
4938                  */
4939                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4940                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4941                 ret = 0;
4942         }
4943         mutex_unlock(&dev->struct_mutex);
4944
4945         return ret;
4946 }
4947
4948 void
4949 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4950 {
4951         struct drm_i915_private *dev_priv = dev->dev_private;
4952         struct intel_engine_cs *ring;
4953         int i;
4954
4955         for_each_ring(ring, dev_priv, i)
4956                 dev_priv->gt.cleanup_ring(ring);
4957 }
4958
4959 static void
4960 init_ring_lists(struct intel_engine_cs *ring)
4961 {
4962         INIT_LIST_HEAD(&ring->active_list);
4963         INIT_LIST_HEAD(&ring->request_list);
4964 }
4965
4966 void i915_init_vm(struct drm_i915_private *dev_priv,
4967                   struct i915_address_space *vm)
4968 {
4969         if (!i915_is_ggtt(vm))
4970                 drm_mm_init(&vm->mm, vm->start, vm->total);
4971         vm->dev = dev_priv->dev;
4972         INIT_LIST_HEAD(&vm->active_list);
4973         INIT_LIST_HEAD(&vm->inactive_list);
4974         INIT_LIST_HEAD(&vm->global_link);
4975         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4976 }
4977
4978 void
4979 i915_gem_load(struct drm_device *dev)
4980 {
4981         struct drm_i915_private *dev_priv = dev->dev_private;
4982         int i;
4983
4984         dev_priv->slab =
4985                 kmem_cache_create("i915_gem_object",
4986                                   sizeof(struct drm_i915_gem_object), 0,
4987                                   SLAB_HWCACHE_ALIGN,
4988                                   NULL);
4989
4990         INIT_LIST_HEAD(&dev_priv->vm_list);
4991         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4992
4993         INIT_LIST_HEAD(&dev_priv->context_list);
4994         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4995         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4996         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4997         for (i = 0; i < I915_NUM_RINGS; i++)
4998                 init_ring_lists(&dev_priv->ring[i]);
4999         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5000                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5001         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5002                           i915_gem_retire_work_handler);
5003         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5004                           i915_gem_idle_work_handler);
5005         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5006
5007         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5008         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5009                 I915_WRITE(MI_ARB_STATE,
5010                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5011         }
5012
5013         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5014
5015         /* Old X drivers will take 0-2 for front, back, depth buffers */
5016         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5017                 dev_priv->fence_reg_start = 3;
5018
5019         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5020                 dev_priv->num_fence_regs = 32;
5021         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5022                 dev_priv->num_fence_regs = 16;
5023         else
5024                 dev_priv->num_fence_regs = 8;
5025
5026         /* Initialize fence registers to zero */
5027         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5028         i915_gem_restore_fences(dev);
5029
5030         i915_gem_detect_bit_6_swizzle(dev);
5031         init_waitqueue_head(&dev_priv->pending_flip_queue);
5032
5033         dev_priv->mm.interruptible = true;
5034
5035         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5036         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5037         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5038         register_shrinker(&dev_priv->mm.shrinker);
5039
5040         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5041         register_oom_notifier(&dev_priv->mm.oom_notifier);
5042
5043         mutex_init(&dev_priv->fb_tracking.lock);
5044 }
5045
5046 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5047 {
5048         struct drm_i915_file_private *file_priv = file->driver_priv;
5049
5050         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5051
5052         /* Clean up our request list when the client is going away, so that
5053          * later retire_requests won't dereference our soon-to-be-gone
5054          * file_priv.
5055          */
5056         spin_lock(&file_priv->mm.lock);
5057         while (!list_empty(&file_priv->mm.request_list)) {
5058                 struct drm_i915_gem_request *request;
5059
5060                 request = list_first_entry(&file_priv->mm.request_list,
5061                                            struct drm_i915_gem_request,
5062                                            client_list);
5063                 list_del(&request->client_list);
5064                 request->file_priv = NULL;
5065         }
5066         spin_unlock(&file_priv->mm.lock);
5067 }
5068
5069 static void
5070 i915_gem_file_idle_work_handler(struct work_struct *work)
5071 {
5072         struct drm_i915_file_private *file_priv =
5073                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5074
5075         atomic_set(&file_priv->rps_wait_boost, false);
5076 }
5077
5078 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5079 {
5080         struct drm_i915_file_private *file_priv;
5081         int ret;
5082
5083         DRM_DEBUG_DRIVER("\n");
5084
5085         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5086         if (!file_priv)
5087                 return -ENOMEM;
5088
5089         file->driver_priv = file_priv;
5090         file_priv->dev_priv = dev->dev_private;
5091         file_priv->file = file;
5092
5093         spin_lock_init(&file_priv->mm.lock);
5094         INIT_LIST_HEAD(&file_priv->mm.request_list);
5095         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5096                           i915_gem_file_idle_work_handler);
5097
5098         ret = i915_gem_context_open(dev, file);
5099         if (ret)
5100                 kfree(file_priv);
5101
5102         return ret;
5103 }
5104
5105 /**
5106  * i915_gem_track_fb - update frontbuffer tracking
5107  * old: current GEM buffer for the frontbuffer slots
5108  * new: new GEM buffer for the frontbuffer slots
5109  * frontbuffer_bits: bitmask of frontbuffer slots
5110  *
5111  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5112  * from @old and setting them in @new. Both @old and @new can be NULL.
5113  */
5114 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5115                        struct drm_i915_gem_object *new,
5116                        unsigned frontbuffer_bits)
5117 {
5118         if (old) {
5119                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5120                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5121                 old->frontbuffer_bits &= ~frontbuffer_bits;
5122         }
5123
5124         if (new) {
5125                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5126                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5127                 new->frontbuffer_bits |= frontbuffer_bits;
5128         }
5129 }
5130
5131 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5132 {
5133         if (!mutex_is_locked(mutex))
5134                 return false;
5135
5136 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5137         return mutex->owner == task;
5138 #else
5139         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5140         return false;
5141 #endif
5142 }
5143
5144 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5145 {
5146         if (!mutex_trylock(&dev->struct_mutex)) {
5147                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5148                         return false;
5149
5150                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5151                         return false;
5152
5153                 *unlock = false;
5154         } else
5155                 *unlock = true;
5156
5157         return true;
5158 }
5159
5160 static int num_vma_bound(struct drm_i915_gem_object *obj)
5161 {
5162         struct i915_vma *vma;
5163         int count = 0;
5164
5165         list_for_each_entry(vma, &obj->vma_list, vma_link)
5166                 if (drm_mm_node_allocated(&vma->node))
5167                         count++;
5168
5169         return count;
5170 }
5171
5172 static unsigned long
5173 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5174 {
5175         struct drm_i915_private *dev_priv =
5176                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5177         struct drm_device *dev = dev_priv->dev;
5178         struct drm_i915_gem_object *obj;
5179         unsigned long count;
5180         bool unlock;
5181
5182         if (!i915_gem_shrinker_lock(dev, &unlock))
5183                 return 0;
5184
5185         count = 0;
5186         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5187                 if (obj->pages_pin_count == 0)
5188                         count += obj->base.size >> PAGE_SHIFT;
5189
5190         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5191                 if (!i915_gem_obj_is_pinned(obj) &&
5192                     obj->pages_pin_count == num_vma_bound(obj))
5193                         count += obj->base.size >> PAGE_SHIFT;
5194         }
5195
5196         if (unlock)
5197                 mutex_unlock(&dev->struct_mutex);
5198
5199         return count;
5200 }
5201
5202 /* All the new VM stuff */
5203 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5204                                   struct i915_address_space *vm)
5205 {
5206         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5207         struct i915_vma *vma;
5208
5209         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5210
5211         list_for_each_entry(vma, &o->vma_list, vma_link) {
5212                 if (vma->vm == vm)
5213                         return vma->node.start;
5214
5215         }
5216         WARN(1, "%s vma for this object not found.\n",
5217              i915_is_ggtt(vm) ? "global" : "ppgtt");
5218         return -1;
5219 }
5220
5221 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5222                         struct i915_address_space *vm)
5223 {
5224         struct i915_vma *vma;
5225
5226         list_for_each_entry(vma, &o->vma_list, vma_link)
5227                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5228                         return true;
5229
5230         return false;
5231 }
5232
5233 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5234 {
5235         struct i915_vma *vma;
5236
5237         list_for_each_entry(vma, &o->vma_list, vma_link)
5238                 if (drm_mm_node_allocated(&vma->node))
5239                         return true;
5240
5241         return false;
5242 }
5243
5244 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5245                                 struct i915_address_space *vm)
5246 {
5247         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5248         struct i915_vma *vma;
5249
5250         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5251
5252         BUG_ON(list_empty(&o->vma_list));
5253
5254         list_for_each_entry(vma, &o->vma_list, vma_link)
5255                 if (vma->vm == vm)
5256                         return vma->node.size;
5257
5258         return 0;
5259 }
5260
5261 static unsigned long
5262 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5263 {
5264         struct drm_i915_private *dev_priv =
5265                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5266         struct drm_device *dev = dev_priv->dev;
5267         unsigned long freed;
5268         bool unlock;
5269
5270         if (!i915_gem_shrinker_lock(dev, &unlock))
5271                 return SHRINK_STOP;
5272
5273         freed = i915_gem_shrink(dev_priv,
5274                                 sc->nr_to_scan,
5275                                 I915_SHRINK_BOUND |
5276                                 I915_SHRINK_UNBOUND |
5277                                 I915_SHRINK_PURGEABLE);
5278         if (freed < sc->nr_to_scan)
5279                 freed += i915_gem_shrink(dev_priv,
5280                                          sc->nr_to_scan - freed,
5281                                          I915_SHRINK_BOUND |
5282                                          I915_SHRINK_UNBOUND);
5283         if (unlock)
5284                 mutex_unlock(&dev->struct_mutex);
5285
5286         return freed;
5287 }
5288
5289 static int
5290 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5291 {
5292         struct drm_i915_private *dev_priv =
5293                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5294         struct drm_device *dev = dev_priv->dev;
5295         struct drm_i915_gem_object *obj;
5296         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5297         unsigned long pinned, bound, unbound, freed_pages;
5298         bool was_interruptible;
5299         bool unlock;
5300
5301         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5302                 schedule_timeout_killable(1);
5303                 if (fatal_signal_pending(current))
5304                         return NOTIFY_DONE;
5305         }
5306         if (timeout == 0) {
5307                 pr_err("Unable to purge GPU memory due lock contention.\n");
5308                 return NOTIFY_DONE;
5309         }
5310
5311         was_interruptible = dev_priv->mm.interruptible;
5312         dev_priv->mm.interruptible = false;
5313
5314         freed_pages = i915_gem_shrink_all(dev_priv);
5315
5316         dev_priv->mm.interruptible = was_interruptible;
5317
5318         /* Because we may be allocating inside our own driver, we cannot
5319          * assert that there are no objects with pinned pages that are not
5320          * being pointed to by hardware.
5321          */
5322         unbound = bound = pinned = 0;
5323         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5324                 if (!obj->base.filp) /* not backed by a freeable object */
5325                         continue;
5326
5327                 if (obj->pages_pin_count)
5328                         pinned += obj->base.size;
5329                 else
5330                         unbound += obj->base.size;
5331         }
5332         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5333                 if (!obj->base.filp)
5334                         continue;
5335
5336                 if (obj->pages_pin_count)
5337                         pinned += obj->base.size;
5338                 else
5339                         bound += obj->base.size;
5340         }
5341
5342         if (unlock)
5343                 mutex_unlock(&dev->struct_mutex);
5344
5345         if (freed_pages || unbound || bound)
5346                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5347                         freed_pages << PAGE_SHIFT, pinned);
5348         if (unbound || bound)
5349                 pr_err("%lu and %lu bytes still available in the "
5350                        "bound and unbound GPU page lists.\n",
5351                        bound, unbound);
5352
5353         *(unsigned long *)ptr += freed_pages;
5354         return NOTIFY_DONE;
5355 }
5356
5357 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5358 {
5359         struct i915_vma *vma;
5360
5361         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5362         if (vma->vm != i915_obj_to_ggtt(obj))
5363                 return NULL;
5364
5365         return vma;
5366 }