a580593f586e60016842b6609b856bbbc85e6d2b
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50                                  struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52                                          struct drm_i915_fence_reg *fence,
53                                          bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56                                   enum i915_cache_level level)
57 {
58         return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64                 return true;
65
66         return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71         if (obj->tiling_mode)
72                 i915_gem_release_mmap(obj);
73
74         /* As we do not have an associated fence register, we will force
75          * a tiling change if we ever need to acquire one.
76          */
77         obj->fence_dirty = false;
78         obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83                                   size_t size)
84 {
85         spin_lock(&dev_priv->mm.object_stat_lock);
86         dev_priv->mm.object_count++;
87         dev_priv->mm.object_memory += size;
88         spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92                                      size_t size)
93 {
94         spin_lock(&dev_priv->mm.object_stat_lock);
95         dev_priv->mm.object_count--;
96         dev_priv->mm.object_memory -= size;
97         spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103         int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106                    i915_terminally_wedged(error))
107         if (EXIT_COND)
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                EXIT_COND,
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         }
124 #undef EXIT_COND
125
126         return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_i915_gem_get_aperture *args = data;
152         struct drm_i915_gem_object *obj;
153         size_t pinned;
154
155         pinned = 0;
156         mutex_lock(&dev->struct_mutex);
157         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158                 if (i915_gem_obj_is_pinned(obj))
159                         pinned += i915_gem_obj_ggtt_size(obj);
160         mutex_unlock(&dev->struct_mutex);
161
162         args->aper_size = dev_priv->gtt.base.total;
163         args->aper_available_size = args->aper_size - pinned;
164
165         return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172         char *vaddr = obj->phys_handle->vaddr;
173         struct sg_table *st;
174         struct scatterlist *sg;
175         int i;
176
177         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178                 return -EINVAL;
179
180         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181                 struct page *page;
182                 char *src;
183
184                 page = shmem_read_mapping_page(mapping, i);
185                 if (IS_ERR(page))
186                         return PTR_ERR(page);
187
188                 src = kmap_atomic(page);
189                 memcpy(vaddr, src, PAGE_SIZE);
190                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191                 kunmap_atomic(src);
192
193                 page_cache_release(page);
194                 vaddr += PAGE_SIZE;
195         }
196
197         i915_gem_chipset_flush(obj->base.dev);
198
199         st = kmalloc(sizeof(*st), GFP_KERNEL);
200         if (st == NULL)
201                 return -ENOMEM;
202
203         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204                 kfree(st);
205                 return -ENOMEM;
206         }
207
208         sg = st->sgl;
209         sg->offset = 0;
210         sg->length = obj->base.size;
211
212         sg_dma_address(sg) = obj->phys_handle->busaddr;
213         sg_dma_len(sg) = obj->base.size;
214
215         obj->pages = st;
216         obj->has_dma_mapping = true;
217         return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223         int ret;
224
225         BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227         ret = i915_gem_object_set_to_cpu_domain(obj, true);
228         if (ret) {
229                 /* In the event of a disaster, abandon all caches and
230                  * hope for the best.
231                  */
232                 WARN_ON(ret != -EIO);
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         page_cache_release(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268
269         obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275         drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279         .get_pages = i915_gem_object_get_pages_phys,
280         .put_pages = i915_gem_object_put_pages_phys,
281         .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287         struct i915_vma *vma, *next;
288         int ret;
289
290         drm_gem_object_reference(&obj->base);
291         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292                 if (i915_vma_unbind(vma))
293                         break;
294
295         ret = i915_gem_object_put_pages(obj);
296         drm_gem_object_unreference(&obj->base);
297
298         return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303                             int align)
304 {
305         drm_dma_handle_t *phys;
306         int ret;
307
308         if (obj->phys_handle) {
309                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310                         return -EBUSY;
311
312                 return 0;
313         }
314
315         if (obj->madv != I915_MADV_WILLNEED)
316                 return -EFAULT;
317
318         if (obj->base.filp == NULL)
319                 return -EINVAL;
320
321         ret = drop_pages(obj);
322         if (ret)
323                 return ret;
324
325         /* create a new object */
326         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327         if (!phys)
328                 return -ENOMEM;
329
330         obj->phys_handle = phys;
331         obj->ops = &i915_gem_phys_ops;
332
333         return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338                      struct drm_i915_gem_pwrite *args,
339                      struct drm_file *file_priv)
340 {
341         struct drm_device *dev = obj->base.dev;
342         void *vaddr = obj->phys_handle->vaddr + args->offset;
343         char __user *user_data = to_user_ptr(args->data_ptr);
344         int ret = 0;
345
346         /* We manually control the domain here and pretend that it
347          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348          */
349         ret = i915_gem_object_wait_rendering(obj, false);
350         if (ret)
351                 return ret;
352
353         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355                 unsigned long unwritten;
356
357                 /* The physical object once assigned is fixed for the lifetime
358                  * of the obj, so we can safely drop the lock and continue
359                  * to access vaddr.
360                  */
361                 mutex_unlock(&dev->struct_mutex);
362                 unwritten = copy_from_user(vaddr, user_data, args->size);
363                 mutex_lock(&dev->struct_mutex);
364                 if (unwritten) {
365                         ret = -EFAULT;
366                         goto out;
367                 }
368         }
369
370         drm_clflush_virt_range(vaddr, args->size);
371         i915_gem_chipset_flush(dev);
372
373 out:
374         intel_fb_obj_flush(obj, false);
375         return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380         struct drm_i915_private *dev_priv = dev->dev_private;
381         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387         kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392                 struct drm_device *dev,
393                 uint64_t size,
394                 uint32_t *handle_p)
395 {
396         struct drm_i915_gem_object *obj;
397         int ret;
398         u32 handle;
399
400         size = roundup(size, PAGE_SIZE);
401         if (size == 0)
402                 return -EINVAL;
403
404         /* Allocate the new object */
405         obj = i915_gem_alloc_object(dev, size);
406         if (obj == NULL)
407                 return -ENOMEM;
408
409         ret = drm_gem_handle_create(file, &obj->base, &handle);
410         /* drop reference from allocate - handle holds it now */
411         drm_gem_object_unreference_unlocked(&obj->base);
412         if (ret)
413                 return ret;
414
415         *handle_p = handle;
416         return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421                      struct drm_device *dev,
422                      struct drm_mode_create_dumb *args)
423 {
424         /* have to work out size/pitch and return them */
425         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426         args->size = args->pitch * args->height;
427         return i915_gem_create(file, dev,
428                                args->size, &args->handle);
429 }
430
431 /**
432  * Creates a new mm object and returns a handle to it.
433  */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436                       struct drm_file *file)
437 {
438         struct drm_i915_gem_create *args = data;
439
440         return i915_gem_create(file, dev,
441                                args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446                         const char *gpu_vaddr, int gpu_offset,
447                         int length)
448 {
449         int ret, cpu_offset = 0;
450
451         while (length > 0) {
452                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453                 int this_length = min(cacheline_end - gpu_offset, length);
454                 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457                                      gpu_vaddr + swizzled_gpu_offset,
458                                      this_length);
459                 if (ret)
460                         return ret + length;
461
462                 cpu_offset += this_length;
463                 gpu_offset += this_length;
464                 length -= this_length;
465         }
466
467         return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472                           const char __user *cpu_vaddr,
473                           int length)
474 {
475         int ret, cpu_offset = 0;
476
477         while (length > 0) {
478                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479                 int this_length = min(cacheline_end - gpu_offset, length);
480                 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483                                        cpu_vaddr + cpu_offset,
484                                        this_length);
485                 if (ret)
486                         return ret + length;
487
488                 cpu_offset += this_length;
489                 gpu_offset += this_length;
490                 length -= this_length;
491         }
492
493         return 0;
494 }
495
496 /*
497  * Pins the specified object's pages and synchronizes the object with
498  * GPU accesses. Sets needs_clflush to non-zero if the caller should
499  * flush the object from the CPU cache.
500  */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502                                     int *needs_clflush)
503 {
504         int ret;
505
506         *needs_clflush = 0;
507
508         if (!obj->base.filp)
509                 return -EINVAL;
510
511         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512                 /* If we're not in the cpu read domain, set ourself into the gtt
513                  * read domain and manually flush cachelines (if required). This
514                  * optimizes for the case when the gpu will dirty the data
515                  * anyway again before the next pread happens. */
516                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517                                                         obj->cache_level);
518                 ret = i915_gem_object_wait_rendering(obj, true);
519                 if (ret)
520                         return ret;
521         }
522
523         ret = i915_gem_object_get_pages(obj);
524         if (ret)
525                 return ret;
526
527         i915_gem_object_pin_pages(obj);
528
529         return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533  * Flushes invalid cachelines before reading the target if
534  * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537                  char __user *user_data,
538                  bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540         char *vaddr;
541         int ret;
542
543         if (unlikely(page_do_bit17_swizzling))
544                 return -EINVAL;
545
546         vaddr = kmap_atomic(page);
547         if (needs_clflush)
548                 drm_clflush_virt_range(vaddr + shmem_page_offset,
549                                        page_length);
550         ret = __copy_to_user_inatomic(user_data,
551                                       vaddr + shmem_page_offset,
552                                       page_length);
553         kunmap_atomic(vaddr);
554
555         return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560                              bool swizzled)
561 {
562         if (unlikely(swizzled)) {
563                 unsigned long start = (unsigned long) addr;
564                 unsigned long end = (unsigned long) addr + length;
565
566                 /* For swizzling simply ensure that we always flush both
567                  * channels. Lame, but simple and it works. Swizzled
568                  * pwrite/pread is far from a hotpath - current userspace
569                  * doesn't use it at all. */
570                 start = round_down(start, 128);
571                 end = round_up(end, 128);
572
573                 drm_clflush_virt_range((void *)start, end - start);
574         } else {
575                 drm_clflush_virt_range(addr, length);
576         }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581  * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584                  char __user *user_data,
585                  bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587         char *vaddr;
588         int ret;
589
590         vaddr = kmap(page);
591         if (needs_clflush)
592                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593                                              page_length,
594                                              page_do_bit17_swizzling);
595
596         if (page_do_bit17_swizzling)
597                 ret = __copy_to_user_swizzled(user_data,
598                                               vaddr, shmem_page_offset,
599                                               page_length);
600         else
601                 ret = __copy_to_user(user_data,
602                                      vaddr + shmem_page_offset,
603                                      page_length);
604         kunmap(page);
605
606         return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611                      struct drm_i915_gem_object *obj,
612                      struct drm_i915_gem_pread *args,
613                      struct drm_file *file)
614 {
615         char __user *user_data;
616         ssize_t remain;
617         loff_t offset;
618         int shmem_page_offset, page_length, ret = 0;
619         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620         int prefaulted = 0;
621         int needs_clflush = 0;
622         struct sg_page_iter sg_iter;
623
624         user_data = to_user_ptr(args->data_ptr);
625         remain = args->size;
626
627         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630         if (ret)
631                 return ret;
632
633         offset = args->offset;
634
635         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636                          offset >> PAGE_SHIFT) {
637                 struct page *page = sg_page_iter_page(&sg_iter);
638
639                 if (remain <= 0)
640                         break;
641
642                 /* Operation in this page
643                  *
644                  * shmem_page_offset = offset within page in shmem file
645                  * page_length = bytes to copy for this page
646                  */
647                 shmem_page_offset = offset_in_page(offset);
648                 page_length = remain;
649                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650                         page_length = PAGE_SIZE - shmem_page_offset;
651
652                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653                         (page_to_phys(page) & (1 << 17)) != 0;
654
655                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656                                        user_data, page_do_bit17_swizzling,
657                                        needs_clflush);
658                 if (ret == 0)
659                         goto next_page;
660
661                 mutex_unlock(&dev->struct_mutex);
662
663                 if (likely(!i915.prefault_disable) && !prefaulted) {
664                         ret = fault_in_multipages_writeable(user_data, remain);
665                         /* Userspace is tricking us, but we've already clobbered
666                          * its pages with the prefault and promised to write the
667                          * data up to the first fault. Hence ignore any errors
668                          * and just continue. */
669                         (void)ret;
670                         prefaulted = 1;
671                 }
672
673                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674                                        user_data, page_do_bit17_swizzling,
675                                        needs_clflush);
676
677                 mutex_lock(&dev->struct_mutex);
678
679                 if (ret)
680                         goto out;
681
682 next_page:
683                 remain -= page_length;
684                 user_data += page_length;
685                 offset += page_length;
686         }
687
688 out:
689         i915_gem_object_unpin_pages(obj);
690
691         return ret;
692 }
693
694 /**
695  * Reads data from the object referenced by handle.
696  *
697  * On error, the contents of *data are undefined.
698  */
699 int
700 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701                      struct drm_file *file)
702 {
703         struct drm_i915_gem_pread *args = data;
704         struct drm_i915_gem_object *obj;
705         int ret = 0;
706
707         if (args->size == 0)
708                 return 0;
709
710         if (!access_ok(VERIFY_WRITE,
711                        to_user_ptr(args->data_ptr),
712                        args->size))
713                 return -EFAULT;
714
715         ret = i915_mutex_lock_interruptible(dev);
716         if (ret)
717                 return ret;
718
719         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720         if (&obj->base == NULL) {
721                 ret = -ENOENT;
722                 goto unlock;
723         }
724
725         /* Bounds check source.  */
726         if (args->offset > obj->base.size ||
727             args->size > obj->base.size - args->offset) {
728                 ret = -EINVAL;
729                 goto out;
730         }
731
732         /* prime objects have no backing filp to GEM pread/pwrite
733          * pages from.
734          */
735         if (!obj->base.filp) {
736                 ret = -EINVAL;
737                 goto out;
738         }
739
740         trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742         ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744 out:
745         drm_gem_object_unreference(&obj->base);
746 unlock:
747         mutex_unlock(&dev->struct_mutex);
748         return ret;
749 }
750
751 /* This is the fast write path which cannot handle
752  * page faults in the source data
753  */
754
755 static inline int
756 fast_user_write(struct io_mapping *mapping,
757                 loff_t page_base, int page_offset,
758                 char __user *user_data,
759                 int length)
760 {
761         void __iomem *vaddr_atomic;
762         void *vaddr;
763         unsigned long unwritten;
764
765         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766         /* We can use the cpu mem copy function because this is X86. */
767         vaddr = (void __force*)vaddr_atomic + page_offset;
768         unwritten = __copy_from_user_inatomic_nocache(vaddr,
769                                                       user_data, length);
770         io_mapping_unmap_atomic(vaddr_atomic);
771         return unwritten;
772 }
773
774 /**
775  * This is the fast pwrite path, where we copy the data directly from the
776  * user into the GTT, uncached.
777  */
778 static int
779 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780                          struct drm_i915_gem_object *obj,
781                          struct drm_i915_gem_pwrite *args,
782                          struct drm_file *file)
783 {
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         ssize_t remain;
786         loff_t offset, page_base;
787         char __user *user_data;
788         int page_offset, page_length, ret;
789
790         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791         if (ret)
792                 goto out;
793
794         ret = i915_gem_object_set_to_gtt_domain(obj, true);
795         if (ret)
796                 goto out_unpin;
797
798         ret = i915_gem_object_put_fence(obj);
799         if (ret)
800                 goto out_unpin;
801
802         user_data = to_user_ptr(args->data_ptr);
803         remain = args->size;
804
805         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808
809         while (remain > 0) {
810                 /* Operation in this page
811                  *
812                  * page_base = page offset within aperture
813                  * page_offset = offset within page
814                  * page_length = bytes to copy for this page
815                  */
816                 page_base = offset & PAGE_MASK;
817                 page_offset = offset_in_page(offset);
818                 page_length = remain;
819                 if ((page_offset + remain) > PAGE_SIZE)
820                         page_length = PAGE_SIZE - page_offset;
821
822                 /* If we get a fault while copying data, then (presumably) our
823                  * source page isn't available.  Return the error and we'll
824                  * retry in the slow path.
825                  */
826                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827                                     page_offset, user_data, page_length)) {
828                         ret = -EFAULT;
829                         goto out_flush;
830                 }
831
832                 remain -= page_length;
833                 user_data += page_length;
834                 offset += page_length;
835         }
836
837 out_flush:
838         intel_fb_obj_flush(obj, false);
839 out_unpin:
840         i915_gem_object_ggtt_unpin(obj);
841 out:
842         return ret;
843 }
844
845 /* Per-page copy function for the shmem pwrite fastpath.
846  * Flushes invalid cachelines before writing to the target if
847  * needs_clflush_before is set and flushes out any written cachelines after
848  * writing if needs_clflush is set. */
849 static int
850 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851                   char __user *user_data,
852                   bool page_do_bit17_swizzling,
853                   bool needs_clflush_before,
854                   bool needs_clflush_after)
855 {
856         char *vaddr;
857         int ret;
858
859         if (unlikely(page_do_bit17_swizzling))
860                 return -EINVAL;
861
862         vaddr = kmap_atomic(page);
863         if (needs_clflush_before)
864                 drm_clflush_virt_range(vaddr + shmem_page_offset,
865                                        page_length);
866         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867                                         user_data, page_length);
868         if (needs_clflush_after)
869                 drm_clflush_virt_range(vaddr + shmem_page_offset,
870                                        page_length);
871         kunmap_atomic(vaddr);
872
873         return ret ? -EFAULT : 0;
874 }
875
876 /* Only difference to the fast-path function is that this can handle bit17
877  * and uses non-atomic copy and kmap functions. */
878 static int
879 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880                   char __user *user_data,
881                   bool page_do_bit17_swizzling,
882                   bool needs_clflush_before,
883                   bool needs_clflush_after)
884 {
885         char *vaddr;
886         int ret;
887
888         vaddr = kmap(page);
889         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891                                              page_length,
892                                              page_do_bit17_swizzling);
893         if (page_do_bit17_swizzling)
894                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895                                                 user_data,
896                                                 page_length);
897         else
898                 ret = __copy_from_user(vaddr + shmem_page_offset,
899                                        user_data,
900                                        page_length);
901         if (needs_clflush_after)
902                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903                                              page_length,
904                                              page_do_bit17_swizzling);
905         kunmap(page);
906
907         return ret ? -EFAULT : 0;
908 }
909
910 static int
911 i915_gem_shmem_pwrite(struct drm_device *dev,
912                       struct drm_i915_gem_object *obj,
913                       struct drm_i915_gem_pwrite *args,
914                       struct drm_file *file)
915 {
916         ssize_t remain;
917         loff_t offset;
918         char __user *user_data;
919         int shmem_page_offset, page_length, ret = 0;
920         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921         int hit_slowpath = 0;
922         int needs_clflush_after = 0;
923         int needs_clflush_before = 0;
924         struct sg_page_iter sg_iter;
925
926         user_data = to_user_ptr(args->data_ptr);
927         remain = args->size;
928
929         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932                 /* If we're not in the cpu write domain, set ourself into the gtt
933                  * write domain and manually flush cachelines (if required). This
934                  * optimizes for the case when the gpu will use the data
935                  * right away and we therefore have to clflush anyway. */
936                 needs_clflush_after = cpu_write_needs_clflush(obj);
937                 ret = i915_gem_object_wait_rendering(obj, false);
938                 if (ret)
939                         return ret;
940         }
941         /* Same trick applies to invalidate partially written cachelines read
942          * before writing. */
943         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944                 needs_clflush_before =
945                         !cpu_cache_is_coherent(dev, obj->cache_level);
946
947         ret = i915_gem_object_get_pages(obj);
948         if (ret)
949                 return ret;
950
951         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952
953         i915_gem_object_pin_pages(obj);
954
955         offset = args->offset;
956         obj->dirty = 1;
957
958         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959                          offset >> PAGE_SHIFT) {
960                 struct page *page = sg_page_iter_page(&sg_iter);
961                 int partial_cacheline_write;
962
963                 if (remain <= 0)
964                         break;
965
966                 /* Operation in this page
967                  *
968                  * shmem_page_offset = offset within page in shmem file
969                  * page_length = bytes to copy for this page
970                  */
971                 shmem_page_offset = offset_in_page(offset);
972
973                 page_length = remain;
974                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975                         page_length = PAGE_SIZE - shmem_page_offset;
976
977                 /* If we don't overwrite a cacheline completely we need to be
978                  * careful to have up-to-date data by first clflushing. Don't
979                  * overcomplicate things and flush the entire patch. */
980                 partial_cacheline_write = needs_clflush_before &&
981                         ((shmem_page_offset | page_length)
982                                 & (boot_cpu_data.x86_clflush_size - 1));
983
984                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985                         (page_to_phys(page) & (1 << 17)) != 0;
986
987                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988                                         user_data, page_do_bit17_swizzling,
989                                         partial_cacheline_write,
990                                         needs_clflush_after);
991                 if (ret == 0)
992                         goto next_page;
993
994                 hit_slowpath = 1;
995                 mutex_unlock(&dev->struct_mutex);
996                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997                                         user_data, page_do_bit17_swizzling,
998                                         partial_cacheline_write,
999                                         needs_clflush_after);
1000
1001                 mutex_lock(&dev->struct_mutex);
1002
1003                 if (ret)
1004                         goto out;
1005
1006 next_page:
1007                 remain -= page_length;
1008                 user_data += page_length;
1009                 offset += page_length;
1010         }
1011
1012 out:
1013         i915_gem_object_unpin_pages(obj);
1014
1015         if (hit_slowpath) {
1016                 /*
1017                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1018                  * cachelines in-line while writing and the object moved
1019                  * out of the cpu write domain while we've dropped the lock.
1020                  */
1021                 if (!needs_clflush_after &&
1022                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023                         if (i915_gem_clflush_object(obj, obj->pin_display))
1024                                 i915_gem_chipset_flush(dev);
1025                 }
1026         }
1027
1028         if (needs_clflush_after)
1029                 i915_gem_chipset_flush(dev);
1030
1031         intel_fb_obj_flush(obj, false);
1032         return ret;
1033 }
1034
1035 /**
1036  * Writes data to the object referenced by handle.
1037  *
1038  * On error, the contents of the buffer that were to be modified are undefined.
1039  */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042                       struct drm_file *file)
1043 {
1044         struct drm_i915_private *dev_priv = dev->dev_private;
1045         struct drm_i915_gem_pwrite *args = data;
1046         struct drm_i915_gem_object *obj;
1047         int ret;
1048
1049         if (args->size == 0)
1050                 return 0;
1051
1052         if (!access_ok(VERIFY_READ,
1053                        to_user_ptr(args->data_ptr),
1054                        args->size))
1055                 return -EFAULT;
1056
1057         if (likely(!i915.prefault_disable)) {
1058                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059                                                    args->size);
1060                 if (ret)
1061                         return -EFAULT;
1062         }
1063
1064         intel_runtime_pm_get(dev_priv);
1065
1066         ret = i915_mutex_lock_interruptible(dev);
1067         if (ret)
1068                 goto put_rpm;
1069
1070         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071         if (&obj->base == NULL) {
1072                 ret = -ENOENT;
1073                 goto unlock;
1074         }
1075
1076         /* Bounds check destination. */
1077         if (args->offset > obj->base.size ||
1078             args->size > obj->base.size - args->offset) {
1079                 ret = -EINVAL;
1080                 goto out;
1081         }
1082
1083         /* prime objects have no backing filp to GEM pread/pwrite
1084          * pages from.
1085          */
1086         if (!obj->base.filp) {
1087                 ret = -EINVAL;
1088                 goto out;
1089         }
1090
1091         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093         ret = -EFAULT;
1094         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095          * it would end up going through the fenced access, and we'll get
1096          * different detiling behavior between reading and writing.
1097          * pread/pwrite currently are reading and writing from the CPU
1098          * perspective, requiring manual detiling by the client.
1099          */
1100         if (obj->tiling_mode == I915_TILING_NONE &&
1101             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102             cpu_write_needs_clflush(obj)) {
1103                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104                 /* Note that the gtt paths might fail with non-page-backed user
1105                  * pointers (e.g. gtt mappings when moving data between
1106                  * textures). Fallback to the shmem path in that case. */
1107         }
1108
1109         if (ret == -EFAULT || ret == -ENOSPC) {
1110                 if (obj->phys_handle)
1111                         ret = i915_gem_phys_pwrite(obj, args, file);
1112                 else
1113                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114         }
1115
1116 out:
1117         drm_gem_object_unreference(&obj->base);
1118 unlock:
1119         mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121         intel_runtime_pm_put(dev_priv);
1122
1123         return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128                      bool interruptible)
1129 {
1130         if (i915_reset_in_progress(error)) {
1131                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132                  * -EIO unconditionally for these. */
1133                 if (!interruptible)
1134                         return -EIO;
1135
1136                 /* Recovery complete, but the reset failed ... */
1137                 if (i915_terminally_wedged(error))
1138                         return -EIO;
1139
1140                 /*
1141                  * Check if GPU Reset is in progress - we need intel_ring_begin
1142                  * to work properly to reinit the hw state while the gpu is
1143                  * still marked as reset-in-progress. Handle this with a flag.
1144                  */
1145                 if (!error->reload_in_reset)
1146                         return -EAGAIN;
1147         }
1148
1149         return 0;
1150 }
1151
1152 /*
1153  * Compare arbitrary request against outstanding lazy request. Emit on match.
1154  */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1159
1160         if (req == req->ring->outstanding_lazy_request)
1161                 i915_add_request(req->ring);
1162
1163         return 0;
1164 }
1165
1166 static void fake_irq(unsigned long data)
1167 {
1168         wake_up_process((struct task_struct *)data);
1169 }
1170
1171 static bool missed_irq(struct drm_i915_private *dev_priv,
1172                        struct intel_engine_cs *ring)
1173 {
1174         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175 }
1176
1177 static int __i915_spin_request(struct drm_i915_gem_request *req)
1178 {
1179         unsigned long timeout;
1180
1181         if (i915_gem_request_get_ring(req)->irq_refcount)
1182                 return -EBUSY;
1183
1184         timeout = jiffies + 1;
1185         while (!need_resched()) {
1186                 if (i915_gem_request_completed(req, true))
1187                         return 0;
1188
1189                 if (time_after_eq(jiffies, timeout))
1190                         break;
1191
1192                 cpu_relax_lowlatency();
1193         }
1194         if (i915_gem_request_completed(req, false))
1195                 return 0;
1196
1197         return -EAGAIN;
1198 }
1199
1200 /**
1201  * __i915_wait_request - wait until execution of request has finished
1202  * @req: duh!
1203  * @reset_counter: reset sequence associated with the given request
1204  * @interruptible: do an interruptible wait (normally yes)
1205  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1206  *
1207  * Note: It is of utmost importance that the passed in seqno and reset_counter
1208  * values have been read by the caller in an smp safe manner. Where read-side
1209  * locks are involved, it is sufficient to read the reset_counter before
1210  * unlocking the lock that protects the seqno. For lockless tricks, the
1211  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1212  * inserted.
1213  *
1214  * Returns 0 if the request was found within the alloted time. Else returns the
1215  * errno with remaining time filled in timeout argument.
1216  */
1217 int __i915_wait_request(struct drm_i915_gem_request *req,
1218                         unsigned reset_counter,
1219                         bool interruptible,
1220                         s64 *timeout,
1221                         struct intel_rps_client *rps)
1222 {
1223         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1224         struct drm_device *dev = ring->dev;
1225         struct drm_i915_private *dev_priv = dev->dev_private;
1226         const bool irq_test_in_progress =
1227                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1228         DEFINE_WAIT(wait);
1229         unsigned long timeout_expire;
1230         s64 before, now;
1231         int ret;
1232
1233         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1234
1235         if (list_empty(&req->list))
1236                 return 0;
1237
1238         if (i915_gem_request_completed(req, true))
1239                 return 0;
1240
1241         timeout_expire = timeout ?
1242                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1243
1244         if (INTEL_INFO(dev_priv)->gen >= 6)
1245                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1246
1247         /* Record current time in case interrupted by signal, or wedged */
1248         trace_i915_gem_request_wait_begin(req);
1249         before = ktime_get_raw_ns();
1250
1251         /* Optimistic spin for the next jiffie before touching IRQs */
1252         ret = __i915_spin_request(req);
1253         if (ret == 0)
1254                 goto out;
1255
1256         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1257                 ret = -ENODEV;
1258                 goto out;
1259         }
1260
1261         for (;;) {
1262                 struct timer_list timer;
1263
1264                 prepare_to_wait(&ring->irq_queue, &wait,
1265                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1266
1267                 /* We need to check whether any gpu reset happened in between
1268                  * the caller grabbing the seqno and now ... */
1269                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1270                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1271                          * is truely gone. */
1272                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1273                         if (ret == 0)
1274                                 ret = -EAGAIN;
1275                         break;
1276                 }
1277
1278                 if (i915_gem_request_completed(req, false)) {
1279                         ret = 0;
1280                         break;
1281                 }
1282
1283                 if (interruptible && signal_pending(current)) {
1284                         ret = -ERESTARTSYS;
1285                         break;
1286                 }
1287
1288                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1289                         ret = -ETIME;
1290                         break;
1291                 }
1292
1293                 timer.function = NULL;
1294                 if (timeout || missed_irq(dev_priv, ring)) {
1295                         unsigned long expire;
1296
1297                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1298                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1299                         mod_timer(&timer, expire);
1300                 }
1301
1302                 io_schedule();
1303
1304                 if (timer.function) {
1305                         del_singleshot_timer_sync(&timer);
1306                         destroy_timer_on_stack(&timer);
1307                 }
1308         }
1309         if (!irq_test_in_progress)
1310                 ring->irq_put(ring);
1311
1312         finish_wait(&ring->irq_queue, &wait);
1313
1314 out:
1315         now = ktime_get_raw_ns();
1316         trace_i915_gem_request_wait_end(req);
1317
1318         if (timeout) {
1319                 s64 tres = *timeout - (now - before);
1320
1321                 *timeout = tres < 0 ? 0 : tres;
1322
1323                 /*
1324                  * Apparently ktime isn't accurate enough and occasionally has a
1325                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326                  * things up to make the test happy. We allow up to 1 jiffy.
1327                  *
1328                  * This is a regrssion from the timespec->ktime conversion.
1329                  */
1330                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331                         *timeout = 0;
1332         }
1333
1334         return ret;
1335 }
1336
1337 static inline void
1338 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1339 {
1340         struct drm_i915_file_private *file_priv = request->file_priv;
1341
1342         if (!file_priv)
1343                 return;
1344
1345         spin_lock(&file_priv->mm.lock);
1346         list_del(&request->client_list);
1347         request->file_priv = NULL;
1348         spin_unlock(&file_priv->mm.lock);
1349 }
1350
1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352 {
1353         trace_i915_gem_request_retire(request);
1354
1355         /* We know the GPU must have read the request to have
1356          * sent us the seqno + interrupt, so use the position
1357          * of tail of the request to update the last known position
1358          * of the GPU head.
1359          *
1360          * Note this requires that we are always called in request
1361          * completion order.
1362          */
1363         request->ringbuf->last_retired_head = request->postfix;
1364
1365         list_del_init(&request->list);
1366         i915_gem_request_remove_from_client(request);
1367
1368         put_pid(request->pid);
1369
1370         i915_gem_request_unreference(request);
1371 }
1372
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376         struct intel_engine_cs *engine = req->ring;
1377         struct drm_i915_gem_request *tmp;
1378
1379         lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381         if (list_empty(&req->list))
1382                 return;
1383
1384         do {
1385                 tmp = list_first_entry(&engine->request_list,
1386                                        typeof(*tmp), list);
1387
1388                 i915_gem_request_retire(tmp);
1389         } while (tmp != req);
1390
1391         WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393
1394 /**
1395  * Waits for a request to be signaled, and cleans up the
1396  * request and object lists appropriately for that event.
1397  */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401         struct drm_device *dev;
1402         struct drm_i915_private *dev_priv;
1403         bool interruptible;
1404         int ret;
1405
1406         BUG_ON(req == NULL);
1407
1408         dev = req->ring->dev;
1409         dev_priv = dev->dev_private;
1410         interruptible = dev_priv->mm.interruptible;
1411
1412         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415         if (ret)
1416                 return ret;
1417
1418         ret = i915_gem_check_olr(req);
1419         if (ret)
1420                 return ret;
1421
1422         ret = __i915_wait_request(req,
1423                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1424                                   interruptible, NULL, NULL);
1425         if (ret)
1426                 return ret;
1427
1428         __i915_gem_request_retire__upto(req);
1429         return 0;
1430 }
1431
1432 /**
1433  * Ensures that all rendering to the object has completed and the object is
1434  * safe to unbind from the GTT or access from the CPU.
1435  */
1436 int
1437 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1438                                bool readonly)
1439 {
1440         int ret, i;
1441
1442         if (!obj->active)
1443                 return 0;
1444
1445         if (readonly) {
1446                 if (obj->last_write_req != NULL) {
1447                         ret = i915_wait_request(obj->last_write_req);
1448                         if (ret)
1449                                 return ret;
1450
1451                         i = obj->last_write_req->ring->id;
1452                         if (obj->last_read_req[i] == obj->last_write_req)
1453                                 i915_gem_object_retire__read(obj, i);
1454                         else
1455                                 i915_gem_object_retire__write(obj);
1456                 }
1457         } else {
1458                 for (i = 0; i < I915_NUM_RINGS; i++) {
1459                         if (obj->last_read_req[i] == NULL)
1460                                 continue;
1461
1462                         ret = i915_wait_request(obj->last_read_req[i]);
1463                         if (ret)
1464                                 return ret;
1465
1466                         i915_gem_object_retire__read(obj, i);
1467                 }
1468                 RQ_BUG_ON(obj->active);
1469         }
1470
1471         return 0;
1472 }
1473
1474 static void
1475 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1476                                struct drm_i915_gem_request *req)
1477 {
1478         int ring = req->ring->id;
1479
1480         if (obj->last_read_req[ring] == req)
1481                 i915_gem_object_retire__read(obj, ring);
1482         else if (obj->last_write_req == req)
1483                 i915_gem_object_retire__write(obj);
1484
1485         __i915_gem_request_retire__upto(req);
1486 }
1487
1488 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1489  * as the object state may change during this call.
1490  */
1491 static __must_check int
1492 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1493                                             struct intel_rps_client *rps,
1494                                             bool readonly)
1495 {
1496         struct drm_device *dev = obj->base.dev;
1497         struct drm_i915_private *dev_priv = dev->dev_private;
1498         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1499         unsigned reset_counter;
1500         int ret, i, n = 0;
1501
1502         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1503         BUG_ON(!dev_priv->mm.interruptible);
1504
1505         if (!obj->active)
1506                 return 0;
1507
1508         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1509         if (ret)
1510                 return ret;
1511
1512         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1513
1514         if (readonly) {
1515                 struct drm_i915_gem_request *req;
1516
1517                 req = obj->last_write_req;
1518                 if (req == NULL)
1519                         return 0;
1520
1521                 ret = i915_gem_check_olr(req);
1522                 if (ret)
1523                         goto err;
1524
1525                 requests[n++] = i915_gem_request_reference(req);
1526         } else {
1527                 for (i = 0; i < I915_NUM_RINGS; i++) {
1528                         struct drm_i915_gem_request *req;
1529
1530                         req = obj->last_read_req[i];
1531                         if (req == NULL)
1532                                 continue;
1533
1534                         ret = i915_gem_check_olr(req);
1535                         if (ret)
1536                                 goto err;
1537
1538                         requests[n++] = i915_gem_request_reference(req);
1539                 }
1540         }
1541
1542         mutex_unlock(&dev->struct_mutex);
1543         for (i = 0; ret == 0 && i < n; i++)
1544                 ret = __i915_wait_request(requests[i], reset_counter, true,
1545                                           NULL, rps);
1546         mutex_lock(&dev->struct_mutex);
1547
1548 err:
1549         for (i = 0; i < n; i++) {
1550                 if (ret == 0)
1551                         i915_gem_object_retire_request(obj, requests[i]);
1552                 i915_gem_request_unreference(requests[i]);
1553         }
1554
1555         return ret;
1556 }
1557
1558 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1559 {
1560         struct drm_i915_file_private *fpriv = file->driver_priv;
1561         return &fpriv->rps;
1562 }
1563
1564 /**
1565  * Called when user space prepares to use an object with the CPU, either
1566  * through the mmap ioctl's mapping or a GTT mapping.
1567  */
1568 int
1569 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1570                           struct drm_file *file)
1571 {
1572         struct drm_i915_gem_set_domain *args = data;
1573         struct drm_i915_gem_object *obj;
1574         uint32_t read_domains = args->read_domains;
1575         uint32_t write_domain = args->write_domain;
1576         int ret;
1577
1578         /* Only handle setting domains to types used by the CPU. */
1579         if (write_domain & I915_GEM_GPU_DOMAINS)
1580                 return -EINVAL;
1581
1582         if (read_domains & I915_GEM_GPU_DOMAINS)
1583                 return -EINVAL;
1584
1585         /* Having something in the write domain implies it's in the read
1586          * domain, and only that read domain.  Enforce that in the request.
1587          */
1588         if (write_domain != 0 && read_domains != write_domain)
1589                 return -EINVAL;
1590
1591         ret = i915_mutex_lock_interruptible(dev);
1592         if (ret)
1593                 return ret;
1594
1595         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1596         if (&obj->base == NULL) {
1597                 ret = -ENOENT;
1598                 goto unlock;
1599         }
1600
1601         /* Try to flush the object off the GPU without holding the lock.
1602          * We will repeat the flush holding the lock in the normal manner
1603          * to catch cases where we are gazumped.
1604          */
1605         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1606                                                           to_rps_client(file),
1607                                                           !write_domain);
1608         if (ret)
1609                 goto unref;
1610
1611         if (read_domains & I915_GEM_DOMAIN_GTT)
1612                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1613         else
1614                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1615
1616 unref:
1617         drm_gem_object_unreference(&obj->base);
1618 unlock:
1619         mutex_unlock(&dev->struct_mutex);
1620         return ret;
1621 }
1622
1623 /**
1624  * Called when user space has done writes to this buffer
1625  */
1626 int
1627 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1628                          struct drm_file *file)
1629 {
1630         struct drm_i915_gem_sw_finish *args = data;
1631         struct drm_i915_gem_object *obj;
1632         int ret = 0;
1633
1634         ret = i915_mutex_lock_interruptible(dev);
1635         if (ret)
1636                 return ret;
1637
1638         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1639         if (&obj->base == NULL) {
1640                 ret = -ENOENT;
1641                 goto unlock;
1642         }
1643
1644         /* Pinned buffers may be scanout, so flush the cache */
1645         if (obj->pin_display)
1646                 i915_gem_object_flush_cpu_write_domain(obj);
1647
1648         drm_gem_object_unreference(&obj->base);
1649 unlock:
1650         mutex_unlock(&dev->struct_mutex);
1651         return ret;
1652 }
1653
1654 /**
1655  * Maps the contents of an object, returning the address it is mapped
1656  * into.
1657  *
1658  * While the mapping holds a reference on the contents of the object, it doesn't
1659  * imply a ref on the object itself.
1660  *
1661  * IMPORTANT:
1662  *
1663  * DRM driver writers who look a this function as an example for how to do GEM
1664  * mmap support, please don't implement mmap support like here. The modern way
1665  * to implement DRM mmap support is with an mmap offset ioctl (like
1666  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667  * That way debug tooling like valgrind will understand what's going on, hiding
1668  * the mmap call in a driver private ioctl will break that. The i915 driver only
1669  * does cpu mmaps this way because we didn't know better.
1670  */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673                     struct drm_file *file)
1674 {
1675         struct drm_i915_gem_mmap *args = data;
1676         struct drm_gem_object *obj;
1677         unsigned long addr;
1678
1679         if (args->flags & ~(I915_MMAP_WC))
1680                 return -EINVAL;
1681
1682         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683                 return -ENODEV;
1684
1685         obj = drm_gem_object_lookup(dev, file, args->handle);
1686         if (obj == NULL)
1687                 return -ENOENT;
1688
1689         /* prime objects have no backing filp to GEM mmap
1690          * pages from.
1691          */
1692         if (!obj->filp) {
1693                 drm_gem_object_unreference_unlocked(obj);
1694                 return -EINVAL;
1695         }
1696
1697         addr = vm_mmap(obj->filp, 0, args->size,
1698                        PROT_READ | PROT_WRITE, MAP_SHARED,
1699                        args->offset);
1700         if (args->flags & I915_MMAP_WC) {
1701                 struct mm_struct *mm = current->mm;
1702                 struct vm_area_struct *vma;
1703
1704                 down_write(&mm->mmap_sem);
1705                 vma = find_vma(mm, addr);
1706                 if (vma)
1707                         vma->vm_page_prot =
1708                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709                 else
1710                         addr = -ENOMEM;
1711                 up_write(&mm->mmap_sem);
1712         }
1713         drm_gem_object_unreference_unlocked(obj);
1714         if (IS_ERR((void *)addr))
1715                 return addr;
1716
1717         args->addr_ptr = (uint64_t) addr;
1718
1719         return 0;
1720 }
1721
1722 /**
1723  * i915_gem_fault - fault a page into the GTT
1724  * vma: VMA in question
1725  * vmf: fault info
1726  *
1727  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728  * from userspace.  The fault handler takes care of binding the object to
1729  * the GTT (if needed), allocating and programming a fence register (again,
1730  * only if needed based on whether the old reg is still valid or the object
1731  * is tiled) and inserting a new PTE into the faulting process.
1732  *
1733  * Note that the faulting process may involve evicting existing objects
1734  * from the GTT and/or fence registers to make room.  So performance may
1735  * suffer if the GTT working set is large or there are few fence registers
1736  * left.
1737  */
1738 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741         struct drm_device *dev = obj->base.dev;
1742         struct drm_i915_private *dev_priv = dev->dev_private;
1743         struct i915_ggtt_view view = i915_ggtt_view_normal;
1744         pgoff_t page_offset;
1745         unsigned long pfn;
1746         int ret = 0;
1747         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1748
1749         intel_runtime_pm_get(dev_priv);
1750
1751         /* We don't use vmf->pgoff since that has the fake offset */
1752         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753                 PAGE_SHIFT;
1754
1755         ret = i915_mutex_lock_interruptible(dev);
1756         if (ret)
1757                 goto out;
1758
1759         trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
1761         /* Try to flush the object off the GPU first without holding the lock.
1762          * Upon reacquiring the lock, we will perform our sanity checks and then
1763          * repeat the flush holding the lock in the normal manner to catch cases
1764          * where we are gazumped.
1765          */
1766         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767         if (ret)
1768                 goto unlock;
1769
1770         /* Access to snoopable pages through the GTT is incoherent. */
1771         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1772                 ret = -EFAULT;
1773                 goto unlock;
1774         }
1775
1776         /* Use a partial view if the object is bigger than the aperture. */
1777         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778             obj->tiling_mode == I915_TILING_NONE) {
1779                 static const unsigned int chunk_size = 256; // 1 MiB
1780
1781                 memset(&view, 0, sizeof(view));
1782                 view.type = I915_GGTT_VIEW_PARTIAL;
1783                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784                 view.params.partial.size =
1785                         min_t(unsigned int,
1786                               chunk_size,
1787                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788                               view.params.partial.offset);
1789         }
1790
1791         /* Now pin it into the GTT if needed */
1792         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1793         if (ret)
1794                 goto unlock;
1795
1796         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797         if (ret)
1798                 goto unpin;
1799
1800         ret = i915_gem_object_get_fence(obj);
1801         if (ret)
1802                 goto unpin;
1803
1804         /* Finally, remap it using the new GTT offset */
1805         pfn = dev_priv->gtt.mappable_base +
1806                 i915_gem_obj_ggtt_offset_view(obj, &view);
1807         pfn >>= PAGE_SHIFT;
1808
1809         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810                 /* Overriding existing pages in partial view does not cause
1811                  * us any trouble as TLBs are still valid because the fault
1812                  * is due to userspace losing part of the mapping or never
1813                  * having accessed it before (at this partials' range).
1814                  */
1815                 unsigned long base = vma->vm_start +
1816                                      (view.params.partial.offset << PAGE_SHIFT);
1817                 unsigned int i;
1818
1819                 for (i = 0; i < view.params.partial.size; i++) {
1820                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1821                         if (ret)
1822                                 break;
1823                 }
1824
1825                 obj->fault_mappable = true;
1826         } else {
1827                 if (!obj->fault_mappable) {
1828                         unsigned long size = min_t(unsigned long,
1829                                                    vma->vm_end - vma->vm_start,
1830                                                    obj->base.size);
1831                         int i;
1832
1833                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834                                 ret = vm_insert_pfn(vma,
1835                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836                                                     pfn + i);
1837                                 if (ret)
1838                                         break;
1839                         }
1840
1841                         obj->fault_mappable = true;
1842                 } else
1843                         ret = vm_insert_pfn(vma,
1844                                             (unsigned long)vmf->virtual_address,
1845                                             pfn + page_offset);
1846         }
1847 unpin:
1848         i915_gem_object_ggtt_unpin_view(obj, &view);
1849 unlock:
1850         mutex_unlock(&dev->struct_mutex);
1851 out:
1852         switch (ret) {
1853         case -EIO:
1854                 /*
1855                  * We eat errors when the gpu is terminally wedged to avoid
1856                  * userspace unduly crashing (gl has no provisions for mmaps to
1857                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858                  * and so needs to be reported.
1859                  */
1860                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1861                         ret = VM_FAULT_SIGBUS;
1862                         break;
1863                 }
1864         case -EAGAIN:
1865                 /*
1866                  * EAGAIN means the gpu is hung and we'll wait for the error
1867                  * handler to reset everything when re-faulting in
1868                  * i915_mutex_lock_interruptible.
1869                  */
1870         case 0:
1871         case -ERESTARTSYS:
1872         case -EINTR:
1873         case -EBUSY:
1874                 /*
1875                  * EBUSY is ok: this just means that another thread
1876                  * already did the job.
1877                  */
1878                 ret = VM_FAULT_NOPAGE;
1879                 break;
1880         case -ENOMEM:
1881                 ret = VM_FAULT_OOM;
1882                 break;
1883         case -ENOSPC:
1884         case -EFAULT:
1885                 ret = VM_FAULT_SIGBUS;
1886                 break;
1887         default:
1888                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1889                 ret = VM_FAULT_SIGBUS;
1890                 break;
1891         }
1892
1893         intel_runtime_pm_put(dev_priv);
1894         return ret;
1895 }
1896
1897 /**
1898  * i915_gem_release_mmap - remove physical page mappings
1899  * @obj: obj in question
1900  *
1901  * Preserve the reservation of the mmapping with the DRM core code, but
1902  * relinquish ownership of the pages back to the system.
1903  *
1904  * It is vital that we remove the page mapping if we have mapped a tiled
1905  * object through the GTT and then lose the fence register due to
1906  * resource pressure. Similarly if the object has been moved out of the
1907  * aperture, than pages mapped into userspace must be revoked. Removing the
1908  * mapping will then trigger a page fault on the next user access, allowing
1909  * fixup by i915_gem_fault().
1910  */
1911 void
1912 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1913 {
1914         if (!obj->fault_mappable)
1915                 return;
1916
1917         drm_vma_node_unmap(&obj->base.vma_node,
1918                            obj->base.dev->anon_inode->i_mapping);
1919         obj->fault_mappable = false;
1920 }
1921
1922 void
1923 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924 {
1925         struct drm_i915_gem_object *obj;
1926
1927         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928                 i915_gem_release_mmap(obj);
1929 }
1930
1931 uint32_t
1932 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1933 {
1934         uint32_t gtt_size;
1935
1936         if (INTEL_INFO(dev)->gen >= 4 ||
1937             tiling_mode == I915_TILING_NONE)
1938                 return size;
1939
1940         /* Previous chips need a power-of-two fence region when tiling */
1941         if (INTEL_INFO(dev)->gen == 3)
1942                 gtt_size = 1024*1024;
1943         else
1944                 gtt_size = 512*1024;
1945
1946         while (gtt_size < size)
1947                 gtt_size <<= 1;
1948
1949         return gtt_size;
1950 }
1951
1952 /**
1953  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954  * @obj: object to check
1955  *
1956  * Return the required GTT alignment for an object, taking into account
1957  * potential fence register mapping.
1958  */
1959 uint32_t
1960 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961                            int tiling_mode, bool fenced)
1962 {
1963         /*
1964          * Minimum alignment is 4k (GTT page size), but might be greater
1965          * if a fence register is needed for the object.
1966          */
1967         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1968             tiling_mode == I915_TILING_NONE)
1969                 return 4096;
1970
1971         /*
1972          * Previous chips need to be aligned to the size of the smallest
1973          * fence register that can contain the object.
1974          */
1975         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1976 }
1977
1978 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979 {
1980         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981         int ret;
1982
1983         if (drm_vma_node_has_offset(&obj->base.vma_node))
1984                 return 0;
1985
1986         dev_priv->mm.shrinker_no_lock_stealing = true;
1987
1988         ret = drm_gem_create_mmap_offset(&obj->base);
1989         if (ret != -ENOSPC)
1990                 goto out;
1991
1992         /* Badly fragmented mmap space? The only way we can recover
1993          * space is by destroying unwanted objects. We can't randomly release
1994          * mmap_offsets as userspace expects them to be persistent for the
1995          * lifetime of the objects. The closest we can is to release the
1996          * offsets on purgeable objects by truncating it and marking it purged,
1997          * which prevents userspace from ever using that object again.
1998          */
1999         i915_gem_shrink(dev_priv,
2000                         obj->base.size >> PAGE_SHIFT,
2001                         I915_SHRINK_BOUND |
2002                         I915_SHRINK_UNBOUND |
2003                         I915_SHRINK_PURGEABLE);
2004         ret = drm_gem_create_mmap_offset(&obj->base);
2005         if (ret != -ENOSPC)
2006                 goto out;
2007
2008         i915_gem_shrink_all(dev_priv);
2009         ret = drm_gem_create_mmap_offset(&obj->base);
2010 out:
2011         dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013         return ret;
2014 }
2015
2016 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017 {
2018         drm_gem_free_mmap_offset(&obj->base);
2019 }
2020
2021 int
2022 i915_gem_mmap_gtt(struct drm_file *file,
2023                   struct drm_device *dev,
2024                   uint32_t handle,
2025                   uint64_t *offset)
2026 {
2027         struct drm_i915_gem_object *obj;
2028         int ret;
2029
2030         ret = i915_mutex_lock_interruptible(dev);
2031         if (ret)
2032                 return ret;
2033
2034         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2035         if (&obj->base == NULL) {
2036                 ret = -ENOENT;
2037                 goto unlock;
2038         }
2039
2040         if (obj->madv != I915_MADV_WILLNEED) {
2041                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2042                 ret = -EFAULT;
2043                 goto out;
2044         }
2045
2046         ret = i915_gem_object_create_mmap_offset(obj);
2047         if (ret)
2048                 goto out;
2049
2050         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2051
2052 out:
2053         drm_gem_object_unreference(&obj->base);
2054 unlock:
2055         mutex_unlock(&dev->struct_mutex);
2056         return ret;
2057 }
2058
2059 /**
2060  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061  * @dev: DRM device
2062  * @data: GTT mapping ioctl data
2063  * @file: GEM object info
2064  *
2065  * Simply returns the fake offset to userspace so it can mmap it.
2066  * The mmap call will end up in drm_gem_mmap(), which will set things
2067  * up so we can get faults in the handler above.
2068  *
2069  * The fault handler will take care of binding the object into the GTT
2070  * (since it may have been evicted to make room for something), allocating
2071  * a fence register, and mapping the appropriate aperture address into
2072  * userspace.
2073  */
2074 int
2075 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076                         struct drm_file *file)
2077 {
2078         struct drm_i915_gem_mmap_gtt *args = data;
2079
2080         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2081 }
2082
2083 /* Immediately discard the backing storage */
2084 static void
2085 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2086 {
2087         i915_gem_object_free_mmap_offset(obj);
2088
2089         if (obj->base.filp == NULL)
2090                 return;
2091
2092         /* Our goal here is to return as much of the memory as
2093          * is possible back to the system as we are called from OOM.
2094          * To do this we must instruct the shmfs to drop all of its
2095          * backing pages, *now*.
2096          */
2097         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2098         obj->madv = __I915_MADV_PURGED;
2099 }
2100
2101 /* Try to discard unwanted pages */
2102 static void
2103 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2104 {
2105         struct address_space *mapping;
2106
2107         switch (obj->madv) {
2108         case I915_MADV_DONTNEED:
2109                 i915_gem_object_truncate(obj);
2110         case __I915_MADV_PURGED:
2111                 return;
2112         }
2113
2114         if (obj->base.filp == NULL)
2115                 return;
2116
2117         mapping = file_inode(obj->base.filp)->i_mapping,
2118         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2119 }
2120
2121 static void
2122 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2123 {
2124         struct sg_page_iter sg_iter;
2125         int ret;
2126
2127         BUG_ON(obj->madv == __I915_MADV_PURGED);
2128
2129         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130         if (ret) {
2131                 /* In the event of a disaster, abandon all caches and
2132                  * hope for the best.
2133                  */
2134                 WARN_ON(ret != -EIO);
2135                 i915_gem_clflush_object(obj, true);
2136                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137         }
2138
2139         if (i915_gem_object_needs_bit17_swizzle(obj))
2140                 i915_gem_object_save_bit_17_swizzle(obj);
2141
2142         if (obj->madv == I915_MADV_DONTNEED)
2143                 obj->dirty = 0;
2144
2145         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2146                 struct page *page = sg_page_iter_page(&sg_iter);
2147
2148                 if (obj->dirty)
2149                         set_page_dirty(page);
2150
2151                 if (obj->madv == I915_MADV_WILLNEED)
2152                         mark_page_accessed(page);
2153
2154                 page_cache_release(page);
2155         }
2156         obj->dirty = 0;
2157
2158         sg_free_table(obj->pages);
2159         kfree(obj->pages);
2160 }
2161
2162 int
2163 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2164 {
2165         const struct drm_i915_gem_object_ops *ops = obj->ops;
2166
2167         if (obj->pages == NULL)
2168                 return 0;
2169
2170         if (obj->pages_pin_count)
2171                 return -EBUSY;
2172
2173         BUG_ON(i915_gem_obj_bound_any(obj));
2174
2175         /* ->put_pages might need to allocate memory for the bit17 swizzle
2176          * array, hence protect them from being reaped by removing them from gtt
2177          * lists early. */
2178         list_del(&obj->global_list);
2179
2180         ops->put_pages(obj);
2181         obj->pages = NULL;
2182
2183         i915_gem_object_invalidate(obj);
2184
2185         return 0;
2186 }
2187
2188 static int
2189 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2190 {
2191         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2192         int page_count, i;
2193         struct address_space *mapping;
2194         struct sg_table *st;
2195         struct scatterlist *sg;
2196         struct sg_page_iter sg_iter;
2197         struct page *page;
2198         unsigned long last_pfn = 0;     /* suppress gcc warning */
2199         gfp_t gfp;
2200
2201         /* Assert that the object is not currently in any GPU domain. As it
2202          * wasn't in the GTT, there shouldn't be any way it could have been in
2203          * a GPU cache
2204          */
2205         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2206         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2207
2208         st = kmalloc(sizeof(*st), GFP_KERNEL);
2209         if (st == NULL)
2210                 return -ENOMEM;
2211
2212         page_count = obj->base.size / PAGE_SIZE;
2213         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2214                 kfree(st);
2215                 return -ENOMEM;
2216         }
2217
2218         /* Get the list of pages out of our struct file.  They'll be pinned
2219          * at this point until we release them.
2220          *
2221          * Fail silently without starting the shrinker
2222          */
2223         mapping = file_inode(obj->base.filp)->i_mapping;
2224         gfp = mapping_gfp_mask(mapping);
2225         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2226         gfp &= ~(__GFP_IO | __GFP_WAIT);
2227         sg = st->sgl;
2228         st->nents = 0;
2229         for (i = 0; i < page_count; i++) {
2230                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231                 if (IS_ERR(page)) {
2232                         i915_gem_shrink(dev_priv,
2233                                         page_count,
2234                                         I915_SHRINK_BOUND |
2235                                         I915_SHRINK_UNBOUND |
2236                                         I915_SHRINK_PURGEABLE);
2237                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2238                 }
2239                 if (IS_ERR(page)) {
2240                         /* We've tried hard to allocate the memory by reaping
2241                          * our own buffer, now let the real VM do its job and
2242                          * go down in flames if truly OOM.
2243                          */
2244                         i915_gem_shrink_all(dev_priv);
2245                         page = shmem_read_mapping_page(mapping, i);
2246                         if (IS_ERR(page))
2247                                 goto err_pages;
2248                 }
2249 #ifdef CONFIG_SWIOTLB
2250                 if (swiotlb_nr_tbl()) {
2251                         st->nents++;
2252                         sg_set_page(sg, page, PAGE_SIZE, 0);
2253                         sg = sg_next(sg);
2254                         continue;
2255                 }
2256 #endif
2257                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2258                         if (i)
2259                                 sg = sg_next(sg);
2260                         st->nents++;
2261                         sg_set_page(sg, page, PAGE_SIZE, 0);
2262                 } else {
2263                         sg->length += PAGE_SIZE;
2264                 }
2265                 last_pfn = page_to_pfn(page);
2266
2267                 /* Check that the i965g/gm workaround works. */
2268                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2269         }
2270 #ifdef CONFIG_SWIOTLB
2271         if (!swiotlb_nr_tbl())
2272 #endif
2273                 sg_mark_end(sg);
2274         obj->pages = st;
2275
2276         if (i915_gem_object_needs_bit17_swizzle(obj))
2277                 i915_gem_object_do_bit_17_swizzle(obj);
2278
2279         if (obj->tiling_mode != I915_TILING_NONE &&
2280             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281                 i915_gem_object_pin_pages(obj);
2282
2283         return 0;
2284
2285 err_pages:
2286         sg_mark_end(sg);
2287         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2288                 page_cache_release(sg_page_iter_page(&sg_iter));
2289         sg_free_table(st);
2290         kfree(st);
2291
2292         /* shmemfs first checks if there is enough memory to allocate the page
2293          * and reports ENOSPC should there be insufficient, along with the usual
2294          * ENOMEM for a genuine allocation failure.
2295          *
2296          * We use ENOSPC in our driver to mean that we have run out of aperture
2297          * space and so want to translate the error from shmemfs back to our
2298          * usual understanding of ENOMEM.
2299          */
2300         if (PTR_ERR(page) == -ENOSPC)
2301                 return -ENOMEM;
2302         else
2303                 return PTR_ERR(page);
2304 }
2305
2306 /* Ensure that the associated pages are gathered from the backing storage
2307  * and pinned into our object. i915_gem_object_get_pages() may be called
2308  * multiple times before they are released by a single call to
2309  * i915_gem_object_put_pages() - once the pages are no longer referenced
2310  * either as a result of memory pressure (reaping pages under the shrinker)
2311  * or as the object is itself released.
2312  */
2313 int
2314 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315 {
2316         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317         const struct drm_i915_gem_object_ops *ops = obj->ops;
2318         int ret;
2319
2320         if (obj->pages)
2321                 return 0;
2322
2323         if (obj->madv != I915_MADV_WILLNEED) {
2324                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2325                 return -EFAULT;
2326         }
2327
2328         BUG_ON(obj->pages_pin_count);
2329
2330         ret = ops->get_pages(obj);
2331         if (ret)
2332                 return ret;
2333
2334         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2335
2336         obj->get_page.sg = obj->pages->sgl;
2337         obj->get_page.last = 0;
2338
2339         return 0;
2340 }
2341
2342 void i915_vma_move_to_active(struct i915_vma *vma,
2343                              struct intel_engine_cs *ring)
2344 {
2345         struct drm_i915_gem_object *obj = vma->obj;
2346
2347         /* Add a reference if we're newly entering the active list. */
2348         if (obj->active == 0)
2349                 drm_gem_object_reference(&obj->base);
2350         obj->active |= intel_ring_flag(ring);
2351
2352         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2353         i915_gem_request_assign(&obj->last_read_req[ring->id],
2354                                 intel_ring_get_request(ring));
2355
2356         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2357 }
2358
2359 static void
2360 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2361 {
2362         RQ_BUG_ON(obj->last_write_req == NULL);
2363         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2364
2365         i915_gem_request_assign(&obj->last_write_req, NULL);
2366         intel_fb_obj_flush(obj, true);
2367 }
2368
2369 static void
2370 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2371 {
2372         struct i915_vma *vma;
2373
2374         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2375         RQ_BUG_ON(!(obj->active & (1 << ring)));
2376
2377         list_del_init(&obj->ring_list[ring]);
2378         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2379
2380         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2381                 i915_gem_object_retire__write(obj);
2382
2383         obj->active &= ~(1 << ring);
2384         if (obj->active)
2385                 return;
2386
2387         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2388                 if (!list_empty(&vma->mm_list))
2389                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2390         }
2391
2392         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2393         drm_gem_object_unreference(&obj->base);
2394 }
2395
2396 static int
2397 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2398 {
2399         struct drm_i915_private *dev_priv = dev->dev_private;
2400         struct intel_engine_cs *ring;
2401         int ret, i, j;
2402
2403         /* Carefully retire all requests without writing to the rings */
2404         for_each_ring(ring, dev_priv, i) {
2405                 ret = intel_ring_idle(ring);
2406                 if (ret)
2407                         return ret;
2408         }
2409         i915_gem_retire_requests(dev);
2410
2411         /* Finally reset hw state */
2412         for_each_ring(ring, dev_priv, i) {
2413                 intel_ring_init_seqno(ring, seqno);
2414
2415                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2416                         ring->semaphore.sync_seqno[j] = 0;
2417         }
2418
2419         return 0;
2420 }
2421
2422 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2423 {
2424         struct drm_i915_private *dev_priv = dev->dev_private;
2425         int ret;
2426
2427         if (seqno == 0)
2428                 return -EINVAL;
2429
2430         /* HWS page needs to be set less than what we
2431          * will inject to ring
2432          */
2433         ret = i915_gem_init_seqno(dev, seqno - 1);
2434         if (ret)
2435                 return ret;
2436
2437         /* Carefully set the last_seqno value so that wrap
2438          * detection still works
2439          */
2440         dev_priv->next_seqno = seqno;
2441         dev_priv->last_seqno = seqno - 1;
2442         if (dev_priv->last_seqno == 0)
2443                 dev_priv->last_seqno--;
2444
2445         return 0;
2446 }
2447
2448 int
2449 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2450 {
2451         struct drm_i915_private *dev_priv = dev->dev_private;
2452
2453         /* reserve 0 for non-seqno */
2454         if (dev_priv->next_seqno == 0) {
2455                 int ret = i915_gem_init_seqno(dev, 0);
2456                 if (ret)
2457                         return ret;
2458
2459                 dev_priv->next_seqno = 1;
2460         }
2461
2462         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2463         return 0;
2464 }
2465
2466 /*
2467  * NB: This function is not allowed to fail. Doing so would mean the the
2468  * request is not being tracked for completion but the work itself is
2469  * going to happen on the hardware. This would be a Bad Thing(tm).
2470  */
2471 void __i915_add_request(struct intel_engine_cs *ring,
2472                         struct drm_file *file,
2473                         struct drm_i915_gem_object *obj,
2474                         bool flush_caches)
2475 {
2476         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2477         struct drm_i915_gem_request *request;
2478         struct intel_ringbuffer *ringbuf;
2479         u32 request_start;
2480         int ret;
2481
2482         request = ring->outstanding_lazy_request;
2483         if (WARN_ON(request == NULL))
2484                 return;
2485
2486         if (i915.enable_execlists) {
2487                 ringbuf = request->ctx->engine[ring->id].ringbuf;
2488         } else
2489                 ringbuf = ring->buffer;
2490
2491         /*
2492          * To ensure that this call will not fail, space for its emissions
2493          * should already have been reserved in the ring buffer. Let the ring
2494          * know that it is time to use that space up.
2495          */
2496         intel_ring_reserved_space_use(ringbuf);
2497
2498         request_start = intel_ring_get_tail(ringbuf);
2499         /*
2500          * Emit any outstanding flushes - execbuf can fail to emit the flush
2501          * after having emitted the batchbuffer command. Hence we need to fix
2502          * things up similar to emitting the lazy request. The difference here
2503          * is that the flush _must_ happen before the next request, no matter
2504          * what.
2505          */
2506         if (flush_caches) {
2507                 if (i915.enable_execlists)
2508                         ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2509                 else
2510                         ret = intel_ring_flush_all_caches(ring);
2511                 /* Not allowed to fail! */
2512                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2513         }
2514
2515         /* Record the position of the start of the request so that
2516          * should we detect the updated seqno part-way through the
2517          * GPU processing the request, we never over-estimate the
2518          * position of the head.
2519          */
2520         request->postfix = intel_ring_get_tail(ringbuf);
2521
2522         if (i915.enable_execlists)
2523                 ret = ring->emit_request(ringbuf, request);
2524         else {
2525                 ret = ring->add_request(ring);
2526
2527                 request->tail = intel_ring_get_tail(ringbuf);
2528         }
2529         /* Not allowed to fail! */
2530         WARN(ret, "emit|add_request failed: %d!\n", ret);
2531
2532         request->head = request_start;
2533
2534         /* Whilst this request exists, batch_obj will be on the
2535          * active_list, and so will hold the active reference. Only when this
2536          * request is retired will the the batch_obj be moved onto the
2537          * inactive_list and lose its active reference. Hence we do not need
2538          * to explicitly hold another reference here.
2539          */
2540         request->batch_obj = obj;
2541
2542         WARN_ON(!i915.enable_execlists && (request->ctx != ring->last_context));
2543
2544         request->emitted_jiffies = jiffies;
2545         list_add_tail(&request->list, &ring->request_list);
2546         request->file_priv = NULL;
2547
2548         if (file) {
2549                 struct drm_i915_file_private *file_priv = file->driver_priv;
2550
2551                 spin_lock(&file_priv->mm.lock);
2552                 request->file_priv = file_priv;
2553                 list_add_tail(&request->client_list,
2554                               &file_priv->mm.request_list);
2555                 spin_unlock(&file_priv->mm.lock);
2556
2557                 request->pid = get_pid(task_pid(current));
2558         }
2559
2560         trace_i915_gem_request_add(request);
2561         ring->outstanding_lazy_request = NULL;
2562
2563         i915_queue_hangcheck(ring->dev);
2564
2565         queue_delayed_work(dev_priv->wq,
2566                            &dev_priv->mm.retire_work,
2567                            round_jiffies_up_relative(HZ));
2568         intel_mark_busy(dev_priv->dev);
2569
2570         /* Sanity check that the reserved size was large enough. */
2571         intel_ring_reserved_space_end(ringbuf);
2572 }
2573
2574 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2575                                    const struct intel_context *ctx)
2576 {
2577         unsigned long elapsed;
2578
2579         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2580
2581         if (ctx->hang_stats.banned)
2582                 return true;
2583
2584         if (ctx->hang_stats.ban_period_seconds &&
2585             elapsed <= ctx->hang_stats.ban_period_seconds) {
2586                 if (!i915_gem_context_is_default(ctx)) {
2587                         DRM_DEBUG("context hanging too fast, banning!\n");
2588                         return true;
2589                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2590                         if (i915_stop_ring_allow_warn(dev_priv))
2591                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2592                         return true;
2593                 }
2594         }
2595
2596         return false;
2597 }
2598
2599 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2600                                   struct intel_context *ctx,
2601                                   const bool guilty)
2602 {
2603         struct i915_ctx_hang_stats *hs;
2604
2605         if (WARN_ON(!ctx))
2606                 return;
2607
2608         hs = &ctx->hang_stats;
2609
2610         if (guilty) {
2611                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2612                 hs->batch_active++;
2613                 hs->guilty_ts = get_seconds();
2614         } else {
2615                 hs->batch_pending++;
2616         }
2617 }
2618
2619 void i915_gem_request_free(struct kref *req_ref)
2620 {
2621         struct drm_i915_gem_request *req = container_of(req_ref,
2622                                                  typeof(*req), ref);
2623         struct intel_context *ctx = req->ctx;
2624
2625         if (ctx) {
2626                 if (i915.enable_execlists) {
2627                         struct intel_engine_cs *ring = req->ring;
2628
2629                         if (ctx != ring->default_context)
2630                                 intel_lr_context_unpin(ring, ctx);
2631                 }
2632
2633                 i915_gem_context_unreference(ctx);
2634         }
2635
2636         kmem_cache_free(req->i915->requests, req);
2637 }
2638
2639 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2640                            struct intel_context *ctx,
2641                            struct drm_i915_gem_request **req_out)
2642 {
2643         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2644         struct drm_i915_gem_request *req;
2645         int ret;
2646
2647         if (!req_out)
2648                 return -EINVAL;
2649
2650         if ((*req_out = ring->outstanding_lazy_request) != NULL)
2651                 return 0;
2652
2653         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2654         if (req == NULL)
2655                 return -ENOMEM;
2656
2657         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2658         if (ret)
2659                 goto err;
2660
2661         kref_init(&req->ref);
2662         req->i915 = dev_priv;
2663         req->ring = ring;
2664         req->ctx  = ctx;
2665         i915_gem_context_reference(req->ctx);
2666
2667         if (i915.enable_execlists)
2668                 ret = intel_logical_ring_alloc_request_extras(req);
2669         else
2670                 ret = intel_ring_alloc_request_extras(req);
2671         if (ret) {
2672                 i915_gem_context_unreference(req->ctx);
2673                 goto err;
2674         }
2675
2676         /*
2677          * Reserve space in the ring buffer for all the commands required to
2678          * eventually emit this request. This is to guarantee that the
2679          * i915_add_request() call can't fail. Note that the reserve may need
2680          * to be redone if the request is not actually submitted straight
2681          * away, e.g. because a GPU scheduler has deferred it.
2682          *
2683          * Note further that this call merely notes the reserve request. A
2684          * subsequent call to *_ring_begin() is required to actually ensure
2685          * that the reservation is available. Without the begin, if the
2686          * request creator immediately submitted the request without adding
2687          * any commands to it then there might not actually be sufficient
2688          * room for the submission commands. Unfortunately, the current
2689          * *_ring_begin() implementations potentially call back here to
2690          * i915_gem_request_alloc(). Thus calling _begin() here would lead to
2691          * infinite recursion! Until that back call path is removed, it is
2692          * necessary to do a manual _begin() outside.
2693          */
2694         intel_ring_reserved_space_reserve(req->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2695
2696         *req_out = ring->outstanding_lazy_request = req;
2697         return 0;
2698
2699 err:
2700         kmem_cache_free(dev_priv->requests, req);
2701         return ret;
2702 }
2703
2704 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2705 {
2706         intel_ring_reserved_space_cancel(req->ringbuf);
2707
2708         i915_gem_request_unreference(req);
2709 }
2710
2711 struct drm_i915_gem_request *
2712 i915_gem_find_active_request(struct intel_engine_cs *ring)
2713 {
2714         struct drm_i915_gem_request *request;
2715
2716         list_for_each_entry(request, &ring->request_list, list) {
2717                 if (i915_gem_request_completed(request, false))
2718                         continue;
2719
2720                 return request;
2721         }
2722
2723         return NULL;
2724 }
2725
2726 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2727                                        struct intel_engine_cs *ring)
2728 {
2729         struct drm_i915_gem_request *request;
2730         bool ring_hung;
2731
2732         request = i915_gem_find_active_request(ring);
2733
2734         if (request == NULL)
2735                 return;
2736
2737         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2738
2739         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2740
2741         list_for_each_entry_continue(request, &ring->request_list, list)
2742                 i915_set_reset_status(dev_priv, request->ctx, false);
2743 }
2744
2745 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2746                                         struct intel_engine_cs *ring)
2747 {
2748         while (!list_empty(&ring->active_list)) {
2749                 struct drm_i915_gem_object *obj;
2750
2751                 obj = list_first_entry(&ring->active_list,
2752                                        struct drm_i915_gem_object,
2753                                        ring_list[ring->id]);
2754
2755                 i915_gem_object_retire__read(obj, ring->id);
2756         }
2757
2758         /*
2759          * Clear the execlists queue up before freeing the requests, as those
2760          * are the ones that keep the context and ringbuffer backing objects
2761          * pinned in place.
2762          */
2763         while (!list_empty(&ring->execlist_queue)) {
2764                 struct drm_i915_gem_request *submit_req;
2765
2766                 submit_req = list_first_entry(&ring->execlist_queue,
2767                                 struct drm_i915_gem_request,
2768                                 execlist_link);
2769                 list_del(&submit_req->execlist_link);
2770
2771                 if (submit_req->ctx != ring->default_context)
2772                         intel_lr_context_unpin(ring, submit_req->ctx);
2773
2774                 i915_gem_request_unreference(submit_req);
2775         }
2776
2777         /*
2778          * We must free the requests after all the corresponding objects have
2779          * been moved off active lists. Which is the same order as the normal
2780          * retire_requests function does. This is important if object hold
2781          * implicit references on things like e.g. ppgtt address spaces through
2782          * the request.
2783          */
2784         while (!list_empty(&ring->request_list)) {
2785                 struct drm_i915_gem_request *request;
2786
2787                 request = list_first_entry(&ring->request_list,
2788                                            struct drm_i915_gem_request,
2789                                            list);
2790
2791                 i915_gem_request_retire(request);
2792         }
2793
2794         /* This may not have been flushed before the reset, so clean it now */
2795         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2796 }
2797
2798 void i915_gem_restore_fences(struct drm_device *dev)
2799 {
2800         struct drm_i915_private *dev_priv = dev->dev_private;
2801         int i;
2802
2803         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2804                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2805
2806                 /*
2807                  * Commit delayed tiling changes if we have an object still
2808                  * attached to the fence, otherwise just clear the fence.
2809                  */
2810                 if (reg->obj) {
2811                         i915_gem_object_update_fence(reg->obj, reg,
2812                                                      reg->obj->tiling_mode);
2813                 } else {
2814                         i915_gem_write_fence(dev, i, NULL);
2815                 }
2816         }
2817 }
2818
2819 void i915_gem_reset(struct drm_device *dev)
2820 {
2821         struct drm_i915_private *dev_priv = dev->dev_private;
2822         struct intel_engine_cs *ring;
2823         int i;
2824
2825         /*
2826          * Before we free the objects from the requests, we need to inspect
2827          * them for finding the guilty party. As the requests only borrow
2828          * their reference to the objects, the inspection must be done first.
2829          */
2830         for_each_ring(ring, dev_priv, i)
2831                 i915_gem_reset_ring_status(dev_priv, ring);
2832
2833         for_each_ring(ring, dev_priv, i)
2834                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2835
2836         i915_gem_context_reset(dev);
2837
2838         i915_gem_restore_fences(dev);
2839
2840         WARN_ON(i915_verify_lists(dev));
2841 }
2842
2843 /**
2844  * This function clears the request list as sequence numbers are passed.
2845  */
2846 void
2847 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2848 {
2849         WARN_ON(i915_verify_lists(ring->dev));
2850
2851         /* Retire requests first as we use it above for the early return.
2852          * If we retire requests last, we may use a later seqno and so clear
2853          * the requests lists without clearing the active list, leading to
2854          * confusion.
2855          */
2856         while (!list_empty(&ring->request_list)) {
2857                 struct drm_i915_gem_request *request;
2858
2859                 request = list_first_entry(&ring->request_list,
2860                                            struct drm_i915_gem_request,
2861                                            list);
2862
2863                 if (!i915_gem_request_completed(request, true))
2864                         break;
2865
2866                 i915_gem_request_retire(request);
2867         }
2868
2869         /* Move any buffers on the active list that are no longer referenced
2870          * by the ringbuffer to the flushing/inactive lists as appropriate,
2871          * before we free the context associated with the requests.
2872          */
2873         while (!list_empty(&ring->active_list)) {
2874                 struct drm_i915_gem_object *obj;
2875
2876                 obj = list_first_entry(&ring->active_list,
2877                                       struct drm_i915_gem_object,
2878                                       ring_list[ring->id]);
2879
2880                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2881                         break;
2882
2883                 i915_gem_object_retire__read(obj, ring->id);
2884         }
2885
2886         if (unlikely(ring->trace_irq_req &&
2887                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2888                 ring->irq_put(ring);
2889                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2890         }
2891
2892         WARN_ON(i915_verify_lists(ring->dev));
2893 }
2894
2895 bool
2896 i915_gem_retire_requests(struct drm_device *dev)
2897 {
2898         struct drm_i915_private *dev_priv = dev->dev_private;
2899         struct intel_engine_cs *ring;
2900         bool idle = true;
2901         int i;
2902
2903         for_each_ring(ring, dev_priv, i) {
2904                 i915_gem_retire_requests_ring(ring);
2905                 idle &= list_empty(&ring->request_list);
2906                 if (i915.enable_execlists) {
2907                         unsigned long flags;
2908
2909                         spin_lock_irqsave(&ring->execlist_lock, flags);
2910                         idle &= list_empty(&ring->execlist_queue);
2911                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2912
2913                         intel_execlists_retire_requests(ring);
2914                 }
2915         }
2916
2917         if (idle)
2918                 mod_delayed_work(dev_priv->wq,
2919                                    &dev_priv->mm.idle_work,
2920                                    msecs_to_jiffies(100));
2921
2922         return idle;
2923 }
2924
2925 static void
2926 i915_gem_retire_work_handler(struct work_struct *work)
2927 {
2928         struct drm_i915_private *dev_priv =
2929                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2930         struct drm_device *dev = dev_priv->dev;
2931         bool idle;
2932
2933         /* Come back later if the device is busy... */
2934         idle = false;
2935         if (mutex_trylock(&dev->struct_mutex)) {
2936                 idle = i915_gem_retire_requests(dev);
2937                 mutex_unlock(&dev->struct_mutex);
2938         }
2939         if (!idle)
2940                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2941                                    round_jiffies_up_relative(HZ));
2942 }
2943
2944 static void
2945 i915_gem_idle_work_handler(struct work_struct *work)
2946 {
2947         struct drm_i915_private *dev_priv =
2948                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2949         struct drm_device *dev = dev_priv->dev;
2950         struct intel_engine_cs *ring;
2951         int i;
2952
2953         for_each_ring(ring, dev_priv, i)
2954                 if (!list_empty(&ring->request_list))
2955                         return;
2956
2957         intel_mark_idle(dev);
2958
2959         if (mutex_trylock(&dev->struct_mutex)) {
2960                 struct intel_engine_cs *ring;
2961                 int i;
2962
2963                 for_each_ring(ring, dev_priv, i)
2964                         i915_gem_batch_pool_fini(&ring->batch_pool);
2965
2966                 mutex_unlock(&dev->struct_mutex);
2967         }
2968 }
2969
2970 /**
2971  * Ensures that an object will eventually get non-busy by flushing any required
2972  * write domains, emitting any outstanding lazy request and retiring and
2973  * completed requests.
2974  */
2975 static int
2976 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2977 {
2978         int ret, i;
2979
2980         if (!obj->active)
2981                 return 0;
2982
2983         for (i = 0; i < I915_NUM_RINGS; i++) {
2984                 struct drm_i915_gem_request *req;
2985
2986                 req = obj->last_read_req[i];
2987                 if (req == NULL)
2988                         continue;
2989
2990                 if (list_empty(&req->list))
2991                         goto retire;
2992
2993                 ret = i915_gem_check_olr(req);
2994                 if (ret)
2995                         return ret;
2996
2997                 if (i915_gem_request_completed(req, true)) {
2998                         __i915_gem_request_retire__upto(req);
2999 retire:
3000                         i915_gem_object_retire__read(obj, i);
3001                 }
3002         }
3003
3004         return 0;
3005 }
3006
3007 /**
3008  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3009  * @DRM_IOCTL_ARGS: standard ioctl arguments
3010  *
3011  * Returns 0 if successful, else an error is returned with the remaining time in
3012  * the timeout parameter.
3013  *  -ETIME: object is still busy after timeout
3014  *  -ERESTARTSYS: signal interrupted the wait
3015  *  -ENONENT: object doesn't exist
3016  * Also possible, but rare:
3017  *  -EAGAIN: GPU wedged
3018  *  -ENOMEM: damn
3019  *  -ENODEV: Internal IRQ fail
3020  *  -E?: The add request failed
3021  *
3022  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3023  * non-zero timeout parameter the wait ioctl will wait for the given number of
3024  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3025  * without holding struct_mutex the object may become re-busied before this
3026  * function completes. A similar but shorter * race condition exists in the busy
3027  * ioctl
3028  */
3029 int
3030 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3031 {
3032         struct drm_i915_private *dev_priv = dev->dev_private;
3033         struct drm_i915_gem_wait *args = data;
3034         struct drm_i915_gem_object *obj;
3035         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3036         unsigned reset_counter;
3037         int i, n = 0;
3038         int ret;
3039
3040         if (args->flags != 0)
3041                 return -EINVAL;
3042
3043         ret = i915_mutex_lock_interruptible(dev);
3044         if (ret)
3045                 return ret;
3046
3047         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3048         if (&obj->base == NULL) {
3049                 mutex_unlock(&dev->struct_mutex);
3050                 return -ENOENT;
3051         }
3052
3053         /* Need to make sure the object gets inactive eventually. */
3054         ret = i915_gem_object_flush_active(obj);
3055         if (ret)
3056                 goto out;
3057
3058         if (!obj->active)
3059                 goto out;
3060
3061         /* Do this after OLR check to make sure we make forward progress polling
3062          * on this IOCTL with a timeout == 0 (like busy ioctl)
3063          */
3064         if (args->timeout_ns == 0) {
3065                 ret = -ETIME;
3066                 goto out;
3067         }
3068
3069         drm_gem_object_unreference(&obj->base);
3070         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3071
3072         for (i = 0; i < I915_NUM_RINGS; i++) {
3073                 if (obj->last_read_req[i] == NULL)
3074                         continue;
3075
3076                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3077         }
3078
3079         mutex_unlock(&dev->struct_mutex);
3080
3081         for (i = 0; i < n; i++) {
3082                 if (ret == 0)
3083                         ret = __i915_wait_request(req[i], reset_counter, true,
3084                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3085                                                   file->driver_priv);
3086                 i915_gem_request_unreference__unlocked(req[i]);
3087         }
3088         return ret;
3089
3090 out:
3091         drm_gem_object_unreference(&obj->base);
3092         mutex_unlock(&dev->struct_mutex);
3093         return ret;
3094 }
3095
3096 static int
3097 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3098                        struct intel_engine_cs *to,
3099                        struct drm_i915_gem_request *req)
3100 {
3101         struct intel_engine_cs *from;
3102         int ret;
3103
3104         from = i915_gem_request_get_ring(req);
3105         if (to == from)
3106                 return 0;
3107
3108         if (i915_gem_request_completed(req, true))
3109                 return 0;
3110
3111         ret = i915_gem_check_olr(req);
3112         if (ret)
3113                 return ret;
3114
3115         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3116                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3117                 ret = __i915_wait_request(req,
3118                                           atomic_read(&i915->gpu_error.reset_counter),
3119                                           i915->mm.interruptible,
3120                                           NULL,
3121                                           &i915->rps.semaphores);
3122                 if (ret)
3123                         return ret;
3124
3125                 i915_gem_object_retire_request(obj, req);
3126         } else {
3127                 int idx = intel_ring_sync_index(from, to);
3128                 u32 seqno = i915_gem_request_get_seqno(req);
3129
3130                 if (seqno <= from->semaphore.sync_seqno[idx])
3131                         return 0;
3132
3133                 trace_i915_gem_ring_sync_to(from, to, req);
3134                 ret = to->semaphore.sync_to(to, from, seqno);
3135                 if (ret)
3136                         return ret;
3137
3138                 /* We use last_read_req because sync_to()
3139                  * might have just caused seqno wrap under
3140                  * the radar.
3141                  */
3142                 from->semaphore.sync_seqno[idx] =
3143                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3144         }
3145
3146         return 0;
3147 }
3148
3149 /**
3150  * i915_gem_object_sync - sync an object to a ring.
3151  *
3152  * @obj: object which may be in use on another ring.
3153  * @to: ring we wish to use the object on. May be NULL.
3154  *
3155  * This code is meant to abstract object synchronization with the GPU.
3156  * Calling with NULL implies synchronizing the object with the CPU
3157  * rather than a particular GPU ring. Conceptually we serialise writes
3158  * between engines inside the GPU. We only allow on engine to write
3159  * into a buffer at any time, but multiple readers. To ensure each has
3160  * a coherent view of memory, we must:
3161  *
3162  * - If there is an outstanding write request to the object, the new
3163  *   request must wait for it to complete (either CPU or in hw, requests
3164  *   on the same ring will be naturally ordered).
3165  *
3166  * - If we are a write request (pending_write_domain is set), the new
3167  *   request must wait for outstanding read requests to complete.
3168  *
3169  * Returns 0 if successful, else propagates up the lower layer error.
3170  */
3171 int
3172 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3173                      struct intel_engine_cs *to)
3174 {
3175         const bool readonly = obj->base.pending_write_domain == 0;
3176         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3177         int ret, i, n;
3178
3179         if (!obj->active)
3180                 return 0;
3181
3182         if (to == NULL)
3183                 return i915_gem_object_wait_rendering(obj, readonly);
3184
3185         n = 0;
3186         if (readonly) {
3187                 if (obj->last_write_req)
3188                         req[n++] = obj->last_write_req;
3189         } else {
3190                 for (i = 0; i < I915_NUM_RINGS; i++)
3191                         if (obj->last_read_req[i])
3192                                 req[n++] = obj->last_read_req[i];
3193         }
3194         for (i = 0; i < n; i++) {
3195                 ret = __i915_gem_object_sync(obj, to, req[i]);
3196                 if (ret)
3197                         return ret;
3198         }
3199
3200         return 0;
3201 }
3202
3203 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3204 {
3205         u32 old_write_domain, old_read_domains;
3206
3207         /* Force a pagefault for domain tracking on next user access */
3208         i915_gem_release_mmap(obj);
3209
3210         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3211                 return;
3212
3213         /* Wait for any direct GTT access to complete */
3214         mb();
3215
3216         old_read_domains = obj->base.read_domains;
3217         old_write_domain = obj->base.write_domain;
3218
3219         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3220         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3221
3222         trace_i915_gem_object_change_domain(obj,
3223                                             old_read_domains,
3224                                             old_write_domain);
3225 }
3226
3227 int i915_vma_unbind(struct i915_vma *vma)
3228 {
3229         struct drm_i915_gem_object *obj = vma->obj;
3230         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3231         int ret;
3232
3233         if (list_empty(&vma->vma_link))
3234                 return 0;
3235
3236         if (!drm_mm_node_allocated(&vma->node)) {
3237                 i915_gem_vma_destroy(vma);
3238                 return 0;
3239         }
3240
3241         if (vma->pin_count)
3242                 return -EBUSY;
3243
3244         BUG_ON(obj->pages == NULL);
3245
3246         ret = i915_gem_object_wait_rendering(obj, false);
3247         if (ret)
3248                 return ret;
3249         /* Continue on if we fail due to EIO, the GPU is hung so we
3250          * should be safe and we need to cleanup or else we might
3251          * cause memory corruption through use-after-free.
3252          */
3253
3254         if (i915_is_ggtt(vma->vm) &&
3255             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3256                 i915_gem_object_finish_gtt(obj);
3257
3258                 /* release the fence reg _after_ flushing */
3259                 ret = i915_gem_object_put_fence(obj);
3260                 if (ret)
3261                         return ret;
3262         }
3263
3264         trace_i915_vma_unbind(vma);
3265
3266         vma->vm->unbind_vma(vma);
3267         vma->bound = 0;
3268
3269         list_del_init(&vma->mm_list);
3270         if (i915_is_ggtt(vma->vm)) {
3271                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3272                         obj->map_and_fenceable = false;
3273                 } else if (vma->ggtt_view.pages) {
3274                         sg_free_table(vma->ggtt_view.pages);
3275                         kfree(vma->ggtt_view.pages);
3276                         vma->ggtt_view.pages = NULL;
3277                 }
3278         }
3279
3280         drm_mm_remove_node(&vma->node);
3281         i915_gem_vma_destroy(vma);
3282
3283         /* Since the unbound list is global, only move to that list if
3284          * no more VMAs exist. */
3285         if (list_empty(&obj->vma_list)) {
3286                 i915_gem_gtt_finish_object(obj);
3287                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3288         }
3289
3290         /* And finally now the object is completely decoupled from this vma,
3291          * we can drop its hold on the backing storage and allow it to be
3292          * reaped by the shrinker.
3293          */
3294         i915_gem_object_unpin_pages(obj);
3295
3296         return 0;
3297 }
3298
3299 int i915_gpu_idle(struct drm_device *dev)
3300 {
3301         struct drm_i915_private *dev_priv = dev->dev_private;
3302         struct intel_engine_cs *ring;
3303         int ret, i;
3304
3305         /* Flush everything onto the inactive list. */
3306         for_each_ring(ring, dev_priv, i) {
3307                 if (!i915.enable_execlists) {
3308                         struct drm_i915_gem_request *req;
3309
3310                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3311                         if (ret)
3312                                 return ret;
3313
3314                         ret = i915_switch_context(req->ring, ring->default_context);
3315                         if (ret) {
3316                                 i915_gem_request_cancel(req);
3317                                 return ret;
3318                         }
3319
3320                         i915_add_request_no_flush(req->ring);
3321                 }
3322
3323                 WARN_ON(ring->outstanding_lazy_request);
3324
3325                 ret = intel_ring_idle(ring);
3326                 if (ret)
3327                         return ret;
3328         }
3329
3330         WARN_ON(i915_verify_lists(dev));
3331         return 0;
3332 }
3333
3334 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3335                                  struct drm_i915_gem_object *obj)
3336 {
3337         struct drm_i915_private *dev_priv = dev->dev_private;
3338         int fence_reg;
3339         int fence_pitch_shift;
3340
3341         if (INTEL_INFO(dev)->gen >= 6) {
3342                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3343                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3344         } else {
3345                 fence_reg = FENCE_REG_965_0;
3346                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3347         }
3348
3349         fence_reg += reg * 8;
3350
3351         /* To w/a incoherency with non-atomic 64-bit register updates,
3352          * we split the 64-bit update into two 32-bit writes. In order
3353          * for a partial fence not to be evaluated between writes, we
3354          * precede the update with write to turn off the fence register,
3355          * and only enable the fence as the last step.
3356          *
3357          * For extra levels of paranoia, we make sure each step lands
3358          * before applying the next step.
3359          */
3360         I915_WRITE(fence_reg, 0);
3361         POSTING_READ(fence_reg);
3362
3363         if (obj) {
3364                 u32 size = i915_gem_obj_ggtt_size(obj);
3365                 uint64_t val;
3366
3367                 /* Adjust fence size to match tiled area */
3368                 if (obj->tiling_mode != I915_TILING_NONE) {
3369                         uint32_t row_size = obj->stride *
3370                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3371                         size = (size / row_size) * row_size;
3372                 }
3373
3374                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3375                                  0xfffff000) << 32;
3376                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3377                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3378                 if (obj->tiling_mode == I915_TILING_Y)
3379                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3380                 val |= I965_FENCE_REG_VALID;
3381
3382                 I915_WRITE(fence_reg + 4, val >> 32);
3383                 POSTING_READ(fence_reg + 4);
3384
3385                 I915_WRITE(fence_reg + 0, val);
3386                 POSTING_READ(fence_reg);
3387         } else {
3388                 I915_WRITE(fence_reg + 4, 0);
3389                 POSTING_READ(fence_reg + 4);
3390         }
3391 }
3392
3393 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3394                                  struct drm_i915_gem_object *obj)
3395 {
3396         struct drm_i915_private *dev_priv = dev->dev_private;
3397         u32 val;
3398
3399         if (obj) {
3400                 u32 size = i915_gem_obj_ggtt_size(obj);
3401                 int pitch_val;
3402                 int tile_width;
3403
3404                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3405                      (size & -size) != size ||
3406                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3407                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3408                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3409
3410                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3411                         tile_width = 128;
3412                 else
3413                         tile_width = 512;
3414
3415                 /* Note: pitch better be a power of two tile widths */
3416                 pitch_val = obj->stride / tile_width;
3417                 pitch_val = ffs(pitch_val) - 1;
3418
3419                 val = i915_gem_obj_ggtt_offset(obj);
3420                 if (obj->tiling_mode == I915_TILING_Y)
3421                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3422                 val |= I915_FENCE_SIZE_BITS(size);
3423                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3424                 val |= I830_FENCE_REG_VALID;
3425         } else
3426                 val = 0;
3427
3428         if (reg < 8)
3429                 reg = FENCE_REG_830_0 + reg * 4;
3430         else
3431                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3432
3433         I915_WRITE(reg, val);
3434         POSTING_READ(reg);
3435 }
3436
3437 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3438                                 struct drm_i915_gem_object *obj)
3439 {
3440         struct drm_i915_private *dev_priv = dev->dev_private;
3441         uint32_t val;
3442
3443         if (obj) {
3444                 u32 size = i915_gem_obj_ggtt_size(obj);
3445                 uint32_t pitch_val;
3446
3447                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3448                      (size & -size) != size ||
3449                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3450                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3451                      i915_gem_obj_ggtt_offset(obj), size);
3452
3453                 pitch_val = obj->stride / 128;
3454                 pitch_val = ffs(pitch_val) - 1;
3455
3456                 val = i915_gem_obj_ggtt_offset(obj);
3457                 if (obj->tiling_mode == I915_TILING_Y)
3458                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3459                 val |= I830_FENCE_SIZE_BITS(size);
3460                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3461                 val |= I830_FENCE_REG_VALID;
3462         } else
3463                 val = 0;
3464
3465         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3466         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3467 }
3468
3469 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3470 {
3471         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3472 }
3473
3474 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3475                                  struct drm_i915_gem_object *obj)
3476 {
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478
3479         /* Ensure that all CPU reads are completed before installing a fence
3480          * and all writes before removing the fence.
3481          */
3482         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3483                 mb();
3484
3485         WARN(obj && (!obj->stride || !obj->tiling_mode),
3486              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3487              obj->stride, obj->tiling_mode);
3488
3489         if (IS_GEN2(dev))
3490                 i830_write_fence_reg(dev, reg, obj);
3491         else if (IS_GEN3(dev))
3492                 i915_write_fence_reg(dev, reg, obj);
3493         else if (INTEL_INFO(dev)->gen >= 4)
3494                 i965_write_fence_reg(dev, reg, obj);
3495
3496         /* And similarly be paranoid that no direct access to this region
3497          * is reordered to before the fence is installed.
3498          */
3499         if (i915_gem_object_needs_mb(obj))
3500                 mb();
3501 }
3502
3503 static inline int fence_number(struct drm_i915_private *dev_priv,
3504                                struct drm_i915_fence_reg *fence)
3505 {
3506         return fence - dev_priv->fence_regs;
3507 }
3508
3509 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3510                                          struct drm_i915_fence_reg *fence,
3511                                          bool enable)
3512 {
3513         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3514         int reg = fence_number(dev_priv, fence);
3515
3516         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3517
3518         if (enable) {
3519                 obj->fence_reg = reg;
3520                 fence->obj = obj;
3521                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3522         } else {
3523                 obj->fence_reg = I915_FENCE_REG_NONE;
3524                 fence->obj = NULL;
3525                 list_del_init(&fence->lru_list);
3526         }
3527         obj->fence_dirty = false;
3528 }
3529
3530 static int
3531 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3532 {
3533         if (obj->last_fenced_req) {
3534                 int ret = i915_wait_request(obj->last_fenced_req);
3535                 if (ret)
3536                         return ret;
3537
3538                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3539         }
3540
3541         return 0;
3542 }
3543
3544 int
3545 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3546 {
3547         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3548         struct drm_i915_fence_reg *fence;
3549         int ret;
3550
3551         ret = i915_gem_object_wait_fence(obj);
3552         if (ret)
3553                 return ret;
3554
3555         if (obj->fence_reg == I915_FENCE_REG_NONE)
3556                 return 0;
3557
3558         fence = &dev_priv->fence_regs[obj->fence_reg];
3559
3560         if (WARN_ON(fence->pin_count))
3561                 return -EBUSY;
3562
3563         i915_gem_object_fence_lost(obj);
3564         i915_gem_object_update_fence(obj, fence, false);
3565
3566         return 0;
3567 }
3568
3569 static struct drm_i915_fence_reg *
3570 i915_find_fence_reg(struct drm_device *dev)
3571 {
3572         struct drm_i915_private *dev_priv = dev->dev_private;
3573         struct drm_i915_fence_reg *reg, *avail;
3574         int i;
3575
3576         /* First try to find a free reg */
3577         avail = NULL;
3578         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3579                 reg = &dev_priv->fence_regs[i];
3580                 if (!reg->obj)
3581                         return reg;
3582
3583                 if (!reg->pin_count)
3584                         avail = reg;
3585         }
3586
3587         if (avail == NULL)
3588                 goto deadlock;
3589
3590         /* None available, try to steal one or wait for a user to finish */
3591         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3592                 if (reg->pin_count)
3593                         continue;
3594
3595                 return reg;
3596         }
3597
3598 deadlock:
3599         /* Wait for completion of pending flips which consume fences */
3600         if (intel_has_pending_fb_unpin(dev))
3601                 return ERR_PTR(-EAGAIN);
3602
3603         return ERR_PTR(-EDEADLK);
3604 }
3605
3606 /**
3607  * i915_gem_object_get_fence - set up fencing for an object
3608  * @obj: object to map through a fence reg
3609  *
3610  * When mapping objects through the GTT, userspace wants to be able to write
3611  * to them without having to worry about swizzling if the object is tiled.
3612  * This function walks the fence regs looking for a free one for @obj,
3613  * stealing one if it can't find any.
3614  *
3615  * It then sets up the reg based on the object's properties: address, pitch
3616  * and tiling format.
3617  *
3618  * For an untiled surface, this removes any existing fence.
3619  */
3620 int
3621 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3622 {
3623         struct drm_device *dev = obj->base.dev;
3624         struct drm_i915_private *dev_priv = dev->dev_private;
3625         bool enable = obj->tiling_mode != I915_TILING_NONE;
3626         struct drm_i915_fence_reg *reg;
3627         int ret;
3628
3629         /* Have we updated the tiling parameters upon the object and so
3630          * will need to serialise the write to the associated fence register?
3631          */
3632         if (obj->fence_dirty) {
3633                 ret = i915_gem_object_wait_fence(obj);
3634                 if (ret)
3635                         return ret;
3636         }
3637
3638         /* Just update our place in the LRU if our fence is getting reused. */
3639         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3640                 reg = &dev_priv->fence_regs[obj->fence_reg];
3641                 if (!obj->fence_dirty) {
3642                         list_move_tail(&reg->lru_list,
3643                                        &dev_priv->mm.fence_list);
3644                         return 0;
3645                 }
3646         } else if (enable) {
3647                 if (WARN_ON(!obj->map_and_fenceable))
3648                         return -EINVAL;
3649
3650                 reg = i915_find_fence_reg(dev);
3651                 if (IS_ERR(reg))
3652                         return PTR_ERR(reg);
3653
3654                 if (reg->obj) {
3655                         struct drm_i915_gem_object *old = reg->obj;
3656
3657                         ret = i915_gem_object_wait_fence(old);
3658                         if (ret)
3659                                 return ret;
3660
3661                         i915_gem_object_fence_lost(old);
3662                 }
3663         } else
3664                 return 0;
3665
3666         i915_gem_object_update_fence(obj, reg, enable);
3667
3668         return 0;
3669 }
3670
3671 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3672                                      unsigned long cache_level)
3673 {
3674         struct drm_mm_node *gtt_space = &vma->node;
3675         struct drm_mm_node *other;
3676
3677         /*
3678          * On some machines we have to be careful when putting differing types
3679          * of snoopable memory together to avoid the prefetcher crossing memory
3680          * domains and dying. During vm initialisation, we decide whether or not
3681          * these constraints apply and set the drm_mm.color_adjust
3682          * appropriately.
3683          */
3684         if (vma->vm->mm.color_adjust == NULL)
3685                 return true;
3686
3687         if (!drm_mm_node_allocated(gtt_space))
3688                 return true;
3689
3690         if (list_empty(&gtt_space->node_list))
3691                 return true;
3692
3693         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3694         if (other->allocated && !other->hole_follows && other->color != cache_level)
3695                 return false;
3696
3697         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3698         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3699                 return false;
3700
3701         return true;
3702 }
3703
3704 /**
3705  * Finds free space in the GTT aperture and binds the object or a view of it
3706  * there.
3707  */
3708 static struct i915_vma *
3709 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3710                            struct i915_address_space *vm,
3711                            const struct i915_ggtt_view *ggtt_view,
3712                            unsigned alignment,
3713                            uint64_t flags)
3714 {
3715         struct drm_device *dev = obj->base.dev;
3716         struct drm_i915_private *dev_priv = dev->dev_private;
3717         u32 size, fence_size, fence_alignment, unfenced_alignment;
3718         unsigned long start =
3719                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3720         unsigned long end =
3721                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3722         struct i915_vma *vma;
3723         int ret;
3724
3725         if (i915_is_ggtt(vm)) {
3726                 u32 view_size;
3727
3728                 if (WARN_ON(!ggtt_view))
3729                         return ERR_PTR(-EINVAL);
3730
3731                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3732
3733                 fence_size = i915_gem_get_gtt_size(dev,
3734                                                    view_size,
3735                                                    obj->tiling_mode);
3736                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3737                                                              view_size,
3738                                                              obj->tiling_mode,
3739                                                              true);
3740                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3741                                                                 view_size,
3742                                                                 obj->tiling_mode,
3743                                                                 false);
3744                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3745         } else {
3746                 fence_size = i915_gem_get_gtt_size(dev,
3747                                                    obj->base.size,
3748                                                    obj->tiling_mode);
3749                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3750                                                              obj->base.size,
3751                                                              obj->tiling_mode,
3752                                                              true);
3753                 unfenced_alignment =
3754                         i915_gem_get_gtt_alignment(dev,
3755                                                    obj->base.size,
3756                                                    obj->tiling_mode,
3757                                                    false);
3758                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3759         }
3760
3761         if (alignment == 0)
3762                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3763                                                 unfenced_alignment;
3764         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3765                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3766                           ggtt_view ? ggtt_view->type : 0,
3767                           alignment);
3768                 return ERR_PTR(-EINVAL);
3769         }
3770
3771         /* If binding the object/GGTT view requires more space than the entire
3772          * aperture has, reject it early before evicting everything in a vain
3773          * attempt to find space.
3774          */
3775         if (size > end) {
3776                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3777                           ggtt_view ? ggtt_view->type : 0,
3778                           size,
3779                           flags & PIN_MAPPABLE ? "mappable" : "total",
3780                           end);
3781                 return ERR_PTR(-E2BIG);
3782         }
3783
3784         ret = i915_gem_object_get_pages(obj);
3785         if (ret)
3786                 return ERR_PTR(ret);
3787
3788         i915_gem_object_pin_pages(obj);
3789
3790         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3791                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3792
3793         if (IS_ERR(vma))
3794                 goto err_unpin;
3795
3796 search_free:
3797         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3798                                                   size, alignment,
3799                                                   obj->cache_level,
3800                                                   start, end,
3801                                                   DRM_MM_SEARCH_DEFAULT,
3802                                                   DRM_MM_CREATE_DEFAULT);
3803         if (ret) {
3804                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3805                                                obj->cache_level,
3806                                                start, end,
3807                                                flags);
3808                 if (ret == 0)
3809                         goto search_free;
3810
3811                 goto err_free_vma;
3812         }
3813         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3814                 ret = -EINVAL;
3815                 goto err_remove_node;
3816         }
3817
3818         ret = i915_gem_gtt_prepare_object(obj);
3819         if (ret)
3820                 goto err_remove_node;
3821
3822         trace_i915_vma_bind(vma, flags);
3823         ret = i915_vma_bind(vma, obj->cache_level, flags);
3824         if (ret)
3825                 goto err_finish_gtt;
3826
3827         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3828         list_add_tail(&vma->mm_list, &vm->inactive_list);
3829
3830         return vma;
3831
3832 err_finish_gtt:
3833         i915_gem_gtt_finish_object(obj);
3834 err_remove_node:
3835         drm_mm_remove_node(&vma->node);
3836 err_free_vma:
3837         i915_gem_vma_destroy(vma);
3838         vma = ERR_PTR(ret);
3839 err_unpin:
3840         i915_gem_object_unpin_pages(obj);
3841         return vma;
3842 }
3843
3844 bool
3845 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3846                         bool force)
3847 {
3848         /* If we don't have a page list set up, then we're not pinned
3849          * to GPU, and we can ignore the cache flush because it'll happen
3850          * again at bind time.
3851          */
3852         if (obj->pages == NULL)
3853                 return false;
3854
3855         /*
3856          * Stolen memory is always coherent with the GPU as it is explicitly
3857          * marked as wc by the system, or the system is cache-coherent.
3858          */
3859         if (obj->stolen || obj->phys_handle)
3860                 return false;
3861
3862         /* If the GPU is snooping the contents of the CPU cache,
3863          * we do not need to manually clear the CPU cache lines.  However,
3864          * the caches are only snooped when the render cache is
3865          * flushed/invalidated.  As we always have to emit invalidations
3866          * and flushes when moving into and out of the RENDER domain, correct
3867          * snooping behaviour occurs naturally as the result of our domain
3868          * tracking.
3869          */
3870         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3871                 obj->cache_dirty = true;
3872                 return false;
3873         }
3874
3875         trace_i915_gem_object_clflush(obj);
3876         drm_clflush_sg(obj->pages);
3877         obj->cache_dirty = false;
3878
3879         return true;
3880 }
3881
3882 /** Flushes the GTT write domain for the object if it's dirty. */
3883 static void
3884 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3885 {
3886         uint32_t old_write_domain;
3887
3888         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3889                 return;
3890
3891         /* No actual flushing is required for the GTT write domain.  Writes
3892          * to it immediately go to main memory as far as we know, so there's
3893          * no chipset flush.  It also doesn't land in render cache.
3894          *
3895          * However, we do have to enforce the order so that all writes through
3896          * the GTT land before any writes to the device, such as updates to
3897          * the GATT itself.
3898          */
3899         wmb();
3900
3901         old_write_domain = obj->base.write_domain;
3902         obj->base.write_domain = 0;
3903
3904         intel_fb_obj_flush(obj, false);
3905
3906         trace_i915_gem_object_change_domain(obj,
3907                                             obj->base.read_domains,
3908                                             old_write_domain);
3909 }
3910
3911 /** Flushes the CPU write domain for the object if it's dirty. */
3912 static void
3913 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3914 {
3915         uint32_t old_write_domain;
3916
3917         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3918                 return;
3919
3920         if (i915_gem_clflush_object(obj, obj->pin_display))
3921                 i915_gem_chipset_flush(obj->base.dev);
3922
3923         old_write_domain = obj->base.write_domain;
3924         obj->base.write_domain = 0;
3925
3926         intel_fb_obj_flush(obj, false);
3927
3928         trace_i915_gem_object_change_domain(obj,
3929                                             obj->base.read_domains,
3930                                             old_write_domain);
3931 }
3932
3933 /**
3934  * Moves a single object to the GTT read, and possibly write domain.
3935  *
3936  * This function returns when the move is complete, including waiting on
3937  * flushes to occur.
3938  */
3939 int
3940 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3941 {
3942         uint32_t old_write_domain, old_read_domains;
3943         struct i915_vma *vma;
3944         int ret;
3945
3946         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3947                 return 0;
3948
3949         ret = i915_gem_object_wait_rendering(obj, !write);
3950         if (ret)
3951                 return ret;
3952
3953         /* Flush and acquire obj->pages so that we are coherent through
3954          * direct access in memory with previous cached writes through
3955          * shmemfs and that our cache domain tracking remains valid.
3956          * For example, if the obj->filp was moved to swap without us
3957          * being notified and releasing the pages, we would mistakenly
3958          * continue to assume that the obj remained out of the CPU cached
3959          * domain.
3960          */
3961         ret = i915_gem_object_get_pages(obj);
3962         if (ret)
3963                 return ret;
3964
3965         i915_gem_object_flush_cpu_write_domain(obj);
3966
3967         /* Serialise direct access to this object with the barriers for
3968          * coherent writes from the GPU, by effectively invalidating the
3969          * GTT domain upon first access.
3970          */
3971         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3972                 mb();
3973
3974         old_write_domain = obj->base.write_domain;
3975         old_read_domains = obj->base.read_domains;
3976
3977         /* It should now be out of any other write domains, and we can update
3978          * the domain values for our changes.
3979          */
3980         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3981         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3982         if (write) {
3983                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3984                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3985                 obj->dirty = 1;
3986         }
3987
3988         if (write)
3989                 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
3990
3991         trace_i915_gem_object_change_domain(obj,
3992                                             old_read_domains,
3993                                             old_write_domain);
3994
3995         /* And bump the LRU for this access */
3996         vma = i915_gem_obj_to_ggtt(obj);
3997         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3998                 list_move_tail(&vma->mm_list,
3999                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
4000
4001         return 0;
4002 }
4003
4004 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4005                                     enum i915_cache_level cache_level)
4006 {
4007         struct drm_device *dev = obj->base.dev;
4008         struct i915_vma *vma, *next;
4009         int ret;
4010
4011         if (obj->cache_level == cache_level)
4012                 return 0;
4013
4014         if (i915_gem_obj_is_pinned(obj)) {
4015                 DRM_DEBUG("can not change the cache level of pinned objects\n");
4016                 return -EBUSY;
4017         }
4018
4019         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4020                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4021                         ret = i915_vma_unbind(vma);
4022                         if (ret)
4023                                 return ret;
4024                 }
4025         }
4026
4027         if (i915_gem_obj_bound_any(obj)) {
4028                 ret = i915_gem_object_wait_rendering(obj, false);
4029                 if (ret)
4030                         return ret;
4031
4032                 i915_gem_object_finish_gtt(obj);
4033
4034                 /* Before SandyBridge, you could not use tiling or fence
4035                  * registers with snooped memory, so relinquish any fences
4036                  * currently pointing to our region in the aperture.
4037                  */
4038                 if (INTEL_INFO(dev)->gen < 6) {
4039                         ret = i915_gem_object_put_fence(obj);
4040                         if (ret)
4041                                 return ret;
4042                 }
4043
4044                 list_for_each_entry(vma, &obj->vma_list, vma_link)
4045                         if (drm_mm_node_allocated(&vma->node)) {
4046                                 ret = i915_vma_bind(vma, cache_level,
4047                                                     PIN_UPDATE);
4048                                 if (ret)
4049                                         return ret;
4050                         }
4051         }
4052
4053         list_for_each_entry(vma, &obj->vma_list, vma_link)
4054                 vma->node.color = cache_level;
4055         obj->cache_level = cache_level;
4056
4057         if (obj->cache_dirty &&
4058             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4059             cpu_write_needs_clflush(obj)) {
4060                 if (i915_gem_clflush_object(obj, true))
4061                         i915_gem_chipset_flush(obj->base.dev);
4062         }
4063
4064         return 0;
4065 }
4066
4067 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4068                                struct drm_file *file)
4069 {
4070         struct drm_i915_gem_caching *args = data;
4071         struct drm_i915_gem_object *obj;
4072
4073         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4074         if (&obj->base == NULL)
4075                 return -ENOENT;
4076
4077         switch (obj->cache_level) {
4078         case I915_CACHE_LLC:
4079         case I915_CACHE_L3_LLC:
4080                 args->caching = I915_CACHING_CACHED;
4081                 break;
4082
4083         case I915_CACHE_WT:
4084                 args->caching = I915_CACHING_DISPLAY;
4085                 break;
4086
4087         default:
4088                 args->caching = I915_CACHING_NONE;
4089                 break;
4090         }
4091
4092         drm_gem_object_unreference_unlocked(&obj->base);
4093         return 0;
4094 }
4095
4096 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4097                                struct drm_file *file)
4098 {
4099         struct drm_i915_gem_caching *args = data;
4100         struct drm_i915_gem_object *obj;
4101         enum i915_cache_level level;
4102         int ret;
4103
4104         switch (args->caching) {
4105         case I915_CACHING_NONE:
4106                 level = I915_CACHE_NONE;
4107                 break;
4108         case I915_CACHING_CACHED:
4109                 level = I915_CACHE_LLC;
4110                 break;
4111         case I915_CACHING_DISPLAY:
4112                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4113                 break;
4114         default:
4115                 return -EINVAL;
4116         }
4117
4118         ret = i915_mutex_lock_interruptible(dev);
4119         if (ret)
4120                 return ret;
4121
4122         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4123         if (&obj->base == NULL) {
4124                 ret = -ENOENT;
4125                 goto unlock;
4126         }
4127
4128         ret = i915_gem_object_set_cache_level(obj, level);
4129
4130         drm_gem_object_unreference(&obj->base);
4131 unlock:
4132         mutex_unlock(&dev->struct_mutex);
4133         return ret;
4134 }
4135
4136 /*
4137  * Prepare buffer for display plane (scanout, cursors, etc).
4138  * Can be called from an uninterruptible phase (modesetting) and allows
4139  * any flushes to be pipelined (for pageflips).
4140  */
4141 int
4142 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4143                                      u32 alignment,
4144                                      struct intel_engine_cs *pipelined,
4145                                      const struct i915_ggtt_view *view)
4146 {
4147         u32 old_read_domains, old_write_domain;
4148         int ret;
4149
4150         ret = i915_gem_object_sync(obj, pipelined);
4151         if (ret)
4152                 return ret;
4153
4154         /* Mark the pin_display early so that we account for the
4155          * display coherency whilst setting up the cache domains.
4156          */
4157         obj->pin_display++;
4158
4159         /* The display engine is not coherent with the LLC cache on gen6.  As
4160          * a result, we make sure that the pinning that is about to occur is
4161          * done with uncached PTEs. This is lowest common denominator for all
4162          * chipsets.
4163          *
4164          * However for gen6+, we could do better by using the GFDT bit instead
4165          * of uncaching, which would allow us to flush all the LLC-cached data
4166          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4167          */
4168         ret = i915_gem_object_set_cache_level(obj,
4169                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4170         if (ret)
4171                 goto err_unpin_display;
4172
4173         /* As the user may map the buffer once pinned in the display plane
4174          * (e.g. libkms for the bootup splash), we have to ensure that we
4175          * always use map_and_fenceable for all scanout buffers.
4176          */
4177         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4178                                        view->type == I915_GGTT_VIEW_NORMAL ?
4179                                        PIN_MAPPABLE : 0);
4180         if (ret)
4181                 goto err_unpin_display;
4182
4183         i915_gem_object_flush_cpu_write_domain(obj);
4184
4185         old_write_domain = obj->base.write_domain;
4186         old_read_domains = obj->base.read_domains;
4187
4188         /* It should now be out of any other write domains, and we can update
4189          * the domain values for our changes.
4190          */
4191         obj->base.write_domain = 0;
4192         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4193
4194         trace_i915_gem_object_change_domain(obj,
4195                                             old_read_domains,
4196                                             old_write_domain);
4197
4198         return 0;
4199
4200 err_unpin_display:
4201         obj->pin_display--;
4202         return ret;
4203 }
4204
4205 void
4206 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4207                                          const struct i915_ggtt_view *view)
4208 {
4209         if (WARN_ON(obj->pin_display == 0))
4210                 return;
4211
4212         i915_gem_object_ggtt_unpin_view(obj, view);
4213
4214         obj->pin_display--;
4215 }
4216
4217 /**
4218  * Moves a single object to the CPU read, and possibly write domain.
4219  *
4220  * This function returns when the move is complete, including waiting on
4221  * flushes to occur.
4222  */
4223 int
4224 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4225 {
4226         uint32_t old_write_domain, old_read_domains;
4227         int ret;
4228
4229         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4230                 return 0;
4231
4232         ret = i915_gem_object_wait_rendering(obj, !write);
4233         if (ret)
4234                 return ret;
4235
4236         i915_gem_object_flush_gtt_write_domain(obj);
4237
4238         old_write_domain = obj->base.write_domain;
4239         old_read_domains = obj->base.read_domains;
4240
4241         /* Flush the CPU cache if it's still invalid. */
4242         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4243                 i915_gem_clflush_object(obj, false);
4244
4245                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4246         }
4247
4248         /* It should now be out of any other write domains, and we can update
4249          * the domain values for our changes.
4250          */
4251         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4252
4253         /* If we're writing through the CPU, then the GPU read domains will
4254          * need to be invalidated at next use.
4255          */
4256         if (write) {
4257                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4258                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4259         }
4260
4261         if (write)
4262                 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4263
4264         trace_i915_gem_object_change_domain(obj,
4265                                             old_read_domains,
4266                                             old_write_domain);
4267
4268         return 0;
4269 }
4270
4271 /* Throttle our rendering by waiting until the ring has completed our requests
4272  * emitted over 20 msec ago.
4273  *
4274  * Note that if we were to use the current jiffies each time around the loop,
4275  * we wouldn't escape the function with any frames outstanding if the time to
4276  * render a frame was over 20ms.
4277  *
4278  * This should get us reasonable parallelism between CPU and GPU but also
4279  * relatively low latency when blocking on a particular request to finish.
4280  */
4281 static int
4282 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4283 {
4284         struct drm_i915_private *dev_priv = dev->dev_private;
4285         struct drm_i915_file_private *file_priv = file->driver_priv;
4286         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4287         struct drm_i915_gem_request *request, *target = NULL;
4288         unsigned reset_counter;
4289         int ret;
4290
4291         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4292         if (ret)
4293                 return ret;
4294
4295         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4296         if (ret)
4297                 return ret;
4298
4299         spin_lock(&file_priv->mm.lock);
4300         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4301                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4302                         break;
4303
4304                 target = request;
4305         }
4306         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4307         if (target)
4308                 i915_gem_request_reference(target);
4309         spin_unlock(&file_priv->mm.lock);
4310
4311         if (target == NULL)
4312                 return 0;
4313
4314         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4315         if (ret == 0)
4316                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4317
4318         i915_gem_request_unreference__unlocked(target);
4319
4320         return ret;
4321 }
4322
4323 static bool
4324 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4325 {
4326         struct drm_i915_gem_object *obj = vma->obj;
4327
4328         if (alignment &&
4329             vma->node.start & (alignment - 1))
4330                 return true;
4331
4332         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4333                 return true;
4334
4335         if (flags & PIN_OFFSET_BIAS &&
4336             vma->node.start < (flags & PIN_OFFSET_MASK))
4337                 return true;
4338
4339         return false;
4340 }
4341
4342 static int
4343 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4344                        struct i915_address_space *vm,
4345                        const struct i915_ggtt_view *ggtt_view,
4346                        uint32_t alignment,
4347                        uint64_t flags)
4348 {
4349         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4350         struct i915_vma *vma;
4351         unsigned bound;
4352         int ret;
4353
4354         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4355                 return -ENODEV;
4356
4357         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4358                 return -EINVAL;
4359
4360         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4361                 return -EINVAL;
4362
4363         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4364                 return -EINVAL;
4365
4366         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4367                           i915_gem_obj_to_vma(obj, vm);
4368
4369         if (IS_ERR(vma))
4370                 return PTR_ERR(vma);
4371
4372         if (vma) {
4373                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4374                         return -EBUSY;
4375
4376                 if (i915_vma_misplaced(vma, alignment, flags)) {
4377                         unsigned long offset;
4378                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4379                                              i915_gem_obj_offset(obj, vm);
4380                         WARN(vma->pin_count,
4381                              "bo is already pinned in %s with incorrect alignment:"
4382                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4383                              " obj->map_and_fenceable=%d\n",
4384                              ggtt_view ? "ggtt" : "ppgtt",
4385                              offset,
4386                              alignment,
4387                              !!(flags & PIN_MAPPABLE),
4388                              obj->map_and_fenceable);
4389                         ret = i915_vma_unbind(vma);
4390                         if (ret)
4391                                 return ret;
4392
4393                         vma = NULL;
4394                 }
4395         }
4396
4397         bound = vma ? vma->bound : 0;
4398         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4399                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4400                                                  flags);
4401                 if (IS_ERR(vma))
4402                         return PTR_ERR(vma);
4403         } else {
4404                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4405                 if (ret)
4406                         return ret;
4407         }
4408
4409         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4410             (bound ^ vma->bound) & GLOBAL_BIND) {
4411                 bool mappable, fenceable;
4412                 u32 fence_size, fence_alignment;
4413
4414                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4415                                                    obj->base.size,
4416                                                    obj->tiling_mode);
4417                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4418                                                              obj->base.size,
4419                                                              obj->tiling_mode,
4420                                                              true);
4421
4422                 fenceable = (vma->node.size == fence_size &&
4423                              (vma->node.start & (fence_alignment - 1)) == 0);
4424
4425                 mappable = (vma->node.start + fence_size <=
4426                             dev_priv->gtt.mappable_end);
4427
4428                 obj->map_and_fenceable = mappable && fenceable;
4429
4430                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4431         }
4432
4433         vma->pin_count++;
4434         return 0;
4435 }
4436
4437 int
4438 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4439                     struct i915_address_space *vm,
4440                     uint32_t alignment,
4441                     uint64_t flags)
4442 {
4443         return i915_gem_object_do_pin(obj, vm,
4444                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4445                                       alignment, flags);
4446 }
4447
4448 int
4449 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4450                          const struct i915_ggtt_view *view,
4451                          uint32_t alignment,
4452                          uint64_t flags)
4453 {
4454         if (WARN_ONCE(!view, "no view specified"))
4455                 return -EINVAL;
4456
4457         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4458                                       alignment, flags | PIN_GLOBAL);
4459 }
4460
4461 void
4462 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4463                                 const struct i915_ggtt_view *view)
4464 {
4465         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4466
4467         BUG_ON(!vma);
4468         WARN_ON(vma->pin_count == 0);
4469         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4470
4471         --vma->pin_count;
4472 }
4473
4474 bool
4475 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4476 {
4477         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4478                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4479                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4480
4481                 WARN_ON(!ggtt_vma ||
4482                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4483                         ggtt_vma->pin_count);
4484                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4485                 return true;
4486         } else
4487                 return false;
4488 }
4489
4490 void
4491 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4492 {
4493         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4494                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4495                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4496                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4497         }
4498 }
4499
4500 int
4501 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4502                     struct drm_file *file)
4503 {
4504         struct drm_i915_gem_busy *args = data;
4505         struct drm_i915_gem_object *obj;
4506         int ret;
4507
4508         ret = i915_mutex_lock_interruptible(dev);
4509         if (ret)
4510                 return ret;
4511
4512         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4513         if (&obj->base == NULL) {
4514                 ret = -ENOENT;
4515                 goto unlock;
4516         }
4517
4518         /* Count all active objects as busy, even if they are currently not used
4519          * by the gpu. Users of this interface expect objects to eventually
4520          * become non-busy without any further actions, therefore emit any
4521          * necessary flushes here.
4522          */
4523         ret = i915_gem_object_flush_active(obj);
4524         if (ret)
4525                 goto unref;
4526
4527         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4528         args->busy = obj->active << 16;
4529         if (obj->last_write_req)
4530                 args->busy |= obj->last_write_req->ring->id;
4531
4532 unref:
4533         drm_gem_object_unreference(&obj->base);
4534 unlock:
4535         mutex_unlock(&dev->struct_mutex);
4536         return ret;
4537 }
4538
4539 int
4540 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4541                         struct drm_file *file_priv)
4542 {
4543         return i915_gem_ring_throttle(dev, file_priv);
4544 }
4545
4546 int
4547 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4548                        struct drm_file *file_priv)
4549 {
4550         struct drm_i915_private *dev_priv = dev->dev_private;
4551         struct drm_i915_gem_madvise *args = data;
4552         struct drm_i915_gem_object *obj;
4553         int ret;
4554
4555         switch (args->madv) {
4556         case I915_MADV_DONTNEED:
4557         case I915_MADV_WILLNEED:
4558             break;
4559         default:
4560             return -EINVAL;
4561         }
4562
4563         ret = i915_mutex_lock_interruptible(dev);
4564         if (ret)
4565                 return ret;
4566
4567         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4568         if (&obj->base == NULL) {
4569                 ret = -ENOENT;
4570                 goto unlock;
4571         }
4572
4573         if (i915_gem_obj_is_pinned(obj)) {
4574                 ret = -EINVAL;
4575                 goto out;
4576         }
4577
4578         if (obj->pages &&
4579             obj->tiling_mode != I915_TILING_NONE &&
4580             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4581                 if (obj->madv == I915_MADV_WILLNEED)
4582                         i915_gem_object_unpin_pages(obj);
4583                 if (args->madv == I915_MADV_WILLNEED)
4584                         i915_gem_object_pin_pages(obj);
4585         }
4586
4587         if (obj->madv != __I915_MADV_PURGED)
4588                 obj->madv = args->madv;
4589
4590         /* if the object is no longer attached, discard its backing storage */
4591         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4592                 i915_gem_object_truncate(obj);
4593
4594         args->retained = obj->madv != __I915_MADV_PURGED;
4595
4596 out:
4597         drm_gem_object_unreference(&obj->base);
4598 unlock:
4599         mutex_unlock(&dev->struct_mutex);
4600         return ret;
4601 }
4602
4603 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4604                           const struct drm_i915_gem_object_ops *ops)
4605 {
4606         int i;
4607
4608         INIT_LIST_HEAD(&obj->global_list);
4609         for (i = 0; i < I915_NUM_RINGS; i++)
4610                 INIT_LIST_HEAD(&obj->ring_list[i]);
4611         INIT_LIST_HEAD(&obj->obj_exec_link);
4612         INIT_LIST_HEAD(&obj->vma_list);
4613         INIT_LIST_HEAD(&obj->batch_pool_link);
4614
4615         obj->ops = ops;
4616
4617         obj->fence_reg = I915_FENCE_REG_NONE;
4618         obj->madv = I915_MADV_WILLNEED;
4619
4620         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4621 }
4622
4623 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4624         .get_pages = i915_gem_object_get_pages_gtt,
4625         .put_pages = i915_gem_object_put_pages_gtt,
4626 };
4627
4628 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4629                                                   size_t size)
4630 {
4631         struct drm_i915_gem_object *obj;
4632         struct address_space *mapping;
4633         gfp_t mask;
4634
4635         obj = i915_gem_object_alloc(dev);
4636         if (obj == NULL)
4637                 return NULL;
4638
4639         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4640                 i915_gem_object_free(obj);
4641                 return NULL;
4642         }
4643
4644         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4645         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4646                 /* 965gm cannot relocate objects above 4GiB. */
4647                 mask &= ~__GFP_HIGHMEM;
4648                 mask |= __GFP_DMA32;
4649         }
4650
4651         mapping = file_inode(obj->base.filp)->i_mapping;
4652         mapping_set_gfp_mask(mapping, mask);
4653
4654         i915_gem_object_init(obj, &i915_gem_object_ops);
4655
4656         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4657         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4658
4659         if (HAS_LLC(dev)) {
4660                 /* On some devices, we can have the GPU use the LLC (the CPU
4661                  * cache) for about a 10% performance improvement
4662                  * compared to uncached.  Graphics requests other than
4663                  * display scanout are coherent with the CPU in
4664                  * accessing this cache.  This means in this mode we
4665                  * don't need to clflush on the CPU side, and on the
4666                  * GPU side we only need to flush internal caches to
4667                  * get data visible to the CPU.
4668                  *
4669                  * However, we maintain the display planes as UC, and so
4670                  * need to rebind when first used as such.
4671                  */
4672                 obj->cache_level = I915_CACHE_LLC;
4673         } else
4674                 obj->cache_level = I915_CACHE_NONE;
4675
4676         trace_i915_gem_object_create(obj);
4677
4678         return obj;
4679 }
4680
4681 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4682 {
4683         /* If we are the last user of the backing storage (be it shmemfs
4684          * pages or stolen etc), we know that the pages are going to be
4685          * immediately released. In this case, we can then skip copying
4686          * back the contents from the GPU.
4687          */
4688
4689         if (obj->madv != I915_MADV_WILLNEED)
4690                 return false;
4691
4692         if (obj->base.filp == NULL)
4693                 return true;
4694
4695         /* At first glance, this looks racy, but then again so would be
4696          * userspace racing mmap against close. However, the first external
4697          * reference to the filp can only be obtained through the
4698          * i915_gem_mmap_ioctl() which safeguards us against the user
4699          * acquiring such a reference whilst we are in the middle of
4700          * freeing the object.
4701          */
4702         return atomic_long_read(&obj->base.filp->f_count) == 1;
4703 }
4704
4705 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4706 {
4707         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4708         struct drm_device *dev = obj->base.dev;
4709         struct drm_i915_private *dev_priv = dev->dev_private;
4710         struct i915_vma *vma, *next;
4711
4712         intel_runtime_pm_get(dev_priv);
4713
4714         trace_i915_gem_object_destroy(obj);
4715
4716         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4717                 int ret;
4718
4719                 vma->pin_count = 0;
4720                 ret = i915_vma_unbind(vma);
4721                 if (WARN_ON(ret == -ERESTARTSYS)) {
4722                         bool was_interruptible;
4723
4724                         was_interruptible = dev_priv->mm.interruptible;
4725                         dev_priv->mm.interruptible = false;
4726
4727                         WARN_ON(i915_vma_unbind(vma));
4728
4729                         dev_priv->mm.interruptible = was_interruptible;
4730                 }
4731         }
4732
4733         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4734          * before progressing. */
4735         if (obj->stolen)
4736                 i915_gem_object_unpin_pages(obj);
4737
4738         WARN_ON(obj->frontbuffer_bits);
4739
4740         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4741             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4742             obj->tiling_mode != I915_TILING_NONE)
4743                 i915_gem_object_unpin_pages(obj);
4744
4745         if (WARN_ON(obj->pages_pin_count))
4746                 obj->pages_pin_count = 0;
4747         if (discard_backing_storage(obj))
4748                 obj->madv = I915_MADV_DONTNEED;
4749         i915_gem_object_put_pages(obj);
4750         i915_gem_object_free_mmap_offset(obj);
4751
4752         BUG_ON(obj->pages);
4753
4754         if (obj->base.import_attach)
4755                 drm_prime_gem_destroy(&obj->base, NULL);
4756
4757         if (obj->ops->release)
4758                 obj->ops->release(obj);
4759
4760         drm_gem_object_release(&obj->base);
4761         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4762
4763         kfree(obj->bit_17);
4764         i915_gem_object_free(obj);
4765
4766         intel_runtime_pm_put(dev_priv);
4767 }
4768
4769 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4770                                      struct i915_address_space *vm)
4771 {
4772         struct i915_vma *vma;
4773         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4774                 if (i915_is_ggtt(vma->vm) &&
4775                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4776                         continue;
4777                 if (vma->vm == vm)
4778                         return vma;
4779         }
4780         return NULL;
4781 }
4782
4783 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4784                                            const struct i915_ggtt_view *view)
4785 {
4786         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4787         struct i915_vma *vma;
4788
4789         if (WARN_ONCE(!view, "no view specified"))
4790                 return ERR_PTR(-EINVAL);
4791
4792         list_for_each_entry(vma, &obj->vma_list, vma_link)
4793                 if (vma->vm == ggtt &&
4794                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4795                         return vma;
4796         return NULL;
4797 }
4798
4799 void i915_gem_vma_destroy(struct i915_vma *vma)
4800 {
4801         struct i915_address_space *vm = NULL;
4802         WARN_ON(vma->node.allocated);
4803
4804         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4805         if (!list_empty(&vma->exec_list))
4806                 return;
4807
4808         vm = vma->vm;
4809
4810         if (!i915_is_ggtt(vm))
4811                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4812
4813         list_del(&vma->vma_link);
4814
4815         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4816 }
4817
4818 static void
4819 i915_gem_stop_ringbuffers(struct drm_device *dev)
4820 {
4821         struct drm_i915_private *dev_priv = dev->dev_private;
4822         struct intel_engine_cs *ring;
4823         int i;
4824
4825         for_each_ring(ring, dev_priv, i)
4826                 dev_priv->gt.stop_ring(ring);
4827 }
4828
4829 int
4830 i915_gem_suspend(struct drm_device *dev)
4831 {
4832         struct drm_i915_private *dev_priv = dev->dev_private;
4833         int ret = 0;
4834
4835         mutex_lock(&dev->struct_mutex);
4836         ret = i915_gpu_idle(dev);
4837         if (ret)
4838                 goto err;
4839
4840         i915_gem_retire_requests(dev);
4841
4842         i915_gem_stop_ringbuffers(dev);
4843         mutex_unlock(&dev->struct_mutex);
4844
4845         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4846         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4847         flush_delayed_work(&dev_priv->mm.idle_work);
4848
4849         /* Assert that we sucessfully flushed all the work and
4850          * reset the GPU back to its idle, low power state.
4851          */
4852         WARN_ON(dev_priv->mm.busy);
4853
4854         return 0;
4855
4856 err:
4857         mutex_unlock(&dev->struct_mutex);
4858         return ret;
4859 }
4860
4861 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4862 {
4863         struct drm_device *dev = ring->dev;
4864         struct drm_i915_private *dev_priv = dev->dev_private;
4865         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4866         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4867         int i, ret;
4868
4869         if (!HAS_L3_DPF(dev) || !remap_info)
4870                 return 0;
4871
4872         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4873         if (ret)
4874                 return ret;
4875
4876         /*
4877          * Note: We do not worry about the concurrent register cacheline hang
4878          * here because no other code should access these registers other than
4879          * at initialization time.
4880          */
4881         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4882                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4883                 intel_ring_emit(ring, reg_base + i);
4884                 intel_ring_emit(ring, remap_info[i/4]);
4885         }
4886
4887         intel_ring_advance(ring);
4888
4889         return ret;
4890 }
4891
4892 void i915_gem_init_swizzling(struct drm_device *dev)
4893 {
4894         struct drm_i915_private *dev_priv = dev->dev_private;
4895
4896         if (INTEL_INFO(dev)->gen < 5 ||
4897             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4898                 return;
4899
4900         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4901                                  DISP_TILE_SURFACE_SWIZZLING);
4902
4903         if (IS_GEN5(dev))
4904                 return;
4905
4906         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4907         if (IS_GEN6(dev))
4908                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4909         else if (IS_GEN7(dev))
4910                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4911         else if (IS_GEN8(dev))
4912                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4913         else
4914                 BUG();
4915 }
4916
4917 static bool
4918 intel_enable_blt(struct drm_device *dev)
4919 {
4920         if (!HAS_BLT(dev))
4921                 return false;
4922
4923         /* The blitter was dysfunctional on early prototypes */
4924         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4925                 DRM_INFO("BLT not supported on this pre-production hardware;"
4926                          " graphics performance will be degraded.\n");
4927                 return false;
4928         }
4929
4930         return true;
4931 }
4932
4933 static void init_unused_ring(struct drm_device *dev, u32 base)
4934 {
4935         struct drm_i915_private *dev_priv = dev->dev_private;
4936
4937         I915_WRITE(RING_CTL(base), 0);
4938         I915_WRITE(RING_HEAD(base), 0);
4939         I915_WRITE(RING_TAIL(base), 0);
4940         I915_WRITE(RING_START(base), 0);
4941 }
4942
4943 static void init_unused_rings(struct drm_device *dev)
4944 {
4945         if (IS_I830(dev)) {
4946                 init_unused_ring(dev, PRB1_BASE);
4947                 init_unused_ring(dev, SRB0_BASE);
4948                 init_unused_ring(dev, SRB1_BASE);
4949                 init_unused_ring(dev, SRB2_BASE);
4950                 init_unused_ring(dev, SRB3_BASE);
4951         } else if (IS_GEN2(dev)) {
4952                 init_unused_ring(dev, SRB0_BASE);
4953                 init_unused_ring(dev, SRB1_BASE);
4954         } else if (IS_GEN3(dev)) {
4955                 init_unused_ring(dev, PRB1_BASE);
4956                 init_unused_ring(dev, PRB2_BASE);
4957         }
4958 }
4959
4960 int i915_gem_init_rings(struct drm_device *dev)
4961 {
4962         struct drm_i915_private *dev_priv = dev->dev_private;
4963         int ret;
4964
4965         ret = intel_init_render_ring_buffer(dev);
4966         if (ret)
4967                 return ret;
4968
4969         if (HAS_BSD(dev)) {
4970                 ret = intel_init_bsd_ring_buffer(dev);
4971                 if (ret)
4972                         goto cleanup_render_ring;
4973         }
4974
4975         if (intel_enable_blt(dev)) {
4976                 ret = intel_init_blt_ring_buffer(dev);
4977                 if (ret)
4978                         goto cleanup_bsd_ring;
4979         }
4980
4981         if (HAS_VEBOX(dev)) {
4982                 ret = intel_init_vebox_ring_buffer(dev);
4983                 if (ret)
4984                         goto cleanup_blt_ring;
4985         }
4986
4987         if (HAS_BSD2(dev)) {
4988                 ret = intel_init_bsd2_ring_buffer(dev);
4989                 if (ret)
4990                         goto cleanup_vebox_ring;
4991         }
4992
4993         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4994         if (ret)
4995                 goto cleanup_bsd2_ring;
4996
4997         return 0;
4998
4999 cleanup_bsd2_ring:
5000         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
5001 cleanup_vebox_ring:
5002         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5003 cleanup_blt_ring:
5004         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5005 cleanup_bsd_ring:
5006         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5007 cleanup_render_ring:
5008         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5009
5010         return ret;
5011 }
5012
5013 int
5014 i915_gem_init_hw(struct drm_device *dev)
5015 {
5016         struct drm_i915_private *dev_priv = dev->dev_private;
5017         struct intel_engine_cs *ring;
5018         int ret, i, j;
5019
5020         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5021                 return -EIO;
5022
5023         /* Double layer security blanket, see i915_gem_init() */
5024         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5025
5026         if (dev_priv->ellc_size)
5027                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5028
5029         if (IS_HASWELL(dev))
5030                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5031                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5032
5033         if (HAS_PCH_NOP(dev)) {
5034                 if (IS_IVYBRIDGE(dev)) {
5035                         u32 temp = I915_READ(GEN7_MSG_CTL);
5036                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5037                         I915_WRITE(GEN7_MSG_CTL, temp);
5038                 } else if (INTEL_INFO(dev)->gen >= 7) {
5039                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5040                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5041                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5042                 }
5043         }
5044
5045         i915_gem_init_swizzling(dev);
5046
5047         /*
5048          * At least 830 can leave some of the unused rings
5049          * "active" (ie. head != tail) after resume which
5050          * will prevent c3 entry. Makes sure all unused rings
5051          * are totally idle.
5052          */
5053         init_unused_rings(dev);
5054
5055         BUG_ON(!dev_priv->ring[RCS].default_context);
5056
5057         ret = i915_ppgtt_init_hw(dev);
5058         if (ret) {
5059                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5060                 goto out;
5061         }
5062
5063         /* Need to do basic initialisation of all rings first: */
5064         for_each_ring(ring, dev_priv, i) {
5065                 ret = ring->init_hw(ring);
5066                 if (ret)
5067                         goto out;
5068         }
5069
5070         /* Now it is safe to go back round and do everything else: */
5071         for_each_ring(ring, dev_priv, i) {
5072                 WARN_ON(!ring->default_context);
5073
5074                 if (ring->id == RCS) {
5075                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
5076                                 i915_gem_l3_remap(ring, j);
5077                 }
5078
5079                 ret = i915_ppgtt_init_ring(ring);
5080                 if (ret && ret != -EIO) {
5081                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5082                         i915_gem_cleanup_ringbuffer(dev);
5083                         goto out;
5084                 }
5085
5086                 ret = i915_gem_context_enable(ring);
5087                 if (ret && ret != -EIO) {
5088                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5089                         i915_gem_cleanup_ringbuffer(dev);
5090                         goto out;
5091                 }
5092         }
5093
5094 out:
5095         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5096         return ret;
5097 }
5098
5099 int i915_gem_init(struct drm_device *dev)
5100 {
5101         struct drm_i915_private *dev_priv = dev->dev_private;
5102         int ret;
5103
5104         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5105                         i915.enable_execlists);
5106
5107         mutex_lock(&dev->struct_mutex);
5108
5109         if (IS_VALLEYVIEW(dev)) {
5110                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5111                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5112                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5113                               VLV_GTLC_ALLOWWAKEACK), 10))
5114                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5115         }
5116
5117         if (!i915.enable_execlists) {
5118                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5119                 dev_priv->gt.init_rings = i915_gem_init_rings;
5120                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5121                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5122         } else {
5123                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5124                 dev_priv->gt.init_rings = intel_logical_rings_init;
5125                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5126                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5127         }
5128
5129         /* This is just a security blanket to placate dragons.
5130          * On some systems, we very sporadically observe that the first TLBs
5131          * used by the CS may be stale, despite us poking the TLB reset. If
5132          * we hold the forcewake during initialisation these problems
5133          * just magically go away.
5134          */
5135         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5136
5137         ret = i915_gem_init_userptr(dev);
5138         if (ret)
5139                 goto out_unlock;
5140
5141         i915_gem_init_global_gtt(dev);
5142
5143         ret = i915_gem_context_init(dev);
5144         if (ret)
5145                 goto out_unlock;
5146
5147         ret = dev_priv->gt.init_rings(dev);
5148         if (ret)
5149                 goto out_unlock;
5150
5151         ret = i915_gem_init_hw(dev);
5152         if (ret == -EIO) {
5153                 /* Allow ring initialisation to fail by marking the GPU as
5154                  * wedged. But we only want to do this where the GPU is angry,
5155                  * for all other failure, such as an allocation failure, bail.
5156                  */
5157                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5158                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5159                 ret = 0;
5160         }
5161
5162 out_unlock:
5163         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5164         mutex_unlock(&dev->struct_mutex);
5165
5166         return ret;
5167 }
5168
5169 void
5170 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5171 {
5172         struct drm_i915_private *dev_priv = dev->dev_private;
5173         struct intel_engine_cs *ring;
5174         int i;
5175
5176         for_each_ring(ring, dev_priv, i)
5177                 dev_priv->gt.cleanup_ring(ring);
5178 }
5179
5180 static void
5181 init_ring_lists(struct intel_engine_cs *ring)
5182 {
5183         INIT_LIST_HEAD(&ring->active_list);
5184         INIT_LIST_HEAD(&ring->request_list);
5185 }
5186
5187 void i915_init_vm(struct drm_i915_private *dev_priv,
5188                   struct i915_address_space *vm)
5189 {
5190         if (!i915_is_ggtt(vm))
5191                 drm_mm_init(&vm->mm, vm->start, vm->total);
5192         vm->dev = dev_priv->dev;
5193         INIT_LIST_HEAD(&vm->active_list);
5194         INIT_LIST_HEAD(&vm->inactive_list);
5195         INIT_LIST_HEAD(&vm->global_link);
5196         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5197 }
5198
5199 void
5200 i915_gem_load(struct drm_device *dev)
5201 {
5202         struct drm_i915_private *dev_priv = dev->dev_private;
5203         int i;
5204
5205         dev_priv->objects =
5206                 kmem_cache_create("i915_gem_object",
5207                                   sizeof(struct drm_i915_gem_object), 0,
5208                                   SLAB_HWCACHE_ALIGN,
5209                                   NULL);
5210         dev_priv->vmas =
5211                 kmem_cache_create("i915_gem_vma",
5212                                   sizeof(struct i915_vma), 0,
5213                                   SLAB_HWCACHE_ALIGN,
5214                                   NULL);
5215         dev_priv->requests =
5216                 kmem_cache_create("i915_gem_request",
5217                                   sizeof(struct drm_i915_gem_request), 0,
5218                                   SLAB_HWCACHE_ALIGN,
5219                                   NULL);
5220
5221         INIT_LIST_HEAD(&dev_priv->vm_list);
5222         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5223
5224         INIT_LIST_HEAD(&dev_priv->context_list);
5225         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5226         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5227         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5228         for (i = 0; i < I915_NUM_RINGS; i++)
5229                 init_ring_lists(&dev_priv->ring[i]);
5230         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5231                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5232         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5233                           i915_gem_retire_work_handler);
5234         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5235                           i915_gem_idle_work_handler);
5236         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5237
5238         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5239
5240         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5241                 dev_priv->num_fence_regs = 32;
5242         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5243                 dev_priv->num_fence_regs = 16;
5244         else
5245                 dev_priv->num_fence_regs = 8;
5246
5247         if (intel_vgpu_active(dev))
5248                 dev_priv->num_fence_regs =
5249                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5250
5251         /* Initialize fence registers to zero */
5252         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5253         i915_gem_restore_fences(dev);
5254
5255         i915_gem_detect_bit_6_swizzle(dev);
5256         init_waitqueue_head(&dev_priv->pending_flip_queue);
5257
5258         dev_priv->mm.interruptible = true;
5259
5260         i915_gem_shrinker_init(dev_priv);
5261
5262         mutex_init(&dev_priv->fb_tracking.lock);
5263 }
5264
5265 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5266 {
5267         struct drm_i915_file_private *file_priv = file->driver_priv;
5268
5269         /* Clean up our request list when the client is going away, so that
5270          * later retire_requests won't dereference our soon-to-be-gone
5271          * file_priv.
5272          */
5273         spin_lock(&file_priv->mm.lock);
5274         while (!list_empty(&file_priv->mm.request_list)) {
5275                 struct drm_i915_gem_request *request;
5276
5277                 request = list_first_entry(&file_priv->mm.request_list,
5278                                            struct drm_i915_gem_request,
5279                                            client_list);
5280                 list_del(&request->client_list);
5281                 request->file_priv = NULL;
5282         }
5283         spin_unlock(&file_priv->mm.lock);
5284
5285         if (!list_empty(&file_priv->rps.link)) {
5286                 spin_lock(&to_i915(dev)->rps.client_lock);
5287                 list_del(&file_priv->rps.link);
5288                 spin_unlock(&to_i915(dev)->rps.client_lock);
5289         }
5290 }
5291
5292 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5293 {
5294         struct drm_i915_file_private *file_priv;
5295         int ret;
5296
5297         DRM_DEBUG_DRIVER("\n");
5298
5299         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5300         if (!file_priv)
5301                 return -ENOMEM;
5302
5303         file->driver_priv = file_priv;
5304         file_priv->dev_priv = dev->dev_private;
5305         file_priv->file = file;
5306         INIT_LIST_HEAD(&file_priv->rps.link);
5307
5308         spin_lock_init(&file_priv->mm.lock);
5309         INIT_LIST_HEAD(&file_priv->mm.request_list);
5310
5311         ret = i915_gem_context_open(dev, file);
5312         if (ret)
5313                 kfree(file_priv);
5314
5315         return ret;
5316 }
5317
5318 /**
5319  * i915_gem_track_fb - update frontbuffer tracking
5320  * old: current GEM buffer for the frontbuffer slots
5321  * new: new GEM buffer for the frontbuffer slots
5322  * frontbuffer_bits: bitmask of frontbuffer slots
5323  *
5324  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5325  * from @old and setting them in @new. Both @old and @new can be NULL.
5326  */
5327 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5328                        struct drm_i915_gem_object *new,
5329                        unsigned frontbuffer_bits)
5330 {
5331         if (old) {
5332                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5333                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5334                 old->frontbuffer_bits &= ~frontbuffer_bits;
5335         }
5336
5337         if (new) {
5338                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5339                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5340                 new->frontbuffer_bits |= frontbuffer_bits;
5341         }
5342 }
5343
5344 /* All the new VM stuff */
5345 unsigned long
5346 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5347                     struct i915_address_space *vm)
5348 {
5349         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5350         struct i915_vma *vma;
5351
5352         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5353
5354         list_for_each_entry(vma, &o->vma_list, vma_link) {
5355                 if (i915_is_ggtt(vma->vm) &&
5356                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5357                         continue;
5358                 if (vma->vm == vm)
5359                         return vma->node.start;
5360         }
5361
5362         WARN(1, "%s vma for this object not found.\n",
5363              i915_is_ggtt(vm) ? "global" : "ppgtt");
5364         return -1;
5365 }
5366
5367 unsigned long
5368 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5369                               const struct i915_ggtt_view *view)
5370 {
5371         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5372         struct i915_vma *vma;
5373
5374         list_for_each_entry(vma, &o->vma_list, vma_link)
5375                 if (vma->vm == ggtt &&
5376                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5377                         return vma->node.start;
5378
5379         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5380         return -1;
5381 }
5382
5383 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5384                         struct i915_address_space *vm)
5385 {
5386         struct i915_vma *vma;
5387
5388         list_for_each_entry(vma, &o->vma_list, vma_link) {
5389                 if (i915_is_ggtt(vma->vm) &&
5390                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5391                         continue;
5392                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5393                         return true;
5394         }
5395
5396         return false;
5397 }
5398
5399 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5400                                   const struct i915_ggtt_view *view)
5401 {
5402         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5403         struct i915_vma *vma;
5404
5405         list_for_each_entry(vma, &o->vma_list, vma_link)
5406                 if (vma->vm == ggtt &&
5407                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5408                     drm_mm_node_allocated(&vma->node))
5409                         return true;
5410
5411         return false;
5412 }
5413
5414 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5415 {
5416         struct i915_vma *vma;
5417
5418         list_for_each_entry(vma, &o->vma_list, vma_link)
5419                 if (drm_mm_node_allocated(&vma->node))
5420                         return true;
5421
5422         return false;
5423 }
5424
5425 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5426                                 struct i915_address_space *vm)
5427 {
5428         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5429         struct i915_vma *vma;
5430
5431         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5432
5433         BUG_ON(list_empty(&o->vma_list));
5434
5435         list_for_each_entry(vma, &o->vma_list, vma_link) {
5436                 if (i915_is_ggtt(vma->vm) &&
5437                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5438                         continue;
5439                 if (vma->vm == vm)
5440                         return vma->node.size;
5441         }
5442         return 0;
5443 }
5444
5445 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5446 {
5447         struct i915_vma *vma;
5448         list_for_each_entry(vma, &obj->vma_list, vma_link)
5449                 if (vma->pin_count > 0)
5450                         return true;
5451
5452         return false;
5453 }
5454