fa46d987cd3ace2da6762a10373d73acac39e2be
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static int i915_gem_phys_pwrite(struct drm_device *dev,
50                                 struct drm_i915_gem_object *obj,
51                                 struct drm_i915_gem_pwrite *args,
52                                 struct drm_file *file);
53
54 static void i915_gem_write_fence(struct drm_device *dev, int reg,
55                                  struct drm_i915_gem_object *obj);
56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57                                          struct drm_i915_fence_reg *fence,
58                                          bool enable);
59
60 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
61                                              struct shrink_control *sc);
62 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
63                                             struct shrink_control *sc);
64 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
65 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
66 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
67
68 static bool cpu_cache_is_coherent(struct drm_device *dev,
69                                   enum i915_cache_level level)
70 {
71         return HAS_LLC(dev) || level != I915_CACHE_NONE;
72 }
73
74 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
75 {
76         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
77                 return true;
78
79         return obj->pin_display;
80 }
81
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84         if (obj->tiling_mode)
85                 i915_gem_release_mmap(obj);
86
87         /* As we do not have an associated fence register, we will force
88          * a tiling change if we ever need to acquire one.
89          */
90         obj->fence_dirty = false;
91         obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96                                   size_t size)
97 {
98         spin_lock(&dev_priv->mm.object_stat_lock);
99         dev_priv->mm.object_count++;
100         dev_priv->mm.object_memory += size;
101         spin_unlock(&dev_priv->mm.object_stat_lock);
102 }
103
104 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
105                                      size_t size)
106 {
107         spin_lock(&dev_priv->mm.object_stat_lock);
108         dev_priv->mm.object_count--;
109         dev_priv->mm.object_memory -= size;
110         spin_unlock(&dev_priv->mm.object_stat_lock);
111 }
112
113 static int
114 i915_gem_wait_for_error(struct i915_gpu_error *error)
115 {
116         int ret;
117
118 #define EXIT_COND (!i915_reset_in_progress(error) || \
119                    i915_terminally_wedged(error))
120         if (EXIT_COND)
121                 return 0;
122
123         /*
124          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
125          * userspace. If it takes that long something really bad is going on and
126          * we should simply try to bail out and fail as gracefully as possible.
127          */
128         ret = wait_event_interruptible_timeout(error->reset_queue,
129                                                EXIT_COND,
130                                                10*HZ);
131         if (ret == 0) {
132                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
133                 return -EIO;
134         } else if (ret < 0) {
135                 return ret;
136         }
137 #undef EXIT_COND
138
139         return 0;
140 }
141
142 int i915_mutex_lock_interruptible(struct drm_device *dev)
143 {
144         struct drm_i915_private *dev_priv = dev->dev_private;
145         int ret;
146
147         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
148         if (ret)
149                 return ret;
150
151         ret = mutex_lock_interruptible(&dev->struct_mutex);
152         if (ret)
153                 return ret;
154
155         WARN_ON(i915_verify_lists(dev));
156         return 0;
157 }
158
159 static inline bool
160 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
161 {
162         return i915_gem_obj_bound_any(obj) && !obj->active;
163 }
164
165 int
166 i915_gem_init_ioctl(struct drm_device *dev, void *data,
167                     struct drm_file *file)
168 {
169         struct drm_i915_private *dev_priv = dev->dev_private;
170         struct drm_i915_gem_init *args = data;
171
172         if (drm_core_check_feature(dev, DRIVER_MODESET))
173                 return -ENODEV;
174
175         if (args->gtt_start >= args->gtt_end ||
176             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
177                 return -EINVAL;
178
179         /* GEM with user mode setting was never supported on ilk and later. */
180         if (INTEL_INFO(dev)->gen >= 5)
181                 return -ENODEV;
182
183         mutex_lock(&dev->struct_mutex);
184         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
185                                   args->gtt_end);
186         dev_priv->gtt.mappable_end = args->gtt_end;
187         mutex_unlock(&dev->struct_mutex);
188
189         return 0;
190 }
191
192 int
193 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
194                             struct drm_file *file)
195 {
196         struct drm_i915_private *dev_priv = dev->dev_private;
197         struct drm_i915_gem_get_aperture *args = data;
198         struct drm_i915_gem_object *obj;
199         size_t pinned;
200
201         pinned = 0;
202         mutex_lock(&dev->struct_mutex);
203         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
204                 if (i915_gem_obj_is_pinned(obj))
205                         pinned += i915_gem_obj_ggtt_size(obj);
206         mutex_unlock(&dev->struct_mutex);
207
208         args->aper_size = dev_priv->gtt.base.total;
209         args->aper_available_size = args->aper_size - pinned;
210
211         return 0;
212 }
213
214 void *i915_gem_object_alloc(struct drm_device *dev)
215 {
216         struct drm_i915_private *dev_priv = dev->dev_private;
217         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
218 }
219
220 void i915_gem_object_free(struct drm_i915_gem_object *obj)
221 {
222         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
223         kmem_cache_free(dev_priv->slab, obj);
224 }
225
226 static int
227 i915_gem_create(struct drm_file *file,
228                 struct drm_device *dev,
229                 uint64_t size,
230                 uint32_t *handle_p)
231 {
232         struct drm_i915_gem_object *obj;
233         int ret;
234         u32 handle;
235
236         size = roundup(size, PAGE_SIZE);
237         if (size == 0)
238                 return -EINVAL;
239
240         /* Allocate the new object */
241         obj = i915_gem_alloc_object(dev, size);
242         if (obj == NULL)
243                 return -ENOMEM;
244
245         ret = drm_gem_handle_create(file, &obj->base, &handle);
246         /* drop reference from allocate - handle holds it now */
247         drm_gem_object_unreference_unlocked(&obj->base);
248         if (ret)
249                 return ret;
250
251         *handle_p = handle;
252         return 0;
253 }
254
255 int
256 i915_gem_dumb_create(struct drm_file *file,
257                      struct drm_device *dev,
258                      struct drm_mode_create_dumb *args)
259 {
260         /* have to work out size/pitch and return them */
261         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
262         args->size = args->pitch * args->height;
263         return i915_gem_create(file, dev,
264                                args->size, &args->handle);
265 }
266
267 /**
268  * Creates a new mm object and returns a handle to it.
269  */
270 int
271 i915_gem_create_ioctl(struct drm_device *dev, void *data,
272                       struct drm_file *file)
273 {
274         struct drm_i915_gem_create *args = data;
275
276         return i915_gem_create(file, dev,
277                                args->size, &args->handle);
278 }
279
280 static inline int
281 __copy_to_user_swizzled(char __user *cpu_vaddr,
282                         const char *gpu_vaddr, int gpu_offset,
283                         int length)
284 {
285         int ret, cpu_offset = 0;
286
287         while (length > 0) {
288                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
289                 int this_length = min(cacheline_end - gpu_offset, length);
290                 int swizzled_gpu_offset = gpu_offset ^ 64;
291
292                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
293                                      gpu_vaddr + swizzled_gpu_offset,
294                                      this_length);
295                 if (ret)
296                         return ret + length;
297
298                 cpu_offset += this_length;
299                 gpu_offset += this_length;
300                 length -= this_length;
301         }
302
303         return 0;
304 }
305
306 static inline int
307 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
308                           const char __user *cpu_vaddr,
309                           int length)
310 {
311         int ret, cpu_offset = 0;
312
313         while (length > 0) {
314                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
315                 int this_length = min(cacheline_end - gpu_offset, length);
316                 int swizzled_gpu_offset = gpu_offset ^ 64;
317
318                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
319                                        cpu_vaddr + cpu_offset,
320                                        this_length);
321                 if (ret)
322                         return ret + length;
323
324                 cpu_offset += this_length;
325                 gpu_offset += this_length;
326                 length -= this_length;
327         }
328
329         return 0;
330 }
331
332 /*
333  * Pins the specified object's pages and synchronizes the object with
334  * GPU accesses. Sets needs_clflush to non-zero if the caller should
335  * flush the object from the CPU cache.
336  */
337 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
338                                     int *needs_clflush)
339 {
340         int ret;
341
342         *needs_clflush = 0;
343
344         if (!obj->base.filp)
345                 return -EINVAL;
346
347         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
348                 /* If we're not in the cpu read domain, set ourself into the gtt
349                  * read domain and manually flush cachelines (if required). This
350                  * optimizes for the case when the gpu will dirty the data
351                  * anyway again before the next pread happens. */
352                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
353                                                         obj->cache_level);
354                 ret = i915_gem_object_wait_rendering(obj, true);
355                 if (ret)
356                         return ret;
357
358                 i915_gem_object_retire(obj);
359         }
360
361         ret = i915_gem_object_get_pages(obj);
362         if (ret)
363                 return ret;
364
365         i915_gem_object_pin_pages(obj);
366
367         return ret;
368 }
369
370 /* Per-page copy function for the shmem pread fastpath.
371  * Flushes invalid cachelines before reading the target if
372  * needs_clflush is set. */
373 static int
374 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
375                  char __user *user_data,
376                  bool page_do_bit17_swizzling, bool needs_clflush)
377 {
378         char *vaddr;
379         int ret;
380
381         if (unlikely(page_do_bit17_swizzling))
382                 return -EINVAL;
383
384         vaddr = kmap_atomic(page);
385         if (needs_clflush)
386                 drm_clflush_virt_range(vaddr + shmem_page_offset,
387                                        page_length);
388         ret = __copy_to_user_inatomic(user_data,
389                                       vaddr + shmem_page_offset,
390                                       page_length);
391         kunmap_atomic(vaddr);
392
393         return ret ? -EFAULT : 0;
394 }
395
396 static void
397 shmem_clflush_swizzled_range(char *addr, unsigned long length,
398                              bool swizzled)
399 {
400         if (unlikely(swizzled)) {
401                 unsigned long start = (unsigned long) addr;
402                 unsigned long end = (unsigned long) addr + length;
403
404                 /* For swizzling simply ensure that we always flush both
405                  * channels. Lame, but simple and it works. Swizzled
406                  * pwrite/pread is far from a hotpath - current userspace
407                  * doesn't use it at all. */
408                 start = round_down(start, 128);
409                 end = round_up(end, 128);
410
411                 drm_clflush_virt_range((void *)start, end - start);
412         } else {
413                 drm_clflush_virt_range(addr, length);
414         }
415
416 }
417
418 /* Only difference to the fast-path function is that this can handle bit17
419  * and uses non-atomic copy and kmap functions. */
420 static int
421 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
422                  char __user *user_data,
423                  bool page_do_bit17_swizzling, bool needs_clflush)
424 {
425         char *vaddr;
426         int ret;
427
428         vaddr = kmap(page);
429         if (needs_clflush)
430                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
431                                              page_length,
432                                              page_do_bit17_swizzling);
433
434         if (page_do_bit17_swizzling)
435                 ret = __copy_to_user_swizzled(user_data,
436                                               vaddr, shmem_page_offset,
437                                               page_length);
438         else
439                 ret = __copy_to_user(user_data,
440                                      vaddr + shmem_page_offset,
441                                      page_length);
442         kunmap(page);
443
444         return ret ? - EFAULT : 0;
445 }
446
447 static int
448 i915_gem_shmem_pread(struct drm_device *dev,
449                      struct drm_i915_gem_object *obj,
450                      struct drm_i915_gem_pread *args,
451                      struct drm_file *file)
452 {
453         char __user *user_data;
454         ssize_t remain;
455         loff_t offset;
456         int shmem_page_offset, page_length, ret = 0;
457         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
458         int prefaulted = 0;
459         int needs_clflush = 0;
460         struct sg_page_iter sg_iter;
461
462         user_data = to_user_ptr(args->data_ptr);
463         remain = args->size;
464
465         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
466
467         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
468         if (ret)
469                 return ret;
470
471         offset = args->offset;
472
473         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
474                          offset >> PAGE_SHIFT) {
475                 struct page *page = sg_page_iter_page(&sg_iter);
476
477                 if (remain <= 0)
478                         break;
479
480                 /* Operation in this page
481                  *
482                  * shmem_page_offset = offset within page in shmem file
483                  * page_length = bytes to copy for this page
484                  */
485                 shmem_page_offset = offset_in_page(offset);
486                 page_length = remain;
487                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
488                         page_length = PAGE_SIZE - shmem_page_offset;
489
490                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
491                         (page_to_phys(page) & (1 << 17)) != 0;
492
493                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
494                                        user_data, page_do_bit17_swizzling,
495                                        needs_clflush);
496                 if (ret == 0)
497                         goto next_page;
498
499                 mutex_unlock(&dev->struct_mutex);
500
501                 if (likely(!i915.prefault_disable) && !prefaulted) {
502                         ret = fault_in_multipages_writeable(user_data, remain);
503                         /* Userspace is tricking us, but we've already clobbered
504                          * its pages with the prefault and promised to write the
505                          * data up to the first fault. Hence ignore any errors
506                          * and just continue. */
507                         (void)ret;
508                         prefaulted = 1;
509                 }
510
511                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
512                                        user_data, page_do_bit17_swizzling,
513                                        needs_clflush);
514
515                 mutex_lock(&dev->struct_mutex);
516
517                 if (ret)
518                         goto out;
519
520 next_page:
521                 remain -= page_length;
522                 user_data += page_length;
523                 offset += page_length;
524         }
525
526 out:
527         i915_gem_object_unpin_pages(obj);
528
529         return ret;
530 }
531
532 /**
533  * Reads data from the object referenced by handle.
534  *
535  * On error, the contents of *data are undefined.
536  */
537 int
538 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
539                      struct drm_file *file)
540 {
541         struct drm_i915_gem_pread *args = data;
542         struct drm_i915_gem_object *obj;
543         int ret = 0;
544
545         if (args->size == 0)
546                 return 0;
547
548         if (!access_ok(VERIFY_WRITE,
549                        to_user_ptr(args->data_ptr),
550                        args->size))
551                 return -EFAULT;
552
553         ret = i915_mutex_lock_interruptible(dev);
554         if (ret)
555                 return ret;
556
557         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
558         if (&obj->base == NULL) {
559                 ret = -ENOENT;
560                 goto unlock;
561         }
562
563         /* Bounds check source.  */
564         if (args->offset > obj->base.size ||
565             args->size > obj->base.size - args->offset) {
566                 ret = -EINVAL;
567                 goto out;
568         }
569
570         /* prime objects have no backing filp to GEM pread/pwrite
571          * pages from.
572          */
573         if (!obj->base.filp) {
574                 ret = -EINVAL;
575                 goto out;
576         }
577
578         trace_i915_gem_object_pread(obj, args->offset, args->size);
579
580         ret = i915_gem_shmem_pread(dev, obj, args, file);
581
582 out:
583         drm_gem_object_unreference(&obj->base);
584 unlock:
585         mutex_unlock(&dev->struct_mutex);
586         return ret;
587 }
588
589 /* This is the fast write path which cannot handle
590  * page faults in the source data
591  */
592
593 static inline int
594 fast_user_write(struct io_mapping *mapping,
595                 loff_t page_base, int page_offset,
596                 char __user *user_data,
597                 int length)
598 {
599         void __iomem *vaddr_atomic;
600         void *vaddr;
601         unsigned long unwritten;
602
603         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
604         /* We can use the cpu mem copy function because this is X86. */
605         vaddr = (void __force*)vaddr_atomic + page_offset;
606         unwritten = __copy_from_user_inatomic_nocache(vaddr,
607                                                       user_data, length);
608         io_mapping_unmap_atomic(vaddr_atomic);
609         return unwritten;
610 }
611
612 /**
613  * This is the fast pwrite path, where we copy the data directly from the
614  * user into the GTT, uncached.
615  */
616 static int
617 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
618                          struct drm_i915_gem_object *obj,
619                          struct drm_i915_gem_pwrite *args,
620                          struct drm_file *file)
621 {
622         struct drm_i915_private *dev_priv = dev->dev_private;
623         ssize_t remain;
624         loff_t offset, page_base;
625         char __user *user_data;
626         int page_offset, page_length, ret;
627
628         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
629         if (ret)
630                 goto out;
631
632         ret = i915_gem_object_set_to_gtt_domain(obj, true);
633         if (ret)
634                 goto out_unpin;
635
636         ret = i915_gem_object_put_fence(obj);
637         if (ret)
638                 goto out_unpin;
639
640         user_data = to_user_ptr(args->data_ptr);
641         remain = args->size;
642
643         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
644
645         while (remain > 0) {
646                 /* Operation in this page
647                  *
648                  * page_base = page offset within aperture
649                  * page_offset = offset within page
650                  * page_length = bytes to copy for this page
651                  */
652                 page_base = offset & PAGE_MASK;
653                 page_offset = offset_in_page(offset);
654                 page_length = remain;
655                 if ((page_offset + remain) > PAGE_SIZE)
656                         page_length = PAGE_SIZE - page_offset;
657
658                 /* If we get a fault while copying data, then (presumably) our
659                  * source page isn't available.  Return the error and we'll
660                  * retry in the slow path.
661                  */
662                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
663                                     page_offset, user_data, page_length)) {
664                         ret = -EFAULT;
665                         goto out_unpin;
666                 }
667
668                 remain -= page_length;
669                 user_data += page_length;
670                 offset += page_length;
671         }
672
673 out_unpin:
674         i915_gem_object_ggtt_unpin(obj);
675 out:
676         return ret;
677 }
678
679 /* Per-page copy function for the shmem pwrite fastpath.
680  * Flushes invalid cachelines before writing to the target if
681  * needs_clflush_before is set and flushes out any written cachelines after
682  * writing if needs_clflush is set. */
683 static int
684 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
685                   char __user *user_data,
686                   bool page_do_bit17_swizzling,
687                   bool needs_clflush_before,
688                   bool needs_clflush_after)
689 {
690         char *vaddr;
691         int ret;
692
693         if (unlikely(page_do_bit17_swizzling))
694                 return -EINVAL;
695
696         vaddr = kmap_atomic(page);
697         if (needs_clflush_before)
698                 drm_clflush_virt_range(vaddr + shmem_page_offset,
699                                        page_length);
700         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
701                                         user_data, page_length);
702         if (needs_clflush_after)
703                 drm_clflush_virt_range(vaddr + shmem_page_offset,
704                                        page_length);
705         kunmap_atomic(vaddr);
706
707         return ret ? -EFAULT : 0;
708 }
709
710 /* Only difference to the fast-path function is that this can handle bit17
711  * and uses non-atomic copy and kmap functions. */
712 static int
713 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
714                   char __user *user_data,
715                   bool page_do_bit17_swizzling,
716                   bool needs_clflush_before,
717                   bool needs_clflush_after)
718 {
719         char *vaddr;
720         int ret;
721
722         vaddr = kmap(page);
723         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
724                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
725                                              page_length,
726                                              page_do_bit17_swizzling);
727         if (page_do_bit17_swizzling)
728                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
729                                                 user_data,
730                                                 page_length);
731         else
732                 ret = __copy_from_user(vaddr + shmem_page_offset,
733                                        user_data,
734                                        page_length);
735         if (needs_clflush_after)
736                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
737                                              page_length,
738                                              page_do_bit17_swizzling);
739         kunmap(page);
740
741         return ret ? -EFAULT : 0;
742 }
743
744 static int
745 i915_gem_shmem_pwrite(struct drm_device *dev,
746                       struct drm_i915_gem_object *obj,
747                       struct drm_i915_gem_pwrite *args,
748                       struct drm_file *file)
749 {
750         ssize_t remain;
751         loff_t offset;
752         char __user *user_data;
753         int shmem_page_offset, page_length, ret = 0;
754         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
755         int hit_slowpath = 0;
756         int needs_clflush_after = 0;
757         int needs_clflush_before = 0;
758         struct sg_page_iter sg_iter;
759
760         user_data = to_user_ptr(args->data_ptr);
761         remain = args->size;
762
763         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
764
765         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
766                 /* If we're not in the cpu write domain, set ourself into the gtt
767                  * write domain and manually flush cachelines (if required). This
768                  * optimizes for the case when the gpu will use the data
769                  * right away and we therefore have to clflush anyway. */
770                 needs_clflush_after = cpu_write_needs_clflush(obj);
771                 ret = i915_gem_object_wait_rendering(obj, false);
772                 if (ret)
773                         return ret;
774
775                 i915_gem_object_retire(obj);
776         }
777         /* Same trick applies to invalidate partially written cachelines read
778          * before writing. */
779         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
780                 needs_clflush_before =
781                         !cpu_cache_is_coherent(dev, obj->cache_level);
782
783         ret = i915_gem_object_get_pages(obj);
784         if (ret)
785                 return ret;
786
787         i915_gem_object_pin_pages(obj);
788
789         offset = args->offset;
790         obj->dirty = 1;
791
792         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
793                          offset >> PAGE_SHIFT) {
794                 struct page *page = sg_page_iter_page(&sg_iter);
795                 int partial_cacheline_write;
796
797                 if (remain <= 0)
798                         break;
799
800                 /* Operation in this page
801                  *
802                  * shmem_page_offset = offset within page in shmem file
803                  * page_length = bytes to copy for this page
804                  */
805                 shmem_page_offset = offset_in_page(offset);
806
807                 page_length = remain;
808                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
809                         page_length = PAGE_SIZE - shmem_page_offset;
810
811                 /* If we don't overwrite a cacheline completely we need to be
812                  * careful to have up-to-date data by first clflushing. Don't
813                  * overcomplicate things and flush the entire patch. */
814                 partial_cacheline_write = needs_clflush_before &&
815                         ((shmem_page_offset | page_length)
816                                 & (boot_cpu_data.x86_clflush_size - 1));
817
818                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
819                         (page_to_phys(page) & (1 << 17)) != 0;
820
821                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
822                                         user_data, page_do_bit17_swizzling,
823                                         partial_cacheline_write,
824                                         needs_clflush_after);
825                 if (ret == 0)
826                         goto next_page;
827
828                 hit_slowpath = 1;
829                 mutex_unlock(&dev->struct_mutex);
830                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
831                                         user_data, page_do_bit17_swizzling,
832                                         partial_cacheline_write,
833                                         needs_clflush_after);
834
835                 mutex_lock(&dev->struct_mutex);
836
837                 if (ret)
838                         goto out;
839
840 next_page:
841                 remain -= page_length;
842                 user_data += page_length;
843                 offset += page_length;
844         }
845
846 out:
847         i915_gem_object_unpin_pages(obj);
848
849         if (hit_slowpath) {
850                 /*
851                  * Fixup: Flush cpu caches in case we didn't flush the dirty
852                  * cachelines in-line while writing and the object moved
853                  * out of the cpu write domain while we've dropped the lock.
854                  */
855                 if (!needs_clflush_after &&
856                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
857                         if (i915_gem_clflush_object(obj, obj->pin_display))
858                                 i915_gem_chipset_flush(dev);
859                 }
860         }
861
862         if (needs_clflush_after)
863                 i915_gem_chipset_flush(dev);
864
865         return ret;
866 }
867
868 /**
869  * Writes data to the object referenced by handle.
870  *
871  * On error, the contents of the buffer that were to be modified are undefined.
872  */
873 int
874 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
875                       struct drm_file *file)
876 {
877         struct drm_i915_gem_pwrite *args = data;
878         struct drm_i915_gem_object *obj;
879         int ret;
880
881         if (args->size == 0)
882                 return 0;
883
884         if (!access_ok(VERIFY_READ,
885                        to_user_ptr(args->data_ptr),
886                        args->size))
887                 return -EFAULT;
888
889         if (likely(!i915.prefault_disable)) {
890                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
891                                                    args->size);
892                 if (ret)
893                         return -EFAULT;
894         }
895
896         ret = i915_mutex_lock_interruptible(dev);
897         if (ret)
898                 return ret;
899
900         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
901         if (&obj->base == NULL) {
902                 ret = -ENOENT;
903                 goto unlock;
904         }
905
906         /* Bounds check destination. */
907         if (args->offset > obj->base.size ||
908             args->size > obj->base.size - args->offset) {
909                 ret = -EINVAL;
910                 goto out;
911         }
912
913         /* prime objects have no backing filp to GEM pread/pwrite
914          * pages from.
915          */
916         if (!obj->base.filp) {
917                 ret = -EINVAL;
918                 goto out;
919         }
920
921         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
922
923         ret = -EFAULT;
924         /* We can only do the GTT pwrite on untiled buffers, as otherwise
925          * it would end up going through the fenced access, and we'll get
926          * different detiling behavior between reading and writing.
927          * pread/pwrite currently are reading and writing from the CPU
928          * perspective, requiring manual detiling by the client.
929          */
930         if (obj->phys_obj) {
931                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
932                 goto out;
933         }
934
935         if (obj->tiling_mode == I915_TILING_NONE &&
936             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
937             cpu_write_needs_clflush(obj)) {
938                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
939                 /* Note that the gtt paths might fail with non-page-backed user
940                  * pointers (e.g. gtt mappings when moving data between
941                  * textures). Fallback to the shmem path in that case. */
942         }
943
944         if (ret == -EFAULT || ret == -ENOSPC)
945                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
946
947 out:
948         drm_gem_object_unreference(&obj->base);
949 unlock:
950         mutex_unlock(&dev->struct_mutex);
951         return ret;
952 }
953
954 int
955 i915_gem_check_wedge(struct i915_gpu_error *error,
956                      bool interruptible)
957 {
958         if (i915_reset_in_progress(error)) {
959                 /* Non-interruptible callers can't handle -EAGAIN, hence return
960                  * -EIO unconditionally for these. */
961                 if (!interruptible)
962                         return -EIO;
963
964                 /* Recovery complete, but the reset failed ... */
965                 if (i915_terminally_wedged(error))
966                         return -EIO;
967
968                 return -EAGAIN;
969         }
970
971         return 0;
972 }
973
974 /*
975  * Compare seqno against outstanding lazy request. Emit a request if they are
976  * equal.
977  */
978 static int
979 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
980 {
981         int ret;
982
983         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
984
985         ret = 0;
986         if (seqno == ring->outstanding_lazy_seqno)
987                 ret = i915_add_request(ring, NULL);
988
989         return ret;
990 }
991
992 static void fake_irq(unsigned long data)
993 {
994         wake_up_process((struct task_struct *)data);
995 }
996
997 static bool missed_irq(struct drm_i915_private *dev_priv,
998                        struct intel_ring_buffer *ring)
999 {
1000         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1001 }
1002
1003 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1004 {
1005         if (file_priv == NULL)
1006                 return true;
1007
1008         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1009 }
1010
1011 /**
1012  * __wait_seqno - wait until execution of seqno has finished
1013  * @ring: the ring expected to report seqno
1014  * @seqno: duh!
1015  * @reset_counter: reset sequence associated with the given seqno
1016  * @interruptible: do an interruptible wait (normally yes)
1017  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1018  *
1019  * Note: It is of utmost importance that the passed in seqno and reset_counter
1020  * values have been read by the caller in an smp safe manner. Where read-side
1021  * locks are involved, it is sufficient to read the reset_counter before
1022  * unlocking the lock that protects the seqno. For lockless tricks, the
1023  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1024  * inserted.
1025  *
1026  * Returns 0 if the seqno was found within the alloted time. Else returns the
1027  * errno with remaining time filled in timeout argument.
1028  */
1029 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1030                         unsigned reset_counter,
1031                         bool interruptible,
1032                         struct timespec *timeout,
1033                         struct drm_i915_file_private *file_priv)
1034 {
1035         struct drm_device *dev = ring->dev;
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037         const bool irq_test_in_progress =
1038                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1039         struct timespec before, now;
1040         DEFINE_WAIT(wait);
1041         unsigned long timeout_expire;
1042         int ret;
1043
1044         WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1045
1046         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1047                 return 0;
1048
1049         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1050
1051         if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1052                 gen6_rps_boost(dev_priv);
1053                 if (file_priv)
1054                         mod_delayed_work(dev_priv->wq,
1055                                          &file_priv->mm.idle_work,
1056                                          msecs_to_jiffies(100));
1057         }
1058
1059         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1060                 return -ENODEV;
1061
1062         /* Record current time in case interrupted by signal, or wedged */
1063         trace_i915_gem_request_wait_begin(ring, seqno);
1064         getrawmonotonic(&before);
1065         for (;;) {
1066                 struct timer_list timer;
1067
1068                 prepare_to_wait(&ring->irq_queue, &wait,
1069                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1070
1071                 /* We need to check whether any gpu reset happened in between
1072                  * the caller grabbing the seqno and now ... */
1073                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1074                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1075                          * is truely gone. */
1076                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1077                         if (ret == 0)
1078                                 ret = -EAGAIN;
1079                         break;
1080                 }
1081
1082                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1083                         ret = 0;
1084                         break;
1085                 }
1086
1087                 if (interruptible && signal_pending(current)) {
1088                         ret = -ERESTARTSYS;
1089                         break;
1090                 }
1091
1092                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1093                         ret = -ETIME;
1094                         break;
1095                 }
1096
1097                 timer.function = NULL;
1098                 if (timeout || missed_irq(dev_priv, ring)) {
1099                         unsigned long expire;
1100
1101                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1102                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1103                         mod_timer(&timer, expire);
1104                 }
1105
1106                 io_schedule();
1107
1108                 if (timer.function) {
1109                         del_singleshot_timer_sync(&timer);
1110                         destroy_timer_on_stack(&timer);
1111                 }
1112         }
1113         getrawmonotonic(&now);
1114         trace_i915_gem_request_wait_end(ring, seqno);
1115
1116         if (!irq_test_in_progress)
1117                 ring->irq_put(ring);
1118
1119         finish_wait(&ring->irq_queue, &wait);
1120
1121         if (timeout) {
1122                 struct timespec sleep_time = timespec_sub(now, before);
1123                 *timeout = timespec_sub(*timeout, sleep_time);
1124                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1125                         set_normalized_timespec(timeout, 0, 0);
1126         }
1127
1128         return ret;
1129 }
1130
1131 /**
1132  * Waits for a sequence number to be signaled, and cleans up the
1133  * request and object lists appropriately for that event.
1134  */
1135 int
1136 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1137 {
1138         struct drm_device *dev = ring->dev;
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140         bool interruptible = dev_priv->mm.interruptible;
1141         int ret;
1142
1143         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144         BUG_ON(seqno == 0);
1145
1146         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1147         if (ret)
1148                 return ret;
1149
1150         ret = i915_gem_check_olr(ring, seqno);
1151         if (ret)
1152                 return ret;
1153
1154         return __wait_seqno(ring, seqno,
1155                             atomic_read(&dev_priv->gpu_error.reset_counter),
1156                             interruptible, NULL, NULL);
1157 }
1158
1159 static int
1160 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1161                                      struct intel_ring_buffer *ring)
1162 {
1163         if (!obj->active)
1164                 return 0;
1165
1166         /* Manually manage the write flush as we may have not yet
1167          * retired the buffer.
1168          *
1169          * Note that the last_write_seqno is always the earlier of
1170          * the two (read/write) seqno, so if we haved successfully waited,
1171          * we know we have passed the last write.
1172          */
1173         obj->last_write_seqno = 0;
1174
1175         return 0;
1176 }
1177
1178 /**
1179  * Ensures that all rendering to the object has completed and the object is
1180  * safe to unbind from the GTT or access from the CPU.
1181  */
1182 static __must_check int
1183 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1184                                bool readonly)
1185 {
1186         struct intel_ring_buffer *ring = obj->ring;
1187         u32 seqno;
1188         int ret;
1189
1190         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1191         if (seqno == 0)
1192                 return 0;
1193
1194         ret = i915_wait_seqno(ring, seqno);
1195         if (ret)
1196                 return ret;
1197
1198         return i915_gem_object_wait_rendering__tail(obj, ring);
1199 }
1200
1201 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1202  * as the object state may change during this call.
1203  */
1204 static __must_check int
1205 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1206                                             struct drm_i915_file_private *file_priv,
1207                                             bool readonly)
1208 {
1209         struct drm_device *dev = obj->base.dev;
1210         struct drm_i915_private *dev_priv = dev->dev_private;
1211         struct intel_ring_buffer *ring = obj->ring;
1212         unsigned reset_counter;
1213         u32 seqno;
1214         int ret;
1215
1216         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1217         BUG_ON(!dev_priv->mm.interruptible);
1218
1219         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1220         if (seqno == 0)
1221                 return 0;
1222
1223         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1224         if (ret)
1225                 return ret;
1226
1227         ret = i915_gem_check_olr(ring, seqno);
1228         if (ret)
1229                 return ret;
1230
1231         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1232         mutex_unlock(&dev->struct_mutex);
1233         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1234         mutex_lock(&dev->struct_mutex);
1235         if (ret)
1236                 return ret;
1237
1238         return i915_gem_object_wait_rendering__tail(obj, ring);
1239 }
1240
1241 /**
1242  * Called when user space prepares to use an object with the CPU, either
1243  * through the mmap ioctl's mapping or a GTT mapping.
1244  */
1245 int
1246 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1247                           struct drm_file *file)
1248 {
1249         struct drm_i915_gem_set_domain *args = data;
1250         struct drm_i915_gem_object *obj;
1251         uint32_t read_domains = args->read_domains;
1252         uint32_t write_domain = args->write_domain;
1253         int ret;
1254
1255         /* Only handle setting domains to types used by the CPU. */
1256         if (write_domain & I915_GEM_GPU_DOMAINS)
1257                 return -EINVAL;
1258
1259         if (read_domains & I915_GEM_GPU_DOMAINS)
1260                 return -EINVAL;
1261
1262         /* Having something in the write domain implies it's in the read
1263          * domain, and only that read domain.  Enforce that in the request.
1264          */
1265         if (write_domain != 0 && read_domains != write_domain)
1266                 return -EINVAL;
1267
1268         ret = i915_mutex_lock_interruptible(dev);
1269         if (ret)
1270                 return ret;
1271
1272         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1273         if (&obj->base == NULL) {
1274                 ret = -ENOENT;
1275                 goto unlock;
1276         }
1277
1278         /* Try to flush the object off the GPU without holding the lock.
1279          * We will repeat the flush holding the lock in the normal manner
1280          * to catch cases where we are gazumped.
1281          */
1282         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1283                                                           file->driver_priv,
1284                                                           !write_domain);
1285         if (ret)
1286                 goto unref;
1287
1288         if (read_domains & I915_GEM_DOMAIN_GTT) {
1289                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1290
1291                 /* Silently promote "you're not bound, there was nothing to do"
1292                  * to success, since the client was just asking us to
1293                  * make sure everything was done.
1294                  */
1295                 if (ret == -EINVAL)
1296                         ret = 0;
1297         } else {
1298                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1299         }
1300
1301 unref:
1302         drm_gem_object_unreference(&obj->base);
1303 unlock:
1304         mutex_unlock(&dev->struct_mutex);
1305         return ret;
1306 }
1307
1308 /**
1309  * Called when user space has done writes to this buffer
1310  */
1311 int
1312 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1313                          struct drm_file *file)
1314 {
1315         struct drm_i915_gem_sw_finish *args = data;
1316         struct drm_i915_gem_object *obj;
1317         int ret = 0;
1318
1319         ret = i915_mutex_lock_interruptible(dev);
1320         if (ret)
1321                 return ret;
1322
1323         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1324         if (&obj->base == NULL) {
1325                 ret = -ENOENT;
1326                 goto unlock;
1327         }
1328
1329         /* Pinned buffers may be scanout, so flush the cache */
1330         if (obj->pin_display)
1331                 i915_gem_object_flush_cpu_write_domain(obj, true);
1332
1333         drm_gem_object_unreference(&obj->base);
1334 unlock:
1335         mutex_unlock(&dev->struct_mutex);
1336         return ret;
1337 }
1338
1339 /**
1340  * Maps the contents of an object, returning the address it is mapped
1341  * into.
1342  *
1343  * While the mapping holds a reference on the contents of the object, it doesn't
1344  * imply a ref on the object itself.
1345  */
1346 int
1347 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1348                     struct drm_file *file)
1349 {
1350         struct drm_i915_gem_mmap *args = data;
1351         struct drm_gem_object *obj;
1352         unsigned long addr;
1353
1354         obj = drm_gem_object_lookup(dev, file, args->handle);
1355         if (obj == NULL)
1356                 return -ENOENT;
1357
1358         /* prime objects have no backing filp to GEM mmap
1359          * pages from.
1360          */
1361         if (!obj->filp) {
1362                 drm_gem_object_unreference_unlocked(obj);
1363                 return -EINVAL;
1364         }
1365
1366         addr = vm_mmap(obj->filp, 0, args->size,
1367                        PROT_READ | PROT_WRITE, MAP_SHARED,
1368                        args->offset);
1369         drm_gem_object_unreference_unlocked(obj);
1370         if (IS_ERR((void *)addr))
1371                 return addr;
1372
1373         args->addr_ptr = (uint64_t) addr;
1374
1375         return 0;
1376 }
1377
1378 /**
1379  * i915_gem_fault - fault a page into the GTT
1380  * vma: VMA in question
1381  * vmf: fault info
1382  *
1383  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1384  * from userspace.  The fault handler takes care of binding the object to
1385  * the GTT (if needed), allocating and programming a fence register (again,
1386  * only if needed based on whether the old reg is still valid or the object
1387  * is tiled) and inserting a new PTE into the faulting process.
1388  *
1389  * Note that the faulting process may involve evicting existing objects
1390  * from the GTT and/or fence registers to make room.  So performance may
1391  * suffer if the GTT working set is large or there are few fence registers
1392  * left.
1393  */
1394 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395 {
1396         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1397         struct drm_device *dev = obj->base.dev;
1398         struct drm_i915_private *dev_priv = dev->dev_private;
1399         pgoff_t page_offset;
1400         unsigned long pfn;
1401         int ret = 0;
1402         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1403
1404         intel_runtime_pm_get(dev_priv);
1405
1406         /* We don't use vmf->pgoff since that has the fake offset */
1407         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1408                 PAGE_SHIFT;
1409
1410         ret = i915_mutex_lock_interruptible(dev);
1411         if (ret)
1412                 goto out;
1413
1414         trace_i915_gem_object_fault(obj, page_offset, true, write);
1415
1416         /* Try to flush the object off the GPU first without holding the lock.
1417          * Upon reacquiring the lock, we will perform our sanity checks and then
1418          * repeat the flush holding the lock in the normal manner to catch cases
1419          * where we are gazumped.
1420          */
1421         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1422         if (ret)
1423                 goto unlock;
1424
1425         /* Access to snoopable pages through the GTT is incoherent. */
1426         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1427                 ret = -EINVAL;
1428                 goto unlock;
1429         }
1430
1431         /* Now bind it into the GTT if needed */
1432         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1433         if (ret)
1434                 goto unlock;
1435
1436         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1437         if (ret)
1438                 goto unpin;
1439
1440         ret = i915_gem_object_get_fence(obj);
1441         if (ret)
1442                 goto unpin;
1443
1444         obj->fault_mappable = true;
1445
1446         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1447         pfn >>= PAGE_SHIFT;
1448         pfn += page_offset;
1449
1450         /* Finally, remap it using the new GTT offset */
1451         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1452 unpin:
1453         i915_gem_object_ggtt_unpin(obj);
1454 unlock:
1455         mutex_unlock(&dev->struct_mutex);
1456 out:
1457         switch (ret) {
1458         case -EIO:
1459                 /* If this -EIO is due to a gpu hang, give the reset code a
1460                  * chance to clean up the mess. Otherwise return the proper
1461                  * SIGBUS. */
1462                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1463                         ret = VM_FAULT_SIGBUS;
1464                         break;
1465                 }
1466         case -EAGAIN:
1467                 /*
1468                  * EAGAIN means the gpu is hung and we'll wait for the error
1469                  * handler to reset everything when re-faulting in
1470                  * i915_mutex_lock_interruptible.
1471                  */
1472         case 0:
1473         case -ERESTARTSYS:
1474         case -EINTR:
1475         case -EBUSY:
1476                 /*
1477                  * EBUSY is ok: this just means that another thread
1478                  * already did the job.
1479                  */
1480                 ret = VM_FAULT_NOPAGE;
1481                 break;
1482         case -ENOMEM:
1483                 ret = VM_FAULT_OOM;
1484                 break;
1485         case -ENOSPC:
1486         case -EFAULT:
1487                 ret = VM_FAULT_SIGBUS;
1488                 break;
1489         default:
1490                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1491                 ret = VM_FAULT_SIGBUS;
1492                 break;
1493         }
1494
1495         intel_runtime_pm_put(dev_priv);
1496         return ret;
1497 }
1498
1499 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1500 {
1501         struct i915_vma *vma;
1502
1503         /*
1504          * Only the global gtt is relevant for gtt memory mappings, so restrict
1505          * list traversal to objects bound into the global address space. Note
1506          * that the active list should be empty, but better safe than sorry.
1507          */
1508         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1509         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1510                 i915_gem_release_mmap(vma->obj);
1511         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1512                 i915_gem_release_mmap(vma->obj);
1513 }
1514
1515 /**
1516  * i915_gem_release_mmap - remove physical page mappings
1517  * @obj: obj in question
1518  *
1519  * Preserve the reservation of the mmapping with the DRM core code, but
1520  * relinquish ownership of the pages back to the system.
1521  *
1522  * It is vital that we remove the page mapping if we have mapped a tiled
1523  * object through the GTT and then lose the fence register due to
1524  * resource pressure. Similarly if the object has been moved out of the
1525  * aperture, than pages mapped into userspace must be revoked. Removing the
1526  * mapping will then trigger a page fault on the next user access, allowing
1527  * fixup by i915_gem_fault().
1528  */
1529 void
1530 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1531 {
1532         if (!obj->fault_mappable)
1533                 return;
1534
1535         drm_vma_node_unmap(&obj->base.vma_node,
1536                            obj->base.dev->anon_inode->i_mapping);
1537         obj->fault_mappable = false;
1538 }
1539
1540 uint32_t
1541 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1542 {
1543         uint32_t gtt_size;
1544
1545         if (INTEL_INFO(dev)->gen >= 4 ||
1546             tiling_mode == I915_TILING_NONE)
1547                 return size;
1548
1549         /* Previous chips need a power-of-two fence region when tiling */
1550         if (INTEL_INFO(dev)->gen == 3)
1551                 gtt_size = 1024*1024;
1552         else
1553                 gtt_size = 512*1024;
1554
1555         while (gtt_size < size)
1556                 gtt_size <<= 1;
1557
1558         return gtt_size;
1559 }
1560
1561 /**
1562  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1563  * @obj: object to check
1564  *
1565  * Return the required GTT alignment for an object, taking into account
1566  * potential fence register mapping.
1567  */
1568 uint32_t
1569 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1570                            int tiling_mode, bool fenced)
1571 {
1572         /*
1573          * Minimum alignment is 4k (GTT page size), but might be greater
1574          * if a fence register is needed for the object.
1575          */
1576         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1577             tiling_mode == I915_TILING_NONE)
1578                 return 4096;
1579
1580         /*
1581          * Previous chips need to be aligned to the size of the smallest
1582          * fence register that can contain the object.
1583          */
1584         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1585 }
1586
1587 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1588 {
1589         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1590         int ret;
1591
1592         if (drm_vma_node_has_offset(&obj->base.vma_node))
1593                 return 0;
1594
1595         dev_priv->mm.shrinker_no_lock_stealing = true;
1596
1597         ret = drm_gem_create_mmap_offset(&obj->base);
1598         if (ret != -ENOSPC)
1599                 goto out;
1600
1601         /* Badly fragmented mmap space? The only way we can recover
1602          * space is by destroying unwanted objects. We can't randomly release
1603          * mmap_offsets as userspace expects them to be persistent for the
1604          * lifetime of the objects. The closest we can is to release the
1605          * offsets on purgeable objects by truncating it and marking it purged,
1606          * which prevents userspace from ever using that object again.
1607          */
1608         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1609         ret = drm_gem_create_mmap_offset(&obj->base);
1610         if (ret != -ENOSPC)
1611                 goto out;
1612
1613         i915_gem_shrink_all(dev_priv);
1614         ret = drm_gem_create_mmap_offset(&obj->base);
1615 out:
1616         dev_priv->mm.shrinker_no_lock_stealing = false;
1617
1618         return ret;
1619 }
1620
1621 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1622 {
1623         drm_gem_free_mmap_offset(&obj->base);
1624 }
1625
1626 int
1627 i915_gem_mmap_gtt(struct drm_file *file,
1628                   struct drm_device *dev,
1629                   uint32_t handle,
1630                   uint64_t *offset)
1631 {
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633         struct drm_i915_gem_object *obj;
1634         int ret;
1635
1636         ret = i915_mutex_lock_interruptible(dev);
1637         if (ret)
1638                 return ret;
1639
1640         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1641         if (&obj->base == NULL) {
1642                 ret = -ENOENT;
1643                 goto unlock;
1644         }
1645
1646         if (obj->base.size > dev_priv->gtt.mappable_end) {
1647                 ret = -E2BIG;
1648                 goto out;
1649         }
1650
1651         if (obj->madv != I915_MADV_WILLNEED) {
1652                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1653                 ret = -EFAULT;
1654                 goto out;
1655         }
1656
1657         ret = i915_gem_object_create_mmap_offset(obj);
1658         if (ret)
1659                 goto out;
1660
1661         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1662
1663 out:
1664         drm_gem_object_unreference(&obj->base);
1665 unlock:
1666         mutex_unlock(&dev->struct_mutex);
1667         return ret;
1668 }
1669
1670 /**
1671  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1672  * @dev: DRM device
1673  * @data: GTT mapping ioctl data
1674  * @file: GEM object info
1675  *
1676  * Simply returns the fake offset to userspace so it can mmap it.
1677  * The mmap call will end up in drm_gem_mmap(), which will set things
1678  * up so we can get faults in the handler above.
1679  *
1680  * The fault handler will take care of binding the object into the GTT
1681  * (since it may have been evicted to make room for something), allocating
1682  * a fence register, and mapping the appropriate aperture address into
1683  * userspace.
1684  */
1685 int
1686 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1687                         struct drm_file *file)
1688 {
1689         struct drm_i915_gem_mmap_gtt *args = data;
1690
1691         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1692 }
1693
1694 /* Immediately discard the backing storage */
1695 static void
1696 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1697 {
1698         struct inode *inode;
1699
1700         i915_gem_object_free_mmap_offset(obj);
1701
1702         if (obj->base.filp == NULL)
1703                 return;
1704
1705         /* Our goal here is to return as much of the memory as
1706          * is possible back to the system as we are called from OOM.
1707          * To do this we must instruct the shmfs to drop all of its
1708          * backing pages, *now*.
1709          */
1710         inode = file_inode(obj->base.filp);
1711         shmem_truncate_range(inode, 0, (loff_t)-1);
1712
1713         obj->madv = __I915_MADV_PURGED;
1714 }
1715
1716 static inline int
1717 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1718 {
1719         return obj->madv == I915_MADV_DONTNEED;
1720 }
1721
1722 static void
1723 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1724 {
1725         struct sg_page_iter sg_iter;
1726         int ret;
1727
1728         BUG_ON(obj->madv == __I915_MADV_PURGED);
1729
1730         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1731         if (ret) {
1732                 /* In the event of a disaster, abandon all caches and
1733                  * hope for the best.
1734                  */
1735                 WARN_ON(ret != -EIO);
1736                 i915_gem_clflush_object(obj, true);
1737                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1738         }
1739
1740         if (i915_gem_object_needs_bit17_swizzle(obj))
1741                 i915_gem_object_save_bit_17_swizzle(obj);
1742
1743         if (obj->madv == I915_MADV_DONTNEED)
1744                 obj->dirty = 0;
1745
1746         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1747                 struct page *page = sg_page_iter_page(&sg_iter);
1748
1749                 if (obj->dirty)
1750                         set_page_dirty(page);
1751
1752                 if (obj->madv == I915_MADV_WILLNEED)
1753                         mark_page_accessed(page);
1754
1755                 page_cache_release(page);
1756         }
1757         obj->dirty = 0;
1758
1759         sg_free_table(obj->pages);
1760         kfree(obj->pages);
1761 }
1762
1763 int
1764 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1765 {
1766         const struct drm_i915_gem_object_ops *ops = obj->ops;
1767
1768         if (obj->pages == NULL)
1769                 return 0;
1770
1771         if (obj->pages_pin_count)
1772                 return -EBUSY;
1773
1774         BUG_ON(i915_gem_obj_bound_any(obj));
1775
1776         /* ->put_pages might need to allocate memory for the bit17 swizzle
1777          * array, hence protect them from being reaped by removing them from gtt
1778          * lists early. */
1779         list_del(&obj->global_list);
1780
1781         ops->put_pages(obj);
1782         obj->pages = NULL;
1783
1784         if (i915_gem_object_is_purgeable(obj))
1785                 i915_gem_object_truncate(obj);
1786
1787         return 0;
1788 }
1789
1790 static unsigned long
1791 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1792                   bool purgeable_only)
1793 {
1794         struct list_head still_in_list;
1795         struct drm_i915_gem_object *obj;
1796         unsigned long count = 0;
1797
1798         /*
1799          * As we may completely rewrite the (un)bound list whilst unbinding
1800          * (due to retiring requests) we have to strictly process only
1801          * one element of the list at the time, and recheck the list
1802          * on every iteration.
1803          *
1804          * In particular, we must hold a reference whilst removing the
1805          * object as we may end up waiting for and/or retiring the objects.
1806          * This might release the final reference (held by the active list)
1807          * and result in the object being freed from under us. This is
1808          * similar to the precautions the eviction code must take whilst
1809          * removing objects.
1810          *
1811          * Also note that although these lists do not hold a reference to
1812          * the object we can safely grab one here: The final object
1813          * unreferencing and the bound_list are both protected by the
1814          * dev->struct_mutex and so we won't ever be able to observe an
1815          * object on the bound_list with a reference count equals 0.
1816          */
1817         INIT_LIST_HEAD(&still_in_list);
1818         while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1819                 obj = list_first_entry(&dev_priv->mm.unbound_list,
1820                                        typeof(*obj), global_list);
1821                 list_move_tail(&obj->global_list, &still_in_list);
1822
1823                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1824                         continue;
1825
1826                 drm_gem_object_reference(&obj->base);
1827
1828                 if (i915_gem_object_put_pages(obj) == 0)
1829                         count += obj->base.size >> PAGE_SHIFT;
1830
1831                 drm_gem_object_unreference(&obj->base);
1832         }
1833         list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1834
1835         INIT_LIST_HEAD(&still_in_list);
1836         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1837                 struct i915_vma *vma, *v;
1838
1839                 obj = list_first_entry(&dev_priv->mm.bound_list,
1840                                        typeof(*obj), global_list);
1841                 list_move_tail(&obj->global_list, &still_in_list);
1842
1843                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1844                         continue;
1845
1846                 drm_gem_object_reference(&obj->base);
1847
1848                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1849                         if (i915_vma_unbind(vma))
1850                                 break;
1851
1852                 if (i915_gem_object_put_pages(obj) == 0)
1853                         count += obj->base.size >> PAGE_SHIFT;
1854
1855                 drm_gem_object_unreference(&obj->base);
1856         }
1857         list_splice(&still_in_list, &dev_priv->mm.bound_list);
1858
1859         return count;
1860 }
1861
1862 static unsigned long
1863 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1864 {
1865         return __i915_gem_shrink(dev_priv, target, true);
1866 }
1867
1868 static unsigned long
1869 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1870 {
1871         i915_gem_evict_everything(dev_priv->dev);
1872         return __i915_gem_shrink(dev_priv, LONG_MAX, false);
1873 }
1874
1875 static int
1876 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1877 {
1878         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1879         int page_count, i;
1880         struct address_space *mapping;
1881         struct sg_table *st;
1882         struct scatterlist *sg;
1883         struct sg_page_iter sg_iter;
1884         struct page *page;
1885         unsigned long last_pfn = 0;     /* suppress gcc warning */
1886         gfp_t gfp;
1887
1888         /* Assert that the object is not currently in any GPU domain. As it
1889          * wasn't in the GTT, there shouldn't be any way it could have been in
1890          * a GPU cache
1891          */
1892         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1893         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1894
1895         st = kmalloc(sizeof(*st), GFP_KERNEL);
1896         if (st == NULL)
1897                 return -ENOMEM;
1898
1899         page_count = obj->base.size / PAGE_SIZE;
1900         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1901                 kfree(st);
1902                 return -ENOMEM;
1903         }
1904
1905         /* Get the list of pages out of our struct file.  They'll be pinned
1906          * at this point until we release them.
1907          *
1908          * Fail silently without starting the shrinker
1909          */
1910         mapping = file_inode(obj->base.filp)->i_mapping;
1911         gfp = mapping_gfp_mask(mapping);
1912         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1913         gfp &= ~(__GFP_IO | __GFP_WAIT);
1914         sg = st->sgl;
1915         st->nents = 0;
1916         for (i = 0; i < page_count; i++) {
1917                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1918                 if (IS_ERR(page)) {
1919                         i915_gem_purge(dev_priv, page_count);
1920                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921                 }
1922                 if (IS_ERR(page)) {
1923                         /* We've tried hard to allocate the memory by reaping
1924                          * our own buffer, now let the real VM do its job and
1925                          * go down in flames if truly OOM.
1926                          */
1927                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1928                         gfp |= __GFP_IO | __GFP_WAIT;
1929
1930                         i915_gem_shrink_all(dev_priv);
1931                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1932                         if (IS_ERR(page))
1933                                 goto err_pages;
1934
1935                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1936                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1937                 }
1938 #ifdef CONFIG_SWIOTLB
1939                 if (swiotlb_nr_tbl()) {
1940                         st->nents++;
1941                         sg_set_page(sg, page, PAGE_SIZE, 0);
1942                         sg = sg_next(sg);
1943                         continue;
1944                 }
1945 #endif
1946                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1947                         if (i)
1948                                 sg = sg_next(sg);
1949                         st->nents++;
1950                         sg_set_page(sg, page, PAGE_SIZE, 0);
1951                 } else {
1952                         sg->length += PAGE_SIZE;
1953                 }
1954                 last_pfn = page_to_pfn(page);
1955
1956                 /* Check that the i965g/gm workaround works. */
1957                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1958         }
1959 #ifdef CONFIG_SWIOTLB
1960         if (!swiotlb_nr_tbl())
1961 #endif
1962                 sg_mark_end(sg);
1963         obj->pages = st;
1964
1965         if (i915_gem_object_needs_bit17_swizzle(obj))
1966                 i915_gem_object_do_bit_17_swizzle(obj);
1967
1968         return 0;
1969
1970 err_pages:
1971         sg_mark_end(sg);
1972         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1973                 page_cache_release(sg_page_iter_page(&sg_iter));
1974         sg_free_table(st);
1975         kfree(st);
1976
1977         /* shmemfs first checks if there is enough memory to allocate the page
1978          * and reports ENOSPC should there be insufficient, along with the usual
1979          * ENOMEM for a genuine allocation failure.
1980          *
1981          * We use ENOSPC in our driver to mean that we have run out of aperture
1982          * space and so want to translate the error from shmemfs back to our
1983          * usual understanding of ENOMEM.
1984          */
1985         if (PTR_ERR(page) == -ENOSPC)
1986                 return -ENOMEM;
1987         else
1988                 return PTR_ERR(page);
1989 }
1990
1991 /* Ensure that the associated pages are gathered from the backing storage
1992  * and pinned into our object. i915_gem_object_get_pages() may be called
1993  * multiple times before they are released by a single call to
1994  * i915_gem_object_put_pages() - once the pages are no longer referenced
1995  * either as a result of memory pressure (reaping pages under the shrinker)
1996  * or as the object is itself released.
1997  */
1998 int
1999 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2000 {
2001         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2002         const struct drm_i915_gem_object_ops *ops = obj->ops;
2003         int ret;
2004
2005         if (obj->pages)
2006                 return 0;
2007
2008         if (obj->madv != I915_MADV_WILLNEED) {
2009                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2010                 return -EFAULT;
2011         }
2012
2013         BUG_ON(obj->pages_pin_count);
2014
2015         ret = ops->get_pages(obj);
2016         if (ret)
2017                 return ret;
2018
2019         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2020         return 0;
2021 }
2022
2023 static void
2024 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2025                                struct intel_ring_buffer *ring)
2026 {
2027         struct drm_device *dev = obj->base.dev;
2028         struct drm_i915_private *dev_priv = dev->dev_private;
2029         u32 seqno = intel_ring_get_seqno(ring);
2030
2031         BUG_ON(ring == NULL);
2032         if (obj->ring != ring && obj->last_write_seqno) {
2033                 /* Keep the seqno relative to the current ring */
2034                 obj->last_write_seqno = seqno;
2035         }
2036         obj->ring = ring;
2037
2038         /* Add a reference if we're newly entering the active list. */
2039         if (!obj->active) {
2040                 drm_gem_object_reference(&obj->base);
2041                 obj->active = 1;
2042         }
2043
2044         list_move_tail(&obj->ring_list, &ring->active_list);
2045
2046         obj->last_read_seqno = seqno;
2047
2048         if (obj->fenced_gpu_access) {
2049                 obj->last_fenced_seqno = seqno;
2050
2051                 /* Bump MRU to take account of the delayed flush */
2052                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2053                         struct drm_i915_fence_reg *reg;
2054
2055                         reg = &dev_priv->fence_regs[obj->fence_reg];
2056                         list_move_tail(&reg->lru_list,
2057                                        &dev_priv->mm.fence_list);
2058                 }
2059         }
2060 }
2061
2062 void i915_vma_move_to_active(struct i915_vma *vma,
2063                              struct intel_ring_buffer *ring)
2064 {
2065         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2066         return i915_gem_object_move_to_active(vma->obj, ring);
2067 }
2068
2069 static void
2070 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2071 {
2072         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2073         struct i915_address_space *vm;
2074         struct i915_vma *vma;
2075
2076         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2077         BUG_ON(!obj->active);
2078
2079         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2080                 vma = i915_gem_obj_to_vma(obj, vm);
2081                 if (vma && !list_empty(&vma->mm_list))
2082                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2083         }
2084
2085         list_del_init(&obj->ring_list);
2086         obj->ring = NULL;
2087
2088         obj->last_read_seqno = 0;
2089         obj->last_write_seqno = 0;
2090         obj->base.write_domain = 0;
2091
2092         obj->last_fenced_seqno = 0;
2093         obj->fenced_gpu_access = false;
2094
2095         obj->active = 0;
2096         drm_gem_object_unreference(&obj->base);
2097
2098         WARN_ON(i915_verify_lists(dev));
2099 }
2100
2101 static void
2102 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2103 {
2104         struct intel_ring_buffer *ring = obj->ring;
2105
2106         if (ring == NULL)
2107                 return;
2108
2109         if (i915_seqno_passed(ring->get_seqno(ring, true),
2110                               obj->last_read_seqno))
2111                 i915_gem_object_move_to_inactive(obj);
2112 }
2113
2114 static int
2115 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2116 {
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118         struct intel_ring_buffer *ring;
2119         int ret, i, j;
2120
2121         /* Carefully retire all requests without writing to the rings */
2122         for_each_ring(ring, dev_priv, i) {
2123                 ret = intel_ring_idle(ring);
2124                 if (ret)
2125                         return ret;
2126         }
2127         i915_gem_retire_requests(dev);
2128
2129         /* Finally reset hw state */
2130         for_each_ring(ring, dev_priv, i) {
2131                 intel_ring_init_seqno(ring, seqno);
2132
2133                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2134                         ring->semaphore.sync_seqno[j] = 0;
2135         }
2136
2137         return 0;
2138 }
2139
2140 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2141 {
2142         struct drm_i915_private *dev_priv = dev->dev_private;
2143         int ret;
2144
2145         if (seqno == 0)
2146                 return -EINVAL;
2147
2148         /* HWS page needs to be set less than what we
2149          * will inject to ring
2150          */
2151         ret = i915_gem_init_seqno(dev, seqno - 1);
2152         if (ret)
2153                 return ret;
2154
2155         /* Carefully set the last_seqno value so that wrap
2156          * detection still works
2157          */
2158         dev_priv->next_seqno = seqno;
2159         dev_priv->last_seqno = seqno - 1;
2160         if (dev_priv->last_seqno == 0)
2161                 dev_priv->last_seqno--;
2162
2163         return 0;
2164 }
2165
2166 int
2167 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2168 {
2169         struct drm_i915_private *dev_priv = dev->dev_private;
2170
2171         /* reserve 0 for non-seqno */
2172         if (dev_priv->next_seqno == 0) {
2173                 int ret = i915_gem_init_seqno(dev, 0);
2174                 if (ret)
2175                         return ret;
2176
2177                 dev_priv->next_seqno = 1;
2178         }
2179
2180         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2181         return 0;
2182 }
2183
2184 int __i915_add_request(struct intel_ring_buffer *ring,
2185                        struct drm_file *file,
2186                        struct drm_i915_gem_object *obj,
2187                        u32 *out_seqno)
2188 {
2189         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2190         struct drm_i915_gem_request *request;
2191         u32 request_ring_position, request_start;
2192         int ret;
2193
2194         request_start = intel_ring_get_tail(ring);
2195         /*
2196          * Emit any outstanding flushes - execbuf can fail to emit the flush
2197          * after having emitted the batchbuffer command. Hence we need to fix
2198          * things up similar to emitting the lazy request. The difference here
2199          * is that the flush _must_ happen before the next request, no matter
2200          * what.
2201          */
2202         ret = intel_ring_flush_all_caches(ring);
2203         if (ret)
2204                 return ret;
2205
2206         request = ring->preallocated_lazy_request;
2207         if (WARN_ON(request == NULL))
2208                 return -ENOMEM;
2209
2210         /* Record the position of the start of the request so that
2211          * should we detect the updated seqno part-way through the
2212          * GPU processing the request, we never over-estimate the
2213          * position of the head.
2214          */
2215         request_ring_position = intel_ring_get_tail(ring);
2216
2217         ret = ring->add_request(ring);
2218         if (ret)
2219                 return ret;
2220
2221         request->seqno = intel_ring_get_seqno(ring);
2222         request->ring = ring;
2223         request->head = request_start;
2224         request->tail = request_ring_position;
2225
2226         /* Whilst this request exists, batch_obj will be on the
2227          * active_list, and so will hold the active reference. Only when this
2228          * request is retired will the the batch_obj be moved onto the
2229          * inactive_list and lose its active reference. Hence we do not need
2230          * to explicitly hold another reference here.
2231          */
2232         request->batch_obj = obj;
2233
2234         /* Hold a reference to the current context so that we can inspect
2235          * it later in case a hangcheck error event fires.
2236          */
2237         request->ctx = ring->last_context;
2238         if (request->ctx)
2239                 i915_gem_context_reference(request->ctx);
2240
2241         request->emitted_jiffies = jiffies;
2242         list_add_tail(&request->list, &ring->request_list);
2243         request->file_priv = NULL;
2244
2245         if (file) {
2246                 struct drm_i915_file_private *file_priv = file->driver_priv;
2247
2248                 spin_lock(&file_priv->mm.lock);
2249                 request->file_priv = file_priv;
2250                 list_add_tail(&request->client_list,
2251                               &file_priv->mm.request_list);
2252                 spin_unlock(&file_priv->mm.lock);
2253         }
2254
2255         trace_i915_gem_request_add(ring, request->seqno);
2256         ring->outstanding_lazy_seqno = 0;
2257         ring->preallocated_lazy_request = NULL;
2258
2259         if (!dev_priv->ums.mm_suspended) {
2260                 i915_queue_hangcheck(ring->dev);
2261
2262                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2263                 queue_delayed_work(dev_priv->wq,
2264                                    &dev_priv->mm.retire_work,
2265                                    round_jiffies_up_relative(HZ));
2266                 intel_mark_busy(dev_priv->dev);
2267         }
2268
2269         if (out_seqno)
2270                 *out_seqno = request->seqno;
2271         return 0;
2272 }
2273
2274 static inline void
2275 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2276 {
2277         struct drm_i915_file_private *file_priv = request->file_priv;
2278
2279         if (!file_priv)
2280                 return;
2281
2282         spin_lock(&file_priv->mm.lock);
2283         list_del(&request->client_list);
2284         request->file_priv = NULL;
2285         spin_unlock(&file_priv->mm.lock);
2286 }
2287
2288 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2289                                    const struct i915_hw_context *ctx)
2290 {
2291         unsigned long elapsed;
2292
2293         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2294
2295         if (ctx->hang_stats.banned)
2296                 return true;
2297
2298         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2299                 if (!i915_gem_context_is_default(ctx)) {
2300                         DRM_DEBUG("context hanging too fast, banning!\n");
2301                         return true;
2302                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2303                         if (i915_stop_ring_allow_warn(dev_priv))
2304                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2305                         return true;
2306                 }
2307         }
2308
2309         return false;
2310 }
2311
2312 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2313                                   struct i915_hw_context *ctx,
2314                                   const bool guilty)
2315 {
2316         struct i915_ctx_hang_stats *hs;
2317
2318         if (WARN_ON(!ctx))
2319                 return;
2320
2321         hs = &ctx->hang_stats;
2322
2323         if (guilty) {
2324                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2325                 hs->batch_active++;
2326                 hs->guilty_ts = get_seconds();
2327         } else {
2328                 hs->batch_pending++;
2329         }
2330 }
2331
2332 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2333 {
2334         list_del(&request->list);
2335         i915_gem_request_remove_from_client(request);
2336
2337         if (request->ctx)
2338                 i915_gem_context_unreference(request->ctx);
2339
2340         kfree(request);
2341 }
2342
2343 struct drm_i915_gem_request *
2344 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2345 {
2346         struct drm_i915_gem_request *request;
2347         u32 completed_seqno;
2348
2349         completed_seqno = ring->get_seqno(ring, false);
2350
2351         list_for_each_entry(request, &ring->request_list, list) {
2352                 if (i915_seqno_passed(completed_seqno, request->seqno))
2353                         continue;
2354
2355                 return request;
2356         }
2357
2358         return NULL;
2359 }
2360
2361 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2362                                        struct intel_ring_buffer *ring)
2363 {
2364         struct drm_i915_gem_request *request;
2365         bool ring_hung;
2366
2367         request = i915_gem_find_active_request(ring);
2368
2369         if (request == NULL)
2370                 return;
2371
2372         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2373
2374         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2375
2376         list_for_each_entry_continue(request, &ring->request_list, list)
2377                 i915_set_reset_status(dev_priv, request->ctx, false);
2378 }
2379
2380 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2381                                         struct intel_ring_buffer *ring)
2382 {
2383         while (!list_empty(&ring->active_list)) {
2384                 struct drm_i915_gem_object *obj;
2385
2386                 obj = list_first_entry(&ring->active_list,
2387                                        struct drm_i915_gem_object,
2388                                        ring_list);
2389
2390                 i915_gem_object_move_to_inactive(obj);
2391         }
2392
2393         /*
2394          * We must free the requests after all the corresponding objects have
2395          * been moved off active lists. Which is the same order as the normal
2396          * retire_requests function does. This is important if object hold
2397          * implicit references on things like e.g. ppgtt address spaces through
2398          * the request.
2399          */
2400         while (!list_empty(&ring->request_list)) {
2401                 struct drm_i915_gem_request *request;
2402
2403                 request = list_first_entry(&ring->request_list,
2404                                            struct drm_i915_gem_request,
2405                                            list);
2406
2407                 i915_gem_free_request(request);
2408         }
2409
2410         /* These may not have been flush before the reset, do so now */
2411         kfree(ring->preallocated_lazy_request);
2412         ring->preallocated_lazy_request = NULL;
2413         ring->outstanding_lazy_seqno = 0;
2414 }
2415
2416 void i915_gem_restore_fences(struct drm_device *dev)
2417 {
2418         struct drm_i915_private *dev_priv = dev->dev_private;
2419         int i;
2420
2421         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2422                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2423
2424                 /*
2425                  * Commit delayed tiling changes if we have an object still
2426                  * attached to the fence, otherwise just clear the fence.
2427                  */
2428                 if (reg->obj) {
2429                         i915_gem_object_update_fence(reg->obj, reg,
2430                                                      reg->obj->tiling_mode);
2431                 } else {
2432                         i915_gem_write_fence(dev, i, NULL);
2433                 }
2434         }
2435 }
2436
2437 void i915_gem_reset(struct drm_device *dev)
2438 {
2439         struct drm_i915_private *dev_priv = dev->dev_private;
2440         struct intel_ring_buffer *ring;
2441         int i;
2442
2443         /*
2444          * Before we free the objects from the requests, we need to inspect
2445          * them for finding the guilty party. As the requests only borrow
2446          * their reference to the objects, the inspection must be done first.
2447          */
2448         for_each_ring(ring, dev_priv, i)
2449                 i915_gem_reset_ring_status(dev_priv, ring);
2450
2451         for_each_ring(ring, dev_priv, i)
2452                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2453
2454         i915_gem_context_reset(dev);
2455
2456         i915_gem_restore_fences(dev);
2457 }
2458
2459 /**
2460  * This function clears the request list as sequence numbers are passed.
2461  */
2462 void
2463 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2464 {
2465         uint32_t seqno;
2466
2467         if (list_empty(&ring->request_list))
2468                 return;
2469
2470         WARN_ON(i915_verify_lists(ring->dev));
2471
2472         seqno = ring->get_seqno(ring, true);
2473
2474         /* Move any buffers on the active list that are no longer referenced
2475          * by the ringbuffer to the flushing/inactive lists as appropriate,
2476          * before we free the context associated with the requests.
2477          */
2478         while (!list_empty(&ring->active_list)) {
2479                 struct drm_i915_gem_object *obj;
2480
2481                 obj = list_first_entry(&ring->active_list,
2482                                       struct drm_i915_gem_object,
2483                                       ring_list);
2484
2485                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2486                         break;
2487
2488                 i915_gem_object_move_to_inactive(obj);
2489         }
2490
2491
2492         while (!list_empty(&ring->request_list)) {
2493                 struct drm_i915_gem_request *request;
2494
2495                 request = list_first_entry(&ring->request_list,
2496                                            struct drm_i915_gem_request,
2497                                            list);
2498
2499                 if (!i915_seqno_passed(seqno, request->seqno))
2500                         break;
2501
2502                 trace_i915_gem_request_retire(ring, request->seqno);
2503                 /* We know the GPU must have read the request to have
2504                  * sent us the seqno + interrupt, so use the position
2505                  * of tail of the request to update the last known position
2506                  * of the GPU head.
2507                  */
2508                 ring->last_retired_head = request->tail;
2509
2510                 i915_gem_free_request(request);
2511         }
2512
2513         if (unlikely(ring->trace_irq_seqno &&
2514                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2515                 ring->irq_put(ring);
2516                 ring->trace_irq_seqno = 0;
2517         }
2518
2519         WARN_ON(i915_verify_lists(ring->dev));
2520 }
2521
2522 bool
2523 i915_gem_retire_requests(struct drm_device *dev)
2524 {
2525         struct drm_i915_private *dev_priv = dev->dev_private;
2526         struct intel_ring_buffer *ring;
2527         bool idle = true;
2528         int i;
2529
2530         for_each_ring(ring, dev_priv, i) {
2531                 i915_gem_retire_requests_ring(ring);
2532                 idle &= list_empty(&ring->request_list);
2533         }
2534
2535         if (idle)
2536                 mod_delayed_work(dev_priv->wq,
2537                                    &dev_priv->mm.idle_work,
2538                                    msecs_to_jiffies(100));
2539
2540         return idle;
2541 }
2542
2543 static void
2544 i915_gem_retire_work_handler(struct work_struct *work)
2545 {
2546         struct drm_i915_private *dev_priv =
2547                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2548         struct drm_device *dev = dev_priv->dev;
2549         bool idle;
2550
2551         /* Come back later if the device is busy... */
2552         idle = false;
2553         if (mutex_trylock(&dev->struct_mutex)) {
2554                 idle = i915_gem_retire_requests(dev);
2555                 mutex_unlock(&dev->struct_mutex);
2556         }
2557         if (!idle)
2558                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2559                                    round_jiffies_up_relative(HZ));
2560 }
2561
2562 static void
2563 i915_gem_idle_work_handler(struct work_struct *work)
2564 {
2565         struct drm_i915_private *dev_priv =
2566                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2567
2568         intel_mark_idle(dev_priv->dev);
2569 }
2570
2571 /**
2572  * Ensures that an object will eventually get non-busy by flushing any required
2573  * write domains, emitting any outstanding lazy request and retiring and
2574  * completed requests.
2575  */
2576 static int
2577 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2578 {
2579         int ret;
2580
2581         if (obj->active) {
2582                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2583                 if (ret)
2584                         return ret;
2585
2586                 i915_gem_retire_requests_ring(obj->ring);
2587         }
2588
2589         return 0;
2590 }
2591
2592 /**
2593  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2594  * @DRM_IOCTL_ARGS: standard ioctl arguments
2595  *
2596  * Returns 0 if successful, else an error is returned with the remaining time in
2597  * the timeout parameter.
2598  *  -ETIME: object is still busy after timeout
2599  *  -ERESTARTSYS: signal interrupted the wait
2600  *  -ENONENT: object doesn't exist
2601  * Also possible, but rare:
2602  *  -EAGAIN: GPU wedged
2603  *  -ENOMEM: damn
2604  *  -ENODEV: Internal IRQ fail
2605  *  -E?: The add request failed
2606  *
2607  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2608  * non-zero timeout parameter the wait ioctl will wait for the given number of
2609  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2610  * without holding struct_mutex the object may become re-busied before this
2611  * function completes. A similar but shorter * race condition exists in the busy
2612  * ioctl
2613  */
2614 int
2615 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2616 {
2617         struct drm_i915_private *dev_priv = dev->dev_private;
2618         struct drm_i915_gem_wait *args = data;
2619         struct drm_i915_gem_object *obj;
2620         struct intel_ring_buffer *ring = NULL;
2621         struct timespec timeout_stack, *timeout = NULL;
2622         unsigned reset_counter;
2623         u32 seqno = 0;
2624         int ret = 0;
2625
2626         if (args->timeout_ns >= 0) {
2627                 timeout_stack = ns_to_timespec(args->timeout_ns);
2628                 timeout = &timeout_stack;
2629         }
2630
2631         ret = i915_mutex_lock_interruptible(dev);
2632         if (ret)
2633                 return ret;
2634
2635         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2636         if (&obj->base == NULL) {
2637                 mutex_unlock(&dev->struct_mutex);
2638                 return -ENOENT;
2639         }
2640
2641         /* Need to make sure the object gets inactive eventually. */
2642         ret = i915_gem_object_flush_active(obj);
2643         if (ret)
2644                 goto out;
2645
2646         if (obj->active) {
2647                 seqno = obj->last_read_seqno;
2648                 ring = obj->ring;
2649         }
2650
2651         if (seqno == 0)
2652                  goto out;
2653
2654         /* Do this after OLR check to make sure we make forward progress polling
2655          * on this IOCTL with a 0 timeout (like busy ioctl)
2656          */
2657         if (!args->timeout_ns) {
2658                 ret = -ETIME;
2659                 goto out;
2660         }
2661
2662         drm_gem_object_unreference(&obj->base);
2663         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2664         mutex_unlock(&dev->struct_mutex);
2665
2666         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2667         if (timeout)
2668                 args->timeout_ns = timespec_to_ns(timeout);
2669         return ret;
2670
2671 out:
2672         drm_gem_object_unreference(&obj->base);
2673         mutex_unlock(&dev->struct_mutex);
2674         return ret;
2675 }
2676
2677 /**
2678  * i915_gem_object_sync - sync an object to a ring.
2679  *
2680  * @obj: object which may be in use on another ring.
2681  * @to: ring we wish to use the object on. May be NULL.
2682  *
2683  * This code is meant to abstract object synchronization with the GPU.
2684  * Calling with NULL implies synchronizing the object with the CPU
2685  * rather than a particular GPU ring.
2686  *
2687  * Returns 0 if successful, else propagates up the lower layer error.
2688  */
2689 int
2690 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2691                      struct intel_ring_buffer *to)
2692 {
2693         struct intel_ring_buffer *from = obj->ring;
2694         u32 seqno;
2695         int ret, idx;
2696
2697         if (from == NULL || to == from)
2698                 return 0;
2699
2700         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2701                 return i915_gem_object_wait_rendering(obj, false);
2702
2703         idx = intel_ring_sync_index(from, to);
2704
2705         seqno = obj->last_read_seqno;
2706         if (seqno <= from->semaphore.sync_seqno[idx])
2707                 return 0;
2708
2709         ret = i915_gem_check_olr(obj->ring, seqno);
2710         if (ret)
2711                 return ret;
2712
2713         trace_i915_gem_ring_sync_to(from, to, seqno);
2714         ret = to->semaphore.sync_to(to, from, seqno);
2715         if (!ret)
2716                 /* We use last_read_seqno because sync_to()
2717                  * might have just caused seqno wrap under
2718                  * the radar.
2719                  */
2720                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2721
2722         return ret;
2723 }
2724
2725 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2726 {
2727         u32 old_write_domain, old_read_domains;
2728
2729         /* Force a pagefault for domain tracking on next user access */
2730         i915_gem_release_mmap(obj);
2731
2732         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2733                 return;
2734
2735         /* Wait for any direct GTT access to complete */
2736         mb();
2737
2738         old_read_domains = obj->base.read_domains;
2739         old_write_domain = obj->base.write_domain;
2740
2741         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2742         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2743
2744         trace_i915_gem_object_change_domain(obj,
2745                                             old_read_domains,
2746                                             old_write_domain);
2747 }
2748
2749 int i915_vma_unbind(struct i915_vma *vma)
2750 {
2751         struct drm_i915_gem_object *obj = vma->obj;
2752         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2753         int ret;
2754
2755         if (list_empty(&vma->vma_link))
2756                 return 0;
2757
2758         if (!drm_mm_node_allocated(&vma->node)) {
2759                 i915_gem_vma_destroy(vma);
2760                 return 0;
2761         }
2762
2763         if (vma->pin_count)
2764                 return -EBUSY;
2765
2766         BUG_ON(obj->pages == NULL);
2767
2768         ret = i915_gem_object_finish_gpu(obj);
2769         if (ret)
2770                 return ret;
2771         /* Continue on if we fail due to EIO, the GPU is hung so we
2772          * should be safe and we need to cleanup or else we might
2773          * cause memory corruption through use-after-free.
2774          */
2775
2776         if (i915_is_ggtt(vma->vm)) {
2777                 i915_gem_object_finish_gtt(obj);
2778
2779                 /* release the fence reg _after_ flushing */
2780                 ret = i915_gem_object_put_fence(obj);
2781                 if (ret)
2782                         return ret;
2783         }
2784
2785         trace_i915_vma_unbind(vma);
2786
2787         vma->unbind_vma(vma);
2788
2789         i915_gem_gtt_finish_object(obj);
2790
2791         list_del_init(&vma->mm_list);
2792         /* Avoid an unnecessary call to unbind on rebind. */
2793         if (i915_is_ggtt(vma->vm))
2794                 obj->map_and_fenceable = true;
2795
2796         drm_mm_remove_node(&vma->node);
2797         i915_gem_vma_destroy(vma);
2798
2799         /* Since the unbound list is global, only move to that list if
2800          * no more VMAs exist. */
2801         if (list_empty(&obj->vma_list))
2802                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2803
2804         /* And finally now the object is completely decoupled from this vma,
2805          * we can drop its hold on the backing storage and allow it to be
2806          * reaped by the shrinker.
2807          */
2808         i915_gem_object_unpin_pages(obj);
2809
2810         return 0;
2811 }
2812
2813 int i915_gpu_idle(struct drm_device *dev)
2814 {
2815         struct drm_i915_private *dev_priv = dev->dev_private;
2816         struct intel_ring_buffer *ring;
2817         int ret, i;
2818
2819         /* Flush everything onto the inactive list. */
2820         for_each_ring(ring, dev_priv, i) {
2821                 ret = i915_switch_context(ring, ring->default_context);
2822                 if (ret)
2823                         return ret;
2824
2825                 ret = intel_ring_idle(ring);
2826                 if (ret)
2827                         return ret;
2828         }
2829
2830         return 0;
2831 }
2832
2833 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2834                                  struct drm_i915_gem_object *obj)
2835 {
2836         struct drm_i915_private *dev_priv = dev->dev_private;
2837         int fence_reg;
2838         int fence_pitch_shift;
2839
2840         if (INTEL_INFO(dev)->gen >= 6) {
2841                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2842                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2843         } else {
2844                 fence_reg = FENCE_REG_965_0;
2845                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2846         }
2847
2848         fence_reg += reg * 8;
2849
2850         /* To w/a incoherency with non-atomic 64-bit register updates,
2851          * we split the 64-bit update into two 32-bit writes. In order
2852          * for a partial fence not to be evaluated between writes, we
2853          * precede the update with write to turn off the fence register,
2854          * and only enable the fence as the last step.
2855          *
2856          * For extra levels of paranoia, we make sure each step lands
2857          * before applying the next step.
2858          */
2859         I915_WRITE(fence_reg, 0);
2860         POSTING_READ(fence_reg);
2861
2862         if (obj) {
2863                 u32 size = i915_gem_obj_ggtt_size(obj);
2864                 uint64_t val;
2865
2866                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2867                                  0xfffff000) << 32;
2868                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2869                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2870                 if (obj->tiling_mode == I915_TILING_Y)
2871                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2872                 val |= I965_FENCE_REG_VALID;
2873
2874                 I915_WRITE(fence_reg + 4, val >> 32);
2875                 POSTING_READ(fence_reg + 4);
2876
2877                 I915_WRITE(fence_reg + 0, val);
2878                 POSTING_READ(fence_reg);
2879         } else {
2880                 I915_WRITE(fence_reg + 4, 0);
2881                 POSTING_READ(fence_reg + 4);
2882         }
2883 }
2884
2885 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2886                                  struct drm_i915_gem_object *obj)
2887 {
2888         struct drm_i915_private *dev_priv = dev->dev_private;
2889         u32 val;
2890
2891         if (obj) {
2892                 u32 size = i915_gem_obj_ggtt_size(obj);
2893                 int pitch_val;
2894                 int tile_width;
2895
2896                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2897                      (size & -size) != size ||
2898                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2899                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2900                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2901
2902                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2903                         tile_width = 128;
2904                 else
2905                         tile_width = 512;
2906
2907                 /* Note: pitch better be a power of two tile widths */
2908                 pitch_val = obj->stride / tile_width;
2909                 pitch_val = ffs(pitch_val) - 1;
2910
2911                 val = i915_gem_obj_ggtt_offset(obj);
2912                 if (obj->tiling_mode == I915_TILING_Y)
2913                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2914                 val |= I915_FENCE_SIZE_BITS(size);
2915                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2916                 val |= I830_FENCE_REG_VALID;
2917         } else
2918                 val = 0;
2919
2920         if (reg < 8)
2921                 reg = FENCE_REG_830_0 + reg * 4;
2922         else
2923                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2924
2925         I915_WRITE(reg, val);
2926         POSTING_READ(reg);
2927 }
2928
2929 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2930                                 struct drm_i915_gem_object *obj)
2931 {
2932         struct drm_i915_private *dev_priv = dev->dev_private;
2933         uint32_t val;
2934
2935         if (obj) {
2936                 u32 size = i915_gem_obj_ggtt_size(obj);
2937                 uint32_t pitch_val;
2938
2939                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2940                      (size & -size) != size ||
2941                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2942                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2943                      i915_gem_obj_ggtt_offset(obj), size);
2944
2945                 pitch_val = obj->stride / 128;
2946                 pitch_val = ffs(pitch_val) - 1;
2947
2948                 val = i915_gem_obj_ggtt_offset(obj);
2949                 if (obj->tiling_mode == I915_TILING_Y)
2950                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2951                 val |= I830_FENCE_SIZE_BITS(size);
2952                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2953                 val |= I830_FENCE_REG_VALID;
2954         } else
2955                 val = 0;
2956
2957         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2958         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2959 }
2960
2961 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2962 {
2963         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2964 }
2965
2966 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2967                                  struct drm_i915_gem_object *obj)
2968 {
2969         struct drm_i915_private *dev_priv = dev->dev_private;
2970
2971         /* Ensure that all CPU reads are completed before installing a fence
2972          * and all writes before removing the fence.
2973          */
2974         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2975                 mb();
2976
2977         WARN(obj && (!obj->stride || !obj->tiling_mode),
2978              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2979              obj->stride, obj->tiling_mode);
2980
2981         switch (INTEL_INFO(dev)->gen) {
2982         case 8:
2983         case 7:
2984         case 6:
2985         case 5:
2986         case 4: i965_write_fence_reg(dev, reg, obj); break;
2987         case 3: i915_write_fence_reg(dev, reg, obj); break;
2988         case 2: i830_write_fence_reg(dev, reg, obj); break;
2989         default: BUG();
2990         }
2991
2992         /* And similarly be paranoid that no direct access to this region
2993          * is reordered to before the fence is installed.
2994          */
2995         if (i915_gem_object_needs_mb(obj))
2996                 mb();
2997 }
2998
2999 static inline int fence_number(struct drm_i915_private *dev_priv,
3000                                struct drm_i915_fence_reg *fence)
3001 {
3002         return fence - dev_priv->fence_regs;
3003 }
3004
3005 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3006                                          struct drm_i915_fence_reg *fence,
3007                                          bool enable)
3008 {
3009         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3010         int reg = fence_number(dev_priv, fence);
3011
3012         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3013
3014         if (enable) {
3015                 obj->fence_reg = reg;
3016                 fence->obj = obj;
3017                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3018         } else {
3019                 obj->fence_reg = I915_FENCE_REG_NONE;
3020                 fence->obj = NULL;
3021                 list_del_init(&fence->lru_list);
3022         }
3023         obj->fence_dirty = false;
3024 }
3025
3026 static int
3027 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3028 {
3029         if (obj->last_fenced_seqno) {
3030                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3031                 if (ret)
3032                         return ret;
3033
3034                 obj->last_fenced_seqno = 0;
3035         }
3036
3037         obj->fenced_gpu_access = false;
3038         return 0;
3039 }
3040
3041 int
3042 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3043 {
3044         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3045         struct drm_i915_fence_reg *fence;
3046         int ret;
3047
3048         ret = i915_gem_object_wait_fence(obj);
3049         if (ret)
3050                 return ret;
3051
3052         if (obj->fence_reg == I915_FENCE_REG_NONE)
3053                 return 0;
3054
3055         fence = &dev_priv->fence_regs[obj->fence_reg];
3056
3057         if (WARN_ON(fence->pin_count))
3058                 return -EBUSY;
3059
3060         i915_gem_object_fence_lost(obj);
3061         i915_gem_object_update_fence(obj, fence, false);
3062
3063         return 0;
3064 }
3065
3066 static struct drm_i915_fence_reg *
3067 i915_find_fence_reg(struct drm_device *dev)
3068 {
3069         struct drm_i915_private *dev_priv = dev->dev_private;
3070         struct drm_i915_fence_reg *reg, *avail;
3071         int i;
3072
3073         /* First try to find a free reg */
3074         avail = NULL;
3075         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3076                 reg = &dev_priv->fence_regs[i];
3077                 if (!reg->obj)
3078                         return reg;
3079
3080                 if (!reg->pin_count)
3081                         avail = reg;
3082         }
3083
3084         if (avail == NULL)
3085                 goto deadlock;
3086
3087         /* None available, try to steal one or wait for a user to finish */
3088         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3089                 if (reg->pin_count)
3090                         continue;
3091
3092                 return reg;
3093         }
3094
3095 deadlock:
3096         /* Wait for completion of pending flips which consume fences */
3097         if (intel_has_pending_fb_unpin(dev))
3098                 return ERR_PTR(-EAGAIN);
3099
3100         return ERR_PTR(-EDEADLK);
3101 }
3102
3103 /**
3104  * i915_gem_object_get_fence - set up fencing for an object
3105  * @obj: object to map through a fence reg
3106  *
3107  * When mapping objects through the GTT, userspace wants to be able to write
3108  * to them without having to worry about swizzling if the object is tiled.
3109  * This function walks the fence regs looking for a free one for @obj,
3110  * stealing one if it can't find any.
3111  *
3112  * It then sets up the reg based on the object's properties: address, pitch
3113  * and tiling format.
3114  *
3115  * For an untiled surface, this removes any existing fence.
3116  */
3117 int
3118 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3119 {
3120         struct drm_device *dev = obj->base.dev;
3121         struct drm_i915_private *dev_priv = dev->dev_private;
3122         bool enable = obj->tiling_mode != I915_TILING_NONE;
3123         struct drm_i915_fence_reg *reg;
3124         int ret;
3125
3126         /* Have we updated the tiling parameters upon the object and so
3127          * will need to serialise the write to the associated fence register?
3128          */
3129         if (obj->fence_dirty) {
3130                 ret = i915_gem_object_wait_fence(obj);
3131                 if (ret)
3132                         return ret;
3133         }
3134
3135         /* Just update our place in the LRU if our fence is getting reused. */
3136         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3137                 reg = &dev_priv->fence_regs[obj->fence_reg];
3138                 if (!obj->fence_dirty) {
3139                         list_move_tail(&reg->lru_list,
3140                                        &dev_priv->mm.fence_list);
3141                         return 0;
3142                 }
3143         } else if (enable) {
3144                 reg = i915_find_fence_reg(dev);
3145                 if (IS_ERR(reg))
3146                         return PTR_ERR(reg);
3147
3148                 if (reg->obj) {
3149                         struct drm_i915_gem_object *old = reg->obj;
3150
3151                         ret = i915_gem_object_wait_fence(old);
3152                         if (ret)
3153                                 return ret;
3154
3155                         i915_gem_object_fence_lost(old);
3156                 }
3157         } else
3158                 return 0;
3159
3160         i915_gem_object_update_fence(obj, reg, enable);
3161
3162         return 0;
3163 }
3164
3165 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3166                                      struct drm_mm_node *gtt_space,
3167                                      unsigned long cache_level)
3168 {
3169         struct drm_mm_node *other;
3170
3171         /* On non-LLC machines we have to be careful when putting differing
3172          * types of snoopable memory together to avoid the prefetcher
3173          * crossing memory domains and dying.
3174          */
3175         if (HAS_LLC(dev))
3176                 return true;
3177
3178         if (!drm_mm_node_allocated(gtt_space))
3179                 return true;
3180
3181         if (list_empty(&gtt_space->node_list))
3182                 return true;
3183
3184         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3185         if (other->allocated && !other->hole_follows && other->color != cache_level)
3186                 return false;
3187
3188         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3189         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3190                 return false;
3191
3192         return true;
3193 }
3194
3195 static void i915_gem_verify_gtt(struct drm_device *dev)
3196 {
3197 #if WATCH_GTT
3198         struct drm_i915_private *dev_priv = dev->dev_private;
3199         struct drm_i915_gem_object *obj;
3200         int err = 0;
3201
3202         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3203                 if (obj->gtt_space == NULL) {
3204                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3205                         err++;
3206                         continue;
3207                 }
3208
3209                 if (obj->cache_level != obj->gtt_space->color) {
3210                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3211                                i915_gem_obj_ggtt_offset(obj),
3212                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3213                                obj->cache_level,
3214                                obj->gtt_space->color);
3215                         err++;
3216                         continue;
3217                 }
3218
3219                 if (!i915_gem_valid_gtt_space(dev,
3220                                               obj->gtt_space,
3221                                               obj->cache_level)) {
3222                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3223                                i915_gem_obj_ggtt_offset(obj),
3224                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3225                                obj->cache_level);
3226                         err++;
3227                         continue;
3228                 }
3229         }
3230
3231         WARN_ON(err);
3232 #endif
3233 }
3234
3235 /**
3236  * Finds free space in the GTT aperture and binds the object there.
3237  */
3238 static struct i915_vma *
3239 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3240                            struct i915_address_space *vm,
3241                            unsigned alignment,
3242                            unsigned flags)
3243 {
3244         struct drm_device *dev = obj->base.dev;
3245         struct drm_i915_private *dev_priv = dev->dev_private;
3246         u32 size, fence_size, fence_alignment, unfenced_alignment;
3247         size_t gtt_max =
3248                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3249         struct i915_vma *vma;
3250         int ret;
3251
3252         fence_size = i915_gem_get_gtt_size(dev,
3253                                            obj->base.size,
3254                                            obj->tiling_mode);
3255         fence_alignment = i915_gem_get_gtt_alignment(dev,
3256                                                      obj->base.size,
3257                                                      obj->tiling_mode, true);
3258         unfenced_alignment =
3259                 i915_gem_get_gtt_alignment(dev,
3260                                            obj->base.size,
3261                                            obj->tiling_mode, false);
3262
3263         if (alignment == 0)
3264                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3265                                                 unfenced_alignment;
3266         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3267                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3268                 return ERR_PTR(-EINVAL);
3269         }
3270
3271         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3272
3273         /* If the object is bigger than the entire aperture, reject it early
3274          * before evicting everything in a vain attempt to find space.
3275          */
3276         if (obj->base.size > gtt_max) {
3277                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3278                           obj->base.size,
3279                           flags & PIN_MAPPABLE ? "mappable" : "total",
3280                           gtt_max);
3281                 return ERR_PTR(-E2BIG);
3282         }
3283
3284         ret = i915_gem_object_get_pages(obj);
3285         if (ret)
3286                 return ERR_PTR(ret);
3287
3288         i915_gem_object_pin_pages(obj);
3289
3290         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3291         if (IS_ERR(vma))
3292                 goto err_unpin;
3293
3294 search_free:
3295         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3296                                                   size, alignment,
3297                                                   obj->cache_level, 0, gtt_max,
3298                                                   DRM_MM_SEARCH_DEFAULT,
3299                                                   DRM_MM_CREATE_DEFAULT);
3300         if (ret) {
3301                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3302                                                obj->cache_level, flags);
3303                 if (ret == 0)
3304                         goto search_free;
3305
3306                 goto err_free_vma;
3307         }
3308         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3309                                               obj->cache_level))) {
3310                 ret = -EINVAL;
3311                 goto err_remove_node;
3312         }
3313
3314         ret = i915_gem_gtt_prepare_object(obj);
3315         if (ret)
3316                 goto err_remove_node;
3317
3318         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3319         list_add_tail(&vma->mm_list, &vm->inactive_list);
3320
3321         if (i915_is_ggtt(vm)) {
3322                 bool mappable, fenceable;
3323
3324                 fenceable = (vma->node.size == fence_size &&
3325                              (vma->node.start & (fence_alignment - 1)) == 0);
3326
3327                 mappable = (vma->node.start + obj->base.size <=
3328                             dev_priv->gtt.mappable_end);
3329
3330                 obj->map_and_fenceable = mappable && fenceable;
3331         }
3332
3333         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3334
3335         trace_i915_vma_bind(vma, flags);
3336         vma->bind_vma(vma, obj->cache_level,
3337                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3338
3339         i915_gem_verify_gtt(dev);
3340         return vma;
3341
3342 err_remove_node:
3343         drm_mm_remove_node(&vma->node);
3344 err_free_vma:
3345         i915_gem_vma_destroy(vma);
3346         vma = ERR_PTR(ret);
3347 err_unpin:
3348         i915_gem_object_unpin_pages(obj);
3349         return vma;
3350 }
3351
3352 bool
3353 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3354                         bool force)
3355 {
3356         /* If we don't have a page list set up, then we're not pinned
3357          * to GPU, and we can ignore the cache flush because it'll happen
3358          * again at bind time.
3359          */
3360         if (obj->pages == NULL)
3361                 return false;
3362
3363         /*
3364          * Stolen memory is always coherent with the GPU as it is explicitly
3365          * marked as wc by the system, or the system is cache-coherent.
3366          */
3367         if (obj->stolen)
3368                 return false;
3369
3370         /* If the GPU is snooping the contents of the CPU cache,
3371          * we do not need to manually clear the CPU cache lines.  However,
3372          * the caches are only snooped when the render cache is
3373          * flushed/invalidated.  As we always have to emit invalidations
3374          * and flushes when moving into and out of the RENDER domain, correct
3375          * snooping behaviour occurs naturally as the result of our domain
3376          * tracking.
3377          */
3378         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3379                 return false;
3380
3381         trace_i915_gem_object_clflush(obj);
3382         drm_clflush_sg(obj->pages);
3383
3384         return true;
3385 }
3386
3387 /** Flushes the GTT write domain for the object if it's dirty. */
3388 static void
3389 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3390 {
3391         uint32_t old_write_domain;
3392
3393         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3394                 return;
3395
3396         /* No actual flushing is required for the GTT write domain.  Writes
3397          * to it immediately go to main memory as far as we know, so there's
3398          * no chipset flush.  It also doesn't land in render cache.
3399          *
3400          * However, we do have to enforce the order so that all writes through
3401          * the GTT land before any writes to the device, such as updates to
3402          * the GATT itself.
3403          */
3404         wmb();
3405
3406         old_write_domain = obj->base.write_domain;
3407         obj->base.write_domain = 0;
3408
3409         trace_i915_gem_object_change_domain(obj,
3410                                             obj->base.read_domains,
3411                                             old_write_domain);
3412 }
3413
3414 /** Flushes the CPU write domain for the object if it's dirty. */
3415 static void
3416 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3417                                        bool force)
3418 {
3419         uint32_t old_write_domain;
3420
3421         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3422                 return;
3423
3424         if (i915_gem_clflush_object(obj, force))
3425                 i915_gem_chipset_flush(obj->base.dev);
3426
3427         old_write_domain = obj->base.write_domain;
3428         obj->base.write_domain = 0;
3429
3430         trace_i915_gem_object_change_domain(obj,
3431                                             obj->base.read_domains,
3432                                             old_write_domain);
3433 }
3434
3435 /**
3436  * Moves a single object to the GTT read, and possibly write domain.
3437  *
3438  * This function returns when the move is complete, including waiting on
3439  * flushes to occur.
3440  */
3441 int
3442 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3443 {
3444         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3445         uint32_t old_write_domain, old_read_domains;
3446         int ret;
3447
3448         /* Not valid to be called on unbound objects. */
3449         if (!i915_gem_obj_bound_any(obj))
3450                 return -EINVAL;
3451
3452         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3453                 return 0;
3454
3455         ret = i915_gem_object_wait_rendering(obj, !write);
3456         if (ret)
3457                 return ret;
3458
3459         i915_gem_object_retire(obj);
3460         i915_gem_object_flush_cpu_write_domain(obj, false);
3461
3462         /* Serialise direct access to this object with the barriers for
3463          * coherent writes from the GPU, by effectively invalidating the
3464          * GTT domain upon first access.
3465          */
3466         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3467                 mb();
3468
3469         old_write_domain = obj->base.write_domain;
3470         old_read_domains = obj->base.read_domains;
3471
3472         /* It should now be out of any other write domains, and we can update
3473          * the domain values for our changes.
3474          */
3475         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3476         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3477         if (write) {
3478                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3479                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3480                 obj->dirty = 1;
3481         }
3482
3483         trace_i915_gem_object_change_domain(obj,
3484                                             old_read_domains,
3485                                             old_write_domain);
3486
3487         /* And bump the LRU for this access */
3488         if (i915_gem_object_is_inactive(obj)) {
3489                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3490                 if (vma)
3491                         list_move_tail(&vma->mm_list,
3492                                        &dev_priv->gtt.base.inactive_list);
3493
3494         }
3495
3496         return 0;
3497 }
3498
3499 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3500                                     enum i915_cache_level cache_level)
3501 {
3502         struct drm_device *dev = obj->base.dev;
3503         struct i915_vma *vma, *next;
3504         int ret;
3505
3506         if (obj->cache_level == cache_level)
3507                 return 0;
3508
3509         if (i915_gem_obj_is_pinned(obj)) {
3510                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3511                 return -EBUSY;
3512         }
3513
3514         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3515                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3516                         ret = i915_vma_unbind(vma);
3517                         if (ret)
3518                                 return ret;
3519                 }
3520         }
3521
3522         if (i915_gem_obj_bound_any(obj)) {
3523                 ret = i915_gem_object_finish_gpu(obj);
3524                 if (ret)
3525                         return ret;
3526
3527                 i915_gem_object_finish_gtt(obj);
3528
3529                 /* Before SandyBridge, you could not use tiling or fence
3530                  * registers with snooped memory, so relinquish any fences
3531                  * currently pointing to our region in the aperture.
3532                  */
3533                 if (INTEL_INFO(dev)->gen < 6) {
3534                         ret = i915_gem_object_put_fence(obj);
3535                         if (ret)
3536                                 return ret;
3537                 }
3538
3539                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3540                         if (drm_mm_node_allocated(&vma->node))
3541                                 vma->bind_vma(vma, cache_level,
3542                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3543         }
3544
3545         list_for_each_entry(vma, &obj->vma_list, vma_link)
3546                 vma->node.color = cache_level;
3547         obj->cache_level = cache_level;
3548
3549         if (cpu_write_needs_clflush(obj)) {
3550                 u32 old_read_domains, old_write_domain;
3551
3552                 /* If we're coming from LLC cached, then we haven't
3553                  * actually been tracking whether the data is in the
3554                  * CPU cache or not, since we only allow one bit set
3555                  * in obj->write_domain and have been skipping the clflushes.
3556                  * Just set it to the CPU cache for now.
3557                  */
3558                 i915_gem_object_retire(obj);
3559                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3560
3561                 old_read_domains = obj->base.read_domains;
3562                 old_write_domain = obj->base.write_domain;
3563
3564                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3565                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3566
3567                 trace_i915_gem_object_change_domain(obj,
3568                                                     old_read_domains,
3569                                                     old_write_domain);
3570         }
3571
3572         i915_gem_verify_gtt(dev);
3573         return 0;
3574 }
3575
3576 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3577                                struct drm_file *file)
3578 {
3579         struct drm_i915_gem_caching *args = data;
3580         struct drm_i915_gem_object *obj;
3581         int ret;
3582
3583         ret = i915_mutex_lock_interruptible(dev);
3584         if (ret)
3585                 return ret;
3586
3587         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3588         if (&obj->base == NULL) {
3589                 ret = -ENOENT;
3590                 goto unlock;
3591         }
3592
3593         switch (obj->cache_level) {
3594         case I915_CACHE_LLC:
3595         case I915_CACHE_L3_LLC:
3596                 args->caching = I915_CACHING_CACHED;
3597                 break;
3598
3599         case I915_CACHE_WT:
3600                 args->caching = I915_CACHING_DISPLAY;
3601                 break;
3602
3603         default:
3604                 args->caching = I915_CACHING_NONE;
3605                 break;
3606         }
3607
3608         drm_gem_object_unreference(&obj->base);
3609 unlock:
3610         mutex_unlock(&dev->struct_mutex);
3611         return ret;
3612 }
3613
3614 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3615                                struct drm_file *file)
3616 {
3617         struct drm_i915_gem_caching *args = data;
3618         struct drm_i915_gem_object *obj;
3619         enum i915_cache_level level;
3620         int ret;
3621
3622         switch (args->caching) {
3623         case I915_CACHING_NONE:
3624                 level = I915_CACHE_NONE;
3625                 break;
3626         case I915_CACHING_CACHED:
3627                 level = I915_CACHE_LLC;
3628                 break;
3629         case I915_CACHING_DISPLAY:
3630                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3631                 break;
3632         default:
3633                 return -EINVAL;
3634         }
3635
3636         ret = i915_mutex_lock_interruptible(dev);
3637         if (ret)
3638                 return ret;
3639
3640         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3641         if (&obj->base == NULL) {
3642                 ret = -ENOENT;
3643                 goto unlock;
3644         }
3645
3646         ret = i915_gem_object_set_cache_level(obj, level);
3647
3648         drm_gem_object_unreference(&obj->base);
3649 unlock:
3650         mutex_unlock(&dev->struct_mutex);
3651         return ret;
3652 }
3653
3654 static bool is_pin_display(struct drm_i915_gem_object *obj)
3655 {
3656         struct i915_vma *vma;
3657
3658         if (list_empty(&obj->vma_list))
3659                 return false;
3660
3661         vma = i915_gem_obj_to_ggtt(obj);
3662         if (!vma)
3663                 return false;
3664
3665         /* There are 3 sources that pin objects:
3666          *   1. The display engine (scanouts, sprites, cursors);
3667          *   2. Reservations for execbuffer;
3668          *   3. The user.
3669          *
3670          * We can ignore reservations as we hold the struct_mutex and
3671          * are only called outside of the reservation path.  The user
3672          * can only increment pin_count once, and so if after
3673          * subtracting the potential reference by the user, any pin_count
3674          * remains, it must be due to another use by the display engine.
3675          */
3676         return vma->pin_count - !!obj->user_pin_count;
3677 }
3678
3679 /*
3680  * Prepare buffer for display plane (scanout, cursors, etc).
3681  * Can be called from an uninterruptible phase (modesetting) and allows
3682  * any flushes to be pipelined (for pageflips).
3683  */
3684 int
3685 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3686                                      u32 alignment,
3687                                      struct intel_ring_buffer *pipelined)
3688 {
3689         u32 old_read_domains, old_write_domain;
3690         bool was_pin_display;
3691         int ret;
3692
3693         if (pipelined != obj->ring) {
3694                 ret = i915_gem_object_sync(obj, pipelined);
3695                 if (ret)
3696                         return ret;
3697         }
3698
3699         /* Mark the pin_display early so that we account for the
3700          * display coherency whilst setting up the cache domains.
3701          */
3702         was_pin_display = obj->pin_display;
3703         obj->pin_display = true;
3704
3705         /* The display engine is not coherent with the LLC cache on gen6.  As
3706          * a result, we make sure that the pinning that is about to occur is
3707          * done with uncached PTEs. This is lowest common denominator for all
3708          * chipsets.
3709          *
3710          * However for gen6+, we could do better by using the GFDT bit instead
3711          * of uncaching, which would allow us to flush all the LLC-cached data
3712          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3713          */
3714         ret = i915_gem_object_set_cache_level(obj,
3715                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3716         if (ret)
3717                 goto err_unpin_display;
3718
3719         /* As the user may map the buffer once pinned in the display plane
3720          * (e.g. libkms for the bootup splash), we have to ensure that we
3721          * always use map_and_fenceable for all scanout buffers.
3722          */
3723         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3724         if (ret)
3725                 goto err_unpin_display;
3726
3727         i915_gem_object_flush_cpu_write_domain(obj, true);
3728
3729         old_write_domain = obj->base.write_domain;
3730         old_read_domains = obj->base.read_domains;
3731
3732         /* It should now be out of any other write domains, and we can update
3733          * the domain values for our changes.
3734          */
3735         obj->base.write_domain = 0;
3736         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3737
3738         trace_i915_gem_object_change_domain(obj,
3739                                             old_read_domains,
3740                                             old_write_domain);
3741
3742         return 0;
3743
3744 err_unpin_display:
3745         WARN_ON(was_pin_display != is_pin_display(obj));
3746         obj->pin_display = was_pin_display;
3747         return ret;
3748 }
3749
3750 void
3751 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3752 {
3753         i915_gem_object_ggtt_unpin(obj);
3754         obj->pin_display = is_pin_display(obj);
3755 }
3756
3757 int
3758 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3759 {
3760         int ret;
3761
3762         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3763                 return 0;
3764
3765         ret = i915_gem_object_wait_rendering(obj, false);
3766         if (ret)
3767                 return ret;
3768
3769         /* Ensure that we invalidate the GPU's caches and TLBs. */
3770         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3771         return 0;
3772 }
3773
3774 /**
3775  * Moves a single object to the CPU read, and possibly write domain.
3776  *
3777  * This function returns when the move is complete, including waiting on
3778  * flushes to occur.
3779  */
3780 int
3781 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3782 {
3783         uint32_t old_write_domain, old_read_domains;
3784         int ret;
3785
3786         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3787                 return 0;
3788
3789         ret = i915_gem_object_wait_rendering(obj, !write);
3790         if (ret)
3791                 return ret;
3792
3793         i915_gem_object_retire(obj);
3794         i915_gem_object_flush_gtt_write_domain(obj);
3795
3796         old_write_domain = obj->base.write_domain;
3797         old_read_domains = obj->base.read_domains;
3798
3799         /* Flush the CPU cache if it's still invalid. */
3800         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3801                 i915_gem_clflush_object(obj, false);
3802
3803                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3804         }
3805
3806         /* It should now be out of any other write domains, and we can update
3807          * the domain values for our changes.
3808          */
3809         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3810
3811         /* If we're writing through the CPU, then the GPU read domains will
3812          * need to be invalidated at next use.
3813          */
3814         if (write) {
3815                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3816                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3817         }
3818
3819         trace_i915_gem_object_change_domain(obj,
3820                                             old_read_domains,
3821                                             old_write_domain);
3822
3823         return 0;
3824 }
3825
3826 /* Throttle our rendering by waiting until the ring has completed our requests
3827  * emitted over 20 msec ago.
3828  *
3829  * Note that if we were to use the current jiffies each time around the loop,
3830  * we wouldn't escape the function with any frames outstanding if the time to
3831  * render a frame was over 20ms.
3832  *
3833  * This should get us reasonable parallelism between CPU and GPU but also
3834  * relatively low latency when blocking on a particular request to finish.
3835  */
3836 static int
3837 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3838 {
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840         struct drm_i915_file_private *file_priv = file->driver_priv;
3841         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3842         struct drm_i915_gem_request *request;
3843         struct intel_ring_buffer *ring = NULL;
3844         unsigned reset_counter;
3845         u32 seqno = 0;
3846         int ret;
3847
3848         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3849         if (ret)
3850                 return ret;
3851
3852         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3853         if (ret)
3854                 return ret;
3855
3856         spin_lock(&file_priv->mm.lock);
3857         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3858                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3859                         break;
3860
3861                 ring = request->ring;
3862                 seqno = request->seqno;
3863         }
3864         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3865         spin_unlock(&file_priv->mm.lock);
3866
3867         if (seqno == 0)
3868                 return 0;
3869
3870         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3871         if (ret == 0)
3872                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3873
3874         return ret;
3875 }
3876
3877 int
3878 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3879                     struct i915_address_space *vm,
3880                     uint32_t alignment,
3881                     unsigned flags)
3882 {
3883         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3884         struct i915_vma *vma;
3885         int ret;
3886
3887         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3888                 return -ENODEV;
3889
3890         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3891                 return -EINVAL;
3892
3893         vma = i915_gem_obj_to_vma(obj, vm);
3894         if (vma) {
3895                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3896                         return -EBUSY;
3897
3898                 if ((alignment &&
3899                      vma->node.start & (alignment - 1)) ||
3900                     (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3901                         WARN(vma->pin_count,
3902                              "bo is already pinned with incorrect alignment:"
3903                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3904                              " obj->map_and_fenceable=%d\n",
3905                              i915_gem_obj_offset(obj, vm), alignment,
3906                              flags & PIN_MAPPABLE,
3907                              obj->map_and_fenceable);
3908                         ret = i915_vma_unbind(vma);
3909                         if (ret)
3910                                 return ret;
3911
3912                         vma = NULL;
3913                 }
3914         }
3915
3916         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3917                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3918                 if (IS_ERR(vma))
3919                         return PTR_ERR(vma);
3920         }
3921
3922         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3923                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3924
3925         vma->pin_count++;
3926         if (flags & PIN_MAPPABLE)
3927                 obj->pin_mappable |= true;
3928
3929         return 0;
3930 }
3931
3932 void
3933 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3934 {
3935         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3936
3937         BUG_ON(!vma);
3938         BUG_ON(vma->pin_count == 0);
3939         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3940
3941         if (--vma->pin_count == 0)
3942                 obj->pin_mappable = false;
3943 }
3944
3945 bool
3946 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3947 {
3948         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3949                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3950                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3951
3952                 WARN_ON(!ggtt_vma ||
3953                         dev_priv->fence_regs[obj->fence_reg].pin_count >
3954                         ggtt_vma->pin_count);
3955                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
3956                 return true;
3957         } else
3958                 return false;
3959 }
3960
3961 void
3962 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3963 {
3964         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3965                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3966                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3967                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
3968         }
3969 }
3970
3971 int
3972 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3973                    struct drm_file *file)
3974 {
3975         struct drm_i915_gem_pin *args = data;
3976         struct drm_i915_gem_object *obj;
3977         int ret;
3978
3979         if (INTEL_INFO(dev)->gen >= 6)
3980                 return -ENODEV;
3981
3982         ret = i915_mutex_lock_interruptible(dev);
3983         if (ret)
3984                 return ret;
3985
3986         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3987         if (&obj->base == NULL) {
3988                 ret = -ENOENT;
3989                 goto unlock;
3990         }
3991
3992         if (obj->madv != I915_MADV_WILLNEED) {
3993                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
3994                 ret = -EFAULT;
3995                 goto out;
3996         }
3997
3998         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3999                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4000                           args->handle);
4001                 ret = -EINVAL;
4002                 goto out;
4003         }
4004
4005         if (obj->user_pin_count == ULONG_MAX) {
4006                 ret = -EBUSY;
4007                 goto out;
4008         }
4009
4010         if (obj->user_pin_count == 0) {
4011                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4012                 if (ret)
4013                         goto out;
4014         }
4015
4016         obj->user_pin_count++;
4017         obj->pin_filp = file;
4018
4019         args->offset = i915_gem_obj_ggtt_offset(obj);
4020 out:
4021         drm_gem_object_unreference(&obj->base);
4022 unlock:
4023         mutex_unlock(&dev->struct_mutex);
4024         return ret;
4025 }
4026
4027 int
4028 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4029                      struct drm_file *file)
4030 {
4031         struct drm_i915_gem_pin *args = data;
4032         struct drm_i915_gem_object *obj;
4033         int ret;
4034
4035         ret = i915_mutex_lock_interruptible(dev);
4036         if (ret)
4037                 return ret;
4038
4039         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4040         if (&obj->base == NULL) {
4041                 ret = -ENOENT;
4042                 goto unlock;
4043         }
4044
4045         if (obj->pin_filp != file) {
4046                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4047                           args->handle);
4048                 ret = -EINVAL;
4049                 goto out;
4050         }
4051         obj->user_pin_count--;
4052         if (obj->user_pin_count == 0) {
4053                 obj->pin_filp = NULL;
4054                 i915_gem_object_ggtt_unpin(obj);
4055         }
4056
4057 out:
4058         drm_gem_object_unreference(&obj->base);
4059 unlock:
4060         mutex_unlock(&dev->struct_mutex);
4061         return ret;
4062 }
4063
4064 int
4065 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4066                     struct drm_file *file)
4067 {
4068         struct drm_i915_gem_busy *args = data;
4069         struct drm_i915_gem_object *obj;
4070         int ret;
4071
4072         ret = i915_mutex_lock_interruptible(dev);
4073         if (ret)
4074                 return ret;
4075
4076         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4077         if (&obj->base == NULL) {
4078                 ret = -ENOENT;
4079                 goto unlock;
4080         }
4081
4082         /* Count all active objects as busy, even if they are currently not used
4083          * by the gpu. Users of this interface expect objects to eventually
4084          * become non-busy without any further actions, therefore emit any
4085          * necessary flushes here.
4086          */
4087         ret = i915_gem_object_flush_active(obj);
4088
4089         args->busy = obj->active;
4090         if (obj->ring) {
4091                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4092                 args->busy |= intel_ring_flag(obj->ring) << 16;
4093         }
4094
4095         drm_gem_object_unreference(&obj->base);
4096 unlock:
4097         mutex_unlock(&dev->struct_mutex);
4098         return ret;
4099 }
4100
4101 int
4102 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4103                         struct drm_file *file_priv)
4104 {
4105         return i915_gem_ring_throttle(dev, file_priv);
4106 }
4107
4108 int
4109 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4110                        struct drm_file *file_priv)
4111 {
4112         struct drm_i915_gem_madvise *args = data;
4113         struct drm_i915_gem_object *obj;
4114         int ret;
4115
4116         switch (args->madv) {
4117         case I915_MADV_DONTNEED:
4118         case I915_MADV_WILLNEED:
4119             break;
4120         default:
4121             return -EINVAL;
4122         }
4123
4124         ret = i915_mutex_lock_interruptible(dev);
4125         if (ret)
4126                 return ret;
4127
4128         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4129         if (&obj->base == NULL) {
4130                 ret = -ENOENT;
4131                 goto unlock;
4132         }
4133
4134         if (i915_gem_obj_is_pinned(obj)) {
4135                 ret = -EINVAL;
4136                 goto out;
4137         }
4138
4139         if (obj->madv != __I915_MADV_PURGED)
4140                 obj->madv = args->madv;
4141
4142         /* if the object is no longer attached, discard its backing storage */
4143         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4144                 i915_gem_object_truncate(obj);
4145
4146         args->retained = obj->madv != __I915_MADV_PURGED;
4147
4148 out:
4149         drm_gem_object_unreference(&obj->base);
4150 unlock:
4151         mutex_unlock(&dev->struct_mutex);
4152         return ret;
4153 }
4154
4155 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4156                           const struct drm_i915_gem_object_ops *ops)
4157 {
4158         INIT_LIST_HEAD(&obj->global_list);
4159         INIT_LIST_HEAD(&obj->ring_list);
4160         INIT_LIST_HEAD(&obj->obj_exec_link);
4161         INIT_LIST_HEAD(&obj->vma_list);
4162
4163         obj->ops = ops;
4164
4165         obj->fence_reg = I915_FENCE_REG_NONE;
4166         obj->madv = I915_MADV_WILLNEED;
4167         /* Avoid an unnecessary call to unbind on the first bind. */
4168         obj->map_and_fenceable = true;
4169
4170         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4171 }
4172
4173 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4174         .get_pages = i915_gem_object_get_pages_gtt,
4175         .put_pages = i915_gem_object_put_pages_gtt,
4176 };
4177
4178 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4179                                                   size_t size)
4180 {
4181         struct drm_i915_gem_object *obj;
4182         struct address_space *mapping;
4183         gfp_t mask;
4184
4185         obj = i915_gem_object_alloc(dev);
4186         if (obj == NULL)
4187                 return NULL;
4188
4189         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4190                 i915_gem_object_free(obj);
4191                 return NULL;
4192         }
4193
4194         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4195         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4196                 /* 965gm cannot relocate objects above 4GiB. */
4197                 mask &= ~__GFP_HIGHMEM;
4198                 mask |= __GFP_DMA32;
4199         }
4200
4201         mapping = file_inode(obj->base.filp)->i_mapping;
4202         mapping_set_gfp_mask(mapping, mask);
4203
4204         i915_gem_object_init(obj, &i915_gem_object_ops);
4205
4206         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4207         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4208
4209         if (HAS_LLC(dev)) {
4210                 /* On some devices, we can have the GPU use the LLC (the CPU
4211                  * cache) for about a 10% performance improvement
4212                  * compared to uncached.  Graphics requests other than
4213                  * display scanout are coherent with the CPU in
4214                  * accessing this cache.  This means in this mode we
4215                  * don't need to clflush on the CPU side, and on the
4216                  * GPU side we only need to flush internal caches to
4217                  * get data visible to the CPU.
4218                  *
4219                  * However, we maintain the display planes as UC, and so
4220                  * need to rebind when first used as such.
4221                  */
4222                 obj->cache_level = I915_CACHE_LLC;
4223         } else
4224                 obj->cache_level = I915_CACHE_NONE;
4225
4226         trace_i915_gem_object_create(obj);
4227
4228         return obj;
4229 }
4230
4231 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4232 {
4233         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4234         struct drm_device *dev = obj->base.dev;
4235         struct drm_i915_private *dev_priv = dev->dev_private;
4236         struct i915_vma *vma, *next;
4237
4238         intel_runtime_pm_get(dev_priv);
4239
4240         trace_i915_gem_object_destroy(obj);
4241
4242         if (obj->phys_obj)
4243                 i915_gem_detach_phys_object(dev, obj);
4244
4245         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4246                 int ret;
4247
4248                 vma->pin_count = 0;
4249                 ret = i915_vma_unbind(vma);
4250                 if (WARN_ON(ret == -ERESTARTSYS)) {
4251                         bool was_interruptible;
4252
4253                         was_interruptible = dev_priv->mm.interruptible;
4254                         dev_priv->mm.interruptible = false;
4255
4256                         WARN_ON(i915_vma_unbind(vma));
4257
4258                         dev_priv->mm.interruptible = was_interruptible;
4259                 }
4260         }
4261
4262         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4263          * before progressing. */
4264         if (obj->stolen)
4265                 i915_gem_object_unpin_pages(obj);
4266
4267         if (WARN_ON(obj->pages_pin_count))
4268                 obj->pages_pin_count = 0;
4269         i915_gem_object_put_pages(obj);
4270         i915_gem_object_free_mmap_offset(obj);
4271         i915_gem_object_release_stolen(obj);
4272
4273         BUG_ON(obj->pages);
4274
4275         if (obj->base.import_attach)
4276                 drm_prime_gem_destroy(&obj->base, NULL);
4277
4278         if (obj->ops->release)
4279                 obj->ops->release(obj);
4280
4281         drm_gem_object_release(&obj->base);
4282         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4283
4284         kfree(obj->bit_17);
4285         i915_gem_object_free(obj);
4286
4287         intel_runtime_pm_put(dev_priv);
4288 }
4289
4290 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4291                                      struct i915_address_space *vm)
4292 {
4293         struct i915_vma *vma;
4294         list_for_each_entry(vma, &obj->vma_list, vma_link)
4295                 if (vma->vm == vm)
4296                         return vma;
4297
4298         return NULL;
4299 }
4300
4301 void i915_gem_vma_destroy(struct i915_vma *vma)
4302 {
4303         WARN_ON(vma->node.allocated);
4304
4305         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4306         if (!list_empty(&vma->exec_list))
4307                 return;
4308
4309         list_del(&vma->vma_link);
4310
4311         kfree(vma);
4312 }
4313
4314 static void
4315 i915_gem_stop_ringbuffers(struct drm_device *dev)
4316 {
4317         struct drm_i915_private *dev_priv = dev->dev_private;
4318         struct intel_ring_buffer *ring;
4319         int i;
4320
4321         for_each_ring(ring, dev_priv, i)
4322                 intel_stop_ring_buffer(ring);
4323 }
4324
4325 int
4326 i915_gem_suspend(struct drm_device *dev)
4327 {
4328         struct drm_i915_private *dev_priv = dev->dev_private;
4329         int ret = 0;
4330
4331         mutex_lock(&dev->struct_mutex);
4332         if (dev_priv->ums.mm_suspended)
4333                 goto err;
4334
4335         ret = i915_gpu_idle(dev);
4336         if (ret)
4337                 goto err;
4338
4339         i915_gem_retire_requests(dev);
4340
4341         /* Under UMS, be paranoid and evict. */
4342         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4343                 i915_gem_evict_everything(dev);
4344
4345         i915_kernel_lost_context(dev);
4346         i915_gem_stop_ringbuffers(dev);
4347
4348         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4349          * We need to replace this with a semaphore, or something.
4350          * And not confound ums.mm_suspended!
4351          */
4352         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4353                                                              DRIVER_MODESET);
4354         mutex_unlock(&dev->struct_mutex);
4355
4356         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4357         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4358         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4359
4360         return 0;
4361
4362 err:
4363         mutex_unlock(&dev->struct_mutex);
4364         return ret;
4365 }
4366
4367 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4368 {
4369         struct drm_device *dev = ring->dev;
4370         struct drm_i915_private *dev_priv = dev->dev_private;
4371         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4372         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4373         int i, ret;
4374
4375         if (!HAS_L3_DPF(dev) || !remap_info)
4376                 return 0;
4377
4378         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4379         if (ret)
4380                 return ret;
4381
4382         /*
4383          * Note: We do not worry about the concurrent register cacheline hang
4384          * here because no other code should access these registers other than
4385          * at initialization time.
4386          */
4387         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4388                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4389                 intel_ring_emit(ring, reg_base + i);
4390                 intel_ring_emit(ring, remap_info[i/4]);
4391         }
4392
4393         intel_ring_advance(ring);
4394
4395         return ret;
4396 }
4397
4398 void i915_gem_init_swizzling(struct drm_device *dev)
4399 {
4400         struct drm_i915_private *dev_priv = dev->dev_private;
4401
4402         if (INTEL_INFO(dev)->gen < 5 ||
4403             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4404                 return;
4405
4406         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4407                                  DISP_TILE_SURFACE_SWIZZLING);
4408
4409         if (IS_GEN5(dev))
4410                 return;
4411
4412         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4413         if (IS_GEN6(dev))
4414                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4415         else if (IS_GEN7(dev))
4416                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4417         else if (IS_GEN8(dev))
4418                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4419         else
4420                 BUG();
4421 }
4422
4423 static bool
4424 intel_enable_blt(struct drm_device *dev)
4425 {
4426         if (!HAS_BLT(dev))
4427                 return false;
4428
4429         /* The blitter was dysfunctional on early prototypes */
4430         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4431                 DRM_INFO("BLT not supported on this pre-production hardware;"
4432                          " graphics performance will be degraded.\n");
4433                 return false;
4434         }
4435
4436         return true;
4437 }
4438
4439 static int i915_gem_init_rings(struct drm_device *dev)
4440 {
4441         struct drm_i915_private *dev_priv = dev->dev_private;
4442         int ret;
4443
4444         ret = intel_init_render_ring_buffer(dev);
4445         if (ret)
4446                 return ret;
4447
4448         if (HAS_BSD(dev)) {
4449                 ret = intel_init_bsd_ring_buffer(dev);
4450                 if (ret)
4451                         goto cleanup_render_ring;
4452         }
4453
4454         if (intel_enable_blt(dev)) {
4455                 ret = intel_init_blt_ring_buffer(dev);
4456                 if (ret)
4457                         goto cleanup_bsd_ring;
4458         }
4459
4460         if (HAS_VEBOX(dev)) {
4461                 ret = intel_init_vebox_ring_buffer(dev);
4462                 if (ret)
4463                         goto cleanup_blt_ring;
4464         }
4465
4466         if (HAS_BSD2(dev)) {
4467                 ret = intel_init_bsd2_ring_buffer(dev);
4468                 if (ret)
4469                         goto cleanup_vebox_ring;
4470         }
4471
4472         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4473         if (ret)
4474                 goto cleanup_bsd2_ring;
4475
4476         return 0;
4477
4478 cleanup_bsd2_ring:
4479         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4480 cleanup_vebox_ring:
4481         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4482 cleanup_blt_ring:
4483         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4484 cleanup_bsd_ring:
4485         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4486 cleanup_render_ring:
4487         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4488
4489         return ret;
4490 }
4491
4492 int
4493 i915_gem_init_hw(struct drm_device *dev)
4494 {
4495         struct drm_i915_private *dev_priv = dev->dev_private;
4496         int ret, i;
4497
4498         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4499                 return -EIO;
4500
4501         if (dev_priv->ellc_size)
4502                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4503
4504         if (IS_HASWELL(dev))
4505                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4506                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4507
4508         if (HAS_PCH_NOP(dev)) {
4509                 if (IS_IVYBRIDGE(dev)) {
4510                         u32 temp = I915_READ(GEN7_MSG_CTL);
4511                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4512                         I915_WRITE(GEN7_MSG_CTL, temp);
4513                 } else if (INTEL_INFO(dev)->gen >= 7) {
4514                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4515                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4516                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4517                 }
4518         }
4519
4520         i915_gem_init_swizzling(dev);
4521
4522         ret = i915_gem_init_rings(dev);
4523         if (ret)
4524                 return ret;
4525
4526         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4527                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4528
4529         /*
4530          * XXX: Contexts should only be initialized once. Doing a switch to the
4531          * default context switch however is something we'd like to do after
4532          * reset or thaw (the latter may not actually be necessary for HW, but
4533          * goes with our code better). Context switching requires rings (for
4534          * the do_switch), but before enabling PPGTT. So don't move this.
4535          */
4536         ret = i915_gem_context_enable(dev_priv);
4537         if (ret && ret != -EIO) {
4538                 DRM_ERROR("Context enable failed %d\n", ret);
4539                 i915_gem_cleanup_ringbuffer(dev);
4540         }
4541
4542         return ret;
4543 }
4544
4545 int i915_gem_init(struct drm_device *dev)
4546 {
4547         struct drm_i915_private *dev_priv = dev->dev_private;
4548         int ret;
4549
4550         mutex_lock(&dev->struct_mutex);
4551
4552         if (IS_VALLEYVIEW(dev)) {
4553                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4554                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4555                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4556                               VLV_GTLC_ALLOWWAKEACK), 10))
4557                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4558         }
4559
4560         i915_gem_init_userptr(dev);
4561         i915_gem_init_global_gtt(dev);
4562
4563         ret = i915_gem_context_init(dev);
4564         if (ret) {
4565                 mutex_unlock(&dev->struct_mutex);
4566                 return ret;
4567         }
4568
4569         ret = i915_gem_init_hw(dev);
4570         if (ret == -EIO) {
4571                 /* Allow ring initialisation to fail by marking the GPU as
4572                  * wedged. But we only want to do this where the GPU is angry,
4573                  * for all other failure, such as an allocation failure, bail.
4574                  */
4575                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4576                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4577                 ret = 0;
4578         }
4579         mutex_unlock(&dev->struct_mutex);
4580
4581         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4582         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4583                 dev_priv->dri1.allow_batchbuffer = 1;
4584         return ret;
4585 }
4586
4587 void
4588 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4589 {
4590         struct drm_i915_private *dev_priv = dev->dev_private;
4591         struct intel_ring_buffer *ring;
4592         int i;
4593
4594         for_each_ring(ring, dev_priv, i)
4595                 intel_cleanup_ring_buffer(ring);
4596 }
4597
4598 int
4599 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4600                        struct drm_file *file_priv)
4601 {
4602         struct drm_i915_private *dev_priv = dev->dev_private;
4603         int ret;
4604
4605         if (drm_core_check_feature(dev, DRIVER_MODESET))
4606                 return 0;
4607
4608         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4609                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4610                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4611         }
4612
4613         mutex_lock(&dev->struct_mutex);
4614         dev_priv->ums.mm_suspended = 0;
4615
4616         ret = i915_gem_init_hw(dev);
4617         if (ret != 0) {
4618                 mutex_unlock(&dev->struct_mutex);
4619                 return ret;
4620         }
4621
4622         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4623
4624         ret = drm_irq_install(dev, dev->pdev->irq);
4625         if (ret)
4626                 goto cleanup_ringbuffer;
4627         mutex_unlock(&dev->struct_mutex);
4628
4629         return 0;
4630
4631 cleanup_ringbuffer:
4632         i915_gem_cleanup_ringbuffer(dev);
4633         dev_priv->ums.mm_suspended = 1;
4634         mutex_unlock(&dev->struct_mutex);
4635
4636         return ret;
4637 }
4638
4639 int
4640 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4641                        struct drm_file *file_priv)
4642 {
4643         if (drm_core_check_feature(dev, DRIVER_MODESET))
4644                 return 0;
4645
4646         mutex_lock(&dev->struct_mutex);
4647         drm_irq_uninstall(dev);
4648         mutex_unlock(&dev->struct_mutex);
4649
4650         return i915_gem_suspend(dev);
4651 }
4652
4653 void
4654 i915_gem_lastclose(struct drm_device *dev)
4655 {
4656         int ret;
4657
4658         if (drm_core_check_feature(dev, DRIVER_MODESET))
4659                 return;
4660
4661         ret = i915_gem_suspend(dev);
4662         if (ret)
4663                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4664 }
4665
4666 static void
4667 init_ring_lists(struct intel_ring_buffer *ring)
4668 {
4669         INIT_LIST_HEAD(&ring->active_list);
4670         INIT_LIST_HEAD(&ring->request_list);
4671 }
4672
4673 void i915_init_vm(struct drm_i915_private *dev_priv,
4674                   struct i915_address_space *vm)
4675 {
4676         if (!i915_is_ggtt(vm))
4677                 drm_mm_init(&vm->mm, vm->start, vm->total);
4678         vm->dev = dev_priv->dev;
4679         INIT_LIST_HEAD(&vm->active_list);
4680         INIT_LIST_HEAD(&vm->inactive_list);
4681         INIT_LIST_HEAD(&vm->global_link);
4682         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4683 }
4684
4685 void
4686 i915_gem_load(struct drm_device *dev)
4687 {
4688         struct drm_i915_private *dev_priv = dev->dev_private;
4689         int i;
4690
4691         dev_priv->slab =
4692                 kmem_cache_create("i915_gem_object",
4693                                   sizeof(struct drm_i915_gem_object), 0,
4694                                   SLAB_HWCACHE_ALIGN,
4695                                   NULL);
4696
4697         INIT_LIST_HEAD(&dev_priv->vm_list);
4698         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4699
4700         INIT_LIST_HEAD(&dev_priv->context_list);
4701         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4702         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4703         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4704         for (i = 0; i < I915_NUM_RINGS; i++)
4705                 init_ring_lists(&dev_priv->ring[i]);
4706         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4707                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4708         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4709                           i915_gem_retire_work_handler);
4710         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4711                           i915_gem_idle_work_handler);
4712         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4713
4714         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4715         if (IS_GEN3(dev)) {
4716                 I915_WRITE(MI_ARB_STATE,
4717                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4718         }
4719
4720         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4721
4722         /* Old X drivers will take 0-2 for front, back, depth buffers */
4723         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4724                 dev_priv->fence_reg_start = 3;
4725
4726         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4727                 dev_priv->num_fence_regs = 32;
4728         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4729                 dev_priv->num_fence_regs = 16;
4730         else
4731                 dev_priv->num_fence_regs = 8;
4732
4733         /* Initialize fence registers to zero */
4734         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4735         i915_gem_restore_fences(dev);
4736
4737         i915_gem_detect_bit_6_swizzle(dev);
4738         init_waitqueue_head(&dev_priv->pending_flip_queue);
4739
4740         dev_priv->mm.interruptible = true;
4741
4742         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4743         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4744         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4745         register_shrinker(&dev_priv->mm.shrinker);
4746 }
4747
4748 /*
4749  * Create a physically contiguous memory object for this object
4750  * e.g. for cursor + overlay regs
4751  */
4752 static int i915_gem_init_phys_object(struct drm_device *dev,
4753                                      int id, int size, int align)
4754 {
4755         struct drm_i915_private *dev_priv = dev->dev_private;
4756         struct drm_i915_gem_phys_object *phys_obj;
4757         int ret;
4758
4759         if (dev_priv->mm.phys_objs[id - 1] || !size)
4760                 return 0;
4761
4762         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4763         if (!phys_obj)
4764                 return -ENOMEM;
4765
4766         phys_obj->id = id;
4767
4768         phys_obj->handle = drm_pci_alloc(dev, size, align);
4769         if (!phys_obj->handle) {
4770                 ret = -ENOMEM;
4771                 goto kfree_obj;
4772         }
4773 #ifdef CONFIG_X86
4774         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4775 #endif
4776
4777         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4778
4779         return 0;
4780 kfree_obj:
4781         kfree(phys_obj);
4782         return ret;
4783 }
4784
4785 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4786 {
4787         struct drm_i915_private *dev_priv = dev->dev_private;
4788         struct drm_i915_gem_phys_object *phys_obj;
4789
4790         if (!dev_priv->mm.phys_objs[id - 1])
4791                 return;
4792
4793         phys_obj = dev_priv->mm.phys_objs[id - 1];
4794         if (phys_obj->cur_obj) {
4795                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4796         }
4797
4798 #ifdef CONFIG_X86
4799         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4800 #endif
4801         drm_pci_free(dev, phys_obj->handle);
4802         kfree(phys_obj);
4803         dev_priv->mm.phys_objs[id - 1] = NULL;
4804 }
4805
4806 void i915_gem_free_all_phys_object(struct drm_device *dev)
4807 {
4808         int i;
4809
4810         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4811                 i915_gem_free_phys_object(dev, i);
4812 }
4813
4814 void i915_gem_detach_phys_object(struct drm_device *dev,
4815                                  struct drm_i915_gem_object *obj)
4816 {
4817         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4818         char *vaddr;
4819         int i;
4820         int page_count;
4821
4822         if (!obj->phys_obj)
4823                 return;
4824         vaddr = obj->phys_obj->handle->vaddr;
4825
4826         page_count = obj->base.size / PAGE_SIZE;
4827         for (i = 0; i < page_count; i++) {
4828                 struct page *page = shmem_read_mapping_page(mapping, i);
4829                 if (!IS_ERR(page)) {
4830                         char *dst = kmap_atomic(page);
4831                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4832                         kunmap_atomic(dst);
4833
4834                         drm_clflush_pages(&page, 1);
4835
4836                         set_page_dirty(page);
4837                         mark_page_accessed(page);
4838                         page_cache_release(page);
4839                 }
4840         }
4841         i915_gem_chipset_flush(dev);
4842
4843         obj->phys_obj->cur_obj = NULL;
4844         obj->phys_obj = NULL;
4845 }
4846
4847 int
4848 i915_gem_attach_phys_object(struct drm_device *dev,
4849                             struct drm_i915_gem_object *obj,
4850                             int id,
4851                             int align)
4852 {
4853         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4854         struct drm_i915_private *dev_priv = dev->dev_private;
4855         int ret = 0;
4856         int page_count;
4857         int i;
4858
4859         if (id > I915_MAX_PHYS_OBJECT)
4860                 return -EINVAL;
4861
4862         if (obj->phys_obj) {
4863                 if (obj->phys_obj->id == id)
4864                         return 0;
4865                 i915_gem_detach_phys_object(dev, obj);
4866         }
4867
4868         /* create a new object */
4869         if (!dev_priv->mm.phys_objs[id - 1]) {
4870                 ret = i915_gem_init_phys_object(dev, id,
4871                                                 obj->base.size, align);
4872                 if (ret) {
4873                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4874                                   id, obj->base.size);
4875                         return ret;
4876                 }
4877         }
4878
4879         /* bind to the object */
4880         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4881         obj->phys_obj->cur_obj = obj;
4882
4883         page_count = obj->base.size / PAGE_SIZE;
4884
4885         for (i = 0; i < page_count; i++) {
4886                 struct page *page;
4887                 char *dst, *src;
4888
4889                 page = shmem_read_mapping_page(mapping, i);
4890                 if (IS_ERR(page))
4891                         return PTR_ERR(page);
4892
4893                 src = kmap_atomic(page);
4894                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4895                 memcpy(dst, src, PAGE_SIZE);
4896                 kunmap_atomic(src);
4897
4898                 mark_page_accessed(page);
4899                 page_cache_release(page);
4900         }
4901
4902         return 0;
4903 }
4904
4905 static int
4906 i915_gem_phys_pwrite(struct drm_device *dev,
4907                      struct drm_i915_gem_object *obj,
4908                      struct drm_i915_gem_pwrite *args,
4909                      struct drm_file *file_priv)
4910 {
4911         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4912         char __user *user_data = to_user_ptr(args->data_ptr);
4913
4914         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4915                 unsigned long unwritten;
4916
4917                 /* The physical object once assigned is fixed for the lifetime
4918                  * of the obj, so we can safely drop the lock and continue
4919                  * to access vaddr.
4920                  */
4921                 mutex_unlock(&dev->struct_mutex);
4922                 unwritten = copy_from_user(vaddr, user_data, args->size);
4923                 mutex_lock(&dev->struct_mutex);
4924                 if (unwritten)
4925                         return -EFAULT;
4926         }
4927
4928         i915_gem_chipset_flush(dev);
4929         return 0;
4930 }
4931
4932 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4933 {
4934         struct drm_i915_file_private *file_priv = file->driver_priv;
4935
4936         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4937
4938         /* Clean up our request list when the client is going away, so that
4939          * later retire_requests won't dereference our soon-to-be-gone
4940          * file_priv.
4941          */
4942         spin_lock(&file_priv->mm.lock);
4943         while (!list_empty(&file_priv->mm.request_list)) {
4944                 struct drm_i915_gem_request *request;
4945
4946                 request = list_first_entry(&file_priv->mm.request_list,
4947                                            struct drm_i915_gem_request,
4948                                            client_list);
4949                 list_del(&request->client_list);
4950                 request->file_priv = NULL;
4951         }
4952         spin_unlock(&file_priv->mm.lock);
4953 }
4954
4955 static void
4956 i915_gem_file_idle_work_handler(struct work_struct *work)
4957 {
4958         struct drm_i915_file_private *file_priv =
4959                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4960
4961         atomic_set(&file_priv->rps_wait_boost, false);
4962 }
4963
4964 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4965 {
4966         struct drm_i915_file_private *file_priv;
4967         int ret;
4968
4969         DRM_DEBUG_DRIVER("\n");
4970
4971         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4972         if (!file_priv)
4973                 return -ENOMEM;
4974
4975         file->driver_priv = file_priv;
4976         file_priv->dev_priv = dev->dev_private;
4977         file_priv->file = file;
4978
4979         spin_lock_init(&file_priv->mm.lock);
4980         INIT_LIST_HEAD(&file_priv->mm.request_list);
4981         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4982                           i915_gem_file_idle_work_handler);
4983
4984         ret = i915_gem_context_open(dev, file);
4985         if (ret)
4986                 kfree(file_priv);
4987
4988         return ret;
4989 }
4990
4991 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4992 {
4993         if (!mutex_is_locked(mutex))
4994                 return false;
4995
4996 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4997         return mutex->owner == task;
4998 #else
4999         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5000         return false;
5001 #endif
5002 }
5003
5004 static int num_vma_bound(struct drm_i915_gem_object *obj)
5005 {
5006         struct i915_vma *vma;
5007         int count = 0;
5008
5009         list_for_each_entry(vma, &obj->vma_list, vma_link)
5010                 if (drm_mm_node_allocated(&vma->node))
5011                         count++;
5012
5013         return count;
5014 }
5015
5016 static unsigned long
5017 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5018 {
5019         struct drm_i915_private *dev_priv =
5020                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5021         struct drm_device *dev = dev_priv->dev;
5022         struct drm_i915_gem_object *obj;
5023         bool unlock = true;
5024         unsigned long count;
5025
5026         if (!mutex_trylock(&dev->struct_mutex)) {
5027                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5028                         return 0;
5029
5030                 if (dev_priv->mm.shrinker_no_lock_stealing)
5031                         return 0;
5032
5033                 unlock = false;
5034         }
5035
5036         count = 0;
5037         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5038                 if (obj->pages_pin_count == 0)
5039                         count += obj->base.size >> PAGE_SHIFT;
5040
5041         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5042                 if (!i915_gem_obj_is_pinned(obj) &&
5043                     obj->pages_pin_count == num_vma_bound(obj))
5044                         count += obj->base.size >> PAGE_SHIFT;
5045         }
5046
5047         if (unlock)
5048                 mutex_unlock(&dev->struct_mutex);
5049
5050         return count;
5051 }
5052
5053 /* All the new VM stuff */
5054 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5055                                   struct i915_address_space *vm)
5056 {
5057         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5058         struct i915_vma *vma;
5059
5060         if (!dev_priv->mm.aliasing_ppgtt ||
5061             vm == &dev_priv->mm.aliasing_ppgtt->base)
5062                 vm = &dev_priv->gtt.base;
5063
5064         BUG_ON(list_empty(&o->vma_list));
5065         list_for_each_entry(vma, &o->vma_list, vma_link) {
5066                 if (vma->vm == vm)
5067                         return vma->node.start;
5068
5069         }
5070         return -1;
5071 }
5072
5073 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5074                         struct i915_address_space *vm)
5075 {
5076         struct i915_vma *vma;
5077
5078         list_for_each_entry(vma, &o->vma_list, vma_link)
5079                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5080                         return true;
5081
5082         return false;
5083 }
5084
5085 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5086 {
5087         struct i915_vma *vma;
5088
5089         list_for_each_entry(vma, &o->vma_list, vma_link)
5090                 if (drm_mm_node_allocated(&vma->node))
5091                         return true;
5092
5093         return false;
5094 }
5095
5096 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5097                                 struct i915_address_space *vm)
5098 {
5099         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5100         struct i915_vma *vma;
5101
5102         if (!dev_priv->mm.aliasing_ppgtt ||
5103             vm == &dev_priv->mm.aliasing_ppgtt->base)
5104                 vm = &dev_priv->gtt.base;
5105
5106         BUG_ON(list_empty(&o->vma_list));
5107
5108         list_for_each_entry(vma, &o->vma_list, vma_link)
5109                 if (vma->vm == vm)
5110                         return vma->node.size;
5111
5112         return 0;
5113 }
5114
5115 static unsigned long
5116 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5117 {
5118         struct drm_i915_private *dev_priv =
5119                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5120         struct drm_device *dev = dev_priv->dev;
5121         unsigned long freed;
5122         bool unlock = true;
5123
5124         if (!mutex_trylock(&dev->struct_mutex)) {
5125                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5126                         return SHRINK_STOP;
5127
5128                 if (dev_priv->mm.shrinker_no_lock_stealing)
5129                         return SHRINK_STOP;
5130
5131                 unlock = false;
5132         }
5133
5134         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5135         if (freed < sc->nr_to_scan)
5136                 freed += __i915_gem_shrink(dev_priv,
5137                                            sc->nr_to_scan - freed,
5138                                            false);
5139         if (freed < sc->nr_to_scan)
5140                 freed += i915_gem_shrink_all(dev_priv);
5141
5142         if (unlock)
5143                 mutex_unlock(&dev->struct_mutex);
5144
5145         return freed;
5146 }
5147
5148 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5149 {
5150         struct i915_vma *vma;
5151
5152         /* This WARN has probably outlived its usefulness (callers already
5153          * WARN if they don't find the GGTT vma they expect). When removing,
5154          * remember to remove the pre-check in is_pin_display() as well */
5155         if (WARN_ON(list_empty(&obj->vma_list)))
5156                 return NULL;
5157
5158         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5159         if (vma->vm != obj_to_ggtt(obj))
5160                 return NULL;
5161
5162         return vma;
5163 }