drm/i915: Add intel_ring_handle_seqno wrap
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct completion *x = &dev_priv->error_completion;
94         unsigned long flags;
95         int ret;
96
97         if (!atomic_read(&dev_priv->mm.wedged))
98                 return 0;
99
100         /*
101          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102          * userspace. If it takes that long something really bad is going on and
103          * we should simply try to bail out and fail as gracefully as possible.
104          */
105         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106         if (ret == 0) {
107                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108                 return -EIO;
109         } else if (ret < 0) {
110                 return ret;
111         }
112
113         if (atomic_read(&dev_priv->mm.wedged)) {
114                 /* GPU is hung, bump the completion count to account for
115                  * the token we just consumed so that we never hit zero and
116                  * end up waiting upon a subsequent completion event that
117                  * will never happen.
118                  */
119                 spin_lock_irqsave(&x->wait.lock, flags);
120                 x->done++;
121                 spin_unlock_irqrestore(&x->wait.lock, flags);
122         }
123         return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128         int ret;
129
130         ret = i915_gem_wait_for_error(dev);
131         if (ret)
132                 return ret;
133
134         ret = mutex_lock_interruptible(&dev->struct_mutex);
135         if (ret)
136                 return ret;
137
138         WARN_ON(i915_verify_lists(dev));
139         return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145         return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150                     struct drm_file *file)
151 {
152         struct drm_i915_gem_init *args = data;
153
154         if (drm_core_check_feature(dev, DRIVER_MODESET))
155                 return -ENODEV;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         /* GEM with user mode setting was never supported on ilk and later. */
162         if (INTEL_INFO(dev)->gen >= 5)
163                 return -ENODEV;
164
165         mutex_lock(&dev->struct_mutex);
166         i915_gem_init_global_gtt(dev, args->gtt_start,
167                                  args->gtt_end, args->gtt_end);
168         mutex_unlock(&dev->struct_mutex);
169
170         return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175                             struct drm_file *file)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         struct drm_i915_gem_get_aperture *args = data;
179         struct drm_i915_gem_object *obj;
180         size_t pinned;
181
182         pinned = 0;
183         mutex_lock(&dev->struct_mutex);
184         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185                 if (obj->pin_count)
186                         pinned += obj->gtt_space->size;
187         mutex_unlock(&dev->struct_mutex);
188
189         args->aper_size = dev_priv->mm.gtt_total;
190         args->aper_available_size = args->aper_size - pinned;
191
192         return 0;
193 }
194
195 void *i915_gem_object_alloc(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
199 }
200
201 void i915_gem_object_free(struct drm_i915_gem_object *obj)
202 {
203         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
204         kmem_cache_free(dev_priv->slab, obj);
205 }
206
207 static int
208 i915_gem_create(struct drm_file *file,
209                 struct drm_device *dev,
210                 uint64_t size,
211                 uint32_t *handle_p)
212 {
213         struct drm_i915_gem_object *obj;
214         int ret;
215         u32 handle;
216
217         size = roundup(size, PAGE_SIZE);
218         if (size == 0)
219                 return -EINVAL;
220
221         /* Allocate the new object */
222         obj = i915_gem_alloc_object(dev, size);
223         if (obj == NULL)
224                 return -ENOMEM;
225
226         ret = drm_gem_handle_create(file, &obj->base, &handle);
227         if (ret) {
228                 drm_gem_object_release(&obj->base);
229                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
230                 i915_gem_object_free(obj);
231                 return ret;
232         }
233
234         /* drop reference from allocate - handle holds it now */
235         drm_gem_object_unreference(&obj->base);
236         trace_i915_gem_object_create(obj);
237
238         *handle_p = handle;
239         return 0;
240 }
241
242 int
243 i915_gem_dumb_create(struct drm_file *file,
244                      struct drm_device *dev,
245                      struct drm_mode_create_dumb *args)
246 {
247         /* have to work out size/pitch and return them */
248         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
249         args->size = args->pitch * args->height;
250         return i915_gem_create(file, dev,
251                                args->size, &args->handle);
252 }
253
254 int i915_gem_dumb_destroy(struct drm_file *file,
255                           struct drm_device *dev,
256                           uint32_t handle)
257 {
258         return drm_gem_handle_delete(file, handle);
259 }
260
261 /**
262  * Creates a new mm object and returns a handle to it.
263  */
264 int
265 i915_gem_create_ioctl(struct drm_device *dev, void *data,
266                       struct drm_file *file)
267 {
268         struct drm_i915_gem_create *args = data;
269
270         return i915_gem_create(file, dev,
271                                args->size, &args->handle);
272 }
273
274 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
275 {
276         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
277
278         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
279                 obj->tiling_mode != I915_TILING_NONE;
280 }
281
282 static inline int
283 __copy_to_user_swizzled(char __user *cpu_vaddr,
284                         const char *gpu_vaddr, int gpu_offset,
285                         int length)
286 {
287         int ret, cpu_offset = 0;
288
289         while (length > 0) {
290                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
291                 int this_length = min(cacheline_end - gpu_offset, length);
292                 int swizzled_gpu_offset = gpu_offset ^ 64;
293
294                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
295                                      gpu_vaddr + swizzled_gpu_offset,
296                                      this_length);
297                 if (ret)
298                         return ret + length;
299
300                 cpu_offset += this_length;
301                 gpu_offset += this_length;
302                 length -= this_length;
303         }
304
305         return 0;
306 }
307
308 static inline int
309 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
310                           const char __user *cpu_vaddr,
311                           int length)
312 {
313         int ret, cpu_offset = 0;
314
315         while (length > 0) {
316                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
317                 int this_length = min(cacheline_end - gpu_offset, length);
318                 int swizzled_gpu_offset = gpu_offset ^ 64;
319
320                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
321                                        cpu_vaddr + cpu_offset,
322                                        this_length);
323                 if (ret)
324                         return ret + length;
325
326                 cpu_offset += this_length;
327                 gpu_offset += this_length;
328                 length -= this_length;
329         }
330
331         return 0;
332 }
333
334 /* Per-page copy function for the shmem pread fastpath.
335  * Flushes invalid cachelines before reading the target if
336  * needs_clflush is set. */
337 static int
338 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
339                  char __user *user_data,
340                  bool page_do_bit17_swizzling, bool needs_clflush)
341 {
342         char *vaddr;
343         int ret;
344
345         if (unlikely(page_do_bit17_swizzling))
346                 return -EINVAL;
347
348         vaddr = kmap_atomic(page);
349         if (needs_clflush)
350                 drm_clflush_virt_range(vaddr + shmem_page_offset,
351                                        page_length);
352         ret = __copy_to_user_inatomic(user_data,
353                                       vaddr + shmem_page_offset,
354                                       page_length);
355         kunmap_atomic(vaddr);
356
357         return ret ? -EFAULT : 0;
358 }
359
360 static void
361 shmem_clflush_swizzled_range(char *addr, unsigned long length,
362                              bool swizzled)
363 {
364         if (unlikely(swizzled)) {
365                 unsigned long start = (unsigned long) addr;
366                 unsigned long end = (unsigned long) addr + length;
367
368                 /* For swizzling simply ensure that we always flush both
369                  * channels. Lame, but simple and it works. Swizzled
370                  * pwrite/pread is far from a hotpath - current userspace
371                  * doesn't use it at all. */
372                 start = round_down(start, 128);
373                 end = round_up(end, 128);
374
375                 drm_clflush_virt_range((void *)start, end - start);
376         } else {
377                 drm_clflush_virt_range(addr, length);
378         }
379
380 }
381
382 /* Only difference to the fast-path function is that this can handle bit17
383  * and uses non-atomic copy and kmap functions. */
384 static int
385 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
386                  char __user *user_data,
387                  bool page_do_bit17_swizzling, bool needs_clflush)
388 {
389         char *vaddr;
390         int ret;
391
392         vaddr = kmap(page);
393         if (needs_clflush)
394                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
395                                              page_length,
396                                              page_do_bit17_swizzling);
397
398         if (page_do_bit17_swizzling)
399                 ret = __copy_to_user_swizzled(user_data,
400                                               vaddr, shmem_page_offset,
401                                               page_length);
402         else
403                 ret = __copy_to_user(user_data,
404                                      vaddr + shmem_page_offset,
405                                      page_length);
406         kunmap(page);
407
408         return ret ? - EFAULT : 0;
409 }
410
411 static int
412 i915_gem_shmem_pread(struct drm_device *dev,
413                      struct drm_i915_gem_object *obj,
414                      struct drm_i915_gem_pread *args,
415                      struct drm_file *file)
416 {
417         char __user *user_data;
418         ssize_t remain;
419         loff_t offset;
420         int shmem_page_offset, page_length, ret = 0;
421         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
422         int prefaulted = 0;
423         int needs_clflush = 0;
424         struct scatterlist *sg;
425         int i;
426
427         user_data = (char __user *) (uintptr_t) args->data_ptr;
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 if (obj->cache_level == I915_CACHE_NONE)
438                         needs_clflush = 1;
439                 if (obj->gtt_space) {
440                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
441                         if (ret)
442                                 return ret;
443                 }
444         }
445
446         ret = i915_gem_object_get_pages(obj);
447         if (ret)
448                 return ret;
449
450         i915_gem_object_pin_pages(obj);
451
452         offset = args->offset;
453
454         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
455                 struct page *page;
456
457                 if (i < offset >> PAGE_SHIFT)
458                         continue;
459
460                 if (remain <= 0)
461                         break;
462
463                 /* Operation in this page
464                  *
465                  * shmem_page_offset = offset within page in shmem file
466                  * page_length = bytes to copy for this page
467                  */
468                 shmem_page_offset = offset_in_page(offset);
469                 page_length = remain;
470                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
471                         page_length = PAGE_SIZE - shmem_page_offset;
472
473                 page = sg_page(sg);
474                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
475                         (page_to_phys(page) & (1 << 17)) != 0;
476
477                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
478                                        user_data, page_do_bit17_swizzling,
479                                        needs_clflush);
480                 if (ret == 0)
481                         goto next_page;
482
483                 mutex_unlock(&dev->struct_mutex);
484
485                 if (!prefaulted) {
486                         ret = fault_in_multipages_writeable(user_data, remain);
487                         /* Userspace is tricking us, but we've already clobbered
488                          * its pages with the prefault and promised to write the
489                          * data up to the first fault. Hence ignore any errors
490                          * and just continue. */
491                         (void)ret;
492                         prefaulted = 1;
493                 }
494
495                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
496                                        user_data, page_do_bit17_swizzling,
497                                        needs_clflush);
498
499                 mutex_lock(&dev->struct_mutex);
500
501 next_page:
502                 mark_page_accessed(page);
503
504                 if (ret)
505                         goto out;
506
507                 remain -= page_length;
508                 user_data += page_length;
509                 offset += page_length;
510         }
511
512 out:
513         i915_gem_object_unpin_pages(obj);
514
515         return ret;
516 }
517
518 /**
519  * Reads data from the object referenced by handle.
520  *
521  * On error, the contents of *data are undefined.
522  */
523 int
524 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
525                      struct drm_file *file)
526 {
527         struct drm_i915_gem_pread *args = data;
528         struct drm_i915_gem_object *obj;
529         int ret = 0;
530
531         if (args->size == 0)
532                 return 0;
533
534         if (!access_ok(VERIFY_WRITE,
535                        (char __user *)(uintptr_t)args->data_ptr,
536                        args->size))
537                 return -EFAULT;
538
539         ret = i915_mutex_lock_interruptible(dev);
540         if (ret)
541                 return ret;
542
543         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
544         if (&obj->base == NULL) {
545                 ret = -ENOENT;
546                 goto unlock;
547         }
548
549         /* Bounds check source.  */
550         if (args->offset > obj->base.size ||
551             args->size > obj->base.size - args->offset) {
552                 ret = -EINVAL;
553                 goto out;
554         }
555
556         /* prime objects have no backing filp to GEM pread/pwrite
557          * pages from.
558          */
559         if (!obj->base.filp) {
560                 ret = -EINVAL;
561                 goto out;
562         }
563
564         trace_i915_gem_object_pread(obj, args->offset, args->size);
565
566         ret = i915_gem_shmem_pread(dev, obj, args, file);
567
568 out:
569         drm_gem_object_unreference(&obj->base);
570 unlock:
571         mutex_unlock(&dev->struct_mutex);
572         return ret;
573 }
574
575 /* This is the fast write path which cannot handle
576  * page faults in the source data
577  */
578
579 static inline int
580 fast_user_write(struct io_mapping *mapping,
581                 loff_t page_base, int page_offset,
582                 char __user *user_data,
583                 int length)
584 {
585         void __iomem *vaddr_atomic;
586         void *vaddr;
587         unsigned long unwritten;
588
589         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
590         /* We can use the cpu mem copy function because this is X86. */
591         vaddr = (void __force*)vaddr_atomic + page_offset;
592         unwritten = __copy_from_user_inatomic_nocache(vaddr,
593                                                       user_data, length);
594         io_mapping_unmap_atomic(vaddr_atomic);
595         return unwritten;
596 }
597
598 /**
599  * This is the fast pwrite path, where we copy the data directly from the
600  * user into the GTT, uncached.
601  */
602 static int
603 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
604                          struct drm_i915_gem_object *obj,
605                          struct drm_i915_gem_pwrite *args,
606                          struct drm_file *file)
607 {
608         drm_i915_private_t *dev_priv = dev->dev_private;
609         ssize_t remain;
610         loff_t offset, page_base;
611         char __user *user_data;
612         int page_offset, page_length, ret;
613
614         ret = i915_gem_object_pin(obj, 0, true, true);
615         if (ret)
616                 goto out;
617
618         ret = i915_gem_object_set_to_gtt_domain(obj, true);
619         if (ret)
620                 goto out_unpin;
621
622         ret = i915_gem_object_put_fence(obj);
623         if (ret)
624                 goto out_unpin;
625
626         user_data = (char __user *) (uintptr_t) args->data_ptr;
627         remain = args->size;
628
629         offset = obj->gtt_offset + args->offset;
630
631         while (remain > 0) {
632                 /* Operation in this page
633                  *
634                  * page_base = page offset within aperture
635                  * page_offset = offset within page
636                  * page_length = bytes to copy for this page
637                  */
638                 page_base = offset & PAGE_MASK;
639                 page_offset = offset_in_page(offset);
640                 page_length = remain;
641                 if ((page_offset + remain) > PAGE_SIZE)
642                         page_length = PAGE_SIZE - page_offset;
643
644                 /* If we get a fault while copying data, then (presumably) our
645                  * source page isn't available.  Return the error and we'll
646                  * retry in the slow path.
647                  */
648                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
649                                     page_offset, user_data, page_length)) {
650                         ret = -EFAULT;
651                         goto out_unpin;
652                 }
653
654                 remain -= page_length;
655                 user_data += page_length;
656                 offset += page_length;
657         }
658
659 out_unpin:
660         i915_gem_object_unpin(obj);
661 out:
662         return ret;
663 }
664
665 /* Per-page copy function for the shmem pwrite fastpath.
666  * Flushes invalid cachelines before writing to the target if
667  * needs_clflush_before is set and flushes out any written cachelines after
668  * writing if needs_clflush is set. */
669 static int
670 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
671                   char __user *user_data,
672                   bool page_do_bit17_swizzling,
673                   bool needs_clflush_before,
674                   bool needs_clflush_after)
675 {
676         char *vaddr;
677         int ret;
678
679         if (unlikely(page_do_bit17_swizzling))
680                 return -EINVAL;
681
682         vaddr = kmap_atomic(page);
683         if (needs_clflush_before)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
687                                                 user_data,
688                                                 page_length);
689         if (needs_clflush_after)
690                 drm_clflush_virt_range(vaddr + shmem_page_offset,
691                                        page_length);
692         kunmap_atomic(vaddr);
693
694         return ret ? -EFAULT : 0;
695 }
696
697 /* Only difference to the fast-path function is that this can handle bit17
698  * and uses non-atomic copy and kmap functions. */
699 static int
700 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
701                   char __user *user_data,
702                   bool page_do_bit17_swizzling,
703                   bool needs_clflush_before,
704                   bool needs_clflush_after)
705 {
706         char *vaddr;
707         int ret;
708
709         vaddr = kmap(page);
710         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
711                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
712                                              page_length,
713                                              page_do_bit17_swizzling);
714         if (page_do_bit17_swizzling)
715                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
716                                                 user_data,
717                                                 page_length);
718         else
719                 ret = __copy_from_user(vaddr + shmem_page_offset,
720                                        user_data,
721                                        page_length);
722         if (needs_clflush_after)
723                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
724                                              page_length,
725                                              page_do_bit17_swizzling);
726         kunmap(page);
727
728         return ret ? -EFAULT : 0;
729 }
730
731 static int
732 i915_gem_shmem_pwrite(struct drm_device *dev,
733                       struct drm_i915_gem_object *obj,
734                       struct drm_i915_gem_pwrite *args,
735                       struct drm_file *file)
736 {
737         ssize_t remain;
738         loff_t offset;
739         char __user *user_data;
740         int shmem_page_offset, page_length, ret = 0;
741         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
742         int hit_slowpath = 0;
743         int needs_clflush_after = 0;
744         int needs_clflush_before = 0;
745         int i;
746         struct scatterlist *sg;
747
748         user_data = (char __user *) (uintptr_t) args->data_ptr;
749         remain = args->size;
750
751         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
752
753         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
754                 /* If we're not in the cpu write domain, set ourself into the gtt
755                  * write domain and manually flush cachelines (if required). This
756                  * optimizes for the case when the gpu will use the data
757                  * right away and we therefore have to clflush anyway. */
758                 if (obj->cache_level == I915_CACHE_NONE)
759                         needs_clflush_after = 1;
760                 if (obj->gtt_space) {
761                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
762                         if (ret)
763                                 return ret;
764                 }
765         }
766         /* Same trick applies for invalidate partially written cachelines before
767          * writing.  */
768         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
769             && obj->cache_level == I915_CACHE_NONE)
770                 needs_clflush_before = 1;
771
772         ret = i915_gem_object_get_pages(obj);
773         if (ret)
774                 return ret;
775
776         i915_gem_object_pin_pages(obj);
777
778         offset = args->offset;
779         obj->dirty = 1;
780
781         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
782                 struct page *page;
783                 int partial_cacheline_write;
784
785                 if (i < offset >> PAGE_SHIFT)
786                         continue;
787
788                 if (remain <= 0)
789                         break;
790
791                 /* Operation in this page
792                  *
793                  * shmem_page_offset = offset within page in shmem file
794                  * page_length = bytes to copy for this page
795                  */
796                 shmem_page_offset = offset_in_page(offset);
797
798                 page_length = remain;
799                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
800                         page_length = PAGE_SIZE - shmem_page_offset;
801
802                 /* If we don't overwrite a cacheline completely we need to be
803                  * careful to have up-to-date data by first clflushing. Don't
804                  * overcomplicate things and flush the entire patch. */
805                 partial_cacheline_write = needs_clflush_before &&
806                         ((shmem_page_offset | page_length)
807                                 & (boot_cpu_data.x86_clflush_size - 1));
808
809                 page = sg_page(sg);
810                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
811                         (page_to_phys(page) & (1 << 17)) != 0;
812
813                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
814                                         user_data, page_do_bit17_swizzling,
815                                         partial_cacheline_write,
816                                         needs_clflush_after);
817                 if (ret == 0)
818                         goto next_page;
819
820                 hit_slowpath = 1;
821                 mutex_unlock(&dev->struct_mutex);
822                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
823                                         user_data, page_do_bit17_swizzling,
824                                         partial_cacheline_write,
825                                         needs_clflush_after);
826
827                 mutex_lock(&dev->struct_mutex);
828
829 next_page:
830                 set_page_dirty(page);
831                 mark_page_accessed(page);
832
833                 if (ret)
834                         goto out;
835
836                 remain -= page_length;
837                 user_data += page_length;
838                 offset += page_length;
839         }
840
841 out:
842         i915_gem_object_unpin_pages(obj);
843
844         if (hit_slowpath) {
845                 /*
846                  * Fixup: Flush cpu caches in case we didn't flush the dirty
847                  * cachelines in-line while writing and the object moved
848                  * out of the cpu write domain while we've dropped the lock.
849                  */
850                 if (!needs_clflush_after &&
851                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
852                         i915_gem_clflush_object(obj);
853                         i915_gem_chipset_flush(dev);
854                 }
855         }
856
857         if (needs_clflush_after)
858                 i915_gem_chipset_flush(dev);
859
860         return ret;
861 }
862
863 /**
864  * Writes data to the object referenced by handle.
865  *
866  * On error, the contents of the buffer that were to be modified are undefined.
867  */
868 int
869 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
870                       struct drm_file *file)
871 {
872         struct drm_i915_gem_pwrite *args = data;
873         struct drm_i915_gem_object *obj;
874         int ret;
875
876         if (args->size == 0)
877                 return 0;
878
879         if (!access_ok(VERIFY_READ,
880                        (char __user *)(uintptr_t)args->data_ptr,
881                        args->size))
882                 return -EFAULT;
883
884         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
885                                            args->size);
886         if (ret)
887                 return -EFAULT;
888
889         ret = i915_mutex_lock_interruptible(dev);
890         if (ret)
891                 return ret;
892
893         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
894         if (&obj->base == NULL) {
895                 ret = -ENOENT;
896                 goto unlock;
897         }
898
899         /* Bounds check destination. */
900         if (args->offset > obj->base.size ||
901             args->size > obj->base.size - args->offset) {
902                 ret = -EINVAL;
903                 goto out;
904         }
905
906         /* prime objects have no backing filp to GEM pread/pwrite
907          * pages from.
908          */
909         if (!obj->base.filp) {
910                 ret = -EINVAL;
911                 goto out;
912         }
913
914         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
915
916         ret = -EFAULT;
917         /* We can only do the GTT pwrite on untiled buffers, as otherwise
918          * it would end up going through the fenced access, and we'll get
919          * different detiling behavior between reading and writing.
920          * pread/pwrite currently are reading and writing from the CPU
921          * perspective, requiring manual detiling by the client.
922          */
923         if (obj->phys_obj) {
924                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
925                 goto out;
926         }
927
928         if (obj->cache_level == I915_CACHE_NONE &&
929             obj->tiling_mode == I915_TILING_NONE &&
930             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
931                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
932                 /* Note that the gtt paths might fail with non-page-backed user
933                  * pointers (e.g. gtt mappings when moving data between
934                  * textures). Fallback to the shmem path in that case. */
935         }
936
937         if (ret == -EFAULT || ret == -ENOSPC)
938                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
939
940 out:
941         drm_gem_object_unreference(&obj->base);
942 unlock:
943         mutex_unlock(&dev->struct_mutex);
944         return ret;
945 }
946
947 int
948 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
949                      bool interruptible)
950 {
951         if (atomic_read(&dev_priv->mm.wedged)) {
952                 struct completion *x = &dev_priv->error_completion;
953                 bool recovery_complete;
954                 unsigned long flags;
955
956                 /* Give the error handler a chance to run. */
957                 spin_lock_irqsave(&x->wait.lock, flags);
958                 recovery_complete = x->done > 0;
959                 spin_unlock_irqrestore(&x->wait.lock, flags);
960
961                 /* Non-interruptible callers can't handle -EAGAIN, hence return
962                  * -EIO unconditionally for these. */
963                 if (!interruptible)
964                         return -EIO;
965
966                 /* Recovery complete, but still wedged means reset failure. */
967                 if (recovery_complete)
968                         return -EIO;
969
970                 return -EAGAIN;
971         }
972
973         return 0;
974 }
975
976 /*
977  * Compare seqno against outstanding lazy request. Emit a request if they are
978  * equal.
979  */
980 static int
981 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
982 {
983         int ret;
984
985         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
986
987         ret = 0;
988         if (seqno == ring->outstanding_lazy_request)
989                 ret = i915_add_request(ring, NULL, NULL);
990
991         return ret;
992 }
993
994 /**
995  * __wait_seqno - wait until execution of seqno has finished
996  * @ring: the ring expected to report seqno
997  * @seqno: duh!
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Returns 0 if the seqno was found within the alloted time. Else returns the
1002  * errno with remaining time filled in timeout argument.
1003  */
1004 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1005                         bool interruptible, struct timespec *timeout)
1006 {
1007         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1008         struct timespec before, now, wait_time={1,0};
1009         unsigned long timeout_jiffies;
1010         long end;
1011         bool wait_forever = true;
1012         int ret;
1013
1014         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1015                 return 0;
1016
1017         trace_i915_gem_request_wait_begin(ring, seqno);
1018
1019         if (timeout != NULL) {
1020                 wait_time = *timeout;
1021                 wait_forever = false;
1022         }
1023
1024         timeout_jiffies = timespec_to_jiffies(&wait_time);
1025
1026         if (WARN_ON(!ring->irq_get(ring)))
1027                 return -ENODEV;
1028
1029         /* Record current time in case interrupted by signal, or wedged * */
1030         getrawmonotonic(&before);
1031
1032 #define EXIT_COND \
1033         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1034         atomic_read(&dev_priv->mm.wedged))
1035         do {
1036                 if (interruptible)
1037                         end = wait_event_interruptible_timeout(ring->irq_queue,
1038                                                                EXIT_COND,
1039                                                                timeout_jiffies);
1040                 else
1041                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1042                                                  timeout_jiffies);
1043
1044                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1045                 if (ret)
1046                         end = ret;
1047         } while (end == 0 && wait_forever);
1048
1049         getrawmonotonic(&now);
1050
1051         ring->irq_put(ring);
1052         trace_i915_gem_request_wait_end(ring, seqno);
1053 #undef EXIT_COND
1054
1055         if (timeout) {
1056                 struct timespec sleep_time = timespec_sub(now, before);
1057                 *timeout = timespec_sub(*timeout, sleep_time);
1058         }
1059
1060         switch (end) {
1061         case -EIO:
1062         case -EAGAIN: /* Wedged */
1063         case -ERESTARTSYS: /* Signal */
1064                 return (int)end;
1065         case 0: /* Timeout */
1066                 if (timeout)
1067                         set_normalized_timespec(timeout, 0, 0);
1068                 return -ETIME;
1069         default: /* Completed */
1070                 WARN_ON(end < 0); /* We're not aware of other errors */
1071                 return 0;
1072         }
1073 }
1074
1075 /**
1076  * Waits for a sequence number to be signaled, and cleans up the
1077  * request and object lists appropriately for that event.
1078  */
1079 int
1080 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1081 {
1082         struct drm_device *dev = ring->dev;
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         bool interruptible = dev_priv->mm.interruptible;
1085         int ret;
1086
1087         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1088         BUG_ON(seqno == 0);
1089
1090         ret = i915_gem_check_wedge(dev_priv, interruptible);
1091         if (ret)
1092                 return ret;
1093
1094         ret = i915_gem_check_olr(ring, seqno);
1095         if (ret)
1096                 return ret;
1097
1098         return __wait_seqno(ring, seqno, interruptible, NULL);
1099 }
1100
1101 /**
1102  * Ensures that all rendering to the object has completed and the object is
1103  * safe to unbind from the GTT or access from the CPU.
1104  */
1105 static __must_check int
1106 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1107                                bool readonly)
1108 {
1109         struct intel_ring_buffer *ring = obj->ring;
1110         u32 seqno;
1111         int ret;
1112
1113         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1114         if (seqno == 0)
1115                 return 0;
1116
1117         ret = i915_wait_seqno(ring, seqno);
1118         if (ret)
1119                 return ret;
1120
1121         i915_gem_retire_requests_ring(ring);
1122
1123         /* Manually manage the write flush as we may have not yet
1124          * retired the buffer.
1125          */
1126         if (obj->last_write_seqno &&
1127             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1128                 obj->last_write_seqno = 0;
1129                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1130         }
1131
1132         return 0;
1133 }
1134
1135 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1136  * as the object state may change during this call.
1137  */
1138 static __must_check int
1139 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1140                                             bool readonly)
1141 {
1142         struct drm_device *dev = obj->base.dev;
1143         struct drm_i915_private *dev_priv = dev->dev_private;
1144         struct intel_ring_buffer *ring = obj->ring;
1145         u32 seqno;
1146         int ret;
1147
1148         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1149         BUG_ON(!dev_priv->mm.interruptible);
1150
1151         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1152         if (seqno == 0)
1153                 return 0;
1154
1155         ret = i915_gem_check_wedge(dev_priv, true);
1156         if (ret)
1157                 return ret;
1158
1159         ret = i915_gem_check_olr(ring, seqno);
1160         if (ret)
1161                 return ret;
1162
1163         mutex_unlock(&dev->struct_mutex);
1164         ret = __wait_seqno(ring, seqno, true, NULL);
1165         mutex_lock(&dev->struct_mutex);
1166
1167         i915_gem_retire_requests_ring(ring);
1168
1169         /* Manually manage the write flush as we may have not yet
1170          * retired the buffer.
1171          */
1172         if (obj->last_write_seqno &&
1173             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1174                 obj->last_write_seqno = 0;
1175                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1176         }
1177
1178         return ret;
1179 }
1180
1181 /**
1182  * Called when user space prepares to use an object with the CPU, either
1183  * through the mmap ioctl's mapping or a GTT mapping.
1184  */
1185 int
1186 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1187                           struct drm_file *file)
1188 {
1189         struct drm_i915_gem_set_domain *args = data;
1190         struct drm_i915_gem_object *obj;
1191         uint32_t read_domains = args->read_domains;
1192         uint32_t write_domain = args->write_domain;
1193         int ret;
1194
1195         /* Only handle setting domains to types used by the CPU. */
1196         if (write_domain & I915_GEM_GPU_DOMAINS)
1197                 return -EINVAL;
1198
1199         if (read_domains & I915_GEM_GPU_DOMAINS)
1200                 return -EINVAL;
1201
1202         /* Having something in the write domain implies it's in the read
1203          * domain, and only that read domain.  Enforce that in the request.
1204          */
1205         if (write_domain != 0 && read_domains != write_domain)
1206                 return -EINVAL;
1207
1208         ret = i915_mutex_lock_interruptible(dev);
1209         if (ret)
1210                 return ret;
1211
1212         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1213         if (&obj->base == NULL) {
1214                 ret = -ENOENT;
1215                 goto unlock;
1216         }
1217
1218         /* Try to flush the object off the GPU without holding the lock.
1219          * We will repeat the flush holding the lock in the normal manner
1220          * to catch cases where we are gazumped.
1221          */
1222         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1223         if (ret)
1224                 goto unref;
1225
1226         if (read_domains & I915_GEM_DOMAIN_GTT) {
1227                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1228
1229                 /* Silently promote "you're not bound, there was nothing to do"
1230                  * to success, since the client was just asking us to
1231                  * make sure everything was done.
1232                  */
1233                 if (ret == -EINVAL)
1234                         ret = 0;
1235         } else {
1236                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1237         }
1238
1239 unref:
1240         drm_gem_object_unreference(&obj->base);
1241 unlock:
1242         mutex_unlock(&dev->struct_mutex);
1243         return ret;
1244 }
1245
1246 /**
1247  * Called when user space has done writes to this buffer
1248  */
1249 int
1250 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1251                          struct drm_file *file)
1252 {
1253         struct drm_i915_gem_sw_finish *args = data;
1254         struct drm_i915_gem_object *obj;
1255         int ret = 0;
1256
1257         ret = i915_mutex_lock_interruptible(dev);
1258         if (ret)
1259                 return ret;
1260
1261         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1262         if (&obj->base == NULL) {
1263                 ret = -ENOENT;
1264                 goto unlock;
1265         }
1266
1267         /* Pinned buffers may be scanout, so flush the cache */
1268         if (obj->pin_count)
1269                 i915_gem_object_flush_cpu_write_domain(obj);
1270
1271         drm_gem_object_unreference(&obj->base);
1272 unlock:
1273         mutex_unlock(&dev->struct_mutex);
1274         return ret;
1275 }
1276
1277 /**
1278  * Maps the contents of an object, returning the address it is mapped
1279  * into.
1280  *
1281  * While the mapping holds a reference on the contents of the object, it doesn't
1282  * imply a ref on the object itself.
1283  */
1284 int
1285 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1286                     struct drm_file *file)
1287 {
1288         struct drm_i915_gem_mmap *args = data;
1289         struct drm_gem_object *obj;
1290         unsigned long addr;
1291
1292         obj = drm_gem_object_lookup(dev, file, args->handle);
1293         if (obj == NULL)
1294                 return -ENOENT;
1295
1296         /* prime objects have no backing filp to GEM mmap
1297          * pages from.
1298          */
1299         if (!obj->filp) {
1300                 drm_gem_object_unreference_unlocked(obj);
1301                 return -EINVAL;
1302         }
1303
1304         addr = vm_mmap(obj->filp, 0, args->size,
1305                        PROT_READ | PROT_WRITE, MAP_SHARED,
1306                        args->offset);
1307         drm_gem_object_unreference_unlocked(obj);
1308         if (IS_ERR((void *)addr))
1309                 return addr;
1310
1311         args->addr_ptr = (uint64_t) addr;
1312
1313         return 0;
1314 }
1315
1316 /**
1317  * i915_gem_fault - fault a page into the GTT
1318  * vma: VMA in question
1319  * vmf: fault info
1320  *
1321  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1322  * from userspace.  The fault handler takes care of binding the object to
1323  * the GTT (if needed), allocating and programming a fence register (again,
1324  * only if needed based on whether the old reg is still valid or the object
1325  * is tiled) and inserting a new PTE into the faulting process.
1326  *
1327  * Note that the faulting process may involve evicting existing objects
1328  * from the GTT and/or fence registers to make room.  So performance may
1329  * suffer if the GTT working set is large or there are few fence registers
1330  * left.
1331  */
1332 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1333 {
1334         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1335         struct drm_device *dev = obj->base.dev;
1336         drm_i915_private_t *dev_priv = dev->dev_private;
1337         pgoff_t page_offset;
1338         unsigned long pfn;
1339         int ret = 0;
1340         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1341
1342         /* We don't use vmf->pgoff since that has the fake offset */
1343         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1344                 PAGE_SHIFT;
1345
1346         ret = i915_mutex_lock_interruptible(dev);
1347         if (ret)
1348                 goto out;
1349
1350         trace_i915_gem_object_fault(obj, page_offset, true, write);
1351
1352         /* Now bind it into the GTT if needed */
1353         ret = i915_gem_object_pin(obj, 0, true, false);
1354         if (ret)
1355                 goto unlock;
1356
1357         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1358         if (ret)
1359                 goto unpin;
1360
1361         ret = i915_gem_object_get_fence(obj);
1362         if (ret)
1363                 goto unpin;
1364
1365         obj->fault_mappable = true;
1366
1367         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1368                 page_offset;
1369
1370         /* Finally, remap it using the new GTT offset */
1371         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1372 unpin:
1373         i915_gem_object_unpin(obj);
1374 unlock:
1375         mutex_unlock(&dev->struct_mutex);
1376 out:
1377         switch (ret) {
1378         case -EIO:
1379                 /* If this -EIO is due to a gpu hang, give the reset code a
1380                  * chance to clean up the mess. Otherwise return the proper
1381                  * SIGBUS. */
1382                 if (!atomic_read(&dev_priv->mm.wedged))
1383                         return VM_FAULT_SIGBUS;
1384         case -EAGAIN:
1385                 /* Give the error handler a chance to run and move the
1386                  * objects off the GPU active list. Next time we service the
1387                  * fault, we should be able to transition the page into the
1388                  * GTT without touching the GPU (and so avoid further
1389                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1390                  * with coherency, just lost writes.
1391                  */
1392                 set_need_resched();
1393         case 0:
1394         case -ERESTARTSYS:
1395         case -EINTR:
1396         case -EBUSY:
1397                 /*
1398                  * EBUSY is ok: this just means that another thread
1399                  * already did the job.
1400                  */
1401                 return VM_FAULT_NOPAGE;
1402         case -ENOMEM:
1403                 return VM_FAULT_OOM;
1404         case -ENOSPC:
1405                 return VM_FAULT_SIGBUS;
1406         default:
1407                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1408                 return VM_FAULT_SIGBUS;
1409         }
1410 }
1411
1412 /**
1413  * i915_gem_release_mmap - remove physical page mappings
1414  * @obj: obj in question
1415  *
1416  * Preserve the reservation of the mmapping with the DRM core code, but
1417  * relinquish ownership of the pages back to the system.
1418  *
1419  * It is vital that we remove the page mapping if we have mapped a tiled
1420  * object through the GTT and then lose the fence register due to
1421  * resource pressure. Similarly if the object has been moved out of the
1422  * aperture, than pages mapped into userspace must be revoked. Removing the
1423  * mapping will then trigger a page fault on the next user access, allowing
1424  * fixup by i915_gem_fault().
1425  */
1426 void
1427 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1428 {
1429         if (!obj->fault_mappable)
1430                 return;
1431
1432         if (obj->base.dev->dev_mapping)
1433                 unmap_mapping_range(obj->base.dev->dev_mapping,
1434                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1435                                     obj->base.size, 1);
1436
1437         obj->fault_mappable = false;
1438 }
1439
1440 static uint32_t
1441 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1442 {
1443         uint32_t gtt_size;
1444
1445         if (INTEL_INFO(dev)->gen >= 4 ||
1446             tiling_mode == I915_TILING_NONE)
1447                 return size;
1448
1449         /* Previous chips need a power-of-two fence region when tiling */
1450         if (INTEL_INFO(dev)->gen == 3)
1451                 gtt_size = 1024*1024;
1452         else
1453                 gtt_size = 512*1024;
1454
1455         while (gtt_size < size)
1456                 gtt_size <<= 1;
1457
1458         return gtt_size;
1459 }
1460
1461 /**
1462  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1463  * @obj: object to check
1464  *
1465  * Return the required GTT alignment for an object, taking into account
1466  * potential fence register mapping.
1467  */
1468 static uint32_t
1469 i915_gem_get_gtt_alignment(struct drm_device *dev,
1470                            uint32_t size,
1471                            int tiling_mode)
1472 {
1473         /*
1474          * Minimum alignment is 4k (GTT page size), but might be greater
1475          * if a fence register is needed for the object.
1476          */
1477         if (INTEL_INFO(dev)->gen >= 4 ||
1478             tiling_mode == I915_TILING_NONE)
1479                 return 4096;
1480
1481         /*
1482          * Previous chips need to be aligned to the size of the smallest
1483          * fence register that can contain the object.
1484          */
1485         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1486 }
1487
1488 /**
1489  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1490  *                                       unfenced object
1491  * @dev: the device
1492  * @size: size of the object
1493  * @tiling_mode: tiling mode of the object
1494  *
1495  * Return the required GTT alignment for an object, only taking into account
1496  * unfenced tiled surface requirements.
1497  */
1498 uint32_t
1499 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1500                                     uint32_t size,
1501                                     int tiling_mode)
1502 {
1503         /*
1504          * Minimum alignment is 4k (GTT page size) for sane hw.
1505          */
1506         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1507             tiling_mode == I915_TILING_NONE)
1508                 return 4096;
1509
1510         /* Previous hardware however needs to be aligned to a power-of-two
1511          * tile height. The simplest method for determining this is to reuse
1512          * the power-of-tile object size.
1513          */
1514         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1515 }
1516
1517 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1518 {
1519         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1520         int ret;
1521
1522         if (obj->base.map_list.map)
1523                 return 0;
1524
1525         ret = drm_gem_create_mmap_offset(&obj->base);
1526         if (ret != -ENOSPC)
1527                 return ret;
1528
1529         /* Badly fragmented mmap space? The only way we can recover
1530          * space is by destroying unwanted objects. We can't randomly release
1531          * mmap_offsets as userspace expects them to be persistent for the
1532          * lifetime of the objects. The closest we can is to release the
1533          * offsets on purgeable objects by truncating it and marking it purged,
1534          * which prevents userspace from ever using that object again.
1535          */
1536         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1537         ret = drm_gem_create_mmap_offset(&obj->base);
1538         if (ret != -ENOSPC)
1539                 return ret;
1540
1541         i915_gem_shrink_all(dev_priv);
1542         return drm_gem_create_mmap_offset(&obj->base);
1543 }
1544
1545 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1546 {
1547         if (!obj->base.map_list.map)
1548                 return;
1549
1550         drm_gem_free_mmap_offset(&obj->base);
1551 }
1552
1553 int
1554 i915_gem_mmap_gtt(struct drm_file *file,
1555                   struct drm_device *dev,
1556                   uint32_t handle,
1557                   uint64_t *offset)
1558 {
1559         struct drm_i915_private *dev_priv = dev->dev_private;
1560         struct drm_i915_gem_object *obj;
1561         int ret;
1562
1563         ret = i915_mutex_lock_interruptible(dev);
1564         if (ret)
1565                 return ret;
1566
1567         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1568         if (&obj->base == NULL) {
1569                 ret = -ENOENT;
1570                 goto unlock;
1571         }
1572
1573         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1574                 ret = -E2BIG;
1575                 goto out;
1576         }
1577
1578         if (obj->madv != I915_MADV_WILLNEED) {
1579                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1580                 ret = -EINVAL;
1581                 goto out;
1582         }
1583
1584         ret = i915_gem_object_create_mmap_offset(obj);
1585         if (ret)
1586                 goto out;
1587
1588         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1589
1590 out:
1591         drm_gem_object_unreference(&obj->base);
1592 unlock:
1593         mutex_unlock(&dev->struct_mutex);
1594         return ret;
1595 }
1596
1597 /**
1598  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1599  * @dev: DRM device
1600  * @data: GTT mapping ioctl data
1601  * @file: GEM object info
1602  *
1603  * Simply returns the fake offset to userspace so it can mmap it.
1604  * The mmap call will end up in drm_gem_mmap(), which will set things
1605  * up so we can get faults in the handler above.
1606  *
1607  * The fault handler will take care of binding the object into the GTT
1608  * (since it may have been evicted to make room for something), allocating
1609  * a fence register, and mapping the appropriate aperture address into
1610  * userspace.
1611  */
1612 int
1613 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1614                         struct drm_file *file)
1615 {
1616         struct drm_i915_gem_mmap_gtt *args = data;
1617
1618         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1619 }
1620
1621 /* Immediately discard the backing storage */
1622 static void
1623 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1624 {
1625         struct inode *inode;
1626
1627         i915_gem_object_free_mmap_offset(obj);
1628
1629         if (obj->base.filp == NULL)
1630                 return;
1631
1632         /* Our goal here is to return as much of the memory as
1633          * is possible back to the system as we are called from OOM.
1634          * To do this we must instruct the shmfs to drop all of its
1635          * backing pages, *now*.
1636          */
1637         inode = obj->base.filp->f_path.dentry->d_inode;
1638         shmem_truncate_range(inode, 0, (loff_t)-1);
1639
1640         obj->madv = __I915_MADV_PURGED;
1641 }
1642
1643 static inline int
1644 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1645 {
1646         return obj->madv == I915_MADV_DONTNEED;
1647 }
1648
1649 static void
1650 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1651 {
1652         int page_count = obj->base.size / PAGE_SIZE;
1653         struct scatterlist *sg;
1654         int ret, i;
1655
1656         BUG_ON(obj->madv == __I915_MADV_PURGED);
1657
1658         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1659         if (ret) {
1660                 /* In the event of a disaster, abandon all caches and
1661                  * hope for the best.
1662                  */
1663                 WARN_ON(ret != -EIO);
1664                 i915_gem_clflush_object(obj);
1665                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1666         }
1667
1668         if (i915_gem_object_needs_bit17_swizzle(obj))
1669                 i915_gem_object_save_bit_17_swizzle(obj);
1670
1671         if (obj->madv == I915_MADV_DONTNEED)
1672                 obj->dirty = 0;
1673
1674         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1675                 struct page *page = sg_page(sg);
1676
1677                 if (obj->dirty)
1678                         set_page_dirty(page);
1679
1680                 if (obj->madv == I915_MADV_WILLNEED)
1681                         mark_page_accessed(page);
1682
1683                 page_cache_release(page);
1684         }
1685         obj->dirty = 0;
1686
1687         sg_free_table(obj->pages);
1688         kfree(obj->pages);
1689 }
1690
1691 static int
1692 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1693 {
1694         const struct drm_i915_gem_object_ops *ops = obj->ops;
1695
1696         if (obj->pages == NULL)
1697                 return 0;
1698
1699         BUG_ON(obj->gtt_space);
1700
1701         if (obj->pages_pin_count)
1702                 return -EBUSY;
1703
1704         ops->put_pages(obj);
1705         obj->pages = NULL;
1706
1707         list_del(&obj->gtt_list);
1708         if (i915_gem_object_is_purgeable(obj))
1709                 i915_gem_object_truncate(obj);
1710
1711         return 0;
1712 }
1713
1714 static long
1715 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1716 {
1717         struct drm_i915_gem_object *obj, *next;
1718         long count = 0;
1719
1720         list_for_each_entry_safe(obj, next,
1721                                  &dev_priv->mm.unbound_list,
1722                                  gtt_list) {
1723                 if (i915_gem_object_is_purgeable(obj) &&
1724                     i915_gem_object_put_pages(obj) == 0) {
1725                         count += obj->base.size >> PAGE_SHIFT;
1726                         if (count >= target)
1727                                 return count;
1728                 }
1729         }
1730
1731         list_for_each_entry_safe(obj, next,
1732                                  &dev_priv->mm.inactive_list,
1733                                  mm_list) {
1734                 if (i915_gem_object_is_purgeable(obj) &&
1735                     i915_gem_object_unbind(obj) == 0 &&
1736                     i915_gem_object_put_pages(obj) == 0) {
1737                         count += obj->base.size >> PAGE_SHIFT;
1738                         if (count >= target)
1739                                 return count;
1740                 }
1741         }
1742
1743         return count;
1744 }
1745
1746 static void
1747 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1748 {
1749         struct drm_i915_gem_object *obj, *next;
1750
1751         i915_gem_evict_everything(dev_priv->dev);
1752
1753         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1754                 i915_gem_object_put_pages(obj);
1755 }
1756
1757 static int
1758 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1759 {
1760         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1761         int page_count, i;
1762         struct address_space *mapping;
1763         struct sg_table *st;
1764         struct scatterlist *sg;
1765         struct page *page;
1766         gfp_t gfp;
1767
1768         /* Assert that the object is not currently in any GPU domain. As it
1769          * wasn't in the GTT, there shouldn't be any way it could have been in
1770          * a GPU cache
1771          */
1772         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1773         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1774
1775         st = kmalloc(sizeof(*st), GFP_KERNEL);
1776         if (st == NULL)
1777                 return -ENOMEM;
1778
1779         page_count = obj->base.size / PAGE_SIZE;
1780         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1781                 sg_free_table(st);
1782                 kfree(st);
1783                 return -ENOMEM;
1784         }
1785
1786         /* Get the list of pages out of our struct file.  They'll be pinned
1787          * at this point until we release them.
1788          *
1789          * Fail silently without starting the shrinker
1790          */
1791         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1792         gfp = mapping_gfp_mask(mapping);
1793         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1794         gfp &= ~(__GFP_IO | __GFP_WAIT);
1795         for_each_sg(st->sgl, sg, page_count, i) {
1796                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1797                 if (IS_ERR(page)) {
1798                         i915_gem_purge(dev_priv, page_count);
1799                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1800                 }
1801                 if (IS_ERR(page)) {
1802                         /* We've tried hard to allocate the memory by reaping
1803                          * our own buffer, now let the real VM do its job and
1804                          * go down in flames if truly OOM.
1805                          */
1806                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1807                         gfp |= __GFP_IO | __GFP_WAIT;
1808
1809                         i915_gem_shrink_all(dev_priv);
1810                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1811                         if (IS_ERR(page))
1812                                 goto err_pages;
1813
1814                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1815                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1816                 }
1817
1818                 sg_set_page(sg, page, PAGE_SIZE, 0);
1819         }
1820
1821         obj->pages = st;
1822
1823         if (i915_gem_object_needs_bit17_swizzle(obj))
1824                 i915_gem_object_do_bit_17_swizzle(obj);
1825
1826         return 0;
1827
1828 err_pages:
1829         for_each_sg(st->sgl, sg, i, page_count)
1830                 page_cache_release(sg_page(sg));
1831         sg_free_table(st);
1832         kfree(st);
1833         return PTR_ERR(page);
1834 }
1835
1836 /* Ensure that the associated pages are gathered from the backing storage
1837  * and pinned into our object. i915_gem_object_get_pages() may be called
1838  * multiple times before they are released by a single call to
1839  * i915_gem_object_put_pages() - once the pages are no longer referenced
1840  * either as a result of memory pressure (reaping pages under the shrinker)
1841  * or as the object is itself released.
1842  */
1843 int
1844 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1845 {
1846         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1847         const struct drm_i915_gem_object_ops *ops = obj->ops;
1848         int ret;
1849
1850         if (obj->pages)
1851                 return 0;
1852
1853         BUG_ON(obj->pages_pin_count);
1854
1855         ret = ops->get_pages(obj);
1856         if (ret)
1857                 return ret;
1858
1859         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1860         return 0;
1861 }
1862
1863 void
1864 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1865                                struct intel_ring_buffer *ring)
1866 {
1867         struct drm_device *dev = obj->base.dev;
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869         u32 seqno = intel_ring_get_seqno(ring);
1870
1871         BUG_ON(ring == NULL);
1872         obj->ring = ring;
1873
1874         /* Add a reference if we're newly entering the active list. */
1875         if (!obj->active) {
1876                 drm_gem_object_reference(&obj->base);
1877                 obj->active = 1;
1878         }
1879
1880         /* Move from whatever list we were on to the tail of execution. */
1881         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1882         list_move_tail(&obj->ring_list, &ring->active_list);
1883
1884         obj->last_read_seqno = seqno;
1885
1886         if (obj->fenced_gpu_access) {
1887                 obj->last_fenced_seqno = seqno;
1888
1889                 /* Bump MRU to take account of the delayed flush */
1890                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1891                         struct drm_i915_fence_reg *reg;
1892
1893                         reg = &dev_priv->fence_regs[obj->fence_reg];
1894                         list_move_tail(&reg->lru_list,
1895                                        &dev_priv->mm.fence_list);
1896                 }
1897         }
1898 }
1899
1900 static void
1901 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1902 {
1903         struct drm_device *dev = obj->base.dev;
1904         struct drm_i915_private *dev_priv = dev->dev_private;
1905
1906         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1907         BUG_ON(!obj->active);
1908
1909         if (obj->pin_count) /* are we a framebuffer? */
1910                 intel_mark_fb_idle(obj);
1911
1912         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1913
1914         list_del_init(&obj->ring_list);
1915         obj->ring = NULL;
1916
1917         obj->last_read_seqno = 0;
1918         obj->last_write_seqno = 0;
1919         obj->base.write_domain = 0;
1920
1921         obj->last_fenced_seqno = 0;
1922         obj->fenced_gpu_access = false;
1923
1924         obj->active = 0;
1925         drm_gem_object_unreference(&obj->base);
1926
1927         WARN_ON(i915_verify_lists(dev));
1928 }
1929
1930 static int
1931 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1932 {
1933         struct drm_i915_private *dev_priv = dev->dev_private;
1934         struct intel_ring_buffer *ring;
1935         int ret, i, j;
1936
1937         /* The hardware uses various monotonic 32-bit counters, if we
1938          * detect that they will wraparound we need to idle the GPU
1939          * and reset those counters.
1940          */
1941         ret = 0;
1942         for_each_ring(ring, dev_priv, i) {
1943                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1944                         ret |= ring->sync_seqno[j] != 0;
1945         }
1946         if (ret == 0)
1947                 return ret;
1948
1949         ret = i915_gpu_idle(dev);
1950         if (ret)
1951                 return ret;
1952
1953         i915_gem_retire_requests(dev);
1954         for_each_ring(ring, dev_priv, i) {
1955                 ret = intel_ring_handle_seqno_wrap(ring);
1956                 if (ret)
1957                         return ret;
1958
1959                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1960                         ring->sync_seqno[j] = 0;
1961         }
1962
1963         return 0;
1964 }
1965
1966 int
1967 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1968 {
1969         struct drm_i915_private *dev_priv = dev->dev_private;
1970
1971         /* reserve 0 for non-seqno */
1972         if (dev_priv->next_seqno == 0) {
1973                 int ret = i915_gem_handle_seqno_wrap(dev);
1974                 if (ret)
1975                         return ret;
1976
1977                 dev_priv->next_seqno = 1;
1978         }
1979
1980         *seqno = dev_priv->next_seqno++;
1981         return 0;
1982 }
1983
1984 int
1985 i915_add_request(struct intel_ring_buffer *ring,
1986                  struct drm_file *file,
1987                  u32 *out_seqno)
1988 {
1989         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1990         struct drm_i915_gem_request *request;
1991         u32 request_ring_position;
1992         int was_empty;
1993         int ret;
1994
1995         /*
1996          * Emit any outstanding flushes - execbuf can fail to emit the flush
1997          * after having emitted the batchbuffer command. Hence we need to fix
1998          * things up similar to emitting the lazy request. The difference here
1999          * is that the flush _must_ happen before the next request, no matter
2000          * what.
2001          */
2002         ret = intel_ring_flush_all_caches(ring);
2003         if (ret)
2004                 return ret;
2005
2006         request = kmalloc(sizeof(*request), GFP_KERNEL);
2007         if (request == NULL)
2008                 return -ENOMEM;
2009
2010
2011         /* Record the position of the start of the request so that
2012          * should we detect the updated seqno part-way through the
2013          * GPU processing the request, we never over-estimate the
2014          * position of the head.
2015          */
2016         request_ring_position = intel_ring_get_tail(ring);
2017
2018         ret = ring->add_request(ring);
2019         if (ret) {
2020                 kfree(request);
2021                 return ret;
2022         }
2023
2024         request->seqno = intel_ring_get_seqno(ring);
2025         request->ring = ring;
2026         request->tail = request_ring_position;
2027         request->emitted_jiffies = jiffies;
2028         was_empty = list_empty(&ring->request_list);
2029         list_add_tail(&request->list, &ring->request_list);
2030         request->file_priv = NULL;
2031
2032         if (file) {
2033                 struct drm_i915_file_private *file_priv = file->driver_priv;
2034
2035                 spin_lock(&file_priv->mm.lock);
2036                 request->file_priv = file_priv;
2037                 list_add_tail(&request->client_list,
2038                               &file_priv->mm.request_list);
2039                 spin_unlock(&file_priv->mm.lock);
2040         }
2041
2042         trace_i915_gem_request_add(ring, request->seqno);
2043         ring->outstanding_lazy_request = 0;
2044
2045         if (!dev_priv->mm.suspended) {
2046                 if (i915_enable_hangcheck) {
2047                         mod_timer(&dev_priv->hangcheck_timer,
2048                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2049                 }
2050                 if (was_empty) {
2051                         queue_delayed_work(dev_priv->wq,
2052                                            &dev_priv->mm.retire_work,
2053                                            round_jiffies_up_relative(HZ));
2054                         intel_mark_busy(dev_priv->dev);
2055                 }
2056         }
2057
2058         if (out_seqno)
2059                 *out_seqno = request->seqno;
2060         return 0;
2061 }
2062
2063 static inline void
2064 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2065 {
2066         struct drm_i915_file_private *file_priv = request->file_priv;
2067
2068         if (!file_priv)
2069                 return;
2070
2071         spin_lock(&file_priv->mm.lock);
2072         if (request->file_priv) {
2073                 list_del(&request->client_list);
2074                 request->file_priv = NULL;
2075         }
2076         spin_unlock(&file_priv->mm.lock);
2077 }
2078
2079 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2080                                       struct intel_ring_buffer *ring)
2081 {
2082         while (!list_empty(&ring->request_list)) {
2083                 struct drm_i915_gem_request *request;
2084
2085                 request = list_first_entry(&ring->request_list,
2086                                            struct drm_i915_gem_request,
2087                                            list);
2088
2089                 list_del(&request->list);
2090                 i915_gem_request_remove_from_client(request);
2091                 kfree(request);
2092         }
2093
2094         while (!list_empty(&ring->active_list)) {
2095                 struct drm_i915_gem_object *obj;
2096
2097                 obj = list_first_entry(&ring->active_list,
2098                                        struct drm_i915_gem_object,
2099                                        ring_list);
2100
2101                 i915_gem_object_move_to_inactive(obj);
2102         }
2103 }
2104
2105 static void i915_gem_reset_fences(struct drm_device *dev)
2106 {
2107         struct drm_i915_private *dev_priv = dev->dev_private;
2108         int i;
2109
2110         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2111                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2112
2113                 i915_gem_write_fence(dev, i, NULL);
2114
2115                 if (reg->obj)
2116                         i915_gem_object_fence_lost(reg->obj);
2117
2118                 reg->pin_count = 0;
2119                 reg->obj = NULL;
2120                 INIT_LIST_HEAD(&reg->lru_list);
2121         }
2122
2123         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2124 }
2125
2126 void i915_gem_reset(struct drm_device *dev)
2127 {
2128         struct drm_i915_private *dev_priv = dev->dev_private;
2129         struct drm_i915_gem_object *obj;
2130         struct intel_ring_buffer *ring;
2131         int i;
2132
2133         for_each_ring(ring, dev_priv, i)
2134                 i915_gem_reset_ring_lists(dev_priv, ring);
2135
2136         /* Move everything out of the GPU domains to ensure we do any
2137          * necessary invalidation upon reuse.
2138          */
2139         list_for_each_entry(obj,
2140                             &dev_priv->mm.inactive_list,
2141                             mm_list)
2142         {
2143                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2144         }
2145
2146         /* The fence registers are invalidated so clear them out */
2147         i915_gem_reset_fences(dev);
2148 }
2149
2150 /**
2151  * This function clears the request list as sequence numbers are passed.
2152  */
2153 void
2154 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2155 {
2156         uint32_t seqno;
2157
2158         if (list_empty(&ring->request_list))
2159                 return;
2160
2161         WARN_ON(i915_verify_lists(ring->dev));
2162
2163         seqno = ring->get_seqno(ring, true);
2164
2165         while (!list_empty(&ring->request_list)) {
2166                 struct drm_i915_gem_request *request;
2167
2168                 request = list_first_entry(&ring->request_list,
2169                                            struct drm_i915_gem_request,
2170                                            list);
2171
2172                 if (!i915_seqno_passed(seqno, request->seqno))
2173                         break;
2174
2175                 trace_i915_gem_request_retire(ring, request->seqno);
2176                 /* We know the GPU must have read the request to have
2177                  * sent us the seqno + interrupt, so use the position
2178                  * of tail of the request to update the last known position
2179                  * of the GPU head.
2180                  */
2181                 ring->last_retired_head = request->tail;
2182
2183                 list_del(&request->list);
2184                 i915_gem_request_remove_from_client(request);
2185                 kfree(request);
2186         }
2187
2188         /* Move any buffers on the active list that are no longer referenced
2189          * by the ringbuffer to the flushing/inactive lists as appropriate.
2190          */
2191         while (!list_empty(&ring->active_list)) {
2192                 struct drm_i915_gem_object *obj;
2193
2194                 obj = list_first_entry(&ring->active_list,
2195                                       struct drm_i915_gem_object,
2196                                       ring_list);
2197
2198                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2199                         break;
2200
2201                 i915_gem_object_move_to_inactive(obj);
2202         }
2203
2204         if (unlikely(ring->trace_irq_seqno &&
2205                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2206                 ring->irq_put(ring);
2207                 ring->trace_irq_seqno = 0;
2208         }
2209
2210         WARN_ON(i915_verify_lists(ring->dev));
2211 }
2212
2213 void
2214 i915_gem_retire_requests(struct drm_device *dev)
2215 {
2216         drm_i915_private_t *dev_priv = dev->dev_private;
2217         struct intel_ring_buffer *ring;
2218         int i;
2219
2220         for_each_ring(ring, dev_priv, i)
2221                 i915_gem_retire_requests_ring(ring);
2222 }
2223
2224 static void
2225 i915_gem_retire_work_handler(struct work_struct *work)
2226 {
2227         drm_i915_private_t *dev_priv;
2228         struct drm_device *dev;
2229         struct intel_ring_buffer *ring;
2230         bool idle;
2231         int i;
2232
2233         dev_priv = container_of(work, drm_i915_private_t,
2234                                 mm.retire_work.work);
2235         dev = dev_priv->dev;
2236
2237         /* Come back later if the device is busy... */
2238         if (!mutex_trylock(&dev->struct_mutex)) {
2239                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2240                                    round_jiffies_up_relative(HZ));
2241                 return;
2242         }
2243
2244         i915_gem_retire_requests(dev);
2245
2246         /* Send a periodic flush down the ring so we don't hold onto GEM
2247          * objects indefinitely.
2248          */
2249         idle = true;
2250         for_each_ring(ring, dev_priv, i) {
2251                 if (ring->gpu_caches_dirty)
2252                         i915_add_request(ring, NULL, NULL);
2253
2254                 idle &= list_empty(&ring->request_list);
2255         }
2256
2257         if (!dev_priv->mm.suspended && !idle)
2258                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2259                                    round_jiffies_up_relative(HZ));
2260         if (idle)
2261                 intel_mark_idle(dev);
2262
2263         mutex_unlock(&dev->struct_mutex);
2264 }
2265
2266 /**
2267  * Ensures that an object will eventually get non-busy by flushing any required
2268  * write domains, emitting any outstanding lazy request and retiring and
2269  * completed requests.
2270  */
2271 static int
2272 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2273 {
2274         int ret;
2275
2276         if (obj->active) {
2277                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2278                 if (ret)
2279                         return ret;
2280
2281                 i915_gem_retire_requests_ring(obj->ring);
2282         }
2283
2284         return 0;
2285 }
2286
2287 /**
2288  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2289  * @DRM_IOCTL_ARGS: standard ioctl arguments
2290  *
2291  * Returns 0 if successful, else an error is returned with the remaining time in
2292  * the timeout parameter.
2293  *  -ETIME: object is still busy after timeout
2294  *  -ERESTARTSYS: signal interrupted the wait
2295  *  -ENONENT: object doesn't exist
2296  * Also possible, but rare:
2297  *  -EAGAIN: GPU wedged
2298  *  -ENOMEM: damn
2299  *  -ENODEV: Internal IRQ fail
2300  *  -E?: The add request failed
2301  *
2302  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2303  * non-zero timeout parameter the wait ioctl will wait for the given number of
2304  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2305  * without holding struct_mutex the object may become re-busied before this
2306  * function completes. A similar but shorter * race condition exists in the busy
2307  * ioctl
2308  */
2309 int
2310 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2311 {
2312         struct drm_i915_gem_wait *args = data;
2313         struct drm_i915_gem_object *obj;
2314         struct intel_ring_buffer *ring = NULL;
2315         struct timespec timeout_stack, *timeout = NULL;
2316         u32 seqno = 0;
2317         int ret = 0;
2318
2319         if (args->timeout_ns >= 0) {
2320                 timeout_stack = ns_to_timespec(args->timeout_ns);
2321                 timeout = &timeout_stack;
2322         }
2323
2324         ret = i915_mutex_lock_interruptible(dev);
2325         if (ret)
2326                 return ret;
2327
2328         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2329         if (&obj->base == NULL) {
2330                 mutex_unlock(&dev->struct_mutex);
2331                 return -ENOENT;
2332         }
2333
2334         /* Need to make sure the object gets inactive eventually. */
2335         ret = i915_gem_object_flush_active(obj);
2336         if (ret)
2337                 goto out;
2338
2339         if (obj->active) {
2340                 seqno = obj->last_read_seqno;
2341                 ring = obj->ring;
2342         }
2343
2344         if (seqno == 0)
2345                  goto out;
2346
2347         /* Do this after OLR check to make sure we make forward progress polling
2348          * on this IOCTL with a 0 timeout (like busy ioctl)
2349          */
2350         if (!args->timeout_ns) {
2351                 ret = -ETIME;
2352                 goto out;
2353         }
2354
2355         drm_gem_object_unreference(&obj->base);
2356         mutex_unlock(&dev->struct_mutex);
2357
2358         ret = __wait_seqno(ring, seqno, true, timeout);
2359         if (timeout) {
2360                 WARN_ON(!timespec_valid(timeout));
2361                 args->timeout_ns = timespec_to_ns(timeout);
2362         }
2363         return ret;
2364
2365 out:
2366         drm_gem_object_unreference(&obj->base);
2367         mutex_unlock(&dev->struct_mutex);
2368         return ret;
2369 }
2370
2371 /**
2372  * i915_gem_object_sync - sync an object to a ring.
2373  *
2374  * @obj: object which may be in use on another ring.
2375  * @to: ring we wish to use the object on. May be NULL.
2376  *
2377  * This code is meant to abstract object synchronization with the GPU.
2378  * Calling with NULL implies synchronizing the object with the CPU
2379  * rather than a particular GPU ring.
2380  *
2381  * Returns 0 if successful, else propagates up the lower layer error.
2382  */
2383 int
2384 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2385                      struct intel_ring_buffer *to)
2386 {
2387         struct intel_ring_buffer *from = obj->ring;
2388         u32 seqno;
2389         int ret, idx;
2390
2391         if (from == NULL || to == from)
2392                 return 0;
2393
2394         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2395                 return i915_gem_object_wait_rendering(obj, false);
2396
2397         idx = intel_ring_sync_index(from, to);
2398
2399         seqno = obj->last_read_seqno;
2400         if (seqno <= from->sync_seqno[idx])
2401                 return 0;
2402
2403         ret = i915_gem_check_olr(obj->ring, seqno);
2404         if (ret)
2405                 return ret;
2406
2407         ret = to->sync_to(to, from, seqno);
2408         if (!ret)
2409                 /* We use last_read_seqno because sync_to()
2410                  * might have just caused seqno wrap under
2411                  * the radar.
2412                  */
2413                 from->sync_seqno[idx] = obj->last_read_seqno;
2414
2415         return ret;
2416 }
2417
2418 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2419 {
2420         u32 old_write_domain, old_read_domains;
2421
2422         /* Act a barrier for all accesses through the GTT */
2423         mb();
2424
2425         /* Force a pagefault for domain tracking on next user access */
2426         i915_gem_release_mmap(obj);
2427
2428         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2429                 return;
2430
2431         old_read_domains = obj->base.read_domains;
2432         old_write_domain = obj->base.write_domain;
2433
2434         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2435         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2436
2437         trace_i915_gem_object_change_domain(obj,
2438                                             old_read_domains,
2439                                             old_write_domain);
2440 }
2441
2442 /**
2443  * Unbinds an object from the GTT aperture.
2444  */
2445 int
2446 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2447 {
2448         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2449         int ret = 0;
2450
2451         if (obj->gtt_space == NULL)
2452                 return 0;
2453
2454         if (obj->pin_count)
2455                 return -EBUSY;
2456
2457         BUG_ON(obj->pages == NULL);
2458
2459         ret = i915_gem_object_finish_gpu(obj);
2460         if (ret)
2461                 return ret;
2462         /* Continue on if we fail due to EIO, the GPU is hung so we
2463          * should be safe and we need to cleanup or else we might
2464          * cause memory corruption through use-after-free.
2465          */
2466
2467         i915_gem_object_finish_gtt(obj);
2468
2469         /* release the fence reg _after_ flushing */
2470         ret = i915_gem_object_put_fence(obj);
2471         if (ret)
2472                 return ret;
2473
2474         trace_i915_gem_object_unbind(obj);
2475
2476         if (obj->has_global_gtt_mapping)
2477                 i915_gem_gtt_unbind_object(obj);
2478         if (obj->has_aliasing_ppgtt_mapping) {
2479                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2480                 obj->has_aliasing_ppgtt_mapping = 0;
2481         }
2482         i915_gem_gtt_finish_object(obj);
2483
2484         list_del(&obj->mm_list);
2485         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2486         /* Avoid an unnecessary call to unbind on rebind. */
2487         obj->map_and_fenceable = true;
2488
2489         drm_mm_put_block(obj->gtt_space);
2490         obj->gtt_space = NULL;
2491         obj->gtt_offset = 0;
2492
2493         return 0;
2494 }
2495
2496 int i915_gpu_idle(struct drm_device *dev)
2497 {
2498         drm_i915_private_t *dev_priv = dev->dev_private;
2499         struct intel_ring_buffer *ring;
2500         int ret, i;
2501
2502         /* Flush everything onto the inactive list. */
2503         for_each_ring(ring, dev_priv, i) {
2504                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2505                 if (ret)
2506                         return ret;
2507
2508                 ret = intel_ring_idle(ring);
2509                 if (ret)
2510                         return ret;
2511         }
2512
2513         return 0;
2514 }
2515
2516 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2517                                         struct drm_i915_gem_object *obj)
2518 {
2519         drm_i915_private_t *dev_priv = dev->dev_private;
2520         uint64_t val;
2521
2522         if (obj) {
2523                 u32 size = obj->gtt_space->size;
2524
2525                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2526                                  0xfffff000) << 32;
2527                 val |= obj->gtt_offset & 0xfffff000;
2528                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2529                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2530
2531                 if (obj->tiling_mode == I915_TILING_Y)
2532                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2533                 val |= I965_FENCE_REG_VALID;
2534         } else
2535                 val = 0;
2536
2537         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2538         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2539 }
2540
2541 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2542                                  struct drm_i915_gem_object *obj)
2543 {
2544         drm_i915_private_t *dev_priv = dev->dev_private;
2545         uint64_t val;
2546
2547         if (obj) {
2548                 u32 size = obj->gtt_space->size;
2549
2550                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2551                                  0xfffff000) << 32;
2552                 val |= obj->gtt_offset & 0xfffff000;
2553                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2554                 if (obj->tiling_mode == I915_TILING_Y)
2555                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2556                 val |= I965_FENCE_REG_VALID;
2557         } else
2558                 val = 0;
2559
2560         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2561         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2562 }
2563
2564 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2565                                  struct drm_i915_gem_object *obj)
2566 {
2567         drm_i915_private_t *dev_priv = dev->dev_private;
2568         u32 val;
2569
2570         if (obj) {
2571                 u32 size = obj->gtt_space->size;
2572                 int pitch_val;
2573                 int tile_width;
2574
2575                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2576                      (size & -size) != size ||
2577                      (obj->gtt_offset & (size - 1)),
2578                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2579                      obj->gtt_offset, obj->map_and_fenceable, size);
2580
2581                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2582                         tile_width = 128;
2583                 else
2584                         tile_width = 512;
2585
2586                 /* Note: pitch better be a power of two tile widths */
2587                 pitch_val = obj->stride / tile_width;
2588                 pitch_val = ffs(pitch_val) - 1;
2589
2590                 val = obj->gtt_offset;
2591                 if (obj->tiling_mode == I915_TILING_Y)
2592                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2593                 val |= I915_FENCE_SIZE_BITS(size);
2594                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2595                 val |= I830_FENCE_REG_VALID;
2596         } else
2597                 val = 0;
2598
2599         if (reg < 8)
2600                 reg = FENCE_REG_830_0 + reg * 4;
2601         else
2602                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2603
2604         I915_WRITE(reg, val);
2605         POSTING_READ(reg);
2606 }
2607
2608 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2609                                 struct drm_i915_gem_object *obj)
2610 {
2611         drm_i915_private_t *dev_priv = dev->dev_private;
2612         uint32_t val;
2613
2614         if (obj) {
2615                 u32 size = obj->gtt_space->size;
2616                 uint32_t pitch_val;
2617
2618                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2619                      (size & -size) != size ||
2620                      (obj->gtt_offset & (size - 1)),
2621                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2622                      obj->gtt_offset, size);
2623
2624                 pitch_val = obj->stride / 128;
2625                 pitch_val = ffs(pitch_val) - 1;
2626
2627                 val = obj->gtt_offset;
2628                 if (obj->tiling_mode == I915_TILING_Y)
2629                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2630                 val |= I830_FENCE_SIZE_BITS(size);
2631                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2632                 val |= I830_FENCE_REG_VALID;
2633         } else
2634                 val = 0;
2635
2636         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2637         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2638 }
2639
2640 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2641                                  struct drm_i915_gem_object *obj)
2642 {
2643         switch (INTEL_INFO(dev)->gen) {
2644         case 7:
2645         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2646         case 5:
2647         case 4: i965_write_fence_reg(dev, reg, obj); break;
2648         case 3: i915_write_fence_reg(dev, reg, obj); break;
2649         case 2: i830_write_fence_reg(dev, reg, obj); break;
2650         default: break;
2651         }
2652 }
2653
2654 static inline int fence_number(struct drm_i915_private *dev_priv,
2655                                struct drm_i915_fence_reg *fence)
2656 {
2657         return fence - dev_priv->fence_regs;
2658 }
2659
2660 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2661                                          struct drm_i915_fence_reg *fence,
2662                                          bool enable)
2663 {
2664         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2665         int reg = fence_number(dev_priv, fence);
2666
2667         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2668
2669         if (enable) {
2670                 obj->fence_reg = reg;
2671                 fence->obj = obj;
2672                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2673         } else {
2674                 obj->fence_reg = I915_FENCE_REG_NONE;
2675                 fence->obj = NULL;
2676                 list_del_init(&fence->lru_list);
2677         }
2678 }
2679
2680 static int
2681 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2682 {
2683         if (obj->last_fenced_seqno) {
2684                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2685                 if (ret)
2686                         return ret;
2687
2688                 obj->last_fenced_seqno = 0;
2689         }
2690
2691         /* Ensure that all CPU reads are completed before installing a fence
2692          * and all writes before removing the fence.
2693          */
2694         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2695                 mb();
2696
2697         obj->fenced_gpu_access = false;
2698         return 0;
2699 }
2700
2701 int
2702 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2703 {
2704         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2705         int ret;
2706
2707         ret = i915_gem_object_flush_fence(obj);
2708         if (ret)
2709                 return ret;
2710
2711         if (obj->fence_reg == I915_FENCE_REG_NONE)
2712                 return 0;
2713
2714         i915_gem_object_update_fence(obj,
2715                                      &dev_priv->fence_regs[obj->fence_reg],
2716                                      false);
2717         i915_gem_object_fence_lost(obj);
2718
2719         return 0;
2720 }
2721
2722 static struct drm_i915_fence_reg *
2723 i915_find_fence_reg(struct drm_device *dev)
2724 {
2725         struct drm_i915_private *dev_priv = dev->dev_private;
2726         struct drm_i915_fence_reg *reg, *avail;
2727         int i;
2728
2729         /* First try to find a free reg */
2730         avail = NULL;
2731         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2732                 reg = &dev_priv->fence_regs[i];
2733                 if (!reg->obj)
2734                         return reg;
2735
2736                 if (!reg->pin_count)
2737                         avail = reg;
2738         }
2739
2740         if (avail == NULL)
2741                 return NULL;
2742
2743         /* None available, try to steal one or wait for a user to finish */
2744         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2745                 if (reg->pin_count)
2746                         continue;
2747
2748                 return reg;
2749         }
2750
2751         return NULL;
2752 }
2753
2754 /**
2755  * i915_gem_object_get_fence - set up fencing for an object
2756  * @obj: object to map through a fence reg
2757  *
2758  * When mapping objects through the GTT, userspace wants to be able to write
2759  * to them without having to worry about swizzling if the object is tiled.
2760  * This function walks the fence regs looking for a free one for @obj,
2761  * stealing one if it can't find any.
2762  *
2763  * It then sets up the reg based on the object's properties: address, pitch
2764  * and tiling format.
2765  *
2766  * For an untiled surface, this removes any existing fence.
2767  */
2768 int
2769 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2770 {
2771         struct drm_device *dev = obj->base.dev;
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         bool enable = obj->tiling_mode != I915_TILING_NONE;
2774         struct drm_i915_fence_reg *reg;
2775         int ret;
2776
2777         /* Have we updated the tiling parameters upon the object and so
2778          * will need to serialise the write to the associated fence register?
2779          */
2780         if (obj->fence_dirty) {
2781                 ret = i915_gem_object_flush_fence(obj);
2782                 if (ret)
2783                         return ret;
2784         }
2785
2786         /* Just update our place in the LRU if our fence is getting reused. */
2787         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2788                 reg = &dev_priv->fence_regs[obj->fence_reg];
2789                 if (!obj->fence_dirty) {
2790                         list_move_tail(&reg->lru_list,
2791                                        &dev_priv->mm.fence_list);
2792                         return 0;
2793                 }
2794         } else if (enable) {
2795                 reg = i915_find_fence_reg(dev);
2796                 if (reg == NULL)
2797                         return -EDEADLK;
2798
2799                 if (reg->obj) {
2800                         struct drm_i915_gem_object *old = reg->obj;
2801
2802                         ret = i915_gem_object_flush_fence(old);
2803                         if (ret)
2804                                 return ret;
2805
2806                         i915_gem_object_fence_lost(old);
2807                 }
2808         } else
2809                 return 0;
2810
2811         i915_gem_object_update_fence(obj, reg, enable);
2812         obj->fence_dirty = false;
2813
2814         return 0;
2815 }
2816
2817 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2818                                      struct drm_mm_node *gtt_space,
2819                                      unsigned long cache_level)
2820 {
2821         struct drm_mm_node *other;
2822
2823         /* On non-LLC machines we have to be careful when putting differing
2824          * types of snoopable memory together to avoid the prefetcher
2825          * crossing memory domains and dying.
2826          */
2827         if (HAS_LLC(dev))
2828                 return true;
2829
2830         if (gtt_space == NULL)
2831                 return true;
2832
2833         if (list_empty(&gtt_space->node_list))
2834                 return true;
2835
2836         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2837         if (other->allocated && !other->hole_follows && other->color != cache_level)
2838                 return false;
2839
2840         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2841         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2842                 return false;
2843
2844         return true;
2845 }
2846
2847 static void i915_gem_verify_gtt(struct drm_device *dev)
2848 {
2849 #if WATCH_GTT
2850         struct drm_i915_private *dev_priv = dev->dev_private;
2851         struct drm_i915_gem_object *obj;
2852         int err = 0;
2853
2854         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2855                 if (obj->gtt_space == NULL) {
2856                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2857                         err++;
2858                         continue;
2859                 }
2860
2861                 if (obj->cache_level != obj->gtt_space->color) {
2862                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2863                                obj->gtt_space->start,
2864                                obj->gtt_space->start + obj->gtt_space->size,
2865                                obj->cache_level,
2866                                obj->gtt_space->color);
2867                         err++;
2868                         continue;
2869                 }
2870
2871                 if (!i915_gem_valid_gtt_space(dev,
2872                                               obj->gtt_space,
2873                                               obj->cache_level)) {
2874                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2875                                obj->gtt_space->start,
2876                                obj->gtt_space->start + obj->gtt_space->size,
2877                                obj->cache_level);
2878                         err++;
2879                         continue;
2880                 }
2881         }
2882
2883         WARN_ON(err);
2884 #endif
2885 }
2886
2887 /**
2888  * Finds free space in the GTT aperture and binds the object there.
2889  */
2890 static int
2891 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2892                             unsigned alignment,
2893                             bool map_and_fenceable,
2894                             bool nonblocking)
2895 {
2896         struct drm_device *dev = obj->base.dev;
2897         drm_i915_private_t *dev_priv = dev->dev_private;
2898         struct drm_mm_node *free_space;
2899         u32 size, fence_size, fence_alignment, unfenced_alignment;
2900         bool mappable, fenceable;
2901         int ret;
2902
2903         if (obj->madv != I915_MADV_WILLNEED) {
2904                 DRM_ERROR("Attempting to bind a purgeable object\n");
2905                 return -EINVAL;
2906         }
2907
2908         fence_size = i915_gem_get_gtt_size(dev,
2909                                            obj->base.size,
2910                                            obj->tiling_mode);
2911         fence_alignment = i915_gem_get_gtt_alignment(dev,
2912                                                      obj->base.size,
2913                                                      obj->tiling_mode);
2914         unfenced_alignment =
2915                 i915_gem_get_unfenced_gtt_alignment(dev,
2916                                                     obj->base.size,
2917                                                     obj->tiling_mode);
2918
2919         if (alignment == 0)
2920                 alignment = map_and_fenceable ? fence_alignment :
2921                                                 unfenced_alignment;
2922         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2923                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2924                 return -EINVAL;
2925         }
2926
2927         size = map_and_fenceable ? fence_size : obj->base.size;
2928
2929         /* If the object is bigger than the entire aperture, reject it early
2930          * before evicting everything in a vain attempt to find space.
2931          */
2932         if (obj->base.size >
2933             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2934                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2935                 return -E2BIG;
2936         }
2937
2938         ret = i915_gem_object_get_pages(obj);
2939         if (ret)
2940                 return ret;
2941
2942         i915_gem_object_pin_pages(obj);
2943
2944  search_free:
2945         if (map_and_fenceable)
2946                 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2947                                                                size, alignment, obj->cache_level,
2948                                                                0, dev_priv->mm.gtt_mappable_end,
2949                                                                false);
2950         else
2951                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2952                                                       size, alignment, obj->cache_level,
2953                                                       false);
2954
2955         if (free_space != NULL) {
2956                 if (map_and_fenceable)
2957                         free_space =
2958                                 drm_mm_get_block_range_generic(free_space,
2959                                                                size, alignment, obj->cache_level,
2960                                                                0, dev_priv->mm.gtt_mappable_end,
2961                                                                false);
2962                 else
2963                         free_space =
2964                                 drm_mm_get_block_generic(free_space,
2965                                                          size, alignment, obj->cache_level,
2966                                                          false);
2967         }
2968         if (free_space == NULL) {
2969                 ret = i915_gem_evict_something(dev, size, alignment,
2970                                                obj->cache_level,
2971                                                map_and_fenceable,
2972                                                nonblocking);
2973                 if (ret) {
2974                         i915_gem_object_unpin_pages(obj);
2975                         return ret;
2976                 }
2977
2978                 goto search_free;
2979         }
2980         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2981                                               free_space,
2982                                               obj->cache_level))) {
2983                 i915_gem_object_unpin_pages(obj);
2984                 drm_mm_put_block(free_space);
2985                 return -EINVAL;
2986         }
2987
2988         ret = i915_gem_gtt_prepare_object(obj);
2989         if (ret) {
2990                 i915_gem_object_unpin_pages(obj);
2991                 drm_mm_put_block(free_space);
2992                 return ret;
2993         }
2994
2995         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2996         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2997
2998         obj->gtt_space = free_space;
2999         obj->gtt_offset = free_space->start;
3000
3001         fenceable =
3002                 free_space->size == fence_size &&
3003                 (free_space->start & (fence_alignment - 1)) == 0;
3004
3005         mappable =
3006                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3007
3008         obj->map_and_fenceable = mappable && fenceable;
3009
3010         i915_gem_object_unpin_pages(obj);
3011         trace_i915_gem_object_bind(obj, map_and_fenceable);
3012         i915_gem_verify_gtt(dev);
3013         return 0;
3014 }
3015
3016 void
3017 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3018 {
3019         /* If we don't have a page list set up, then we're not pinned
3020          * to GPU, and we can ignore the cache flush because it'll happen
3021          * again at bind time.
3022          */
3023         if (obj->pages == NULL)
3024                 return;
3025
3026         /* If the GPU is snooping the contents of the CPU cache,
3027          * we do not need to manually clear the CPU cache lines.  However,
3028          * the caches are only snooped when the render cache is
3029          * flushed/invalidated.  As we always have to emit invalidations
3030          * and flushes when moving into and out of the RENDER domain, correct
3031          * snooping behaviour occurs naturally as the result of our domain
3032          * tracking.
3033          */
3034         if (obj->cache_level != I915_CACHE_NONE)
3035                 return;
3036
3037         trace_i915_gem_object_clflush(obj);
3038
3039         drm_clflush_sg(obj->pages);
3040 }
3041
3042 /** Flushes the GTT write domain for the object if it's dirty. */
3043 static void
3044 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3045 {
3046         uint32_t old_write_domain;
3047
3048         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3049                 return;
3050
3051         /* No actual flushing is required for the GTT write domain.  Writes
3052          * to it immediately go to main memory as far as we know, so there's
3053          * no chipset flush.  It also doesn't land in render cache.
3054          *
3055          * However, we do have to enforce the order so that all writes through
3056          * the GTT land before any writes to the device, such as updates to
3057          * the GATT itself.
3058          */
3059         wmb();
3060
3061         old_write_domain = obj->base.write_domain;
3062         obj->base.write_domain = 0;
3063
3064         trace_i915_gem_object_change_domain(obj,
3065                                             obj->base.read_domains,
3066                                             old_write_domain);
3067 }
3068
3069 /** Flushes the CPU write domain for the object if it's dirty. */
3070 static void
3071 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3072 {
3073         uint32_t old_write_domain;
3074
3075         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3076                 return;
3077
3078         i915_gem_clflush_object(obj);
3079         i915_gem_chipset_flush(obj->base.dev);
3080         old_write_domain = obj->base.write_domain;
3081         obj->base.write_domain = 0;
3082
3083         trace_i915_gem_object_change_domain(obj,
3084                                             obj->base.read_domains,
3085                                             old_write_domain);
3086 }
3087
3088 /**
3089  * Moves a single object to the GTT read, and possibly write domain.
3090  *
3091  * This function returns when the move is complete, including waiting on
3092  * flushes to occur.
3093  */
3094 int
3095 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3096 {
3097         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3098         uint32_t old_write_domain, old_read_domains;
3099         int ret;
3100
3101         /* Not valid to be called on unbound objects. */
3102         if (obj->gtt_space == NULL)
3103                 return -EINVAL;
3104
3105         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3106                 return 0;
3107
3108         ret = i915_gem_object_wait_rendering(obj, !write);
3109         if (ret)
3110                 return ret;
3111
3112         i915_gem_object_flush_cpu_write_domain(obj);
3113
3114         old_write_domain = obj->base.write_domain;
3115         old_read_domains = obj->base.read_domains;
3116
3117         /* It should now be out of any other write domains, and we can update
3118          * the domain values for our changes.
3119          */
3120         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3121         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3122         if (write) {
3123                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3124                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3125                 obj->dirty = 1;
3126         }
3127
3128         trace_i915_gem_object_change_domain(obj,
3129                                             old_read_domains,
3130                                             old_write_domain);
3131
3132         /* And bump the LRU for this access */
3133         if (i915_gem_object_is_inactive(obj))
3134                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3135
3136         return 0;
3137 }
3138
3139 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3140                                     enum i915_cache_level cache_level)
3141 {
3142         struct drm_device *dev = obj->base.dev;
3143         drm_i915_private_t *dev_priv = dev->dev_private;
3144         int ret;
3145
3146         if (obj->cache_level == cache_level)
3147                 return 0;
3148
3149         if (obj->pin_count) {
3150                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3151                 return -EBUSY;
3152         }
3153
3154         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3155                 ret = i915_gem_object_unbind(obj);
3156                 if (ret)
3157                         return ret;
3158         }
3159
3160         if (obj->gtt_space) {
3161                 ret = i915_gem_object_finish_gpu(obj);
3162                 if (ret)
3163                         return ret;
3164
3165                 i915_gem_object_finish_gtt(obj);
3166
3167                 /* Before SandyBridge, you could not use tiling or fence
3168                  * registers with snooped memory, so relinquish any fences
3169                  * currently pointing to our region in the aperture.
3170                  */
3171                 if (INTEL_INFO(dev)->gen < 6) {
3172                         ret = i915_gem_object_put_fence(obj);
3173                         if (ret)
3174                                 return ret;
3175                 }
3176
3177                 if (obj->has_global_gtt_mapping)
3178                         i915_gem_gtt_bind_object(obj, cache_level);
3179                 if (obj->has_aliasing_ppgtt_mapping)
3180                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3181                                                obj, cache_level);
3182
3183                 obj->gtt_space->color = cache_level;
3184         }
3185
3186         if (cache_level == I915_CACHE_NONE) {
3187                 u32 old_read_domains, old_write_domain;
3188
3189                 /* If we're coming from LLC cached, then we haven't
3190                  * actually been tracking whether the data is in the
3191                  * CPU cache or not, since we only allow one bit set
3192                  * in obj->write_domain and have been skipping the clflushes.
3193                  * Just set it to the CPU cache for now.
3194                  */
3195                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3196                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3197
3198                 old_read_domains = obj->base.read_domains;
3199                 old_write_domain = obj->base.write_domain;
3200
3201                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3202                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3203
3204                 trace_i915_gem_object_change_domain(obj,
3205                                                     old_read_domains,
3206                                                     old_write_domain);
3207         }
3208
3209         obj->cache_level = cache_level;
3210         i915_gem_verify_gtt(dev);
3211         return 0;
3212 }
3213
3214 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3215                                struct drm_file *file)
3216 {
3217         struct drm_i915_gem_caching *args = data;
3218         struct drm_i915_gem_object *obj;
3219         int ret;
3220
3221         ret = i915_mutex_lock_interruptible(dev);
3222         if (ret)
3223                 return ret;
3224
3225         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3226         if (&obj->base == NULL) {
3227                 ret = -ENOENT;
3228                 goto unlock;
3229         }
3230
3231         args->caching = obj->cache_level != I915_CACHE_NONE;
3232
3233         drm_gem_object_unreference(&obj->base);
3234 unlock:
3235         mutex_unlock(&dev->struct_mutex);
3236         return ret;
3237 }
3238
3239 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3240                                struct drm_file *file)
3241 {
3242         struct drm_i915_gem_caching *args = data;
3243         struct drm_i915_gem_object *obj;
3244         enum i915_cache_level level;
3245         int ret;
3246
3247         switch (args->caching) {
3248         case I915_CACHING_NONE:
3249                 level = I915_CACHE_NONE;
3250                 break;
3251         case I915_CACHING_CACHED:
3252                 level = I915_CACHE_LLC;
3253                 break;
3254         default:
3255                 return -EINVAL;
3256         }
3257
3258         ret = i915_mutex_lock_interruptible(dev);
3259         if (ret)
3260                 return ret;
3261
3262         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3263         if (&obj->base == NULL) {
3264                 ret = -ENOENT;
3265                 goto unlock;
3266         }
3267
3268         ret = i915_gem_object_set_cache_level(obj, level);
3269
3270         drm_gem_object_unreference(&obj->base);
3271 unlock:
3272         mutex_unlock(&dev->struct_mutex);
3273         return ret;
3274 }
3275
3276 /*
3277  * Prepare buffer for display plane (scanout, cursors, etc).
3278  * Can be called from an uninterruptible phase (modesetting) and allows
3279  * any flushes to be pipelined (for pageflips).
3280  */
3281 int
3282 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3283                                      u32 alignment,
3284                                      struct intel_ring_buffer *pipelined)
3285 {
3286         u32 old_read_domains, old_write_domain;
3287         int ret;
3288
3289         if (pipelined != obj->ring) {
3290                 ret = i915_gem_object_sync(obj, pipelined);
3291                 if (ret)
3292                         return ret;
3293         }
3294
3295         /* The display engine is not coherent with the LLC cache on gen6.  As
3296          * a result, we make sure that the pinning that is about to occur is
3297          * done with uncached PTEs. This is lowest common denominator for all
3298          * chipsets.
3299          *
3300          * However for gen6+, we could do better by using the GFDT bit instead
3301          * of uncaching, which would allow us to flush all the LLC-cached data
3302          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3303          */
3304         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3305         if (ret)
3306                 return ret;
3307
3308         /* As the user may map the buffer once pinned in the display plane
3309          * (e.g. libkms for the bootup splash), we have to ensure that we
3310          * always use map_and_fenceable for all scanout buffers.
3311          */
3312         ret = i915_gem_object_pin(obj, alignment, true, false);
3313         if (ret)
3314                 return ret;
3315
3316         i915_gem_object_flush_cpu_write_domain(obj);
3317
3318         old_write_domain = obj->base.write_domain;
3319         old_read_domains = obj->base.read_domains;
3320
3321         /* It should now be out of any other write domains, and we can update
3322          * the domain values for our changes.
3323          */
3324         obj->base.write_domain = 0;
3325         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3326
3327         trace_i915_gem_object_change_domain(obj,
3328                                             old_read_domains,
3329                                             old_write_domain);
3330
3331         return 0;
3332 }
3333
3334 int
3335 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3336 {
3337         int ret;
3338
3339         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3340                 return 0;
3341
3342         ret = i915_gem_object_wait_rendering(obj, false);
3343         if (ret)
3344                 return ret;
3345
3346         /* Ensure that we invalidate the GPU's caches and TLBs. */
3347         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3348         return 0;
3349 }
3350
3351 /**
3352  * Moves a single object to the CPU read, and possibly write domain.
3353  *
3354  * This function returns when the move is complete, including waiting on
3355  * flushes to occur.
3356  */
3357 int
3358 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3359 {
3360         uint32_t old_write_domain, old_read_domains;
3361         int ret;
3362
3363         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3364                 return 0;
3365
3366         ret = i915_gem_object_wait_rendering(obj, !write);
3367         if (ret)
3368                 return ret;
3369
3370         i915_gem_object_flush_gtt_write_domain(obj);
3371
3372         old_write_domain = obj->base.write_domain;
3373         old_read_domains = obj->base.read_domains;
3374
3375         /* Flush the CPU cache if it's still invalid. */
3376         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3377                 i915_gem_clflush_object(obj);
3378
3379                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3380         }
3381
3382         /* It should now be out of any other write domains, and we can update
3383          * the domain values for our changes.
3384          */
3385         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3386
3387         /* If we're writing through the CPU, then the GPU read domains will
3388          * need to be invalidated at next use.
3389          */
3390         if (write) {
3391                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3392                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3393         }
3394
3395         trace_i915_gem_object_change_domain(obj,
3396                                             old_read_domains,
3397                                             old_write_domain);
3398
3399         return 0;
3400 }
3401
3402 /* Throttle our rendering by waiting until the ring has completed our requests
3403  * emitted over 20 msec ago.
3404  *
3405  * Note that if we were to use the current jiffies each time around the loop,
3406  * we wouldn't escape the function with any frames outstanding if the time to
3407  * render a frame was over 20ms.
3408  *
3409  * This should get us reasonable parallelism between CPU and GPU but also
3410  * relatively low latency when blocking on a particular request to finish.
3411  */
3412 static int
3413 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3414 {
3415         struct drm_i915_private *dev_priv = dev->dev_private;
3416         struct drm_i915_file_private *file_priv = file->driver_priv;
3417         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3418         struct drm_i915_gem_request *request;
3419         struct intel_ring_buffer *ring = NULL;
3420         u32 seqno = 0;
3421         int ret;
3422
3423         if (atomic_read(&dev_priv->mm.wedged))
3424                 return -EIO;
3425
3426         spin_lock(&file_priv->mm.lock);
3427         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3428                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3429                         break;
3430
3431                 ring = request->ring;
3432                 seqno = request->seqno;
3433         }
3434         spin_unlock(&file_priv->mm.lock);
3435
3436         if (seqno == 0)
3437                 return 0;
3438
3439         ret = __wait_seqno(ring, seqno, true, NULL);
3440         if (ret == 0)
3441                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3442
3443         return ret;
3444 }
3445
3446 int
3447 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3448                     uint32_t alignment,
3449                     bool map_and_fenceable,
3450                     bool nonblocking)
3451 {
3452         int ret;
3453
3454         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3455                 return -EBUSY;
3456
3457         if (obj->gtt_space != NULL) {
3458                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3459                     (map_and_fenceable && !obj->map_and_fenceable)) {
3460                         WARN(obj->pin_count,
3461                              "bo is already pinned with incorrect alignment:"
3462                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3463                              " obj->map_and_fenceable=%d\n",
3464                              obj->gtt_offset, alignment,
3465                              map_and_fenceable,
3466                              obj->map_and_fenceable);
3467                         ret = i915_gem_object_unbind(obj);
3468                         if (ret)
3469                                 return ret;
3470                 }
3471         }
3472
3473         if (obj->gtt_space == NULL) {
3474                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3475
3476                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3477                                                   map_and_fenceable,
3478                                                   nonblocking);
3479                 if (ret)
3480                         return ret;
3481
3482                 if (!dev_priv->mm.aliasing_ppgtt)
3483                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3484         }
3485
3486         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3487                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3488
3489         obj->pin_count++;
3490         obj->pin_mappable |= map_and_fenceable;
3491
3492         return 0;
3493 }
3494
3495 void
3496 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3497 {
3498         BUG_ON(obj->pin_count == 0);
3499         BUG_ON(obj->gtt_space == NULL);
3500
3501         if (--obj->pin_count == 0)
3502                 obj->pin_mappable = false;
3503 }
3504
3505 int
3506 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3507                    struct drm_file *file)
3508 {
3509         struct drm_i915_gem_pin *args = data;
3510         struct drm_i915_gem_object *obj;
3511         int ret;
3512
3513         ret = i915_mutex_lock_interruptible(dev);
3514         if (ret)
3515                 return ret;
3516
3517         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3518         if (&obj->base == NULL) {
3519                 ret = -ENOENT;
3520                 goto unlock;
3521         }
3522
3523         if (obj->madv != I915_MADV_WILLNEED) {
3524                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3525                 ret = -EINVAL;
3526                 goto out;
3527         }
3528
3529         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3530                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3531                           args->handle);
3532                 ret = -EINVAL;
3533                 goto out;
3534         }
3535
3536         obj->user_pin_count++;
3537         obj->pin_filp = file;
3538         if (obj->user_pin_count == 1) {
3539                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3540                 if (ret)
3541                         goto out;
3542         }
3543
3544         /* XXX - flush the CPU caches for pinned objects
3545          * as the X server doesn't manage domains yet
3546          */
3547         i915_gem_object_flush_cpu_write_domain(obj);
3548         args->offset = obj->gtt_offset;
3549 out:
3550         drm_gem_object_unreference(&obj->base);
3551 unlock:
3552         mutex_unlock(&dev->struct_mutex);
3553         return ret;
3554 }
3555
3556 int
3557 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3558                      struct drm_file *file)
3559 {
3560         struct drm_i915_gem_pin *args = data;
3561         struct drm_i915_gem_object *obj;
3562         int ret;
3563
3564         ret = i915_mutex_lock_interruptible(dev);
3565         if (ret)
3566                 return ret;
3567
3568         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3569         if (&obj->base == NULL) {
3570                 ret = -ENOENT;
3571                 goto unlock;
3572         }
3573
3574         if (obj->pin_filp != file) {
3575                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3576                           args->handle);
3577                 ret = -EINVAL;
3578                 goto out;
3579         }
3580         obj->user_pin_count--;
3581         if (obj->user_pin_count == 0) {
3582                 obj->pin_filp = NULL;
3583                 i915_gem_object_unpin(obj);
3584         }
3585
3586 out:
3587         drm_gem_object_unreference(&obj->base);
3588 unlock:
3589         mutex_unlock(&dev->struct_mutex);
3590         return ret;
3591 }
3592
3593 int
3594 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3595                     struct drm_file *file)
3596 {
3597         struct drm_i915_gem_busy *args = data;
3598         struct drm_i915_gem_object *obj;
3599         int ret;
3600
3601         ret = i915_mutex_lock_interruptible(dev);
3602         if (ret)
3603                 return ret;
3604
3605         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606         if (&obj->base == NULL) {
3607                 ret = -ENOENT;
3608                 goto unlock;
3609         }
3610
3611         /* Count all active objects as busy, even if they are currently not used
3612          * by the gpu. Users of this interface expect objects to eventually
3613          * become non-busy without any further actions, therefore emit any
3614          * necessary flushes here.
3615          */
3616         ret = i915_gem_object_flush_active(obj);
3617
3618         args->busy = obj->active;
3619         if (obj->ring) {
3620                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3621                 args->busy |= intel_ring_flag(obj->ring) << 16;
3622         }
3623
3624         drm_gem_object_unreference(&obj->base);
3625 unlock:
3626         mutex_unlock(&dev->struct_mutex);
3627         return ret;
3628 }
3629
3630 int
3631 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3632                         struct drm_file *file_priv)
3633 {
3634         return i915_gem_ring_throttle(dev, file_priv);
3635 }
3636
3637 int
3638 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3639                        struct drm_file *file_priv)
3640 {
3641         struct drm_i915_gem_madvise *args = data;
3642         struct drm_i915_gem_object *obj;
3643         int ret;
3644
3645         switch (args->madv) {
3646         case I915_MADV_DONTNEED:
3647         case I915_MADV_WILLNEED:
3648             break;
3649         default:
3650             return -EINVAL;
3651         }
3652
3653         ret = i915_mutex_lock_interruptible(dev);
3654         if (ret)
3655                 return ret;
3656
3657         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3658         if (&obj->base == NULL) {
3659                 ret = -ENOENT;
3660                 goto unlock;
3661         }
3662
3663         if (obj->pin_count) {
3664                 ret = -EINVAL;
3665                 goto out;
3666         }
3667
3668         if (obj->madv != __I915_MADV_PURGED)
3669                 obj->madv = args->madv;
3670
3671         /* if the object is no longer attached, discard its backing storage */
3672         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3673                 i915_gem_object_truncate(obj);
3674
3675         args->retained = obj->madv != __I915_MADV_PURGED;
3676
3677 out:
3678         drm_gem_object_unreference(&obj->base);
3679 unlock:
3680         mutex_unlock(&dev->struct_mutex);
3681         return ret;
3682 }
3683
3684 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3685                           const struct drm_i915_gem_object_ops *ops)
3686 {
3687         INIT_LIST_HEAD(&obj->mm_list);
3688         INIT_LIST_HEAD(&obj->gtt_list);
3689         INIT_LIST_HEAD(&obj->ring_list);
3690         INIT_LIST_HEAD(&obj->exec_list);
3691
3692         obj->ops = ops;
3693
3694         obj->fence_reg = I915_FENCE_REG_NONE;
3695         obj->madv = I915_MADV_WILLNEED;
3696         /* Avoid an unnecessary call to unbind on the first bind. */
3697         obj->map_and_fenceable = true;
3698
3699         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3700 }
3701
3702 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3703         .get_pages = i915_gem_object_get_pages_gtt,
3704         .put_pages = i915_gem_object_put_pages_gtt,
3705 };
3706
3707 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3708                                                   size_t size)
3709 {
3710         struct drm_i915_gem_object *obj;
3711         struct address_space *mapping;
3712         gfp_t mask;
3713
3714         obj = i915_gem_object_alloc(dev);
3715         if (obj == NULL)
3716                 return NULL;
3717
3718         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3719                 i915_gem_object_free(obj);
3720                 return NULL;
3721         }
3722
3723         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3724         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3725                 /* 965gm cannot relocate objects above 4GiB. */
3726                 mask &= ~__GFP_HIGHMEM;
3727                 mask |= __GFP_DMA32;
3728         }
3729
3730         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3731         mapping_set_gfp_mask(mapping, mask);
3732
3733         i915_gem_object_init(obj, &i915_gem_object_ops);
3734
3735         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3736         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3737
3738         if (HAS_LLC(dev)) {
3739                 /* On some devices, we can have the GPU use the LLC (the CPU
3740                  * cache) for about a 10% performance improvement
3741                  * compared to uncached.  Graphics requests other than
3742                  * display scanout are coherent with the CPU in
3743                  * accessing this cache.  This means in this mode we
3744                  * don't need to clflush on the CPU side, and on the
3745                  * GPU side we only need to flush internal caches to
3746                  * get data visible to the CPU.
3747                  *
3748                  * However, we maintain the display planes as UC, and so
3749                  * need to rebind when first used as such.
3750                  */
3751                 obj->cache_level = I915_CACHE_LLC;
3752         } else
3753                 obj->cache_level = I915_CACHE_NONE;
3754
3755         return obj;
3756 }
3757
3758 int i915_gem_init_object(struct drm_gem_object *obj)
3759 {
3760         BUG();
3761
3762         return 0;
3763 }
3764
3765 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3766 {
3767         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3768         struct drm_device *dev = obj->base.dev;
3769         drm_i915_private_t *dev_priv = dev->dev_private;
3770
3771         trace_i915_gem_object_destroy(obj);
3772
3773         if (obj->phys_obj)
3774                 i915_gem_detach_phys_object(dev, obj);
3775
3776         obj->pin_count = 0;
3777         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3778                 bool was_interruptible;
3779
3780                 was_interruptible = dev_priv->mm.interruptible;
3781                 dev_priv->mm.interruptible = false;
3782
3783                 WARN_ON(i915_gem_object_unbind(obj));
3784
3785                 dev_priv->mm.interruptible = was_interruptible;
3786         }
3787
3788         obj->pages_pin_count = 0;
3789         i915_gem_object_put_pages(obj);
3790         i915_gem_object_free_mmap_offset(obj);
3791         i915_gem_object_release_stolen(obj);
3792
3793         BUG_ON(obj->pages);
3794
3795         if (obj->base.import_attach)
3796                 drm_prime_gem_destroy(&obj->base, NULL);
3797
3798         drm_gem_object_release(&obj->base);
3799         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3800
3801         kfree(obj->bit_17);
3802         i915_gem_object_free(obj);
3803 }
3804
3805 int
3806 i915_gem_idle(struct drm_device *dev)
3807 {
3808         drm_i915_private_t *dev_priv = dev->dev_private;
3809         int ret;
3810
3811         mutex_lock(&dev->struct_mutex);
3812
3813         if (dev_priv->mm.suspended) {
3814                 mutex_unlock(&dev->struct_mutex);
3815                 return 0;
3816         }
3817
3818         ret = i915_gpu_idle(dev);
3819         if (ret) {
3820                 mutex_unlock(&dev->struct_mutex);
3821                 return ret;
3822         }
3823         i915_gem_retire_requests(dev);
3824
3825         /* Under UMS, be paranoid and evict. */
3826         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3827                 i915_gem_evict_everything(dev);
3828
3829         i915_gem_reset_fences(dev);
3830
3831         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3832          * We need to replace this with a semaphore, or something.
3833          * And not confound mm.suspended!
3834          */
3835         dev_priv->mm.suspended = 1;
3836         del_timer_sync(&dev_priv->hangcheck_timer);
3837
3838         i915_kernel_lost_context(dev);
3839         i915_gem_cleanup_ringbuffer(dev);
3840
3841         mutex_unlock(&dev->struct_mutex);
3842
3843         /* Cancel the retire work handler, which should be idle now. */
3844         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3845
3846         return 0;
3847 }
3848
3849 void i915_gem_l3_remap(struct drm_device *dev)
3850 {
3851         drm_i915_private_t *dev_priv = dev->dev_private;
3852         u32 misccpctl;
3853         int i;
3854
3855         if (!IS_IVYBRIDGE(dev))
3856                 return;
3857
3858         if (!dev_priv->l3_parity.remap_info)
3859                 return;
3860
3861         misccpctl = I915_READ(GEN7_MISCCPCTL);
3862         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3863         POSTING_READ(GEN7_MISCCPCTL);
3864
3865         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3866                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3867                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3868                         DRM_DEBUG("0x%x was already programmed to %x\n",
3869                                   GEN7_L3LOG_BASE + i, remap);
3870                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3871                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3872                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3873         }
3874
3875         /* Make sure all the writes land before disabling dop clock gating */
3876         POSTING_READ(GEN7_L3LOG_BASE);
3877
3878         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3879 }
3880
3881 void i915_gem_init_swizzling(struct drm_device *dev)
3882 {
3883         drm_i915_private_t *dev_priv = dev->dev_private;
3884
3885         if (INTEL_INFO(dev)->gen < 5 ||
3886             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3887                 return;
3888
3889         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3890                                  DISP_TILE_SURFACE_SWIZZLING);
3891
3892         if (IS_GEN5(dev))
3893                 return;
3894
3895         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3896         if (IS_GEN6(dev))
3897                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3898         else
3899                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3900 }
3901
3902 static bool
3903 intel_enable_blt(struct drm_device *dev)
3904 {
3905         if (!HAS_BLT(dev))
3906                 return false;
3907
3908         /* The blitter was dysfunctional on early prototypes */
3909         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3910                 DRM_INFO("BLT not supported on this pre-production hardware;"
3911                          " graphics performance will be degraded.\n");
3912                 return false;
3913         }
3914
3915         return true;
3916 }
3917
3918 int
3919 i915_gem_init_hw(struct drm_device *dev)
3920 {
3921         drm_i915_private_t *dev_priv = dev->dev_private;
3922         int ret;
3923
3924         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3925                 return -EIO;
3926
3927         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3928                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3929
3930         i915_gem_l3_remap(dev);
3931
3932         i915_gem_init_swizzling(dev);
3933
3934         ret = intel_init_render_ring_buffer(dev);
3935         if (ret)
3936                 return ret;
3937
3938         if (HAS_BSD(dev)) {
3939                 ret = intel_init_bsd_ring_buffer(dev);
3940                 if (ret)
3941                         goto cleanup_render_ring;
3942         }
3943
3944         if (intel_enable_blt(dev)) {
3945                 ret = intel_init_blt_ring_buffer(dev);
3946                 if (ret)
3947                         goto cleanup_bsd_ring;
3948         }
3949
3950         dev_priv->next_seqno = 1;
3951
3952         /*
3953          * XXX: There was some w/a described somewhere suggesting loading
3954          * contexts before PPGTT.
3955          */
3956         i915_gem_context_init(dev);
3957         i915_gem_init_ppgtt(dev);
3958
3959         return 0;
3960
3961 cleanup_bsd_ring:
3962         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3963 cleanup_render_ring:
3964         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3965         return ret;
3966 }
3967
3968 static bool
3969 intel_enable_ppgtt(struct drm_device *dev)
3970 {
3971         if (i915_enable_ppgtt >= 0)
3972                 return i915_enable_ppgtt;
3973
3974 #ifdef CONFIG_INTEL_IOMMU
3975         /* Disable ppgtt on SNB if VT-d is on. */
3976         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3977                 return false;
3978 #endif
3979
3980         return true;
3981 }
3982
3983 int i915_gem_init(struct drm_device *dev)
3984 {
3985         struct drm_i915_private *dev_priv = dev->dev_private;
3986         unsigned long gtt_size, mappable_size;
3987         int ret;
3988
3989         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3990         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3991
3992         mutex_lock(&dev->struct_mutex);
3993         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3994                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3995                  * aperture accordingly when using aliasing ppgtt. */
3996                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3997
3998                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3999
4000                 ret = i915_gem_init_aliasing_ppgtt(dev);
4001                 if (ret) {
4002                         mutex_unlock(&dev->struct_mutex);
4003                         return ret;
4004                 }
4005         } else {
4006                 /* Let GEM Manage all of the aperture.
4007                  *
4008                  * However, leave one page at the end still bound to the scratch
4009                  * page.  There are a number of places where the hardware
4010                  * apparently prefetches past the end of the object, and we've
4011                  * seen multiple hangs with the GPU head pointer stuck in a
4012                  * batchbuffer bound at the last page of the aperture.  One page
4013                  * should be enough to keep any prefetching inside of the
4014                  * aperture.
4015                  */
4016                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4017                                          gtt_size);
4018         }
4019
4020         ret = i915_gem_init_hw(dev);
4021         mutex_unlock(&dev->struct_mutex);
4022         if (ret) {
4023                 i915_gem_cleanup_aliasing_ppgtt(dev);
4024                 return ret;
4025         }
4026
4027         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4028         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4029                 dev_priv->dri1.allow_batchbuffer = 1;
4030         return 0;
4031 }
4032
4033 void
4034 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4035 {
4036         drm_i915_private_t *dev_priv = dev->dev_private;
4037         struct intel_ring_buffer *ring;
4038         int i;
4039
4040         for_each_ring(ring, dev_priv, i)
4041                 intel_cleanup_ring_buffer(ring);
4042 }
4043
4044 int
4045 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4046                        struct drm_file *file_priv)
4047 {
4048         drm_i915_private_t *dev_priv = dev->dev_private;
4049         int ret;
4050
4051         if (drm_core_check_feature(dev, DRIVER_MODESET))
4052                 return 0;
4053
4054         if (atomic_read(&dev_priv->mm.wedged)) {
4055                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4056                 atomic_set(&dev_priv->mm.wedged, 0);
4057         }
4058
4059         mutex_lock(&dev->struct_mutex);
4060         dev_priv->mm.suspended = 0;
4061
4062         ret = i915_gem_init_hw(dev);
4063         if (ret != 0) {
4064                 mutex_unlock(&dev->struct_mutex);
4065                 return ret;
4066         }
4067
4068         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4069         mutex_unlock(&dev->struct_mutex);
4070
4071         ret = drm_irq_install(dev);
4072         if (ret)
4073                 goto cleanup_ringbuffer;
4074
4075         return 0;
4076
4077 cleanup_ringbuffer:
4078         mutex_lock(&dev->struct_mutex);
4079         i915_gem_cleanup_ringbuffer(dev);
4080         dev_priv->mm.suspended = 1;
4081         mutex_unlock(&dev->struct_mutex);
4082
4083         return ret;
4084 }
4085
4086 int
4087 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4088                        struct drm_file *file_priv)
4089 {
4090         if (drm_core_check_feature(dev, DRIVER_MODESET))
4091                 return 0;
4092
4093         drm_irq_uninstall(dev);
4094         return i915_gem_idle(dev);
4095 }
4096
4097 void
4098 i915_gem_lastclose(struct drm_device *dev)
4099 {
4100         int ret;
4101
4102         if (drm_core_check_feature(dev, DRIVER_MODESET))
4103                 return;
4104
4105         ret = i915_gem_idle(dev);
4106         if (ret)
4107                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4108 }
4109
4110 static void
4111 init_ring_lists(struct intel_ring_buffer *ring)
4112 {
4113         INIT_LIST_HEAD(&ring->active_list);
4114         INIT_LIST_HEAD(&ring->request_list);
4115 }
4116
4117 void
4118 i915_gem_load(struct drm_device *dev)
4119 {
4120         drm_i915_private_t *dev_priv = dev->dev_private;
4121         int i;
4122
4123         dev_priv->slab =
4124                 kmem_cache_create("i915_gem_object",
4125                                   sizeof(struct drm_i915_gem_object), 0,
4126                                   SLAB_HWCACHE_ALIGN,
4127                                   NULL);
4128
4129         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4130         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4131         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4132         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4133         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4134         for (i = 0; i < I915_NUM_RINGS; i++)
4135                 init_ring_lists(&dev_priv->ring[i]);
4136         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4137                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4138         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4139                           i915_gem_retire_work_handler);
4140         init_completion(&dev_priv->error_completion);
4141
4142         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4143         if (IS_GEN3(dev)) {
4144                 I915_WRITE(MI_ARB_STATE,
4145                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4146         }
4147
4148         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4149
4150         /* Old X drivers will take 0-2 for front, back, depth buffers */
4151         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4152                 dev_priv->fence_reg_start = 3;
4153
4154         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4155                 dev_priv->num_fence_regs = 16;
4156         else
4157                 dev_priv->num_fence_regs = 8;
4158
4159         /* Initialize fence registers to zero */
4160         i915_gem_reset_fences(dev);
4161
4162         i915_gem_detect_bit_6_swizzle(dev);
4163         init_waitqueue_head(&dev_priv->pending_flip_queue);
4164
4165         dev_priv->mm.interruptible = true;
4166
4167         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4168         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4169         register_shrinker(&dev_priv->mm.inactive_shrinker);
4170 }
4171
4172 /*
4173  * Create a physically contiguous memory object for this object
4174  * e.g. for cursor + overlay regs
4175  */
4176 static int i915_gem_init_phys_object(struct drm_device *dev,
4177                                      int id, int size, int align)
4178 {
4179         drm_i915_private_t *dev_priv = dev->dev_private;
4180         struct drm_i915_gem_phys_object *phys_obj;
4181         int ret;
4182
4183         if (dev_priv->mm.phys_objs[id - 1] || !size)
4184                 return 0;
4185
4186         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4187         if (!phys_obj)
4188                 return -ENOMEM;
4189
4190         phys_obj->id = id;
4191
4192         phys_obj->handle = drm_pci_alloc(dev, size, align);
4193         if (!phys_obj->handle) {
4194                 ret = -ENOMEM;
4195                 goto kfree_obj;
4196         }
4197 #ifdef CONFIG_X86
4198         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4199 #endif
4200
4201         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4202
4203         return 0;
4204 kfree_obj:
4205         kfree(phys_obj);
4206         return ret;
4207 }
4208
4209 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4210 {
4211         drm_i915_private_t *dev_priv = dev->dev_private;
4212         struct drm_i915_gem_phys_object *phys_obj;
4213
4214         if (!dev_priv->mm.phys_objs[id - 1])
4215                 return;
4216
4217         phys_obj = dev_priv->mm.phys_objs[id - 1];
4218         if (phys_obj->cur_obj) {
4219                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4220         }
4221
4222 #ifdef CONFIG_X86
4223         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4224 #endif
4225         drm_pci_free(dev, phys_obj->handle);
4226         kfree(phys_obj);
4227         dev_priv->mm.phys_objs[id - 1] = NULL;
4228 }
4229
4230 void i915_gem_free_all_phys_object(struct drm_device *dev)
4231 {
4232         int i;
4233
4234         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4235                 i915_gem_free_phys_object(dev, i);
4236 }
4237
4238 void i915_gem_detach_phys_object(struct drm_device *dev,
4239                                  struct drm_i915_gem_object *obj)
4240 {
4241         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4242         char *vaddr;
4243         int i;
4244         int page_count;
4245
4246         if (!obj->phys_obj)
4247                 return;
4248         vaddr = obj->phys_obj->handle->vaddr;
4249
4250         page_count = obj->base.size / PAGE_SIZE;
4251         for (i = 0; i < page_count; i++) {
4252                 struct page *page = shmem_read_mapping_page(mapping, i);
4253                 if (!IS_ERR(page)) {
4254                         char *dst = kmap_atomic(page);
4255                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4256                         kunmap_atomic(dst);
4257
4258                         drm_clflush_pages(&page, 1);
4259
4260                         set_page_dirty(page);
4261                         mark_page_accessed(page);
4262                         page_cache_release(page);
4263                 }
4264         }
4265         i915_gem_chipset_flush(dev);
4266
4267         obj->phys_obj->cur_obj = NULL;
4268         obj->phys_obj = NULL;
4269 }
4270
4271 int
4272 i915_gem_attach_phys_object(struct drm_device *dev,
4273                             struct drm_i915_gem_object *obj,
4274                             int id,
4275                             int align)
4276 {
4277         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4278         drm_i915_private_t *dev_priv = dev->dev_private;
4279         int ret = 0;
4280         int page_count;
4281         int i;
4282
4283         if (id > I915_MAX_PHYS_OBJECT)
4284                 return -EINVAL;
4285
4286         if (obj->phys_obj) {
4287                 if (obj->phys_obj->id == id)
4288                         return 0;
4289                 i915_gem_detach_phys_object(dev, obj);
4290         }
4291
4292         /* create a new object */
4293         if (!dev_priv->mm.phys_objs[id - 1]) {
4294                 ret = i915_gem_init_phys_object(dev, id,
4295                                                 obj->base.size, align);
4296                 if (ret) {
4297                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4298                                   id, obj->base.size);
4299                         return ret;
4300                 }
4301         }
4302
4303         /* bind to the object */
4304         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4305         obj->phys_obj->cur_obj = obj;
4306
4307         page_count = obj->base.size / PAGE_SIZE;
4308
4309         for (i = 0; i < page_count; i++) {
4310                 struct page *page;
4311                 char *dst, *src;
4312
4313                 page = shmem_read_mapping_page(mapping, i);
4314                 if (IS_ERR(page))
4315                         return PTR_ERR(page);
4316
4317                 src = kmap_atomic(page);
4318                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4319                 memcpy(dst, src, PAGE_SIZE);
4320                 kunmap_atomic(src);
4321
4322                 mark_page_accessed(page);
4323                 page_cache_release(page);
4324         }
4325
4326         return 0;
4327 }
4328
4329 static int
4330 i915_gem_phys_pwrite(struct drm_device *dev,
4331                      struct drm_i915_gem_object *obj,
4332                      struct drm_i915_gem_pwrite *args,
4333                      struct drm_file *file_priv)
4334 {
4335         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4336         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4337
4338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4339                 unsigned long unwritten;
4340
4341                 /* The physical object once assigned is fixed for the lifetime
4342                  * of the obj, so we can safely drop the lock and continue
4343                  * to access vaddr.
4344                  */
4345                 mutex_unlock(&dev->struct_mutex);
4346                 unwritten = copy_from_user(vaddr, user_data, args->size);
4347                 mutex_lock(&dev->struct_mutex);
4348                 if (unwritten)
4349                         return -EFAULT;
4350         }
4351
4352         i915_gem_chipset_flush(dev);
4353         return 0;
4354 }
4355
4356 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4357 {
4358         struct drm_i915_file_private *file_priv = file->driver_priv;
4359
4360         /* Clean up our request list when the client is going away, so that
4361          * later retire_requests won't dereference our soon-to-be-gone
4362          * file_priv.
4363          */
4364         spin_lock(&file_priv->mm.lock);
4365         while (!list_empty(&file_priv->mm.request_list)) {
4366                 struct drm_i915_gem_request *request;
4367
4368                 request = list_first_entry(&file_priv->mm.request_list,
4369                                            struct drm_i915_gem_request,
4370                                            client_list);
4371                 list_del(&request->client_list);
4372                 request->file_priv = NULL;
4373         }
4374         spin_unlock(&file_priv->mm.lock);
4375 }
4376
4377 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4378 {
4379         if (!mutex_is_locked(mutex))
4380                 return false;
4381
4382 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4383         return mutex->owner == task;
4384 #else
4385         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4386         return false;
4387 #endif
4388 }
4389
4390 static int
4391 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4392 {
4393         struct drm_i915_private *dev_priv =
4394                 container_of(shrinker,
4395                              struct drm_i915_private,
4396                              mm.inactive_shrinker);
4397         struct drm_device *dev = dev_priv->dev;
4398         struct drm_i915_gem_object *obj;
4399         int nr_to_scan = sc->nr_to_scan;
4400         bool unlock = true;
4401         int cnt;
4402
4403         if (!mutex_trylock(&dev->struct_mutex)) {
4404                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4405                         return 0;
4406
4407                 unlock = false;
4408         }
4409
4410         if (nr_to_scan) {
4411                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4412                 if (nr_to_scan > 0)
4413                         i915_gem_shrink_all(dev_priv);
4414         }
4415
4416         cnt = 0;
4417         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4418                 if (obj->pages_pin_count == 0)
4419                         cnt += obj->base.size >> PAGE_SHIFT;
4420         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4421                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4422                         cnt += obj->base.size >> PAGE_SHIFT;
4423
4424         if (unlock)
4425                 mutex_unlock(&dev->struct_mutex);
4426         return cnt;
4427 }