drm/i915: kill set_need_resched
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
45                            struct i915_address_space *vm,
46                            unsigned alignment,
47                            bool map_and_fenceable,
48                            bool nonblocking);
49 static int i915_gem_phys_pwrite(struct drm_device *dev,
50                                 struct drm_i915_gem_object *obj,
51                                 struct drm_i915_gem_pwrite *args,
52                                 struct drm_file *file);
53
54 static void i915_gem_write_fence(struct drm_device *dev, int reg,
55                                  struct drm_i915_gem_object *obj);
56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57                                          struct drm_i915_fence_reg *fence,
58                                          bool enable);
59
60 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
61                                     struct shrink_control *sc);
62 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
63 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67                                   enum i915_cache_level level)
68 {
69         return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75                 return true;
76
77         return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82         if (obj->tiling_mode)
83                 i915_gem_release_mmap(obj);
84
85         /* As we do not have an associated fence register, we will force
86          * a tiling change if we ever need to acquire one.
87          */
88         obj->fence_dirty = false;
89         obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94                                   size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count++;
98         dev_priv->mm.object_memory += size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103                                      size_t size)
104 {
105         spin_lock(&dev_priv->mm.object_stat_lock);
106         dev_priv->mm.object_count--;
107         dev_priv->mm.object_memory -= size;
108         spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114         int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117                    i915_terminally_wedged(error))
118         if (EXIT_COND)
119                 return 0;
120
121         /*
122          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123          * userspace. If it takes that long something really bad is going on and
124          * we should simply try to bail out and fail as gracefully as possible.
125          */
126         ret = wait_event_interruptible_timeout(error->reset_queue,
127                                                EXIT_COND,
128                                                10*HZ);
129         if (ret == 0) {
130                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131                 return -EIO;
132         } else if (ret < 0) {
133                 return ret;
134         }
135 #undef EXIT_COND
136
137         return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         int ret;
144
145         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146         if (ret)
147                 return ret;
148
149         ret = mutex_lock_interruptible(&dev->struct_mutex);
150         if (ret)
151                 return ret;
152
153         WARN_ON(i915_verify_lists(dev));
154         return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160         return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165                     struct drm_file *file)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168         struct drm_i915_gem_init *args = data;
169
170         if (drm_core_check_feature(dev, DRIVER_MODESET))
171                 return -ENODEV;
172
173         if (args->gtt_start >= args->gtt_end ||
174             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175                 return -EINVAL;
176
177         /* GEM with user mode setting was never supported on ilk and later. */
178         if (INTEL_INFO(dev)->gen >= 5)
179                 return -ENODEV;
180
181         mutex_lock(&dev->struct_mutex);
182         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183                                   args->gtt_end);
184         dev_priv->gtt.mappable_end = args->gtt_end;
185         mutex_unlock(&dev->struct_mutex);
186
187         return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192                             struct drm_file *file)
193 {
194         struct drm_i915_private *dev_priv = dev->dev_private;
195         struct drm_i915_gem_get_aperture *args = data;
196         struct drm_i915_gem_object *obj;
197         size_t pinned;
198
199         pinned = 0;
200         mutex_lock(&dev->struct_mutex);
201         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202                 if (obj->pin_count)
203                         pinned += i915_gem_obj_ggtt_size(obj);
204         mutex_unlock(&dev->struct_mutex);
205
206         args->aper_size = dev_priv->gtt.base.total;
207         args->aper_available_size = args->aper_size - pinned;
208
209         return 0;
210 }
211
212 void *i915_gem_object_alloc(struct drm_device *dev)
213 {
214         struct drm_i915_private *dev_priv = dev->dev_private;
215         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
216 }
217
218 void i915_gem_object_free(struct drm_i915_gem_object *obj)
219 {
220         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221         kmem_cache_free(dev_priv->slab, obj);
222 }
223
224 static int
225 i915_gem_create(struct drm_file *file,
226                 struct drm_device *dev,
227                 uint64_t size,
228                 uint32_t *handle_p)
229 {
230         struct drm_i915_gem_object *obj;
231         int ret;
232         u32 handle;
233
234         size = roundup(size, PAGE_SIZE);
235         if (size == 0)
236                 return -EINVAL;
237
238         /* Allocate the new object */
239         obj = i915_gem_alloc_object(dev, size);
240         if (obj == NULL)
241                 return -ENOMEM;
242
243         ret = drm_gem_handle_create(file, &obj->base, &handle);
244         /* drop reference from allocate - handle holds it now */
245         drm_gem_object_unreference_unlocked(&obj->base);
246         if (ret)
247                 return ret;
248
249         *handle_p = handle;
250         return 0;
251 }
252
253 int
254 i915_gem_dumb_create(struct drm_file *file,
255                      struct drm_device *dev,
256                      struct drm_mode_create_dumb *args)
257 {
258         /* have to work out size/pitch and return them */
259         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
260         args->size = args->pitch * args->height;
261         return i915_gem_create(file, dev,
262                                args->size, &args->handle);
263 }
264
265 /**
266  * Creates a new mm object and returns a handle to it.
267  */
268 int
269 i915_gem_create_ioctl(struct drm_device *dev, void *data,
270                       struct drm_file *file)
271 {
272         struct drm_i915_gem_create *args = data;
273
274         return i915_gem_create(file, dev,
275                                args->size, &args->handle);
276 }
277
278 static inline int
279 __copy_to_user_swizzled(char __user *cpu_vaddr,
280                         const char *gpu_vaddr, int gpu_offset,
281                         int length)
282 {
283         int ret, cpu_offset = 0;
284
285         while (length > 0) {
286                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287                 int this_length = min(cacheline_end - gpu_offset, length);
288                 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291                                      gpu_vaddr + swizzled_gpu_offset,
292                                      this_length);
293                 if (ret)
294                         return ret + length;
295
296                 cpu_offset += this_length;
297                 gpu_offset += this_length;
298                 length -= this_length;
299         }
300
301         return 0;
302 }
303
304 static inline int
305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306                           const char __user *cpu_vaddr,
307                           int length)
308 {
309         int ret, cpu_offset = 0;
310
311         while (length > 0) {
312                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313                 int this_length = min(cacheline_end - gpu_offset, length);
314                 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317                                        cpu_vaddr + cpu_offset,
318                                        this_length);
319                 if (ret)
320                         return ret + length;
321
322                 cpu_offset += this_length;
323                 gpu_offset += this_length;
324                 length -= this_length;
325         }
326
327         return 0;
328 }
329
330 /* Per-page copy function for the shmem pread fastpath.
331  * Flushes invalid cachelines before reading the target if
332  * needs_clflush is set. */
333 static int
334 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
335                  char __user *user_data,
336                  bool page_do_bit17_swizzling, bool needs_clflush)
337 {
338         char *vaddr;
339         int ret;
340
341         if (unlikely(page_do_bit17_swizzling))
342                 return -EINVAL;
343
344         vaddr = kmap_atomic(page);
345         if (needs_clflush)
346                 drm_clflush_virt_range(vaddr + shmem_page_offset,
347                                        page_length);
348         ret = __copy_to_user_inatomic(user_data,
349                                       vaddr + shmem_page_offset,
350                                       page_length);
351         kunmap_atomic(vaddr);
352
353         return ret ? -EFAULT : 0;
354 }
355
356 static void
357 shmem_clflush_swizzled_range(char *addr, unsigned long length,
358                              bool swizzled)
359 {
360         if (unlikely(swizzled)) {
361                 unsigned long start = (unsigned long) addr;
362                 unsigned long end = (unsigned long) addr + length;
363
364                 /* For swizzling simply ensure that we always flush both
365                  * channels. Lame, but simple and it works. Swizzled
366                  * pwrite/pread is far from a hotpath - current userspace
367                  * doesn't use it at all. */
368                 start = round_down(start, 128);
369                 end = round_up(end, 128);
370
371                 drm_clflush_virt_range((void *)start, end - start);
372         } else {
373                 drm_clflush_virt_range(addr, length);
374         }
375
376 }
377
378 /* Only difference to the fast-path function is that this can handle bit17
379  * and uses non-atomic copy and kmap functions. */
380 static int
381 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
382                  char __user *user_data,
383                  bool page_do_bit17_swizzling, bool needs_clflush)
384 {
385         char *vaddr;
386         int ret;
387
388         vaddr = kmap(page);
389         if (needs_clflush)
390                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
391                                              page_length,
392                                              page_do_bit17_swizzling);
393
394         if (page_do_bit17_swizzling)
395                 ret = __copy_to_user_swizzled(user_data,
396                                               vaddr, shmem_page_offset,
397                                               page_length);
398         else
399                 ret = __copy_to_user(user_data,
400                                      vaddr + shmem_page_offset,
401                                      page_length);
402         kunmap(page);
403
404         return ret ? - EFAULT : 0;
405 }
406
407 static int
408 i915_gem_shmem_pread(struct drm_device *dev,
409                      struct drm_i915_gem_object *obj,
410                      struct drm_i915_gem_pread *args,
411                      struct drm_file *file)
412 {
413         char __user *user_data;
414         ssize_t remain;
415         loff_t offset;
416         int shmem_page_offset, page_length, ret = 0;
417         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
418         int prefaulted = 0;
419         int needs_clflush = 0;
420         struct sg_page_iter sg_iter;
421
422         user_data = to_user_ptr(args->data_ptr);
423         remain = args->size;
424
425         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
426
427         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
428                 /* If we're not in the cpu read domain, set ourself into the gtt
429                  * read domain and manually flush cachelines (if required). This
430                  * optimizes for the case when the gpu will dirty the data
431                  * anyway again before the next pread happens. */
432                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
433                 if (i915_gem_obj_bound_any(obj)) {
434                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
435                         if (ret)
436                                 return ret;
437                 }
438         }
439
440         ret = i915_gem_object_get_pages(obj);
441         if (ret)
442                 return ret;
443
444         i915_gem_object_pin_pages(obj);
445
446         offset = args->offset;
447
448         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
449                          offset >> PAGE_SHIFT) {
450                 struct page *page = sg_page_iter_page(&sg_iter);
451
452                 if (remain <= 0)
453                         break;
454
455                 /* Operation in this page
456                  *
457                  * shmem_page_offset = offset within page in shmem file
458                  * page_length = bytes to copy for this page
459                  */
460                 shmem_page_offset = offset_in_page(offset);
461                 page_length = remain;
462                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463                         page_length = PAGE_SIZE - shmem_page_offset;
464
465                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
466                         (page_to_phys(page) & (1 << 17)) != 0;
467
468                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
469                                        user_data, page_do_bit17_swizzling,
470                                        needs_clflush);
471                 if (ret == 0)
472                         goto next_page;
473
474                 mutex_unlock(&dev->struct_mutex);
475
476                 if (likely(!i915_prefault_disable) && !prefaulted) {
477                         ret = fault_in_multipages_writeable(user_data, remain);
478                         /* Userspace is tricking us, but we've already clobbered
479                          * its pages with the prefault and promised to write the
480                          * data up to the first fault. Hence ignore any errors
481                          * and just continue. */
482                         (void)ret;
483                         prefaulted = 1;
484                 }
485
486                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487                                        user_data, page_do_bit17_swizzling,
488                                        needs_clflush);
489
490                 mutex_lock(&dev->struct_mutex);
491
492 next_page:
493                 mark_page_accessed(page);
494
495                 if (ret)
496                         goto out;
497
498                 remain -= page_length;
499                 user_data += page_length;
500                 offset += page_length;
501         }
502
503 out:
504         i915_gem_object_unpin_pages(obj);
505
506         return ret;
507 }
508
509 /**
510  * Reads data from the object referenced by handle.
511  *
512  * On error, the contents of *data are undefined.
513  */
514 int
515 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
516                      struct drm_file *file)
517 {
518         struct drm_i915_gem_pread *args = data;
519         struct drm_i915_gem_object *obj;
520         int ret = 0;
521
522         if (args->size == 0)
523                 return 0;
524
525         if (!access_ok(VERIFY_WRITE,
526                        to_user_ptr(args->data_ptr),
527                        args->size))
528                 return -EFAULT;
529
530         ret = i915_mutex_lock_interruptible(dev);
531         if (ret)
532                 return ret;
533
534         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
535         if (&obj->base == NULL) {
536                 ret = -ENOENT;
537                 goto unlock;
538         }
539
540         /* Bounds check source.  */
541         if (args->offset > obj->base.size ||
542             args->size > obj->base.size - args->offset) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         /* prime objects have no backing filp to GEM pread/pwrite
548          * pages from.
549          */
550         if (!obj->base.filp) {
551                 ret = -EINVAL;
552                 goto out;
553         }
554
555         trace_i915_gem_object_pread(obj, args->offset, args->size);
556
557         ret = i915_gem_shmem_pread(dev, obj, args, file);
558
559 out:
560         drm_gem_object_unreference(&obj->base);
561 unlock:
562         mutex_unlock(&dev->struct_mutex);
563         return ret;
564 }
565
566 /* This is the fast write path which cannot handle
567  * page faults in the source data
568  */
569
570 static inline int
571 fast_user_write(struct io_mapping *mapping,
572                 loff_t page_base, int page_offset,
573                 char __user *user_data,
574                 int length)
575 {
576         void __iomem *vaddr_atomic;
577         void *vaddr;
578         unsigned long unwritten;
579
580         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
581         /* We can use the cpu mem copy function because this is X86. */
582         vaddr = (void __force*)vaddr_atomic + page_offset;
583         unwritten = __copy_from_user_inatomic_nocache(vaddr,
584                                                       user_data, length);
585         io_mapping_unmap_atomic(vaddr_atomic);
586         return unwritten;
587 }
588
589 /**
590  * This is the fast pwrite path, where we copy the data directly from the
591  * user into the GTT, uncached.
592  */
593 static int
594 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
595                          struct drm_i915_gem_object *obj,
596                          struct drm_i915_gem_pwrite *args,
597                          struct drm_file *file)
598 {
599         drm_i915_private_t *dev_priv = dev->dev_private;
600         ssize_t remain;
601         loff_t offset, page_base;
602         char __user *user_data;
603         int page_offset, page_length, ret;
604
605         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
606         if (ret)
607                 goto out;
608
609         ret = i915_gem_object_set_to_gtt_domain(obj, true);
610         if (ret)
611                 goto out_unpin;
612
613         ret = i915_gem_object_put_fence(obj);
614         if (ret)
615                 goto out_unpin;
616
617         user_data = to_user_ptr(args->data_ptr);
618         remain = args->size;
619
620         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
621
622         while (remain > 0) {
623                 /* Operation in this page
624                  *
625                  * page_base = page offset within aperture
626                  * page_offset = offset within page
627                  * page_length = bytes to copy for this page
628                  */
629                 page_base = offset & PAGE_MASK;
630                 page_offset = offset_in_page(offset);
631                 page_length = remain;
632                 if ((page_offset + remain) > PAGE_SIZE)
633                         page_length = PAGE_SIZE - page_offset;
634
635                 /* If we get a fault while copying data, then (presumably) our
636                  * source page isn't available.  Return the error and we'll
637                  * retry in the slow path.
638                  */
639                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
640                                     page_offset, user_data, page_length)) {
641                         ret = -EFAULT;
642                         goto out_unpin;
643                 }
644
645                 remain -= page_length;
646                 user_data += page_length;
647                 offset += page_length;
648         }
649
650 out_unpin:
651         i915_gem_object_unpin(obj);
652 out:
653         return ret;
654 }
655
656 /* Per-page copy function for the shmem pwrite fastpath.
657  * Flushes invalid cachelines before writing to the target if
658  * needs_clflush_before is set and flushes out any written cachelines after
659  * writing if needs_clflush is set. */
660 static int
661 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
662                   char __user *user_data,
663                   bool page_do_bit17_swizzling,
664                   bool needs_clflush_before,
665                   bool needs_clflush_after)
666 {
667         char *vaddr;
668         int ret;
669
670         if (unlikely(page_do_bit17_swizzling))
671                 return -EINVAL;
672
673         vaddr = kmap_atomic(page);
674         if (needs_clflush_before)
675                 drm_clflush_virt_range(vaddr + shmem_page_offset,
676                                        page_length);
677         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
678                                                 user_data,
679                                                 page_length);
680         if (needs_clflush_after)
681                 drm_clflush_virt_range(vaddr + shmem_page_offset,
682                                        page_length);
683         kunmap_atomic(vaddr);
684
685         return ret ? -EFAULT : 0;
686 }
687
688 /* Only difference to the fast-path function is that this can handle bit17
689  * and uses non-atomic copy and kmap functions. */
690 static int
691 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
692                   char __user *user_data,
693                   bool page_do_bit17_swizzling,
694                   bool needs_clflush_before,
695                   bool needs_clflush_after)
696 {
697         char *vaddr;
698         int ret;
699
700         vaddr = kmap(page);
701         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
702                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
703                                              page_length,
704                                              page_do_bit17_swizzling);
705         if (page_do_bit17_swizzling)
706                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
707                                                 user_data,
708                                                 page_length);
709         else
710                 ret = __copy_from_user(vaddr + shmem_page_offset,
711                                        user_data,
712                                        page_length);
713         if (needs_clflush_after)
714                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
715                                              page_length,
716                                              page_do_bit17_swizzling);
717         kunmap(page);
718
719         return ret ? -EFAULT : 0;
720 }
721
722 static int
723 i915_gem_shmem_pwrite(struct drm_device *dev,
724                       struct drm_i915_gem_object *obj,
725                       struct drm_i915_gem_pwrite *args,
726                       struct drm_file *file)
727 {
728         ssize_t remain;
729         loff_t offset;
730         char __user *user_data;
731         int shmem_page_offset, page_length, ret = 0;
732         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
733         int hit_slowpath = 0;
734         int needs_clflush_after = 0;
735         int needs_clflush_before = 0;
736         struct sg_page_iter sg_iter;
737
738         user_data = to_user_ptr(args->data_ptr);
739         remain = args->size;
740
741         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
742
743         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744                 /* If we're not in the cpu write domain, set ourself into the gtt
745                  * write domain and manually flush cachelines (if required). This
746                  * optimizes for the case when the gpu will use the data
747                  * right away and we therefore have to clflush anyway. */
748                 needs_clflush_after = cpu_write_needs_clflush(obj);
749                 if (i915_gem_obj_bound_any(obj)) {
750                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
751                         if (ret)
752                                 return ret;
753                 }
754         }
755         /* Same trick applies to invalidate partially written cachelines read
756          * before writing. */
757         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
758                 needs_clflush_before =
759                         !cpu_cache_is_coherent(dev, obj->cache_level);
760
761         ret = i915_gem_object_get_pages(obj);
762         if (ret)
763                 return ret;
764
765         i915_gem_object_pin_pages(obj);
766
767         offset = args->offset;
768         obj->dirty = 1;
769
770         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
771                          offset >> PAGE_SHIFT) {
772                 struct page *page = sg_page_iter_page(&sg_iter);
773                 int partial_cacheline_write;
774
775                 if (remain <= 0)
776                         break;
777
778                 /* Operation in this page
779                  *
780                  * shmem_page_offset = offset within page in shmem file
781                  * page_length = bytes to copy for this page
782                  */
783                 shmem_page_offset = offset_in_page(offset);
784
785                 page_length = remain;
786                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
787                         page_length = PAGE_SIZE - shmem_page_offset;
788
789                 /* If we don't overwrite a cacheline completely we need to be
790                  * careful to have up-to-date data by first clflushing. Don't
791                  * overcomplicate things and flush the entire patch. */
792                 partial_cacheline_write = needs_clflush_before &&
793                         ((shmem_page_offset | page_length)
794                                 & (boot_cpu_data.x86_clflush_size - 1));
795
796                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
797                         (page_to_phys(page) & (1 << 17)) != 0;
798
799                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
800                                         user_data, page_do_bit17_swizzling,
801                                         partial_cacheline_write,
802                                         needs_clflush_after);
803                 if (ret == 0)
804                         goto next_page;
805
806                 hit_slowpath = 1;
807                 mutex_unlock(&dev->struct_mutex);
808                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
809                                         user_data, page_do_bit17_swizzling,
810                                         partial_cacheline_write,
811                                         needs_clflush_after);
812
813                 mutex_lock(&dev->struct_mutex);
814
815 next_page:
816                 set_page_dirty(page);
817                 mark_page_accessed(page);
818
819                 if (ret)
820                         goto out;
821
822                 remain -= page_length;
823                 user_data += page_length;
824                 offset += page_length;
825         }
826
827 out:
828         i915_gem_object_unpin_pages(obj);
829
830         if (hit_slowpath) {
831                 /*
832                  * Fixup: Flush cpu caches in case we didn't flush the dirty
833                  * cachelines in-line while writing and the object moved
834                  * out of the cpu write domain while we've dropped the lock.
835                  */
836                 if (!needs_clflush_after &&
837                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
838                         if (i915_gem_clflush_object(obj, obj->pin_display))
839                                 i915_gem_chipset_flush(dev);
840                 }
841         }
842
843         if (needs_clflush_after)
844                 i915_gem_chipset_flush(dev);
845
846         return ret;
847 }
848
849 /**
850  * Writes data to the object referenced by handle.
851  *
852  * On error, the contents of the buffer that were to be modified are undefined.
853  */
854 int
855 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856                       struct drm_file *file)
857 {
858         struct drm_i915_gem_pwrite *args = data;
859         struct drm_i915_gem_object *obj;
860         int ret;
861
862         if (args->size == 0)
863                 return 0;
864
865         if (!access_ok(VERIFY_READ,
866                        to_user_ptr(args->data_ptr),
867                        args->size))
868                 return -EFAULT;
869
870         if (likely(!i915_prefault_disable)) {
871                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
872                                                    args->size);
873                 if (ret)
874                         return -EFAULT;
875         }
876
877         ret = i915_mutex_lock_interruptible(dev);
878         if (ret)
879                 return ret;
880
881         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
882         if (&obj->base == NULL) {
883                 ret = -ENOENT;
884                 goto unlock;
885         }
886
887         /* Bounds check destination. */
888         if (args->offset > obj->base.size ||
889             args->size > obj->base.size - args->offset) {
890                 ret = -EINVAL;
891                 goto out;
892         }
893
894         /* prime objects have no backing filp to GEM pread/pwrite
895          * pages from.
896          */
897         if (!obj->base.filp) {
898                 ret = -EINVAL;
899                 goto out;
900         }
901
902         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
903
904         ret = -EFAULT;
905         /* We can only do the GTT pwrite on untiled buffers, as otherwise
906          * it would end up going through the fenced access, and we'll get
907          * different detiling behavior between reading and writing.
908          * pread/pwrite currently are reading and writing from the CPU
909          * perspective, requiring manual detiling by the client.
910          */
911         if (obj->phys_obj) {
912                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
913                 goto out;
914         }
915
916         if (obj->tiling_mode == I915_TILING_NONE &&
917             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
918             cpu_write_needs_clflush(obj)) {
919                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
920                 /* Note that the gtt paths might fail with non-page-backed user
921                  * pointers (e.g. gtt mappings when moving data between
922                  * textures). Fallback to the shmem path in that case. */
923         }
924
925         if (ret == -EFAULT || ret == -ENOSPC)
926                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927
928 out:
929         drm_gem_object_unreference(&obj->base);
930 unlock:
931         mutex_unlock(&dev->struct_mutex);
932         return ret;
933 }
934
935 int
936 i915_gem_check_wedge(struct i915_gpu_error *error,
937                      bool interruptible)
938 {
939         if (i915_reset_in_progress(error)) {
940                 /* Non-interruptible callers can't handle -EAGAIN, hence return
941                  * -EIO unconditionally for these. */
942                 if (!interruptible)
943                         return -EIO;
944
945                 /* Recovery complete, but the reset failed ... */
946                 if (i915_terminally_wedged(error))
947                         return -EIO;
948
949                 return -EAGAIN;
950         }
951
952         return 0;
953 }
954
955 /*
956  * Compare seqno against outstanding lazy request. Emit a request if they are
957  * equal.
958  */
959 static int
960 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
961 {
962         int ret;
963
964         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
965
966         ret = 0;
967         if (seqno == ring->outstanding_lazy_request)
968                 ret = i915_add_request(ring, NULL);
969
970         return ret;
971 }
972
973 /**
974  * __wait_seqno - wait until execution of seqno has finished
975  * @ring: the ring expected to report seqno
976  * @seqno: duh!
977  * @reset_counter: reset sequence associated with the given seqno
978  * @interruptible: do an interruptible wait (normally yes)
979  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
980  *
981  * Note: It is of utmost importance that the passed in seqno and reset_counter
982  * values have been read by the caller in an smp safe manner. Where read-side
983  * locks are involved, it is sufficient to read the reset_counter before
984  * unlocking the lock that protects the seqno. For lockless tricks, the
985  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
986  * inserted.
987  *
988  * Returns 0 if the seqno was found within the alloted time. Else returns the
989  * errno with remaining time filled in timeout argument.
990  */
991 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
992                         unsigned reset_counter,
993                         bool interruptible, struct timespec *timeout)
994 {
995         drm_i915_private_t *dev_priv = ring->dev->dev_private;
996         struct timespec before, now, wait_time={1,0};
997         unsigned long timeout_jiffies;
998         long end;
999         bool wait_forever = true;
1000         int ret;
1001
1002         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1003
1004         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005                 return 0;
1006
1007         trace_i915_gem_request_wait_begin(ring, seqno);
1008
1009         if (timeout != NULL) {
1010                 wait_time = *timeout;
1011                 wait_forever = false;
1012         }
1013
1014         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1015
1016         if (WARN_ON(!ring->irq_get(ring)))
1017                 return -ENODEV;
1018
1019         /* Record current time in case interrupted by signal, or wedged * */
1020         getrawmonotonic(&before);
1021
1022 #define EXIT_COND \
1023         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1024          i915_reset_in_progress(&dev_priv->gpu_error) || \
1025          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1026         do {
1027                 if (interruptible)
1028                         end = wait_event_interruptible_timeout(ring->irq_queue,
1029                                                                EXIT_COND,
1030                                                                timeout_jiffies);
1031                 else
1032                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1033                                                  timeout_jiffies);
1034
1035                 /* We need to check whether any gpu reset happened in between
1036                  * the caller grabbing the seqno and now ... */
1037                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1038                         end = -EAGAIN;
1039
1040                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1041                  * gone. */
1042                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1043                 if (ret)
1044                         end = ret;
1045         } while (end == 0 && wait_forever);
1046
1047         getrawmonotonic(&now);
1048
1049         ring->irq_put(ring);
1050         trace_i915_gem_request_wait_end(ring, seqno);
1051 #undef EXIT_COND
1052
1053         if (timeout) {
1054                 struct timespec sleep_time = timespec_sub(now, before);
1055                 *timeout = timespec_sub(*timeout, sleep_time);
1056                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1057                         set_normalized_timespec(timeout, 0, 0);
1058         }
1059
1060         switch (end) {
1061         case -EIO:
1062         case -EAGAIN: /* Wedged */
1063         case -ERESTARTSYS: /* Signal */
1064                 return (int)end;
1065         case 0: /* Timeout */
1066                 return -ETIME;
1067         default: /* Completed */
1068                 WARN_ON(end < 0); /* We're not aware of other errors */
1069                 return 0;
1070         }
1071 }
1072
1073 /**
1074  * Waits for a sequence number to be signaled, and cleans up the
1075  * request and object lists appropriately for that event.
1076  */
1077 int
1078 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1079 {
1080         struct drm_device *dev = ring->dev;
1081         struct drm_i915_private *dev_priv = dev->dev_private;
1082         bool interruptible = dev_priv->mm.interruptible;
1083         int ret;
1084
1085         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1086         BUG_ON(seqno == 0);
1087
1088         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1089         if (ret)
1090                 return ret;
1091
1092         ret = i915_gem_check_olr(ring, seqno);
1093         if (ret)
1094                 return ret;
1095
1096         return __wait_seqno(ring, seqno,
1097                             atomic_read(&dev_priv->gpu_error.reset_counter),
1098                             interruptible, NULL);
1099 }
1100
1101 static int
1102 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1103                                      struct intel_ring_buffer *ring)
1104 {
1105         i915_gem_retire_requests_ring(ring);
1106
1107         /* Manually manage the write flush as we may have not yet
1108          * retired the buffer.
1109          *
1110          * Note that the last_write_seqno is always the earlier of
1111          * the two (read/write) seqno, so if we haved successfully waited,
1112          * we know we have passed the last write.
1113          */
1114         obj->last_write_seqno = 0;
1115         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1116
1117         return 0;
1118 }
1119
1120 /**
1121  * Ensures that all rendering to the object has completed and the object is
1122  * safe to unbind from the GTT or access from the CPU.
1123  */
1124 static __must_check int
1125 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1126                                bool readonly)
1127 {
1128         struct intel_ring_buffer *ring = obj->ring;
1129         u32 seqno;
1130         int ret;
1131
1132         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1133         if (seqno == 0)
1134                 return 0;
1135
1136         ret = i915_wait_seqno(ring, seqno);
1137         if (ret)
1138                 return ret;
1139
1140         return i915_gem_object_wait_rendering__tail(obj, ring);
1141 }
1142
1143 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1144  * as the object state may change during this call.
1145  */
1146 static __must_check int
1147 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1148                                             bool readonly)
1149 {
1150         struct drm_device *dev = obj->base.dev;
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         struct intel_ring_buffer *ring = obj->ring;
1153         unsigned reset_counter;
1154         u32 seqno;
1155         int ret;
1156
1157         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1158         BUG_ON(!dev_priv->mm.interruptible);
1159
1160         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1161         if (seqno == 0)
1162                 return 0;
1163
1164         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1165         if (ret)
1166                 return ret;
1167
1168         ret = i915_gem_check_olr(ring, seqno);
1169         if (ret)
1170                 return ret;
1171
1172         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1173         mutex_unlock(&dev->struct_mutex);
1174         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1175         mutex_lock(&dev->struct_mutex);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /**
1183  * Called when user space prepares to use an object with the CPU, either
1184  * through the mmap ioctl's mapping or a GTT mapping.
1185  */
1186 int
1187 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1188                           struct drm_file *file)
1189 {
1190         struct drm_i915_gem_set_domain *args = data;
1191         struct drm_i915_gem_object *obj;
1192         uint32_t read_domains = args->read_domains;
1193         uint32_t write_domain = args->write_domain;
1194         int ret;
1195
1196         /* Only handle setting domains to types used by the CPU. */
1197         if (write_domain & I915_GEM_GPU_DOMAINS)
1198                 return -EINVAL;
1199
1200         if (read_domains & I915_GEM_GPU_DOMAINS)
1201                 return -EINVAL;
1202
1203         /* Having something in the write domain implies it's in the read
1204          * domain, and only that read domain.  Enforce that in the request.
1205          */
1206         if (write_domain != 0 && read_domains != write_domain)
1207                 return -EINVAL;
1208
1209         ret = i915_mutex_lock_interruptible(dev);
1210         if (ret)
1211                 return ret;
1212
1213         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1214         if (&obj->base == NULL) {
1215                 ret = -ENOENT;
1216                 goto unlock;
1217         }
1218
1219         /* Try to flush the object off the GPU without holding the lock.
1220          * We will repeat the flush holding the lock in the normal manner
1221          * to catch cases where we are gazumped.
1222          */
1223         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1224         if (ret)
1225                 goto unref;
1226
1227         if (read_domains & I915_GEM_DOMAIN_GTT) {
1228                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1229
1230                 /* Silently promote "you're not bound, there was nothing to do"
1231                  * to success, since the client was just asking us to
1232                  * make sure everything was done.
1233                  */
1234                 if (ret == -EINVAL)
1235                         ret = 0;
1236         } else {
1237                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1238         }
1239
1240 unref:
1241         drm_gem_object_unreference(&obj->base);
1242 unlock:
1243         mutex_unlock(&dev->struct_mutex);
1244         return ret;
1245 }
1246
1247 /**
1248  * Called when user space has done writes to this buffer
1249  */
1250 int
1251 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1252                          struct drm_file *file)
1253 {
1254         struct drm_i915_gem_sw_finish *args = data;
1255         struct drm_i915_gem_object *obj;
1256         int ret = 0;
1257
1258         ret = i915_mutex_lock_interruptible(dev);
1259         if (ret)
1260                 return ret;
1261
1262         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1263         if (&obj->base == NULL) {
1264                 ret = -ENOENT;
1265                 goto unlock;
1266         }
1267
1268         /* Pinned buffers may be scanout, so flush the cache */
1269         if (obj->pin_display)
1270                 i915_gem_object_flush_cpu_write_domain(obj, true);
1271
1272         drm_gem_object_unreference(&obj->base);
1273 unlock:
1274         mutex_unlock(&dev->struct_mutex);
1275         return ret;
1276 }
1277
1278 /**
1279  * Maps the contents of an object, returning the address it is mapped
1280  * into.
1281  *
1282  * While the mapping holds a reference on the contents of the object, it doesn't
1283  * imply a ref on the object itself.
1284  */
1285 int
1286 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1287                     struct drm_file *file)
1288 {
1289         struct drm_i915_gem_mmap *args = data;
1290         struct drm_gem_object *obj;
1291         unsigned long addr;
1292
1293         obj = drm_gem_object_lookup(dev, file, args->handle);
1294         if (obj == NULL)
1295                 return -ENOENT;
1296
1297         /* prime objects have no backing filp to GEM mmap
1298          * pages from.
1299          */
1300         if (!obj->filp) {
1301                 drm_gem_object_unreference_unlocked(obj);
1302                 return -EINVAL;
1303         }
1304
1305         addr = vm_mmap(obj->filp, 0, args->size,
1306                        PROT_READ | PROT_WRITE, MAP_SHARED,
1307                        args->offset);
1308         drm_gem_object_unreference_unlocked(obj);
1309         if (IS_ERR((void *)addr))
1310                 return addr;
1311
1312         args->addr_ptr = (uint64_t) addr;
1313
1314         return 0;
1315 }
1316
1317 /**
1318  * i915_gem_fault - fault a page into the GTT
1319  * vma: VMA in question
1320  * vmf: fault info
1321  *
1322  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1323  * from userspace.  The fault handler takes care of binding the object to
1324  * the GTT (if needed), allocating and programming a fence register (again,
1325  * only if needed based on whether the old reg is still valid or the object
1326  * is tiled) and inserting a new PTE into the faulting process.
1327  *
1328  * Note that the faulting process may involve evicting existing objects
1329  * from the GTT and/or fence registers to make room.  So performance may
1330  * suffer if the GTT working set is large or there are few fence registers
1331  * left.
1332  */
1333 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1334 {
1335         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1336         struct drm_device *dev = obj->base.dev;
1337         drm_i915_private_t *dev_priv = dev->dev_private;
1338         pgoff_t page_offset;
1339         unsigned long pfn;
1340         int ret = 0;
1341         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1342
1343         /* We don't use vmf->pgoff since that has the fake offset */
1344         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1345                 PAGE_SHIFT;
1346
1347         ret = i915_mutex_lock_interruptible(dev);
1348         if (ret)
1349                 goto out;
1350
1351         trace_i915_gem_object_fault(obj, page_offset, true, write);
1352
1353         /* Access to snoopable pages through the GTT is incoherent. */
1354         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1355                 ret = -EINVAL;
1356                 goto unlock;
1357         }
1358
1359         /* Now bind it into the GTT if needed */
1360         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1361         if (ret)
1362                 goto unlock;
1363
1364         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1365         if (ret)
1366                 goto unpin;
1367
1368         ret = i915_gem_object_get_fence(obj);
1369         if (ret)
1370                 goto unpin;
1371
1372         obj->fault_mappable = true;
1373
1374         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1375         pfn >>= PAGE_SHIFT;
1376         pfn += page_offset;
1377
1378         /* Finally, remap it using the new GTT offset */
1379         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unpin:
1381         i915_gem_object_unpin(obj);
1382 unlock:
1383         mutex_unlock(&dev->struct_mutex);
1384 out:
1385         switch (ret) {
1386         case -EIO:
1387                 /* If this -EIO is due to a gpu hang, give the reset code a
1388                  * chance to clean up the mess. Otherwise return the proper
1389                  * SIGBUS. */
1390                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1391                         return VM_FAULT_SIGBUS;
1392         case -EAGAIN:
1393                 /*
1394                  * EAGAIN means the gpu is hung and we'll wait for the error
1395                  * handler to reset everything when re-faulting in
1396                  * i915_mutex_lock_interruptible.
1397                  */
1398         case 0:
1399         case -ERESTARTSYS:
1400         case -EINTR:
1401         case -EBUSY:
1402                 /*
1403                  * EBUSY is ok: this just means that another thread
1404                  * already did the job.
1405                  */
1406                 return VM_FAULT_NOPAGE;
1407         case -ENOMEM:
1408                 return VM_FAULT_OOM;
1409         case -ENOSPC:
1410                 return VM_FAULT_SIGBUS;
1411         default:
1412                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1413                 return VM_FAULT_SIGBUS;
1414         }
1415 }
1416
1417 /**
1418  * i915_gem_release_mmap - remove physical page mappings
1419  * @obj: obj in question
1420  *
1421  * Preserve the reservation of the mmapping with the DRM core code, but
1422  * relinquish ownership of the pages back to the system.
1423  *
1424  * It is vital that we remove the page mapping if we have mapped a tiled
1425  * object through the GTT and then lose the fence register due to
1426  * resource pressure. Similarly if the object has been moved out of the
1427  * aperture, than pages mapped into userspace must be revoked. Removing the
1428  * mapping will then trigger a page fault on the next user access, allowing
1429  * fixup by i915_gem_fault().
1430  */
1431 void
1432 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1433 {
1434         if (!obj->fault_mappable)
1435                 return;
1436
1437         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1438         obj->fault_mappable = false;
1439 }
1440
1441 uint32_t
1442 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1443 {
1444         uint32_t gtt_size;
1445
1446         if (INTEL_INFO(dev)->gen >= 4 ||
1447             tiling_mode == I915_TILING_NONE)
1448                 return size;
1449
1450         /* Previous chips need a power-of-two fence region when tiling */
1451         if (INTEL_INFO(dev)->gen == 3)
1452                 gtt_size = 1024*1024;
1453         else
1454                 gtt_size = 512*1024;
1455
1456         while (gtt_size < size)
1457                 gtt_size <<= 1;
1458
1459         return gtt_size;
1460 }
1461
1462 /**
1463  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1464  * @obj: object to check
1465  *
1466  * Return the required GTT alignment for an object, taking into account
1467  * potential fence register mapping.
1468  */
1469 uint32_t
1470 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1471                            int tiling_mode, bool fenced)
1472 {
1473         /*
1474          * Minimum alignment is 4k (GTT page size), but might be greater
1475          * if a fence register is needed for the object.
1476          */
1477         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1478             tiling_mode == I915_TILING_NONE)
1479                 return 4096;
1480
1481         /*
1482          * Previous chips need to be aligned to the size of the smallest
1483          * fence register that can contain the object.
1484          */
1485         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1486 }
1487
1488 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1489 {
1490         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1491         int ret;
1492
1493         if (drm_vma_node_has_offset(&obj->base.vma_node))
1494                 return 0;
1495
1496         dev_priv->mm.shrinker_no_lock_stealing = true;
1497
1498         ret = drm_gem_create_mmap_offset(&obj->base);
1499         if (ret != -ENOSPC)
1500                 goto out;
1501
1502         /* Badly fragmented mmap space? The only way we can recover
1503          * space is by destroying unwanted objects. We can't randomly release
1504          * mmap_offsets as userspace expects them to be persistent for the
1505          * lifetime of the objects. The closest we can is to release the
1506          * offsets on purgeable objects by truncating it and marking it purged,
1507          * which prevents userspace from ever using that object again.
1508          */
1509         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1510         ret = drm_gem_create_mmap_offset(&obj->base);
1511         if (ret != -ENOSPC)
1512                 goto out;
1513
1514         i915_gem_shrink_all(dev_priv);
1515         ret = drm_gem_create_mmap_offset(&obj->base);
1516 out:
1517         dev_priv->mm.shrinker_no_lock_stealing = false;
1518
1519         return ret;
1520 }
1521
1522 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1523 {
1524         drm_gem_free_mmap_offset(&obj->base);
1525 }
1526
1527 int
1528 i915_gem_mmap_gtt(struct drm_file *file,
1529                   struct drm_device *dev,
1530                   uint32_t handle,
1531                   uint64_t *offset)
1532 {
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         struct drm_i915_gem_object *obj;
1535         int ret;
1536
1537         ret = i915_mutex_lock_interruptible(dev);
1538         if (ret)
1539                 return ret;
1540
1541         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1542         if (&obj->base == NULL) {
1543                 ret = -ENOENT;
1544                 goto unlock;
1545         }
1546
1547         if (obj->base.size > dev_priv->gtt.mappable_end) {
1548                 ret = -E2BIG;
1549                 goto out;
1550         }
1551
1552         if (obj->madv != I915_MADV_WILLNEED) {
1553                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1554                 ret = -EINVAL;
1555                 goto out;
1556         }
1557
1558         ret = i915_gem_object_create_mmap_offset(obj);
1559         if (ret)
1560                 goto out;
1561
1562         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1563
1564 out:
1565         drm_gem_object_unreference(&obj->base);
1566 unlock:
1567         mutex_unlock(&dev->struct_mutex);
1568         return ret;
1569 }
1570
1571 /**
1572  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1573  * @dev: DRM device
1574  * @data: GTT mapping ioctl data
1575  * @file: GEM object info
1576  *
1577  * Simply returns the fake offset to userspace so it can mmap it.
1578  * The mmap call will end up in drm_gem_mmap(), which will set things
1579  * up so we can get faults in the handler above.
1580  *
1581  * The fault handler will take care of binding the object into the GTT
1582  * (since it may have been evicted to make room for something), allocating
1583  * a fence register, and mapping the appropriate aperture address into
1584  * userspace.
1585  */
1586 int
1587 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1588                         struct drm_file *file)
1589 {
1590         struct drm_i915_gem_mmap_gtt *args = data;
1591
1592         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1593 }
1594
1595 /* Immediately discard the backing storage */
1596 static void
1597 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1598 {
1599         struct inode *inode;
1600
1601         i915_gem_object_free_mmap_offset(obj);
1602
1603         if (obj->base.filp == NULL)
1604                 return;
1605
1606         /* Our goal here is to return as much of the memory as
1607          * is possible back to the system as we are called from OOM.
1608          * To do this we must instruct the shmfs to drop all of its
1609          * backing pages, *now*.
1610          */
1611         inode = file_inode(obj->base.filp);
1612         shmem_truncate_range(inode, 0, (loff_t)-1);
1613
1614         obj->madv = __I915_MADV_PURGED;
1615 }
1616
1617 static inline int
1618 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1619 {
1620         return obj->madv == I915_MADV_DONTNEED;
1621 }
1622
1623 static void
1624 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1625 {
1626         struct sg_page_iter sg_iter;
1627         int ret;
1628
1629         BUG_ON(obj->madv == __I915_MADV_PURGED);
1630
1631         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1632         if (ret) {
1633                 /* In the event of a disaster, abandon all caches and
1634                  * hope for the best.
1635                  */
1636                 WARN_ON(ret != -EIO);
1637                 i915_gem_clflush_object(obj, true);
1638                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1639         }
1640
1641         if (i915_gem_object_needs_bit17_swizzle(obj))
1642                 i915_gem_object_save_bit_17_swizzle(obj);
1643
1644         if (obj->madv == I915_MADV_DONTNEED)
1645                 obj->dirty = 0;
1646
1647         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1648                 struct page *page = sg_page_iter_page(&sg_iter);
1649
1650                 if (obj->dirty)
1651                         set_page_dirty(page);
1652
1653                 if (obj->madv == I915_MADV_WILLNEED)
1654                         mark_page_accessed(page);
1655
1656                 page_cache_release(page);
1657         }
1658         obj->dirty = 0;
1659
1660         sg_free_table(obj->pages);
1661         kfree(obj->pages);
1662 }
1663
1664 int
1665 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1666 {
1667         const struct drm_i915_gem_object_ops *ops = obj->ops;
1668
1669         if (obj->pages == NULL)
1670                 return 0;
1671
1672         if (obj->pages_pin_count)
1673                 return -EBUSY;
1674
1675         BUG_ON(i915_gem_obj_bound_any(obj));
1676
1677         /* ->put_pages might need to allocate memory for the bit17 swizzle
1678          * array, hence protect them from being reaped by removing them from gtt
1679          * lists early. */
1680         list_del(&obj->global_list);
1681
1682         ops->put_pages(obj);
1683         obj->pages = NULL;
1684
1685         if (i915_gem_object_is_purgeable(obj))
1686                 i915_gem_object_truncate(obj);
1687
1688         return 0;
1689 }
1690
1691 static long
1692 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1693                   bool purgeable_only)
1694 {
1695         struct list_head still_bound_list;
1696         struct drm_i915_gem_object *obj, *next;
1697         long count = 0;
1698
1699         list_for_each_entry_safe(obj, next,
1700                                  &dev_priv->mm.unbound_list,
1701                                  global_list) {
1702                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1703                     i915_gem_object_put_pages(obj) == 0) {
1704                         count += obj->base.size >> PAGE_SHIFT;
1705                         if (count >= target)
1706                                 return count;
1707                 }
1708         }
1709
1710         /*
1711          * As we may completely rewrite the bound list whilst unbinding
1712          * (due to retiring requests) we have to strictly process only
1713          * one element of the list at the time, and recheck the list
1714          * on every iteration.
1715          */
1716         INIT_LIST_HEAD(&still_bound_list);
1717         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1718                 struct i915_vma *vma, *v;
1719
1720                 obj = list_first_entry(&dev_priv->mm.bound_list,
1721                                        typeof(*obj), global_list);
1722                 list_move_tail(&obj->global_list, &still_bound_list);
1723
1724                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1725                         continue;
1726
1727                 /*
1728                  * Hold a reference whilst we unbind this object, as we may
1729                  * end up waiting for and retiring requests. This might
1730                  * release the final reference (held by the active list)
1731                  * and result in the object being freed from under us.
1732                  * in this object being freed.
1733                  *
1734                  * Note 1: Shrinking the bound list is special since only active
1735                  * (and hence bound objects) can contain such limbo objects, so
1736                  * we don't need special tricks for shrinking the unbound list.
1737                  * The only other place where we have to be careful with active
1738                  * objects suddenly disappearing due to retiring requests is the
1739                  * eviction code.
1740                  *
1741                  * Note 2: Even though the bound list doesn't hold a reference
1742                  * to the object we can safely grab one here: The final object
1743                  * unreferencing and the bound_list are both protected by the
1744                  * dev->struct_mutex and so we won't ever be able to observe an
1745                  * object on the bound_list with a reference count equals 0.
1746                  */
1747                 drm_gem_object_reference(&obj->base);
1748
1749                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1750                         if (i915_vma_unbind(vma))
1751                                 break;
1752
1753                 if (i915_gem_object_put_pages(obj) == 0)
1754                         count += obj->base.size >> PAGE_SHIFT;
1755
1756                 drm_gem_object_unreference(&obj->base);
1757         }
1758         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1759
1760         return count;
1761 }
1762
1763 static long
1764 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1765 {
1766         return __i915_gem_shrink(dev_priv, target, true);
1767 }
1768
1769 static void
1770 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1771 {
1772         struct drm_i915_gem_object *obj, *next;
1773
1774         i915_gem_evict_everything(dev_priv->dev);
1775
1776         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1777                                  global_list)
1778                 i915_gem_object_put_pages(obj);
1779 }
1780
1781 static int
1782 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1783 {
1784         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1785         int page_count, i;
1786         struct address_space *mapping;
1787         struct sg_table *st;
1788         struct scatterlist *sg;
1789         struct sg_page_iter sg_iter;
1790         struct page *page;
1791         unsigned long last_pfn = 0;     /* suppress gcc warning */
1792         gfp_t gfp;
1793
1794         /* Assert that the object is not currently in any GPU domain. As it
1795          * wasn't in the GTT, there shouldn't be any way it could have been in
1796          * a GPU cache
1797          */
1798         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1799         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1800
1801         st = kmalloc(sizeof(*st), GFP_KERNEL);
1802         if (st == NULL)
1803                 return -ENOMEM;
1804
1805         page_count = obj->base.size / PAGE_SIZE;
1806         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1807                 kfree(st);
1808                 return -ENOMEM;
1809         }
1810
1811         /* Get the list of pages out of our struct file.  They'll be pinned
1812          * at this point until we release them.
1813          *
1814          * Fail silently without starting the shrinker
1815          */
1816         mapping = file_inode(obj->base.filp)->i_mapping;
1817         gfp = mapping_gfp_mask(mapping);
1818         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1819         gfp &= ~(__GFP_IO | __GFP_WAIT);
1820         sg = st->sgl;
1821         st->nents = 0;
1822         for (i = 0; i < page_count; i++) {
1823                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1824                 if (IS_ERR(page)) {
1825                         i915_gem_purge(dev_priv, page_count);
1826                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1827                 }
1828                 if (IS_ERR(page)) {
1829                         /* We've tried hard to allocate the memory by reaping
1830                          * our own buffer, now let the real VM do its job and
1831                          * go down in flames if truly OOM.
1832                          */
1833                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1834                         gfp |= __GFP_IO | __GFP_WAIT;
1835
1836                         i915_gem_shrink_all(dev_priv);
1837                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1838                         if (IS_ERR(page))
1839                                 goto err_pages;
1840
1841                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1842                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1843                 }
1844 #ifdef CONFIG_SWIOTLB
1845                 if (swiotlb_nr_tbl()) {
1846                         st->nents++;
1847                         sg_set_page(sg, page, PAGE_SIZE, 0);
1848                         sg = sg_next(sg);
1849                         continue;
1850                 }
1851 #endif
1852                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1853                         if (i)
1854                                 sg = sg_next(sg);
1855                         st->nents++;
1856                         sg_set_page(sg, page, PAGE_SIZE, 0);
1857                 } else {
1858                         sg->length += PAGE_SIZE;
1859                 }
1860                 last_pfn = page_to_pfn(page);
1861         }
1862 #ifdef CONFIG_SWIOTLB
1863         if (!swiotlb_nr_tbl())
1864 #endif
1865                 sg_mark_end(sg);
1866         obj->pages = st;
1867
1868         if (i915_gem_object_needs_bit17_swizzle(obj))
1869                 i915_gem_object_do_bit_17_swizzle(obj);
1870
1871         return 0;
1872
1873 err_pages:
1874         sg_mark_end(sg);
1875         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1876                 page_cache_release(sg_page_iter_page(&sg_iter));
1877         sg_free_table(st);
1878         kfree(st);
1879         return PTR_ERR(page);
1880 }
1881
1882 /* Ensure that the associated pages are gathered from the backing storage
1883  * and pinned into our object. i915_gem_object_get_pages() may be called
1884  * multiple times before they are released by a single call to
1885  * i915_gem_object_put_pages() - once the pages are no longer referenced
1886  * either as a result of memory pressure (reaping pages under the shrinker)
1887  * or as the object is itself released.
1888  */
1889 int
1890 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1891 {
1892         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1893         const struct drm_i915_gem_object_ops *ops = obj->ops;
1894         int ret;
1895
1896         if (obj->pages)
1897                 return 0;
1898
1899         if (obj->madv != I915_MADV_WILLNEED) {
1900                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1901                 return -EINVAL;
1902         }
1903
1904         BUG_ON(obj->pages_pin_count);
1905
1906         ret = ops->get_pages(obj);
1907         if (ret)
1908                 return ret;
1909
1910         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1911         return 0;
1912 }
1913
1914 void
1915 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1916                                struct intel_ring_buffer *ring)
1917 {
1918         struct drm_device *dev = obj->base.dev;
1919         struct drm_i915_private *dev_priv = dev->dev_private;
1920         u32 seqno = intel_ring_get_seqno(ring);
1921
1922         BUG_ON(ring == NULL);
1923         if (obj->ring != ring && obj->last_write_seqno) {
1924                 /* Keep the seqno relative to the current ring */
1925                 obj->last_write_seqno = seqno;
1926         }
1927         obj->ring = ring;
1928
1929         /* Add a reference if we're newly entering the active list. */
1930         if (!obj->active) {
1931                 drm_gem_object_reference(&obj->base);
1932                 obj->active = 1;
1933         }
1934
1935         list_move_tail(&obj->ring_list, &ring->active_list);
1936
1937         obj->last_read_seqno = seqno;
1938
1939         if (obj->fenced_gpu_access) {
1940                 obj->last_fenced_seqno = seqno;
1941
1942                 /* Bump MRU to take account of the delayed flush */
1943                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1944                         struct drm_i915_fence_reg *reg;
1945
1946                         reg = &dev_priv->fence_regs[obj->fence_reg];
1947                         list_move_tail(&reg->lru_list,
1948                                        &dev_priv->mm.fence_list);
1949                 }
1950         }
1951 }
1952
1953 static void
1954 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1955 {
1956         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1957         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1958         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1959
1960         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1961         BUG_ON(!obj->active);
1962
1963         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1964
1965         list_del_init(&obj->ring_list);
1966         obj->ring = NULL;
1967
1968         obj->last_read_seqno = 0;
1969         obj->last_write_seqno = 0;
1970         obj->base.write_domain = 0;
1971
1972         obj->last_fenced_seqno = 0;
1973         obj->fenced_gpu_access = false;
1974
1975         obj->active = 0;
1976         drm_gem_object_unreference(&obj->base);
1977
1978         WARN_ON(i915_verify_lists(dev));
1979 }
1980
1981 static int
1982 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1983 {
1984         struct drm_i915_private *dev_priv = dev->dev_private;
1985         struct intel_ring_buffer *ring;
1986         int ret, i, j;
1987
1988         /* Carefully retire all requests without writing to the rings */
1989         for_each_ring(ring, dev_priv, i) {
1990                 ret = intel_ring_idle(ring);
1991                 if (ret)
1992                         return ret;
1993         }
1994         i915_gem_retire_requests(dev);
1995
1996         /* Finally reset hw state */
1997         for_each_ring(ring, dev_priv, i) {
1998                 intel_ring_init_seqno(ring, seqno);
1999
2000                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2001                         ring->sync_seqno[j] = 0;
2002         }
2003
2004         return 0;
2005 }
2006
2007 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2008 {
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         int ret;
2011
2012         if (seqno == 0)
2013                 return -EINVAL;
2014
2015         /* HWS page needs to be set less than what we
2016          * will inject to ring
2017          */
2018         ret = i915_gem_init_seqno(dev, seqno - 1);
2019         if (ret)
2020                 return ret;
2021
2022         /* Carefully set the last_seqno value so that wrap
2023          * detection still works
2024          */
2025         dev_priv->next_seqno = seqno;
2026         dev_priv->last_seqno = seqno - 1;
2027         if (dev_priv->last_seqno == 0)
2028                 dev_priv->last_seqno--;
2029
2030         return 0;
2031 }
2032
2033 int
2034 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2035 {
2036         struct drm_i915_private *dev_priv = dev->dev_private;
2037
2038         /* reserve 0 for non-seqno */
2039         if (dev_priv->next_seqno == 0) {
2040                 int ret = i915_gem_init_seqno(dev, 0);
2041                 if (ret)
2042                         return ret;
2043
2044                 dev_priv->next_seqno = 1;
2045         }
2046
2047         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2048         return 0;
2049 }
2050
2051 int __i915_add_request(struct intel_ring_buffer *ring,
2052                        struct drm_file *file,
2053                        struct drm_i915_gem_object *obj,
2054                        u32 *out_seqno)
2055 {
2056         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2057         struct drm_i915_gem_request *request;
2058         u32 request_ring_position, request_start;
2059         int was_empty;
2060         int ret;
2061
2062         request_start = intel_ring_get_tail(ring);
2063         /*
2064          * Emit any outstanding flushes - execbuf can fail to emit the flush
2065          * after having emitted the batchbuffer command. Hence we need to fix
2066          * things up similar to emitting the lazy request. The difference here
2067          * is that the flush _must_ happen before the next request, no matter
2068          * what.
2069          */
2070         ret = intel_ring_flush_all_caches(ring);
2071         if (ret)
2072                 return ret;
2073
2074         request = kmalloc(sizeof(*request), GFP_KERNEL);
2075         if (request == NULL)
2076                 return -ENOMEM;
2077
2078
2079         /* Record the position of the start of the request so that
2080          * should we detect the updated seqno part-way through the
2081          * GPU processing the request, we never over-estimate the
2082          * position of the head.
2083          */
2084         request_ring_position = intel_ring_get_tail(ring);
2085
2086         ret = ring->add_request(ring);
2087         if (ret) {
2088                 kfree(request);
2089                 return ret;
2090         }
2091
2092         request->seqno = intel_ring_get_seqno(ring);
2093         request->ring = ring;
2094         request->head = request_start;
2095         request->tail = request_ring_position;
2096         request->ctx = ring->last_context;
2097         request->batch_obj = obj;
2098
2099         /* Whilst this request exists, batch_obj will be on the
2100          * active_list, and so will hold the active reference. Only when this
2101          * request is retired will the the batch_obj be moved onto the
2102          * inactive_list and lose its active reference. Hence we do not need
2103          * to explicitly hold another reference here.
2104          */
2105
2106         if (request->ctx)
2107                 i915_gem_context_reference(request->ctx);
2108
2109         request->emitted_jiffies = jiffies;
2110         was_empty = list_empty(&ring->request_list);
2111         list_add_tail(&request->list, &ring->request_list);
2112         request->file_priv = NULL;
2113
2114         if (file) {
2115                 struct drm_i915_file_private *file_priv = file->driver_priv;
2116
2117                 spin_lock(&file_priv->mm.lock);
2118                 request->file_priv = file_priv;
2119                 list_add_tail(&request->client_list,
2120                               &file_priv->mm.request_list);
2121                 spin_unlock(&file_priv->mm.lock);
2122         }
2123
2124         trace_i915_gem_request_add(ring, request->seqno);
2125         ring->outstanding_lazy_request = 0;
2126
2127         if (!dev_priv->ums.mm_suspended) {
2128                 i915_queue_hangcheck(ring->dev);
2129
2130                 if (was_empty) {
2131                         queue_delayed_work(dev_priv->wq,
2132                                            &dev_priv->mm.retire_work,
2133                                            round_jiffies_up_relative(HZ));
2134                         intel_mark_busy(dev_priv->dev);
2135                 }
2136         }
2137
2138         if (out_seqno)
2139                 *out_seqno = request->seqno;
2140         return 0;
2141 }
2142
2143 static inline void
2144 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2145 {
2146         struct drm_i915_file_private *file_priv = request->file_priv;
2147
2148         if (!file_priv)
2149                 return;
2150
2151         spin_lock(&file_priv->mm.lock);
2152         if (request->file_priv) {
2153                 list_del(&request->client_list);
2154                 request->file_priv = NULL;
2155         }
2156         spin_unlock(&file_priv->mm.lock);
2157 }
2158
2159 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2160                                     struct i915_address_space *vm)
2161 {
2162         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2163             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2164                 return true;
2165
2166         return false;
2167 }
2168
2169 static bool i915_head_inside_request(const u32 acthd_unmasked,
2170                                      const u32 request_start,
2171                                      const u32 request_end)
2172 {
2173         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2174
2175         if (request_start < request_end) {
2176                 if (acthd >= request_start && acthd < request_end)
2177                         return true;
2178         } else if (request_start > request_end) {
2179                 if (acthd >= request_start || acthd < request_end)
2180                         return true;
2181         }
2182
2183         return false;
2184 }
2185
2186 static struct i915_address_space *
2187 request_to_vm(struct drm_i915_gem_request *request)
2188 {
2189         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2190         struct i915_address_space *vm;
2191
2192         vm = &dev_priv->gtt.base;
2193
2194         return vm;
2195 }
2196
2197 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2198                                 const u32 acthd, bool *inside)
2199 {
2200         /* There is a possibility that unmasked head address
2201          * pointing inside the ring, matches the batch_obj address range.
2202          * However this is extremely unlikely.
2203          */
2204         if (request->batch_obj) {
2205                 if (i915_head_inside_object(acthd, request->batch_obj,
2206                                             request_to_vm(request))) {
2207                         *inside = true;
2208                         return true;
2209                 }
2210         }
2211
2212         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2213                 *inside = false;
2214                 return true;
2215         }
2216
2217         return false;
2218 }
2219
2220 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2221                                   struct drm_i915_gem_request *request,
2222                                   u32 acthd)
2223 {
2224         struct i915_ctx_hang_stats *hs = NULL;
2225         bool inside, guilty;
2226         unsigned long offset = 0;
2227
2228         /* Innocent until proven guilty */
2229         guilty = false;
2230
2231         if (request->batch_obj)
2232                 offset = i915_gem_obj_offset(request->batch_obj,
2233                                              request_to_vm(request));
2234
2235         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2236             i915_request_guilty(request, acthd, &inside)) {
2237                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2238                           ring->name,
2239                           inside ? "inside" : "flushing",
2240                           offset,
2241                           request->ctx ? request->ctx->id : 0,
2242                           acthd);
2243
2244                 guilty = true;
2245         }
2246
2247         /* If contexts are disabled or this is the default context, use
2248          * file_priv->reset_state
2249          */
2250         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2251                 hs = &request->ctx->hang_stats;
2252         else if (request->file_priv)
2253                 hs = &request->file_priv->hang_stats;
2254
2255         if (hs) {
2256                 if (guilty)
2257                         hs->batch_active++;
2258                 else
2259                         hs->batch_pending++;
2260         }
2261 }
2262
2263 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2264 {
2265         list_del(&request->list);
2266         i915_gem_request_remove_from_client(request);
2267
2268         if (request->ctx)
2269                 i915_gem_context_unreference(request->ctx);
2270
2271         kfree(request);
2272 }
2273
2274 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2275                                       struct intel_ring_buffer *ring)
2276 {
2277         u32 completed_seqno;
2278         u32 acthd;
2279
2280         acthd = intel_ring_get_active_head(ring);
2281         completed_seqno = ring->get_seqno(ring, false);
2282
2283         while (!list_empty(&ring->request_list)) {
2284                 struct drm_i915_gem_request *request;
2285
2286                 request = list_first_entry(&ring->request_list,
2287                                            struct drm_i915_gem_request,
2288                                            list);
2289
2290                 if (request->seqno > completed_seqno)
2291                         i915_set_reset_status(ring, request, acthd);
2292
2293                 i915_gem_free_request(request);
2294         }
2295
2296         while (!list_empty(&ring->active_list)) {
2297                 struct drm_i915_gem_object *obj;
2298
2299                 obj = list_first_entry(&ring->active_list,
2300                                        struct drm_i915_gem_object,
2301                                        ring_list);
2302
2303                 i915_gem_object_move_to_inactive(obj);
2304         }
2305 }
2306
2307 void i915_gem_restore_fences(struct drm_device *dev)
2308 {
2309         struct drm_i915_private *dev_priv = dev->dev_private;
2310         int i;
2311
2312         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2313                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2314
2315                 /*
2316                  * Commit delayed tiling changes if we have an object still
2317                  * attached to the fence, otherwise just clear the fence.
2318                  */
2319                 if (reg->obj) {
2320                         i915_gem_object_update_fence(reg->obj, reg,
2321                                                      reg->obj->tiling_mode);
2322                 } else {
2323                         i915_gem_write_fence(dev, i, NULL);
2324                 }
2325         }
2326 }
2327
2328 void i915_gem_reset(struct drm_device *dev)
2329 {
2330         struct drm_i915_private *dev_priv = dev->dev_private;
2331         struct intel_ring_buffer *ring;
2332         int i;
2333
2334         for_each_ring(ring, dev_priv, i)
2335                 i915_gem_reset_ring_lists(dev_priv, ring);
2336
2337         i915_gem_restore_fences(dev);
2338 }
2339
2340 /**
2341  * This function clears the request list as sequence numbers are passed.
2342  */
2343 void
2344 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2345 {
2346         uint32_t seqno;
2347
2348         if (list_empty(&ring->request_list))
2349                 return;
2350
2351         WARN_ON(i915_verify_lists(ring->dev));
2352
2353         seqno = ring->get_seqno(ring, true);
2354
2355         while (!list_empty(&ring->request_list)) {
2356                 struct drm_i915_gem_request *request;
2357
2358                 request = list_first_entry(&ring->request_list,
2359                                            struct drm_i915_gem_request,
2360                                            list);
2361
2362                 if (!i915_seqno_passed(seqno, request->seqno))
2363                         break;
2364
2365                 trace_i915_gem_request_retire(ring, request->seqno);
2366                 /* We know the GPU must have read the request to have
2367                  * sent us the seqno + interrupt, so use the position
2368                  * of tail of the request to update the last known position
2369                  * of the GPU head.
2370                  */
2371                 ring->last_retired_head = request->tail;
2372
2373                 i915_gem_free_request(request);
2374         }
2375
2376         /* Move any buffers on the active list that are no longer referenced
2377          * by the ringbuffer to the flushing/inactive lists as appropriate.
2378          */
2379         while (!list_empty(&ring->active_list)) {
2380                 struct drm_i915_gem_object *obj;
2381
2382                 obj = list_first_entry(&ring->active_list,
2383                                       struct drm_i915_gem_object,
2384                                       ring_list);
2385
2386                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2387                         break;
2388
2389                 i915_gem_object_move_to_inactive(obj);
2390         }
2391
2392         if (unlikely(ring->trace_irq_seqno &&
2393                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2394                 ring->irq_put(ring);
2395                 ring->trace_irq_seqno = 0;
2396         }
2397
2398         WARN_ON(i915_verify_lists(ring->dev));
2399 }
2400
2401 void
2402 i915_gem_retire_requests(struct drm_device *dev)
2403 {
2404         drm_i915_private_t *dev_priv = dev->dev_private;
2405         struct intel_ring_buffer *ring;
2406         int i;
2407
2408         for_each_ring(ring, dev_priv, i)
2409                 i915_gem_retire_requests_ring(ring);
2410 }
2411
2412 static void
2413 i915_gem_retire_work_handler(struct work_struct *work)
2414 {
2415         drm_i915_private_t *dev_priv;
2416         struct drm_device *dev;
2417         struct intel_ring_buffer *ring;
2418         bool idle;
2419         int i;
2420
2421         dev_priv = container_of(work, drm_i915_private_t,
2422                                 mm.retire_work.work);
2423         dev = dev_priv->dev;
2424
2425         /* Come back later if the device is busy... */
2426         if (!mutex_trylock(&dev->struct_mutex)) {
2427                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2428                                    round_jiffies_up_relative(HZ));
2429                 return;
2430         }
2431
2432         i915_gem_retire_requests(dev);
2433
2434         /* Send a periodic flush down the ring so we don't hold onto GEM
2435          * objects indefinitely.
2436          */
2437         idle = true;
2438         for_each_ring(ring, dev_priv, i) {
2439                 if (ring->gpu_caches_dirty)
2440                         i915_add_request(ring, NULL);
2441
2442                 idle &= list_empty(&ring->request_list);
2443         }
2444
2445         if (!dev_priv->ums.mm_suspended && !idle)
2446                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2447                                    round_jiffies_up_relative(HZ));
2448         if (idle)
2449                 intel_mark_idle(dev);
2450
2451         mutex_unlock(&dev->struct_mutex);
2452 }
2453
2454 /**
2455  * Ensures that an object will eventually get non-busy by flushing any required
2456  * write domains, emitting any outstanding lazy request and retiring and
2457  * completed requests.
2458  */
2459 static int
2460 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2461 {
2462         int ret;
2463
2464         if (obj->active) {
2465                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2466                 if (ret)
2467                         return ret;
2468
2469                 i915_gem_retire_requests_ring(obj->ring);
2470         }
2471
2472         return 0;
2473 }
2474
2475 /**
2476  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2477  * @DRM_IOCTL_ARGS: standard ioctl arguments
2478  *
2479  * Returns 0 if successful, else an error is returned with the remaining time in
2480  * the timeout parameter.
2481  *  -ETIME: object is still busy after timeout
2482  *  -ERESTARTSYS: signal interrupted the wait
2483  *  -ENONENT: object doesn't exist
2484  * Also possible, but rare:
2485  *  -EAGAIN: GPU wedged
2486  *  -ENOMEM: damn
2487  *  -ENODEV: Internal IRQ fail
2488  *  -E?: The add request failed
2489  *
2490  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2491  * non-zero timeout parameter the wait ioctl will wait for the given number of
2492  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2493  * without holding struct_mutex the object may become re-busied before this
2494  * function completes. A similar but shorter * race condition exists in the busy
2495  * ioctl
2496  */
2497 int
2498 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2499 {
2500         drm_i915_private_t *dev_priv = dev->dev_private;
2501         struct drm_i915_gem_wait *args = data;
2502         struct drm_i915_gem_object *obj;
2503         struct intel_ring_buffer *ring = NULL;
2504         struct timespec timeout_stack, *timeout = NULL;
2505         unsigned reset_counter;
2506         u32 seqno = 0;
2507         int ret = 0;
2508
2509         if (args->timeout_ns >= 0) {
2510                 timeout_stack = ns_to_timespec(args->timeout_ns);
2511                 timeout = &timeout_stack;
2512         }
2513
2514         ret = i915_mutex_lock_interruptible(dev);
2515         if (ret)
2516                 return ret;
2517
2518         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2519         if (&obj->base == NULL) {
2520                 mutex_unlock(&dev->struct_mutex);
2521                 return -ENOENT;
2522         }
2523
2524         /* Need to make sure the object gets inactive eventually. */
2525         ret = i915_gem_object_flush_active(obj);
2526         if (ret)
2527                 goto out;
2528
2529         if (obj->active) {
2530                 seqno = obj->last_read_seqno;
2531                 ring = obj->ring;
2532         }
2533
2534         if (seqno == 0)
2535                  goto out;
2536
2537         /* Do this after OLR check to make sure we make forward progress polling
2538          * on this IOCTL with a 0 timeout (like busy ioctl)
2539          */
2540         if (!args->timeout_ns) {
2541                 ret = -ETIME;
2542                 goto out;
2543         }
2544
2545         drm_gem_object_unreference(&obj->base);
2546         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2547         mutex_unlock(&dev->struct_mutex);
2548
2549         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2550         if (timeout)
2551                 args->timeout_ns = timespec_to_ns(timeout);
2552         return ret;
2553
2554 out:
2555         drm_gem_object_unreference(&obj->base);
2556         mutex_unlock(&dev->struct_mutex);
2557         return ret;
2558 }
2559
2560 /**
2561  * i915_gem_object_sync - sync an object to a ring.
2562  *
2563  * @obj: object which may be in use on another ring.
2564  * @to: ring we wish to use the object on. May be NULL.
2565  *
2566  * This code is meant to abstract object synchronization with the GPU.
2567  * Calling with NULL implies synchronizing the object with the CPU
2568  * rather than a particular GPU ring.
2569  *
2570  * Returns 0 if successful, else propagates up the lower layer error.
2571  */
2572 int
2573 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2574                      struct intel_ring_buffer *to)
2575 {
2576         struct intel_ring_buffer *from = obj->ring;
2577         u32 seqno;
2578         int ret, idx;
2579
2580         if (from == NULL || to == from)
2581                 return 0;
2582
2583         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2584                 return i915_gem_object_wait_rendering(obj, false);
2585
2586         idx = intel_ring_sync_index(from, to);
2587
2588         seqno = obj->last_read_seqno;
2589         if (seqno <= from->sync_seqno[idx])
2590                 return 0;
2591
2592         ret = i915_gem_check_olr(obj->ring, seqno);
2593         if (ret)
2594                 return ret;
2595
2596         ret = to->sync_to(to, from, seqno);
2597         if (!ret)
2598                 /* We use last_read_seqno because sync_to()
2599                  * might have just caused seqno wrap under
2600                  * the radar.
2601                  */
2602                 from->sync_seqno[idx] = obj->last_read_seqno;
2603
2604         return ret;
2605 }
2606
2607 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2608 {
2609         u32 old_write_domain, old_read_domains;
2610
2611         /* Force a pagefault for domain tracking on next user access */
2612         i915_gem_release_mmap(obj);
2613
2614         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2615                 return;
2616
2617         /* Wait for any direct GTT access to complete */
2618         mb();
2619
2620         old_read_domains = obj->base.read_domains;
2621         old_write_domain = obj->base.write_domain;
2622
2623         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2624         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2625
2626         trace_i915_gem_object_change_domain(obj,
2627                                             old_read_domains,
2628                                             old_write_domain);
2629 }
2630
2631 int i915_vma_unbind(struct i915_vma *vma)
2632 {
2633         struct drm_i915_gem_object *obj = vma->obj;
2634         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2635         int ret;
2636
2637         if (list_empty(&vma->vma_link))
2638                 return 0;
2639
2640         if (!drm_mm_node_allocated(&vma->node))
2641                 goto destroy;
2642
2643         if (obj->pin_count)
2644                 return -EBUSY;
2645
2646         BUG_ON(obj->pages == NULL);
2647
2648         ret = i915_gem_object_finish_gpu(obj);
2649         if (ret)
2650                 return ret;
2651         /* Continue on if we fail due to EIO, the GPU is hung so we
2652          * should be safe and we need to cleanup or else we might
2653          * cause memory corruption through use-after-free.
2654          */
2655
2656         i915_gem_object_finish_gtt(obj);
2657
2658         /* release the fence reg _after_ flushing */
2659         ret = i915_gem_object_put_fence(obj);
2660         if (ret)
2661                 return ret;
2662
2663         trace_i915_vma_unbind(vma);
2664
2665         if (obj->has_global_gtt_mapping)
2666                 i915_gem_gtt_unbind_object(obj);
2667         if (obj->has_aliasing_ppgtt_mapping) {
2668                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2669                 obj->has_aliasing_ppgtt_mapping = 0;
2670         }
2671         i915_gem_gtt_finish_object(obj);
2672         i915_gem_object_unpin_pages(obj);
2673
2674         list_del(&vma->mm_list);
2675         /* Avoid an unnecessary call to unbind on rebind. */
2676         if (i915_is_ggtt(vma->vm))
2677                 obj->map_and_fenceable = true;
2678
2679         drm_mm_remove_node(&vma->node);
2680
2681 destroy:
2682         i915_gem_vma_destroy(vma);
2683
2684         /* Since the unbound list is global, only move to that list if
2685          * no more VMAs exist.
2686          * NB: Until we have real VMAs there will only ever be one */
2687         WARN_ON(!list_empty(&obj->vma_list));
2688         if (list_empty(&obj->vma_list))
2689                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2690
2691         return 0;
2692 }
2693
2694 /**
2695  * Unbinds an object from the global GTT aperture.
2696  */
2697 int
2698 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2699 {
2700         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2701         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2702
2703         if (!i915_gem_obj_ggtt_bound(obj))
2704                 return 0;
2705
2706         if (obj->pin_count)
2707                 return -EBUSY;
2708
2709         BUG_ON(obj->pages == NULL);
2710
2711         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2712 }
2713
2714 int i915_gpu_idle(struct drm_device *dev)
2715 {
2716         drm_i915_private_t *dev_priv = dev->dev_private;
2717         struct intel_ring_buffer *ring;
2718         int ret, i;
2719
2720         /* Flush everything onto the inactive list. */
2721         for_each_ring(ring, dev_priv, i) {
2722                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2723                 if (ret)
2724                         return ret;
2725
2726                 ret = intel_ring_idle(ring);
2727                 if (ret)
2728                         return ret;
2729         }
2730
2731         return 0;
2732 }
2733
2734 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2735                                  struct drm_i915_gem_object *obj)
2736 {
2737         drm_i915_private_t *dev_priv = dev->dev_private;
2738         int fence_reg;
2739         int fence_pitch_shift;
2740
2741         if (INTEL_INFO(dev)->gen >= 6) {
2742                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2743                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2744         } else {
2745                 fence_reg = FENCE_REG_965_0;
2746                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2747         }
2748
2749         fence_reg += reg * 8;
2750
2751         /* To w/a incoherency with non-atomic 64-bit register updates,
2752          * we split the 64-bit update into two 32-bit writes. In order
2753          * for a partial fence not to be evaluated between writes, we
2754          * precede the update with write to turn off the fence register,
2755          * and only enable the fence as the last step.
2756          *
2757          * For extra levels of paranoia, we make sure each step lands
2758          * before applying the next step.
2759          */
2760         I915_WRITE(fence_reg, 0);
2761         POSTING_READ(fence_reg);
2762
2763         if (obj) {
2764                 u32 size = i915_gem_obj_ggtt_size(obj);
2765                 uint64_t val;
2766
2767                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2768                                  0xfffff000) << 32;
2769                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2770                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2771                 if (obj->tiling_mode == I915_TILING_Y)
2772                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2773                 val |= I965_FENCE_REG_VALID;
2774
2775                 I915_WRITE(fence_reg + 4, val >> 32);
2776                 POSTING_READ(fence_reg + 4);
2777
2778                 I915_WRITE(fence_reg + 0, val);
2779                 POSTING_READ(fence_reg);
2780         } else {
2781                 I915_WRITE(fence_reg + 4, 0);
2782                 POSTING_READ(fence_reg + 4);
2783         }
2784 }
2785
2786 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2787                                  struct drm_i915_gem_object *obj)
2788 {
2789         drm_i915_private_t *dev_priv = dev->dev_private;
2790         u32 val;
2791
2792         if (obj) {
2793                 u32 size = i915_gem_obj_ggtt_size(obj);
2794                 int pitch_val;
2795                 int tile_width;
2796
2797                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2798                      (size & -size) != size ||
2799                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2800                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2801                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2802
2803                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2804                         tile_width = 128;
2805                 else
2806                         tile_width = 512;
2807
2808                 /* Note: pitch better be a power of two tile widths */
2809                 pitch_val = obj->stride / tile_width;
2810                 pitch_val = ffs(pitch_val) - 1;
2811
2812                 val = i915_gem_obj_ggtt_offset(obj);
2813                 if (obj->tiling_mode == I915_TILING_Y)
2814                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2815                 val |= I915_FENCE_SIZE_BITS(size);
2816                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2817                 val |= I830_FENCE_REG_VALID;
2818         } else
2819                 val = 0;
2820
2821         if (reg < 8)
2822                 reg = FENCE_REG_830_0 + reg * 4;
2823         else
2824                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2825
2826         I915_WRITE(reg, val);
2827         POSTING_READ(reg);
2828 }
2829
2830 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2831                                 struct drm_i915_gem_object *obj)
2832 {
2833         drm_i915_private_t *dev_priv = dev->dev_private;
2834         uint32_t val;
2835
2836         if (obj) {
2837                 u32 size = i915_gem_obj_ggtt_size(obj);
2838                 uint32_t pitch_val;
2839
2840                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2841                      (size & -size) != size ||
2842                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2843                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2844                      i915_gem_obj_ggtt_offset(obj), size);
2845
2846                 pitch_val = obj->stride / 128;
2847                 pitch_val = ffs(pitch_val) - 1;
2848
2849                 val = i915_gem_obj_ggtt_offset(obj);
2850                 if (obj->tiling_mode == I915_TILING_Y)
2851                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2852                 val |= I830_FENCE_SIZE_BITS(size);
2853                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2854                 val |= I830_FENCE_REG_VALID;
2855         } else
2856                 val = 0;
2857
2858         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2859         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2860 }
2861
2862 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2863 {
2864         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2865 }
2866
2867 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2868                                  struct drm_i915_gem_object *obj)
2869 {
2870         struct drm_i915_private *dev_priv = dev->dev_private;
2871
2872         /* Ensure that all CPU reads are completed before installing a fence
2873          * and all writes before removing the fence.
2874          */
2875         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2876                 mb();
2877
2878         WARN(obj && (!obj->stride || !obj->tiling_mode),
2879              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2880              obj->stride, obj->tiling_mode);
2881
2882         switch (INTEL_INFO(dev)->gen) {
2883         case 7:
2884         case 6:
2885         case 5:
2886         case 4: i965_write_fence_reg(dev, reg, obj); break;
2887         case 3: i915_write_fence_reg(dev, reg, obj); break;
2888         case 2: i830_write_fence_reg(dev, reg, obj); break;
2889         default: BUG();
2890         }
2891
2892         /* And similarly be paranoid that no direct access to this region
2893          * is reordered to before the fence is installed.
2894          */
2895         if (i915_gem_object_needs_mb(obj))
2896                 mb();
2897 }
2898
2899 static inline int fence_number(struct drm_i915_private *dev_priv,
2900                                struct drm_i915_fence_reg *fence)
2901 {
2902         return fence - dev_priv->fence_regs;
2903 }
2904
2905 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2906                                          struct drm_i915_fence_reg *fence,
2907                                          bool enable)
2908 {
2909         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2910         int reg = fence_number(dev_priv, fence);
2911
2912         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2913
2914         if (enable) {
2915                 obj->fence_reg = reg;
2916                 fence->obj = obj;
2917                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2918         } else {
2919                 obj->fence_reg = I915_FENCE_REG_NONE;
2920                 fence->obj = NULL;
2921                 list_del_init(&fence->lru_list);
2922         }
2923         obj->fence_dirty = false;
2924 }
2925
2926 static int
2927 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2928 {
2929         if (obj->last_fenced_seqno) {
2930                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2931                 if (ret)
2932                         return ret;
2933
2934                 obj->last_fenced_seqno = 0;
2935         }
2936
2937         obj->fenced_gpu_access = false;
2938         return 0;
2939 }
2940
2941 int
2942 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2943 {
2944         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2945         struct drm_i915_fence_reg *fence;
2946         int ret;
2947
2948         ret = i915_gem_object_wait_fence(obj);
2949         if (ret)
2950                 return ret;
2951
2952         if (obj->fence_reg == I915_FENCE_REG_NONE)
2953                 return 0;
2954
2955         fence = &dev_priv->fence_regs[obj->fence_reg];
2956
2957         i915_gem_object_fence_lost(obj);
2958         i915_gem_object_update_fence(obj, fence, false);
2959
2960         return 0;
2961 }
2962
2963 static struct drm_i915_fence_reg *
2964 i915_find_fence_reg(struct drm_device *dev)
2965 {
2966         struct drm_i915_private *dev_priv = dev->dev_private;
2967         struct drm_i915_fence_reg *reg, *avail;
2968         int i;
2969
2970         /* First try to find a free reg */
2971         avail = NULL;
2972         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2973                 reg = &dev_priv->fence_regs[i];
2974                 if (!reg->obj)
2975                         return reg;
2976
2977                 if (!reg->pin_count)
2978                         avail = reg;
2979         }
2980
2981         if (avail == NULL)
2982                 return NULL;
2983
2984         /* None available, try to steal one or wait for a user to finish */
2985         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2986                 if (reg->pin_count)
2987                         continue;
2988
2989                 return reg;
2990         }
2991
2992         return NULL;
2993 }
2994
2995 /**
2996  * i915_gem_object_get_fence - set up fencing for an object
2997  * @obj: object to map through a fence reg
2998  *
2999  * When mapping objects through the GTT, userspace wants to be able to write
3000  * to them without having to worry about swizzling if the object is tiled.
3001  * This function walks the fence regs looking for a free one for @obj,
3002  * stealing one if it can't find any.
3003  *
3004  * It then sets up the reg based on the object's properties: address, pitch
3005  * and tiling format.
3006  *
3007  * For an untiled surface, this removes any existing fence.
3008  */
3009 int
3010 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3011 {
3012         struct drm_device *dev = obj->base.dev;
3013         struct drm_i915_private *dev_priv = dev->dev_private;
3014         bool enable = obj->tiling_mode != I915_TILING_NONE;
3015         struct drm_i915_fence_reg *reg;
3016         int ret;
3017
3018         /* Have we updated the tiling parameters upon the object and so
3019          * will need to serialise the write to the associated fence register?
3020          */
3021         if (obj->fence_dirty) {
3022                 ret = i915_gem_object_wait_fence(obj);
3023                 if (ret)
3024                         return ret;
3025         }
3026
3027         /* Just update our place in the LRU if our fence is getting reused. */
3028         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3029                 reg = &dev_priv->fence_regs[obj->fence_reg];
3030                 if (!obj->fence_dirty) {
3031                         list_move_tail(&reg->lru_list,
3032                                        &dev_priv->mm.fence_list);
3033                         return 0;
3034                 }
3035         } else if (enable) {
3036                 reg = i915_find_fence_reg(dev);
3037                 if (reg == NULL)
3038                         return -EDEADLK;
3039
3040                 if (reg->obj) {
3041                         struct drm_i915_gem_object *old = reg->obj;
3042
3043                         ret = i915_gem_object_wait_fence(old);
3044                         if (ret)
3045                                 return ret;
3046
3047                         i915_gem_object_fence_lost(old);
3048                 }
3049         } else
3050                 return 0;
3051
3052         i915_gem_object_update_fence(obj, reg, enable);
3053
3054         return 0;
3055 }
3056
3057 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3058                                      struct drm_mm_node *gtt_space,
3059                                      unsigned long cache_level)
3060 {
3061         struct drm_mm_node *other;
3062
3063         /* On non-LLC machines we have to be careful when putting differing
3064          * types of snoopable memory together to avoid the prefetcher
3065          * crossing memory domains and dying.
3066          */
3067         if (HAS_LLC(dev))
3068                 return true;
3069
3070         if (!drm_mm_node_allocated(gtt_space))
3071                 return true;
3072
3073         if (list_empty(&gtt_space->node_list))
3074                 return true;
3075
3076         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3077         if (other->allocated && !other->hole_follows && other->color != cache_level)
3078                 return false;
3079
3080         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3081         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3082                 return false;
3083
3084         return true;
3085 }
3086
3087 static void i915_gem_verify_gtt(struct drm_device *dev)
3088 {
3089 #if WATCH_GTT
3090         struct drm_i915_private *dev_priv = dev->dev_private;
3091         struct drm_i915_gem_object *obj;
3092         int err = 0;
3093
3094         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3095                 if (obj->gtt_space == NULL) {
3096                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3097                         err++;
3098                         continue;
3099                 }
3100
3101                 if (obj->cache_level != obj->gtt_space->color) {
3102                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3103                                i915_gem_obj_ggtt_offset(obj),
3104                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3105                                obj->cache_level,
3106                                obj->gtt_space->color);
3107                         err++;
3108                         continue;
3109                 }
3110
3111                 if (!i915_gem_valid_gtt_space(dev,
3112                                               obj->gtt_space,
3113                                               obj->cache_level)) {
3114                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3115                                i915_gem_obj_ggtt_offset(obj),
3116                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3117                                obj->cache_level);
3118                         err++;
3119                         continue;
3120                 }
3121         }
3122
3123         WARN_ON(err);
3124 #endif
3125 }
3126
3127 /**
3128  * Finds free space in the GTT aperture and binds the object there.
3129  */
3130 static int
3131 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3132                            struct i915_address_space *vm,
3133                            unsigned alignment,
3134                            bool map_and_fenceable,
3135                            bool nonblocking)
3136 {
3137         struct drm_device *dev = obj->base.dev;
3138         drm_i915_private_t *dev_priv = dev->dev_private;
3139         u32 size, fence_size, fence_alignment, unfenced_alignment;
3140         size_t gtt_max =
3141                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3142         struct i915_vma *vma;
3143         int ret;
3144
3145         fence_size = i915_gem_get_gtt_size(dev,
3146                                            obj->base.size,
3147                                            obj->tiling_mode);
3148         fence_alignment = i915_gem_get_gtt_alignment(dev,
3149                                                      obj->base.size,
3150                                                      obj->tiling_mode, true);
3151         unfenced_alignment =
3152                 i915_gem_get_gtt_alignment(dev,
3153                                                     obj->base.size,
3154                                                     obj->tiling_mode, false);
3155
3156         if (alignment == 0)
3157                 alignment = map_and_fenceable ? fence_alignment :
3158                                                 unfenced_alignment;
3159         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3160                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3161                 return -EINVAL;
3162         }
3163
3164         size = map_and_fenceable ? fence_size : obj->base.size;
3165
3166         /* If the object is bigger than the entire aperture, reject it early
3167          * before evicting everything in a vain attempt to find space.
3168          */
3169         if (obj->base.size > gtt_max) {
3170                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3171                           obj->base.size,
3172                           map_and_fenceable ? "mappable" : "total",
3173                           gtt_max);
3174                 return -E2BIG;
3175         }
3176
3177         ret = i915_gem_object_get_pages(obj);
3178         if (ret)
3179                 return ret;
3180
3181         i915_gem_object_pin_pages(obj);
3182
3183         BUG_ON(!i915_is_ggtt(vm));
3184
3185         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3186         if (IS_ERR(vma)) {
3187                 ret = PTR_ERR(vma);
3188                 goto err_unpin;
3189         }
3190
3191         /* For now we only ever use 1 vma per object */
3192         WARN_ON(!list_is_singular(&obj->vma_list));
3193
3194 search_free:
3195         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3196                                                   size, alignment,
3197                                                   obj->cache_level, 0, gtt_max,
3198                                                   DRM_MM_SEARCH_DEFAULT);
3199         if (ret) {
3200                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3201                                                obj->cache_level,
3202                                                map_and_fenceable,
3203                                                nonblocking);
3204                 if (ret == 0)
3205                         goto search_free;
3206
3207                 goto err_free_vma;
3208         }
3209         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3210                                               obj->cache_level))) {
3211                 ret = -EINVAL;
3212                 goto err_remove_node;
3213         }
3214
3215         ret = i915_gem_gtt_prepare_object(obj);
3216         if (ret)
3217                 goto err_remove_node;
3218
3219         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3220         list_add_tail(&vma->mm_list, &vm->inactive_list);
3221
3222         if (i915_is_ggtt(vm)) {
3223                 bool mappable, fenceable;
3224
3225                 fenceable = (vma->node.size == fence_size &&
3226                              (vma->node.start & (fence_alignment - 1)) == 0);
3227
3228                 mappable = (vma->node.start + obj->base.size <=
3229                             dev_priv->gtt.mappable_end);
3230
3231                 obj->map_and_fenceable = mappable && fenceable;
3232         }
3233
3234         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3235
3236         trace_i915_vma_bind(vma, map_and_fenceable);
3237         i915_gem_verify_gtt(dev);
3238         return 0;
3239
3240 err_remove_node:
3241         drm_mm_remove_node(&vma->node);
3242 err_free_vma:
3243         i915_gem_vma_destroy(vma);
3244 err_unpin:
3245         i915_gem_object_unpin_pages(obj);
3246         return ret;
3247 }
3248
3249 bool
3250 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3251                         bool force)
3252 {
3253         /* If we don't have a page list set up, then we're not pinned
3254          * to GPU, and we can ignore the cache flush because it'll happen
3255          * again at bind time.
3256          */
3257         if (obj->pages == NULL)
3258                 return false;
3259
3260         /*
3261          * Stolen memory is always coherent with the GPU as it is explicitly
3262          * marked as wc by the system, or the system is cache-coherent.
3263          */
3264         if (obj->stolen)
3265                 return false;
3266
3267         /* If the GPU is snooping the contents of the CPU cache,
3268          * we do not need to manually clear the CPU cache lines.  However,
3269          * the caches are only snooped when the render cache is
3270          * flushed/invalidated.  As we always have to emit invalidations
3271          * and flushes when moving into and out of the RENDER domain, correct
3272          * snooping behaviour occurs naturally as the result of our domain
3273          * tracking.
3274          */
3275         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3276                 return false;
3277
3278         trace_i915_gem_object_clflush(obj);
3279         drm_clflush_sg(obj->pages);
3280
3281         return true;
3282 }
3283
3284 /** Flushes the GTT write domain for the object if it's dirty. */
3285 static void
3286 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3287 {
3288         uint32_t old_write_domain;
3289
3290         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3291                 return;
3292
3293         /* No actual flushing is required for the GTT write domain.  Writes
3294          * to it immediately go to main memory as far as we know, so there's
3295          * no chipset flush.  It also doesn't land in render cache.
3296          *
3297          * However, we do have to enforce the order so that all writes through
3298          * the GTT land before any writes to the device, such as updates to
3299          * the GATT itself.
3300          */
3301         wmb();
3302
3303         old_write_domain = obj->base.write_domain;
3304         obj->base.write_domain = 0;
3305
3306         trace_i915_gem_object_change_domain(obj,
3307                                             obj->base.read_domains,
3308                                             old_write_domain);
3309 }
3310
3311 /** Flushes the CPU write domain for the object if it's dirty. */
3312 static void
3313 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3314                                        bool force)
3315 {
3316         uint32_t old_write_domain;
3317
3318         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3319                 return;
3320
3321         if (i915_gem_clflush_object(obj, force))
3322                 i915_gem_chipset_flush(obj->base.dev);
3323
3324         old_write_domain = obj->base.write_domain;
3325         obj->base.write_domain = 0;
3326
3327         trace_i915_gem_object_change_domain(obj,
3328                                             obj->base.read_domains,
3329                                             old_write_domain);
3330 }
3331
3332 /**
3333  * Moves a single object to the GTT read, and possibly write domain.
3334  *
3335  * This function returns when the move is complete, including waiting on
3336  * flushes to occur.
3337  */
3338 int
3339 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3340 {
3341         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3342         uint32_t old_write_domain, old_read_domains;
3343         int ret;
3344
3345         /* Not valid to be called on unbound objects. */
3346         if (!i915_gem_obj_bound_any(obj))
3347                 return -EINVAL;
3348
3349         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3350                 return 0;
3351
3352         ret = i915_gem_object_wait_rendering(obj, !write);
3353         if (ret)
3354                 return ret;
3355
3356         i915_gem_object_flush_cpu_write_domain(obj, false);
3357
3358         /* Serialise direct access to this object with the barriers for
3359          * coherent writes from the GPU, by effectively invalidating the
3360          * GTT domain upon first access.
3361          */
3362         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3363                 mb();
3364
3365         old_write_domain = obj->base.write_domain;
3366         old_read_domains = obj->base.read_domains;
3367
3368         /* It should now be out of any other write domains, and we can update
3369          * the domain values for our changes.
3370          */
3371         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3372         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3373         if (write) {
3374                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3375                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3376                 obj->dirty = 1;
3377         }
3378
3379         trace_i915_gem_object_change_domain(obj,
3380                                             old_read_domains,
3381                                             old_write_domain);
3382
3383         /* And bump the LRU for this access */
3384         if (i915_gem_object_is_inactive(obj)) {
3385                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3386                                                            &dev_priv->gtt.base);
3387                 if (vma)
3388                         list_move_tail(&vma->mm_list,
3389                                        &dev_priv->gtt.base.inactive_list);
3390
3391         }
3392
3393         return 0;
3394 }
3395
3396 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3397                                     enum i915_cache_level cache_level)
3398 {
3399         struct drm_device *dev = obj->base.dev;
3400         drm_i915_private_t *dev_priv = dev->dev_private;
3401         struct i915_vma *vma;
3402         int ret;
3403
3404         if (obj->cache_level == cache_level)
3405                 return 0;
3406
3407         if (obj->pin_count) {
3408                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3409                 return -EBUSY;
3410         }
3411
3412         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3413                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3414                         ret = i915_vma_unbind(vma);
3415                         if (ret)
3416                                 return ret;
3417
3418                         break;
3419                 }
3420         }
3421
3422         if (i915_gem_obj_bound_any(obj)) {
3423                 ret = i915_gem_object_finish_gpu(obj);
3424                 if (ret)
3425                         return ret;
3426
3427                 i915_gem_object_finish_gtt(obj);
3428
3429                 /* Before SandyBridge, you could not use tiling or fence
3430                  * registers with snooped memory, so relinquish any fences
3431                  * currently pointing to our region in the aperture.
3432                  */
3433                 if (INTEL_INFO(dev)->gen < 6) {
3434                         ret = i915_gem_object_put_fence(obj);
3435                         if (ret)
3436                                 return ret;
3437                 }
3438
3439                 if (obj->has_global_gtt_mapping)
3440                         i915_gem_gtt_bind_object(obj, cache_level);
3441                 if (obj->has_aliasing_ppgtt_mapping)
3442                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3443                                                obj, cache_level);
3444         }
3445
3446         list_for_each_entry(vma, &obj->vma_list, vma_link)
3447                 vma->node.color = cache_level;
3448         obj->cache_level = cache_level;
3449
3450         if (cpu_write_needs_clflush(obj)) {
3451                 u32 old_read_domains, old_write_domain;
3452
3453                 /* If we're coming from LLC cached, then we haven't
3454                  * actually been tracking whether the data is in the
3455                  * CPU cache or not, since we only allow one bit set
3456                  * in obj->write_domain and have been skipping the clflushes.
3457                  * Just set it to the CPU cache for now.
3458                  */
3459                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3460
3461                 old_read_domains = obj->base.read_domains;
3462                 old_write_domain = obj->base.write_domain;
3463
3464                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3465                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3466
3467                 trace_i915_gem_object_change_domain(obj,
3468                                                     old_read_domains,
3469                                                     old_write_domain);
3470         }
3471
3472         i915_gem_verify_gtt(dev);
3473         return 0;
3474 }
3475
3476 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3477                                struct drm_file *file)
3478 {
3479         struct drm_i915_gem_caching *args = data;
3480         struct drm_i915_gem_object *obj;
3481         int ret;
3482
3483         ret = i915_mutex_lock_interruptible(dev);
3484         if (ret)
3485                 return ret;
3486
3487         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3488         if (&obj->base == NULL) {
3489                 ret = -ENOENT;
3490                 goto unlock;
3491         }
3492
3493         switch (obj->cache_level) {
3494         case I915_CACHE_LLC:
3495         case I915_CACHE_L3_LLC:
3496                 args->caching = I915_CACHING_CACHED;
3497                 break;
3498
3499         case I915_CACHE_WT:
3500                 args->caching = I915_CACHING_DISPLAY;
3501                 break;
3502
3503         default:
3504                 args->caching = I915_CACHING_NONE;
3505                 break;
3506         }
3507
3508         drm_gem_object_unreference(&obj->base);
3509 unlock:
3510         mutex_unlock(&dev->struct_mutex);
3511         return ret;
3512 }
3513
3514 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3515                                struct drm_file *file)
3516 {
3517         struct drm_i915_gem_caching *args = data;
3518         struct drm_i915_gem_object *obj;
3519         enum i915_cache_level level;
3520         int ret;
3521
3522         switch (args->caching) {
3523         case I915_CACHING_NONE:
3524                 level = I915_CACHE_NONE;
3525                 break;
3526         case I915_CACHING_CACHED:
3527                 level = I915_CACHE_LLC;
3528                 break;
3529         case I915_CACHING_DISPLAY:
3530                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3531                 break;
3532         default:
3533                 return -EINVAL;
3534         }
3535
3536         ret = i915_mutex_lock_interruptible(dev);
3537         if (ret)
3538                 return ret;
3539
3540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3541         if (&obj->base == NULL) {
3542                 ret = -ENOENT;
3543                 goto unlock;
3544         }
3545
3546         ret = i915_gem_object_set_cache_level(obj, level);
3547
3548         drm_gem_object_unreference(&obj->base);
3549 unlock:
3550         mutex_unlock(&dev->struct_mutex);
3551         return ret;
3552 }
3553
3554 static bool is_pin_display(struct drm_i915_gem_object *obj)
3555 {
3556         /* There are 3 sources that pin objects:
3557          *   1. The display engine (scanouts, sprites, cursors);
3558          *   2. Reservations for execbuffer;
3559          *   3. The user.
3560          *
3561          * We can ignore reservations as we hold the struct_mutex and
3562          * are only called outside of the reservation path.  The user
3563          * can only increment pin_count once, and so if after
3564          * subtracting the potential reference by the user, any pin_count
3565          * remains, it must be due to another use by the display engine.
3566          */
3567         return obj->pin_count - !!obj->user_pin_count;
3568 }
3569
3570 /*
3571  * Prepare buffer for display plane (scanout, cursors, etc).
3572  * Can be called from an uninterruptible phase (modesetting) and allows
3573  * any flushes to be pipelined (for pageflips).
3574  */
3575 int
3576 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3577                                      u32 alignment,
3578                                      struct intel_ring_buffer *pipelined)
3579 {
3580         u32 old_read_domains, old_write_domain;
3581         int ret;
3582
3583         if (pipelined != obj->ring) {
3584                 ret = i915_gem_object_sync(obj, pipelined);
3585                 if (ret)
3586                         return ret;
3587         }
3588
3589         /* Mark the pin_display early so that we account for the
3590          * display coherency whilst setting up the cache domains.
3591          */
3592         obj->pin_display = true;
3593
3594         /* The display engine is not coherent with the LLC cache on gen6.  As
3595          * a result, we make sure that the pinning that is about to occur is
3596          * done with uncached PTEs. This is lowest common denominator for all
3597          * chipsets.
3598          *
3599          * However for gen6+, we could do better by using the GFDT bit instead
3600          * of uncaching, which would allow us to flush all the LLC-cached data
3601          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3602          */
3603         ret = i915_gem_object_set_cache_level(obj,
3604                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3605         if (ret)
3606                 goto err_unpin_display;
3607
3608         /* As the user may map the buffer once pinned in the display plane
3609          * (e.g. libkms for the bootup splash), we have to ensure that we
3610          * always use map_and_fenceable for all scanout buffers.
3611          */
3612         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3613         if (ret)
3614                 goto err_unpin_display;
3615
3616         i915_gem_object_flush_cpu_write_domain(obj, true);
3617
3618         old_write_domain = obj->base.write_domain;
3619         old_read_domains = obj->base.read_domains;
3620
3621         /* It should now be out of any other write domains, and we can update
3622          * the domain values for our changes.
3623          */
3624         obj->base.write_domain = 0;
3625         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3626
3627         trace_i915_gem_object_change_domain(obj,
3628                                             old_read_domains,
3629                                             old_write_domain);
3630
3631         return 0;
3632
3633 err_unpin_display:
3634         obj->pin_display = is_pin_display(obj);
3635         return ret;
3636 }
3637
3638 void
3639 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3640 {
3641         i915_gem_object_unpin(obj);
3642         obj->pin_display = is_pin_display(obj);
3643 }
3644
3645 int
3646 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3647 {
3648         int ret;
3649
3650         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3651                 return 0;
3652
3653         ret = i915_gem_object_wait_rendering(obj, false);
3654         if (ret)
3655                 return ret;
3656
3657         /* Ensure that we invalidate the GPU's caches and TLBs. */
3658         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3659         return 0;
3660 }
3661
3662 /**
3663  * Moves a single object to the CPU read, and possibly write domain.
3664  *
3665  * This function returns when the move is complete, including waiting on
3666  * flushes to occur.
3667  */
3668 int
3669 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3670 {
3671         uint32_t old_write_domain, old_read_domains;
3672         int ret;
3673
3674         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3675                 return 0;
3676
3677         ret = i915_gem_object_wait_rendering(obj, !write);
3678         if (ret)
3679                 return ret;
3680
3681         i915_gem_object_flush_gtt_write_domain(obj);
3682
3683         old_write_domain = obj->base.write_domain;
3684         old_read_domains = obj->base.read_domains;
3685
3686         /* Flush the CPU cache if it's still invalid. */
3687         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3688                 i915_gem_clflush_object(obj, false);
3689
3690                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3691         }
3692
3693         /* It should now be out of any other write domains, and we can update
3694          * the domain values for our changes.
3695          */
3696         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3697
3698         /* If we're writing through the CPU, then the GPU read domains will
3699          * need to be invalidated at next use.
3700          */
3701         if (write) {
3702                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3703                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3704         }
3705
3706         trace_i915_gem_object_change_domain(obj,
3707                                             old_read_domains,
3708                                             old_write_domain);
3709
3710         return 0;
3711 }
3712
3713 /* Throttle our rendering by waiting until the ring has completed our requests
3714  * emitted over 20 msec ago.
3715  *
3716  * Note that if we were to use the current jiffies each time around the loop,
3717  * we wouldn't escape the function with any frames outstanding if the time to
3718  * render a frame was over 20ms.
3719  *
3720  * This should get us reasonable parallelism between CPU and GPU but also
3721  * relatively low latency when blocking on a particular request to finish.
3722  */
3723 static int
3724 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3725 {
3726         struct drm_i915_private *dev_priv = dev->dev_private;
3727         struct drm_i915_file_private *file_priv = file->driver_priv;
3728         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3729         struct drm_i915_gem_request *request;
3730         struct intel_ring_buffer *ring = NULL;
3731         unsigned reset_counter;
3732         u32 seqno = 0;
3733         int ret;
3734
3735         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3736         if (ret)
3737                 return ret;
3738
3739         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3740         if (ret)
3741                 return ret;
3742
3743         spin_lock(&file_priv->mm.lock);
3744         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3745                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3746                         break;
3747
3748                 ring = request->ring;
3749                 seqno = request->seqno;
3750         }
3751         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3752         spin_unlock(&file_priv->mm.lock);
3753
3754         if (seqno == 0)
3755                 return 0;
3756
3757         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3758         if (ret == 0)
3759                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3760
3761         return ret;
3762 }
3763
3764 int
3765 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3766                     struct i915_address_space *vm,
3767                     uint32_t alignment,
3768                     bool map_and_fenceable,
3769                     bool nonblocking)
3770 {
3771         struct i915_vma *vma;
3772         int ret;
3773
3774         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3775                 return -EBUSY;
3776
3777         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3778
3779         vma = i915_gem_obj_to_vma(obj, vm);
3780
3781         if (vma) {
3782                 if ((alignment &&
3783                      vma->node.start & (alignment - 1)) ||
3784                     (map_and_fenceable && !obj->map_and_fenceable)) {
3785                         WARN(obj->pin_count,
3786                              "bo is already pinned with incorrect alignment:"
3787                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3788                              " obj->map_and_fenceable=%d\n",
3789                              i915_gem_obj_offset(obj, vm), alignment,
3790                              map_and_fenceable,
3791                              obj->map_and_fenceable);
3792                         ret = i915_vma_unbind(vma);
3793                         if (ret)
3794                                 return ret;
3795                 }
3796         }
3797
3798         if (!i915_gem_obj_bound(obj, vm)) {
3799                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3800
3801                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3802                                                  map_and_fenceable,
3803                                                  nonblocking);
3804                 if (ret)
3805                         return ret;
3806
3807                 if (!dev_priv->mm.aliasing_ppgtt)
3808                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3809         }
3810
3811         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3812                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3813
3814         obj->pin_count++;
3815         obj->pin_mappable |= map_and_fenceable;
3816
3817         return 0;
3818 }
3819
3820 void
3821 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3822 {
3823         BUG_ON(obj->pin_count == 0);
3824         BUG_ON(!i915_gem_obj_bound_any(obj));
3825
3826         if (--obj->pin_count == 0)
3827                 obj->pin_mappable = false;
3828 }
3829
3830 int
3831 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3832                    struct drm_file *file)
3833 {
3834         struct drm_i915_gem_pin *args = data;
3835         struct drm_i915_gem_object *obj;
3836         int ret;
3837
3838         ret = i915_mutex_lock_interruptible(dev);
3839         if (ret)
3840                 return ret;
3841
3842         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3843         if (&obj->base == NULL) {
3844                 ret = -ENOENT;
3845                 goto unlock;
3846         }
3847
3848         if (obj->madv != I915_MADV_WILLNEED) {
3849                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3850                 ret = -EINVAL;
3851                 goto out;
3852         }
3853
3854         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3855                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3856                           args->handle);
3857                 ret = -EINVAL;
3858                 goto out;
3859         }
3860
3861         if (obj->user_pin_count == 0) {
3862                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3863                 if (ret)
3864                         goto out;
3865         }
3866
3867         obj->user_pin_count++;
3868         obj->pin_filp = file;
3869
3870         args->offset = i915_gem_obj_ggtt_offset(obj);
3871 out:
3872         drm_gem_object_unreference(&obj->base);
3873 unlock:
3874         mutex_unlock(&dev->struct_mutex);
3875         return ret;
3876 }
3877
3878 int
3879 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3880                      struct drm_file *file)
3881 {
3882         struct drm_i915_gem_pin *args = data;
3883         struct drm_i915_gem_object *obj;
3884         int ret;
3885
3886         ret = i915_mutex_lock_interruptible(dev);
3887         if (ret)
3888                 return ret;
3889
3890         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3891         if (&obj->base == NULL) {
3892                 ret = -ENOENT;
3893                 goto unlock;
3894         }
3895
3896         if (obj->pin_filp != file) {
3897                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3898                           args->handle);
3899                 ret = -EINVAL;
3900                 goto out;
3901         }
3902         obj->user_pin_count--;
3903         if (obj->user_pin_count == 0) {
3904                 obj->pin_filp = NULL;
3905                 i915_gem_object_unpin(obj);
3906         }
3907
3908 out:
3909         drm_gem_object_unreference(&obj->base);
3910 unlock:
3911         mutex_unlock(&dev->struct_mutex);
3912         return ret;
3913 }
3914
3915 int
3916 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3917                     struct drm_file *file)
3918 {
3919         struct drm_i915_gem_busy *args = data;
3920         struct drm_i915_gem_object *obj;
3921         int ret;
3922
3923         ret = i915_mutex_lock_interruptible(dev);
3924         if (ret)
3925                 return ret;
3926
3927         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3928         if (&obj->base == NULL) {
3929                 ret = -ENOENT;
3930                 goto unlock;
3931         }
3932
3933         /* Count all active objects as busy, even if they are currently not used
3934          * by the gpu. Users of this interface expect objects to eventually
3935          * become non-busy without any further actions, therefore emit any
3936          * necessary flushes here.
3937          */
3938         ret = i915_gem_object_flush_active(obj);
3939
3940         args->busy = obj->active;
3941         if (obj->ring) {
3942                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3943                 args->busy |= intel_ring_flag(obj->ring) << 16;
3944         }
3945
3946         drm_gem_object_unreference(&obj->base);
3947 unlock:
3948         mutex_unlock(&dev->struct_mutex);
3949         return ret;
3950 }
3951
3952 int
3953 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3954                         struct drm_file *file_priv)
3955 {
3956         return i915_gem_ring_throttle(dev, file_priv);
3957 }
3958
3959 int
3960 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3961                        struct drm_file *file_priv)
3962 {
3963         struct drm_i915_gem_madvise *args = data;
3964         struct drm_i915_gem_object *obj;
3965         int ret;
3966
3967         switch (args->madv) {
3968         case I915_MADV_DONTNEED:
3969         case I915_MADV_WILLNEED:
3970             break;
3971         default:
3972             return -EINVAL;
3973         }
3974
3975         ret = i915_mutex_lock_interruptible(dev);
3976         if (ret)
3977                 return ret;
3978
3979         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3980         if (&obj->base == NULL) {
3981                 ret = -ENOENT;
3982                 goto unlock;
3983         }
3984
3985         if (obj->pin_count) {
3986                 ret = -EINVAL;
3987                 goto out;
3988         }
3989
3990         if (obj->madv != __I915_MADV_PURGED)
3991                 obj->madv = args->madv;
3992
3993         /* if the object is no longer attached, discard its backing storage */
3994         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3995                 i915_gem_object_truncate(obj);
3996
3997         args->retained = obj->madv != __I915_MADV_PURGED;
3998
3999 out:
4000         drm_gem_object_unreference(&obj->base);
4001 unlock:
4002         mutex_unlock(&dev->struct_mutex);
4003         return ret;
4004 }
4005
4006 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4007                           const struct drm_i915_gem_object_ops *ops)
4008 {
4009         INIT_LIST_HEAD(&obj->global_list);
4010         INIT_LIST_HEAD(&obj->ring_list);
4011         INIT_LIST_HEAD(&obj->exec_list);
4012         INIT_LIST_HEAD(&obj->obj_exec_link);
4013         INIT_LIST_HEAD(&obj->vma_list);
4014
4015         obj->ops = ops;
4016
4017         obj->fence_reg = I915_FENCE_REG_NONE;
4018         obj->madv = I915_MADV_WILLNEED;
4019         /* Avoid an unnecessary call to unbind on the first bind. */
4020         obj->map_and_fenceable = true;
4021
4022         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4023 }
4024
4025 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4026         .get_pages = i915_gem_object_get_pages_gtt,
4027         .put_pages = i915_gem_object_put_pages_gtt,
4028 };
4029
4030 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4031                                                   size_t size)
4032 {
4033         struct drm_i915_gem_object *obj;
4034         struct address_space *mapping;
4035         gfp_t mask;
4036
4037         obj = i915_gem_object_alloc(dev);
4038         if (obj == NULL)
4039                 return NULL;
4040
4041         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4042                 i915_gem_object_free(obj);
4043                 return NULL;
4044         }
4045
4046         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4047         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4048                 /* 965gm cannot relocate objects above 4GiB. */
4049                 mask &= ~__GFP_HIGHMEM;
4050                 mask |= __GFP_DMA32;
4051         }
4052
4053         mapping = file_inode(obj->base.filp)->i_mapping;
4054         mapping_set_gfp_mask(mapping, mask);
4055
4056         i915_gem_object_init(obj, &i915_gem_object_ops);
4057
4058         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4059         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4060
4061         if (HAS_LLC(dev)) {
4062                 /* On some devices, we can have the GPU use the LLC (the CPU
4063                  * cache) for about a 10% performance improvement
4064                  * compared to uncached.  Graphics requests other than
4065                  * display scanout are coherent with the CPU in
4066                  * accessing this cache.  This means in this mode we
4067                  * don't need to clflush on the CPU side, and on the
4068                  * GPU side we only need to flush internal caches to
4069                  * get data visible to the CPU.
4070                  *
4071                  * However, we maintain the display planes as UC, and so
4072                  * need to rebind when first used as such.
4073                  */
4074                 obj->cache_level = I915_CACHE_LLC;
4075         } else
4076                 obj->cache_level = I915_CACHE_NONE;
4077
4078         trace_i915_gem_object_create(obj);
4079
4080         return obj;
4081 }
4082
4083 int i915_gem_init_object(struct drm_gem_object *obj)
4084 {
4085         BUG();
4086
4087         return 0;
4088 }
4089
4090 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4091 {
4092         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4093         struct drm_device *dev = obj->base.dev;
4094         drm_i915_private_t *dev_priv = dev->dev_private;
4095         struct i915_vma *vma, *next;
4096
4097         trace_i915_gem_object_destroy(obj);
4098
4099         if (obj->phys_obj)
4100                 i915_gem_detach_phys_object(dev, obj);
4101
4102         obj->pin_count = 0;
4103         /* NB: 0 or 1 elements */
4104         WARN_ON(!list_empty(&obj->vma_list) &&
4105                 !list_is_singular(&obj->vma_list));
4106         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4107                 int ret = i915_vma_unbind(vma);
4108                 if (WARN_ON(ret == -ERESTARTSYS)) {
4109                         bool was_interruptible;
4110
4111                         was_interruptible = dev_priv->mm.interruptible;
4112                         dev_priv->mm.interruptible = false;
4113
4114                         WARN_ON(i915_vma_unbind(vma));
4115
4116                         dev_priv->mm.interruptible = was_interruptible;
4117                 }
4118         }
4119
4120         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4121          * before progressing. */
4122         if (obj->stolen)
4123                 i915_gem_object_unpin_pages(obj);
4124
4125         if (WARN_ON(obj->pages_pin_count))
4126                 obj->pages_pin_count = 0;
4127         i915_gem_object_put_pages(obj);
4128         i915_gem_object_free_mmap_offset(obj);
4129         i915_gem_object_release_stolen(obj);
4130
4131         BUG_ON(obj->pages);
4132
4133         if (obj->base.import_attach)
4134                 drm_prime_gem_destroy(&obj->base, NULL);
4135
4136         drm_gem_object_release(&obj->base);
4137         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4138
4139         kfree(obj->bit_17);
4140         i915_gem_object_free(obj);
4141 }
4142
4143 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4144                                      struct i915_address_space *vm)
4145 {
4146         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4147         if (vma == NULL)
4148                 return ERR_PTR(-ENOMEM);
4149
4150         INIT_LIST_HEAD(&vma->vma_link);
4151         INIT_LIST_HEAD(&vma->mm_list);
4152         INIT_LIST_HEAD(&vma->exec_list);
4153         vma->vm = vm;
4154         vma->obj = obj;
4155
4156         /* Keep GGTT vmas first to make debug easier */
4157         if (i915_is_ggtt(vm))
4158                 list_add(&vma->vma_link, &obj->vma_list);
4159         else
4160                 list_add_tail(&vma->vma_link, &obj->vma_list);
4161
4162         return vma;
4163 }
4164
4165 void i915_gem_vma_destroy(struct i915_vma *vma)
4166 {
4167         WARN_ON(vma->node.allocated);
4168         list_del(&vma->vma_link);
4169         kfree(vma);
4170 }
4171
4172 int
4173 i915_gem_idle(struct drm_device *dev)
4174 {
4175         drm_i915_private_t *dev_priv = dev->dev_private;
4176         int ret;
4177
4178         if (dev_priv->ums.mm_suspended) {
4179                 mutex_unlock(&dev->struct_mutex);
4180                 return 0;
4181         }
4182
4183         ret = i915_gpu_idle(dev);
4184         if (ret) {
4185                 mutex_unlock(&dev->struct_mutex);
4186                 return ret;
4187         }
4188         i915_gem_retire_requests(dev);
4189
4190         /* Under UMS, be paranoid and evict. */
4191         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4192                 i915_gem_evict_everything(dev);
4193
4194         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4195
4196         i915_kernel_lost_context(dev);
4197         i915_gem_cleanup_ringbuffer(dev);
4198
4199         /* Cancel the retire work handler, which should be idle now. */
4200         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4201
4202         return 0;
4203 }
4204
4205 void i915_gem_l3_remap(struct drm_device *dev)
4206 {
4207         drm_i915_private_t *dev_priv = dev->dev_private;
4208         u32 misccpctl;
4209         int i;
4210
4211         if (!HAS_L3_GPU_CACHE(dev))
4212                 return;
4213
4214         if (!dev_priv->l3_parity.remap_info)
4215                 return;
4216
4217         misccpctl = I915_READ(GEN7_MISCCPCTL);
4218         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4219         POSTING_READ(GEN7_MISCCPCTL);
4220
4221         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4222                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4223                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4224                         DRM_DEBUG("0x%x was already programmed to %x\n",
4225                                   GEN7_L3LOG_BASE + i, remap);
4226                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4227                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4228                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4229         }
4230
4231         /* Make sure all the writes land before disabling dop clock gating */
4232         POSTING_READ(GEN7_L3LOG_BASE);
4233
4234         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4235 }
4236
4237 void i915_gem_init_swizzling(struct drm_device *dev)
4238 {
4239         drm_i915_private_t *dev_priv = dev->dev_private;
4240
4241         if (INTEL_INFO(dev)->gen < 5 ||
4242             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4243                 return;
4244
4245         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4246                                  DISP_TILE_SURFACE_SWIZZLING);
4247
4248         if (IS_GEN5(dev))
4249                 return;
4250
4251         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4252         if (IS_GEN6(dev))
4253                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4254         else if (IS_GEN7(dev))
4255                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4256         else
4257                 BUG();
4258 }
4259
4260 static bool
4261 intel_enable_blt(struct drm_device *dev)
4262 {
4263         if (!HAS_BLT(dev))
4264                 return false;
4265
4266         /* The blitter was dysfunctional on early prototypes */
4267         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4268                 DRM_INFO("BLT not supported on this pre-production hardware;"
4269                          " graphics performance will be degraded.\n");
4270                 return false;
4271         }
4272
4273         return true;
4274 }
4275
4276 static int i915_gem_init_rings(struct drm_device *dev)
4277 {
4278         struct drm_i915_private *dev_priv = dev->dev_private;
4279         int ret;
4280
4281         ret = intel_init_render_ring_buffer(dev);
4282         if (ret)
4283                 return ret;
4284
4285         if (HAS_BSD(dev)) {
4286                 ret = intel_init_bsd_ring_buffer(dev);
4287                 if (ret)
4288                         goto cleanup_render_ring;
4289         }
4290
4291         if (intel_enable_blt(dev)) {
4292                 ret = intel_init_blt_ring_buffer(dev);
4293                 if (ret)
4294                         goto cleanup_bsd_ring;
4295         }
4296
4297         if (HAS_VEBOX(dev)) {
4298                 ret = intel_init_vebox_ring_buffer(dev);
4299                 if (ret)
4300                         goto cleanup_blt_ring;
4301         }
4302
4303
4304         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4305         if (ret)
4306                 goto cleanup_vebox_ring;
4307
4308         return 0;
4309
4310 cleanup_vebox_ring:
4311         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4312 cleanup_blt_ring:
4313         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4314 cleanup_bsd_ring:
4315         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4316 cleanup_render_ring:
4317         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4318
4319         return ret;
4320 }
4321
4322 int
4323 i915_gem_init_hw(struct drm_device *dev)
4324 {
4325         drm_i915_private_t *dev_priv = dev->dev_private;
4326         int ret;
4327
4328         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4329                 return -EIO;
4330
4331         if (dev_priv->ellc_size)
4332                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4333
4334         if (HAS_PCH_NOP(dev)) {
4335                 u32 temp = I915_READ(GEN7_MSG_CTL);
4336                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4337                 I915_WRITE(GEN7_MSG_CTL, temp);
4338         }
4339
4340         i915_gem_l3_remap(dev);
4341
4342         i915_gem_init_swizzling(dev);
4343
4344         ret = i915_gem_init_rings(dev);
4345         if (ret)
4346                 return ret;
4347
4348         /*
4349          * XXX: There was some w/a described somewhere suggesting loading
4350          * contexts before PPGTT.
4351          */
4352         i915_gem_context_init(dev);
4353         if (dev_priv->mm.aliasing_ppgtt) {
4354                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4355                 if (ret) {
4356                         i915_gem_cleanup_aliasing_ppgtt(dev);
4357                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4358                 }
4359         }
4360
4361         return 0;
4362 }
4363
4364 int i915_gem_init(struct drm_device *dev)
4365 {
4366         struct drm_i915_private *dev_priv = dev->dev_private;
4367         int ret;
4368
4369         mutex_lock(&dev->struct_mutex);
4370
4371         if (IS_VALLEYVIEW(dev)) {
4372                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4373                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4374                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4375                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4376         }
4377
4378         i915_gem_init_global_gtt(dev);
4379
4380         ret = i915_gem_init_hw(dev);
4381         mutex_unlock(&dev->struct_mutex);
4382         if (ret) {
4383                 i915_gem_cleanup_aliasing_ppgtt(dev);
4384                 return ret;
4385         }
4386
4387         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4388         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4389                 dev_priv->dri1.allow_batchbuffer = 1;
4390         return 0;
4391 }
4392
4393 void
4394 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4395 {
4396         drm_i915_private_t *dev_priv = dev->dev_private;
4397         struct intel_ring_buffer *ring;
4398         int i;
4399
4400         for_each_ring(ring, dev_priv, i)
4401                 intel_cleanup_ring_buffer(ring);
4402 }
4403
4404 int
4405 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4406                        struct drm_file *file_priv)
4407 {
4408         struct drm_i915_private *dev_priv = dev->dev_private;
4409         int ret;
4410
4411         if (drm_core_check_feature(dev, DRIVER_MODESET))
4412                 return 0;
4413
4414         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4415                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4416                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4417         }
4418
4419         mutex_lock(&dev->struct_mutex);
4420         dev_priv->ums.mm_suspended = 0;
4421
4422         ret = i915_gem_init_hw(dev);
4423         if (ret != 0) {
4424                 mutex_unlock(&dev->struct_mutex);
4425                 return ret;
4426         }
4427
4428         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4429         mutex_unlock(&dev->struct_mutex);
4430
4431         ret = drm_irq_install(dev);
4432         if (ret)
4433                 goto cleanup_ringbuffer;
4434
4435         return 0;
4436
4437 cleanup_ringbuffer:
4438         mutex_lock(&dev->struct_mutex);
4439         i915_gem_cleanup_ringbuffer(dev);
4440         dev_priv->ums.mm_suspended = 1;
4441         mutex_unlock(&dev->struct_mutex);
4442
4443         return ret;
4444 }
4445
4446 int
4447 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4448                        struct drm_file *file_priv)
4449 {
4450         struct drm_i915_private *dev_priv = dev->dev_private;
4451         int ret;
4452
4453         if (drm_core_check_feature(dev, DRIVER_MODESET))
4454                 return 0;
4455
4456         drm_irq_uninstall(dev);
4457
4458         mutex_lock(&dev->struct_mutex);
4459         ret =  i915_gem_idle(dev);
4460
4461         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4462          * We need to replace this with a semaphore, or something.
4463          * And not confound ums.mm_suspended!
4464          */
4465         if (ret != 0)
4466                 dev_priv->ums.mm_suspended = 1;
4467         mutex_unlock(&dev->struct_mutex);
4468
4469         return ret;
4470 }
4471
4472 void
4473 i915_gem_lastclose(struct drm_device *dev)
4474 {
4475         int ret;
4476
4477         if (drm_core_check_feature(dev, DRIVER_MODESET))
4478                 return;
4479
4480         mutex_lock(&dev->struct_mutex);
4481         ret = i915_gem_idle(dev);
4482         if (ret)
4483                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4484         mutex_unlock(&dev->struct_mutex);
4485 }
4486
4487 static void
4488 init_ring_lists(struct intel_ring_buffer *ring)
4489 {
4490         INIT_LIST_HEAD(&ring->active_list);
4491         INIT_LIST_HEAD(&ring->request_list);
4492 }
4493
4494 static void i915_init_vm(struct drm_i915_private *dev_priv,
4495                          struct i915_address_space *vm)
4496 {
4497         vm->dev = dev_priv->dev;
4498         INIT_LIST_HEAD(&vm->active_list);
4499         INIT_LIST_HEAD(&vm->inactive_list);
4500         INIT_LIST_HEAD(&vm->global_link);
4501         list_add(&vm->global_link, &dev_priv->vm_list);
4502 }
4503
4504 void
4505 i915_gem_load(struct drm_device *dev)
4506 {
4507         drm_i915_private_t *dev_priv = dev->dev_private;
4508         int i;
4509
4510         dev_priv->slab =
4511                 kmem_cache_create("i915_gem_object",
4512                                   sizeof(struct drm_i915_gem_object), 0,
4513                                   SLAB_HWCACHE_ALIGN,
4514                                   NULL);
4515
4516         INIT_LIST_HEAD(&dev_priv->vm_list);
4517         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4518
4519         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4520         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4521         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4522         for (i = 0; i < I915_NUM_RINGS; i++)
4523                 init_ring_lists(&dev_priv->ring[i]);
4524         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4525                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4526         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4527                           i915_gem_retire_work_handler);
4528         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4529
4530         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4531         if (IS_GEN3(dev)) {
4532                 I915_WRITE(MI_ARB_STATE,
4533                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4534         }
4535
4536         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4537
4538         /* Old X drivers will take 0-2 for front, back, depth buffers */
4539         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4540                 dev_priv->fence_reg_start = 3;
4541
4542         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4543                 dev_priv->num_fence_regs = 32;
4544         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4545                 dev_priv->num_fence_regs = 16;
4546         else
4547                 dev_priv->num_fence_regs = 8;
4548
4549         /* Initialize fence registers to zero */
4550         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4551         i915_gem_restore_fences(dev);
4552
4553         i915_gem_detect_bit_6_swizzle(dev);
4554         init_waitqueue_head(&dev_priv->pending_flip_queue);
4555
4556         dev_priv->mm.interruptible = true;
4557
4558         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4559         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4560         register_shrinker(&dev_priv->mm.inactive_shrinker);
4561 }
4562
4563 /*
4564  * Create a physically contiguous memory object for this object
4565  * e.g. for cursor + overlay regs
4566  */
4567 static int i915_gem_init_phys_object(struct drm_device *dev,
4568                                      int id, int size, int align)
4569 {
4570         drm_i915_private_t *dev_priv = dev->dev_private;
4571         struct drm_i915_gem_phys_object *phys_obj;
4572         int ret;
4573
4574         if (dev_priv->mm.phys_objs[id - 1] || !size)
4575                 return 0;
4576
4577         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4578         if (!phys_obj)
4579                 return -ENOMEM;
4580
4581         phys_obj->id = id;
4582
4583         phys_obj->handle = drm_pci_alloc(dev, size, align);
4584         if (!phys_obj->handle) {
4585                 ret = -ENOMEM;
4586                 goto kfree_obj;
4587         }
4588 #ifdef CONFIG_X86
4589         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4590 #endif
4591
4592         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4593
4594         return 0;
4595 kfree_obj:
4596         kfree(phys_obj);
4597         return ret;
4598 }
4599
4600 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4601 {
4602         drm_i915_private_t *dev_priv = dev->dev_private;
4603         struct drm_i915_gem_phys_object *phys_obj;
4604
4605         if (!dev_priv->mm.phys_objs[id - 1])
4606                 return;
4607
4608         phys_obj = dev_priv->mm.phys_objs[id - 1];
4609         if (phys_obj->cur_obj) {
4610                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4611         }
4612
4613 #ifdef CONFIG_X86
4614         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4615 #endif
4616         drm_pci_free(dev, phys_obj->handle);
4617         kfree(phys_obj);
4618         dev_priv->mm.phys_objs[id - 1] = NULL;
4619 }
4620
4621 void i915_gem_free_all_phys_object(struct drm_device *dev)
4622 {
4623         int i;
4624
4625         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4626                 i915_gem_free_phys_object(dev, i);
4627 }
4628
4629 void i915_gem_detach_phys_object(struct drm_device *dev,
4630                                  struct drm_i915_gem_object *obj)
4631 {
4632         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4633         char *vaddr;
4634         int i;
4635         int page_count;
4636
4637         if (!obj->phys_obj)
4638                 return;
4639         vaddr = obj->phys_obj->handle->vaddr;
4640
4641         page_count = obj->base.size / PAGE_SIZE;
4642         for (i = 0; i < page_count; i++) {
4643                 struct page *page = shmem_read_mapping_page(mapping, i);
4644                 if (!IS_ERR(page)) {
4645                         char *dst = kmap_atomic(page);
4646                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4647                         kunmap_atomic(dst);
4648
4649                         drm_clflush_pages(&page, 1);
4650
4651                         set_page_dirty(page);
4652                         mark_page_accessed(page);
4653                         page_cache_release(page);
4654                 }
4655         }
4656         i915_gem_chipset_flush(dev);
4657
4658         obj->phys_obj->cur_obj = NULL;
4659         obj->phys_obj = NULL;
4660 }
4661
4662 int
4663 i915_gem_attach_phys_object(struct drm_device *dev,
4664                             struct drm_i915_gem_object *obj,
4665                             int id,
4666                             int align)
4667 {
4668         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4669         drm_i915_private_t *dev_priv = dev->dev_private;
4670         int ret = 0;
4671         int page_count;
4672         int i;
4673
4674         if (id > I915_MAX_PHYS_OBJECT)
4675                 return -EINVAL;
4676
4677         if (obj->phys_obj) {
4678                 if (obj->phys_obj->id == id)
4679                         return 0;
4680                 i915_gem_detach_phys_object(dev, obj);
4681         }
4682
4683         /* create a new object */
4684         if (!dev_priv->mm.phys_objs[id - 1]) {
4685                 ret = i915_gem_init_phys_object(dev, id,
4686                                                 obj->base.size, align);
4687                 if (ret) {
4688                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4689                                   id, obj->base.size);
4690                         return ret;
4691                 }
4692         }
4693
4694         /* bind to the object */
4695         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4696         obj->phys_obj->cur_obj = obj;
4697
4698         page_count = obj->base.size / PAGE_SIZE;
4699
4700         for (i = 0; i < page_count; i++) {
4701                 struct page *page;
4702                 char *dst, *src;
4703
4704                 page = shmem_read_mapping_page(mapping, i);
4705                 if (IS_ERR(page))
4706                         return PTR_ERR(page);
4707
4708                 src = kmap_atomic(page);
4709                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4710                 memcpy(dst, src, PAGE_SIZE);
4711                 kunmap_atomic(src);
4712
4713                 mark_page_accessed(page);
4714                 page_cache_release(page);
4715         }
4716
4717         return 0;
4718 }
4719
4720 static int
4721 i915_gem_phys_pwrite(struct drm_device *dev,
4722                      struct drm_i915_gem_object *obj,
4723                      struct drm_i915_gem_pwrite *args,
4724                      struct drm_file *file_priv)
4725 {
4726         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4727         char __user *user_data = to_user_ptr(args->data_ptr);
4728
4729         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4730                 unsigned long unwritten;
4731
4732                 /* The physical object once assigned is fixed for the lifetime
4733                  * of the obj, so we can safely drop the lock and continue
4734                  * to access vaddr.
4735                  */
4736                 mutex_unlock(&dev->struct_mutex);
4737                 unwritten = copy_from_user(vaddr, user_data, args->size);
4738                 mutex_lock(&dev->struct_mutex);
4739                 if (unwritten)
4740                         return -EFAULT;
4741         }
4742
4743         i915_gem_chipset_flush(dev);
4744         return 0;
4745 }
4746
4747 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4748 {
4749         struct drm_i915_file_private *file_priv = file->driver_priv;
4750
4751         /* Clean up our request list when the client is going away, so that
4752          * later retire_requests won't dereference our soon-to-be-gone
4753          * file_priv.
4754          */
4755         spin_lock(&file_priv->mm.lock);
4756         while (!list_empty(&file_priv->mm.request_list)) {
4757                 struct drm_i915_gem_request *request;
4758
4759                 request = list_first_entry(&file_priv->mm.request_list,
4760                                            struct drm_i915_gem_request,
4761                                            client_list);
4762                 list_del(&request->client_list);
4763                 request->file_priv = NULL;
4764         }
4765         spin_unlock(&file_priv->mm.lock);
4766 }
4767
4768 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4769 {
4770         if (!mutex_is_locked(mutex))
4771                 return false;
4772
4773 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4774         return mutex->owner == task;
4775 #else
4776         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4777         return false;
4778 #endif
4779 }
4780
4781 static int
4782 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4783 {
4784         struct drm_i915_private *dev_priv =
4785                 container_of(shrinker,
4786                              struct drm_i915_private,
4787                              mm.inactive_shrinker);
4788         struct drm_device *dev = dev_priv->dev;
4789         struct drm_i915_gem_object *obj;
4790         int nr_to_scan = sc->nr_to_scan;
4791         bool unlock = true;
4792         int cnt;
4793
4794         if (!mutex_trylock(&dev->struct_mutex)) {
4795                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4796                         return 0;
4797
4798                 if (dev_priv->mm.shrinker_no_lock_stealing)
4799                         return 0;
4800
4801                 unlock = false;
4802         }
4803
4804         if (nr_to_scan) {
4805                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4806                 if (nr_to_scan > 0)
4807                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4808                                                         false);
4809                 if (nr_to_scan > 0)
4810                         i915_gem_shrink_all(dev_priv);
4811         }
4812
4813         cnt = 0;
4814         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4815                 if (obj->pages_pin_count == 0)
4816                         cnt += obj->base.size >> PAGE_SHIFT;
4817
4818         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4819                 if (obj->active)
4820                         continue;
4821
4822                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4823                         cnt += obj->base.size >> PAGE_SHIFT;
4824         }
4825
4826         if (unlock)
4827                 mutex_unlock(&dev->struct_mutex);
4828         return cnt;
4829 }
4830
4831 /* All the new VM stuff */
4832 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4833                                   struct i915_address_space *vm)
4834 {
4835         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4836         struct i915_vma *vma;
4837
4838         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4839                 vm = &dev_priv->gtt.base;
4840
4841         BUG_ON(list_empty(&o->vma_list));
4842         list_for_each_entry(vma, &o->vma_list, vma_link) {
4843                 if (vma->vm == vm)
4844                         return vma->node.start;
4845
4846         }
4847         return -1;
4848 }
4849
4850 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4851                         struct i915_address_space *vm)
4852 {
4853         struct i915_vma *vma;
4854
4855         list_for_each_entry(vma, &o->vma_list, vma_link)
4856                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4857                         return true;
4858
4859         return false;
4860 }
4861
4862 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4863 {
4864         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4865         struct i915_address_space *vm;
4866
4867         list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4868                 if (i915_gem_obj_bound(o, vm))
4869                         return true;
4870
4871         return false;
4872 }
4873
4874 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4875                                 struct i915_address_space *vm)
4876 {
4877         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4878         struct i915_vma *vma;
4879
4880         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4881                 vm = &dev_priv->gtt.base;
4882
4883         BUG_ON(list_empty(&o->vma_list));
4884
4885         list_for_each_entry(vma, &o->vma_list, vma_link)
4886                 if (vma->vm == vm)
4887                         return vma->node.size;
4888
4889         return 0;
4890 }
4891
4892 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4893                                      struct i915_address_space *vm)
4894 {
4895         struct i915_vma *vma;
4896         list_for_each_entry(vma, &obj->vma_list, vma_link)
4897                 if (vma->vm == vm)
4898                         return vma;
4899
4900         return NULL;
4901 }
4902
4903 struct i915_vma *
4904 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4905                                   struct i915_address_space *vm)
4906 {
4907         struct i915_vma *vma;
4908
4909         vma = i915_gem_obj_to_vma(obj, vm);
4910         if (!vma)
4911                 vma = i915_gem_vma_create(obj, vm);
4912
4913         return vma;
4914 }