drm/i915: Defer assignment of obj->gtt_space until after all possible mallocs
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct completion *x = &dev_priv->error_completion;
94         unsigned long flags;
95         int ret;
96
97         if (!atomic_read(&dev_priv->mm.wedged))
98                 return 0;
99
100         /*
101          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102          * userspace. If it takes that long something really bad is going on and
103          * we should simply try to bail out and fail as gracefully as possible.
104          */
105         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106         if (ret == 0) {
107                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108                 return -EIO;
109         } else if (ret < 0) {
110                 return ret;
111         }
112
113         if (atomic_read(&dev_priv->mm.wedged)) {
114                 /* GPU is hung, bump the completion count to account for
115                  * the token we just consumed so that we never hit zero and
116                  * end up waiting upon a subsequent completion event that
117                  * will never happen.
118                  */
119                 spin_lock_irqsave(&x->wait.lock, flags);
120                 x->done++;
121                 spin_unlock_irqrestore(&x->wait.lock, flags);
122         }
123         return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128         int ret;
129
130         ret = i915_gem_wait_for_error(dev);
131         if (ret)
132                 return ret;
133
134         ret = mutex_lock_interruptible(&dev->struct_mutex);
135         if (ret)
136                 return ret;
137
138         WARN_ON(i915_verify_lists(dev));
139         return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145         return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150                     struct drm_file *file)
151 {
152         struct drm_i915_gem_init *args = data;
153
154         if (drm_core_check_feature(dev, DRIVER_MODESET))
155                 return -ENODEV;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         /* GEM with user mode setting was never supported on ilk and later. */
162         if (INTEL_INFO(dev)->gen >= 5)
163                 return -ENODEV;
164
165         mutex_lock(&dev->struct_mutex);
166         i915_gem_init_global_gtt(dev, args->gtt_start,
167                                  args->gtt_end, args->gtt_end);
168         mutex_unlock(&dev->struct_mutex);
169
170         return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175                             struct drm_file *file)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         struct drm_i915_gem_get_aperture *args = data;
179         struct drm_i915_gem_object *obj;
180         size_t pinned;
181
182         pinned = 0;
183         mutex_lock(&dev->struct_mutex);
184         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185                 if (obj->pin_count)
186                         pinned += obj->gtt_space->size;
187         mutex_unlock(&dev->struct_mutex);
188
189         args->aper_size = dev_priv->mm.gtt_total;
190         args->aper_available_size = args->aper_size - pinned;
191
192         return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197                 struct drm_device *dev,
198                 uint64_t size,
199                 uint32_t *handle_p)
200 {
201         struct drm_i915_gem_object *obj;
202         int ret;
203         u32 handle;
204
205         size = roundup(size, PAGE_SIZE);
206         if (size == 0)
207                 return -EINVAL;
208
209         /* Allocate the new object */
210         obj = i915_gem_alloc_object(dev, size);
211         if (obj == NULL)
212                 return -ENOMEM;
213
214         ret = drm_gem_handle_create(file, &obj->base, &handle);
215         if (ret) {
216                 drm_gem_object_release(&obj->base);
217                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218                 kfree(obj);
219                 return ret;
220         }
221
222         /* drop reference from allocate - handle holds it now */
223         drm_gem_object_unreference(&obj->base);
224         trace_i915_gem_object_create(obj);
225
226         *handle_p = handle;
227         return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232                      struct drm_device *dev,
233                      struct drm_mode_create_dumb *args)
234 {
235         /* have to work out size/pitch and return them */
236         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237         args->size = args->pitch * args->height;
238         return i915_gem_create(file, dev,
239                                args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243                           struct drm_device *dev,
244                           uint32_t handle)
245 {
246         return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250  * Creates a new mm object and returns a handle to it.
251  */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254                       struct drm_file *file)
255 {
256         struct drm_i915_gem_create *args = data;
257
258         return i915_gem_create(file, dev,
259                                args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267                 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272                         const char *gpu_vaddr, int gpu_offset,
273                         int length)
274 {
275         int ret, cpu_offset = 0;
276
277         while (length > 0) {
278                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279                 int this_length = min(cacheline_end - gpu_offset, length);
280                 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283                                      gpu_vaddr + swizzled_gpu_offset,
284                                      this_length);
285                 if (ret)
286                         return ret + length;
287
288                 cpu_offset += this_length;
289                 gpu_offset += this_length;
290                 length -= this_length;
291         }
292
293         return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298                           const char __user *cpu_vaddr,
299                           int length)
300 {
301         int ret, cpu_offset = 0;
302
303         while (length > 0) {
304                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305                 int this_length = min(cacheline_end - gpu_offset, length);
306                 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309                                        cpu_vaddr + cpu_offset,
310                                        this_length);
311                 if (ret)
312                         return ret + length;
313
314                 cpu_offset += this_length;
315                 gpu_offset += this_length;
316                 length -= this_length;
317         }
318
319         return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323  * Flushes invalid cachelines before reading the target if
324  * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327                  char __user *user_data,
328                  bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330         char *vaddr;
331         int ret;
332
333         if (unlikely(page_do_bit17_swizzling))
334                 return -EINVAL;
335
336         vaddr = kmap_atomic(page);
337         if (needs_clflush)
338                 drm_clflush_virt_range(vaddr + shmem_page_offset,
339                                        page_length);
340         ret = __copy_to_user_inatomic(user_data,
341                                       vaddr + shmem_page_offset,
342                                       page_length);
343         kunmap_atomic(vaddr);
344
345         return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350                              bool swizzled)
351 {
352         if (unlikely(swizzled)) {
353                 unsigned long start = (unsigned long) addr;
354                 unsigned long end = (unsigned long) addr + length;
355
356                 /* For swizzling simply ensure that we always flush both
357                  * channels. Lame, but simple and it works. Swizzled
358                  * pwrite/pread is far from a hotpath - current userspace
359                  * doesn't use it at all. */
360                 start = round_down(start, 128);
361                 end = round_up(end, 128);
362
363                 drm_clflush_virt_range((void *)start, end - start);
364         } else {
365                 drm_clflush_virt_range(addr, length);
366         }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371  * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374                  char __user *user_data,
375                  bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377         char *vaddr;
378         int ret;
379
380         vaddr = kmap(page);
381         if (needs_clflush)
382                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383                                              page_length,
384                                              page_do_bit17_swizzling);
385
386         if (page_do_bit17_swizzling)
387                 ret = __copy_to_user_swizzled(user_data,
388                                               vaddr, shmem_page_offset,
389                                               page_length);
390         else
391                 ret = __copy_to_user(user_data,
392                                      vaddr + shmem_page_offset,
393                                      page_length);
394         kunmap(page);
395
396         return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401                      struct drm_i915_gem_object *obj,
402                      struct drm_i915_gem_pread *args,
403                      struct drm_file *file)
404 {
405         char __user *user_data;
406         ssize_t remain;
407         loff_t offset;
408         int shmem_page_offset, page_length, ret = 0;
409         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410         int hit_slowpath = 0;
411         int prefaulted = 0;
412         int needs_clflush = 0;
413         struct scatterlist *sg;
414         int i;
415
416         user_data = (char __user *) (uintptr_t) args->data_ptr;
417         remain = args->size;
418
419         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422                 /* If we're not in the cpu read domain, set ourself into the gtt
423                  * read domain and manually flush cachelines (if required). This
424                  * optimizes for the case when the gpu will dirty the data
425                  * anyway again before the next pread happens. */
426                 if (obj->cache_level == I915_CACHE_NONE)
427                         needs_clflush = 1;
428                 if (obj->gtt_space) {
429                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
430                         if (ret)
431                                 return ret;
432                 }
433         }
434
435         ret = i915_gem_object_get_pages(obj);
436         if (ret)
437                 return ret;
438
439         i915_gem_object_pin_pages(obj);
440
441         offset = args->offset;
442
443         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444                 struct page *page;
445
446                 if (i < offset >> PAGE_SHIFT)
447                         continue;
448
449                 if (remain <= 0)
450                         break;
451
452                 /* Operation in this page
453                  *
454                  * shmem_page_offset = offset within page in shmem file
455                  * page_length = bytes to copy for this page
456                  */
457                 shmem_page_offset = offset_in_page(offset);
458                 page_length = remain;
459                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460                         page_length = PAGE_SIZE - shmem_page_offset;
461
462                 page = sg_page(sg);
463                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464                         (page_to_phys(page) & (1 << 17)) != 0;
465
466                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467                                        user_data, page_do_bit17_swizzling,
468                                        needs_clflush);
469                 if (ret == 0)
470                         goto next_page;
471
472                 hit_slowpath = 1;
473                 mutex_unlock(&dev->struct_mutex);
474
475                 if (!prefaulted) {
476                         ret = fault_in_multipages_writeable(user_data, remain);
477                         /* Userspace is tricking us, but we've already clobbered
478                          * its pages with the prefault and promised to write the
479                          * data up to the first fault. Hence ignore any errors
480                          * and just continue. */
481                         (void)ret;
482                         prefaulted = 1;
483                 }
484
485                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486                                        user_data, page_do_bit17_swizzling,
487                                        needs_clflush);
488
489                 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492                 mark_page_accessed(page);
493
494                 if (ret)
495                         goto out;
496
497                 remain -= page_length;
498                 user_data += page_length;
499                 offset += page_length;
500         }
501
502 out:
503         i915_gem_object_unpin_pages(obj);
504
505         if (hit_slowpath) {
506                 /* Fixup: Kill any reinstated backing storage pages */
507                 if (obj->madv == __I915_MADV_PURGED)
508                         i915_gem_object_truncate(obj);
509         }
510
511         return ret;
512 }
513
514 /**
515  * Reads data from the object referenced by handle.
516  *
517  * On error, the contents of *data are undefined.
518  */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521                      struct drm_file *file)
522 {
523         struct drm_i915_gem_pread *args = data;
524         struct drm_i915_gem_object *obj;
525         int ret = 0;
526
527         if (args->size == 0)
528                 return 0;
529
530         if (!access_ok(VERIFY_WRITE,
531                        (char __user *)(uintptr_t)args->data_ptr,
532                        args->size))
533                 return -EFAULT;
534
535         ret = i915_mutex_lock_interruptible(dev);
536         if (ret)
537                 return ret;
538
539         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540         if (&obj->base == NULL) {
541                 ret = -ENOENT;
542                 goto unlock;
543         }
544
545         /* Bounds check source.  */
546         if (args->offset > obj->base.size ||
547             args->size > obj->base.size - args->offset) {
548                 ret = -EINVAL;
549                 goto out;
550         }
551
552         /* prime objects have no backing filp to GEM pread/pwrite
553          * pages from.
554          */
555         if (!obj->base.filp) {
556                 ret = -EINVAL;
557                 goto out;
558         }
559
560         trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562         ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565         drm_gem_object_unreference(&obj->base);
566 unlock:
567         mutex_unlock(&dev->struct_mutex);
568         return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577                 loff_t page_base, int page_offset,
578                 char __user *user_data,
579                 int length)
580 {
581         void __iomem *vaddr_atomic;
582         void *vaddr;
583         unsigned long unwritten;
584
585         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586         /* We can use the cpu mem copy function because this is X86. */
587         vaddr = (void __force*)vaddr_atomic + page_offset;
588         unwritten = __copy_from_user_inatomic_nocache(vaddr,
589                                                       user_data, length);
590         io_mapping_unmap_atomic(vaddr_atomic);
591         return unwritten;
592 }
593
594 /**
595  * This is the fast pwrite path, where we copy the data directly from the
596  * user into the GTT, uncached.
597  */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600                          struct drm_i915_gem_object *obj,
601                          struct drm_i915_gem_pwrite *args,
602                          struct drm_file *file)
603 {
604         drm_i915_private_t *dev_priv = dev->dev_private;
605         ssize_t remain;
606         loff_t offset, page_base;
607         char __user *user_data;
608         int page_offset, page_length, ret;
609
610         ret = i915_gem_object_pin(obj, 0, true, true);
611         if (ret)
612                 goto out;
613
614         ret = i915_gem_object_set_to_gtt_domain(obj, true);
615         if (ret)
616                 goto out_unpin;
617
618         ret = i915_gem_object_put_fence(obj);
619         if (ret)
620                 goto out_unpin;
621
622         user_data = (char __user *) (uintptr_t) args->data_ptr;
623         remain = args->size;
624
625         offset = obj->gtt_offset + args->offset;
626
627         while (remain > 0) {
628                 /* Operation in this page
629                  *
630                  * page_base = page offset within aperture
631                  * page_offset = offset within page
632                  * page_length = bytes to copy for this page
633                  */
634                 page_base = offset & PAGE_MASK;
635                 page_offset = offset_in_page(offset);
636                 page_length = remain;
637                 if ((page_offset + remain) > PAGE_SIZE)
638                         page_length = PAGE_SIZE - page_offset;
639
640                 /* If we get a fault while copying data, then (presumably) our
641                  * source page isn't available.  Return the error and we'll
642                  * retry in the slow path.
643                  */
644                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645                                     page_offset, user_data, page_length)) {
646                         ret = -EFAULT;
647                         goto out_unpin;
648                 }
649
650                 remain -= page_length;
651                 user_data += page_length;
652                 offset += page_length;
653         }
654
655 out_unpin:
656         i915_gem_object_unpin(obj);
657 out:
658         return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662  * Flushes invalid cachelines before writing to the target if
663  * needs_clflush_before is set and flushes out any written cachelines after
664  * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667                   char __user *user_data,
668                   bool page_do_bit17_swizzling,
669                   bool needs_clflush_before,
670                   bool needs_clflush_after)
671 {
672         char *vaddr;
673         int ret;
674
675         if (unlikely(page_do_bit17_swizzling))
676                 return -EINVAL;
677
678         vaddr = kmap_atomic(page);
679         if (needs_clflush_before)
680                 drm_clflush_virt_range(vaddr + shmem_page_offset,
681                                        page_length);
682         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683                                                 user_data,
684                                                 page_length);
685         if (needs_clflush_after)
686                 drm_clflush_virt_range(vaddr + shmem_page_offset,
687                                        page_length);
688         kunmap_atomic(vaddr);
689
690         return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694  * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697                   char __user *user_data,
698                   bool page_do_bit17_swizzling,
699                   bool needs_clflush_before,
700                   bool needs_clflush_after)
701 {
702         char *vaddr;
703         int ret;
704
705         vaddr = kmap(page);
706         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708                                              page_length,
709                                              page_do_bit17_swizzling);
710         if (page_do_bit17_swizzling)
711                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712                                                 user_data,
713                                                 page_length);
714         else
715                 ret = __copy_from_user(vaddr + shmem_page_offset,
716                                        user_data,
717                                        page_length);
718         if (needs_clflush_after)
719                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720                                              page_length,
721                                              page_do_bit17_swizzling);
722         kunmap(page);
723
724         return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729                       struct drm_i915_gem_object *obj,
730                       struct drm_i915_gem_pwrite *args,
731                       struct drm_file *file)
732 {
733         ssize_t remain;
734         loff_t offset;
735         char __user *user_data;
736         int shmem_page_offset, page_length, ret = 0;
737         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738         int hit_slowpath = 0;
739         int needs_clflush_after = 0;
740         int needs_clflush_before = 0;
741         int i;
742         struct scatterlist *sg;
743
744         user_data = (char __user *) (uintptr_t) args->data_ptr;
745         remain = args->size;
746
747         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750                 /* If we're not in the cpu write domain, set ourself into the gtt
751                  * write domain and manually flush cachelines (if required). This
752                  * optimizes for the case when the gpu will use the data
753                  * right away and we therefore have to clflush anyway. */
754                 if (obj->cache_level == I915_CACHE_NONE)
755                         needs_clflush_after = 1;
756                 if (obj->gtt_space) {
757                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
758                         if (ret)
759                                 return ret;
760                 }
761         }
762         /* Same trick applies for invalidate partially written cachelines before
763          * writing.  */
764         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765             && obj->cache_level == I915_CACHE_NONE)
766                 needs_clflush_before = 1;
767
768         ret = i915_gem_object_get_pages(obj);
769         if (ret)
770                 return ret;
771
772         i915_gem_object_pin_pages(obj);
773
774         offset = args->offset;
775         obj->dirty = 1;
776
777         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778                 struct page *page;
779                 int partial_cacheline_write;
780
781                 if (i < offset >> PAGE_SHIFT)
782                         continue;
783
784                 if (remain <= 0)
785                         break;
786
787                 /* Operation in this page
788                  *
789                  * shmem_page_offset = offset within page in shmem file
790                  * page_length = bytes to copy for this page
791                  */
792                 shmem_page_offset = offset_in_page(offset);
793
794                 page_length = remain;
795                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796                         page_length = PAGE_SIZE - shmem_page_offset;
797
798                 /* If we don't overwrite a cacheline completely we need to be
799                  * careful to have up-to-date data by first clflushing. Don't
800                  * overcomplicate things and flush the entire patch. */
801                 partial_cacheline_write = needs_clflush_before &&
802                         ((shmem_page_offset | page_length)
803                                 & (boot_cpu_data.x86_clflush_size - 1));
804
805                 page = sg_page(sg);
806                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807                         (page_to_phys(page) & (1 << 17)) != 0;
808
809                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813                 if (ret == 0)
814                         goto next_page;
815
816                 hit_slowpath = 1;
817                 mutex_unlock(&dev->struct_mutex);
818                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819                                         user_data, page_do_bit17_swizzling,
820                                         partial_cacheline_write,
821                                         needs_clflush_after);
822
823                 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826                 set_page_dirty(page);
827                 mark_page_accessed(page);
828
829                 if (ret)
830                         goto out;
831
832                 remain -= page_length;
833                 user_data += page_length;
834                 offset += page_length;
835         }
836
837 out:
838         i915_gem_object_unpin_pages(obj);
839
840         if (hit_slowpath) {
841                 /* Fixup: Kill any reinstated backing storage pages */
842                 if (obj->madv == __I915_MADV_PURGED)
843                         i915_gem_object_truncate(obj);
844                 /* and flush dirty cachelines in case the object isn't in the cpu write
845                  * domain anymore. */
846                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847                         i915_gem_clflush_object(obj);
848                         i915_gem_chipset_flush(dev);
849                 }
850         }
851
852         if (needs_clflush_after)
853                 i915_gem_chipset_flush(dev);
854
855         return ret;
856 }
857
858 /**
859  * Writes data to the object referenced by handle.
860  *
861  * On error, the contents of the buffer that were to be modified are undefined.
862  */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865                       struct drm_file *file)
866 {
867         struct drm_i915_gem_pwrite *args = data;
868         struct drm_i915_gem_object *obj;
869         int ret;
870
871         if (args->size == 0)
872                 return 0;
873
874         if (!access_ok(VERIFY_READ,
875                        (char __user *)(uintptr_t)args->data_ptr,
876                        args->size))
877                 return -EFAULT;
878
879         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880                                            args->size);
881         if (ret)
882                 return -EFAULT;
883
884         ret = i915_mutex_lock_interruptible(dev);
885         if (ret)
886                 return ret;
887
888         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889         if (&obj->base == NULL) {
890                 ret = -ENOENT;
891                 goto unlock;
892         }
893
894         /* Bounds check destination. */
895         if (args->offset > obj->base.size ||
896             args->size > obj->base.size - args->offset) {
897                 ret = -EINVAL;
898                 goto out;
899         }
900
901         /* prime objects have no backing filp to GEM pread/pwrite
902          * pages from.
903          */
904         if (!obj->base.filp) {
905                 ret = -EINVAL;
906                 goto out;
907         }
908
909         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911         ret = -EFAULT;
912         /* We can only do the GTT pwrite on untiled buffers, as otherwise
913          * it would end up going through the fenced access, and we'll get
914          * different detiling behavior between reading and writing.
915          * pread/pwrite currently are reading and writing from the CPU
916          * perspective, requiring manual detiling by the client.
917          */
918         if (obj->phys_obj) {
919                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920                 goto out;
921         }
922
923         if (obj->cache_level == I915_CACHE_NONE &&
924             obj->tiling_mode == I915_TILING_NONE &&
925             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927                 /* Note that the gtt paths might fail with non-page-backed user
928                  * pointers (e.g. gtt mappings when moving data between
929                  * textures). Fallback to the shmem path in that case. */
930         }
931
932         if (ret == -EFAULT || ret == -ENOSPC)
933                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936         drm_gem_object_unreference(&obj->base);
937 unlock:
938         mutex_unlock(&dev->struct_mutex);
939         return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944                      bool interruptible)
945 {
946         if (atomic_read(&dev_priv->mm.wedged)) {
947                 struct completion *x = &dev_priv->error_completion;
948                 bool recovery_complete;
949                 unsigned long flags;
950
951                 /* Give the error handler a chance to run. */
952                 spin_lock_irqsave(&x->wait.lock, flags);
953                 recovery_complete = x->done > 0;
954                 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956                 /* Non-interruptible callers can't handle -EAGAIN, hence return
957                  * -EIO unconditionally for these. */
958                 if (!interruptible)
959                         return -EIO;
960
961                 /* Recovery complete, but still wedged means reset failure. */
962                 if (recovery_complete)
963                         return -EIO;
964
965                 return -EAGAIN;
966         }
967
968         return 0;
969 }
970
971 /*
972  * Compare seqno against outstanding lazy request. Emit a request if they are
973  * equal.
974  */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978         int ret;
979
980         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982         ret = 0;
983         if (seqno == ring->outstanding_lazy_request)
984                 ret = i915_add_request(ring, NULL, NULL);
985
986         return ret;
987 }
988
989 /**
990  * __wait_seqno - wait until execution of seqno has finished
991  * @ring: the ring expected to report seqno
992  * @seqno: duh!
993  * @interruptible: do an interruptible wait (normally yes)
994  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995  *
996  * Returns 0 if the seqno was found within the alloted time. Else returns the
997  * errno with remaining time filled in timeout argument.
998  */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000                         bool interruptible, struct timespec *timeout)
1001 {
1002         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003         struct timespec before, now, wait_time={1,0};
1004         unsigned long timeout_jiffies;
1005         long end;
1006         bool wait_forever = true;
1007         int ret;
1008
1009         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010                 return 0;
1011
1012         trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014         if (timeout != NULL) {
1015                 wait_time = *timeout;
1016                 wait_forever = false;
1017         }
1018
1019         timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021         if (WARN_ON(!ring->irq_get(ring)))
1022                 return -ENODEV;
1023
1024         /* Record current time in case interrupted by signal, or wedged * */
1025         getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029         atomic_read(&dev_priv->mm.wedged))
1030         do {
1031                 if (interruptible)
1032                         end = wait_event_interruptible_timeout(ring->irq_queue,
1033                                                                EXIT_COND,
1034                                                                timeout_jiffies);
1035                 else
1036                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037                                                  timeout_jiffies);
1038
1039                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040                 if (ret)
1041                         end = ret;
1042         } while (end == 0 && wait_forever);
1043
1044         getrawmonotonic(&now);
1045
1046         ring->irq_put(ring);
1047         trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050         if (timeout) {
1051                 struct timespec sleep_time = timespec_sub(now, before);
1052                 *timeout = timespec_sub(*timeout, sleep_time);
1053         }
1054
1055         switch (end) {
1056         case -EIO:
1057         case -EAGAIN: /* Wedged */
1058         case -ERESTARTSYS: /* Signal */
1059                 return (int)end;
1060         case 0: /* Timeout */
1061                 if (timeout)
1062                         set_normalized_timespec(timeout, 0, 0);
1063                 return -ETIME;
1064         default: /* Completed */
1065                 WARN_ON(end < 0); /* We're not aware of other errors */
1066                 return 0;
1067         }
1068 }
1069
1070 /**
1071  * Waits for a sequence number to be signaled, and cleans up the
1072  * request and object lists appropriately for that event.
1073  */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077         struct drm_device *dev = ring->dev;
1078         struct drm_i915_private *dev_priv = dev->dev_private;
1079         bool interruptible = dev_priv->mm.interruptible;
1080         int ret;
1081
1082         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083         BUG_ON(seqno == 0);
1084
1085         ret = i915_gem_check_wedge(dev_priv, interruptible);
1086         if (ret)
1087                 return ret;
1088
1089         ret = i915_gem_check_olr(ring, seqno);
1090         if (ret)
1091                 return ret;
1092
1093         return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097  * Ensures that all rendering to the object has completed and the object is
1098  * safe to unbind from the GTT or access from the CPU.
1099  */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102                                bool readonly)
1103 {
1104         struct intel_ring_buffer *ring = obj->ring;
1105         u32 seqno;
1106         int ret;
1107
1108         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109         if (seqno == 0)
1110                 return 0;
1111
1112         ret = i915_wait_seqno(ring, seqno);
1113         if (ret)
1114                 return ret;
1115
1116         i915_gem_retire_requests_ring(ring);
1117
1118         /* Manually manage the write flush as we may have not yet
1119          * retired the buffer.
1120          */
1121         if (obj->last_write_seqno &&
1122             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123                 obj->last_write_seqno = 0;
1124                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125         }
1126
1127         return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131  * as the object state may change during this call.
1132  */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135                                             bool readonly)
1136 {
1137         struct drm_device *dev = obj->base.dev;
1138         struct drm_i915_private *dev_priv = dev->dev_private;
1139         struct intel_ring_buffer *ring = obj->ring;
1140         u32 seqno;
1141         int ret;
1142
1143         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144         BUG_ON(!dev_priv->mm.interruptible);
1145
1146         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147         if (seqno == 0)
1148                 return 0;
1149
1150         ret = i915_gem_check_wedge(dev_priv, true);
1151         if (ret)
1152                 return ret;
1153
1154         ret = i915_gem_check_olr(ring, seqno);
1155         if (ret)
1156                 return ret;
1157
1158         mutex_unlock(&dev->struct_mutex);
1159         ret = __wait_seqno(ring, seqno, true, NULL);
1160         mutex_lock(&dev->struct_mutex);
1161
1162         i915_gem_retire_requests_ring(ring);
1163
1164         /* Manually manage the write flush as we may have not yet
1165          * retired the buffer.
1166          */
1167         if (obj->last_write_seqno &&
1168             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169                 obj->last_write_seqno = 0;
1170                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171         }
1172
1173         return ret;
1174 }
1175
1176 /**
1177  * Called when user space prepares to use an object with the CPU, either
1178  * through the mmap ioctl's mapping or a GTT mapping.
1179  */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182                           struct drm_file *file)
1183 {
1184         struct drm_i915_gem_set_domain *args = data;
1185         struct drm_i915_gem_object *obj;
1186         uint32_t read_domains = args->read_domains;
1187         uint32_t write_domain = args->write_domain;
1188         int ret;
1189
1190         /* Only handle setting domains to types used by the CPU. */
1191         if (write_domain & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         if (read_domains & I915_GEM_GPU_DOMAINS)
1195                 return -EINVAL;
1196
1197         /* Having something in the write domain implies it's in the read
1198          * domain, and only that read domain.  Enforce that in the request.
1199          */
1200         if (write_domain != 0 && read_domains != write_domain)
1201                 return -EINVAL;
1202
1203         ret = i915_mutex_lock_interruptible(dev);
1204         if (ret)
1205                 return ret;
1206
1207         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208         if (&obj->base == NULL) {
1209                 ret = -ENOENT;
1210                 goto unlock;
1211         }
1212
1213         /* Try to flush the object off the GPU without holding the lock.
1214          * We will repeat the flush holding the lock in the normal manner
1215          * to catch cases where we are gazumped.
1216          */
1217         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218         if (ret)
1219                 goto unref;
1220
1221         if (read_domains & I915_GEM_DOMAIN_GTT) {
1222                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224                 /* Silently promote "you're not bound, there was nothing to do"
1225                  * to success, since the client was just asking us to
1226                  * make sure everything was done.
1227                  */
1228                 if (ret == -EINVAL)
1229                         ret = 0;
1230         } else {
1231                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232         }
1233
1234 unref:
1235         drm_gem_object_unreference(&obj->base);
1236 unlock:
1237         mutex_unlock(&dev->struct_mutex);
1238         return ret;
1239 }
1240
1241 /**
1242  * Called when user space has done writes to this buffer
1243  */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246                          struct drm_file *file)
1247 {
1248         struct drm_i915_gem_sw_finish *args = data;
1249         struct drm_i915_gem_object *obj;
1250         int ret = 0;
1251
1252         ret = i915_mutex_lock_interruptible(dev);
1253         if (ret)
1254                 return ret;
1255
1256         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257         if (&obj->base == NULL) {
1258                 ret = -ENOENT;
1259                 goto unlock;
1260         }
1261
1262         /* Pinned buffers may be scanout, so flush the cache */
1263         if (obj->pin_count)
1264                 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266         drm_gem_object_unreference(&obj->base);
1267 unlock:
1268         mutex_unlock(&dev->struct_mutex);
1269         return ret;
1270 }
1271
1272 /**
1273  * Maps the contents of an object, returning the address it is mapped
1274  * into.
1275  *
1276  * While the mapping holds a reference on the contents of the object, it doesn't
1277  * imply a ref on the object itself.
1278  */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281                     struct drm_file *file)
1282 {
1283         struct drm_i915_gem_mmap *args = data;
1284         struct drm_gem_object *obj;
1285         unsigned long addr;
1286
1287         obj = drm_gem_object_lookup(dev, file, args->handle);
1288         if (obj == NULL)
1289                 return -ENOENT;
1290
1291         /* prime objects have no backing filp to GEM mmap
1292          * pages from.
1293          */
1294         if (!obj->filp) {
1295                 drm_gem_object_unreference_unlocked(obj);
1296                 return -EINVAL;
1297         }
1298
1299         addr = vm_mmap(obj->filp, 0, args->size,
1300                        PROT_READ | PROT_WRITE, MAP_SHARED,
1301                        args->offset);
1302         drm_gem_object_unreference_unlocked(obj);
1303         if (IS_ERR((void *)addr))
1304                 return addr;
1305
1306         args->addr_ptr = (uint64_t) addr;
1307
1308         return 0;
1309 }
1310
1311 /**
1312  * i915_gem_fault - fault a page into the GTT
1313  * vma: VMA in question
1314  * vmf: fault info
1315  *
1316  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317  * from userspace.  The fault handler takes care of binding the object to
1318  * the GTT (if needed), allocating and programming a fence register (again,
1319  * only if needed based on whether the old reg is still valid or the object
1320  * is tiled) and inserting a new PTE into the faulting process.
1321  *
1322  * Note that the faulting process may involve evicting existing objects
1323  * from the GTT and/or fence registers to make room.  So performance may
1324  * suffer if the GTT working set is large or there are few fence registers
1325  * left.
1326  */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330         struct drm_device *dev = obj->base.dev;
1331         drm_i915_private_t *dev_priv = dev->dev_private;
1332         pgoff_t page_offset;
1333         unsigned long pfn;
1334         int ret = 0;
1335         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337         /* We don't use vmf->pgoff since that has the fake offset */
1338         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339                 PAGE_SHIFT;
1340
1341         ret = i915_mutex_lock_interruptible(dev);
1342         if (ret)
1343                 goto out;
1344
1345         trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347         /* Now bind it into the GTT if needed */
1348         ret = i915_gem_object_pin(obj, 0, true, false);
1349         if (ret)
1350                 goto unlock;
1351
1352         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1353         if (ret)
1354                 goto unpin;
1355
1356         ret = i915_gem_object_get_fence(obj);
1357         if (ret)
1358                 goto unpin;
1359
1360         obj->fault_mappable = true;
1361
1362         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1363                 page_offset;
1364
1365         /* Finally, remap it using the new GTT offset */
1366         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1367 unpin:
1368         i915_gem_object_unpin(obj);
1369 unlock:
1370         mutex_unlock(&dev->struct_mutex);
1371 out:
1372         switch (ret) {
1373         case -EIO:
1374                 /* If this -EIO is due to a gpu hang, give the reset code a
1375                  * chance to clean up the mess. Otherwise return the proper
1376                  * SIGBUS. */
1377                 if (!atomic_read(&dev_priv->mm.wedged))
1378                         return VM_FAULT_SIGBUS;
1379         case -EAGAIN:
1380                 /* Give the error handler a chance to run and move the
1381                  * objects off the GPU active list. Next time we service the
1382                  * fault, we should be able to transition the page into the
1383                  * GTT without touching the GPU (and so avoid further
1384                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1385                  * with coherency, just lost writes.
1386                  */
1387                 set_need_resched();
1388         case 0:
1389         case -ERESTARTSYS:
1390         case -EINTR:
1391         case -EBUSY:
1392                 /*
1393                  * EBUSY is ok: this just means that another thread
1394                  * already did the job.
1395                  */
1396                 return VM_FAULT_NOPAGE;
1397         case -ENOMEM:
1398                 return VM_FAULT_OOM;
1399         case -ENOSPC:
1400                 return VM_FAULT_SIGBUS;
1401         default:
1402                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1403                 return VM_FAULT_SIGBUS;
1404         }
1405 }
1406
1407 /**
1408  * i915_gem_release_mmap - remove physical page mappings
1409  * @obj: obj in question
1410  *
1411  * Preserve the reservation of the mmapping with the DRM core code, but
1412  * relinquish ownership of the pages back to the system.
1413  *
1414  * It is vital that we remove the page mapping if we have mapped a tiled
1415  * object through the GTT and then lose the fence register due to
1416  * resource pressure. Similarly if the object has been moved out of the
1417  * aperture, than pages mapped into userspace must be revoked. Removing the
1418  * mapping will then trigger a page fault on the next user access, allowing
1419  * fixup by i915_gem_fault().
1420  */
1421 void
1422 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1423 {
1424         if (!obj->fault_mappable)
1425                 return;
1426
1427         if (obj->base.dev->dev_mapping)
1428                 unmap_mapping_range(obj->base.dev->dev_mapping,
1429                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1430                                     obj->base.size, 1);
1431
1432         obj->fault_mappable = false;
1433 }
1434
1435 static uint32_t
1436 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1437 {
1438         uint32_t gtt_size;
1439
1440         if (INTEL_INFO(dev)->gen >= 4 ||
1441             tiling_mode == I915_TILING_NONE)
1442                 return size;
1443
1444         /* Previous chips need a power-of-two fence region when tiling */
1445         if (INTEL_INFO(dev)->gen == 3)
1446                 gtt_size = 1024*1024;
1447         else
1448                 gtt_size = 512*1024;
1449
1450         while (gtt_size < size)
1451                 gtt_size <<= 1;
1452
1453         return gtt_size;
1454 }
1455
1456 /**
1457  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458  * @obj: object to check
1459  *
1460  * Return the required GTT alignment for an object, taking into account
1461  * potential fence register mapping.
1462  */
1463 static uint32_t
1464 i915_gem_get_gtt_alignment(struct drm_device *dev,
1465                            uint32_t size,
1466                            int tiling_mode)
1467 {
1468         /*
1469          * Minimum alignment is 4k (GTT page size), but might be greater
1470          * if a fence register is needed for the object.
1471          */
1472         if (INTEL_INFO(dev)->gen >= 4 ||
1473             tiling_mode == I915_TILING_NONE)
1474                 return 4096;
1475
1476         /*
1477          * Previous chips need to be aligned to the size of the smallest
1478          * fence register that can contain the object.
1479          */
1480         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482
1483 /**
1484  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485  *                                       unfenced object
1486  * @dev: the device
1487  * @size: size of the object
1488  * @tiling_mode: tiling mode of the object
1489  *
1490  * Return the required GTT alignment for an object, only taking into account
1491  * unfenced tiled surface requirements.
1492  */
1493 uint32_t
1494 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1495                                     uint32_t size,
1496                                     int tiling_mode)
1497 {
1498         /*
1499          * Minimum alignment is 4k (GTT page size) for sane hw.
1500          */
1501         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1502             tiling_mode == I915_TILING_NONE)
1503                 return 4096;
1504
1505         /* Previous hardware however needs to be aligned to a power-of-two
1506          * tile height. The simplest method for determining this is to reuse
1507          * the power-of-tile object size.
1508          */
1509         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1510 }
1511
1512 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1513 {
1514         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1515         int ret;
1516
1517         if (obj->base.map_list.map)
1518                 return 0;
1519
1520         ret = drm_gem_create_mmap_offset(&obj->base);
1521         if (ret != -ENOSPC)
1522                 return ret;
1523
1524         /* Badly fragmented mmap space? The only way we can recover
1525          * space is by destroying unwanted objects. We can't randomly release
1526          * mmap_offsets as userspace expects them to be persistent for the
1527          * lifetime of the objects. The closest we can is to release the
1528          * offsets on purgeable objects by truncating it and marking it purged,
1529          * which prevents userspace from ever using that object again.
1530          */
1531         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1532         ret = drm_gem_create_mmap_offset(&obj->base);
1533         if (ret != -ENOSPC)
1534                 return ret;
1535
1536         i915_gem_shrink_all(dev_priv);
1537         return drm_gem_create_mmap_offset(&obj->base);
1538 }
1539
1540 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1541 {
1542         if (!obj->base.map_list.map)
1543                 return;
1544
1545         drm_gem_free_mmap_offset(&obj->base);
1546 }
1547
1548 int
1549 i915_gem_mmap_gtt(struct drm_file *file,
1550                   struct drm_device *dev,
1551                   uint32_t handle,
1552                   uint64_t *offset)
1553 {
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         struct drm_i915_gem_object *obj;
1556         int ret;
1557
1558         ret = i915_mutex_lock_interruptible(dev);
1559         if (ret)
1560                 return ret;
1561
1562         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1563         if (&obj->base == NULL) {
1564                 ret = -ENOENT;
1565                 goto unlock;
1566         }
1567
1568         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1569                 ret = -E2BIG;
1570                 goto out;
1571         }
1572
1573         if (obj->madv != I915_MADV_WILLNEED) {
1574                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1575                 ret = -EINVAL;
1576                 goto out;
1577         }
1578
1579         ret = i915_gem_object_create_mmap_offset(obj);
1580         if (ret)
1581                 goto out;
1582
1583         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1584
1585 out:
1586         drm_gem_object_unreference(&obj->base);
1587 unlock:
1588         mutex_unlock(&dev->struct_mutex);
1589         return ret;
1590 }
1591
1592 /**
1593  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1594  * @dev: DRM device
1595  * @data: GTT mapping ioctl data
1596  * @file: GEM object info
1597  *
1598  * Simply returns the fake offset to userspace so it can mmap it.
1599  * The mmap call will end up in drm_gem_mmap(), which will set things
1600  * up so we can get faults in the handler above.
1601  *
1602  * The fault handler will take care of binding the object into the GTT
1603  * (since it may have been evicted to make room for something), allocating
1604  * a fence register, and mapping the appropriate aperture address into
1605  * userspace.
1606  */
1607 int
1608 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1609                         struct drm_file *file)
1610 {
1611         struct drm_i915_gem_mmap_gtt *args = data;
1612
1613         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1614 }
1615
1616 /* Immediately discard the backing storage */
1617 static void
1618 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1619 {
1620         struct inode *inode;
1621
1622         i915_gem_object_free_mmap_offset(obj);
1623
1624         if (obj->base.filp == NULL)
1625                 return;
1626
1627         /* Our goal here is to return as much of the memory as
1628          * is possible back to the system as we are called from OOM.
1629          * To do this we must instruct the shmfs to drop all of its
1630          * backing pages, *now*.
1631          */
1632         inode = obj->base.filp->f_path.dentry->d_inode;
1633         shmem_truncate_range(inode, 0, (loff_t)-1);
1634
1635         obj->madv = __I915_MADV_PURGED;
1636 }
1637
1638 static inline int
1639 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1640 {
1641         return obj->madv == I915_MADV_DONTNEED;
1642 }
1643
1644 static void
1645 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1646 {
1647         int page_count = obj->base.size / PAGE_SIZE;
1648         struct scatterlist *sg;
1649         int ret, i;
1650
1651         BUG_ON(obj->madv == __I915_MADV_PURGED);
1652
1653         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1654         if (ret) {
1655                 /* In the event of a disaster, abandon all caches and
1656                  * hope for the best.
1657                  */
1658                 WARN_ON(ret != -EIO);
1659                 i915_gem_clflush_object(obj);
1660                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1661         }
1662
1663         if (i915_gem_object_needs_bit17_swizzle(obj))
1664                 i915_gem_object_save_bit_17_swizzle(obj);
1665
1666         if (obj->madv == I915_MADV_DONTNEED)
1667                 obj->dirty = 0;
1668
1669         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1670                 struct page *page = sg_page(sg);
1671
1672                 if (obj->dirty)
1673                         set_page_dirty(page);
1674
1675                 if (obj->madv == I915_MADV_WILLNEED)
1676                         mark_page_accessed(page);
1677
1678                 page_cache_release(page);
1679         }
1680         obj->dirty = 0;
1681
1682         sg_free_table(obj->pages);
1683         kfree(obj->pages);
1684 }
1685
1686 static int
1687 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1688 {
1689         const struct drm_i915_gem_object_ops *ops = obj->ops;
1690
1691         if (obj->pages == NULL)
1692                 return 0;
1693
1694         BUG_ON(obj->gtt_space);
1695
1696         if (obj->pages_pin_count)
1697                 return -EBUSY;
1698
1699         ops->put_pages(obj);
1700         obj->pages = NULL;
1701
1702         list_del(&obj->gtt_list);
1703         if (i915_gem_object_is_purgeable(obj))
1704                 i915_gem_object_truncate(obj);
1705
1706         return 0;
1707 }
1708
1709 static long
1710 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1711 {
1712         struct drm_i915_gem_object *obj, *next;
1713         long count = 0;
1714
1715         list_for_each_entry_safe(obj, next,
1716                                  &dev_priv->mm.unbound_list,
1717                                  gtt_list) {
1718                 if (i915_gem_object_is_purgeable(obj) &&
1719                     i915_gem_object_put_pages(obj) == 0) {
1720                         count += obj->base.size >> PAGE_SHIFT;
1721                         if (count >= target)
1722                                 return count;
1723                 }
1724         }
1725
1726         list_for_each_entry_safe(obj, next,
1727                                  &dev_priv->mm.inactive_list,
1728                                  mm_list) {
1729                 if (i915_gem_object_is_purgeable(obj) &&
1730                     i915_gem_object_unbind(obj) == 0 &&
1731                     i915_gem_object_put_pages(obj) == 0) {
1732                         count += obj->base.size >> PAGE_SHIFT;
1733                         if (count >= target)
1734                                 return count;
1735                 }
1736         }
1737
1738         return count;
1739 }
1740
1741 static void
1742 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1743 {
1744         struct drm_i915_gem_object *obj, *next;
1745
1746         i915_gem_evict_everything(dev_priv->dev);
1747
1748         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1749                 i915_gem_object_put_pages(obj);
1750 }
1751
1752 static int
1753 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1754 {
1755         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1756         int page_count, i;
1757         struct address_space *mapping;
1758         struct sg_table *st;
1759         struct scatterlist *sg;
1760         struct page *page;
1761         gfp_t gfp;
1762
1763         /* Assert that the object is not currently in any GPU domain. As it
1764          * wasn't in the GTT, there shouldn't be any way it could have been in
1765          * a GPU cache
1766          */
1767         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1768         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1769
1770         st = kmalloc(sizeof(*st), GFP_KERNEL);
1771         if (st == NULL)
1772                 return -ENOMEM;
1773
1774         page_count = obj->base.size / PAGE_SIZE;
1775         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1776                 sg_free_table(st);
1777                 kfree(st);
1778                 return -ENOMEM;
1779         }
1780
1781         /* Get the list of pages out of our struct file.  They'll be pinned
1782          * at this point until we release them.
1783          *
1784          * Fail silently without starting the shrinker
1785          */
1786         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1787         gfp = mapping_gfp_mask(mapping);
1788         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1789         gfp &= ~(__GFP_IO | __GFP_WAIT);
1790         for_each_sg(st->sgl, sg, page_count, i) {
1791                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1792                 if (IS_ERR(page)) {
1793                         i915_gem_purge(dev_priv, page_count);
1794                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795                 }
1796                 if (IS_ERR(page)) {
1797                         /* We've tried hard to allocate the memory by reaping
1798                          * our own buffer, now let the real VM do its job and
1799                          * go down in flames if truly OOM.
1800                          */
1801                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1802                         gfp |= __GFP_IO | __GFP_WAIT;
1803
1804                         i915_gem_shrink_all(dev_priv);
1805                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806                         if (IS_ERR(page))
1807                                 goto err_pages;
1808
1809                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1810                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1811                 }
1812
1813                 sg_set_page(sg, page, PAGE_SIZE, 0);
1814         }
1815
1816         obj->pages = st;
1817
1818         if (i915_gem_object_needs_bit17_swizzle(obj))
1819                 i915_gem_object_do_bit_17_swizzle(obj);
1820
1821         return 0;
1822
1823 err_pages:
1824         for_each_sg(st->sgl, sg, i, page_count)
1825                 page_cache_release(sg_page(sg));
1826         sg_free_table(st);
1827         kfree(st);
1828         return PTR_ERR(page);
1829 }
1830
1831 /* Ensure that the associated pages are gathered from the backing storage
1832  * and pinned into our object. i915_gem_object_get_pages() may be called
1833  * multiple times before they are released by a single call to
1834  * i915_gem_object_put_pages() - once the pages are no longer referenced
1835  * either as a result of memory pressure (reaping pages under the shrinker)
1836  * or as the object is itself released.
1837  */
1838 int
1839 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1840 {
1841         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1842         const struct drm_i915_gem_object_ops *ops = obj->ops;
1843         int ret;
1844
1845         if (obj->pages)
1846                 return 0;
1847
1848         BUG_ON(obj->pages_pin_count);
1849
1850         ret = ops->get_pages(obj);
1851         if (ret)
1852                 return ret;
1853
1854         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1855         return 0;
1856 }
1857
1858 void
1859 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1860                                struct intel_ring_buffer *ring,
1861                                u32 seqno)
1862 {
1863         struct drm_device *dev = obj->base.dev;
1864         struct drm_i915_private *dev_priv = dev->dev_private;
1865
1866         BUG_ON(ring == NULL);
1867         obj->ring = ring;
1868
1869         /* Add a reference if we're newly entering the active list. */
1870         if (!obj->active) {
1871                 drm_gem_object_reference(&obj->base);
1872                 obj->active = 1;
1873         }
1874
1875         /* Move from whatever list we were on to the tail of execution. */
1876         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1877         list_move_tail(&obj->ring_list, &ring->active_list);
1878
1879         obj->last_read_seqno = seqno;
1880
1881         if (obj->fenced_gpu_access) {
1882                 obj->last_fenced_seqno = seqno;
1883
1884                 /* Bump MRU to take account of the delayed flush */
1885                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1886                         struct drm_i915_fence_reg *reg;
1887
1888                         reg = &dev_priv->fence_regs[obj->fence_reg];
1889                         list_move_tail(&reg->lru_list,
1890                                        &dev_priv->mm.fence_list);
1891                 }
1892         }
1893 }
1894
1895 static void
1896 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1897 {
1898         struct drm_device *dev = obj->base.dev;
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900
1901         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1902         BUG_ON(!obj->active);
1903
1904         if (obj->pin_count) /* are we a framebuffer? */
1905                 intel_mark_fb_idle(obj);
1906
1907         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1908
1909         list_del_init(&obj->ring_list);
1910         obj->ring = NULL;
1911
1912         obj->last_read_seqno = 0;
1913         obj->last_write_seqno = 0;
1914         obj->base.write_domain = 0;
1915
1916         obj->last_fenced_seqno = 0;
1917         obj->fenced_gpu_access = false;
1918
1919         obj->active = 0;
1920         drm_gem_object_unreference(&obj->base);
1921
1922         WARN_ON(i915_verify_lists(dev));
1923 }
1924
1925 static u32
1926 i915_gem_get_seqno(struct drm_device *dev)
1927 {
1928         drm_i915_private_t *dev_priv = dev->dev_private;
1929         u32 seqno = dev_priv->next_seqno;
1930
1931         /* reserve 0 for non-seqno */
1932         if (++dev_priv->next_seqno == 0)
1933                 dev_priv->next_seqno = 1;
1934
1935         return seqno;
1936 }
1937
1938 u32
1939 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1940 {
1941         if (ring->outstanding_lazy_request == 0)
1942                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1943
1944         return ring->outstanding_lazy_request;
1945 }
1946
1947 int
1948 i915_add_request(struct intel_ring_buffer *ring,
1949                  struct drm_file *file,
1950                  u32 *out_seqno)
1951 {
1952         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1953         struct drm_i915_gem_request *request;
1954         u32 request_ring_position;
1955         u32 seqno;
1956         int was_empty;
1957         int ret;
1958
1959         /*
1960          * Emit any outstanding flushes - execbuf can fail to emit the flush
1961          * after having emitted the batchbuffer command. Hence we need to fix
1962          * things up similar to emitting the lazy request. The difference here
1963          * is that the flush _must_ happen before the next request, no matter
1964          * what.
1965          */
1966         ret = intel_ring_flush_all_caches(ring);
1967         if (ret)
1968                 return ret;
1969
1970         request = kmalloc(sizeof(*request), GFP_KERNEL);
1971         if (request == NULL)
1972                 return -ENOMEM;
1973
1974         seqno = i915_gem_next_request_seqno(ring);
1975
1976         /* Record the position of the start of the request so that
1977          * should we detect the updated seqno part-way through the
1978          * GPU processing the request, we never over-estimate the
1979          * position of the head.
1980          */
1981         request_ring_position = intel_ring_get_tail(ring);
1982
1983         ret = ring->add_request(ring, &seqno);
1984         if (ret) {
1985                 kfree(request);
1986                 return ret;
1987         }
1988
1989         trace_i915_gem_request_add(ring, seqno);
1990
1991         request->seqno = seqno;
1992         request->ring = ring;
1993         request->tail = request_ring_position;
1994         request->emitted_jiffies = jiffies;
1995         was_empty = list_empty(&ring->request_list);
1996         list_add_tail(&request->list, &ring->request_list);
1997         request->file_priv = NULL;
1998
1999         if (file) {
2000                 struct drm_i915_file_private *file_priv = file->driver_priv;
2001
2002                 spin_lock(&file_priv->mm.lock);
2003                 request->file_priv = file_priv;
2004                 list_add_tail(&request->client_list,
2005                               &file_priv->mm.request_list);
2006                 spin_unlock(&file_priv->mm.lock);
2007         }
2008
2009         ring->outstanding_lazy_request = 0;
2010
2011         if (!dev_priv->mm.suspended) {
2012                 if (i915_enable_hangcheck) {
2013                         mod_timer(&dev_priv->hangcheck_timer,
2014                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2015                 }
2016                 if (was_empty) {
2017                         queue_delayed_work(dev_priv->wq,
2018                                            &dev_priv->mm.retire_work,
2019                                            round_jiffies_up_relative(HZ));
2020                         intel_mark_busy(dev_priv->dev);
2021                 }
2022         }
2023
2024         if (out_seqno)
2025                 *out_seqno = seqno;
2026         return 0;
2027 }
2028
2029 static inline void
2030 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2031 {
2032         struct drm_i915_file_private *file_priv = request->file_priv;
2033
2034         if (!file_priv)
2035                 return;
2036
2037         spin_lock(&file_priv->mm.lock);
2038         if (request->file_priv) {
2039                 list_del(&request->client_list);
2040                 request->file_priv = NULL;
2041         }
2042         spin_unlock(&file_priv->mm.lock);
2043 }
2044
2045 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2046                                       struct intel_ring_buffer *ring)
2047 {
2048         while (!list_empty(&ring->request_list)) {
2049                 struct drm_i915_gem_request *request;
2050
2051                 request = list_first_entry(&ring->request_list,
2052                                            struct drm_i915_gem_request,
2053                                            list);
2054
2055                 list_del(&request->list);
2056                 i915_gem_request_remove_from_client(request);
2057                 kfree(request);
2058         }
2059
2060         while (!list_empty(&ring->active_list)) {
2061                 struct drm_i915_gem_object *obj;
2062
2063                 obj = list_first_entry(&ring->active_list,
2064                                        struct drm_i915_gem_object,
2065                                        ring_list);
2066
2067                 i915_gem_object_move_to_inactive(obj);
2068         }
2069 }
2070
2071 static void i915_gem_reset_fences(struct drm_device *dev)
2072 {
2073         struct drm_i915_private *dev_priv = dev->dev_private;
2074         int i;
2075
2076         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2077                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2078
2079                 i915_gem_write_fence(dev, i, NULL);
2080
2081                 if (reg->obj)
2082                         i915_gem_object_fence_lost(reg->obj);
2083
2084                 reg->pin_count = 0;
2085                 reg->obj = NULL;
2086                 INIT_LIST_HEAD(&reg->lru_list);
2087         }
2088
2089         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2090 }
2091
2092 void i915_gem_reset(struct drm_device *dev)
2093 {
2094         struct drm_i915_private *dev_priv = dev->dev_private;
2095         struct drm_i915_gem_object *obj;
2096         struct intel_ring_buffer *ring;
2097         int i;
2098
2099         for_each_ring(ring, dev_priv, i)
2100                 i915_gem_reset_ring_lists(dev_priv, ring);
2101
2102         /* Move everything out of the GPU domains to ensure we do any
2103          * necessary invalidation upon reuse.
2104          */
2105         list_for_each_entry(obj,
2106                             &dev_priv->mm.inactive_list,
2107                             mm_list)
2108         {
2109                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2110         }
2111
2112         /* The fence registers are invalidated so clear them out */
2113         i915_gem_reset_fences(dev);
2114 }
2115
2116 /**
2117  * This function clears the request list as sequence numbers are passed.
2118  */
2119 void
2120 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2121 {
2122         uint32_t seqno;
2123         int i;
2124
2125         if (list_empty(&ring->request_list))
2126                 return;
2127
2128         WARN_ON(i915_verify_lists(ring->dev));
2129
2130         seqno = ring->get_seqno(ring, true);
2131
2132         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2133                 if (seqno >= ring->sync_seqno[i])
2134                         ring->sync_seqno[i] = 0;
2135
2136         while (!list_empty(&ring->request_list)) {
2137                 struct drm_i915_gem_request *request;
2138
2139                 request = list_first_entry(&ring->request_list,
2140                                            struct drm_i915_gem_request,
2141                                            list);
2142
2143                 if (!i915_seqno_passed(seqno, request->seqno))
2144                         break;
2145
2146                 trace_i915_gem_request_retire(ring, request->seqno);
2147                 /* We know the GPU must have read the request to have
2148                  * sent us the seqno + interrupt, so use the position
2149                  * of tail of the request to update the last known position
2150                  * of the GPU head.
2151                  */
2152                 ring->last_retired_head = request->tail;
2153
2154                 list_del(&request->list);
2155                 i915_gem_request_remove_from_client(request);
2156                 kfree(request);
2157         }
2158
2159         /* Move any buffers on the active list that are no longer referenced
2160          * by the ringbuffer to the flushing/inactive lists as appropriate.
2161          */
2162         while (!list_empty(&ring->active_list)) {
2163                 struct drm_i915_gem_object *obj;
2164
2165                 obj = list_first_entry(&ring->active_list,
2166                                       struct drm_i915_gem_object,
2167                                       ring_list);
2168
2169                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2170                         break;
2171
2172                 i915_gem_object_move_to_inactive(obj);
2173         }
2174
2175         if (unlikely(ring->trace_irq_seqno &&
2176                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2177                 ring->irq_put(ring);
2178                 ring->trace_irq_seqno = 0;
2179         }
2180
2181         WARN_ON(i915_verify_lists(ring->dev));
2182 }
2183
2184 void
2185 i915_gem_retire_requests(struct drm_device *dev)
2186 {
2187         drm_i915_private_t *dev_priv = dev->dev_private;
2188         struct intel_ring_buffer *ring;
2189         int i;
2190
2191         for_each_ring(ring, dev_priv, i)
2192                 i915_gem_retire_requests_ring(ring);
2193 }
2194
2195 static void
2196 i915_gem_retire_work_handler(struct work_struct *work)
2197 {
2198         drm_i915_private_t *dev_priv;
2199         struct drm_device *dev;
2200         struct intel_ring_buffer *ring;
2201         bool idle;
2202         int i;
2203
2204         dev_priv = container_of(work, drm_i915_private_t,
2205                                 mm.retire_work.work);
2206         dev = dev_priv->dev;
2207
2208         /* Come back later if the device is busy... */
2209         if (!mutex_trylock(&dev->struct_mutex)) {
2210                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2211                                    round_jiffies_up_relative(HZ));
2212                 return;
2213         }
2214
2215         i915_gem_retire_requests(dev);
2216
2217         /* Send a periodic flush down the ring so we don't hold onto GEM
2218          * objects indefinitely.
2219          */
2220         idle = true;
2221         for_each_ring(ring, dev_priv, i) {
2222                 if (ring->gpu_caches_dirty)
2223                         i915_add_request(ring, NULL, NULL);
2224
2225                 idle &= list_empty(&ring->request_list);
2226         }
2227
2228         if (!dev_priv->mm.suspended && !idle)
2229                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2230                                    round_jiffies_up_relative(HZ));
2231         if (idle)
2232                 intel_mark_idle(dev);
2233
2234         mutex_unlock(&dev->struct_mutex);
2235 }
2236
2237 /**
2238  * Ensures that an object will eventually get non-busy by flushing any required
2239  * write domains, emitting any outstanding lazy request and retiring and
2240  * completed requests.
2241  */
2242 static int
2243 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2244 {
2245         int ret;
2246
2247         if (obj->active) {
2248                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2249                 if (ret)
2250                         return ret;
2251
2252                 i915_gem_retire_requests_ring(obj->ring);
2253         }
2254
2255         return 0;
2256 }
2257
2258 /**
2259  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2260  * @DRM_IOCTL_ARGS: standard ioctl arguments
2261  *
2262  * Returns 0 if successful, else an error is returned with the remaining time in
2263  * the timeout parameter.
2264  *  -ETIME: object is still busy after timeout
2265  *  -ERESTARTSYS: signal interrupted the wait
2266  *  -ENONENT: object doesn't exist
2267  * Also possible, but rare:
2268  *  -EAGAIN: GPU wedged
2269  *  -ENOMEM: damn
2270  *  -ENODEV: Internal IRQ fail
2271  *  -E?: The add request failed
2272  *
2273  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2274  * non-zero timeout parameter the wait ioctl will wait for the given number of
2275  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2276  * without holding struct_mutex the object may become re-busied before this
2277  * function completes. A similar but shorter * race condition exists in the busy
2278  * ioctl
2279  */
2280 int
2281 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2282 {
2283         struct drm_i915_gem_wait *args = data;
2284         struct drm_i915_gem_object *obj;
2285         struct intel_ring_buffer *ring = NULL;
2286         struct timespec timeout_stack, *timeout = NULL;
2287         u32 seqno = 0;
2288         int ret = 0;
2289
2290         if (args->timeout_ns >= 0) {
2291                 timeout_stack = ns_to_timespec(args->timeout_ns);
2292                 timeout = &timeout_stack;
2293         }
2294
2295         ret = i915_mutex_lock_interruptible(dev);
2296         if (ret)
2297                 return ret;
2298
2299         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2300         if (&obj->base == NULL) {
2301                 mutex_unlock(&dev->struct_mutex);
2302                 return -ENOENT;
2303         }
2304
2305         /* Need to make sure the object gets inactive eventually. */
2306         ret = i915_gem_object_flush_active(obj);
2307         if (ret)
2308                 goto out;
2309
2310         if (obj->active) {
2311                 seqno = obj->last_read_seqno;
2312                 ring = obj->ring;
2313         }
2314
2315         if (seqno == 0)
2316                  goto out;
2317
2318         /* Do this after OLR check to make sure we make forward progress polling
2319          * on this IOCTL with a 0 timeout (like busy ioctl)
2320          */
2321         if (!args->timeout_ns) {
2322                 ret = -ETIME;
2323                 goto out;
2324         }
2325
2326         drm_gem_object_unreference(&obj->base);
2327         mutex_unlock(&dev->struct_mutex);
2328
2329         ret = __wait_seqno(ring, seqno, true, timeout);
2330         if (timeout) {
2331                 WARN_ON(!timespec_valid(timeout));
2332                 args->timeout_ns = timespec_to_ns(timeout);
2333         }
2334         return ret;
2335
2336 out:
2337         drm_gem_object_unreference(&obj->base);
2338         mutex_unlock(&dev->struct_mutex);
2339         return ret;
2340 }
2341
2342 /**
2343  * i915_gem_object_sync - sync an object to a ring.
2344  *
2345  * @obj: object which may be in use on another ring.
2346  * @to: ring we wish to use the object on. May be NULL.
2347  *
2348  * This code is meant to abstract object synchronization with the GPU.
2349  * Calling with NULL implies synchronizing the object with the CPU
2350  * rather than a particular GPU ring.
2351  *
2352  * Returns 0 if successful, else propagates up the lower layer error.
2353  */
2354 int
2355 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2356                      struct intel_ring_buffer *to)
2357 {
2358         struct intel_ring_buffer *from = obj->ring;
2359         u32 seqno;
2360         int ret, idx;
2361
2362         if (from == NULL || to == from)
2363                 return 0;
2364
2365         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2366                 return i915_gem_object_wait_rendering(obj, false);
2367
2368         idx = intel_ring_sync_index(from, to);
2369
2370         seqno = obj->last_read_seqno;
2371         if (seqno <= from->sync_seqno[idx])
2372                 return 0;
2373
2374         ret = i915_gem_check_olr(obj->ring, seqno);
2375         if (ret)
2376                 return ret;
2377
2378         ret = to->sync_to(to, from, seqno);
2379         if (!ret)
2380                 from->sync_seqno[idx] = seqno;
2381
2382         return ret;
2383 }
2384
2385 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2386 {
2387         u32 old_write_domain, old_read_domains;
2388
2389         /* Act a barrier for all accesses through the GTT */
2390         mb();
2391
2392         /* Force a pagefault for domain tracking on next user access */
2393         i915_gem_release_mmap(obj);
2394
2395         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2396                 return;
2397
2398         old_read_domains = obj->base.read_domains;
2399         old_write_domain = obj->base.write_domain;
2400
2401         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2402         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2403
2404         trace_i915_gem_object_change_domain(obj,
2405                                             old_read_domains,
2406                                             old_write_domain);
2407 }
2408
2409 /**
2410  * Unbinds an object from the GTT aperture.
2411  */
2412 int
2413 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2414 {
2415         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2416         int ret = 0;
2417
2418         if (obj->gtt_space == NULL)
2419                 return 0;
2420
2421         if (obj->pin_count)
2422                 return -EBUSY;
2423
2424         BUG_ON(obj->pages == NULL);
2425
2426         ret = i915_gem_object_finish_gpu(obj);
2427         if (ret)
2428                 return ret;
2429         /* Continue on if we fail due to EIO, the GPU is hung so we
2430          * should be safe and we need to cleanup or else we might
2431          * cause memory corruption through use-after-free.
2432          */
2433
2434         i915_gem_object_finish_gtt(obj);
2435
2436         /* release the fence reg _after_ flushing */
2437         ret = i915_gem_object_put_fence(obj);
2438         if (ret)
2439                 return ret;
2440
2441         trace_i915_gem_object_unbind(obj);
2442
2443         if (obj->has_global_gtt_mapping)
2444                 i915_gem_gtt_unbind_object(obj);
2445         if (obj->has_aliasing_ppgtt_mapping) {
2446                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2447                 obj->has_aliasing_ppgtt_mapping = 0;
2448         }
2449         i915_gem_gtt_finish_object(obj);
2450
2451         list_del(&obj->mm_list);
2452         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2453         /* Avoid an unnecessary call to unbind on rebind. */
2454         obj->map_and_fenceable = true;
2455
2456         drm_mm_put_block(obj->gtt_space);
2457         obj->gtt_space = NULL;
2458         obj->gtt_offset = 0;
2459
2460         return 0;
2461 }
2462
2463 static int i915_ring_idle(struct intel_ring_buffer *ring)
2464 {
2465         if (list_empty(&ring->active_list))
2466                 return 0;
2467
2468         return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2469 }
2470
2471 int i915_gpu_idle(struct drm_device *dev)
2472 {
2473         drm_i915_private_t *dev_priv = dev->dev_private;
2474         struct intel_ring_buffer *ring;
2475         int ret, i;
2476
2477         /* Flush everything onto the inactive list. */
2478         for_each_ring(ring, dev_priv, i) {
2479                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2480                 if (ret)
2481                         return ret;
2482
2483                 ret = i915_ring_idle(ring);
2484                 if (ret)
2485                         return ret;
2486         }
2487
2488         return 0;
2489 }
2490
2491 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2492                                         struct drm_i915_gem_object *obj)
2493 {
2494         drm_i915_private_t *dev_priv = dev->dev_private;
2495         uint64_t val;
2496
2497         if (obj) {
2498                 u32 size = obj->gtt_space->size;
2499
2500                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2501                                  0xfffff000) << 32;
2502                 val |= obj->gtt_offset & 0xfffff000;
2503                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2504                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2505
2506                 if (obj->tiling_mode == I915_TILING_Y)
2507                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2508                 val |= I965_FENCE_REG_VALID;
2509         } else
2510                 val = 0;
2511
2512         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2513         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2514 }
2515
2516 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2517                                  struct drm_i915_gem_object *obj)
2518 {
2519         drm_i915_private_t *dev_priv = dev->dev_private;
2520         uint64_t val;
2521
2522         if (obj) {
2523                 u32 size = obj->gtt_space->size;
2524
2525                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2526                                  0xfffff000) << 32;
2527                 val |= obj->gtt_offset & 0xfffff000;
2528                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2529                 if (obj->tiling_mode == I915_TILING_Y)
2530                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2531                 val |= I965_FENCE_REG_VALID;
2532         } else
2533                 val = 0;
2534
2535         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2536         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2537 }
2538
2539 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2540                                  struct drm_i915_gem_object *obj)
2541 {
2542         drm_i915_private_t *dev_priv = dev->dev_private;
2543         u32 val;
2544
2545         if (obj) {
2546                 u32 size = obj->gtt_space->size;
2547                 int pitch_val;
2548                 int tile_width;
2549
2550                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2551                      (size & -size) != size ||
2552                      (obj->gtt_offset & (size - 1)),
2553                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2554                      obj->gtt_offset, obj->map_and_fenceable, size);
2555
2556                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2557                         tile_width = 128;
2558                 else
2559                         tile_width = 512;
2560
2561                 /* Note: pitch better be a power of two tile widths */
2562                 pitch_val = obj->stride / tile_width;
2563                 pitch_val = ffs(pitch_val) - 1;
2564
2565                 val = obj->gtt_offset;
2566                 if (obj->tiling_mode == I915_TILING_Y)
2567                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2568                 val |= I915_FENCE_SIZE_BITS(size);
2569                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2570                 val |= I830_FENCE_REG_VALID;
2571         } else
2572                 val = 0;
2573
2574         if (reg < 8)
2575                 reg = FENCE_REG_830_0 + reg * 4;
2576         else
2577                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2578
2579         I915_WRITE(reg, val);
2580         POSTING_READ(reg);
2581 }
2582
2583 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2584                                 struct drm_i915_gem_object *obj)
2585 {
2586         drm_i915_private_t *dev_priv = dev->dev_private;
2587         uint32_t val;
2588
2589         if (obj) {
2590                 u32 size = obj->gtt_space->size;
2591                 uint32_t pitch_val;
2592
2593                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2594                      (size & -size) != size ||
2595                      (obj->gtt_offset & (size - 1)),
2596                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2597                      obj->gtt_offset, size);
2598
2599                 pitch_val = obj->stride / 128;
2600                 pitch_val = ffs(pitch_val) - 1;
2601
2602                 val = obj->gtt_offset;
2603                 if (obj->tiling_mode == I915_TILING_Y)
2604                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2605                 val |= I830_FENCE_SIZE_BITS(size);
2606                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2607                 val |= I830_FENCE_REG_VALID;
2608         } else
2609                 val = 0;
2610
2611         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2612         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2613 }
2614
2615 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2616                                  struct drm_i915_gem_object *obj)
2617 {
2618         switch (INTEL_INFO(dev)->gen) {
2619         case 7:
2620         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2621         case 5:
2622         case 4: i965_write_fence_reg(dev, reg, obj); break;
2623         case 3: i915_write_fence_reg(dev, reg, obj); break;
2624         case 2: i830_write_fence_reg(dev, reg, obj); break;
2625         default: break;
2626         }
2627 }
2628
2629 static inline int fence_number(struct drm_i915_private *dev_priv,
2630                                struct drm_i915_fence_reg *fence)
2631 {
2632         return fence - dev_priv->fence_regs;
2633 }
2634
2635 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2636                                          struct drm_i915_fence_reg *fence,
2637                                          bool enable)
2638 {
2639         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2640         int reg = fence_number(dev_priv, fence);
2641
2642         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2643
2644         if (enable) {
2645                 obj->fence_reg = reg;
2646                 fence->obj = obj;
2647                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2648         } else {
2649                 obj->fence_reg = I915_FENCE_REG_NONE;
2650                 fence->obj = NULL;
2651                 list_del_init(&fence->lru_list);
2652         }
2653 }
2654
2655 static int
2656 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2657 {
2658         if (obj->last_fenced_seqno) {
2659                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2660                 if (ret)
2661                         return ret;
2662
2663                 obj->last_fenced_seqno = 0;
2664         }
2665
2666         /* Ensure that all CPU reads are completed before installing a fence
2667          * and all writes before removing the fence.
2668          */
2669         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2670                 mb();
2671
2672         obj->fenced_gpu_access = false;
2673         return 0;
2674 }
2675
2676 int
2677 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2678 {
2679         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2680         int ret;
2681
2682         ret = i915_gem_object_flush_fence(obj);
2683         if (ret)
2684                 return ret;
2685
2686         if (obj->fence_reg == I915_FENCE_REG_NONE)
2687                 return 0;
2688
2689         i915_gem_object_update_fence(obj,
2690                                      &dev_priv->fence_regs[obj->fence_reg],
2691                                      false);
2692         i915_gem_object_fence_lost(obj);
2693
2694         return 0;
2695 }
2696
2697 static struct drm_i915_fence_reg *
2698 i915_find_fence_reg(struct drm_device *dev)
2699 {
2700         struct drm_i915_private *dev_priv = dev->dev_private;
2701         struct drm_i915_fence_reg *reg, *avail;
2702         int i;
2703
2704         /* First try to find a free reg */
2705         avail = NULL;
2706         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2707                 reg = &dev_priv->fence_regs[i];
2708                 if (!reg->obj)
2709                         return reg;
2710
2711                 if (!reg->pin_count)
2712                         avail = reg;
2713         }
2714
2715         if (avail == NULL)
2716                 return NULL;
2717
2718         /* None available, try to steal one or wait for a user to finish */
2719         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2720                 if (reg->pin_count)
2721                         continue;
2722
2723                 return reg;
2724         }
2725
2726         return NULL;
2727 }
2728
2729 /**
2730  * i915_gem_object_get_fence - set up fencing for an object
2731  * @obj: object to map through a fence reg
2732  *
2733  * When mapping objects through the GTT, userspace wants to be able to write
2734  * to them without having to worry about swizzling if the object is tiled.
2735  * This function walks the fence regs looking for a free one for @obj,
2736  * stealing one if it can't find any.
2737  *
2738  * It then sets up the reg based on the object's properties: address, pitch
2739  * and tiling format.
2740  *
2741  * For an untiled surface, this removes any existing fence.
2742  */
2743 int
2744 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2745 {
2746         struct drm_device *dev = obj->base.dev;
2747         struct drm_i915_private *dev_priv = dev->dev_private;
2748         bool enable = obj->tiling_mode != I915_TILING_NONE;
2749         struct drm_i915_fence_reg *reg;
2750         int ret;
2751
2752         /* Have we updated the tiling parameters upon the object and so
2753          * will need to serialise the write to the associated fence register?
2754          */
2755         if (obj->fence_dirty) {
2756                 ret = i915_gem_object_flush_fence(obj);
2757                 if (ret)
2758                         return ret;
2759         }
2760
2761         /* Just update our place in the LRU if our fence is getting reused. */
2762         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2763                 reg = &dev_priv->fence_regs[obj->fence_reg];
2764                 if (!obj->fence_dirty) {
2765                         list_move_tail(&reg->lru_list,
2766                                        &dev_priv->mm.fence_list);
2767                         return 0;
2768                 }
2769         } else if (enable) {
2770                 reg = i915_find_fence_reg(dev);
2771                 if (reg == NULL)
2772                         return -EDEADLK;
2773
2774                 if (reg->obj) {
2775                         struct drm_i915_gem_object *old = reg->obj;
2776
2777                         ret = i915_gem_object_flush_fence(old);
2778                         if (ret)
2779                                 return ret;
2780
2781                         i915_gem_object_fence_lost(old);
2782                 }
2783         } else
2784                 return 0;
2785
2786         i915_gem_object_update_fence(obj, reg, enable);
2787         obj->fence_dirty = false;
2788
2789         return 0;
2790 }
2791
2792 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2793                                      struct drm_mm_node *gtt_space,
2794                                      unsigned long cache_level)
2795 {
2796         struct drm_mm_node *other;
2797
2798         /* On non-LLC machines we have to be careful when putting differing
2799          * types of snoopable memory together to avoid the prefetcher
2800          * crossing memory domains and dieing.
2801          */
2802         if (HAS_LLC(dev))
2803                 return true;
2804
2805         if (gtt_space == NULL)
2806                 return true;
2807
2808         if (list_empty(&gtt_space->node_list))
2809                 return true;
2810
2811         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2812         if (other->allocated && !other->hole_follows && other->color != cache_level)
2813                 return false;
2814
2815         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2816         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2817                 return false;
2818
2819         return true;
2820 }
2821
2822 static void i915_gem_verify_gtt(struct drm_device *dev)
2823 {
2824 #if WATCH_GTT
2825         struct drm_i915_private *dev_priv = dev->dev_private;
2826         struct drm_i915_gem_object *obj;
2827         int err = 0;
2828
2829         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2830                 if (obj->gtt_space == NULL) {
2831                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2832                         err++;
2833                         continue;
2834                 }
2835
2836                 if (obj->cache_level != obj->gtt_space->color) {
2837                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2838                                obj->gtt_space->start,
2839                                obj->gtt_space->start + obj->gtt_space->size,
2840                                obj->cache_level,
2841                                obj->gtt_space->color);
2842                         err++;
2843                         continue;
2844                 }
2845
2846                 if (!i915_gem_valid_gtt_space(dev,
2847                                               obj->gtt_space,
2848                                               obj->cache_level)) {
2849                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2850                                obj->gtt_space->start,
2851                                obj->gtt_space->start + obj->gtt_space->size,
2852                                obj->cache_level);
2853                         err++;
2854                         continue;
2855                 }
2856         }
2857
2858         WARN_ON(err);
2859 #endif
2860 }
2861
2862 /**
2863  * Finds free space in the GTT aperture and binds the object there.
2864  */
2865 static int
2866 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2867                             unsigned alignment,
2868                             bool map_and_fenceable,
2869                             bool nonblocking)
2870 {
2871         struct drm_device *dev = obj->base.dev;
2872         drm_i915_private_t *dev_priv = dev->dev_private;
2873         struct drm_mm_node *free_space;
2874         u32 size, fence_size, fence_alignment, unfenced_alignment;
2875         bool mappable, fenceable;
2876         int ret;
2877
2878         if (obj->madv != I915_MADV_WILLNEED) {
2879                 DRM_ERROR("Attempting to bind a purgeable object\n");
2880                 return -EINVAL;
2881         }
2882
2883         fence_size = i915_gem_get_gtt_size(dev,
2884                                            obj->base.size,
2885                                            obj->tiling_mode);
2886         fence_alignment = i915_gem_get_gtt_alignment(dev,
2887                                                      obj->base.size,
2888                                                      obj->tiling_mode);
2889         unfenced_alignment =
2890                 i915_gem_get_unfenced_gtt_alignment(dev,
2891                                                     obj->base.size,
2892                                                     obj->tiling_mode);
2893
2894         if (alignment == 0)
2895                 alignment = map_and_fenceable ? fence_alignment :
2896                                                 unfenced_alignment;
2897         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2898                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2899                 return -EINVAL;
2900         }
2901
2902         size = map_and_fenceable ? fence_size : obj->base.size;
2903
2904         /* If the object is bigger than the entire aperture, reject it early
2905          * before evicting everything in a vain attempt to find space.
2906          */
2907         if (obj->base.size >
2908             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2909                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2910                 return -E2BIG;
2911         }
2912
2913         ret = i915_gem_object_get_pages(obj);
2914         if (ret)
2915                 return ret;
2916
2917         i915_gem_object_pin_pages(obj);
2918
2919  search_free:
2920         if (map_and_fenceable)
2921                 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2922                                                                size, alignment, obj->cache_level,
2923                                                                0, dev_priv->mm.gtt_mappable_end,
2924                                                                false);
2925         else
2926                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2927                                                       size, alignment, obj->cache_level,
2928                                                       false);
2929
2930         if (free_space != NULL) {
2931                 if (map_and_fenceable)
2932                         free_space =
2933                                 drm_mm_get_block_range_generic(free_space,
2934                                                                size, alignment, obj->cache_level,
2935                                                                0, dev_priv->mm.gtt_mappable_end,
2936                                                                false);
2937                 else
2938                         free_space =
2939                                 drm_mm_get_block_generic(free_space,
2940                                                          size, alignment, obj->cache_level,
2941                                                          false);
2942         }
2943         if (free_space == NULL) {
2944                 ret = i915_gem_evict_something(dev, size, alignment,
2945                                                obj->cache_level,
2946                                                map_and_fenceable,
2947                                                nonblocking);
2948                 if (ret) {
2949                         i915_gem_object_unpin_pages(obj);
2950                         return ret;
2951                 }
2952
2953                 goto search_free;
2954         }
2955         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2956                                               free_space,
2957                                               obj->cache_level))) {
2958                 i915_gem_object_unpin_pages(obj);
2959                 drm_mm_put_block(free_space);
2960                 return -EINVAL;
2961         }
2962
2963         ret = i915_gem_gtt_prepare_object(obj);
2964         if (ret) {
2965                 i915_gem_object_unpin_pages(obj);
2966                 drm_mm_put_block(free_space);
2967                 return ret;
2968         }
2969
2970         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2971         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2972
2973         obj->gtt_space = free_space;
2974         obj->gtt_offset = free_space->start;
2975
2976         fenceable =
2977                 free_space->size == fence_size &&
2978                 (free_space->start & (fence_alignment - 1)) == 0;
2979
2980         mappable =
2981                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2982
2983         obj->map_and_fenceable = mappable && fenceable;
2984
2985         i915_gem_object_unpin_pages(obj);
2986         trace_i915_gem_object_bind(obj, map_and_fenceable);
2987         i915_gem_verify_gtt(dev);
2988         return 0;
2989 }
2990
2991 void
2992 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2993 {
2994         /* If we don't have a page list set up, then we're not pinned
2995          * to GPU, and we can ignore the cache flush because it'll happen
2996          * again at bind time.
2997          */
2998         if (obj->pages == NULL)
2999                 return;
3000
3001         /* If the GPU is snooping the contents of the CPU cache,
3002          * we do not need to manually clear the CPU cache lines.  However,
3003          * the caches are only snooped when the render cache is
3004          * flushed/invalidated.  As we always have to emit invalidations
3005          * and flushes when moving into and out of the RENDER domain, correct
3006          * snooping behaviour occurs naturally as the result of our domain
3007          * tracking.
3008          */
3009         if (obj->cache_level != I915_CACHE_NONE)
3010                 return;
3011
3012         trace_i915_gem_object_clflush(obj);
3013
3014         drm_clflush_sg(obj->pages);
3015 }
3016
3017 /** Flushes the GTT write domain for the object if it's dirty. */
3018 static void
3019 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3020 {
3021         uint32_t old_write_domain;
3022
3023         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3024                 return;
3025
3026         /* No actual flushing is required for the GTT write domain.  Writes
3027          * to it immediately go to main memory as far as we know, so there's
3028          * no chipset flush.  It also doesn't land in render cache.
3029          *
3030          * However, we do have to enforce the order so that all writes through
3031          * the GTT land before any writes to the device, such as updates to
3032          * the GATT itself.
3033          */
3034         wmb();
3035
3036         old_write_domain = obj->base.write_domain;
3037         obj->base.write_domain = 0;
3038
3039         trace_i915_gem_object_change_domain(obj,
3040                                             obj->base.read_domains,
3041                                             old_write_domain);
3042 }
3043
3044 /** Flushes the CPU write domain for the object if it's dirty. */
3045 static void
3046 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3047 {
3048         uint32_t old_write_domain;
3049
3050         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3051                 return;
3052
3053         i915_gem_clflush_object(obj);
3054         i915_gem_chipset_flush(obj->base.dev);
3055         old_write_domain = obj->base.write_domain;
3056         obj->base.write_domain = 0;
3057
3058         trace_i915_gem_object_change_domain(obj,
3059                                             obj->base.read_domains,
3060                                             old_write_domain);
3061 }
3062
3063 /**
3064  * Moves a single object to the GTT read, and possibly write domain.
3065  *
3066  * This function returns when the move is complete, including waiting on
3067  * flushes to occur.
3068  */
3069 int
3070 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3071 {
3072         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3073         uint32_t old_write_domain, old_read_domains;
3074         int ret;
3075
3076         /* Not valid to be called on unbound objects. */
3077         if (obj->gtt_space == NULL)
3078                 return -EINVAL;
3079
3080         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3081                 return 0;
3082
3083         ret = i915_gem_object_wait_rendering(obj, !write);
3084         if (ret)
3085                 return ret;
3086
3087         i915_gem_object_flush_cpu_write_domain(obj);
3088
3089         old_write_domain = obj->base.write_domain;
3090         old_read_domains = obj->base.read_domains;
3091
3092         /* It should now be out of any other write domains, and we can update
3093          * the domain values for our changes.
3094          */
3095         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3096         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3097         if (write) {
3098                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3099                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3100                 obj->dirty = 1;
3101         }
3102
3103         trace_i915_gem_object_change_domain(obj,
3104                                             old_read_domains,
3105                                             old_write_domain);
3106
3107         /* And bump the LRU for this access */
3108         if (i915_gem_object_is_inactive(obj))
3109                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3110
3111         return 0;
3112 }
3113
3114 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3115                                     enum i915_cache_level cache_level)
3116 {
3117         struct drm_device *dev = obj->base.dev;
3118         drm_i915_private_t *dev_priv = dev->dev_private;
3119         int ret;
3120
3121         if (obj->cache_level == cache_level)
3122                 return 0;
3123
3124         if (obj->pin_count) {
3125                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3126                 return -EBUSY;
3127         }
3128
3129         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3130                 ret = i915_gem_object_unbind(obj);
3131                 if (ret)
3132                         return ret;
3133         }
3134
3135         if (obj->gtt_space) {
3136                 ret = i915_gem_object_finish_gpu(obj);
3137                 if (ret)
3138                         return ret;
3139
3140                 i915_gem_object_finish_gtt(obj);
3141
3142                 /* Before SandyBridge, you could not use tiling or fence
3143                  * registers with snooped memory, so relinquish any fences
3144                  * currently pointing to our region in the aperture.
3145                  */
3146                 if (INTEL_INFO(dev)->gen < 6) {
3147                         ret = i915_gem_object_put_fence(obj);
3148                         if (ret)
3149                                 return ret;
3150                 }
3151
3152                 if (obj->has_global_gtt_mapping)
3153                         i915_gem_gtt_bind_object(obj, cache_level);
3154                 if (obj->has_aliasing_ppgtt_mapping)
3155                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3156                                                obj, cache_level);
3157
3158                 obj->gtt_space->color = cache_level;
3159         }
3160
3161         if (cache_level == I915_CACHE_NONE) {
3162                 u32 old_read_domains, old_write_domain;
3163
3164                 /* If we're coming from LLC cached, then we haven't
3165                  * actually been tracking whether the data is in the
3166                  * CPU cache or not, since we only allow one bit set
3167                  * in obj->write_domain and have been skipping the clflushes.
3168                  * Just set it to the CPU cache for now.
3169                  */
3170                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3171                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3172
3173                 old_read_domains = obj->base.read_domains;
3174                 old_write_domain = obj->base.write_domain;
3175
3176                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3177                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3178
3179                 trace_i915_gem_object_change_domain(obj,
3180                                                     old_read_domains,
3181                                                     old_write_domain);
3182         }
3183
3184         obj->cache_level = cache_level;
3185         i915_gem_verify_gtt(dev);
3186         return 0;
3187 }
3188
3189 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3190                                struct drm_file *file)
3191 {
3192         struct drm_i915_gem_caching *args = data;
3193         struct drm_i915_gem_object *obj;
3194         int ret;
3195
3196         ret = i915_mutex_lock_interruptible(dev);
3197         if (ret)
3198                 return ret;
3199
3200         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3201         if (&obj->base == NULL) {
3202                 ret = -ENOENT;
3203                 goto unlock;
3204         }
3205
3206         args->caching = obj->cache_level != I915_CACHE_NONE;
3207
3208         drm_gem_object_unreference(&obj->base);
3209 unlock:
3210         mutex_unlock(&dev->struct_mutex);
3211         return ret;
3212 }
3213
3214 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3215                                struct drm_file *file)
3216 {
3217         struct drm_i915_gem_caching *args = data;
3218         struct drm_i915_gem_object *obj;
3219         enum i915_cache_level level;
3220         int ret;
3221
3222         switch (args->caching) {
3223         case I915_CACHING_NONE:
3224                 level = I915_CACHE_NONE;
3225                 break;
3226         case I915_CACHING_CACHED:
3227                 level = I915_CACHE_LLC;
3228                 break;
3229         default:
3230                 return -EINVAL;
3231         }
3232
3233         ret = i915_mutex_lock_interruptible(dev);
3234         if (ret)
3235                 return ret;
3236
3237         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3238         if (&obj->base == NULL) {
3239                 ret = -ENOENT;
3240                 goto unlock;
3241         }
3242
3243         ret = i915_gem_object_set_cache_level(obj, level);
3244
3245         drm_gem_object_unreference(&obj->base);
3246 unlock:
3247         mutex_unlock(&dev->struct_mutex);
3248         return ret;
3249 }
3250
3251 /*
3252  * Prepare buffer for display plane (scanout, cursors, etc).
3253  * Can be called from an uninterruptible phase (modesetting) and allows
3254  * any flushes to be pipelined (for pageflips).
3255  */
3256 int
3257 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3258                                      u32 alignment,
3259                                      struct intel_ring_buffer *pipelined)
3260 {
3261         u32 old_read_domains, old_write_domain;
3262         int ret;
3263
3264         if (pipelined != obj->ring) {
3265                 ret = i915_gem_object_sync(obj, pipelined);
3266                 if (ret)
3267                         return ret;
3268         }
3269
3270         /* The display engine is not coherent with the LLC cache on gen6.  As
3271          * a result, we make sure that the pinning that is about to occur is
3272          * done with uncached PTEs. This is lowest common denominator for all
3273          * chipsets.
3274          *
3275          * However for gen6+, we could do better by using the GFDT bit instead
3276          * of uncaching, which would allow us to flush all the LLC-cached data
3277          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3278          */
3279         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3280         if (ret)
3281                 return ret;
3282
3283         /* As the user may map the buffer once pinned in the display plane
3284          * (e.g. libkms for the bootup splash), we have to ensure that we
3285          * always use map_and_fenceable for all scanout buffers.
3286          */
3287         ret = i915_gem_object_pin(obj, alignment, true, false);
3288         if (ret)
3289                 return ret;
3290
3291         i915_gem_object_flush_cpu_write_domain(obj);
3292
3293         old_write_domain = obj->base.write_domain;
3294         old_read_domains = obj->base.read_domains;
3295
3296         /* It should now be out of any other write domains, and we can update
3297          * the domain values for our changes.
3298          */
3299         obj->base.write_domain = 0;
3300         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3301
3302         trace_i915_gem_object_change_domain(obj,
3303                                             old_read_domains,
3304                                             old_write_domain);
3305
3306         return 0;
3307 }
3308
3309 int
3310 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3311 {
3312         int ret;
3313
3314         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3315                 return 0;
3316
3317         ret = i915_gem_object_wait_rendering(obj, false);
3318         if (ret)
3319                 return ret;
3320
3321         /* Ensure that we invalidate the GPU's caches and TLBs. */
3322         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3323         return 0;
3324 }
3325
3326 /**
3327  * Moves a single object to the CPU read, and possibly write domain.
3328  *
3329  * This function returns when the move is complete, including waiting on
3330  * flushes to occur.
3331  */
3332 int
3333 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3334 {
3335         uint32_t old_write_domain, old_read_domains;
3336         int ret;
3337
3338         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3339                 return 0;
3340
3341         ret = i915_gem_object_wait_rendering(obj, !write);
3342         if (ret)
3343                 return ret;
3344
3345         i915_gem_object_flush_gtt_write_domain(obj);
3346
3347         old_write_domain = obj->base.write_domain;
3348         old_read_domains = obj->base.read_domains;
3349
3350         /* Flush the CPU cache if it's still invalid. */
3351         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3352                 i915_gem_clflush_object(obj);
3353
3354                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3355         }
3356
3357         /* It should now be out of any other write domains, and we can update
3358          * the domain values for our changes.
3359          */
3360         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3361
3362         /* If we're writing through the CPU, then the GPU read domains will
3363          * need to be invalidated at next use.
3364          */
3365         if (write) {
3366                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3367                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3368         }
3369
3370         trace_i915_gem_object_change_domain(obj,
3371                                             old_read_domains,
3372                                             old_write_domain);
3373
3374         return 0;
3375 }
3376
3377 /* Throttle our rendering by waiting until the ring has completed our requests
3378  * emitted over 20 msec ago.
3379  *
3380  * Note that if we were to use the current jiffies each time around the loop,
3381  * we wouldn't escape the function with any frames outstanding if the time to
3382  * render a frame was over 20ms.
3383  *
3384  * This should get us reasonable parallelism between CPU and GPU but also
3385  * relatively low latency when blocking on a particular request to finish.
3386  */
3387 static int
3388 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3389 {
3390         struct drm_i915_private *dev_priv = dev->dev_private;
3391         struct drm_i915_file_private *file_priv = file->driver_priv;
3392         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3393         struct drm_i915_gem_request *request;
3394         struct intel_ring_buffer *ring = NULL;
3395         u32 seqno = 0;
3396         int ret;
3397
3398         if (atomic_read(&dev_priv->mm.wedged))
3399                 return -EIO;
3400
3401         spin_lock(&file_priv->mm.lock);
3402         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3403                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3404                         break;
3405
3406                 ring = request->ring;
3407                 seqno = request->seqno;
3408         }
3409         spin_unlock(&file_priv->mm.lock);
3410
3411         if (seqno == 0)
3412                 return 0;
3413
3414         ret = __wait_seqno(ring, seqno, true, NULL);
3415         if (ret == 0)
3416                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3417
3418         return ret;
3419 }
3420
3421 int
3422 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3423                     uint32_t alignment,
3424                     bool map_and_fenceable,
3425                     bool nonblocking)
3426 {
3427         int ret;
3428
3429         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3430                 return -EBUSY;
3431
3432         if (obj->gtt_space != NULL) {
3433                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3434                     (map_and_fenceable && !obj->map_and_fenceable)) {
3435                         WARN(obj->pin_count,
3436                              "bo is already pinned with incorrect alignment:"
3437                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3438                              " obj->map_and_fenceable=%d\n",
3439                              obj->gtt_offset, alignment,
3440                              map_and_fenceable,
3441                              obj->map_and_fenceable);
3442                         ret = i915_gem_object_unbind(obj);
3443                         if (ret)
3444                                 return ret;
3445                 }
3446         }
3447
3448         if (obj->gtt_space == NULL) {
3449                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3450
3451                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3452                                                   map_and_fenceable,
3453                                                   nonblocking);
3454                 if (ret)
3455                         return ret;
3456
3457                 if (!dev_priv->mm.aliasing_ppgtt)
3458                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3459         }
3460
3461         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3462                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3463
3464         obj->pin_count++;
3465         obj->pin_mappable |= map_and_fenceable;
3466
3467         return 0;
3468 }
3469
3470 void
3471 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3472 {
3473         BUG_ON(obj->pin_count == 0);
3474         BUG_ON(obj->gtt_space == NULL);
3475
3476         if (--obj->pin_count == 0)
3477                 obj->pin_mappable = false;
3478 }
3479
3480 int
3481 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3482                    struct drm_file *file)
3483 {
3484         struct drm_i915_gem_pin *args = data;
3485         struct drm_i915_gem_object *obj;
3486         int ret;
3487
3488         ret = i915_mutex_lock_interruptible(dev);
3489         if (ret)
3490                 return ret;
3491
3492         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3493         if (&obj->base == NULL) {
3494                 ret = -ENOENT;
3495                 goto unlock;
3496         }
3497
3498         if (obj->madv != I915_MADV_WILLNEED) {
3499                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3500                 ret = -EINVAL;
3501                 goto out;
3502         }
3503
3504         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3505                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3506                           args->handle);
3507                 ret = -EINVAL;
3508                 goto out;
3509         }
3510
3511         obj->user_pin_count++;
3512         obj->pin_filp = file;
3513         if (obj->user_pin_count == 1) {
3514                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3515                 if (ret)
3516                         goto out;
3517         }
3518
3519         /* XXX - flush the CPU caches for pinned objects
3520          * as the X server doesn't manage domains yet
3521          */
3522         i915_gem_object_flush_cpu_write_domain(obj);
3523         args->offset = obj->gtt_offset;
3524 out:
3525         drm_gem_object_unreference(&obj->base);
3526 unlock:
3527         mutex_unlock(&dev->struct_mutex);
3528         return ret;
3529 }
3530
3531 int
3532 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3533                      struct drm_file *file)
3534 {
3535         struct drm_i915_gem_pin *args = data;
3536         struct drm_i915_gem_object *obj;
3537         int ret;
3538
3539         ret = i915_mutex_lock_interruptible(dev);
3540         if (ret)
3541                 return ret;
3542
3543         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3544         if (&obj->base == NULL) {
3545                 ret = -ENOENT;
3546                 goto unlock;
3547         }
3548
3549         if (obj->pin_filp != file) {
3550                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3551                           args->handle);
3552                 ret = -EINVAL;
3553                 goto out;
3554         }
3555         obj->user_pin_count--;
3556         if (obj->user_pin_count == 0) {
3557                 obj->pin_filp = NULL;
3558                 i915_gem_object_unpin(obj);
3559         }
3560
3561 out:
3562         drm_gem_object_unreference(&obj->base);
3563 unlock:
3564         mutex_unlock(&dev->struct_mutex);
3565         return ret;
3566 }
3567
3568 int
3569 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3570                     struct drm_file *file)
3571 {
3572         struct drm_i915_gem_busy *args = data;
3573         struct drm_i915_gem_object *obj;
3574         int ret;
3575
3576         ret = i915_mutex_lock_interruptible(dev);
3577         if (ret)
3578                 return ret;
3579
3580         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3581         if (&obj->base == NULL) {
3582                 ret = -ENOENT;
3583                 goto unlock;
3584         }
3585
3586         /* Count all active objects as busy, even if they are currently not used
3587          * by the gpu. Users of this interface expect objects to eventually
3588          * become non-busy without any further actions, therefore emit any
3589          * necessary flushes here.
3590          */
3591         ret = i915_gem_object_flush_active(obj);
3592
3593         args->busy = obj->active;
3594         if (obj->ring) {
3595                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3596                 args->busy |= intel_ring_flag(obj->ring) << 16;
3597         }
3598
3599         drm_gem_object_unreference(&obj->base);
3600 unlock:
3601         mutex_unlock(&dev->struct_mutex);
3602         return ret;
3603 }
3604
3605 int
3606 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3607                         struct drm_file *file_priv)
3608 {
3609         return i915_gem_ring_throttle(dev, file_priv);
3610 }
3611
3612 int
3613 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3614                        struct drm_file *file_priv)
3615 {
3616         struct drm_i915_gem_madvise *args = data;
3617         struct drm_i915_gem_object *obj;
3618         int ret;
3619
3620         switch (args->madv) {
3621         case I915_MADV_DONTNEED:
3622         case I915_MADV_WILLNEED:
3623             break;
3624         default:
3625             return -EINVAL;
3626         }
3627
3628         ret = i915_mutex_lock_interruptible(dev);
3629         if (ret)
3630                 return ret;
3631
3632         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3633         if (&obj->base == NULL) {
3634                 ret = -ENOENT;
3635                 goto unlock;
3636         }
3637
3638         if (obj->pin_count) {
3639                 ret = -EINVAL;
3640                 goto out;
3641         }
3642
3643         if (obj->madv != __I915_MADV_PURGED)
3644                 obj->madv = args->madv;
3645
3646         /* if the object is no longer attached, discard its backing storage */
3647         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3648                 i915_gem_object_truncate(obj);
3649
3650         args->retained = obj->madv != __I915_MADV_PURGED;
3651
3652 out:
3653         drm_gem_object_unreference(&obj->base);
3654 unlock:
3655         mutex_unlock(&dev->struct_mutex);
3656         return ret;
3657 }
3658
3659 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3660                           const struct drm_i915_gem_object_ops *ops)
3661 {
3662         INIT_LIST_HEAD(&obj->mm_list);
3663         INIT_LIST_HEAD(&obj->gtt_list);
3664         INIT_LIST_HEAD(&obj->ring_list);
3665         INIT_LIST_HEAD(&obj->exec_list);
3666
3667         obj->ops = ops;
3668
3669         obj->fence_reg = I915_FENCE_REG_NONE;
3670         obj->madv = I915_MADV_WILLNEED;
3671         /* Avoid an unnecessary call to unbind on the first bind. */
3672         obj->map_and_fenceable = true;
3673
3674         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3675 }
3676
3677 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3678         .get_pages = i915_gem_object_get_pages_gtt,
3679         .put_pages = i915_gem_object_put_pages_gtt,
3680 };
3681
3682 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3683                                                   size_t size)
3684 {
3685         struct drm_i915_gem_object *obj;
3686         struct address_space *mapping;
3687         u32 mask;
3688
3689         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3690         if (obj == NULL)
3691                 return NULL;
3692
3693         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3694                 kfree(obj);
3695                 return NULL;
3696         }
3697
3698         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3699         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3700                 /* 965gm cannot relocate objects above 4GiB. */
3701                 mask &= ~__GFP_HIGHMEM;
3702                 mask |= __GFP_DMA32;
3703         }
3704
3705         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3706         mapping_set_gfp_mask(mapping, mask);
3707
3708         i915_gem_object_init(obj, &i915_gem_object_ops);
3709
3710         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3711         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3712
3713         if (HAS_LLC(dev)) {
3714                 /* On some devices, we can have the GPU use the LLC (the CPU
3715                  * cache) for about a 10% performance improvement
3716                  * compared to uncached.  Graphics requests other than
3717                  * display scanout are coherent with the CPU in
3718                  * accessing this cache.  This means in this mode we
3719                  * don't need to clflush on the CPU side, and on the
3720                  * GPU side we only need to flush internal caches to
3721                  * get data visible to the CPU.
3722                  *
3723                  * However, we maintain the display planes as UC, and so
3724                  * need to rebind when first used as such.
3725                  */
3726                 obj->cache_level = I915_CACHE_LLC;
3727         } else
3728                 obj->cache_level = I915_CACHE_NONE;
3729
3730         return obj;
3731 }
3732
3733 int i915_gem_init_object(struct drm_gem_object *obj)
3734 {
3735         BUG();
3736
3737         return 0;
3738 }
3739
3740 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3741 {
3742         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3743         struct drm_device *dev = obj->base.dev;
3744         drm_i915_private_t *dev_priv = dev->dev_private;
3745
3746         trace_i915_gem_object_destroy(obj);
3747
3748         if (obj->phys_obj)
3749                 i915_gem_detach_phys_object(dev, obj);
3750
3751         obj->pin_count = 0;
3752         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3753                 bool was_interruptible;
3754
3755                 was_interruptible = dev_priv->mm.interruptible;
3756                 dev_priv->mm.interruptible = false;
3757
3758                 WARN_ON(i915_gem_object_unbind(obj));
3759
3760                 dev_priv->mm.interruptible = was_interruptible;
3761         }
3762
3763         obj->pages_pin_count = 0;
3764         i915_gem_object_put_pages(obj);
3765         i915_gem_object_free_mmap_offset(obj);
3766
3767         BUG_ON(obj->pages);
3768
3769         if (obj->base.import_attach)
3770                 drm_prime_gem_destroy(&obj->base, NULL);
3771
3772         drm_gem_object_release(&obj->base);
3773         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3774
3775         kfree(obj->bit_17);
3776         kfree(obj);
3777 }
3778
3779 int
3780 i915_gem_idle(struct drm_device *dev)
3781 {
3782         drm_i915_private_t *dev_priv = dev->dev_private;
3783         int ret;
3784
3785         mutex_lock(&dev->struct_mutex);
3786
3787         if (dev_priv->mm.suspended) {
3788                 mutex_unlock(&dev->struct_mutex);
3789                 return 0;
3790         }
3791
3792         ret = i915_gpu_idle(dev);
3793         if (ret) {
3794                 mutex_unlock(&dev->struct_mutex);
3795                 return ret;
3796         }
3797         i915_gem_retire_requests(dev);
3798
3799         /* Under UMS, be paranoid and evict. */
3800         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3801                 i915_gem_evict_everything(dev);
3802
3803         i915_gem_reset_fences(dev);
3804
3805         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3806          * We need to replace this with a semaphore, or something.
3807          * And not confound mm.suspended!
3808          */
3809         dev_priv->mm.suspended = 1;
3810         del_timer_sync(&dev_priv->hangcheck_timer);
3811
3812         i915_kernel_lost_context(dev);
3813         i915_gem_cleanup_ringbuffer(dev);
3814
3815         mutex_unlock(&dev->struct_mutex);
3816
3817         /* Cancel the retire work handler, which should be idle now. */
3818         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3819
3820         return 0;
3821 }
3822
3823 void i915_gem_l3_remap(struct drm_device *dev)
3824 {
3825         drm_i915_private_t *dev_priv = dev->dev_private;
3826         u32 misccpctl;
3827         int i;
3828
3829         if (!IS_IVYBRIDGE(dev))
3830                 return;
3831
3832         if (!dev_priv->l3_parity.remap_info)
3833                 return;
3834
3835         misccpctl = I915_READ(GEN7_MISCCPCTL);
3836         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3837         POSTING_READ(GEN7_MISCCPCTL);
3838
3839         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3840                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3841                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3842                         DRM_DEBUG("0x%x was already programmed to %x\n",
3843                                   GEN7_L3LOG_BASE + i, remap);
3844                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3845                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3846                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3847         }
3848
3849         /* Make sure all the writes land before disabling dop clock gating */
3850         POSTING_READ(GEN7_L3LOG_BASE);
3851
3852         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3853 }
3854
3855 void i915_gem_init_swizzling(struct drm_device *dev)
3856 {
3857         drm_i915_private_t *dev_priv = dev->dev_private;
3858
3859         if (INTEL_INFO(dev)->gen < 5 ||
3860             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3861                 return;
3862
3863         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3864                                  DISP_TILE_SURFACE_SWIZZLING);
3865
3866         if (IS_GEN5(dev))
3867                 return;
3868
3869         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3870         if (IS_GEN6(dev))
3871                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3872         else
3873                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3874 }
3875
3876 static bool
3877 intel_enable_blt(struct drm_device *dev)
3878 {
3879         if (!HAS_BLT(dev))
3880                 return false;
3881
3882         /* The blitter was dysfunctional on early prototypes */
3883         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3884                 DRM_INFO("BLT not supported on this pre-production hardware;"
3885                          " graphics performance will be degraded.\n");
3886                 return false;
3887         }
3888
3889         return true;
3890 }
3891
3892 int
3893 i915_gem_init_hw(struct drm_device *dev)
3894 {
3895         drm_i915_private_t *dev_priv = dev->dev_private;
3896         int ret;
3897
3898         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3899                 return -EIO;
3900
3901         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3902                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3903
3904         i915_gem_l3_remap(dev);
3905
3906         i915_gem_init_swizzling(dev);
3907
3908         ret = intel_init_render_ring_buffer(dev);
3909         if (ret)
3910                 return ret;
3911
3912         if (HAS_BSD(dev)) {
3913                 ret = intel_init_bsd_ring_buffer(dev);
3914                 if (ret)
3915                         goto cleanup_render_ring;
3916         }
3917
3918         if (intel_enable_blt(dev)) {
3919                 ret = intel_init_blt_ring_buffer(dev);
3920                 if (ret)
3921                         goto cleanup_bsd_ring;
3922         }
3923
3924         dev_priv->next_seqno = 1;
3925
3926         /*
3927          * XXX: There was some w/a described somewhere suggesting loading
3928          * contexts before PPGTT.
3929          */
3930         i915_gem_context_init(dev);
3931         i915_gem_init_ppgtt(dev);
3932
3933         return 0;
3934
3935 cleanup_bsd_ring:
3936         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3937 cleanup_render_ring:
3938         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3939         return ret;
3940 }
3941
3942 static bool
3943 intel_enable_ppgtt(struct drm_device *dev)
3944 {
3945         if (i915_enable_ppgtt >= 0)
3946                 return i915_enable_ppgtt;
3947
3948 #ifdef CONFIG_INTEL_IOMMU
3949         /* Disable ppgtt on SNB if VT-d is on. */
3950         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3951                 return false;
3952 #endif
3953
3954         return true;
3955 }
3956
3957 int i915_gem_init(struct drm_device *dev)
3958 {
3959         struct drm_i915_private *dev_priv = dev->dev_private;
3960         unsigned long gtt_size, mappable_size;
3961         int ret;
3962
3963         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3964         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3965
3966         mutex_lock(&dev->struct_mutex);
3967         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3968                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3969                  * aperture accordingly when using aliasing ppgtt. */
3970                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3971
3972                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3973
3974                 ret = i915_gem_init_aliasing_ppgtt(dev);
3975                 if (ret) {
3976                         mutex_unlock(&dev->struct_mutex);
3977                         return ret;
3978                 }
3979         } else {
3980                 /* Let GEM Manage all of the aperture.
3981                  *
3982                  * However, leave one page at the end still bound to the scratch
3983                  * page.  There are a number of places where the hardware
3984                  * apparently prefetches past the end of the object, and we've
3985                  * seen multiple hangs with the GPU head pointer stuck in a
3986                  * batchbuffer bound at the last page of the aperture.  One page
3987                  * should be enough to keep any prefetching inside of the
3988                  * aperture.
3989                  */
3990                 i915_gem_init_global_gtt(dev, 0, mappable_size,
3991                                          gtt_size);
3992         }
3993
3994         ret = i915_gem_init_hw(dev);
3995         mutex_unlock(&dev->struct_mutex);
3996         if (ret) {
3997                 i915_gem_cleanup_aliasing_ppgtt(dev);
3998                 return ret;
3999         }
4000
4001         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4002         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4003                 dev_priv->dri1.allow_batchbuffer = 1;
4004         return 0;
4005 }
4006
4007 void
4008 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4009 {
4010         drm_i915_private_t *dev_priv = dev->dev_private;
4011         struct intel_ring_buffer *ring;
4012         int i;
4013
4014         for_each_ring(ring, dev_priv, i)
4015                 intel_cleanup_ring_buffer(ring);
4016 }
4017
4018 int
4019 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4020                        struct drm_file *file_priv)
4021 {
4022         drm_i915_private_t *dev_priv = dev->dev_private;
4023         int ret;
4024
4025         if (drm_core_check_feature(dev, DRIVER_MODESET))
4026                 return 0;
4027
4028         if (atomic_read(&dev_priv->mm.wedged)) {
4029                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4030                 atomic_set(&dev_priv->mm.wedged, 0);
4031         }
4032
4033         mutex_lock(&dev->struct_mutex);
4034         dev_priv->mm.suspended = 0;
4035
4036         ret = i915_gem_init_hw(dev);
4037         if (ret != 0) {
4038                 mutex_unlock(&dev->struct_mutex);
4039                 return ret;
4040         }
4041
4042         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4043         mutex_unlock(&dev->struct_mutex);
4044
4045         ret = drm_irq_install(dev);
4046         if (ret)
4047                 goto cleanup_ringbuffer;
4048
4049         return 0;
4050
4051 cleanup_ringbuffer:
4052         mutex_lock(&dev->struct_mutex);
4053         i915_gem_cleanup_ringbuffer(dev);
4054         dev_priv->mm.suspended = 1;
4055         mutex_unlock(&dev->struct_mutex);
4056
4057         return ret;
4058 }
4059
4060 int
4061 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4062                        struct drm_file *file_priv)
4063 {
4064         if (drm_core_check_feature(dev, DRIVER_MODESET))
4065                 return 0;
4066
4067         drm_irq_uninstall(dev);
4068         return i915_gem_idle(dev);
4069 }
4070
4071 void
4072 i915_gem_lastclose(struct drm_device *dev)
4073 {
4074         int ret;
4075
4076         if (drm_core_check_feature(dev, DRIVER_MODESET))
4077                 return;
4078
4079         ret = i915_gem_idle(dev);
4080         if (ret)
4081                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4082 }
4083
4084 static void
4085 init_ring_lists(struct intel_ring_buffer *ring)
4086 {
4087         INIT_LIST_HEAD(&ring->active_list);
4088         INIT_LIST_HEAD(&ring->request_list);
4089 }
4090
4091 void
4092 i915_gem_load(struct drm_device *dev)
4093 {
4094         int i;
4095         drm_i915_private_t *dev_priv = dev->dev_private;
4096
4097         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4098         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4099         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4100         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4101         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4102         for (i = 0; i < I915_NUM_RINGS; i++)
4103                 init_ring_lists(&dev_priv->ring[i]);
4104         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4105                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4106         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4107                           i915_gem_retire_work_handler);
4108         init_completion(&dev_priv->error_completion);
4109
4110         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4111         if (IS_GEN3(dev)) {
4112                 I915_WRITE(MI_ARB_STATE,
4113                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4114         }
4115
4116         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4117
4118         /* Old X drivers will take 0-2 for front, back, depth buffers */
4119         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4120                 dev_priv->fence_reg_start = 3;
4121
4122         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4123                 dev_priv->num_fence_regs = 16;
4124         else
4125                 dev_priv->num_fence_regs = 8;
4126
4127         /* Initialize fence registers to zero */
4128         i915_gem_reset_fences(dev);
4129
4130         i915_gem_detect_bit_6_swizzle(dev);
4131         init_waitqueue_head(&dev_priv->pending_flip_queue);
4132
4133         dev_priv->mm.interruptible = true;
4134
4135         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4136         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4137         register_shrinker(&dev_priv->mm.inactive_shrinker);
4138 }
4139
4140 /*
4141  * Create a physically contiguous memory object for this object
4142  * e.g. for cursor + overlay regs
4143  */
4144 static int i915_gem_init_phys_object(struct drm_device *dev,
4145                                      int id, int size, int align)
4146 {
4147         drm_i915_private_t *dev_priv = dev->dev_private;
4148         struct drm_i915_gem_phys_object *phys_obj;
4149         int ret;
4150
4151         if (dev_priv->mm.phys_objs[id - 1] || !size)
4152                 return 0;
4153
4154         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4155         if (!phys_obj)
4156                 return -ENOMEM;
4157
4158         phys_obj->id = id;
4159
4160         phys_obj->handle = drm_pci_alloc(dev, size, align);
4161         if (!phys_obj->handle) {
4162                 ret = -ENOMEM;
4163                 goto kfree_obj;
4164         }
4165 #ifdef CONFIG_X86
4166         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4167 #endif
4168
4169         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4170
4171         return 0;
4172 kfree_obj:
4173         kfree(phys_obj);
4174         return ret;
4175 }
4176
4177 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4178 {
4179         drm_i915_private_t *dev_priv = dev->dev_private;
4180         struct drm_i915_gem_phys_object *phys_obj;
4181
4182         if (!dev_priv->mm.phys_objs[id - 1])
4183                 return;
4184
4185         phys_obj = dev_priv->mm.phys_objs[id - 1];
4186         if (phys_obj->cur_obj) {
4187                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4188         }
4189
4190 #ifdef CONFIG_X86
4191         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4192 #endif
4193         drm_pci_free(dev, phys_obj->handle);
4194         kfree(phys_obj);
4195         dev_priv->mm.phys_objs[id - 1] = NULL;
4196 }
4197
4198 void i915_gem_free_all_phys_object(struct drm_device *dev)
4199 {
4200         int i;
4201
4202         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4203                 i915_gem_free_phys_object(dev, i);
4204 }
4205
4206 void i915_gem_detach_phys_object(struct drm_device *dev,
4207                                  struct drm_i915_gem_object *obj)
4208 {
4209         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4210         char *vaddr;
4211         int i;
4212         int page_count;
4213
4214         if (!obj->phys_obj)
4215                 return;
4216         vaddr = obj->phys_obj->handle->vaddr;
4217
4218         page_count = obj->base.size / PAGE_SIZE;
4219         for (i = 0; i < page_count; i++) {
4220                 struct page *page = shmem_read_mapping_page(mapping, i);
4221                 if (!IS_ERR(page)) {
4222                         char *dst = kmap_atomic(page);
4223                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4224                         kunmap_atomic(dst);
4225
4226                         drm_clflush_pages(&page, 1);
4227
4228                         set_page_dirty(page);
4229                         mark_page_accessed(page);
4230                         page_cache_release(page);
4231                 }
4232         }
4233         i915_gem_chipset_flush(dev);
4234
4235         obj->phys_obj->cur_obj = NULL;
4236         obj->phys_obj = NULL;
4237 }
4238
4239 int
4240 i915_gem_attach_phys_object(struct drm_device *dev,
4241                             struct drm_i915_gem_object *obj,
4242                             int id,
4243                             int align)
4244 {
4245         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4246         drm_i915_private_t *dev_priv = dev->dev_private;
4247         int ret = 0;
4248         int page_count;
4249         int i;
4250
4251         if (id > I915_MAX_PHYS_OBJECT)
4252                 return -EINVAL;
4253
4254         if (obj->phys_obj) {
4255                 if (obj->phys_obj->id == id)
4256                         return 0;
4257                 i915_gem_detach_phys_object(dev, obj);
4258         }
4259
4260         /* create a new object */
4261         if (!dev_priv->mm.phys_objs[id - 1]) {
4262                 ret = i915_gem_init_phys_object(dev, id,
4263                                                 obj->base.size, align);
4264                 if (ret) {
4265                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4266                                   id, obj->base.size);
4267                         return ret;
4268                 }
4269         }
4270
4271         /* bind to the object */
4272         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4273         obj->phys_obj->cur_obj = obj;
4274
4275         page_count = obj->base.size / PAGE_SIZE;
4276
4277         for (i = 0; i < page_count; i++) {
4278                 struct page *page;
4279                 char *dst, *src;
4280
4281                 page = shmem_read_mapping_page(mapping, i);
4282                 if (IS_ERR(page))
4283                         return PTR_ERR(page);
4284
4285                 src = kmap_atomic(page);
4286                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4287                 memcpy(dst, src, PAGE_SIZE);
4288                 kunmap_atomic(src);
4289
4290                 mark_page_accessed(page);
4291                 page_cache_release(page);
4292         }
4293
4294         return 0;
4295 }
4296
4297 static int
4298 i915_gem_phys_pwrite(struct drm_device *dev,
4299                      struct drm_i915_gem_object *obj,
4300                      struct drm_i915_gem_pwrite *args,
4301                      struct drm_file *file_priv)
4302 {
4303         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4304         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4305
4306         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4307                 unsigned long unwritten;
4308
4309                 /* The physical object once assigned is fixed for the lifetime
4310                  * of the obj, so we can safely drop the lock and continue
4311                  * to access vaddr.
4312                  */
4313                 mutex_unlock(&dev->struct_mutex);
4314                 unwritten = copy_from_user(vaddr, user_data, args->size);
4315                 mutex_lock(&dev->struct_mutex);
4316                 if (unwritten)
4317                         return -EFAULT;
4318         }
4319
4320         i915_gem_chipset_flush(dev);
4321         return 0;
4322 }
4323
4324 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4325 {
4326         struct drm_i915_file_private *file_priv = file->driver_priv;
4327
4328         /* Clean up our request list when the client is going away, so that
4329          * later retire_requests won't dereference our soon-to-be-gone
4330          * file_priv.
4331          */
4332         spin_lock(&file_priv->mm.lock);
4333         while (!list_empty(&file_priv->mm.request_list)) {
4334                 struct drm_i915_gem_request *request;
4335
4336                 request = list_first_entry(&file_priv->mm.request_list,
4337                                            struct drm_i915_gem_request,
4338                                            client_list);
4339                 list_del(&request->client_list);
4340                 request->file_priv = NULL;
4341         }
4342         spin_unlock(&file_priv->mm.lock);
4343 }
4344
4345 static int
4346 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4347 {
4348         struct drm_i915_private *dev_priv =
4349                 container_of(shrinker,
4350                              struct drm_i915_private,
4351                              mm.inactive_shrinker);
4352         struct drm_device *dev = dev_priv->dev;
4353         struct drm_i915_gem_object *obj;
4354         int nr_to_scan = sc->nr_to_scan;
4355         int cnt;
4356
4357         if (!mutex_trylock(&dev->struct_mutex))
4358                 return 0;
4359
4360         if (nr_to_scan) {
4361                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4362                 if (nr_to_scan > 0)
4363                         i915_gem_shrink_all(dev_priv);
4364         }
4365
4366         cnt = 0;
4367         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4368                 if (obj->pages_pin_count == 0)
4369                         cnt += obj->base.size >> PAGE_SHIFT;
4370         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4371                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4372                         cnt += obj->base.size >> PAGE_SHIFT;
4373
4374         mutex_unlock(&dev->struct_mutex);
4375         return cnt;
4376 }