drm/i915: Attempt to uncouple object after catastrophic failure in unbind
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file_priv);
56 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = i915_gem_alloc_object(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         drm_gem_object_handle_unreference_unlocked(obj);
132
133         if (ret)
134                 return ret;
135
136         args->handle = handle;
137
138         return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143                 loff_t page_base, int page_offset,
144                 char __user *data,
145                 int length)
146 {
147         char __iomem *vaddr;
148         int unwritten;
149
150         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151         if (vaddr == NULL)
152                 return -ENOMEM;
153         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154         kunmap_atomic(vaddr, KM_USER0);
155
156         if (unwritten)
157                 return -EFAULT;
158
159         return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164         drm_i915_private_t *dev_priv = obj->dev->dev_private;
165         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
166
167         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168                 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline void
172 slow_shmem_copy(struct page *dst_page,
173                 int dst_offset,
174                 struct page *src_page,
175                 int src_offset,
176                 int length)
177 {
178         char *dst_vaddr, *src_vaddr;
179
180         dst_vaddr = kmap(dst_page);
181         src_vaddr = kmap(src_page);
182
183         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
184
185         kunmap(src_page);
186         kunmap(dst_page);
187 }
188
189 static inline void
190 slow_shmem_bit17_copy(struct page *gpu_page,
191                       int gpu_offset,
192                       struct page *cpu_page,
193                       int cpu_offset,
194                       int length,
195                       int is_read)
196 {
197         char *gpu_vaddr, *cpu_vaddr;
198
199         /* Use the unswizzled path if this page isn't affected. */
200         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
201                 if (is_read)
202                         return slow_shmem_copy(cpu_page, cpu_offset,
203                                                gpu_page, gpu_offset, length);
204                 else
205                         return slow_shmem_copy(gpu_page, gpu_offset,
206                                                cpu_page, cpu_offset, length);
207         }
208
209         gpu_vaddr = kmap(gpu_page);
210         cpu_vaddr = kmap(cpu_page);
211
212         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
213          * XORing with the other bits (A9 for Y, A9 and A10 for X)
214          */
215         while (length > 0) {
216                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
217                 int this_length = min(cacheline_end - gpu_offset, length);
218                 int swizzled_gpu_offset = gpu_offset ^ 64;
219
220                 if (is_read) {
221                         memcpy(cpu_vaddr + cpu_offset,
222                                gpu_vaddr + swizzled_gpu_offset,
223                                this_length);
224                 } else {
225                         memcpy(gpu_vaddr + swizzled_gpu_offset,
226                                cpu_vaddr + cpu_offset,
227                                this_length);
228                 }
229                 cpu_offset += this_length;
230                 gpu_offset += this_length;
231                 length -= this_length;
232         }
233
234         kunmap(cpu_page);
235         kunmap(gpu_page);
236 }
237
238 /**
239  * This is the fast shmem pread path, which attempts to copy_from_user directly
240  * from the backing pages of the object to the user's address space.  On a
241  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
242  */
243 static int
244 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
245                           struct drm_i915_gem_pread *args,
246                           struct drm_file *file_priv)
247 {
248         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
249         ssize_t remain;
250         loff_t offset, page_base;
251         char __user *user_data;
252         int page_offset, page_length;
253         int ret;
254
255         user_data = (char __user *) (uintptr_t) args->data_ptr;
256         remain = args->size;
257
258         mutex_lock(&dev->struct_mutex);
259
260         ret = i915_gem_object_get_pages(obj, 0);
261         if (ret != 0)
262                 goto fail_unlock;
263
264         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
265                                                         args->size);
266         if (ret != 0)
267                 goto fail_put_pages;
268
269         obj_priv = to_intel_bo(obj);
270         offset = args->offset;
271
272         while (remain > 0) {
273                 /* Operation in this page
274                  *
275                  * page_base = page offset within aperture
276                  * page_offset = offset within page
277                  * page_length = bytes to copy for this page
278                  */
279                 page_base = (offset & ~(PAGE_SIZE-1));
280                 page_offset = offset & (PAGE_SIZE-1);
281                 page_length = remain;
282                 if ((page_offset + remain) > PAGE_SIZE)
283                         page_length = PAGE_SIZE - page_offset;
284
285                 ret = fast_shmem_read(obj_priv->pages,
286                                       page_base, page_offset,
287                                       user_data, page_length);
288                 if (ret)
289                         goto fail_put_pages;
290
291                 remain -= page_length;
292                 user_data += page_length;
293                 offset += page_length;
294         }
295
296 fail_put_pages:
297         i915_gem_object_put_pages(obj);
298 fail_unlock:
299         mutex_unlock(&dev->struct_mutex);
300
301         return ret;
302 }
303
304 static int
305 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
306 {
307         int ret;
308
309         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
310
311         /* If we've insufficient memory to map in the pages, attempt
312          * to make some space by throwing out some old buffers.
313          */
314         if (ret == -ENOMEM) {
315                 struct drm_device *dev = obj->dev;
316
317                 ret = i915_gem_evict_something(dev, obj->size);
318                 if (ret)
319                         return ret;
320
321                 ret = i915_gem_object_get_pages(obj, 0);
322         }
323
324         return ret;
325 }
326
327 /**
328  * This is the fallback shmem pread path, which allocates temporary storage
329  * in kernel space to copy_to_user into outside of the struct_mutex, so we
330  * can copy out of the object's backing pages while holding the struct mutex
331  * and not take page faults.
332  */
333 static int
334 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
335                           struct drm_i915_gem_pread *args,
336                           struct drm_file *file_priv)
337 {
338         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
339         struct mm_struct *mm = current->mm;
340         struct page **user_pages;
341         ssize_t remain;
342         loff_t offset, pinned_pages, i;
343         loff_t first_data_page, last_data_page, num_pages;
344         int shmem_page_index, shmem_page_offset;
345         int data_page_index,  data_page_offset;
346         int page_length;
347         int ret;
348         uint64_t data_ptr = args->data_ptr;
349         int do_bit17_swizzling;
350
351         remain = args->size;
352
353         /* Pin the user pages containing the data.  We can't fault while
354          * holding the struct mutex, yet we want to hold it while
355          * dereferencing the user data.
356          */
357         first_data_page = data_ptr / PAGE_SIZE;
358         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
359         num_pages = last_data_page - first_data_page + 1;
360
361         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
362         if (user_pages == NULL)
363                 return -ENOMEM;
364
365         down_read(&mm->mmap_sem);
366         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
367                                       num_pages, 1, 0, user_pages, NULL);
368         up_read(&mm->mmap_sem);
369         if (pinned_pages < num_pages) {
370                 ret = -EFAULT;
371                 goto fail_put_user_pages;
372         }
373
374         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
375
376         mutex_lock(&dev->struct_mutex);
377
378         ret = i915_gem_object_get_pages_or_evict(obj);
379         if (ret)
380                 goto fail_unlock;
381
382         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
383                                                         args->size);
384         if (ret != 0)
385                 goto fail_put_pages;
386
387         obj_priv = to_intel_bo(obj);
388         offset = args->offset;
389
390         while (remain > 0) {
391                 /* Operation in this page
392                  *
393                  * shmem_page_index = page number within shmem file
394                  * shmem_page_offset = offset within page in shmem file
395                  * data_page_index = page number in get_user_pages return
396                  * data_page_offset = offset with data_page_index page.
397                  * page_length = bytes to copy for this page
398                  */
399                 shmem_page_index = offset / PAGE_SIZE;
400                 shmem_page_offset = offset & ~PAGE_MASK;
401                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
402                 data_page_offset = data_ptr & ~PAGE_MASK;
403
404                 page_length = remain;
405                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
406                         page_length = PAGE_SIZE - shmem_page_offset;
407                 if ((data_page_offset + page_length) > PAGE_SIZE)
408                         page_length = PAGE_SIZE - data_page_offset;
409
410                 if (do_bit17_swizzling) {
411                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
412                                               shmem_page_offset,
413                                               user_pages[data_page_index],
414                                               data_page_offset,
415                                               page_length,
416                                               1);
417                 } else {
418                         slow_shmem_copy(user_pages[data_page_index],
419                                         data_page_offset,
420                                         obj_priv->pages[shmem_page_index],
421                                         shmem_page_offset,
422                                         page_length);
423                 }
424
425                 remain -= page_length;
426                 data_ptr += page_length;
427                 offset += page_length;
428         }
429
430 fail_put_pages:
431         i915_gem_object_put_pages(obj);
432 fail_unlock:
433         mutex_unlock(&dev->struct_mutex);
434 fail_put_user_pages:
435         for (i = 0; i < pinned_pages; i++) {
436                 SetPageDirty(user_pages[i]);
437                 page_cache_release(user_pages[i]);
438         }
439         drm_free_large(user_pages);
440
441         return ret;
442 }
443
444 /**
445  * Reads data from the object referenced by handle.
446  *
447  * On error, the contents of *data are undefined.
448  */
449 int
450 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
451                      struct drm_file *file_priv)
452 {
453         struct drm_i915_gem_pread *args = data;
454         struct drm_gem_object *obj;
455         struct drm_i915_gem_object *obj_priv;
456         int ret;
457
458         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
459         if (obj == NULL)
460                 return -EBADF;
461         obj_priv = to_intel_bo(obj);
462
463         /* Bounds check source.
464          *
465          * XXX: This could use review for overflow issues...
466          */
467         if (args->offset > obj->size || args->size > obj->size ||
468             args->offset + args->size > obj->size) {
469                 drm_gem_object_unreference_unlocked(obj);
470                 return -EINVAL;
471         }
472
473         if (i915_gem_object_needs_bit17_swizzle(obj)) {
474                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
475         } else {
476                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
477                 if (ret != 0)
478                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
479                                                         file_priv);
480         }
481
482         drm_gem_object_unreference_unlocked(obj);
483
484         return ret;
485 }
486
487 /* This is the fast write path which cannot handle
488  * page faults in the source data
489  */
490
491 static inline int
492 fast_user_write(struct io_mapping *mapping,
493                 loff_t page_base, int page_offset,
494                 char __user *user_data,
495                 int length)
496 {
497         char *vaddr_atomic;
498         unsigned long unwritten;
499
500         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
501         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
502                                                       user_data, length);
503         io_mapping_unmap_atomic(vaddr_atomic);
504         if (unwritten)
505                 return -EFAULT;
506         return 0;
507 }
508
509 /* Here's the write path which can sleep for
510  * page faults
511  */
512
513 static inline void
514 slow_kernel_write(struct io_mapping *mapping,
515                   loff_t gtt_base, int gtt_offset,
516                   struct page *user_page, int user_offset,
517                   int length)
518 {
519         char __iomem *dst_vaddr;
520         char *src_vaddr;
521
522         dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
523         src_vaddr = kmap(user_page);
524
525         memcpy_toio(dst_vaddr + gtt_offset,
526                     src_vaddr + user_offset,
527                     length);
528
529         kunmap(user_page);
530         io_mapping_unmap(dst_vaddr);
531 }
532
533 static inline int
534 fast_shmem_write(struct page **pages,
535                  loff_t page_base, int page_offset,
536                  char __user *data,
537                  int length)
538 {
539         char __iomem *vaddr;
540         unsigned long unwritten;
541
542         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
543         if (vaddr == NULL)
544                 return -ENOMEM;
545         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
546         kunmap_atomic(vaddr, KM_USER0);
547
548         if (unwritten)
549                 return -EFAULT;
550         return 0;
551 }
552
553 /**
554  * This is the fast pwrite path, where we copy the data directly from the
555  * user into the GTT, uncached.
556  */
557 static int
558 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
559                          struct drm_i915_gem_pwrite *args,
560                          struct drm_file *file_priv)
561 {
562         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
563         drm_i915_private_t *dev_priv = dev->dev_private;
564         ssize_t remain;
565         loff_t offset, page_base;
566         char __user *user_data;
567         int page_offset, page_length;
568         int ret;
569
570         user_data = (char __user *) (uintptr_t) args->data_ptr;
571         remain = args->size;
572         if (!access_ok(VERIFY_READ, user_data, remain))
573                 return -EFAULT;
574
575
576         mutex_lock(&dev->struct_mutex);
577         ret = i915_gem_object_pin(obj, 0);
578         if (ret) {
579                 mutex_unlock(&dev->struct_mutex);
580                 return ret;
581         }
582         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
583         if (ret)
584                 goto fail;
585
586         obj_priv = to_intel_bo(obj);
587         offset = obj_priv->gtt_offset + args->offset;
588
589         while (remain > 0) {
590                 /* Operation in this page
591                  *
592                  * page_base = page offset within aperture
593                  * page_offset = offset within page
594                  * page_length = bytes to copy for this page
595                  */
596                 page_base = (offset & ~(PAGE_SIZE-1));
597                 page_offset = offset & (PAGE_SIZE-1);
598                 page_length = remain;
599                 if ((page_offset + remain) > PAGE_SIZE)
600                         page_length = PAGE_SIZE - page_offset;
601
602                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
603                                        page_offset, user_data, page_length);
604
605                 /* If we get a fault while copying data, then (presumably) our
606                  * source page isn't available.  Return the error and we'll
607                  * retry in the slow path.
608                  */
609                 if (ret)
610                         goto fail;
611
612                 remain -= page_length;
613                 user_data += page_length;
614                 offset += page_length;
615         }
616
617 fail:
618         i915_gem_object_unpin(obj);
619         mutex_unlock(&dev->struct_mutex);
620
621         return ret;
622 }
623
624 /**
625  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
626  * the memory and maps it using kmap_atomic for copying.
627  *
628  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
629  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
630  */
631 static int
632 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
633                          struct drm_i915_gem_pwrite *args,
634                          struct drm_file *file_priv)
635 {
636         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
637         drm_i915_private_t *dev_priv = dev->dev_private;
638         ssize_t remain;
639         loff_t gtt_page_base, offset;
640         loff_t first_data_page, last_data_page, num_pages;
641         loff_t pinned_pages, i;
642         struct page **user_pages;
643         struct mm_struct *mm = current->mm;
644         int gtt_page_offset, data_page_offset, data_page_index, page_length;
645         int ret;
646         uint64_t data_ptr = args->data_ptr;
647
648         remain = args->size;
649
650         /* Pin the user pages containing the data.  We can't fault while
651          * holding the struct mutex, and all of the pwrite implementations
652          * want to hold it while dereferencing the user data.
653          */
654         first_data_page = data_ptr / PAGE_SIZE;
655         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
656         num_pages = last_data_page - first_data_page + 1;
657
658         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
659         if (user_pages == NULL)
660                 return -ENOMEM;
661
662         down_read(&mm->mmap_sem);
663         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
664                                       num_pages, 0, 0, user_pages, NULL);
665         up_read(&mm->mmap_sem);
666         if (pinned_pages < num_pages) {
667                 ret = -EFAULT;
668                 goto out_unpin_pages;
669         }
670
671         mutex_lock(&dev->struct_mutex);
672         ret = i915_gem_object_pin(obj, 0);
673         if (ret)
674                 goto out_unlock;
675
676         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
677         if (ret)
678                 goto out_unpin_object;
679
680         obj_priv = to_intel_bo(obj);
681         offset = obj_priv->gtt_offset + args->offset;
682
683         while (remain > 0) {
684                 /* Operation in this page
685                  *
686                  * gtt_page_base = page offset within aperture
687                  * gtt_page_offset = offset within page in aperture
688                  * data_page_index = page number in get_user_pages return
689                  * data_page_offset = offset with data_page_index page.
690                  * page_length = bytes to copy for this page
691                  */
692                 gtt_page_base = offset & PAGE_MASK;
693                 gtt_page_offset = offset & ~PAGE_MASK;
694                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
695                 data_page_offset = data_ptr & ~PAGE_MASK;
696
697                 page_length = remain;
698                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
699                         page_length = PAGE_SIZE - gtt_page_offset;
700                 if ((data_page_offset + page_length) > PAGE_SIZE)
701                         page_length = PAGE_SIZE - data_page_offset;
702
703                 slow_kernel_write(dev_priv->mm.gtt_mapping,
704                                   gtt_page_base, gtt_page_offset,
705                                   user_pages[data_page_index],
706                                   data_page_offset,
707                                   page_length);
708
709                 remain -= page_length;
710                 offset += page_length;
711                 data_ptr += page_length;
712         }
713
714 out_unpin_object:
715         i915_gem_object_unpin(obj);
716 out_unlock:
717         mutex_unlock(&dev->struct_mutex);
718 out_unpin_pages:
719         for (i = 0; i < pinned_pages; i++)
720                 page_cache_release(user_pages[i]);
721         drm_free_large(user_pages);
722
723         return ret;
724 }
725
726 /**
727  * This is the fast shmem pwrite path, which attempts to directly
728  * copy_from_user into the kmapped pages backing the object.
729  */
730 static int
731 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
732                            struct drm_i915_gem_pwrite *args,
733                            struct drm_file *file_priv)
734 {
735         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
736         ssize_t remain;
737         loff_t offset, page_base;
738         char __user *user_data;
739         int page_offset, page_length;
740         int ret;
741
742         user_data = (char __user *) (uintptr_t) args->data_ptr;
743         remain = args->size;
744
745         mutex_lock(&dev->struct_mutex);
746
747         ret = i915_gem_object_get_pages(obj, 0);
748         if (ret != 0)
749                 goto fail_unlock;
750
751         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
752         if (ret != 0)
753                 goto fail_put_pages;
754
755         obj_priv = to_intel_bo(obj);
756         offset = args->offset;
757         obj_priv->dirty = 1;
758
759         while (remain > 0) {
760                 /* Operation in this page
761                  *
762                  * page_base = page offset within aperture
763                  * page_offset = offset within page
764                  * page_length = bytes to copy for this page
765                  */
766                 page_base = (offset & ~(PAGE_SIZE-1));
767                 page_offset = offset & (PAGE_SIZE-1);
768                 page_length = remain;
769                 if ((page_offset + remain) > PAGE_SIZE)
770                         page_length = PAGE_SIZE - page_offset;
771
772                 ret = fast_shmem_write(obj_priv->pages,
773                                        page_base, page_offset,
774                                        user_data, page_length);
775                 if (ret)
776                         goto fail_put_pages;
777
778                 remain -= page_length;
779                 user_data += page_length;
780                 offset += page_length;
781         }
782
783 fail_put_pages:
784         i915_gem_object_put_pages(obj);
785 fail_unlock:
786         mutex_unlock(&dev->struct_mutex);
787
788         return ret;
789 }
790
791 /**
792  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
793  * the memory and maps it using kmap_atomic for copying.
794  *
795  * This avoids taking mmap_sem for faulting on the user's address while the
796  * struct_mutex is held.
797  */
798 static int
799 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
800                            struct drm_i915_gem_pwrite *args,
801                            struct drm_file *file_priv)
802 {
803         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
804         struct mm_struct *mm = current->mm;
805         struct page **user_pages;
806         ssize_t remain;
807         loff_t offset, pinned_pages, i;
808         loff_t first_data_page, last_data_page, num_pages;
809         int shmem_page_index, shmem_page_offset;
810         int data_page_index,  data_page_offset;
811         int page_length;
812         int ret;
813         uint64_t data_ptr = args->data_ptr;
814         int do_bit17_swizzling;
815
816         remain = args->size;
817
818         /* Pin the user pages containing the data.  We can't fault while
819          * holding the struct mutex, and all of the pwrite implementations
820          * want to hold it while dereferencing the user data.
821          */
822         first_data_page = data_ptr / PAGE_SIZE;
823         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
824         num_pages = last_data_page - first_data_page + 1;
825
826         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
827         if (user_pages == NULL)
828                 return -ENOMEM;
829
830         down_read(&mm->mmap_sem);
831         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
832                                       num_pages, 0, 0, user_pages, NULL);
833         up_read(&mm->mmap_sem);
834         if (pinned_pages < num_pages) {
835                 ret = -EFAULT;
836                 goto fail_put_user_pages;
837         }
838
839         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840
841         mutex_lock(&dev->struct_mutex);
842
843         ret = i915_gem_object_get_pages_or_evict(obj);
844         if (ret)
845                 goto fail_unlock;
846
847         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
848         if (ret != 0)
849                 goto fail_put_pages;
850
851         obj_priv = to_intel_bo(obj);
852         offset = args->offset;
853         obj_priv->dirty = 1;
854
855         while (remain > 0) {
856                 /* Operation in this page
857                  *
858                  * shmem_page_index = page number within shmem file
859                  * shmem_page_offset = offset within page in shmem file
860                  * data_page_index = page number in get_user_pages return
861                  * data_page_offset = offset with data_page_index page.
862                  * page_length = bytes to copy for this page
863                  */
864                 shmem_page_index = offset / PAGE_SIZE;
865                 shmem_page_offset = offset & ~PAGE_MASK;
866                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
867                 data_page_offset = data_ptr & ~PAGE_MASK;
868
869                 page_length = remain;
870                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
871                         page_length = PAGE_SIZE - shmem_page_offset;
872                 if ((data_page_offset + page_length) > PAGE_SIZE)
873                         page_length = PAGE_SIZE - data_page_offset;
874
875                 if (do_bit17_swizzling) {
876                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
877                                               shmem_page_offset,
878                                               user_pages[data_page_index],
879                                               data_page_offset,
880                                               page_length,
881                                               0);
882                 } else {
883                         slow_shmem_copy(obj_priv->pages[shmem_page_index],
884                                         shmem_page_offset,
885                                         user_pages[data_page_index],
886                                         data_page_offset,
887                                         page_length);
888                 }
889
890                 remain -= page_length;
891                 data_ptr += page_length;
892                 offset += page_length;
893         }
894
895 fail_put_pages:
896         i915_gem_object_put_pages(obj);
897 fail_unlock:
898         mutex_unlock(&dev->struct_mutex);
899 fail_put_user_pages:
900         for (i = 0; i < pinned_pages; i++)
901                 page_cache_release(user_pages[i]);
902         drm_free_large(user_pages);
903
904         return ret;
905 }
906
907 /**
908  * Writes data to the object referenced by handle.
909  *
910  * On error, the contents of the buffer that were to be modified are undefined.
911  */
912 int
913 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
914                       struct drm_file *file_priv)
915 {
916         struct drm_i915_gem_pwrite *args = data;
917         struct drm_gem_object *obj;
918         struct drm_i915_gem_object *obj_priv;
919         int ret = 0;
920
921         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
922         if (obj == NULL)
923                 return -EBADF;
924         obj_priv = to_intel_bo(obj);
925
926         /* Bounds check destination.
927          *
928          * XXX: This could use review for overflow issues...
929          */
930         if (args->offset > obj->size || args->size > obj->size ||
931             args->offset + args->size > obj->size) {
932                 drm_gem_object_unreference_unlocked(obj);
933                 return -EINVAL;
934         }
935
936         /* We can only do the GTT pwrite on untiled buffers, as otherwise
937          * it would end up going through the fenced access, and we'll get
938          * different detiling behavior between reading and writing.
939          * pread/pwrite currently are reading and writing from the CPU
940          * perspective, requiring manual detiling by the client.
941          */
942         if (obj_priv->phys_obj)
943                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
944         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
945                  dev->gtt_total != 0 &&
946                  obj->write_domain != I915_GEM_DOMAIN_CPU) {
947                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
948                 if (ret == -EFAULT) {
949                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
950                                                        file_priv);
951                 }
952         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
953                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
954         } else {
955                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
956                 if (ret == -EFAULT) {
957                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
958                                                          file_priv);
959                 }
960         }
961
962 #if WATCH_PWRITE
963         if (ret)
964                 DRM_INFO("pwrite failed %d\n", ret);
965 #endif
966
967         drm_gem_object_unreference_unlocked(obj);
968
969         return ret;
970 }
971
972 /**
973  * Called when user space prepares to use an object with the CPU, either
974  * through the mmap ioctl's mapping or a GTT mapping.
975  */
976 int
977 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
978                           struct drm_file *file_priv)
979 {
980         struct drm_i915_private *dev_priv = dev->dev_private;
981         struct drm_i915_gem_set_domain *args = data;
982         struct drm_gem_object *obj;
983         struct drm_i915_gem_object *obj_priv;
984         uint32_t read_domains = args->read_domains;
985         uint32_t write_domain = args->write_domain;
986         int ret;
987
988         if (!(dev->driver->driver_features & DRIVER_GEM))
989                 return -ENODEV;
990
991         /* Only handle setting domains to types used by the CPU. */
992         if (write_domain & I915_GEM_GPU_DOMAINS)
993                 return -EINVAL;
994
995         if (read_domains & I915_GEM_GPU_DOMAINS)
996                 return -EINVAL;
997
998         /* Having something in the write domain implies it's in the read
999          * domain, and only that read domain.  Enforce that in the request.
1000          */
1001         if (write_domain != 0 && read_domains != write_domain)
1002                 return -EINVAL;
1003
1004         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005         if (obj == NULL)
1006                 return -EBADF;
1007         obj_priv = to_intel_bo(obj);
1008
1009         mutex_lock(&dev->struct_mutex);
1010
1011         intel_mark_busy(dev, obj);
1012
1013 #if WATCH_BUF
1014         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1015                  obj, obj->size, read_domains, write_domain);
1016 #endif
1017         if (read_domains & I915_GEM_DOMAIN_GTT) {
1018                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1019
1020                 /* Update the LRU on the fence for the CPU access that's
1021                  * about to occur.
1022                  */
1023                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1024                         struct drm_i915_fence_reg *reg =
1025                                 &dev_priv->fence_regs[obj_priv->fence_reg];
1026                         list_move_tail(&reg->lru_list,
1027                                        &dev_priv->mm.fence_list);
1028                 }
1029
1030                 /* Silently promote "you're not bound, there was nothing to do"
1031                  * to success, since the client was just asking us to
1032                  * make sure everything was done.
1033                  */
1034                 if (ret == -EINVAL)
1035                         ret = 0;
1036         } else {
1037                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1038         }
1039
1040         drm_gem_object_unreference(obj);
1041         mutex_unlock(&dev->struct_mutex);
1042         return ret;
1043 }
1044
1045 /**
1046  * Called when user space has done writes to this buffer
1047  */
1048 int
1049 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1050                       struct drm_file *file_priv)
1051 {
1052         struct drm_i915_gem_sw_finish *args = data;
1053         struct drm_gem_object *obj;
1054         struct drm_i915_gem_object *obj_priv;
1055         int ret = 0;
1056
1057         if (!(dev->driver->driver_features & DRIVER_GEM))
1058                 return -ENODEV;
1059
1060         mutex_lock(&dev->struct_mutex);
1061         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1062         if (obj == NULL) {
1063                 mutex_unlock(&dev->struct_mutex);
1064                 return -EBADF;
1065         }
1066
1067 #if WATCH_BUF
1068         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1069                  __func__, args->handle, obj, obj->size);
1070 #endif
1071         obj_priv = to_intel_bo(obj);
1072
1073         /* Pinned buffers may be scanout, so flush the cache */
1074         if (obj_priv->pin_count)
1075                 i915_gem_object_flush_cpu_write_domain(obj);
1076
1077         drm_gem_object_unreference(obj);
1078         mutex_unlock(&dev->struct_mutex);
1079         return ret;
1080 }
1081
1082 /**
1083  * Maps the contents of an object, returning the address it is mapped
1084  * into.
1085  *
1086  * While the mapping holds a reference on the contents of the object, it doesn't
1087  * imply a ref on the object itself.
1088  */
1089 int
1090 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1091                    struct drm_file *file_priv)
1092 {
1093         struct drm_i915_gem_mmap *args = data;
1094         struct drm_gem_object *obj;
1095         loff_t offset;
1096         unsigned long addr;
1097
1098         if (!(dev->driver->driver_features & DRIVER_GEM))
1099                 return -ENODEV;
1100
1101         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1102         if (obj == NULL)
1103                 return -EBADF;
1104
1105         offset = args->offset;
1106
1107         down_write(&current->mm->mmap_sem);
1108         addr = do_mmap(obj->filp, 0, args->size,
1109                        PROT_READ | PROT_WRITE, MAP_SHARED,
1110                        args->offset);
1111         up_write(&current->mm->mmap_sem);
1112         drm_gem_object_unreference_unlocked(obj);
1113         if (IS_ERR((void *)addr))
1114                 return addr;
1115
1116         args->addr_ptr = (uint64_t) addr;
1117
1118         return 0;
1119 }
1120
1121 /**
1122  * i915_gem_fault - fault a page into the GTT
1123  * vma: VMA in question
1124  * vmf: fault info
1125  *
1126  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1127  * from userspace.  The fault handler takes care of binding the object to
1128  * the GTT (if needed), allocating and programming a fence register (again,
1129  * only if needed based on whether the old reg is still valid or the object
1130  * is tiled) and inserting a new PTE into the faulting process.
1131  *
1132  * Note that the faulting process may involve evicting existing objects
1133  * from the GTT and/or fence registers to make room.  So performance may
1134  * suffer if the GTT working set is large or there are few fence registers
1135  * left.
1136  */
1137 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1138 {
1139         struct drm_gem_object *obj = vma->vm_private_data;
1140         struct drm_device *dev = obj->dev;
1141         struct drm_i915_private *dev_priv = dev->dev_private;
1142         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1143         pgoff_t page_offset;
1144         unsigned long pfn;
1145         int ret = 0;
1146         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1147
1148         /* We don't use vmf->pgoff since that has the fake offset */
1149         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1150                 PAGE_SHIFT;
1151
1152         /* Now bind it into the GTT if needed */
1153         mutex_lock(&dev->struct_mutex);
1154         if (!obj_priv->gtt_space) {
1155                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1156                 if (ret)
1157                         goto unlock;
1158
1159                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1160
1161                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1162                 if (ret)
1163                         goto unlock;
1164         }
1165
1166         /* Need a new fence register? */
1167         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1168                 ret = i915_gem_object_get_fence_reg(obj);
1169                 if (ret)
1170                         goto unlock;
1171         }
1172
1173         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1174                 page_offset;
1175
1176         /* Finally, remap it using the new GTT offset */
1177         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1178 unlock:
1179         mutex_unlock(&dev->struct_mutex);
1180
1181         switch (ret) {
1182         case 0:
1183         case -ERESTARTSYS:
1184                 return VM_FAULT_NOPAGE;
1185         case -ENOMEM:
1186         case -EAGAIN:
1187                 return VM_FAULT_OOM;
1188         default:
1189                 return VM_FAULT_SIGBUS;
1190         }
1191 }
1192
1193 /**
1194  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1195  * @obj: obj in question
1196  *
1197  * GEM memory mapping works by handing back to userspace a fake mmap offset
1198  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1199  * up the object based on the offset and sets up the various memory mapping
1200  * structures.
1201  *
1202  * This routine allocates and attaches a fake offset for @obj.
1203  */
1204 static int
1205 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1206 {
1207         struct drm_device *dev = obj->dev;
1208         struct drm_gem_mm *mm = dev->mm_private;
1209         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1210         struct drm_map_list *list;
1211         struct drm_local_map *map;
1212         int ret = 0;
1213
1214         /* Set the object up for mmap'ing */
1215         list = &obj->map_list;
1216         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1217         if (!list->map)
1218                 return -ENOMEM;
1219
1220         map = list->map;
1221         map->type = _DRM_GEM;
1222         map->size = obj->size;
1223         map->handle = obj;
1224
1225         /* Get a DRM GEM mmap offset allocated... */
1226         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1227                                                     obj->size / PAGE_SIZE, 0, 0);
1228         if (!list->file_offset_node) {
1229                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1230                 ret = -ENOMEM;
1231                 goto out_free_list;
1232         }
1233
1234         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1235                                                   obj->size / PAGE_SIZE, 0);
1236         if (!list->file_offset_node) {
1237                 ret = -ENOMEM;
1238                 goto out_free_list;
1239         }
1240
1241         list->hash.key = list->file_offset_node->start;
1242         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1243                 DRM_ERROR("failed to add to map hash\n");
1244                 ret = -ENOMEM;
1245                 goto out_free_mm;
1246         }
1247
1248         /* By now we should be all set, any drm_mmap request on the offset
1249          * below will get to our mmap & fault handler */
1250         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1251
1252         return 0;
1253
1254 out_free_mm:
1255         drm_mm_put_block(list->file_offset_node);
1256 out_free_list:
1257         kfree(list->map);
1258
1259         return ret;
1260 }
1261
1262 /**
1263  * i915_gem_release_mmap - remove physical page mappings
1264  * @obj: obj in question
1265  *
1266  * Preserve the reservation of the mmapping with the DRM core code, but
1267  * relinquish ownership of the pages back to the system.
1268  *
1269  * It is vital that we remove the page mapping if we have mapped a tiled
1270  * object through the GTT and then lose the fence register due to
1271  * resource pressure. Similarly if the object has been moved out of the
1272  * aperture, than pages mapped into userspace must be revoked. Removing the
1273  * mapping will then trigger a page fault on the next user access, allowing
1274  * fixup by i915_gem_fault().
1275  */
1276 void
1277 i915_gem_release_mmap(struct drm_gem_object *obj)
1278 {
1279         struct drm_device *dev = obj->dev;
1280         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1281
1282         if (dev->dev_mapping)
1283                 unmap_mapping_range(dev->dev_mapping,
1284                                     obj_priv->mmap_offset, obj->size, 1);
1285 }
1286
1287 static void
1288 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1289 {
1290         struct drm_device *dev = obj->dev;
1291         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1292         struct drm_gem_mm *mm = dev->mm_private;
1293         struct drm_map_list *list;
1294
1295         list = &obj->map_list;
1296         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1297
1298         if (list->file_offset_node) {
1299                 drm_mm_put_block(list->file_offset_node);
1300                 list->file_offset_node = NULL;
1301         }
1302
1303         if (list->map) {
1304                 kfree(list->map);
1305                 list->map = NULL;
1306         }
1307
1308         obj_priv->mmap_offset = 0;
1309 }
1310
1311 /**
1312  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1313  * @obj: object to check
1314  *
1315  * Return the required GTT alignment for an object, taking into account
1316  * potential fence register mapping if needed.
1317  */
1318 static uint32_t
1319 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1320 {
1321         struct drm_device *dev = obj->dev;
1322         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1323         int start, i;
1324
1325         /*
1326          * Minimum alignment is 4k (GTT page size), but might be greater
1327          * if a fence register is needed for the object.
1328          */
1329         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1330                 return 4096;
1331
1332         /*
1333          * Previous chips need to be aligned to the size of the smallest
1334          * fence register that can contain the object.
1335          */
1336         if (IS_I9XX(dev))
1337                 start = 1024*1024;
1338         else
1339                 start = 512*1024;
1340
1341         for (i = start; i < obj->size; i <<= 1)
1342                 ;
1343
1344         return i;
1345 }
1346
1347 /**
1348  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1349  * @dev: DRM device
1350  * @data: GTT mapping ioctl data
1351  * @file_priv: GEM object info
1352  *
1353  * Simply returns the fake offset to userspace so it can mmap it.
1354  * The mmap call will end up in drm_gem_mmap(), which will set things
1355  * up so we can get faults in the handler above.
1356  *
1357  * The fault handler will take care of binding the object into the GTT
1358  * (since it may have been evicted to make room for something), allocating
1359  * a fence register, and mapping the appropriate aperture address into
1360  * userspace.
1361  */
1362 int
1363 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1364                         struct drm_file *file_priv)
1365 {
1366         struct drm_i915_gem_mmap_gtt *args = data;
1367         struct drm_i915_private *dev_priv = dev->dev_private;
1368         struct drm_gem_object *obj;
1369         struct drm_i915_gem_object *obj_priv;
1370         int ret;
1371
1372         if (!(dev->driver->driver_features & DRIVER_GEM))
1373                 return -ENODEV;
1374
1375         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1376         if (obj == NULL)
1377                 return -EBADF;
1378
1379         mutex_lock(&dev->struct_mutex);
1380
1381         obj_priv = to_intel_bo(obj);
1382
1383         if (obj_priv->madv != I915_MADV_WILLNEED) {
1384                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1385                 drm_gem_object_unreference(obj);
1386                 mutex_unlock(&dev->struct_mutex);
1387                 return -EINVAL;
1388         }
1389
1390
1391         if (!obj_priv->mmap_offset) {
1392                 ret = i915_gem_create_mmap_offset(obj);
1393                 if (ret) {
1394                         drm_gem_object_unreference(obj);
1395                         mutex_unlock(&dev->struct_mutex);
1396                         return ret;
1397                 }
1398         }
1399
1400         args->offset = obj_priv->mmap_offset;
1401
1402         /*
1403          * Pull it into the GTT so that we have a page list (makes the
1404          * initial fault faster and any subsequent flushing possible).
1405          */
1406         if (!obj_priv->agp_mem) {
1407                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1408                 if (ret) {
1409                         drm_gem_object_unreference(obj);
1410                         mutex_unlock(&dev->struct_mutex);
1411                         return ret;
1412                 }
1413                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1414         }
1415
1416         drm_gem_object_unreference(obj);
1417         mutex_unlock(&dev->struct_mutex);
1418
1419         return 0;
1420 }
1421
1422 void
1423 i915_gem_object_put_pages(struct drm_gem_object *obj)
1424 {
1425         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426         int page_count = obj->size / PAGE_SIZE;
1427         int i;
1428
1429         BUG_ON(obj_priv->pages_refcount == 0);
1430         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1431
1432         if (--obj_priv->pages_refcount != 0)
1433                 return;
1434
1435         if (obj_priv->tiling_mode != I915_TILING_NONE)
1436                 i915_gem_object_save_bit_17_swizzle(obj);
1437
1438         if (obj_priv->madv == I915_MADV_DONTNEED)
1439                 obj_priv->dirty = 0;
1440
1441         for (i = 0; i < page_count; i++) {
1442                 if (obj_priv->dirty)
1443                         set_page_dirty(obj_priv->pages[i]);
1444
1445                 if (obj_priv->madv == I915_MADV_WILLNEED)
1446                         mark_page_accessed(obj_priv->pages[i]);
1447
1448                 page_cache_release(obj_priv->pages[i]);
1449         }
1450         obj_priv->dirty = 0;
1451
1452         drm_free_large(obj_priv->pages);
1453         obj_priv->pages = NULL;
1454 }
1455
1456 static void
1457 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1458                                struct intel_ring_buffer *ring)
1459 {
1460         struct drm_device *dev = obj->dev;
1461         drm_i915_private_t *dev_priv = dev->dev_private;
1462         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1463         BUG_ON(ring == NULL);
1464         obj_priv->ring = ring;
1465
1466         /* Add a reference if we're newly entering the active list. */
1467         if (!obj_priv->active) {
1468                 drm_gem_object_reference(obj);
1469                 obj_priv->active = 1;
1470         }
1471         /* Move from whatever list we were on to the tail of execution. */
1472         spin_lock(&dev_priv->mm.active_list_lock);
1473         list_move_tail(&obj_priv->list, &ring->active_list);
1474         spin_unlock(&dev_priv->mm.active_list_lock);
1475         obj_priv->last_rendering_seqno = seqno;
1476 }
1477
1478 static void
1479 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1480 {
1481         struct drm_device *dev = obj->dev;
1482         drm_i915_private_t *dev_priv = dev->dev_private;
1483         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1484
1485         BUG_ON(!obj_priv->active);
1486         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1487         obj_priv->last_rendering_seqno = 0;
1488 }
1489
1490 /* Immediately discard the backing storage */
1491 static void
1492 i915_gem_object_truncate(struct drm_gem_object *obj)
1493 {
1494         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1495         struct inode *inode;
1496
1497         inode = obj->filp->f_path.dentry->d_inode;
1498         if (inode->i_op->truncate)
1499                 inode->i_op->truncate (inode);
1500
1501         obj_priv->madv = __I915_MADV_PURGED;
1502 }
1503
1504 static inline int
1505 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1506 {
1507         return obj_priv->madv == I915_MADV_DONTNEED;
1508 }
1509
1510 static void
1511 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1512 {
1513         struct drm_device *dev = obj->dev;
1514         drm_i915_private_t *dev_priv = dev->dev_private;
1515         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1516
1517         i915_verify_inactive(dev, __FILE__, __LINE__);
1518         if (obj_priv->pin_count != 0)
1519                 list_del_init(&obj_priv->list);
1520         else
1521                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1522
1523         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1524
1525         obj_priv->last_rendering_seqno = 0;
1526         obj_priv->ring = NULL;
1527         if (obj_priv->active) {
1528                 obj_priv->active = 0;
1529                 drm_gem_object_unreference(obj);
1530         }
1531         i915_verify_inactive(dev, __FILE__, __LINE__);
1532 }
1533
1534 static void
1535 i915_gem_process_flushing_list(struct drm_device *dev,
1536                                uint32_t flush_domains, uint32_t seqno,
1537                                struct intel_ring_buffer *ring)
1538 {
1539         drm_i915_private_t *dev_priv = dev->dev_private;
1540         struct drm_i915_gem_object *obj_priv, *next;
1541
1542         list_for_each_entry_safe(obj_priv, next,
1543                                  &dev_priv->mm.gpu_write_list,
1544                                  gpu_write_list) {
1545                 struct drm_gem_object *obj = &obj_priv->base;
1546
1547                 if ((obj->write_domain & flush_domains) ==
1548                     obj->write_domain &&
1549                     obj_priv->ring->ring_flag == ring->ring_flag) {
1550                         uint32_t old_write_domain = obj->write_domain;
1551
1552                         obj->write_domain = 0;
1553                         list_del_init(&obj_priv->gpu_write_list);
1554                         i915_gem_object_move_to_active(obj, seqno, ring);
1555
1556                         /* update the fence lru list */
1557                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1558                                 struct drm_i915_fence_reg *reg =
1559                                         &dev_priv->fence_regs[obj_priv->fence_reg];
1560                                 list_move_tail(&reg->lru_list,
1561                                                 &dev_priv->mm.fence_list);
1562                         }
1563
1564                         trace_i915_gem_object_change_domain(obj,
1565                                                             obj->read_domains,
1566                                                             old_write_domain);
1567                 }
1568         }
1569 }
1570
1571 uint32_t
1572 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1573                  uint32_t flush_domains, struct intel_ring_buffer *ring)
1574 {
1575         drm_i915_private_t *dev_priv = dev->dev_private;
1576         struct drm_i915_file_private *i915_file_priv = NULL;
1577         struct drm_i915_gem_request *request;
1578         uint32_t seqno;
1579         int was_empty;
1580
1581         if (file_priv != NULL)
1582                 i915_file_priv = file_priv->driver_priv;
1583
1584         request = kzalloc(sizeof(*request), GFP_KERNEL);
1585         if (request == NULL)
1586                 return 0;
1587
1588         seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1589
1590         request->seqno = seqno;
1591         request->ring = ring;
1592         request->emitted_jiffies = jiffies;
1593         was_empty = list_empty(&ring->request_list);
1594         list_add_tail(&request->list, &ring->request_list);
1595
1596         if (i915_file_priv) {
1597                 list_add_tail(&request->client_list,
1598                               &i915_file_priv->mm.request_list);
1599         } else {
1600                 INIT_LIST_HEAD(&request->client_list);
1601         }
1602
1603         /* Associate any objects on the flushing list matching the write
1604          * domain we're flushing with our flush.
1605          */
1606         if (flush_domains != 0) 
1607                 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1608
1609         if (!dev_priv->mm.suspended) {
1610                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1611                 if (was_empty)
1612                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1613         }
1614         return seqno;
1615 }
1616
1617 /**
1618  * Command execution barrier
1619  *
1620  * Ensures that all commands in the ring are finished
1621  * before signalling the CPU
1622  */
1623 static uint32_t
1624 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1625 {
1626         uint32_t flush_domains = 0;
1627
1628         /* The sampler always gets flushed on i965 (sigh) */
1629         if (IS_I965G(dev))
1630                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1631
1632         ring->flush(dev, ring,
1633                         I915_GEM_DOMAIN_COMMAND, flush_domains);
1634         return flush_domains;
1635 }
1636
1637 /**
1638  * Moves buffers associated only with the given active seqno from the active
1639  * to inactive list, potentially freeing them.
1640  */
1641 static void
1642 i915_gem_retire_request(struct drm_device *dev,
1643                         struct drm_i915_gem_request *request)
1644 {
1645         drm_i915_private_t *dev_priv = dev->dev_private;
1646
1647         trace_i915_gem_request_retire(dev, request->seqno);
1648
1649         /* Move any buffers on the active list that are no longer referenced
1650          * by the ringbuffer to the flushing/inactive lists as appropriate.
1651          */
1652         spin_lock(&dev_priv->mm.active_list_lock);
1653         while (!list_empty(&request->ring->active_list)) {
1654                 struct drm_gem_object *obj;
1655                 struct drm_i915_gem_object *obj_priv;
1656
1657                 obj_priv = list_first_entry(&request->ring->active_list,
1658                                             struct drm_i915_gem_object,
1659                                             list);
1660                 obj = &obj_priv->base;
1661
1662                 /* If the seqno being retired doesn't match the oldest in the
1663                  * list, then the oldest in the list must still be newer than
1664                  * this seqno.
1665                  */
1666                 if (obj_priv->last_rendering_seqno != request->seqno)
1667                         goto out;
1668
1669 #if WATCH_LRU
1670                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1671                          __func__, request->seqno, obj);
1672 #endif
1673
1674                 if (obj->write_domain != 0)
1675                         i915_gem_object_move_to_flushing(obj);
1676                 else {
1677                         /* Take a reference on the object so it won't be
1678                          * freed while the spinlock is held.  The list
1679                          * protection for this spinlock is safe when breaking
1680                          * the lock like this since the next thing we do
1681                          * is just get the head of the list again.
1682                          */
1683                         drm_gem_object_reference(obj);
1684                         i915_gem_object_move_to_inactive(obj);
1685                         spin_unlock(&dev_priv->mm.active_list_lock);
1686                         drm_gem_object_unreference(obj);
1687                         spin_lock(&dev_priv->mm.active_list_lock);
1688                 }
1689         }
1690 out:
1691         spin_unlock(&dev_priv->mm.active_list_lock);
1692 }
1693
1694 /**
1695  * Returns true if seq1 is later than seq2.
1696  */
1697 bool
1698 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1699 {
1700         return (int32_t)(seq1 - seq2) >= 0;
1701 }
1702
1703 uint32_t
1704 i915_get_gem_seqno(struct drm_device *dev,
1705                    struct intel_ring_buffer *ring)
1706 {
1707         return ring->get_gem_seqno(dev, ring);
1708 }
1709
1710 /**
1711  * This function clears the request list as sequence numbers are passed.
1712  */
1713 static void
1714 i915_gem_retire_requests_ring(struct drm_device *dev,
1715                               struct intel_ring_buffer *ring)
1716 {
1717         drm_i915_private_t *dev_priv = dev->dev_private;
1718         uint32_t seqno;
1719
1720         if (!ring->status_page.page_addr
1721                         || list_empty(&ring->request_list))
1722                 return;
1723
1724         seqno = i915_get_gem_seqno(dev, ring);
1725
1726         while (!list_empty(&ring->request_list)) {
1727                 struct drm_i915_gem_request *request;
1728                 uint32_t retiring_seqno;
1729
1730                 request = list_first_entry(&ring->request_list,
1731                                            struct drm_i915_gem_request,
1732                                            list);
1733                 retiring_seqno = request->seqno;
1734
1735                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1736                     atomic_read(&dev_priv->mm.wedged)) {
1737                         i915_gem_retire_request(dev, request);
1738
1739                         list_del(&request->list);
1740                         list_del(&request->client_list);
1741                         kfree(request);
1742                 } else
1743                         break;
1744         }
1745
1746         if (unlikely (dev_priv->trace_irq_seqno &&
1747                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1748
1749                 ring->user_irq_put(dev, ring);
1750                 dev_priv->trace_irq_seqno = 0;
1751         }
1752 }
1753
1754 void
1755 i915_gem_retire_requests(struct drm_device *dev)
1756 {
1757         drm_i915_private_t *dev_priv = dev->dev_private;
1758
1759         if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1760             struct drm_i915_gem_object *obj_priv, *tmp;
1761
1762             /* We must be careful that during unbind() we do not
1763              * accidentally infinitely recurse into retire requests.
1764              * Currently:
1765              *   retire -> free -> unbind -> wait -> retire_ring
1766              */
1767             list_for_each_entry_safe(obj_priv, tmp,
1768                                      &dev_priv->mm.deferred_free_list,
1769                                      list)
1770                     i915_gem_free_object_tail(&obj_priv->base);
1771         }
1772
1773         i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1774         if (HAS_BSD(dev))
1775                 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1776 }
1777
1778 void
1779 i915_gem_retire_work_handler(struct work_struct *work)
1780 {
1781         drm_i915_private_t *dev_priv;
1782         struct drm_device *dev;
1783
1784         dev_priv = container_of(work, drm_i915_private_t,
1785                                 mm.retire_work.work);
1786         dev = dev_priv->dev;
1787
1788         mutex_lock(&dev->struct_mutex);
1789         i915_gem_retire_requests(dev);
1790
1791         if (!dev_priv->mm.suspended &&
1792                 (!list_empty(&dev_priv->render_ring.request_list) ||
1793                         (HAS_BSD(dev) &&
1794                          !list_empty(&dev_priv->bsd_ring.request_list))))
1795                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1796         mutex_unlock(&dev->struct_mutex);
1797 }
1798
1799 int
1800 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1801                 int interruptible, struct intel_ring_buffer *ring)
1802 {
1803         drm_i915_private_t *dev_priv = dev->dev_private;
1804         u32 ier;
1805         int ret = 0;
1806
1807         BUG_ON(seqno == 0);
1808
1809         if (atomic_read(&dev_priv->mm.wedged))
1810                 return -EIO;
1811
1812         if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1813                 if (HAS_PCH_SPLIT(dev))
1814                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1815                 else
1816                         ier = I915_READ(IER);
1817                 if (!ier) {
1818                         DRM_ERROR("something (likely vbetool) disabled "
1819                                   "interrupts, re-enabling\n");
1820                         i915_driver_irq_preinstall(dev);
1821                         i915_driver_irq_postinstall(dev);
1822                 }
1823
1824                 trace_i915_gem_request_wait_begin(dev, seqno);
1825
1826                 ring->waiting_gem_seqno = seqno;
1827                 ring->user_irq_get(dev, ring);
1828                 if (interruptible)
1829                         ret = wait_event_interruptible(ring->irq_queue,
1830                                 i915_seqno_passed(
1831                                         ring->get_gem_seqno(dev, ring), seqno)
1832                                 || atomic_read(&dev_priv->mm.wedged));
1833                 else
1834                         wait_event(ring->irq_queue,
1835                                 i915_seqno_passed(
1836                                         ring->get_gem_seqno(dev, ring), seqno)
1837                                 || atomic_read(&dev_priv->mm.wedged));
1838
1839                 ring->user_irq_put(dev, ring);
1840                 ring->waiting_gem_seqno = 0;
1841
1842                 trace_i915_gem_request_wait_end(dev, seqno);
1843         }
1844         if (atomic_read(&dev_priv->mm.wedged))
1845                 ret = -EIO;
1846
1847         if (ret && ret != -ERESTARTSYS)
1848                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1849                           __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1850
1851         /* Directly dispatch request retiring.  While we have the work queue
1852          * to handle this, the waiter on a request often wants an associated
1853          * buffer to have made it to the inactive list, and we would need
1854          * a separate wait queue to handle that.
1855          */
1856         if (ret == 0)
1857                 i915_gem_retire_requests_ring(dev, ring);
1858
1859         return ret;
1860 }
1861
1862 /**
1863  * Waits for a sequence number to be signaled, and cleans up the
1864  * request and object lists appropriately for that event.
1865  */
1866 static int
1867 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1868                 struct intel_ring_buffer *ring)
1869 {
1870         return i915_do_wait_request(dev, seqno, 1, ring);
1871 }
1872
1873 static void
1874 i915_gem_flush(struct drm_device *dev,
1875                uint32_t invalidate_domains,
1876                uint32_t flush_domains)
1877 {
1878         drm_i915_private_t *dev_priv = dev->dev_private;
1879         if (flush_domains & I915_GEM_DOMAIN_CPU)
1880                 drm_agp_chipset_flush(dev);
1881         dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1882                         invalidate_domains,
1883                         flush_domains);
1884
1885         if (HAS_BSD(dev))
1886                 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1887                                 invalidate_domains,
1888                                 flush_domains);
1889 }
1890
1891 static void
1892 i915_gem_flush_ring(struct drm_device *dev,
1893                uint32_t invalidate_domains,
1894                uint32_t flush_domains,
1895                struct intel_ring_buffer *ring)
1896 {
1897         if (flush_domains & I915_GEM_DOMAIN_CPU)
1898                 drm_agp_chipset_flush(dev);
1899         ring->flush(dev, ring,
1900                         invalidate_domains,
1901                         flush_domains);
1902 }
1903
1904 /**
1905  * Ensures that all rendering to the object has completed and the object is
1906  * safe to unbind from the GTT or access from the CPU.
1907  */
1908 static int
1909 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1910 {
1911         struct drm_device *dev = obj->dev;
1912         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1913         int ret;
1914
1915         /* This function only exists to support waiting for existing rendering,
1916          * not for emitting required flushes.
1917          */
1918         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1919
1920         /* If there is rendering queued on the buffer being evicted, wait for
1921          * it.
1922          */
1923         if (obj_priv->active) {
1924 #if WATCH_BUF
1925                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1926                           __func__, obj, obj_priv->last_rendering_seqno);
1927 #endif
1928                 ret = i915_wait_request(dev,
1929                                 obj_priv->last_rendering_seqno, obj_priv->ring);
1930                 if (ret != 0)
1931                         return ret;
1932         }
1933
1934         return 0;
1935 }
1936
1937 /**
1938  * Unbinds an object from the GTT aperture.
1939  */
1940 int
1941 i915_gem_object_unbind(struct drm_gem_object *obj)
1942 {
1943         struct drm_device *dev = obj->dev;
1944         drm_i915_private_t *dev_priv = dev->dev_private;
1945         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1946         int ret = 0;
1947
1948 #if WATCH_BUF
1949         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1950         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1951 #endif
1952         if (obj_priv->gtt_space == NULL)
1953                 return 0;
1954
1955         if (obj_priv->pin_count != 0) {
1956                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1957                 return -EINVAL;
1958         }
1959
1960         /* blow away mappings if mapped through GTT */
1961         i915_gem_release_mmap(obj);
1962
1963         /* Move the object to the CPU domain to ensure that
1964          * any possible CPU writes while it's not in the GTT
1965          * are flushed when we go to remap it. This will
1966          * also ensure that all pending GPU writes are finished
1967          * before we unbind.
1968          */
1969         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1970         if (ret == -ERESTARTSYS)
1971                 return ret;
1972         /* Continue on if we fail due to EIO, the GPU is hung so we
1973          * should be safe and we need to cleanup or else we might
1974          * cause memory corruption through use-after-free.
1975          */
1976
1977         BUG_ON(obj_priv->active);
1978
1979         /* release the fence reg _after_ flushing */
1980         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1981                 i915_gem_clear_fence_reg(obj);
1982
1983         if (obj_priv->agp_mem != NULL) {
1984                 drm_unbind_agp(obj_priv->agp_mem);
1985                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1986                 obj_priv->agp_mem = NULL;
1987         }
1988
1989         i915_gem_object_put_pages(obj);
1990         BUG_ON(obj_priv->pages_refcount);
1991
1992         if (obj_priv->gtt_space) {
1993                 atomic_dec(&dev->gtt_count);
1994                 atomic_sub(obj->size, &dev->gtt_memory);
1995
1996                 drm_mm_put_block(obj_priv->gtt_space);
1997                 obj_priv->gtt_space = NULL;
1998         }
1999
2000         /* Remove ourselves from the LRU list if present. */
2001         spin_lock(&dev_priv->mm.active_list_lock);
2002         if (!list_empty(&obj_priv->list))
2003                 list_del_init(&obj_priv->list);
2004         spin_unlock(&dev_priv->mm.active_list_lock);
2005
2006         if (i915_gem_object_is_purgeable(obj_priv))
2007                 i915_gem_object_truncate(obj);
2008
2009         trace_i915_gem_object_unbind(obj);
2010
2011         return ret;
2012 }
2013
2014 static struct drm_gem_object *
2015 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2016 {
2017         drm_i915_private_t *dev_priv = dev->dev_private;
2018         struct drm_i915_gem_object *obj_priv;
2019         struct drm_gem_object *best = NULL;
2020         struct drm_gem_object *first = NULL;
2021
2022         /* Try to find the smallest clean object */
2023         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2024                 struct drm_gem_object *obj = &obj_priv->base;
2025                 if (obj->size >= min_size) {
2026                         if ((!obj_priv->dirty ||
2027                              i915_gem_object_is_purgeable(obj_priv)) &&
2028                             (!best || obj->size < best->size)) {
2029                                 best = obj;
2030                                 if (best->size == min_size)
2031                                         return best;
2032                         }
2033                         if (!first)
2034                             first = obj;
2035                 }
2036         }
2037
2038         return best ? best : first;
2039 }
2040
2041 static int
2042 i915_gpu_idle(struct drm_device *dev)
2043 {
2044         drm_i915_private_t *dev_priv = dev->dev_private;
2045         bool lists_empty;
2046         uint32_t seqno1, seqno2;
2047         int ret;
2048
2049         spin_lock(&dev_priv->mm.active_list_lock);
2050         lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2051                        list_empty(&dev_priv->render_ring.active_list) &&
2052                        (!HAS_BSD(dev) ||
2053                         list_empty(&dev_priv->bsd_ring.active_list)));
2054         spin_unlock(&dev_priv->mm.active_list_lock);
2055
2056         if (lists_empty)
2057                 return 0;
2058
2059         /* Flush everything onto the inactive list. */
2060         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2061         seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2062                         &dev_priv->render_ring);
2063         if (seqno1 == 0)
2064                 return -ENOMEM;
2065         ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2066
2067         if (HAS_BSD(dev)) {
2068                 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2069                                 &dev_priv->bsd_ring);
2070                 if (seqno2 == 0)
2071                         return -ENOMEM;
2072
2073                 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2074                 if (ret)
2075                         return ret;
2076         }
2077
2078
2079         return ret;
2080 }
2081
2082 static int
2083 i915_gem_evict_everything(struct drm_device *dev)
2084 {
2085         drm_i915_private_t *dev_priv = dev->dev_private;
2086         int ret;
2087         bool lists_empty;
2088
2089         spin_lock(&dev_priv->mm.active_list_lock);
2090         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2091                        list_empty(&dev_priv->mm.flushing_list) &&
2092                        list_empty(&dev_priv->render_ring.active_list) &&
2093                        (!HAS_BSD(dev)
2094                         || list_empty(&dev_priv->bsd_ring.active_list)));
2095         spin_unlock(&dev_priv->mm.active_list_lock);
2096
2097         if (lists_empty)
2098                 return -ENOSPC;
2099
2100         /* Flush everything (on to the inactive lists) and evict */
2101         ret = i915_gpu_idle(dev);
2102         if (ret)
2103                 return ret;
2104
2105         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2106
2107         ret = i915_gem_evict_from_inactive_list(dev);
2108         if (ret)
2109                 return ret;
2110
2111         spin_lock(&dev_priv->mm.active_list_lock);
2112         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2113                        list_empty(&dev_priv->mm.flushing_list) &&
2114                        list_empty(&dev_priv->render_ring.active_list) &&
2115                        (!HAS_BSD(dev)
2116                         || list_empty(&dev_priv->bsd_ring.active_list)));
2117         spin_unlock(&dev_priv->mm.active_list_lock);
2118         BUG_ON(!lists_empty);
2119
2120         return 0;
2121 }
2122
2123 static int
2124 i915_gem_evict_something(struct drm_device *dev, int min_size)
2125 {
2126         drm_i915_private_t *dev_priv = dev->dev_private;
2127         struct drm_gem_object *obj;
2128         int ret;
2129
2130         struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
2131         struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
2132         for (;;) {
2133                 i915_gem_retire_requests(dev);
2134
2135                 /* If there's an inactive buffer available now, grab it
2136                  * and be done.
2137                  */
2138                 obj = i915_gem_find_inactive_object(dev, min_size);
2139                 if (obj) {
2140                         struct drm_i915_gem_object *obj_priv;
2141
2142 #if WATCH_LRU
2143                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2144 #endif
2145                         obj_priv = to_intel_bo(obj);
2146                         BUG_ON(obj_priv->pin_count != 0);
2147                         BUG_ON(obj_priv->active);
2148
2149                         /* Wait on the rendering and unbind the buffer. */
2150                         return i915_gem_object_unbind(obj);
2151                 }
2152
2153                 /* If we didn't get anything, but the ring is still processing
2154                  * things, wait for the next to finish and hopefully leave us
2155                  * a buffer to evict.
2156                  */
2157                 if (!list_empty(&render_ring->request_list)) {
2158                         struct drm_i915_gem_request *request;
2159
2160                         request = list_first_entry(&render_ring->request_list,
2161                                                    struct drm_i915_gem_request,
2162                                                    list);
2163
2164                         ret = i915_wait_request(dev,
2165                                         request->seqno, request->ring);
2166                         if (ret)
2167                                 return ret;
2168
2169                         continue;
2170                 }
2171
2172                 if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
2173                         struct drm_i915_gem_request *request;
2174
2175                         request = list_first_entry(&bsd_ring->request_list,
2176                                                    struct drm_i915_gem_request,
2177                                                    list);
2178
2179                         ret = i915_wait_request(dev,
2180                                         request->seqno, request->ring);
2181                         if (ret)
2182                                 return ret;
2183
2184                         continue;
2185                 }
2186
2187                 /* If we didn't have anything on the request list but there
2188                  * are buffers awaiting a flush, emit one and try again.
2189                  * When we wait on it, those buffers waiting for that flush
2190                  * will get moved to inactive.
2191                  */
2192                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2193                         struct drm_i915_gem_object *obj_priv;
2194
2195                         /* Find an object that we can immediately reuse */
2196                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2197                                 obj = &obj_priv->base;
2198                                 if (obj->size >= min_size)
2199                                         break;
2200
2201                                 obj = NULL;
2202                         }
2203
2204                         if (obj != NULL) {
2205                                 uint32_t seqno;
2206
2207                                 i915_gem_flush_ring(dev,
2208                                                obj->write_domain,
2209                                                obj->write_domain,
2210                                                obj_priv->ring);
2211                                 seqno = i915_add_request(dev, NULL,
2212                                                 obj->write_domain,
2213                                                 obj_priv->ring);
2214                                 if (seqno == 0)
2215                                         return -ENOMEM;
2216                                 continue;
2217                         }
2218                 }
2219
2220                 /* If we didn't do any of the above, there's no single buffer
2221                  * large enough to swap out for the new one, so just evict
2222                  * everything and start again. (This should be rare.)
2223                  */
2224                 if (!list_empty (&dev_priv->mm.inactive_list))
2225                         return i915_gem_evict_from_inactive_list(dev);
2226                 else
2227                         return i915_gem_evict_everything(dev);
2228         }
2229 }
2230
2231 int
2232 i915_gem_object_get_pages(struct drm_gem_object *obj,
2233                           gfp_t gfpmask)
2234 {
2235         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2236         int page_count, i;
2237         struct address_space *mapping;
2238         struct inode *inode;
2239         struct page *page;
2240
2241         BUG_ON(obj_priv->pages_refcount
2242                         == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2243
2244         if (obj_priv->pages_refcount++ != 0)
2245                 return 0;
2246
2247         /* Get the list of pages out of our struct file.  They'll be pinned
2248          * at this point until we release them.
2249          */
2250         page_count = obj->size / PAGE_SIZE;
2251         BUG_ON(obj_priv->pages != NULL);
2252         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2253         if (obj_priv->pages == NULL) {
2254                 obj_priv->pages_refcount--;
2255                 return -ENOMEM;
2256         }
2257
2258         inode = obj->filp->f_path.dentry->d_inode;
2259         mapping = inode->i_mapping;
2260         for (i = 0; i < page_count; i++) {
2261                 page = read_cache_page_gfp(mapping, i,
2262                                            GFP_HIGHUSER |
2263                                            __GFP_COLD |
2264                                            __GFP_RECLAIMABLE |
2265                                            gfpmask);
2266                 if (IS_ERR(page))
2267                         goto err_pages;
2268
2269                 obj_priv->pages[i] = page;
2270         }
2271
2272         if (obj_priv->tiling_mode != I915_TILING_NONE)
2273                 i915_gem_object_do_bit_17_swizzle(obj);
2274
2275         return 0;
2276
2277 err_pages:
2278         while (i--)
2279                 page_cache_release(obj_priv->pages[i]);
2280
2281         drm_free_large(obj_priv->pages);
2282         obj_priv->pages = NULL;
2283         obj_priv->pages_refcount--;
2284         return PTR_ERR(page);
2285 }
2286
2287 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2288 {
2289         struct drm_gem_object *obj = reg->obj;
2290         struct drm_device *dev = obj->dev;
2291         drm_i915_private_t *dev_priv = dev->dev_private;
2292         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2293         int regnum = obj_priv->fence_reg;
2294         uint64_t val;
2295
2296         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2297                     0xfffff000) << 32;
2298         val |= obj_priv->gtt_offset & 0xfffff000;
2299         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2300                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2301
2302         if (obj_priv->tiling_mode == I915_TILING_Y)
2303                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2304         val |= I965_FENCE_REG_VALID;
2305
2306         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2307 }
2308
2309 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2310 {
2311         struct drm_gem_object *obj = reg->obj;
2312         struct drm_device *dev = obj->dev;
2313         drm_i915_private_t *dev_priv = dev->dev_private;
2314         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2315         int regnum = obj_priv->fence_reg;
2316         uint64_t val;
2317
2318         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2319                     0xfffff000) << 32;
2320         val |= obj_priv->gtt_offset & 0xfffff000;
2321         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2322         if (obj_priv->tiling_mode == I915_TILING_Y)
2323                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2324         val |= I965_FENCE_REG_VALID;
2325
2326         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2327 }
2328
2329 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2330 {
2331         struct drm_gem_object *obj = reg->obj;
2332         struct drm_device *dev = obj->dev;
2333         drm_i915_private_t *dev_priv = dev->dev_private;
2334         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2335         int regnum = obj_priv->fence_reg;
2336         int tile_width;
2337         uint32_t fence_reg, val;
2338         uint32_t pitch_val;
2339
2340         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2341             (obj_priv->gtt_offset & (obj->size - 1))) {
2342                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2343                      __func__, obj_priv->gtt_offset, obj->size);
2344                 return;
2345         }
2346
2347         if (obj_priv->tiling_mode == I915_TILING_Y &&
2348             HAS_128_BYTE_Y_TILING(dev))
2349                 tile_width = 128;
2350         else
2351                 tile_width = 512;
2352
2353         /* Note: pitch better be a power of two tile widths */
2354         pitch_val = obj_priv->stride / tile_width;
2355         pitch_val = ffs(pitch_val) - 1;
2356
2357         if (obj_priv->tiling_mode == I915_TILING_Y &&
2358             HAS_128_BYTE_Y_TILING(dev))
2359                 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2360         else
2361                 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2362
2363         val = obj_priv->gtt_offset;
2364         if (obj_priv->tiling_mode == I915_TILING_Y)
2365                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2366         val |= I915_FENCE_SIZE_BITS(obj->size);
2367         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2368         val |= I830_FENCE_REG_VALID;
2369
2370         if (regnum < 8)
2371                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2372         else
2373                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2374         I915_WRITE(fence_reg, val);
2375 }
2376
2377 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2378 {
2379         struct drm_gem_object *obj = reg->obj;
2380         struct drm_device *dev = obj->dev;
2381         drm_i915_private_t *dev_priv = dev->dev_private;
2382         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2383         int regnum = obj_priv->fence_reg;
2384         uint32_t val;
2385         uint32_t pitch_val;
2386         uint32_t fence_size_bits;
2387
2388         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2389             (obj_priv->gtt_offset & (obj->size - 1))) {
2390                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2391                      __func__, obj_priv->gtt_offset);
2392                 return;
2393         }
2394
2395         pitch_val = obj_priv->stride / 128;
2396         pitch_val = ffs(pitch_val) - 1;
2397         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2398
2399         val = obj_priv->gtt_offset;
2400         if (obj_priv->tiling_mode == I915_TILING_Y)
2401                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2402         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2403         WARN_ON(fence_size_bits & ~0x00000f00);
2404         val |= fence_size_bits;
2405         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2406         val |= I830_FENCE_REG_VALID;
2407
2408         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2409 }
2410
2411 static int i915_find_fence_reg(struct drm_device *dev)
2412 {
2413         struct drm_i915_fence_reg *reg = NULL;
2414         struct drm_i915_gem_object *obj_priv = NULL;
2415         struct drm_i915_private *dev_priv = dev->dev_private;
2416         struct drm_gem_object *obj = NULL;
2417         int i, avail, ret;
2418
2419         /* First try to find a free reg */
2420         avail = 0;
2421         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2422                 reg = &dev_priv->fence_regs[i];
2423                 if (!reg->obj)
2424                         return i;
2425
2426                 obj_priv = to_intel_bo(reg->obj);
2427                 if (!obj_priv->pin_count)
2428                     avail++;
2429         }
2430
2431         if (avail == 0)
2432                 return -ENOSPC;
2433
2434         /* None available, try to steal one or wait for a user to finish */
2435         i = I915_FENCE_REG_NONE;
2436         list_for_each_entry(reg, &dev_priv->mm.fence_list,
2437                             lru_list) {
2438                 obj = reg->obj;
2439                 obj_priv = to_intel_bo(obj);
2440
2441                 if (obj_priv->pin_count)
2442                         continue;
2443
2444                 /* found one! */
2445                 i = obj_priv->fence_reg;
2446                 break;
2447         }
2448
2449         BUG_ON(i == I915_FENCE_REG_NONE);
2450
2451         /* We only have a reference on obj from the active list. put_fence_reg
2452          * might drop that one, causing a use-after-free in it. So hold a
2453          * private reference to obj like the other callers of put_fence_reg
2454          * (set_tiling ioctl) do. */
2455         drm_gem_object_reference(obj);
2456         ret = i915_gem_object_put_fence_reg(obj);
2457         drm_gem_object_unreference(obj);
2458         if (ret != 0)
2459                 return ret;
2460
2461         return i;
2462 }
2463
2464 /**
2465  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2466  * @obj: object to map through a fence reg
2467  *
2468  * When mapping objects through the GTT, userspace wants to be able to write
2469  * to them without having to worry about swizzling if the object is tiled.
2470  *
2471  * This function walks the fence regs looking for a free one for @obj,
2472  * stealing one if it can't find any.
2473  *
2474  * It then sets up the reg based on the object's properties: address, pitch
2475  * and tiling format.
2476  */
2477 int
2478 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2479 {
2480         struct drm_device *dev = obj->dev;
2481         struct drm_i915_private *dev_priv = dev->dev_private;
2482         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2483         struct drm_i915_fence_reg *reg = NULL;
2484         int ret;
2485
2486         /* Just update our place in the LRU if our fence is getting used. */
2487         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2488                 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2489                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2490                 return 0;
2491         }
2492
2493         switch (obj_priv->tiling_mode) {
2494         case I915_TILING_NONE:
2495                 WARN(1, "allocating a fence for non-tiled object?\n");
2496                 break;
2497         case I915_TILING_X:
2498                 if (!obj_priv->stride)
2499                         return -EINVAL;
2500                 WARN((obj_priv->stride & (512 - 1)),
2501                      "object 0x%08x is X tiled but has non-512B pitch\n",
2502                      obj_priv->gtt_offset);
2503                 break;
2504         case I915_TILING_Y:
2505                 if (!obj_priv->stride)
2506                         return -EINVAL;
2507                 WARN((obj_priv->stride & (128 - 1)),
2508                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2509                      obj_priv->gtt_offset);
2510                 break;
2511         }
2512
2513         ret = i915_find_fence_reg(dev);
2514         if (ret < 0)
2515                 return ret;
2516
2517         obj_priv->fence_reg = ret;
2518         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2519         list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2520
2521         reg->obj = obj;
2522
2523         if (IS_GEN6(dev))
2524                 sandybridge_write_fence_reg(reg);
2525         else if (IS_I965G(dev))
2526                 i965_write_fence_reg(reg);
2527         else if (IS_I9XX(dev))
2528                 i915_write_fence_reg(reg);
2529         else
2530                 i830_write_fence_reg(reg);
2531
2532         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2533                         obj_priv->tiling_mode);
2534
2535         return 0;
2536 }
2537
2538 /**
2539  * i915_gem_clear_fence_reg - clear out fence register info
2540  * @obj: object to clear
2541  *
2542  * Zeroes out the fence register itself and clears out the associated
2543  * data structures in dev_priv and obj_priv.
2544  */
2545 static void
2546 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2547 {
2548         struct drm_device *dev = obj->dev;
2549         drm_i915_private_t *dev_priv = dev->dev_private;
2550         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2551         struct drm_i915_fence_reg *reg =
2552                 &dev_priv->fence_regs[obj_priv->fence_reg];
2553
2554         if (IS_GEN6(dev)) {
2555                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2556                              (obj_priv->fence_reg * 8), 0);
2557         } else if (IS_I965G(dev)) {
2558                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2559         } else {
2560                 uint32_t fence_reg;
2561
2562                 if (obj_priv->fence_reg < 8)
2563                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2564                 else
2565                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2566                                                        8) * 4;
2567
2568                 I915_WRITE(fence_reg, 0);
2569         }
2570
2571         reg->obj = NULL;
2572         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2573         list_del_init(&reg->lru_list);
2574 }
2575
2576 /**
2577  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2578  * to the buffer to finish, and then resets the fence register.
2579  * @obj: tiled object holding a fence register.
2580  *
2581  * Zeroes out the fence register itself and clears out the associated
2582  * data structures in dev_priv and obj_priv.
2583  */
2584 int
2585 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2586 {
2587         struct drm_device *dev = obj->dev;
2588         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2589
2590         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2591                 return 0;
2592
2593         /* If we've changed tiling, GTT-mappings of the object
2594          * need to re-fault to ensure that the correct fence register
2595          * setup is in place.
2596          */
2597         i915_gem_release_mmap(obj);
2598
2599         /* On the i915, GPU access to tiled buffers is via a fence,
2600          * therefore we must wait for any outstanding access to complete
2601          * before clearing the fence.
2602          */
2603         if (!IS_I965G(dev)) {
2604                 int ret;
2605
2606                 ret = i915_gem_object_flush_gpu_write_domain(obj);
2607                 if (ret != 0)
2608                         return ret;
2609
2610                 ret = i915_gem_object_wait_rendering(obj);
2611                 if (ret != 0)
2612                         return ret;
2613         }
2614
2615         i915_gem_object_flush_gtt_write_domain(obj);
2616         i915_gem_clear_fence_reg (obj);
2617
2618         return 0;
2619 }
2620
2621 /**
2622  * Finds free space in the GTT aperture and binds the object there.
2623  */
2624 static int
2625 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2626 {
2627         struct drm_device *dev = obj->dev;
2628         drm_i915_private_t *dev_priv = dev->dev_private;
2629         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2630         struct drm_mm_node *free_space;
2631         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2632         int ret;
2633
2634         if (obj_priv->madv != I915_MADV_WILLNEED) {
2635                 DRM_ERROR("Attempting to bind a purgeable object\n");
2636                 return -EINVAL;
2637         }
2638
2639         if (alignment == 0)
2640                 alignment = i915_gem_get_gtt_alignment(obj);
2641         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2642                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2643                 return -EINVAL;
2644         }
2645
2646         /* If the object is bigger than the entire aperture, reject it early
2647          * before evicting everything in a vain attempt to find space.
2648          */
2649         if (obj->size > dev->gtt_total) {
2650                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2651                 return -E2BIG;
2652         }
2653
2654  search_free:
2655         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2656                                         obj->size, alignment, 0);
2657         if (free_space != NULL) {
2658                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2659                                                        alignment);
2660                 if (obj_priv->gtt_space != NULL)
2661                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2662         }
2663         if (obj_priv->gtt_space == NULL) {
2664                 /* If the gtt is empty and we're still having trouble
2665                  * fitting our object in, we're out of memory.
2666                  */
2667 #if WATCH_LRU
2668                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2669 #endif
2670                 ret = i915_gem_evict_something(dev, obj->size);
2671                 if (ret)
2672                         return ret;
2673
2674                 goto search_free;
2675         }
2676
2677 #if WATCH_BUF
2678         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2679                  obj->size, obj_priv->gtt_offset);
2680 #endif
2681         ret = i915_gem_object_get_pages(obj, gfpmask);
2682         if (ret) {
2683                 drm_mm_put_block(obj_priv->gtt_space);
2684                 obj_priv->gtt_space = NULL;
2685
2686                 if (ret == -ENOMEM) {
2687                         /* first try to clear up some space from the GTT */
2688                         ret = i915_gem_evict_something(dev, obj->size);
2689                         if (ret) {
2690                                 /* now try to shrink everyone else */
2691                                 if (gfpmask) {
2692                                         gfpmask = 0;
2693                                         goto search_free;
2694                                 }
2695
2696                                 return ret;
2697                         }
2698
2699                         goto search_free;
2700                 }
2701
2702                 return ret;
2703         }
2704
2705         /* Create an AGP memory structure pointing at our pages, and bind it
2706          * into the GTT.
2707          */
2708         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2709                                                obj_priv->pages,
2710                                                obj->size >> PAGE_SHIFT,
2711                                                obj_priv->gtt_offset,
2712                                                obj_priv->agp_type);
2713         if (obj_priv->agp_mem == NULL) {
2714                 i915_gem_object_put_pages(obj);
2715                 drm_mm_put_block(obj_priv->gtt_space);
2716                 obj_priv->gtt_space = NULL;
2717
2718                 ret = i915_gem_evict_something(dev, obj->size);
2719                 if (ret)
2720                         return ret;
2721
2722                 goto search_free;
2723         }
2724         atomic_inc(&dev->gtt_count);
2725         atomic_add(obj->size, &dev->gtt_memory);
2726
2727         /* Assert that the object is not currently in any GPU domain. As it
2728          * wasn't in the GTT, there shouldn't be any way it could have been in
2729          * a GPU cache
2730          */
2731         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2732         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2733
2734         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2735
2736         return 0;
2737 }
2738
2739 void
2740 i915_gem_clflush_object(struct drm_gem_object *obj)
2741 {
2742         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2743
2744         /* If we don't have a page list set up, then we're not pinned
2745          * to GPU, and we can ignore the cache flush because it'll happen
2746          * again at bind time.
2747          */
2748         if (obj_priv->pages == NULL)
2749                 return;
2750
2751         trace_i915_gem_object_clflush(obj);
2752
2753         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2754 }
2755
2756 /** Flushes any GPU write domain for the object if it's dirty. */
2757 static int
2758 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2759 {
2760         struct drm_device *dev = obj->dev;
2761         uint32_t old_write_domain;
2762         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2763
2764         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2765                 return 0;
2766
2767         /* Queue the GPU write cache flushing we need. */
2768         old_write_domain = obj->write_domain;
2769         i915_gem_flush(dev, 0, obj->write_domain);
2770         if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2771                 return -ENOMEM;
2772
2773         trace_i915_gem_object_change_domain(obj,
2774                                             obj->read_domains,
2775                                             old_write_domain);
2776         return 0;
2777 }
2778
2779 /** Flushes the GTT write domain for the object if it's dirty. */
2780 static void
2781 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2782 {
2783         uint32_t old_write_domain;
2784
2785         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2786                 return;
2787
2788         /* No actual flushing is required for the GTT write domain.   Writes
2789          * to it immediately go to main memory as far as we know, so there's
2790          * no chipset flush.  It also doesn't land in render cache.
2791          */
2792         old_write_domain = obj->write_domain;
2793         obj->write_domain = 0;
2794
2795         trace_i915_gem_object_change_domain(obj,
2796                                             obj->read_domains,
2797                                             old_write_domain);
2798 }
2799
2800 /** Flushes the CPU write domain for the object if it's dirty. */
2801 static void
2802 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2803 {
2804         struct drm_device *dev = obj->dev;
2805         uint32_t old_write_domain;
2806
2807         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2808                 return;
2809
2810         i915_gem_clflush_object(obj);
2811         drm_agp_chipset_flush(dev);
2812         old_write_domain = obj->write_domain;
2813         obj->write_domain = 0;
2814
2815         trace_i915_gem_object_change_domain(obj,
2816                                             obj->read_domains,
2817                                             old_write_domain);
2818 }
2819
2820 int
2821 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2822 {
2823         int ret = 0;
2824
2825         switch (obj->write_domain) {
2826         case I915_GEM_DOMAIN_GTT:
2827                 i915_gem_object_flush_gtt_write_domain(obj);
2828                 break;
2829         case I915_GEM_DOMAIN_CPU:
2830                 i915_gem_object_flush_cpu_write_domain(obj);
2831                 break;
2832         default:
2833                 ret = i915_gem_object_flush_gpu_write_domain(obj);
2834                 break;
2835         }
2836
2837         return ret;
2838 }
2839
2840 /**
2841  * Moves a single object to the GTT read, and possibly write domain.
2842  *
2843  * This function returns when the move is complete, including waiting on
2844  * flushes to occur.
2845  */
2846 int
2847 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2848 {
2849         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2850         uint32_t old_write_domain, old_read_domains;
2851         int ret;
2852
2853         /* Not valid to be called on unbound objects. */
2854         if (obj_priv->gtt_space == NULL)
2855                 return -EINVAL;
2856
2857         ret = i915_gem_object_flush_gpu_write_domain(obj);
2858         if (ret != 0)
2859                 return ret;
2860
2861         /* Wait on any GPU rendering and flushing to occur. */
2862         ret = i915_gem_object_wait_rendering(obj);
2863         if (ret != 0)
2864                 return ret;
2865
2866         old_write_domain = obj->write_domain;
2867         old_read_domains = obj->read_domains;
2868
2869         /* If we're writing through the GTT domain, then CPU and GPU caches
2870          * will need to be invalidated at next use.
2871          */
2872         if (write)
2873                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2874
2875         i915_gem_object_flush_cpu_write_domain(obj);
2876
2877         /* It should now be out of any other write domains, and we can update
2878          * the domain values for our changes.
2879          */
2880         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2881         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2882         if (write) {
2883                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2884                 obj_priv->dirty = 1;
2885         }
2886
2887         trace_i915_gem_object_change_domain(obj,
2888                                             old_read_domains,
2889                                             old_write_domain);
2890
2891         return 0;
2892 }
2893
2894 /*
2895  * Prepare buffer for display plane. Use uninterruptible for possible flush
2896  * wait, as in modesetting process we're not supposed to be interrupted.
2897  */
2898 int
2899 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2900 {
2901         struct drm_device *dev = obj->dev;
2902         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2903         uint32_t old_write_domain, old_read_domains;
2904         int ret;
2905
2906         /* Not valid to be called on unbound objects. */
2907         if (obj_priv->gtt_space == NULL)
2908                 return -EINVAL;
2909
2910         ret = i915_gem_object_flush_gpu_write_domain(obj);
2911         if (ret)
2912                 return ret;
2913
2914         /* Wait on any GPU rendering and flushing to occur. */
2915         if (obj_priv->active) {
2916 #if WATCH_BUF
2917                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2918                           __func__, obj, obj_priv->last_rendering_seqno);
2919 #endif
2920                 ret = i915_do_wait_request(dev,
2921                                 obj_priv->last_rendering_seqno,
2922                                 0,
2923                                 obj_priv->ring);
2924                 if (ret != 0)
2925                         return ret;
2926         }
2927
2928         i915_gem_object_flush_cpu_write_domain(obj);
2929
2930         old_write_domain = obj->write_domain;
2931         old_read_domains = obj->read_domains;
2932
2933         /* It should now be out of any other write domains, and we can update
2934          * the domain values for our changes.
2935          */
2936         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2937         obj->read_domains = I915_GEM_DOMAIN_GTT;
2938         obj->write_domain = I915_GEM_DOMAIN_GTT;
2939         obj_priv->dirty = 1;
2940
2941         trace_i915_gem_object_change_domain(obj,
2942                                             old_read_domains,
2943                                             old_write_domain);
2944
2945         return 0;
2946 }
2947
2948 /**
2949  * Moves a single object to the CPU read, and possibly write domain.
2950  *
2951  * This function returns when the move is complete, including waiting on
2952  * flushes to occur.
2953  */
2954 static int
2955 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2956 {
2957         uint32_t old_write_domain, old_read_domains;
2958         int ret;
2959
2960         ret = i915_gem_object_flush_gpu_write_domain(obj);
2961         if (ret)
2962                 return ret;
2963
2964         /* Wait on any GPU rendering and flushing to occur. */
2965         ret = i915_gem_object_wait_rendering(obj);
2966         if (ret != 0)
2967                 return ret;
2968
2969         i915_gem_object_flush_gtt_write_domain(obj);
2970
2971         /* If we have a partially-valid cache of the object in the CPU,
2972          * finish invalidating it and free the per-page flags.
2973          */
2974         i915_gem_object_set_to_full_cpu_read_domain(obj);
2975
2976         old_write_domain = obj->write_domain;
2977         old_read_domains = obj->read_domains;
2978
2979         /* Flush the CPU cache if it's still invalid. */
2980         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2981                 i915_gem_clflush_object(obj);
2982
2983                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2984         }
2985
2986         /* It should now be out of any other write domains, and we can update
2987          * the domain values for our changes.
2988          */
2989         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2990
2991         /* If we're writing through the CPU, then the GPU read domains will
2992          * need to be invalidated at next use.
2993          */
2994         if (write) {
2995                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2996                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2997         }
2998
2999         trace_i915_gem_object_change_domain(obj,
3000                                             old_read_domains,
3001                                             old_write_domain);
3002
3003         return 0;
3004 }
3005
3006 /*
3007  * Set the next domain for the specified object. This
3008  * may not actually perform the necessary flushing/invaliding though,
3009  * as that may want to be batched with other set_domain operations
3010  *
3011  * This is (we hope) the only really tricky part of gem. The goal
3012  * is fairly simple -- track which caches hold bits of the object
3013  * and make sure they remain coherent. A few concrete examples may
3014  * help to explain how it works. For shorthand, we use the notation
3015  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3016  * a pair of read and write domain masks.
3017  *
3018  * Case 1: the batch buffer
3019  *
3020  *      1. Allocated
3021  *      2. Written by CPU
3022  *      3. Mapped to GTT
3023  *      4. Read by GPU
3024  *      5. Unmapped from GTT
3025  *      6. Freed
3026  *
3027  *      Let's take these a step at a time
3028  *
3029  *      1. Allocated
3030  *              Pages allocated from the kernel may still have
3031  *              cache contents, so we set them to (CPU, CPU) always.
3032  *      2. Written by CPU (using pwrite)
3033  *              The pwrite function calls set_domain (CPU, CPU) and
3034  *              this function does nothing (as nothing changes)
3035  *      3. Mapped by GTT
3036  *              This function asserts that the object is not
3037  *              currently in any GPU-based read or write domains
3038  *      4. Read by GPU
3039  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
3040  *              As write_domain is zero, this function adds in the
3041  *              current read domains (CPU+COMMAND, 0).
3042  *              flush_domains is set to CPU.
3043  *              invalidate_domains is set to COMMAND
3044  *              clflush is run to get data out of the CPU caches
3045  *              then i915_dev_set_domain calls i915_gem_flush to
3046  *              emit an MI_FLUSH and drm_agp_chipset_flush
3047  *      5. Unmapped from GTT
3048  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
3049  *              flush_domains and invalidate_domains end up both zero
3050  *              so no flushing/invalidating happens
3051  *      6. Freed
3052  *              yay, done
3053  *
3054  * Case 2: The shared render buffer
3055  *
3056  *      1. Allocated
3057  *      2. Mapped to GTT
3058  *      3. Read/written by GPU
3059  *      4. set_domain to (CPU,CPU)
3060  *      5. Read/written by CPU
3061  *      6. Read/written by GPU
3062  *
3063  *      1. Allocated
3064  *              Same as last example, (CPU, CPU)
3065  *      2. Mapped to GTT
3066  *              Nothing changes (assertions find that it is not in the GPU)
3067  *      3. Read/written by GPU
3068  *              execbuffer calls set_domain (RENDER, RENDER)
3069  *              flush_domains gets CPU
3070  *              invalidate_domains gets GPU
3071  *              clflush (obj)
3072  *              MI_FLUSH and drm_agp_chipset_flush
3073  *      4. set_domain (CPU, CPU)
3074  *              flush_domains gets GPU
3075  *              invalidate_domains gets CPU
3076  *              wait_rendering (obj) to make sure all drawing is complete.
3077  *              This will include an MI_FLUSH to get the data from GPU
3078  *              to memory
3079  *              clflush (obj) to invalidate the CPU cache
3080  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3081  *      5. Read/written by CPU
3082  *              cache lines are loaded and dirtied
3083  *      6. Read written by GPU
3084  *              Same as last GPU access
3085  *
3086  * Case 3: The constant buffer
3087  *
3088  *      1. Allocated
3089  *      2. Written by CPU
3090  *      3. Read by GPU
3091  *      4. Updated (written) by CPU again
3092  *      5. Read by GPU
3093  *
3094  *      1. Allocated
3095  *              (CPU, CPU)
3096  *      2. Written by CPU
3097  *              (CPU, CPU)
3098  *      3. Read by GPU
3099  *              (CPU+RENDER, 0)
3100  *              flush_domains = CPU
3101  *              invalidate_domains = RENDER
3102  *              clflush (obj)
3103  *              MI_FLUSH
3104  *              drm_agp_chipset_flush
3105  *      4. Updated (written) by CPU again
3106  *              (CPU, CPU)
3107  *              flush_domains = 0 (no previous write domain)
3108  *              invalidate_domains = 0 (no new read domains)
3109  *      5. Read by GPU
3110  *              (CPU+RENDER, 0)
3111  *              flush_domains = CPU
3112  *              invalidate_domains = RENDER
3113  *              clflush (obj)
3114  *              MI_FLUSH
3115  *              drm_agp_chipset_flush
3116  */
3117 static void
3118 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3119 {
3120         struct drm_device               *dev = obj->dev;
3121         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
3122         uint32_t                        invalidate_domains = 0;
3123         uint32_t                        flush_domains = 0;
3124         uint32_t                        old_read_domains;
3125
3126         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3127         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3128
3129         intel_mark_busy(dev, obj);
3130
3131 #if WATCH_BUF
3132         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3133                  __func__, obj,
3134                  obj->read_domains, obj->pending_read_domains,
3135                  obj->write_domain, obj->pending_write_domain);
3136 #endif
3137         /*
3138          * If the object isn't moving to a new write domain,
3139          * let the object stay in multiple read domains
3140          */
3141         if (obj->pending_write_domain == 0)
3142                 obj->pending_read_domains |= obj->read_domains;
3143         else
3144                 obj_priv->dirty = 1;
3145
3146         /*
3147          * Flush the current write domain if
3148          * the new read domains don't match. Invalidate
3149          * any read domains which differ from the old
3150          * write domain
3151          */
3152         if (obj->write_domain &&
3153             obj->write_domain != obj->pending_read_domains) {
3154                 flush_domains |= obj->write_domain;
3155                 invalidate_domains |=
3156                         obj->pending_read_domains & ~obj->write_domain;
3157         }
3158         /*
3159          * Invalidate any read caches which may have
3160          * stale data. That is, any new read domains.
3161          */
3162         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3163         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3164 #if WATCH_BUF
3165                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3166                          __func__, flush_domains, invalidate_domains);
3167 #endif
3168                 i915_gem_clflush_object(obj);
3169         }
3170
3171         old_read_domains = obj->read_domains;
3172
3173         /* The actual obj->write_domain will be updated with
3174          * pending_write_domain after we emit the accumulated flush for all
3175          * of our domain changes in execbuffers (which clears objects'
3176          * write_domains).  So if we have a current write domain that we
3177          * aren't changing, set pending_write_domain to that.
3178          */
3179         if (flush_domains == 0 && obj->pending_write_domain == 0)
3180                 obj->pending_write_domain = obj->write_domain;
3181         obj->read_domains = obj->pending_read_domains;
3182
3183         dev->invalidate_domains |= invalidate_domains;
3184         dev->flush_domains |= flush_domains;
3185 #if WATCH_BUF
3186         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3187                  __func__,
3188                  obj->read_domains, obj->write_domain,
3189                  dev->invalidate_domains, dev->flush_domains);
3190 #endif
3191
3192         trace_i915_gem_object_change_domain(obj,
3193                                             old_read_domains,
3194                                             obj->write_domain);
3195 }
3196
3197 /**
3198  * Moves the object from a partially CPU read to a full one.
3199  *
3200  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3201  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3202  */
3203 static void
3204 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3205 {
3206         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3207
3208         if (!obj_priv->page_cpu_valid)
3209                 return;
3210
3211         /* If we're partially in the CPU read domain, finish moving it in.
3212          */
3213         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3214                 int i;
3215
3216                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3217                         if (obj_priv->page_cpu_valid[i])
3218                                 continue;
3219                         drm_clflush_pages(obj_priv->pages + i, 1);
3220                 }
3221         }
3222
3223         /* Free the page_cpu_valid mappings which are now stale, whether
3224          * or not we've got I915_GEM_DOMAIN_CPU.
3225          */
3226         kfree(obj_priv->page_cpu_valid);
3227         obj_priv->page_cpu_valid = NULL;
3228 }
3229
3230 /**
3231  * Set the CPU read domain on a range of the object.
3232  *
3233  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3234  * not entirely valid.  The page_cpu_valid member of the object flags which
3235  * pages have been flushed, and will be respected by
3236  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3237  * of the whole object.
3238  *
3239  * This function returns when the move is complete, including waiting on
3240  * flushes to occur.
3241  */
3242 static int
3243 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3244                                           uint64_t offset, uint64_t size)
3245 {
3246         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3247         uint32_t old_read_domains;
3248         int i, ret;
3249
3250         if (offset == 0 && size == obj->size)
3251                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3252
3253         ret = i915_gem_object_flush_gpu_write_domain(obj);
3254         if (ret)
3255                 return ret;
3256
3257         /* Wait on any GPU rendering and flushing to occur. */
3258         ret = i915_gem_object_wait_rendering(obj);
3259         if (ret != 0)
3260                 return ret;
3261         i915_gem_object_flush_gtt_write_domain(obj);
3262
3263         /* If we're already fully in the CPU read domain, we're done. */
3264         if (obj_priv->page_cpu_valid == NULL &&
3265             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3266                 return 0;
3267
3268         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3269          * newly adding I915_GEM_DOMAIN_CPU
3270          */
3271         if (obj_priv->page_cpu_valid == NULL) {
3272                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3273                                                    GFP_KERNEL);
3274                 if (obj_priv->page_cpu_valid == NULL)
3275                         return -ENOMEM;
3276         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3277                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3278
3279         /* Flush the cache on any pages that are still invalid from the CPU's
3280          * perspective.
3281          */
3282         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3283              i++) {
3284                 if (obj_priv->page_cpu_valid[i])
3285                         continue;
3286
3287                 drm_clflush_pages(obj_priv->pages + i, 1);
3288
3289                 obj_priv->page_cpu_valid[i] = 1;
3290         }
3291
3292         /* It should now be out of any other write domains, and we can update
3293          * the domain values for our changes.
3294          */
3295         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3296
3297         old_read_domains = obj->read_domains;
3298         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3299
3300         trace_i915_gem_object_change_domain(obj,
3301                                             old_read_domains,
3302                                             obj->write_domain);
3303
3304         return 0;
3305 }
3306
3307 /**
3308  * Pin an object to the GTT and evaluate the relocations landing in it.
3309  */
3310 static int
3311 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3312                                  struct drm_file *file_priv,
3313                                  struct drm_i915_gem_exec_object2 *entry,
3314                                  struct drm_i915_gem_relocation_entry *relocs)
3315 {
3316         struct drm_device *dev = obj->dev;
3317         drm_i915_private_t *dev_priv = dev->dev_private;
3318         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3319         int i, ret;
3320         void __iomem *reloc_page;
3321         bool need_fence;
3322
3323         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3324                      obj_priv->tiling_mode != I915_TILING_NONE;
3325
3326         /* Check fence reg constraints and rebind if necessary */
3327         if (need_fence &&
3328             !i915_gem_object_fence_offset_ok(obj,
3329                                              obj_priv->tiling_mode)) {
3330                 ret = i915_gem_object_unbind(obj);
3331                 if (ret)
3332                         return ret;
3333         }
3334
3335         /* Choose the GTT offset for our buffer and put it there. */
3336         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3337         if (ret)
3338                 return ret;
3339
3340         /*
3341          * Pre-965 chips need a fence register set up in order to
3342          * properly handle blits to/from tiled surfaces.
3343          */
3344         if (need_fence) {
3345                 ret = i915_gem_object_get_fence_reg(obj);
3346                 if (ret != 0) {
3347                         i915_gem_object_unpin(obj);
3348                         return ret;
3349                 }
3350         }
3351
3352         entry->offset = obj_priv->gtt_offset;
3353
3354         /* Apply the relocations, using the GTT aperture to avoid cache
3355          * flushing requirements.
3356          */
3357         for (i = 0; i < entry->relocation_count; i++) {
3358                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3359                 struct drm_gem_object *target_obj;
3360                 struct drm_i915_gem_object *target_obj_priv;
3361                 uint32_t reloc_val, reloc_offset;
3362                 uint32_t __iomem *reloc_entry;
3363
3364                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3365                                                    reloc->target_handle);
3366                 if (target_obj == NULL) {
3367                         i915_gem_object_unpin(obj);
3368                         return -EBADF;
3369                 }
3370                 target_obj_priv = to_intel_bo(target_obj);
3371
3372 #if WATCH_RELOC
3373                 DRM_INFO("%s: obj %p offset %08x target %d "
3374                          "read %08x write %08x gtt %08x "
3375                          "presumed %08x delta %08x\n",
3376                          __func__,
3377                          obj,
3378                          (int) reloc->offset,
3379                          (int) reloc->target_handle,
3380                          (int) reloc->read_domains,
3381                          (int) reloc->write_domain,
3382                          (int) target_obj_priv->gtt_offset,
3383                          (int) reloc->presumed_offset,
3384                          reloc->delta);
3385 #endif
3386
3387                 /* The target buffer should have appeared before us in the
3388                  * exec_object list, so it should have a GTT space bound by now.
3389                  */
3390                 if (target_obj_priv->gtt_space == NULL) {
3391                         DRM_ERROR("No GTT space found for object %d\n",
3392                                   reloc->target_handle);
3393                         drm_gem_object_unreference(target_obj);
3394                         i915_gem_object_unpin(obj);
3395                         return -EINVAL;
3396                 }
3397
3398                 /* Validate that the target is in a valid r/w GPU domain */
3399                 if (reloc->write_domain & (reloc->write_domain - 1)) {
3400                         DRM_ERROR("reloc with multiple write domains: "
3401                                   "obj %p target %d offset %d "
3402                                   "read %08x write %08x",
3403                                   obj, reloc->target_handle,
3404                                   (int) reloc->offset,
3405                                   reloc->read_domains,
3406                                   reloc->write_domain);
3407                         return -EINVAL;
3408                 }
3409                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3410                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3411                         DRM_ERROR("reloc with read/write CPU domains: "
3412                                   "obj %p target %d offset %d "
3413                                   "read %08x write %08x",
3414                                   obj, reloc->target_handle,
3415                                   (int) reloc->offset,
3416                                   reloc->read_domains,
3417                                   reloc->write_domain);
3418                         drm_gem_object_unreference(target_obj);
3419                         i915_gem_object_unpin(obj);
3420                         return -EINVAL;
3421                 }
3422                 if (reloc->write_domain && target_obj->pending_write_domain &&
3423                     reloc->write_domain != target_obj->pending_write_domain) {
3424                         DRM_ERROR("Write domain conflict: "
3425                                   "obj %p target %d offset %d "
3426                                   "new %08x old %08x\n",
3427                                   obj, reloc->target_handle,
3428                                   (int) reloc->offset,
3429                                   reloc->write_domain,
3430                                   target_obj->pending_write_domain);
3431                         drm_gem_object_unreference(target_obj);
3432                         i915_gem_object_unpin(obj);
3433                         return -EINVAL;
3434                 }
3435
3436                 target_obj->pending_read_domains |= reloc->read_domains;
3437                 target_obj->pending_write_domain |= reloc->write_domain;
3438
3439                 /* If the relocation already has the right value in it, no
3440                  * more work needs to be done.
3441                  */
3442                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3443                         drm_gem_object_unreference(target_obj);
3444                         continue;
3445                 }
3446
3447                 /* Check that the relocation address is valid... */
3448                 if (reloc->offset > obj->size - 4) {
3449                         DRM_ERROR("Relocation beyond object bounds: "
3450                                   "obj %p target %d offset %d size %d.\n",
3451                                   obj, reloc->target_handle,
3452                                   (int) reloc->offset, (int) obj->size);
3453                         drm_gem_object_unreference(target_obj);
3454                         i915_gem_object_unpin(obj);
3455                         return -EINVAL;
3456                 }
3457                 if (reloc->offset & 3) {
3458                         DRM_ERROR("Relocation not 4-byte aligned: "
3459                                   "obj %p target %d offset %d.\n",
3460                                   obj, reloc->target_handle,
3461                                   (int) reloc->offset);
3462                         drm_gem_object_unreference(target_obj);
3463                         i915_gem_object_unpin(obj);
3464                         return -EINVAL;
3465                 }
3466
3467                 /* and points to somewhere within the target object. */
3468                 if (reloc->delta >= target_obj->size) {
3469                         DRM_ERROR("Relocation beyond target object bounds: "
3470                                   "obj %p target %d delta %d size %d.\n",
3471                                   obj, reloc->target_handle,
3472                                   (int) reloc->delta, (int) target_obj->size);
3473                         drm_gem_object_unreference(target_obj);
3474                         i915_gem_object_unpin(obj);
3475                         return -EINVAL;
3476                 }
3477
3478                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3479                 if (ret != 0) {
3480                         drm_gem_object_unreference(target_obj);
3481                         i915_gem_object_unpin(obj);
3482                         return -EINVAL;
3483                 }
3484
3485                 /* Map the page containing the relocation we're going to
3486                  * perform.
3487                  */
3488                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3489                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3490                                                       (reloc_offset &
3491                                                        ~(PAGE_SIZE - 1)));
3492                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3493                                                    (reloc_offset & (PAGE_SIZE - 1)));
3494                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3495
3496 #if WATCH_BUF
3497                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3498                           obj, (unsigned int) reloc->offset,
3499                           readl(reloc_entry), reloc_val);
3500 #endif
3501                 writel(reloc_val, reloc_entry);
3502                 io_mapping_unmap_atomic(reloc_page);
3503
3504                 /* The updated presumed offset for this entry will be
3505                  * copied back out to the user.
3506                  */
3507                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3508
3509                 drm_gem_object_unreference(target_obj);
3510         }
3511
3512 #if WATCH_BUF
3513         if (0)
3514                 i915_gem_dump_object(obj, 128, __func__, ~0);
3515 #endif
3516         return 0;
3517 }
3518
3519 /* Throttle our rendering by waiting until the ring has completed our requests
3520  * emitted over 20 msec ago.
3521  *
3522  * Note that if we were to use the current jiffies each time around the loop,
3523  * we wouldn't escape the function with any frames outstanding if the time to
3524  * render a frame was over 20ms.
3525  *
3526  * This should get us reasonable parallelism between CPU and GPU but also
3527  * relatively low latency when blocking on a particular request to finish.
3528  */
3529 static int
3530 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3531 {
3532         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3533         int ret = 0;
3534         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3535
3536         mutex_lock(&dev->struct_mutex);
3537         while (!list_empty(&i915_file_priv->mm.request_list)) {
3538                 struct drm_i915_gem_request *request;
3539
3540                 request = list_first_entry(&i915_file_priv->mm.request_list,
3541                                            struct drm_i915_gem_request,
3542                                            client_list);
3543
3544                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3545                         break;
3546
3547                 ret = i915_wait_request(dev, request->seqno, request->ring);
3548                 if (ret != 0)
3549                         break;
3550         }
3551         mutex_unlock(&dev->struct_mutex);
3552
3553         return ret;
3554 }
3555
3556 static int
3557 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3558                               uint32_t buffer_count,
3559                               struct drm_i915_gem_relocation_entry **relocs)
3560 {
3561         uint32_t reloc_count = 0, reloc_index = 0, i;
3562         int ret;
3563
3564         *relocs = NULL;
3565         for (i = 0; i < buffer_count; i++) {
3566                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3567                         return -EINVAL;
3568                 reloc_count += exec_list[i].relocation_count;
3569         }
3570
3571         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3572         if (*relocs == NULL) {
3573                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3574                 return -ENOMEM;
3575         }
3576
3577         for (i = 0; i < buffer_count; i++) {
3578                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3579
3580                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3581
3582                 ret = copy_from_user(&(*relocs)[reloc_index],
3583                                      user_relocs,
3584                                      exec_list[i].relocation_count *
3585                                      sizeof(**relocs));
3586                 if (ret != 0) {
3587                         drm_free_large(*relocs);
3588                         *relocs = NULL;
3589                         return -EFAULT;
3590                 }
3591
3592                 reloc_index += exec_list[i].relocation_count;
3593         }
3594
3595         return 0;
3596 }
3597
3598 static int
3599 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3600                             uint32_t buffer_count,
3601                             struct drm_i915_gem_relocation_entry *relocs)
3602 {
3603         uint32_t reloc_count = 0, i;
3604         int ret = 0;
3605
3606         if (relocs == NULL)
3607             return 0;
3608
3609         for (i = 0; i < buffer_count; i++) {
3610                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3611                 int unwritten;
3612
3613                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3614
3615                 unwritten = copy_to_user(user_relocs,
3616                                          &relocs[reloc_count],
3617                                          exec_list[i].relocation_count *
3618                                          sizeof(*relocs));
3619
3620                 if (unwritten) {
3621                         ret = -EFAULT;
3622                         goto err;
3623                 }
3624
3625                 reloc_count += exec_list[i].relocation_count;
3626         }
3627
3628 err:
3629         drm_free_large(relocs);
3630
3631         return ret;
3632 }
3633
3634 static int
3635 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3636                            uint64_t exec_offset)
3637 {
3638         uint32_t exec_start, exec_len;
3639
3640         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3641         exec_len = (uint32_t) exec->batch_len;
3642
3643         if ((exec_start | exec_len) & 0x7)
3644                 return -EINVAL;
3645
3646         if (!exec_start)
3647                 return -EINVAL;
3648
3649         return 0;
3650 }
3651
3652 static int
3653 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3654                                struct drm_gem_object **object_list,
3655                                int count)
3656 {
3657         drm_i915_private_t *dev_priv = dev->dev_private;
3658         struct drm_i915_gem_object *obj_priv;
3659         DEFINE_WAIT(wait);
3660         int i, ret = 0;
3661
3662         for (;;) {
3663                 prepare_to_wait(&dev_priv->pending_flip_queue,
3664                                 &wait, TASK_INTERRUPTIBLE);
3665                 for (i = 0; i < count; i++) {
3666                         obj_priv = to_intel_bo(object_list[i]);
3667                         if (atomic_read(&obj_priv->pending_flip) > 0)
3668                                 break;
3669                 }
3670                 if (i == count)
3671                         break;
3672
3673                 if (!signal_pending(current)) {
3674                         mutex_unlock(&dev->struct_mutex);
3675                         schedule();
3676                         mutex_lock(&dev->struct_mutex);
3677                         continue;
3678                 }
3679                 ret = -ERESTARTSYS;
3680                 break;
3681         }
3682         finish_wait(&dev_priv->pending_flip_queue, &wait);
3683
3684         return ret;
3685 }
3686
3687
3688 int
3689 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3690                        struct drm_file *file_priv,
3691                        struct drm_i915_gem_execbuffer2 *args,
3692                        struct drm_i915_gem_exec_object2 *exec_list)
3693 {
3694         drm_i915_private_t *dev_priv = dev->dev_private;
3695         struct drm_gem_object **object_list = NULL;
3696         struct drm_gem_object *batch_obj;
3697         struct drm_i915_gem_object *obj_priv;
3698         struct drm_clip_rect *cliprects = NULL;
3699         struct drm_i915_gem_relocation_entry *relocs = NULL;
3700         int ret = 0, ret2, i, pinned = 0;
3701         uint64_t exec_offset;
3702         uint32_t seqno, flush_domains, reloc_index;
3703         int pin_tries, flips;
3704
3705         struct intel_ring_buffer *ring = NULL;
3706
3707 #if WATCH_EXEC
3708         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3709                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3710 #endif
3711         if (args->flags & I915_EXEC_BSD) {
3712                 if (!HAS_BSD(dev)) {
3713                         DRM_ERROR("execbuf with wrong flag\n");
3714                         return -EINVAL;
3715                 }
3716                 ring = &dev_priv->bsd_ring;
3717         } else {
3718                 ring = &dev_priv->render_ring;
3719         }
3720
3721
3722         if (args->buffer_count < 1) {
3723                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3724                 return -EINVAL;
3725         }
3726         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3727         if (object_list == NULL) {
3728                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3729                           args->buffer_count);
3730                 ret = -ENOMEM;
3731                 goto pre_mutex_err;
3732         }
3733
3734         if (args->num_cliprects != 0) {
3735                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3736                                     GFP_KERNEL);
3737                 if (cliprects == NULL) {
3738                         ret = -ENOMEM;
3739                         goto pre_mutex_err;
3740                 }
3741
3742                 ret = copy_from_user(cliprects,
3743                                      (struct drm_clip_rect __user *)
3744                                      (uintptr_t) args->cliprects_ptr,
3745                                      sizeof(*cliprects) * args->num_cliprects);
3746                 if (ret != 0) {
3747                         DRM_ERROR("copy %d cliprects failed: %d\n",
3748                                   args->num_cliprects, ret);
3749                         goto pre_mutex_err;
3750                 }
3751         }
3752
3753         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3754                                             &relocs);
3755         if (ret != 0)
3756                 goto pre_mutex_err;
3757
3758         mutex_lock(&dev->struct_mutex);
3759
3760         i915_verify_inactive(dev, __FILE__, __LINE__);
3761
3762         if (atomic_read(&dev_priv->mm.wedged)) {
3763                 mutex_unlock(&dev->struct_mutex);
3764                 ret = -EIO;
3765                 goto pre_mutex_err;
3766         }
3767
3768         if (dev_priv->mm.suspended) {
3769                 mutex_unlock(&dev->struct_mutex);
3770                 ret = -EBUSY;
3771                 goto pre_mutex_err;
3772         }
3773
3774         /* Look up object handles */
3775         flips = 0;
3776         for (i = 0; i < args->buffer_count; i++) {
3777                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3778                                                        exec_list[i].handle);
3779                 if (object_list[i] == NULL) {
3780                         DRM_ERROR("Invalid object handle %d at index %d\n",
3781                                    exec_list[i].handle, i);
3782                         /* prevent error path from reading uninitialized data */
3783                         args->buffer_count = i + 1;
3784                         ret = -EBADF;
3785                         goto err;
3786                 }
3787
3788                 obj_priv = to_intel_bo(object_list[i]);
3789                 if (obj_priv->in_execbuffer) {
3790                         DRM_ERROR("Object %p appears more than once in object list\n",
3791                                    object_list[i]);
3792                         /* prevent error path from reading uninitialized data */
3793                         args->buffer_count = i + 1;
3794                         ret = -EBADF;
3795                         goto err;
3796                 }
3797                 obj_priv->in_execbuffer = true;
3798                 flips += atomic_read(&obj_priv->pending_flip);
3799         }
3800
3801         if (flips > 0) {
3802                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3803                                                      args->buffer_count);
3804                 if (ret)
3805                         goto err;
3806         }
3807
3808         /* Pin and relocate */
3809         for (pin_tries = 0; ; pin_tries++) {
3810                 ret = 0;
3811                 reloc_index = 0;
3812
3813                 for (i = 0; i < args->buffer_count; i++) {
3814                         object_list[i]->pending_read_domains = 0;
3815                         object_list[i]->pending_write_domain = 0;
3816                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3817                                                                file_priv,
3818                                                                &exec_list[i],
3819                                                                &relocs[reloc_index]);
3820                         if (ret)
3821                                 break;
3822                         pinned = i + 1;
3823                         reloc_index += exec_list[i].relocation_count;
3824                 }
3825                 /* success */
3826                 if (ret == 0)
3827                         break;
3828
3829                 /* error other than GTT full, or we've already tried again */
3830                 if (ret != -ENOSPC || pin_tries >= 1) {
3831                         if (ret != -ERESTARTSYS) {
3832                                 unsigned long long total_size = 0;
3833                                 int num_fences = 0;
3834                                 for (i = 0; i < args->buffer_count; i++) {
3835                                         obj_priv = to_intel_bo(object_list[i]);
3836
3837                                         total_size += object_list[i]->size;
3838                                         num_fences +=
3839                                                 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3840                                                 obj_priv->tiling_mode != I915_TILING_NONE;
3841                                 }
3842                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3843                                           pinned+1, args->buffer_count,
3844                                           total_size, num_fences,
3845                                           ret);
3846                                 DRM_ERROR("%d objects [%d pinned], "
3847                                           "%d object bytes [%d pinned], "
3848                                           "%d/%d gtt bytes\n",
3849                                           atomic_read(&dev->object_count),
3850                                           atomic_read(&dev->pin_count),
3851                                           atomic_read(&dev->object_memory),
3852                                           atomic_read(&dev->pin_memory),
3853                                           atomic_read(&dev->gtt_memory),
3854                                           dev->gtt_total);
3855                         }
3856                         goto err;
3857                 }
3858
3859                 /* unpin all of our buffers */
3860                 for (i = 0; i < pinned; i++)
3861                         i915_gem_object_unpin(object_list[i]);
3862                 pinned = 0;
3863
3864                 /* evict everyone we can from the aperture */
3865                 ret = i915_gem_evict_everything(dev);
3866                 if (ret && ret != -ENOSPC)
3867                         goto err;
3868         }
3869
3870         /* Set the pending read domains for the batch buffer to COMMAND */
3871         batch_obj = object_list[args->buffer_count-1];
3872         if (batch_obj->pending_write_domain) {
3873                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3874                 ret = -EINVAL;
3875                 goto err;
3876         }
3877         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3878
3879         /* Sanity check the batch buffer, prior to moving objects */
3880         exec_offset = exec_list[args->buffer_count - 1].offset;
3881         ret = i915_gem_check_execbuffer (args, exec_offset);
3882         if (ret != 0) {
3883                 DRM_ERROR("execbuf with invalid offset/length\n");
3884                 goto err;
3885         }
3886
3887         i915_verify_inactive(dev, __FILE__, __LINE__);
3888
3889         /* Zero the global flush/invalidate flags. These
3890          * will be modified as new domains are computed
3891          * for each object
3892          */
3893         dev->invalidate_domains = 0;
3894         dev->flush_domains = 0;
3895
3896         for (i = 0; i < args->buffer_count; i++) {
3897                 struct drm_gem_object *obj = object_list[i];
3898
3899                 /* Compute new gpu domains and update invalidate/flush */
3900                 i915_gem_object_set_to_gpu_domain(obj);
3901         }
3902
3903         i915_verify_inactive(dev, __FILE__, __LINE__);
3904
3905         if (dev->invalidate_domains | dev->flush_domains) {
3906 #if WATCH_EXEC
3907                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3908                           __func__,
3909                          dev->invalidate_domains,
3910                          dev->flush_domains);
3911 #endif
3912                 i915_gem_flush(dev,
3913                                dev->invalidate_domains,
3914                                dev->flush_domains);
3915                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
3916                         (void)i915_add_request(dev, file_priv,
3917                                         dev->flush_domains,
3918                                         &dev_priv->render_ring);
3919
3920                         if (HAS_BSD(dev))
3921                                 (void)i915_add_request(dev, file_priv,
3922                                                 dev->flush_domains,
3923                                                 &dev_priv->bsd_ring);
3924                 }
3925         }
3926
3927         for (i = 0; i < args->buffer_count; i++) {
3928                 struct drm_gem_object *obj = object_list[i];
3929                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3930                 uint32_t old_write_domain = obj->write_domain;
3931
3932                 obj->write_domain = obj->pending_write_domain;
3933                 if (obj->write_domain)
3934                         list_move_tail(&obj_priv->gpu_write_list,
3935                                        &dev_priv->mm.gpu_write_list);
3936                 else
3937                         list_del_init(&obj_priv->gpu_write_list);
3938
3939                 trace_i915_gem_object_change_domain(obj,
3940                                                     obj->read_domains,
3941                                                     old_write_domain);
3942         }
3943
3944         i915_verify_inactive(dev, __FILE__, __LINE__);
3945
3946 #if WATCH_COHERENCY
3947         for (i = 0; i < args->buffer_count; i++) {
3948                 i915_gem_object_check_coherency(object_list[i],
3949                                                 exec_list[i].handle);
3950         }
3951 #endif
3952
3953 #if WATCH_EXEC
3954         i915_gem_dump_object(batch_obj,
3955                               args->batch_len,
3956                               __func__,
3957                               ~0);
3958 #endif
3959
3960         /* Exec the batchbuffer */
3961         ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3962                         cliprects, exec_offset);
3963         if (ret) {
3964                 DRM_ERROR("dispatch failed %d\n", ret);
3965                 goto err;
3966         }
3967
3968         /*
3969          * Ensure that the commands in the batch buffer are
3970          * finished before the interrupt fires
3971          */
3972         flush_domains = i915_retire_commands(dev, ring);
3973
3974         i915_verify_inactive(dev, __FILE__, __LINE__);
3975
3976         /*
3977          * Get a seqno representing the execution of the current buffer,
3978          * which we can wait on.  We would like to mitigate these interrupts,
3979          * likely by only creating seqnos occasionally (so that we have
3980          * *some* interrupts representing completion of buffers that we can
3981          * wait on when trying to clear up gtt space).
3982          */
3983         seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3984         BUG_ON(seqno == 0);
3985         for (i = 0; i < args->buffer_count; i++) {
3986                 struct drm_gem_object *obj = object_list[i];
3987                 obj_priv = to_intel_bo(obj);
3988
3989                 i915_gem_object_move_to_active(obj, seqno, ring);
3990 #if WATCH_LRU
3991                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3992 #endif
3993         }
3994 #if WATCH_LRU
3995         i915_dump_lru(dev, __func__);
3996 #endif
3997
3998         i915_verify_inactive(dev, __FILE__, __LINE__);
3999
4000 err:
4001         for (i = 0; i < pinned; i++)
4002                 i915_gem_object_unpin(object_list[i]);
4003
4004         for (i = 0; i < args->buffer_count; i++) {
4005                 if (object_list[i]) {
4006                         obj_priv = to_intel_bo(object_list[i]);
4007                         obj_priv->in_execbuffer = false;
4008                 }
4009                 drm_gem_object_unreference(object_list[i]);
4010         }
4011
4012         mutex_unlock(&dev->struct_mutex);
4013
4014 pre_mutex_err:
4015         /* Copy the updated relocations out regardless of current error
4016          * state.  Failure to update the relocs would mean that the next
4017          * time userland calls execbuf, it would do so with presumed offset
4018          * state that didn't match the actual object state.
4019          */
4020         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4021                                            relocs);
4022         if (ret2 != 0) {
4023                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4024
4025                 if (ret == 0)
4026                         ret = ret2;
4027         }
4028
4029         drm_free_large(object_list);
4030         kfree(cliprects);
4031
4032         return ret;
4033 }
4034
4035 /*
4036  * Legacy execbuffer just creates an exec2 list from the original exec object
4037  * list array and passes it to the real function.
4038  */
4039 int
4040 i915_gem_execbuffer(struct drm_device *dev, void *data,
4041                     struct drm_file *file_priv)
4042 {
4043         struct drm_i915_gem_execbuffer *args = data;
4044         struct drm_i915_gem_execbuffer2 exec2;
4045         struct drm_i915_gem_exec_object *exec_list = NULL;
4046         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4047         int ret, i;
4048
4049 #if WATCH_EXEC
4050         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4051                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4052 #endif
4053
4054         if (args->buffer_count < 1) {
4055                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4056                 return -EINVAL;
4057         }
4058
4059         /* Copy in the exec list from userland */
4060         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4061         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4062         if (exec_list == NULL || exec2_list == NULL) {
4063                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4064                           args->buffer_count);
4065                 drm_free_large(exec_list);
4066                 drm_free_large(exec2_list);
4067                 return -ENOMEM;
4068         }
4069         ret = copy_from_user(exec_list,
4070                              (struct drm_i915_relocation_entry __user *)
4071                              (uintptr_t) args->buffers_ptr,
4072                              sizeof(*exec_list) * args->buffer_count);
4073         if (ret != 0) {
4074                 DRM_ERROR("copy %d exec entries failed %d\n",
4075                           args->buffer_count, ret);
4076                 drm_free_large(exec_list);
4077                 drm_free_large(exec2_list);
4078                 return -EFAULT;
4079         }
4080
4081         for (i = 0; i < args->buffer_count; i++) {
4082                 exec2_list[i].handle = exec_list[i].handle;
4083                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4084                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4085                 exec2_list[i].alignment = exec_list[i].alignment;
4086                 exec2_list[i].offset = exec_list[i].offset;
4087                 if (!IS_I965G(dev))
4088                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4089                 else
4090                         exec2_list[i].flags = 0;
4091         }
4092
4093         exec2.buffers_ptr = args->buffers_ptr;
4094         exec2.buffer_count = args->buffer_count;
4095         exec2.batch_start_offset = args->batch_start_offset;
4096         exec2.batch_len = args->batch_len;
4097         exec2.DR1 = args->DR1;
4098         exec2.DR4 = args->DR4;
4099         exec2.num_cliprects = args->num_cliprects;
4100         exec2.cliprects_ptr = args->cliprects_ptr;
4101         exec2.flags = I915_EXEC_RENDER;
4102
4103         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4104         if (!ret) {
4105                 /* Copy the new buffer offsets back to the user's exec list. */
4106                 for (i = 0; i < args->buffer_count; i++)
4107                         exec_list[i].offset = exec2_list[i].offset;
4108                 /* ... and back out to userspace */
4109                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4110                                    (uintptr_t) args->buffers_ptr,
4111                                    exec_list,
4112                                    sizeof(*exec_list) * args->buffer_count);
4113                 if (ret) {
4114                         ret = -EFAULT;
4115                         DRM_ERROR("failed to copy %d exec entries "
4116                                   "back to user (%d)\n",
4117                                   args->buffer_count, ret);
4118                 }
4119         }
4120
4121         drm_free_large(exec_list);
4122         drm_free_large(exec2_list);
4123         return ret;
4124 }
4125
4126 int
4127 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4128                      struct drm_file *file_priv)
4129 {
4130         struct drm_i915_gem_execbuffer2 *args = data;
4131         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4132         int ret;
4133
4134 #if WATCH_EXEC
4135         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4136                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4137 #endif
4138
4139         if (args->buffer_count < 1) {
4140                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4141                 return -EINVAL;
4142         }
4143
4144         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4145         if (exec2_list == NULL) {
4146                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4147                           args->buffer_count);
4148                 return -ENOMEM;
4149         }
4150         ret = copy_from_user(exec2_list,
4151                              (struct drm_i915_relocation_entry __user *)
4152                              (uintptr_t) args->buffers_ptr,
4153                              sizeof(*exec2_list) * args->buffer_count);
4154         if (ret != 0) {
4155                 DRM_ERROR("copy %d exec entries failed %d\n",
4156                           args->buffer_count, ret);
4157                 drm_free_large(exec2_list);
4158                 return -EFAULT;
4159         }
4160
4161         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4162         if (!ret) {
4163                 /* Copy the new buffer offsets back to the user's exec list. */
4164                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4165                                    (uintptr_t) args->buffers_ptr,
4166                                    exec2_list,
4167                                    sizeof(*exec2_list) * args->buffer_count);
4168                 if (ret) {
4169                         ret = -EFAULT;
4170                         DRM_ERROR("failed to copy %d exec entries "
4171                                   "back to user (%d)\n",
4172                                   args->buffer_count, ret);
4173                 }
4174         }
4175
4176         drm_free_large(exec2_list);
4177         return ret;
4178 }
4179
4180 int
4181 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4182 {
4183         struct drm_device *dev = obj->dev;
4184         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4185         int ret;
4186
4187         BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4188
4189         i915_verify_inactive(dev, __FILE__, __LINE__);
4190
4191         if (obj_priv->gtt_space != NULL) {
4192                 if (alignment == 0)
4193                         alignment = i915_gem_get_gtt_alignment(obj);
4194                 if (obj_priv->gtt_offset & (alignment - 1)) {
4195                         ret = i915_gem_object_unbind(obj);
4196                         if (ret)
4197                                 return ret;
4198                 }
4199         }
4200
4201         if (obj_priv->gtt_space == NULL) {
4202                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4203                 if (ret)
4204                         return ret;
4205         }
4206
4207         obj_priv->pin_count++;
4208
4209         /* If the object is not active and not pending a flush,
4210          * remove it from the inactive list
4211          */
4212         if (obj_priv->pin_count == 1) {
4213                 atomic_inc(&dev->pin_count);
4214                 atomic_add(obj->size, &dev->pin_memory);
4215                 if (!obj_priv->active &&
4216                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4217                     !list_empty(&obj_priv->list))
4218                         list_del_init(&obj_priv->list);
4219         }
4220         i915_verify_inactive(dev, __FILE__, __LINE__);
4221
4222         return 0;
4223 }
4224
4225 void
4226 i915_gem_object_unpin(struct drm_gem_object *obj)
4227 {
4228         struct drm_device *dev = obj->dev;
4229         drm_i915_private_t *dev_priv = dev->dev_private;
4230         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4231
4232         i915_verify_inactive(dev, __FILE__, __LINE__);
4233         obj_priv->pin_count--;
4234         BUG_ON(obj_priv->pin_count < 0);
4235         BUG_ON(obj_priv->gtt_space == NULL);
4236
4237         /* If the object is no longer pinned, and is
4238          * neither active nor being flushed, then stick it on
4239          * the inactive list
4240          */
4241         if (obj_priv->pin_count == 0) {
4242                 if (!obj_priv->active &&
4243                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4244                         list_move_tail(&obj_priv->list,
4245                                        &dev_priv->mm.inactive_list);
4246                 atomic_dec(&dev->pin_count);
4247                 atomic_sub(obj->size, &dev->pin_memory);
4248         }
4249         i915_verify_inactive(dev, __FILE__, __LINE__);
4250 }
4251
4252 int
4253 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4254                    struct drm_file *file_priv)
4255 {
4256         struct drm_i915_gem_pin *args = data;
4257         struct drm_gem_object *obj;
4258         struct drm_i915_gem_object *obj_priv;
4259         int ret;
4260
4261         mutex_lock(&dev->struct_mutex);
4262
4263         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4264         if (obj == NULL) {
4265                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4266                           args->handle);
4267                 mutex_unlock(&dev->struct_mutex);
4268                 return -EBADF;
4269         }
4270         obj_priv = to_intel_bo(obj);
4271
4272         if (obj_priv->madv != I915_MADV_WILLNEED) {
4273                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4274                 drm_gem_object_unreference(obj);
4275                 mutex_unlock(&dev->struct_mutex);
4276                 return -EINVAL;
4277         }
4278
4279         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4280                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4281                           args->handle);
4282                 drm_gem_object_unreference(obj);
4283                 mutex_unlock(&dev->struct_mutex);
4284                 return -EINVAL;
4285         }
4286
4287         obj_priv->user_pin_count++;
4288         obj_priv->pin_filp = file_priv;
4289         if (obj_priv->user_pin_count == 1) {
4290                 ret = i915_gem_object_pin(obj, args->alignment);
4291                 if (ret != 0) {
4292                         drm_gem_object_unreference(obj);
4293                         mutex_unlock(&dev->struct_mutex);
4294                         return ret;
4295                 }
4296         }
4297
4298         /* XXX - flush the CPU caches for pinned objects
4299          * as the X server doesn't manage domains yet
4300          */
4301         i915_gem_object_flush_cpu_write_domain(obj);
4302         args->offset = obj_priv->gtt_offset;
4303         drm_gem_object_unreference(obj);
4304         mutex_unlock(&dev->struct_mutex);
4305
4306         return 0;
4307 }
4308
4309 int
4310 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4311                      struct drm_file *file_priv)
4312 {
4313         struct drm_i915_gem_pin *args = data;
4314         struct drm_gem_object *obj;
4315         struct drm_i915_gem_object *obj_priv;
4316
4317         mutex_lock(&dev->struct_mutex);
4318
4319         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4320         if (obj == NULL) {
4321                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4322                           args->handle);
4323                 mutex_unlock(&dev->struct_mutex);
4324                 return -EBADF;
4325         }
4326
4327         obj_priv = to_intel_bo(obj);
4328         if (obj_priv->pin_filp != file_priv) {
4329                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4330                           args->handle);
4331                 drm_gem_object_unreference(obj);
4332                 mutex_unlock(&dev->struct_mutex);
4333                 return -EINVAL;
4334         }
4335         obj_priv->user_pin_count--;
4336         if (obj_priv->user_pin_count == 0) {
4337                 obj_priv->pin_filp = NULL;
4338                 i915_gem_object_unpin(obj);
4339         }
4340
4341         drm_gem_object_unreference(obj);
4342         mutex_unlock(&dev->struct_mutex);
4343         return 0;
4344 }
4345
4346 int
4347 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4348                     struct drm_file *file_priv)
4349 {
4350         struct drm_i915_gem_busy *args = data;
4351         struct drm_gem_object *obj;
4352         struct drm_i915_gem_object *obj_priv;
4353
4354         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4355         if (obj == NULL) {
4356                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4357                           args->handle);
4358                 return -EBADF;
4359         }
4360
4361         mutex_lock(&dev->struct_mutex);
4362         /* Update the active list for the hardware's current position.
4363          * Otherwise this only updates on a delayed timer or when irqs are
4364          * actually unmasked, and our working set ends up being larger than
4365          * required.
4366          */
4367         i915_gem_retire_requests(dev);
4368
4369         obj_priv = to_intel_bo(obj);
4370         /* Don't count being on the flushing list against the object being
4371          * done.  Otherwise, a buffer left on the flushing list but not getting
4372          * flushed (because nobody's flushing that domain) won't ever return
4373          * unbusy and get reused by libdrm's bo cache.  The other expected
4374          * consumer of this interface, OpenGL's occlusion queries, also specs
4375          * that the objects get unbusy "eventually" without any interference.
4376          */
4377         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4378
4379         drm_gem_object_unreference(obj);
4380         mutex_unlock(&dev->struct_mutex);
4381         return 0;
4382 }
4383
4384 int
4385 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4386                         struct drm_file *file_priv)
4387 {
4388     return i915_gem_ring_throttle(dev, file_priv);
4389 }
4390
4391 int
4392 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4393                        struct drm_file *file_priv)
4394 {
4395         struct drm_i915_gem_madvise *args = data;
4396         struct drm_gem_object *obj;
4397         struct drm_i915_gem_object *obj_priv;
4398
4399         switch (args->madv) {
4400         case I915_MADV_DONTNEED:
4401         case I915_MADV_WILLNEED:
4402             break;
4403         default:
4404             return -EINVAL;
4405         }
4406
4407         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4408         if (obj == NULL) {
4409                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4410                           args->handle);
4411                 return -EBADF;
4412         }
4413
4414         mutex_lock(&dev->struct_mutex);
4415         obj_priv = to_intel_bo(obj);
4416
4417         if (obj_priv->pin_count) {
4418                 drm_gem_object_unreference(obj);
4419                 mutex_unlock(&dev->struct_mutex);
4420
4421                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4422                 return -EINVAL;
4423         }
4424
4425         if (obj_priv->madv != __I915_MADV_PURGED)
4426                 obj_priv->madv = args->madv;
4427
4428         /* if the object is no longer bound, discard its backing storage */
4429         if (i915_gem_object_is_purgeable(obj_priv) &&
4430             obj_priv->gtt_space == NULL)
4431                 i915_gem_object_truncate(obj);
4432
4433         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4434
4435         drm_gem_object_unreference(obj);
4436         mutex_unlock(&dev->struct_mutex);
4437
4438         return 0;
4439 }
4440
4441 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4442                                               size_t size)
4443 {
4444         struct drm_i915_gem_object *obj;
4445
4446         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4447         if (obj == NULL)
4448                 return NULL;
4449
4450         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4451                 kfree(obj);
4452                 return NULL;
4453         }
4454
4455         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4456         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4457
4458         obj->agp_type = AGP_USER_MEMORY;
4459         obj->base.driver_private = NULL;
4460         obj->fence_reg = I915_FENCE_REG_NONE;
4461         INIT_LIST_HEAD(&obj->list);
4462         INIT_LIST_HEAD(&obj->gpu_write_list);
4463         obj->madv = I915_MADV_WILLNEED;
4464
4465         trace_i915_gem_object_create(&obj->base);
4466
4467         return &obj->base;
4468 }
4469
4470 int i915_gem_init_object(struct drm_gem_object *obj)
4471 {
4472         BUG();
4473
4474         return 0;
4475 }
4476
4477 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4478 {
4479         struct drm_device *dev = obj->dev;
4480         drm_i915_private_t *dev_priv = dev->dev_private;
4481         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4482         int ret;
4483
4484         ret = i915_gem_object_unbind(obj);
4485         if (ret == -ERESTARTSYS) {
4486                 list_move(&obj_priv->list,
4487                           &dev_priv->mm.deferred_free_list);
4488                 return;
4489         }
4490
4491         if (obj_priv->mmap_offset)
4492                 i915_gem_free_mmap_offset(obj);
4493
4494         drm_gem_object_release(obj);
4495
4496         kfree(obj_priv->page_cpu_valid);
4497         kfree(obj_priv->bit_17);
4498         kfree(obj_priv);
4499 }
4500
4501 void i915_gem_free_object(struct drm_gem_object *obj)
4502 {
4503         struct drm_device *dev = obj->dev;
4504         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4505
4506         trace_i915_gem_object_destroy(obj);
4507
4508         while (obj_priv->pin_count > 0)
4509                 i915_gem_object_unpin(obj);
4510
4511         if (obj_priv->phys_obj)
4512                 i915_gem_detach_phys_object(dev, obj);
4513
4514         i915_gem_free_object_tail(obj);
4515 }
4516
4517 /** Unbinds all inactive objects. */
4518 static int
4519 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4520 {
4521         drm_i915_private_t *dev_priv = dev->dev_private;
4522
4523         while (!list_empty(&dev_priv->mm.inactive_list)) {
4524                 struct drm_gem_object *obj;
4525                 int ret;
4526
4527                 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4528                                         struct drm_i915_gem_object,
4529                                         list)->base;
4530
4531                 ret = i915_gem_object_unbind(obj);
4532                 if (ret != 0) {
4533                         DRM_ERROR("Error unbinding object: %d\n", ret);
4534                         return ret;
4535                 }
4536         }
4537
4538         return 0;
4539 }
4540
4541 int
4542 i915_gem_idle(struct drm_device *dev)
4543 {
4544         drm_i915_private_t *dev_priv = dev->dev_private;
4545         int ret;
4546
4547         mutex_lock(&dev->struct_mutex);
4548
4549         if (dev_priv->mm.suspended ||
4550                         (dev_priv->render_ring.gem_object == NULL) ||
4551                         (HAS_BSD(dev) &&
4552                          dev_priv->bsd_ring.gem_object == NULL)) {
4553                 mutex_unlock(&dev->struct_mutex);
4554                 return 0;
4555         }
4556
4557         ret = i915_gpu_idle(dev);
4558         if (ret) {
4559                 mutex_unlock(&dev->struct_mutex);
4560                 return ret;
4561         }
4562
4563         /* Under UMS, be paranoid and evict. */
4564         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4565                 ret = i915_gem_evict_from_inactive_list(dev);
4566                 if (ret) {
4567                         mutex_unlock(&dev->struct_mutex);
4568                         return ret;
4569                 }
4570         }
4571
4572         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4573          * We need to replace this with a semaphore, or something.
4574          * And not confound mm.suspended!
4575          */
4576         dev_priv->mm.suspended = 1;
4577         del_timer(&dev_priv->hangcheck_timer);
4578
4579         i915_kernel_lost_context(dev);
4580         i915_gem_cleanup_ringbuffer(dev);
4581
4582         mutex_unlock(&dev->struct_mutex);
4583
4584         /* Cancel the retire work handler, which should be idle now. */
4585         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4586
4587         return 0;
4588 }
4589
4590 /*
4591  * 965+ support PIPE_CONTROL commands, which provide finer grained control
4592  * over cache flushing.
4593  */
4594 static int
4595 i915_gem_init_pipe_control(struct drm_device *dev)
4596 {
4597         drm_i915_private_t *dev_priv = dev->dev_private;
4598         struct drm_gem_object *obj;
4599         struct drm_i915_gem_object *obj_priv;
4600         int ret;
4601
4602         obj = i915_gem_alloc_object(dev, 4096);
4603         if (obj == NULL) {
4604                 DRM_ERROR("Failed to allocate seqno page\n");
4605                 ret = -ENOMEM;
4606                 goto err;
4607         }
4608         obj_priv = to_intel_bo(obj);
4609         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4610
4611         ret = i915_gem_object_pin(obj, 4096);
4612         if (ret)
4613                 goto err_unref;
4614
4615         dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4616         dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
4617         if (dev_priv->seqno_page == NULL)
4618                 goto err_unpin;
4619
4620         dev_priv->seqno_obj = obj;
4621         memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4622
4623         return 0;
4624
4625 err_unpin:
4626         i915_gem_object_unpin(obj);
4627 err_unref:
4628         drm_gem_object_unreference(obj);
4629 err:
4630         return ret;
4631 }
4632
4633
4634 static void
4635 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4636 {
4637         drm_i915_private_t *dev_priv = dev->dev_private;
4638         struct drm_gem_object *obj;
4639         struct drm_i915_gem_object *obj_priv;
4640
4641         obj = dev_priv->seqno_obj;
4642         obj_priv = to_intel_bo(obj);
4643         kunmap(obj_priv->pages[0]);
4644         i915_gem_object_unpin(obj);
4645         drm_gem_object_unreference(obj);
4646         dev_priv->seqno_obj = NULL;
4647
4648         dev_priv->seqno_page = NULL;
4649 }
4650
4651 int
4652 i915_gem_init_ringbuffer(struct drm_device *dev)
4653 {
4654         drm_i915_private_t *dev_priv = dev->dev_private;
4655         int ret;
4656
4657         dev_priv->render_ring = render_ring;
4658
4659         if (!I915_NEED_GFX_HWS(dev)) {
4660                 dev_priv->render_ring.status_page.page_addr
4661                         = dev_priv->status_page_dmah->vaddr;
4662                 memset(dev_priv->render_ring.status_page.page_addr,
4663                                 0, PAGE_SIZE);
4664         }
4665
4666         if (HAS_PIPE_CONTROL(dev)) {
4667                 ret = i915_gem_init_pipe_control(dev);
4668                 if (ret)
4669                         return ret;
4670         }
4671
4672         ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4673         if (ret)
4674                 goto cleanup_pipe_control;
4675
4676         if (HAS_BSD(dev)) {
4677                 dev_priv->bsd_ring = bsd_ring;
4678                 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4679                 if (ret)
4680                         goto cleanup_render_ring;
4681         }
4682
4683         return 0;
4684
4685 cleanup_render_ring:
4686         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4687 cleanup_pipe_control:
4688         if (HAS_PIPE_CONTROL(dev))
4689                 i915_gem_cleanup_pipe_control(dev);
4690         return ret;
4691 }
4692
4693 void
4694 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4695 {
4696         drm_i915_private_t *dev_priv = dev->dev_private;
4697
4698         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4699         if (HAS_BSD(dev))
4700                 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4701         if (HAS_PIPE_CONTROL(dev))
4702                 i915_gem_cleanup_pipe_control(dev);
4703 }
4704
4705 int
4706 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4707                        struct drm_file *file_priv)
4708 {
4709         drm_i915_private_t *dev_priv = dev->dev_private;
4710         int ret;
4711
4712         if (drm_core_check_feature(dev, DRIVER_MODESET))
4713                 return 0;
4714
4715         if (atomic_read(&dev_priv->mm.wedged)) {
4716                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4717                 atomic_set(&dev_priv->mm.wedged, 0);
4718         }
4719
4720         mutex_lock(&dev->struct_mutex);
4721         dev_priv->mm.suspended = 0;
4722
4723         ret = i915_gem_init_ringbuffer(dev);
4724         if (ret != 0) {
4725                 mutex_unlock(&dev->struct_mutex);
4726                 return ret;
4727         }
4728
4729         spin_lock(&dev_priv->mm.active_list_lock);
4730         BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4731         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4732         spin_unlock(&dev_priv->mm.active_list_lock);
4733
4734         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4735         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4736         BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4737         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4738         mutex_unlock(&dev->struct_mutex);
4739
4740         ret = drm_irq_install(dev);
4741         if (ret)
4742                 goto cleanup_ringbuffer;
4743
4744         return 0;
4745
4746 cleanup_ringbuffer:
4747         mutex_lock(&dev->struct_mutex);
4748         i915_gem_cleanup_ringbuffer(dev);
4749         dev_priv->mm.suspended = 1;
4750         mutex_unlock(&dev->struct_mutex);
4751
4752         return ret;
4753 }
4754
4755 int
4756 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4757                        struct drm_file *file_priv)
4758 {
4759         if (drm_core_check_feature(dev, DRIVER_MODESET))
4760                 return 0;
4761
4762         drm_irq_uninstall(dev);
4763         return i915_gem_idle(dev);
4764 }
4765
4766 void
4767 i915_gem_lastclose(struct drm_device *dev)
4768 {
4769         int ret;
4770
4771         if (drm_core_check_feature(dev, DRIVER_MODESET))
4772                 return;
4773
4774         ret = i915_gem_idle(dev);
4775         if (ret)
4776                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4777 }
4778
4779 void
4780 i915_gem_load(struct drm_device *dev)
4781 {
4782         int i;
4783         drm_i915_private_t *dev_priv = dev->dev_private;
4784
4785         spin_lock_init(&dev_priv->mm.active_list_lock);
4786         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4787         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4788         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4789         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4790         INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4791         INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4792         INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4793         if (HAS_BSD(dev)) {
4794                 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4795                 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4796         }
4797         for (i = 0; i < 16; i++)
4798                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4799         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4800                           i915_gem_retire_work_handler);
4801         spin_lock(&shrink_list_lock);
4802         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4803         spin_unlock(&shrink_list_lock);
4804
4805         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4806         if (IS_GEN3(dev)) {
4807                 u32 tmp = I915_READ(MI_ARB_STATE);
4808                 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4809                         /* arb state is a masked write, so set bit + bit in mask */
4810                         tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4811                         I915_WRITE(MI_ARB_STATE, tmp);
4812                 }
4813         }
4814
4815         /* Old X drivers will take 0-2 for front, back, depth buffers */
4816         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4817                 dev_priv->fence_reg_start = 3;
4818
4819         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4820                 dev_priv->num_fence_regs = 16;
4821         else
4822                 dev_priv->num_fence_regs = 8;
4823
4824         /* Initialize fence registers to zero */
4825         if (IS_I965G(dev)) {
4826                 for (i = 0; i < 16; i++)
4827                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4828         } else {
4829                 for (i = 0; i < 8; i++)
4830                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4831                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4832                         for (i = 0; i < 8; i++)
4833                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4834         }
4835         i915_gem_detect_bit_6_swizzle(dev);
4836         init_waitqueue_head(&dev_priv->pending_flip_queue);
4837 }
4838
4839 /*
4840  * Create a physically contiguous memory object for this object
4841  * e.g. for cursor + overlay regs
4842  */
4843 int i915_gem_init_phys_object(struct drm_device *dev,
4844                               int id, int size)
4845 {
4846         drm_i915_private_t *dev_priv = dev->dev_private;
4847         struct drm_i915_gem_phys_object *phys_obj;
4848         int ret;
4849
4850         if (dev_priv->mm.phys_objs[id - 1] || !size)
4851                 return 0;
4852
4853         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4854         if (!phys_obj)
4855                 return -ENOMEM;
4856
4857         phys_obj->id = id;
4858
4859         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4860         if (!phys_obj->handle) {
4861                 ret = -ENOMEM;
4862                 goto kfree_obj;
4863         }
4864 #ifdef CONFIG_X86
4865         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4866 #endif
4867
4868         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4869
4870         return 0;
4871 kfree_obj:
4872         kfree(phys_obj);
4873         return ret;
4874 }
4875
4876 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4877 {
4878         drm_i915_private_t *dev_priv = dev->dev_private;
4879         struct drm_i915_gem_phys_object *phys_obj;
4880
4881         if (!dev_priv->mm.phys_objs[id - 1])
4882                 return;
4883
4884         phys_obj = dev_priv->mm.phys_objs[id - 1];
4885         if (phys_obj->cur_obj) {
4886                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4887         }
4888
4889 #ifdef CONFIG_X86
4890         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4891 #endif
4892         drm_pci_free(dev, phys_obj->handle);
4893         kfree(phys_obj);
4894         dev_priv->mm.phys_objs[id - 1] = NULL;
4895 }
4896
4897 void i915_gem_free_all_phys_object(struct drm_device *dev)
4898 {
4899         int i;
4900
4901         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4902                 i915_gem_free_phys_object(dev, i);
4903 }
4904
4905 void i915_gem_detach_phys_object(struct drm_device *dev,
4906                                  struct drm_gem_object *obj)
4907 {
4908         struct drm_i915_gem_object *obj_priv;
4909         int i;
4910         int ret;
4911         int page_count;
4912
4913         obj_priv = to_intel_bo(obj);
4914         if (!obj_priv->phys_obj)
4915                 return;
4916
4917         ret = i915_gem_object_get_pages(obj, 0);
4918         if (ret)
4919                 goto out;
4920
4921         page_count = obj->size / PAGE_SIZE;
4922
4923         for (i = 0; i < page_count; i++) {
4924                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4925                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4926
4927                 memcpy(dst, src, PAGE_SIZE);
4928                 kunmap_atomic(dst, KM_USER0);
4929         }
4930         drm_clflush_pages(obj_priv->pages, page_count);
4931         drm_agp_chipset_flush(dev);
4932
4933         i915_gem_object_put_pages(obj);
4934 out:
4935         obj_priv->phys_obj->cur_obj = NULL;
4936         obj_priv->phys_obj = NULL;
4937 }
4938
4939 int
4940 i915_gem_attach_phys_object(struct drm_device *dev,
4941                             struct drm_gem_object *obj, int id)
4942 {
4943         drm_i915_private_t *dev_priv = dev->dev_private;
4944         struct drm_i915_gem_object *obj_priv;
4945         int ret = 0;
4946         int page_count;
4947         int i;
4948
4949         if (id > I915_MAX_PHYS_OBJECT)
4950                 return -EINVAL;
4951
4952         obj_priv = to_intel_bo(obj);
4953
4954         if (obj_priv->phys_obj) {
4955                 if (obj_priv->phys_obj->id == id)
4956                         return 0;
4957                 i915_gem_detach_phys_object(dev, obj);
4958         }
4959
4960
4961         /* create a new object */
4962         if (!dev_priv->mm.phys_objs[id - 1]) {
4963                 ret = i915_gem_init_phys_object(dev, id,
4964                                                 obj->size);
4965                 if (ret) {
4966                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4967                         goto out;
4968                 }
4969         }
4970
4971         /* bind to the object */
4972         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4973         obj_priv->phys_obj->cur_obj = obj;
4974
4975         ret = i915_gem_object_get_pages(obj, 0);
4976         if (ret) {
4977                 DRM_ERROR("failed to get page list\n");
4978                 goto out;
4979         }
4980
4981         page_count = obj->size / PAGE_SIZE;
4982
4983         for (i = 0; i < page_count; i++) {
4984                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4985                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4986
4987                 memcpy(dst, src, PAGE_SIZE);
4988                 kunmap_atomic(src, KM_USER0);
4989         }
4990
4991         i915_gem_object_put_pages(obj);
4992
4993         return 0;
4994 out:
4995         return ret;
4996 }
4997
4998 static int
4999 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5000                      struct drm_i915_gem_pwrite *args,
5001                      struct drm_file *file_priv)
5002 {
5003         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5004         void *obj_addr;
5005         int ret;
5006         char __user *user_data;
5007
5008         user_data = (char __user *) (uintptr_t) args->data_ptr;
5009         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5010
5011         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5012         ret = copy_from_user(obj_addr, user_data, args->size);
5013         if (ret)
5014                 return -EFAULT;
5015
5016         drm_agp_chipset_flush(dev);
5017         return 0;
5018 }
5019
5020 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5021 {
5022         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5023
5024         /* Clean up our request list when the client is going away, so that
5025          * later retire_requests won't dereference our soon-to-be-gone
5026          * file_priv.
5027          */
5028         mutex_lock(&dev->struct_mutex);
5029         while (!list_empty(&i915_file_priv->mm.request_list))
5030                 list_del_init(i915_file_priv->mm.request_list.next);
5031         mutex_unlock(&dev->struct_mutex);
5032 }
5033
5034 static int
5035 i915_gpu_is_active(struct drm_device *dev)
5036 {
5037         drm_i915_private_t *dev_priv = dev->dev_private;
5038         int lists_empty;
5039
5040         spin_lock(&dev_priv->mm.active_list_lock);
5041         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5042                       list_empty(&dev_priv->render_ring.active_list);
5043         if (HAS_BSD(dev))
5044                 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
5045         spin_unlock(&dev_priv->mm.active_list_lock);
5046
5047         return !lists_empty;
5048 }
5049
5050 static int
5051 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
5052 {
5053         drm_i915_private_t *dev_priv, *next_dev;
5054         struct drm_i915_gem_object *obj_priv, *next_obj;
5055         int cnt = 0;
5056         int would_deadlock = 1;
5057
5058         /* "fast-path" to count number of available objects */
5059         if (nr_to_scan == 0) {
5060                 spin_lock(&shrink_list_lock);
5061                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5062                         struct drm_device *dev = dev_priv->dev;
5063
5064                         if (mutex_trylock(&dev->struct_mutex)) {
5065                                 list_for_each_entry(obj_priv,
5066                                                     &dev_priv->mm.inactive_list,
5067                                                     list)
5068                                         cnt++;
5069                                 mutex_unlock(&dev->struct_mutex);
5070                         }
5071                 }
5072                 spin_unlock(&shrink_list_lock);
5073
5074                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5075         }
5076
5077         spin_lock(&shrink_list_lock);
5078
5079 rescan:
5080         /* first scan for clean buffers */
5081         list_for_each_entry_safe(dev_priv, next_dev,
5082                                  &shrink_list, mm.shrink_list) {
5083                 struct drm_device *dev = dev_priv->dev;
5084
5085                 if (! mutex_trylock(&dev->struct_mutex))
5086                         continue;
5087
5088                 spin_unlock(&shrink_list_lock);
5089                 i915_gem_retire_requests(dev);
5090
5091                 list_for_each_entry_safe(obj_priv, next_obj,
5092                                          &dev_priv->mm.inactive_list,
5093                                          list) {
5094                         if (i915_gem_object_is_purgeable(obj_priv)) {
5095                                 i915_gem_object_unbind(&obj_priv->base);
5096                                 if (--nr_to_scan <= 0)
5097                                         break;
5098                         }
5099                 }
5100
5101                 spin_lock(&shrink_list_lock);
5102                 mutex_unlock(&dev->struct_mutex);
5103
5104                 would_deadlock = 0;
5105
5106                 if (nr_to_scan <= 0)
5107                         break;
5108         }
5109
5110         /* second pass, evict/count anything still on the inactive list */
5111         list_for_each_entry_safe(dev_priv, next_dev,
5112                                  &shrink_list, mm.shrink_list) {
5113                 struct drm_device *dev = dev_priv->dev;
5114
5115                 if (! mutex_trylock(&dev->struct_mutex))
5116                         continue;
5117
5118                 spin_unlock(&shrink_list_lock);
5119
5120                 list_for_each_entry_safe(obj_priv, next_obj,
5121                                          &dev_priv->mm.inactive_list,
5122                                          list) {
5123                         if (nr_to_scan > 0) {
5124                                 i915_gem_object_unbind(&obj_priv->base);
5125                                 nr_to_scan--;
5126                         } else
5127                                 cnt++;
5128                 }
5129
5130                 spin_lock(&shrink_list_lock);
5131                 mutex_unlock(&dev->struct_mutex);
5132
5133                 would_deadlock = 0;
5134         }
5135
5136         if (nr_to_scan) {
5137                 int active = 0;
5138
5139                 /*
5140                  * We are desperate for pages, so as a last resort, wait
5141                  * for the GPU to finish and discard whatever we can.
5142                  * This has a dramatic impact to reduce the number of
5143                  * OOM-killer events whilst running the GPU aggressively.
5144                  */
5145                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5146                         struct drm_device *dev = dev_priv->dev;
5147
5148                         if (!mutex_trylock(&dev->struct_mutex))
5149                                 continue;
5150
5151                         spin_unlock(&shrink_list_lock);
5152
5153                         if (i915_gpu_is_active(dev)) {
5154                                 i915_gpu_idle(dev);
5155                                 active++;
5156                         }
5157
5158                         spin_lock(&shrink_list_lock);
5159                         mutex_unlock(&dev->struct_mutex);
5160                 }
5161
5162                 if (active)
5163                         goto rescan;
5164         }
5165
5166         spin_unlock(&shrink_list_lock);
5167
5168         if (would_deadlock)
5169                 return -1;
5170         else if (cnt > 0)
5171                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5172         else
5173                 return 0;
5174 }
5175
5176 static struct shrinker shrinker = {
5177         .shrink = i915_gem_shrink,
5178         .seeks = DEFAULT_SEEKS,
5179 };
5180
5181 __init void
5182 i915_gem_shrinker_init(void)
5183 {
5184     register_shrinker(&shrinker);
5185 }
5186
5187 __exit void
5188 i915_gem_shrinker_exit(void)
5189 {
5190     unregister_shrinker(&shrinker);
5191 }