drm/i915: Update ring->flush() to take a requests structure
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105         bool has_aliasing_ppgtt;
106         bool has_full_ppgtt;
107
108         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111         if (intel_vgpu_active(dev))
112                 has_full_ppgtt = false; /* emulation is too hard */
113
114         /*
115          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116          * execlists, the sole mechanism available to submit work.
117          */
118         if (INTEL_INFO(dev)->gen < 9 &&
119             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120                 return 0;
121
122         if (enable_ppgtt == 1)
123                 return 1;
124
125         if (enable_ppgtt == 2 && has_full_ppgtt)
126                 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129         /* Disable ppgtt on SNB if VT-d is on. */
130         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132                 return 0;
133         }
134 #endif
135
136         /* Early VLV doesn't have this */
137         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138             dev->pdev->revision < 0xb) {
139                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140                 return 0;
141         }
142
143         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144                 return 2;
145         else
146                 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150                           enum i915_cache_level cache_level,
151                           u32 unused)
152 {
153         u32 pte_flags = 0;
154
155         /* Currently applicable only to VLV */
156         if (vma->obj->gt_ro)
157                 pte_flags |= PTE_READ_ONLY;
158
159         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160                                 cache_level, pte_flags);
161
162         return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167         vma->vm->clear_range(vma->vm,
168                              vma->node.start,
169                              vma->obj->base.size,
170                              true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174                                   enum i915_cache_level level,
175                                   bool valid)
176 {
177         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178         pte |= addr;
179
180         switch (level) {
181         case I915_CACHE_NONE:
182                 pte |= PPAT_UNCACHED_INDEX;
183                 break;
184         case I915_CACHE_WT:
185                 pte |= PPAT_DISPLAY_ELLC_INDEX;
186                 break;
187         default:
188                 pte |= PPAT_CACHED_INDEX;
189                 break;
190         }
191
192         return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(struct drm_device *dev,
196                                   dma_addr_t addr,
197                                   enum i915_cache_level level)
198 {
199         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
200         pde |= addr;
201         if (level != I915_CACHE_NONE)
202                 pde |= PPAT_CACHED_PDE_INDEX;
203         else
204                 pde |= PPAT_UNCACHED_INDEX;
205         return pde;
206 }
207
208 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
209                                  enum i915_cache_level level,
210                                  bool valid, u32 unused)
211 {
212         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
213         pte |= GEN6_PTE_ADDR_ENCODE(addr);
214
215         switch (level) {
216         case I915_CACHE_L3_LLC:
217         case I915_CACHE_LLC:
218                 pte |= GEN6_PTE_CACHE_LLC;
219                 break;
220         case I915_CACHE_NONE:
221                 pte |= GEN6_PTE_UNCACHED;
222                 break;
223         default:
224                 MISSING_CASE(level);
225         }
226
227         return pte;
228 }
229
230 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
231                                  enum i915_cache_level level,
232                                  bool valid, u32 unused)
233 {
234         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
235         pte |= GEN6_PTE_ADDR_ENCODE(addr);
236
237         switch (level) {
238         case I915_CACHE_L3_LLC:
239                 pte |= GEN7_PTE_CACHE_L3_LLC;
240                 break;
241         case I915_CACHE_LLC:
242                 pte |= GEN6_PTE_CACHE_LLC;
243                 break;
244         case I915_CACHE_NONE:
245                 pte |= GEN6_PTE_UNCACHED;
246                 break;
247         default:
248                 MISSING_CASE(level);
249         }
250
251         return pte;
252 }
253
254 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
255                                  enum i915_cache_level level,
256                                  bool valid, u32 flags)
257 {
258         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259         pte |= GEN6_PTE_ADDR_ENCODE(addr);
260
261         if (!(flags & PTE_READ_ONLY))
262                 pte |= BYT_PTE_WRITEABLE;
263
264         if (level != I915_CACHE_NONE)
265                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
266
267         return pte;
268 }
269
270 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
271                                  enum i915_cache_level level,
272                                  bool valid, u32 unused)
273 {
274         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
275         pte |= HSW_PTE_ADDR_ENCODE(addr);
276
277         if (level != I915_CACHE_NONE)
278                 pte |= HSW_WB_LLC_AGE3;
279
280         return pte;
281 }
282
283 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
284                                   enum i915_cache_level level,
285                                   bool valid, u32 unused)
286 {
287         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
288         pte |= HSW_PTE_ADDR_ENCODE(addr);
289
290         switch (level) {
291         case I915_CACHE_NONE:
292                 break;
293         case I915_CACHE_WT:
294                 pte |= HSW_WT_ELLC_LLC_AGE3;
295                 break;
296         default:
297                 pte |= HSW_WB_ELLC_LLC_AGE3;
298                 break;
299         }
300
301         return pte;
302 }
303
304 #define i915_dma_unmap_single(px, dev) \
305         __i915_dma_unmap_single((px)->daddr, dev)
306
307 static void __i915_dma_unmap_single(dma_addr_t daddr,
308                                     struct drm_device *dev)
309 {
310         struct device *device = &dev->pdev->dev;
311
312         dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
313 }
314
315 /**
316  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
317  * @px: Page table/dir/etc to get a DMA map for
318  * @dev:        drm device
319  *
320  * Page table allocations are unified across all gens. They always require a
321  * single 4k allocation, as well as a DMA mapping. If we keep the structs
322  * symmetric here, the simple macro covers us for every page table type.
323  *
324  * Return: 0 if success.
325  */
326 #define i915_dma_map_single(px, dev) \
327         i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
328
329 static int i915_dma_map_page_single(struct page *page,
330                                     struct drm_device *dev,
331                                     dma_addr_t *daddr)
332 {
333         struct device *device = &dev->pdev->dev;
334
335         *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
336         if (dma_mapping_error(device, *daddr))
337                 return -ENOMEM;
338
339         return 0;
340 }
341
342 static void unmap_and_free_pt(struct i915_page_table *pt,
343                                struct drm_device *dev)
344 {
345         if (WARN_ON(!pt->page))
346                 return;
347
348         i915_dma_unmap_single(pt, dev);
349         __free_page(pt->page);
350         kfree(pt->used_ptes);
351         kfree(pt);
352 }
353
354 static void gen8_initialize_pt(struct i915_address_space *vm,
355                                struct i915_page_table *pt)
356 {
357         gen8_pte_t *pt_vaddr, scratch_pte;
358         int i;
359
360         pt_vaddr = kmap_atomic(pt->page);
361         scratch_pte = gen8_pte_encode(vm->scratch.addr,
362                                       I915_CACHE_LLC, true);
363
364         for (i = 0; i < GEN8_PTES; i++)
365                 pt_vaddr[i] = scratch_pte;
366
367         if (!HAS_LLC(vm->dev))
368                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
369         kunmap_atomic(pt_vaddr);
370 }
371
372 static struct i915_page_table *alloc_pt(struct drm_device *dev)
373 {
374         struct i915_page_table *pt;
375         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
376                 GEN8_PTES : GEN6_PTES;
377         int ret = -ENOMEM;
378
379         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
380         if (!pt)
381                 return ERR_PTR(-ENOMEM);
382
383         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
384                                 GFP_KERNEL);
385
386         if (!pt->used_ptes)
387                 goto fail_bitmap;
388
389         pt->page = alloc_page(GFP_KERNEL);
390         if (!pt->page)
391                 goto fail_page;
392
393         ret = i915_dma_map_single(pt, dev);
394         if (ret)
395                 goto fail_dma;
396
397         return pt;
398
399 fail_dma:
400         __free_page(pt->page);
401 fail_page:
402         kfree(pt->used_ptes);
403 fail_bitmap:
404         kfree(pt);
405
406         return ERR_PTR(ret);
407 }
408
409 static void unmap_and_free_pd(struct i915_page_directory *pd,
410                               struct drm_device *dev)
411 {
412         if (pd->page) {
413                 i915_dma_unmap_single(pd, dev);
414                 __free_page(pd->page);
415                 kfree(pd->used_pdes);
416                 kfree(pd);
417         }
418 }
419
420 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
421 {
422         struct i915_page_directory *pd;
423         int ret = -ENOMEM;
424
425         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
426         if (!pd)
427                 return ERR_PTR(-ENOMEM);
428
429         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
430                                 sizeof(*pd->used_pdes), GFP_KERNEL);
431         if (!pd->used_pdes)
432                 goto free_pd;
433
434         pd->page = alloc_page(GFP_KERNEL);
435         if (!pd->page)
436                 goto free_bitmap;
437
438         ret = i915_dma_map_single(pd, dev);
439         if (ret)
440                 goto free_page;
441
442         return pd;
443
444 free_page:
445         __free_page(pd->page);
446 free_bitmap:
447         kfree(pd->used_pdes);
448 free_pd:
449         kfree(pd);
450
451         return ERR_PTR(ret);
452 }
453
454 /* Broadwell Page Directory Pointer Descriptors */
455 static int gen8_write_pdp(struct drm_i915_gem_request *req,
456                           unsigned entry,
457                           dma_addr_t addr)
458 {
459         struct intel_engine_cs *ring = req->ring;
460         int ret;
461
462         BUG_ON(entry >= 4);
463
464         ret = intel_ring_begin(ring, 6);
465         if (ret)
466                 return ret;
467
468         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
469         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
470         intel_ring_emit(ring, upper_32_bits(addr));
471         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
472         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
473         intel_ring_emit(ring, lower_32_bits(addr));
474         intel_ring_advance(ring);
475
476         return 0;
477 }
478
479 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
480                           struct drm_i915_gem_request *req)
481 {
482         int i, ret;
483
484         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
485                 struct i915_page_directory *pd = ppgtt->pdp.page_directory[i];
486                 dma_addr_t pd_daddr = pd ? pd->daddr : ppgtt->scratch_pd->daddr;
487                 /* The page directory might be NULL, but we need to clear out
488                  * whatever the previous context might have used. */
489                 ret = gen8_write_pdp(req, i, pd_daddr);
490                 if (ret)
491                         return ret;
492         }
493
494         return 0;
495 }
496
497 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
498                                    uint64_t start,
499                                    uint64_t length,
500                                    bool use_scratch)
501 {
502         struct i915_hw_ppgtt *ppgtt =
503                 container_of(vm, struct i915_hw_ppgtt, base);
504         gen8_pte_t *pt_vaddr, scratch_pte;
505         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
506         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
507         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
508         unsigned num_entries = length >> PAGE_SHIFT;
509         unsigned last_pte, i;
510
511         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
512                                       I915_CACHE_LLC, use_scratch);
513
514         while (num_entries) {
515                 struct i915_page_directory *pd;
516                 struct i915_page_table *pt;
517                 struct page *page_table;
518
519                 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
520                         continue;
521
522                 pd = ppgtt->pdp.page_directory[pdpe];
523
524                 if (WARN_ON(!pd->page_table[pde]))
525                         continue;
526
527                 pt = pd->page_table[pde];
528
529                 if (WARN_ON(!pt->page))
530                         continue;
531
532                 page_table = pt->page;
533
534                 last_pte = pte + num_entries;
535                 if (last_pte > GEN8_PTES)
536                         last_pte = GEN8_PTES;
537
538                 pt_vaddr = kmap_atomic(page_table);
539
540                 for (i = pte; i < last_pte; i++) {
541                         pt_vaddr[i] = scratch_pte;
542                         num_entries--;
543                 }
544
545                 if (!HAS_LLC(ppgtt->base.dev))
546                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
547                 kunmap_atomic(pt_vaddr);
548
549                 pte = 0;
550                 if (++pde == I915_PDES) {
551                         pdpe++;
552                         pde = 0;
553                 }
554         }
555 }
556
557 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
558                                       struct sg_table *pages,
559                                       uint64_t start,
560                                       enum i915_cache_level cache_level, u32 unused)
561 {
562         struct i915_hw_ppgtt *ppgtt =
563                 container_of(vm, struct i915_hw_ppgtt, base);
564         gen8_pte_t *pt_vaddr;
565         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
566         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
567         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
568         struct sg_page_iter sg_iter;
569
570         pt_vaddr = NULL;
571
572         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
573                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
574                         break;
575
576                 if (pt_vaddr == NULL) {
577                         struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
578                         struct i915_page_table *pt = pd->page_table[pde];
579                         struct page *page_table = pt->page;
580
581                         pt_vaddr = kmap_atomic(page_table);
582                 }
583
584                 pt_vaddr[pte] =
585                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
586                                         cache_level, true);
587                 if (++pte == GEN8_PTES) {
588                         if (!HAS_LLC(ppgtt->base.dev))
589                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
590                         kunmap_atomic(pt_vaddr);
591                         pt_vaddr = NULL;
592                         if (++pde == I915_PDES) {
593                                 pdpe++;
594                                 pde = 0;
595                         }
596                         pte = 0;
597                 }
598         }
599         if (pt_vaddr) {
600                 if (!HAS_LLC(ppgtt->base.dev))
601                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
602                 kunmap_atomic(pt_vaddr);
603         }
604 }
605
606 static void __gen8_do_map_pt(gen8_pde_t * const pde,
607                              struct i915_page_table *pt,
608                              struct drm_device *dev)
609 {
610         gen8_pde_t entry =
611                 gen8_pde_encode(dev, pt->daddr, I915_CACHE_LLC);
612         *pde = entry;
613 }
614
615 static void gen8_initialize_pd(struct i915_address_space *vm,
616                                struct i915_page_directory *pd)
617 {
618         struct i915_hw_ppgtt *ppgtt =
619                         container_of(vm, struct i915_hw_ppgtt, base);
620         gen8_pde_t *page_directory;
621         struct i915_page_table *pt;
622         int i;
623
624         page_directory = kmap_atomic(pd->page);
625         pt = ppgtt->scratch_pt;
626         for (i = 0; i < I915_PDES; i++)
627                 /* Map the PDE to the page table */
628                 __gen8_do_map_pt(page_directory + i, pt, vm->dev);
629
630         if (!HAS_LLC(vm->dev))
631                 drm_clflush_virt_range(page_directory, PAGE_SIZE);
632         kunmap_atomic(page_directory);
633 }
634
635 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
636 {
637         int i;
638
639         if (!pd->page)
640                 return;
641
642         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
643                 if (WARN_ON(!pd->page_table[i]))
644                         continue;
645
646                 unmap_and_free_pt(pd->page_table[i], dev);
647                 pd->page_table[i] = NULL;
648         }
649 }
650
651 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
652 {
653         struct i915_hw_ppgtt *ppgtt =
654                 container_of(vm, struct i915_hw_ppgtt, base);
655         int i;
656
657         for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
658                 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
659                         continue;
660
661                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
662                 unmap_and_free_pd(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
663         }
664
665         unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev);
666         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
667 }
668
669 /**
670  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
671  * @ppgtt:      Master ppgtt structure.
672  * @pd:         Page directory for this address range.
673  * @start:      Starting virtual address to begin allocations.
674  * @length      Size of the allocations.
675  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
676  *              caller to free on error.
677  *
678  * Allocate the required number of page tables. Extremely similar to
679  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
680  * the page directory boundary (instead of the page directory pointer). That
681  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
682  * possible, and likely that the caller will need to use multiple calls of this
683  * function to achieve the appropriate allocation.
684  *
685  * Return: 0 if success; negative error code otherwise.
686  */
687 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
688                                      struct i915_page_directory *pd,
689                                      uint64_t start,
690                                      uint64_t length,
691                                      unsigned long *new_pts)
692 {
693         struct drm_device *dev = ppgtt->base.dev;
694         struct i915_page_table *pt;
695         uint64_t temp;
696         uint32_t pde;
697
698         gen8_for_each_pde(pt, pd, start, length, temp, pde) {
699                 /* Don't reallocate page tables */
700                 if (pt) {
701                         /* Scratch is never allocated this way */
702                         WARN_ON(pt == ppgtt->scratch_pt);
703                         continue;
704                 }
705
706                 pt = alloc_pt(dev);
707                 if (IS_ERR(pt))
708                         goto unwind_out;
709
710                 gen8_initialize_pt(&ppgtt->base, pt);
711                 pd->page_table[pde] = pt;
712                 set_bit(pde, new_pts);
713         }
714
715         return 0;
716
717 unwind_out:
718         for_each_set_bit(pde, new_pts, I915_PDES)
719                 unmap_and_free_pt(pd->page_table[pde], dev);
720
721         return -ENOMEM;
722 }
723
724 /**
725  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
726  * @ppgtt:      Master ppgtt structure.
727  * @pdp:        Page directory pointer for this address range.
728  * @start:      Starting virtual address to begin allocations.
729  * @length      Size of the allocations.
730  * @new_pds     Bitmap set by function with new allocations. Likely used by the
731  *              caller to free on error.
732  *
733  * Allocate the required number of page directories starting at the pde index of
734  * @start, and ending at the pde index @start + @length. This function will skip
735  * over already allocated page directories within the range, and only allocate
736  * new ones, setting the appropriate pointer within the pdp as well as the
737  * correct position in the bitmap @new_pds.
738  *
739  * The function will only allocate the pages within the range for a give page
740  * directory pointer. In other words, if @start + @length straddles a virtually
741  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
742  * required by the caller, This is not currently possible, and the BUG in the
743  * code will prevent it.
744  *
745  * Return: 0 if success; negative error code otherwise.
746  */
747 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
748                                      struct i915_page_directory_pointer *pdp,
749                                      uint64_t start,
750                                      uint64_t length,
751                                      unsigned long *new_pds)
752 {
753         struct drm_device *dev = ppgtt->base.dev;
754         struct i915_page_directory *pd;
755         uint64_t temp;
756         uint32_t pdpe;
757
758         WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
759
760         /* FIXME: upper bound must not overflow 32 bits  */
761         WARN_ON((start + length) > (1ULL << 32));
762
763         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
764                 if (pd)
765                         continue;
766
767                 pd = alloc_pd(dev);
768                 if (IS_ERR(pd))
769                         goto unwind_out;
770
771                 gen8_initialize_pd(&ppgtt->base, pd);
772                 pdp->page_directory[pdpe] = pd;
773                 set_bit(pdpe, new_pds);
774         }
775
776         return 0;
777
778 unwind_out:
779         for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
780                 unmap_and_free_pd(pdp->page_directory[pdpe], dev);
781
782         return -ENOMEM;
783 }
784
785 static void
786 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
787 {
788         int i;
789
790         for (i = 0; i < GEN8_LEGACY_PDPES; i++)
791                 kfree(new_pts[i]);
792         kfree(new_pts);
793         kfree(new_pds);
794 }
795
796 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
797  * of these are based on the number of PDPEs in the system.
798  */
799 static
800 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
801                                          unsigned long ***new_pts)
802 {
803         int i;
804         unsigned long *pds;
805         unsigned long **pts;
806
807         pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
808         if (!pds)
809                 return -ENOMEM;
810
811         pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
812         if (!pts) {
813                 kfree(pds);
814                 return -ENOMEM;
815         }
816
817         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
818                 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
819                                  sizeof(unsigned long), GFP_KERNEL);
820                 if (!pts[i])
821                         goto err_out;
822         }
823
824         *new_pds = pds;
825         *new_pts = pts;
826
827         return 0;
828
829 err_out:
830         free_gen8_temp_bitmaps(pds, pts);
831         return -ENOMEM;
832 }
833
834 static int gen8_alloc_va_range(struct i915_address_space *vm,
835                                uint64_t start,
836                                uint64_t length)
837 {
838         struct i915_hw_ppgtt *ppgtt =
839                 container_of(vm, struct i915_hw_ppgtt, base);
840         unsigned long *new_page_dirs, **new_page_tables;
841         struct i915_page_directory *pd;
842         const uint64_t orig_start = start;
843         const uint64_t orig_length = length;
844         uint64_t temp;
845         uint32_t pdpe;
846         int ret;
847
848         /* Wrap is never okay since we can only represent 48b, and we don't
849          * actually use the other side of the canonical address space.
850          */
851         if (WARN_ON(start + length < start))
852                 return -ERANGE;
853
854         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
855         if (ret)
856                 return ret;
857
858         /* Do the allocations first so we can easily bail out */
859         ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
860                                         new_page_dirs);
861         if (ret) {
862                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
863                 return ret;
864         }
865
866         /* For every page directory referenced, allocate page tables */
867         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
868                 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
869                                                 new_page_tables[pdpe]);
870                 if (ret)
871                         goto err_out;
872         }
873
874         start = orig_start;
875         length = orig_length;
876
877         /* Allocations have completed successfully, so set the bitmaps, and do
878          * the mappings. */
879         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
880                 gen8_pde_t *const page_directory = kmap_atomic(pd->page);
881                 struct i915_page_table *pt;
882                 uint64_t pd_len = gen8_clamp_pd(start, length);
883                 uint64_t pd_start = start;
884                 uint32_t pde;
885
886                 /* Every pd should be allocated, we just did that above. */
887                 WARN_ON(!pd);
888
889                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
890                         /* Same reasoning as pd */
891                         WARN_ON(!pt);
892                         WARN_ON(!pd_len);
893                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
894
895                         /* Set our used ptes within the page table */
896                         bitmap_set(pt->used_ptes,
897                                    gen8_pte_index(pd_start),
898                                    gen8_pte_count(pd_start, pd_len));
899
900                         /* Our pde is now pointing to the pagetable, pt */
901                         set_bit(pde, pd->used_pdes);
902
903                         /* Map the PDE to the page table */
904                         __gen8_do_map_pt(page_directory + pde, pt, vm->dev);
905
906                         /* NB: We haven't yet mapped ptes to pages. At this
907                          * point we're still relying on insert_entries() */
908                 }
909
910                 if (!HAS_LLC(vm->dev))
911                         drm_clflush_virt_range(page_directory, PAGE_SIZE);
912
913                 kunmap_atomic(page_directory);
914
915                 set_bit(pdpe, ppgtt->pdp.used_pdpes);
916         }
917
918         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
919         return 0;
920
921 err_out:
922         while (pdpe--) {
923                 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
924                         unmap_and_free_pt(ppgtt->pdp.page_directory[pdpe]->page_table[temp], vm->dev);
925         }
926
927         for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
928                 unmap_and_free_pd(ppgtt->pdp.page_directory[pdpe], vm->dev);
929
930         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
931         return ret;
932 }
933
934 /*
935  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
936  * with a net effect resembling a 2-level page table in normal x86 terms. Each
937  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
938  * space.
939  *
940  */
941 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
942 {
943         ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
944         if (IS_ERR(ppgtt->scratch_pt))
945                 return PTR_ERR(ppgtt->scratch_pt);
946
947         ppgtt->scratch_pd = alloc_pd(ppgtt->base.dev);
948         if (IS_ERR(ppgtt->scratch_pd))
949                 return PTR_ERR(ppgtt->scratch_pd);
950
951         gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
952         gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
953
954         ppgtt->base.start = 0;
955         ppgtt->base.total = 1ULL << 32;
956         if (IS_ENABLED(CONFIG_X86_32))
957                 /* While we have a proliferation of size_t variables
958                  * we cannot represent the full ppgtt size on 32bit,
959                  * so limit it to the same size as the GGTT (currently
960                  * 2GiB).
961                  */
962                 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
963         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
964         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
965         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
966         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
967         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
968         ppgtt->base.bind_vma = ppgtt_bind_vma;
969
970         ppgtt->switch_mm = gen8_mm_switch;
971
972         return 0;
973 }
974
975 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
976 {
977         struct i915_address_space *vm = &ppgtt->base;
978         struct i915_page_table *unused;
979         gen6_pte_t scratch_pte;
980         uint32_t pd_entry;
981         uint32_t  pte, pde, temp;
982         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
983
984         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
985
986         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
987                 u32 expected;
988                 gen6_pte_t *pt_vaddr;
989                 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
990                 pd_entry = readl(ppgtt->pd_addr + pde);
991                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
992
993                 if (pd_entry != expected)
994                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
995                                    pde,
996                                    pd_entry,
997                                    expected);
998                 seq_printf(m, "\tPDE: %x\n", pd_entry);
999
1000                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
1001                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1002                         unsigned long va =
1003                                 (pde * PAGE_SIZE * GEN6_PTES) +
1004                                 (pte * PAGE_SIZE);
1005                         int i;
1006                         bool found = false;
1007                         for (i = 0; i < 4; i++)
1008                                 if (pt_vaddr[pte + i] != scratch_pte)
1009                                         found = true;
1010                         if (!found)
1011                                 continue;
1012
1013                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1014                         for (i = 0; i < 4; i++) {
1015                                 if (pt_vaddr[pte + i] != scratch_pte)
1016                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1017                                 else
1018                                         seq_puts(m, "  SCRATCH ");
1019                         }
1020                         seq_puts(m, "\n");
1021                 }
1022                 kunmap_atomic(pt_vaddr);
1023         }
1024 }
1025
1026 /* Write pde (index) from the page directory @pd to the page table @pt */
1027 static void gen6_write_pde(struct i915_page_directory *pd,
1028                             const int pde, struct i915_page_table *pt)
1029 {
1030         /* Caller needs to make sure the write completes if necessary */
1031         struct i915_hw_ppgtt *ppgtt =
1032                 container_of(pd, struct i915_hw_ppgtt, pd);
1033         u32 pd_entry;
1034
1035         pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
1036         pd_entry |= GEN6_PDE_VALID;
1037
1038         writel(pd_entry, ppgtt->pd_addr + pde);
1039 }
1040
1041 /* Write all the page tables found in the ppgtt structure to incrementing page
1042  * directories. */
1043 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1044                                   struct i915_page_directory *pd,
1045                                   uint32_t start, uint32_t length)
1046 {
1047         struct i915_page_table *pt;
1048         uint32_t pde, temp;
1049
1050         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1051                 gen6_write_pde(pd, pde, pt);
1052
1053         /* Make sure write is complete before other code can use this page
1054          * table. Also require for WC mapped PTEs */
1055         readl(dev_priv->gtt.gsm);
1056 }
1057
1058 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1059 {
1060         BUG_ON(ppgtt->pd.pd_offset & 0x3f);
1061
1062         return (ppgtt->pd.pd_offset / 64) << 16;
1063 }
1064
1065 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1066                          struct drm_i915_gem_request *req)
1067 {
1068         struct intel_engine_cs *ring = req->ring;
1069         int ret;
1070
1071         /* NB: TLBs must be flushed and invalidated before a switch */
1072         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1073         if (ret)
1074                 return ret;
1075
1076         ret = intel_ring_begin(ring, 6);
1077         if (ret)
1078                 return ret;
1079
1080         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1081         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1082         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1083         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1084         intel_ring_emit(ring, get_pd_offset(ppgtt));
1085         intel_ring_emit(ring, MI_NOOP);
1086         intel_ring_advance(ring);
1087
1088         return 0;
1089 }
1090
1091 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1092                           struct drm_i915_gem_request *req)
1093 {
1094         struct intel_engine_cs *ring = req->ring;
1095         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1096
1097         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1098         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1099         return 0;
1100 }
1101
1102 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1103                           struct drm_i915_gem_request *req)
1104 {
1105         struct intel_engine_cs *ring = req->ring;
1106         int ret;
1107
1108         /* NB: TLBs must be flushed and invalidated before a switch */
1109         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1110         if (ret)
1111                 return ret;
1112
1113         ret = intel_ring_begin(ring, 6);
1114         if (ret)
1115                 return ret;
1116
1117         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1118         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1119         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1120         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1121         intel_ring_emit(ring, get_pd_offset(ppgtt));
1122         intel_ring_emit(ring, MI_NOOP);
1123         intel_ring_advance(ring);
1124
1125         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1126         if (ring->id != RCS) {
1127                 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1128                 if (ret)
1129                         return ret;
1130         }
1131
1132         return 0;
1133 }
1134
1135 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1136                           struct drm_i915_gem_request *req)
1137 {
1138         struct intel_engine_cs *ring = req->ring;
1139         struct drm_device *dev = ppgtt->base.dev;
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141
1142
1143         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1144         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1145
1146         POSTING_READ(RING_PP_DIR_DCLV(ring));
1147
1148         return 0;
1149 }
1150
1151 static void gen8_ppgtt_enable(struct drm_device *dev)
1152 {
1153         struct drm_i915_private *dev_priv = dev->dev_private;
1154         struct intel_engine_cs *ring;
1155         int j;
1156
1157         for_each_ring(ring, dev_priv, j) {
1158                 I915_WRITE(RING_MODE_GEN7(ring),
1159                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1160         }
1161 }
1162
1163 static void gen7_ppgtt_enable(struct drm_device *dev)
1164 {
1165         struct drm_i915_private *dev_priv = dev->dev_private;
1166         struct intel_engine_cs *ring;
1167         uint32_t ecochk, ecobits;
1168         int i;
1169
1170         ecobits = I915_READ(GAC_ECO_BITS);
1171         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1172
1173         ecochk = I915_READ(GAM_ECOCHK);
1174         if (IS_HASWELL(dev)) {
1175                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1176         } else {
1177                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1178                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1179         }
1180         I915_WRITE(GAM_ECOCHK, ecochk);
1181
1182         for_each_ring(ring, dev_priv, i) {
1183                 /* GFX_MODE is per-ring on gen7+ */
1184                 I915_WRITE(RING_MODE_GEN7(ring),
1185                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1186         }
1187 }
1188
1189 static void gen6_ppgtt_enable(struct drm_device *dev)
1190 {
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         uint32_t ecochk, gab_ctl, ecobits;
1193
1194         ecobits = I915_READ(GAC_ECO_BITS);
1195         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1196                    ECOBITS_PPGTT_CACHE64B);
1197
1198         gab_ctl = I915_READ(GAB_CTL);
1199         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1200
1201         ecochk = I915_READ(GAM_ECOCHK);
1202         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1203
1204         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1205 }
1206
1207 /* PPGTT support for Sandybdrige/Gen6 and later */
1208 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1209                                    uint64_t start,
1210                                    uint64_t length,
1211                                    bool use_scratch)
1212 {
1213         struct i915_hw_ppgtt *ppgtt =
1214                 container_of(vm, struct i915_hw_ppgtt, base);
1215         gen6_pte_t *pt_vaddr, scratch_pte;
1216         unsigned first_entry = start >> PAGE_SHIFT;
1217         unsigned num_entries = length >> PAGE_SHIFT;
1218         unsigned act_pt = first_entry / GEN6_PTES;
1219         unsigned first_pte = first_entry % GEN6_PTES;
1220         unsigned last_pte, i;
1221
1222         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1223
1224         while (num_entries) {
1225                 last_pte = first_pte + num_entries;
1226                 if (last_pte > GEN6_PTES)
1227                         last_pte = GEN6_PTES;
1228
1229                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1230
1231                 for (i = first_pte; i < last_pte; i++)
1232                         pt_vaddr[i] = scratch_pte;
1233
1234                 kunmap_atomic(pt_vaddr);
1235
1236                 num_entries -= last_pte - first_pte;
1237                 first_pte = 0;
1238                 act_pt++;
1239         }
1240 }
1241
1242 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1243                                       struct sg_table *pages,
1244                                       uint64_t start,
1245                                       enum i915_cache_level cache_level, u32 flags)
1246 {
1247         struct i915_hw_ppgtt *ppgtt =
1248                 container_of(vm, struct i915_hw_ppgtt, base);
1249         gen6_pte_t *pt_vaddr;
1250         unsigned first_entry = start >> PAGE_SHIFT;
1251         unsigned act_pt = first_entry / GEN6_PTES;
1252         unsigned act_pte = first_entry % GEN6_PTES;
1253         struct sg_page_iter sg_iter;
1254
1255         pt_vaddr = NULL;
1256         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1257                 if (pt_vaddr == NULL)
1258                         pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1259
1260                 pt_vaddr[act_pte] =
1261                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1262                                        cache_level, true, flags);
1263
1264                 if (++act_pte == GEN6_PTES) {
1265                         kunmap_atomic(pt_vaddr);
1266                         pt_vaddr = NULL;
1267                         act_pt++;
1268                         act_pte = 0;
1269                 }
1270         }
1271         if (pt_vaddr)
1272                 kunmap_atomic(pt_vaddr);
1273 }
1274
1275 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1276  * are switching between contexts with the same LRCA, we also must do a force
1277  * restore.
1278  */
1279 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1280 {
1281         /* If current vm != vm, */
1282         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1283 }
1284
1285 static void gen6_initialize_pt(struct i915_address_space *vm,
1286                 struct i915_page_table *pt)
1287 {
1288         gen6_pte_t *pt_vaddr, scratch_pte;
1289         int i;
1290
1291         WARN_ON(vm->scratch.addr == 0);
1292
1293         scratch_pte = vm->pte_encode(vm->scratch.addr,
1294                         I915_CACHE_LLC, true, 0);
1295
1296         pt_vaddr = kmap_atomic(pt->page);
1297
1298         for (i = 0; i < GEN6_PTES; i++)
1299                 pt_vaddr[i] = scratch_pte;
1300
1301         kunmap_atomic(pt_vaddr);
1302 }
1303
1304 static int gen6_alloc_va_range(struct i915_address_space *vm,
1305                                uint64_t start, uint64_t length)
1306 {
1307         DECLARE_BITMAP(new_page_tables, I915_PDES);
1308         struct drm_device *dev = vm->dev;
1309         struct drm_i915_private *dev_priv = dev->dev_private;
1310         struct i915_hw_ppgtt *ppgtt =
1311                                 container_of(vm, struct i915_hw_ppgtt, base);
1312         struct i915_page_table *pt;
1313         const uint32_t start_save = start, length_save = length;
1314         uint32_t pde, temp;
1315         int ret;
1316
1317         WARN_ON(upper_32_bits(start));
1318
1319         bitmap_zero(new_page_tables, I915_PDES);
1320
1321         /* The allocation is done in two stages so that we can bail out with
1322          * minimal amount of pain. The first stage finds new page tables that
1323          * need allocation. The second stage marks use ptes within the page
1324          * tables.
1325          */
1326         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1327                 if (pt != ppgtt->scratch_pt) {
1328                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1329                         continue;
1330                 }
1331
1332                 /* We've already allocated a page table */
1333                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1334
1335                 pt = alloc_pt(dev);
1336                 if (IS_ERR(pt)) {
1337                         ret = PTR_ERR(pt);
1338                         goto unwind_out;
1339                 }
1340
1341                 gen6_initialize_pt(vm, pt);
1342
1343                 ppgtt->pd.page_table[pde] = pt;
1344                 set_bit(pde, new_page_tables);
1345                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1346         }
1347
1348         start = start_save;
1349         length = length_save;
1350
1351         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1352                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1353
1354                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1355                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1356                            gen6_pte_count(start, length));
1357
1358                 if (test_and_clear_bit(pde, new_page_tables))
1359                         gen6_write_pde(&ppgtt->pd, pde, pt);
1360
1361                 trace_i915_page_table_entry_map(vm, pde, pt,
1362                                          gen6_pte_index(start),
1363                                          gen6_pte_count(start, length),
1364                                          GEN6_PTES);
1365                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1366                                 GEN6_PTES);
1367         }
1368
1369         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1370
1371         /* Make sure write is complete before other code can use this page
1372          * table. Also require for WC mapped PTEs */
1373         readl(dev_priv->gtt.gsm);
1374
1375         mark_tlbs_dirty(ppgtt);
1376         return 0;
1377
1378 unwind_out:
1379         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1380                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1381
1382                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1383                 unmap_and_free_pt(pt, vm->dev);
1384         }
1385
1386         mark_tlbs_dirty(ppgtt);
1387         return ret;
1388 }
1389
1390 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1391 {
1392         struct i915_hw_ppgtt *ppgtt =
1393                 container_of(vm, struct i915_hw_ppgtt, base);
1394         struct i915_page_table *pt;
1395         uint32_t pde;
1396
1397
1398         drm_mm_remove_node(&ppgtt->node);
1399
1400         gen6_for_all_pdes(pt, ppgtt, pde) {
1401                 if (pt != ppgtt->scratch_pt)
1402                         unmap_and_free_pt(pt, ppgtt->base.dev);
1403         }
1404
1405         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1406         unmap_and_free_pd(&ppgtt->pd, ppgtt->base.dev);
1407 }
1408
1409 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1410 {
1411         struct drm_device *dev = ppgtt->base.dev;
1412         struct drm_i915_private *dev_priv = dev->dev_private;
1413         bool retried = false;
1414         int ret;
1415
1416         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1417          * allocator works in address space sizes, so it's multiplied by page
1418          * size. We allocate at the top of the GTT to avoid fragmentation.
1419          */
1420         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1421         ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
1422         if (IS_ERR(ppgtt->scratch_pt))
1423                 return PTR_ERR(ppgtt->scratch_pt);
1424
1425         gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1426
1427 alloc:
1428         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1429                                                   &ppgtt->node, GEN6_PD_SIZE,
1430                                                   GEN6_PD_ALIGN, 0,
1431                                                   0, dev_priv->gtt.base.total,
1432                                                   DRM_MM_TOPDOWN);
1433         if (ret == -ENOSPC && !retried) {
1434                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1435                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1436                                                I915_CACHE_NONE,
1437                                                0, dev_priv->gtt.base.total,
1438                                                0);
1439                 if (ret)
1440                         goto err_out;
1441
1442                 retried = true;
1443                 goto alloc;
1444         }
1445
1446         if (ret)
1447                 goto err_out;
1448
1449
1450         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1451                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1452
1453         return 0;
1454
1455 err_out:
1456         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1457         return ret;
1458 }
1459
1460 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1461 {
1462         return gen6_ppgtt_allocate_page_directories(ppgtt);
1463 }
1464
1465 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1466                                   uint64_t start, uint64_t length)
1467 {
1468         struct i915_page_table *unused;
1469         uint32_t pde, temp;
1470
1471         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1472                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1473 }
1474
1475 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1476 {
1477         struct drm_device *dev = ppgtt->base.dev;
1478         struct drm_i915_private *dev_priv = dev->dev_private;
1479         int ret;
1480
1481         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1482         if (IS_GEN6(dev)) {
1483                 ppgtt->switch_mm = gen6_mm_switch;
1484         } else if (IS_HASWELL(dev)) {
1485                 ppgtt->switch_mm = hsw_mm_switch;
1486         } else if (IS_GEN7(dev)) {
1487                 ppgtt->switch_mm = gen7_mm_switch;
1488         } else
1489                 BUG();
1490
1491         if (intel_vgpu_active(dev))
1492                 ppgtt->switch_mm = vgpu_mm_switch;
1493
1494         ret = gen6_ppgtt_alloc(ppgtt);
1495         if (ret)
1496                 return ret;
1497
1498         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1499         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1500         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1501         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1502         ppgtt->base.bind_vma = ppgtt_bind_vma;
1503         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1504         ppgtt->base.start = 0;
1505         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1506         ppgtt->debug_dump = gen6_dump_ppgtt;
1507
1508         ppgtt->pd.pd_offset =
1509                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1510
1511         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1512                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1513
1514         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1515
1516         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1517
1518         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1519                          ppgtt->node.size >> 20,
1520                          ppgtt->node.start / PAGE_SIZE);
1521
1522         DRM_DEBUG("Adding PPGTT at offset %x\n",
1523                   ppgtt->pd.pd_offset << 10);
1524
1525         return 0;
1526 }
1527
1528 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1529 {
1530         struct drm_i915_private *dev_priv = dev->dev_private;
1531
1532         ppgtt->base.dev = dev;
1533         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1534
1535         if (INTEL_INFO(dev)->gen < 8)
1536                 return gen6_ppgtt_init(ppgtt);
1537         else
1538                 return gen8_ppgtt_init(ppgtt);
1539 }
1540 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1541 {
1542         struct drm_i915_private *dev_priv = dev->dev_private;
1543         int ret = 0;
1544
1545         ret = __hw_ppgtt_init(dev, ppgtt);
1546         if (ret == 0) {
1547                 kref_init(&ppgtt->ref);
1548                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1549                             ppgtt->base.total);
1550                 i915_init_vm(dev_priv, &ppgtt->base);
1551         }
1552
1553         return ret;
1554 }
1555
1556 int i915_ppgtt_init_hw(struct drm_device *dev)
1557 {
1558         /* In the case of execlists, PPGTT is enabled by the context descriptor
1559          * and the PDPs are contained within the context itself.  We don't
1560          * need to do anything here. */
1561         if (i915.enable_execlists)
1562                 return 0;
1563
1564         if (!USES_PPGTT(dev))
1565                 return 0;
1566
1567         if (IS_GEN6(dev))
1568                 gen6_ppgtt_enable(dev);
1569         else if (IS_GEN7(dev))
1570                 gen7_ppgtt_enable(dev);
1571         else if (INTEL_INFO(dev)->gen >= 8)
1572                 gen8_ppgtt_enable(dev);
1573         else
1574                 MISSING_CASE(INTEL_INFO(dev)->gen);
1575
1576         return 0;
1577 }
1578
1579 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
1580 {
1581         struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
1582         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1583
1584         if (i915.enable_execlists)
1585                 return 0;
1586
1587         if (!ppgtt)
1588                 return 0;
1589
1590         return ppgtt->switch_mm(ppgtt, req);
1591 }
1592
1593 struct i915_hw_ppgtt *
1594 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1595 {
1596         struct i915_hw_ppgtt *ppgtt;
1597         int ret;
1598
1599         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1600         if (!ppgtt)
1601                 return ERR_PTR(-ENOMEM);
1602
1603         ret = i915_ppgtt_init(dev, ppgtt);
1604         if (ret) {
1605                 kfree(ppgtt);
1606                 return ERR_PTR(ret);
1607         }
1608
1609         ppgtt->file_priv = fpriv;
1610
1611         trace_i915_ppgtt_create(&ppgtt->base);
1612
1613         return ppgtt;
1614 }
1615
1616 void  i915_ppgtt_release(struct kref *kref)
1617 {
1618         struct i915_hw_ppgtt *ppgtt =
1619                 container_of(kref, struct i915_hw_ppgtt, ref);
1620
1621         trace_i915_ppgtt_release(&ppgtt->base);
1622
1623         /* vmas should already be unbound */
1624         WARN_ON(!list_empty(&ppgtt->base.active_list));
1625         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1626
1627         list_del(&ppgtt->base.global_link);
1628         drm_mm_takedown(&ppgtt->base.mm);
1629
1630         ppgtt->base.cleanup(&ppgtt->base);
1631         kfree(ppgtt);
1632 }
1633
1634 extern int intel_iommu_gfx_mapped;
1635 /* Certain Gen5 chipsets require require idling the GPU before
1636  * unmapping anything from the GTT when VT-d is enabled.
1637  */
1638 static bool needs_idle_maps(struct drm_device *dev)
1639 {
1640 #ifdef CONFIG_INTEL_IOMMU
1641         /* Query intel_iommu to see if we need the workaround. Presumably that
1642          * was loaded first.
1643          */
1644         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1645                 return true;
1646 #endif
1647         return false;
1648 }
1649
1650 static bool do_idling(struct drm_i915_private *dev_priv)
1651 {
1652         bool ret = dev_priv->mm.interruptible;
1653
1654         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1655                 dev_priv->mm.interruptible = false;
1656                 if (i915_gpu_idle(dev_priv->dev)) {
1657                         DRM_ERROR("Couldn't idle GPU\n");
1658                         /* Wait a bit, in hopes it avoids the hang */
1659                         udelay(10);
1660                 }
1661         }
1662
1663         return ret;
1664 }
1665
1666 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1667 {
1668         if (unlikely(dev_priv->gtt.do_idle_maps))
1669                 dev_priv->mm.interruptible = interruptible;
1670 }
1671
1672 void i915_check_and_clear_faults(struct drm_device *dev)
1673 {
1674         struct drm_i915_private *dev_priv = dev->dev_private;
1675         struct intel_engine_cs *ring;
1676         int i;
1677
1678         if (INTEL_INFO(dev)->gen < 6)
1679                 return;
1680
1681         for_each_ring(ring, dev_priv, i) {
1682                 u32 fault_reg;
1683                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1684                 if (fault_reg & RING_FAULT_VALID) {
1685                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1686                                          "\tAddr: 0x%08lx\n"
1687                                          "\tAddress space: %s\n"
1688                                          "\tSource ID: %d\n"
1689                                          "\tType: %d\n",
1690                                          fault_reg & PAGE_MASK,
1691                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1692                                          RING_FAULT_SRCID(fault_reg),
1693                                          RING_FAULT_FAULT_TYPE(fault_reg));
1694                         I915_WRITE(RING_FAULT_REG(ring),
1695                                    fault_reg & ~RING_FAULT_VALID);
1696                 }
1697         }
1698         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1699 }
1700
1701 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1702 {
1703         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1704                 intel_gtt_chipset_flush();
1705         } else {
1706                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1707                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1708         }
1709 }
1710
1711 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1712 {
1713         struct drm_i915_private *dev_priv = dev->dev_private;
1714
1715         /* Don't bother messing with faults pre GEN6 as we have little
1716          * documentation supporting that it's a good idea.
1717          */
1718         if (INTEL_INFO(dev)->gen < 6)
1719                 return;
1720
1721         i915_check_and_clear_faults(dev);
1722
1723         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1724                                        dev_priv->gtt.base.start,
1725                                        dev_priv->gtt.base.total,
1726                                        true);
1727
1728         i915_ggtt_flush(dev_priv);
1729 }
1730
1731 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1732 {
1733         if (obj->has_dma_mapping)
1734                 return 0;
1735
1736         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1737                         obj->pages->sgl, obj->pages->nents,
1738                         PCI_DMA_BIDIRECTIONAL))
1739                 return -ENOSPC;
1740
1741         return 0;
1742 }
1743
1744 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1745 {
1746 #ifdef writeq
1747         writeq(pte, addr);
1748 #else
1749         iowrite32((u32)pte, addr);
1750         iowrite32(pte >> 32, addr + 4);
1751 #endif
1752 }
1753
1754 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1755                                      struct sg_table *st,
1756                                      uint64_t start,
1757                                      enum i915_cache_level level, u32 unused)
1758 {
1759         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1760         unsigned first_entry = start >> PAGE_SHIFT;
1761         gen8_pte_t __iomem *gtt_entries =
1762                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1763         int i = 0;
1764         struct sg_page_iter sg_iter;
1765         dma_addr_t addr = 0; /* shut up gcc */
1766
1767         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1768                 addr = sg_dma_address(sg_iter.sg) +
1769                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1770                 gen8_set_pte(&gtt_entries[i],
1771                              gen8_pte_encode(addr, level, true));
1772                 i++;
1773         }
1774
1775         /*
1776          * XXX: This serves as a posting read to make sure that the PTE has
1777          * actually been updated. There is some concern that even though
1778          * registers and PTEs are within the same BAR that they are potentially
1779          * of NUMA access patterns. Therefore, even with the way we assume
1780          * hardware should work, we must keep this posting read for paranoia.
1781          */
1782         if (i != 0)
1783                 WARN_ON(readq(&gtt_entries[i-1])
1784                         != gen8_pte_encode(addr, level, true));
1785
1786         /* This next bit makes the above posting read even more important. We
1787          * want to flush the TLBs only after we're certain all the PTE updates
1788          * have finished.
1789          */
1790         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1791         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1792 }
1793
1794 /*
1795  * Binds an object into the global gtt with the specified cache level. The object
1796  * will be accessible to the GPU via commands whose operands reference offsets
1797  * within the global GTT as well as accessible by the GPU through the GMADR
1798  * mapped BAR (dev_priv->mm.gtt->gtt).
1799  */
1800 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1801                                      struct sg_table *st,
1802                                      uint64_t start,
1803                                      enum i915_cache_level level, u32 flags)
1804 {
1805         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1806         unsigned first_entry = start >> PAGE_SHIFT;
1807         gen6_pte_t __iomem *gtt_entries =
1808                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1809         int i = 0;
1810         struct sg_page_iter sg_iter;
1811         dma_addr_t addr = 0;
1812
1813         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1814                 addr = sg_page_iter_dma_address(&sg_iter);
1815                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1816                 i++;
1817         }
1818
1819         /* XXX: This serves as a posting read to make sure that the PTE has
1820          * actually been updated. There is some concern that even though
1821          * registers and PTEs are within the same BAR that they are potentially
1822          * of NUMA access patterns. Therefore, even with the way we assume
1823          * hardware should work, we must keep this posting read for paranoia.
1824          */
1825         if (i != 0) {
1826                 unsigned long gtt = readl(&gtt_entries[i-1]);
1827                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1828         }
1829
1830         /* This next bit makes the above posting read even more important. We
1831          * want to flush the TLBs only after we're certain all the PTE updates
1832          * have finished.
1833          */
1834         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1835         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1836 }
1837
1838 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1839                                   uint64_t start,
1840                                   uint64_t length,
1841                                   bool use_scratch)
1842 {
1843         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1844         unsigned first_entry = start >> PAGE_SHIFT;
1845         unsigned num_entries = length >> PAGE_SHIFT;
1846         gen8_pte_t scratch_pte, __iomem *gtt_base =
1847                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1848         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1849         int i;
1850
1851         if (WARN(num_entries > max_entries,
1852                  "First entry = %d; Num entries = %d (max=%d)\n",
1853                  first_entry, num_entries, max_entries))
1854                 num_entries = max_entries;
1855
1856         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1857                                       I915_CACHE_LLC,
1858                                       use_scratch);
1859         for (i = 0; i < num_entries; i++)
1860                 gen8_set_pte(&gtt_base[i], scratch_pte);
1861         readl(gtt_base);
1862 }
1863
1864 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1865                                   uint64_t start,
1866                                   uint64_t length,
1867                                   bool use_scratch)
1868 {
1869         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1870         unsigned first_entry = start >> PAGE_SHIFT;
1871         unsigned num_entries = length >> PAGE_SHIFT;
1872         gen6_pte_t scratch_pte, __iomem *gtt_base =
1873                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1874         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1875         int i;
1876
1877         if (WARN(num_entries > max_entries,
1878                  "First entry = %d; Num entries = %d (max=%d)\n",
1879                  first_entry, num_entries, max_entries))
1880                 num_entries = max_entries;
1881
1882         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1883
1884         for (i = 0; i < num_entries; i++)
1885                 iowrite32(scratch_pte, &gtt_base[i]);
1886         readl(gtt_base);
1887 }
1888
1889 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1890                                      struct sg_table *pages,
1891                                      uint64_t start,
1892                                      enum i915_cache_level cache_level, u32 unused)
1893 {
1894         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1895                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1896
1897         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1898
1899 }
1900
1901 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1902                                   uint64_t start,
1903                                   uint64_t length,
1904                                   bool unused)
1905 {
1906         unsigned first_entry = start >> PAGE_SHIFT;
1907         unsigned num_entries = length >> PAGE_SHIFT;
1908         intel_gtt_clear_range(first_entry, num_entries);
1909 }
1910
1911 static int ggtt_bind_vma(struct i915_vma *vma,
1912                          enum i915_cache_level cache_level,
1913                          u32 flags)
1914 {
1915         struct drm_device *dev = vma->vm->dev;
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917         struct drm_i915_gem_object *obj = vma->obj;
1918         struct sg_table *pages = obj->pages;
1919         u32 pte_flags = 0;
1920         int ret;
1921
1922         ret = i915_get_ggtt_vma_pages(vma);
1923         if (ret)
1924                 return ret;
1925         pages = vma->ggtt_view.pages;
1926
1927         /* Currently applicable only to VLV */
1928         if (obj->gt_ro)
1929                 pte_flags |= PTE_READ_ONLY;
1930
1931
1932         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1933                 vma->vm->insert_entries(vma->vm, pages,
1934                                         vma->node.start,
1935                                         cache_level, pte_flags);
1936         }
1937
1938         if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
1939                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1940                 appgtt->base.insert_entries(&appgtt->base, pages,
1941                                             vma->node.start,
1942                                             cache_level, pte_flags);
1943         }
1944
1945         return 0;
1946 }
1947
1948 static void ggtt_unbind_vma(struct i915_vma *vma)
1949 {
1950         struct drm_device *dev = vma->vm->dev;
1951         struct drm_i915_private *dev_priv = dev->dev_private;
1952         struct drm_i915_gem_object *obj = vma->obj;
1953         const uint64_t size = min_t(uint64_t,
1954                                     obj->base.size,
1955                                     vma->node.size);
1956
1957         if (vma->bound & GLOBAL_BIND) {
1958                 vma->vm->clear_range(vma->vm,
1959                                      vma->node.start,
1960                                      size,
1961                                      true);
1962         }
1963
1964         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
1965                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1966
1967                 appgtt->base.clear_range(&appgtt->base,
1968                                          vma->node.start,
1969                                          size,
1970                                          true);
1971         }
1972 }
1973
1974 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1975 {
1976         struct drm_device *dev = obj->base.dev;
1977         struct drm_i915_private *dev_priv = dev->dev_private;
1978         bool interruptible;
1979
1980         interruptible = do_idling(dev_priv);
1981
1982         if (!obj->has_dma_mapping)
1983                 dma_unmap_sg(&dev->pdev->dev,
1984                              obj->pages->sgl, obj->pages->nents,
1985                              PCI_DMA_BIDIRECTIONAL);
1986
1987         undo_idling(dev_priv, interruptible);
1988 }
1989
1990 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1991                                   unsigned long color,
1992                                   u64 *start,
1993                                   u64 *end)
1994 {
1995         if (node->color != color)
1996                 *start += 4096;
1997
1998         if (!list_empty(&node->node_list)) {
1999                 node = list_entry(node->node_list.next,
2000                                   struct drm_mm_node,
2001                                   node_list);
2002                 if (node->allocated && node->color != color)
2003                         *end -= 4096;
2004         }
2005 }
2006
2007 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2008                                      unsigned long start,
2009                                      unsigned long mappable_end,
2010                                      unsigned long end)
2011 {
2012         /* Let GEM Manage all of the aperture.
2013          *
2014          * However, leave one page at the end still bound to the scratch page.
2015          * There are a number of places where the hardware apparently prefetches
2016          * past the end of the object, and we've seen multiple hangs with the
2017          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2018          * aperture.  One page should be enough to keep any prefetching inside
2019          * of the aperture.
2020          */
2021         struct drm_i915_private *dev_priv = dev->dev_private;
2022         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2023         struct drm_mm_node *entry;
2024         struct drm_i915_gem_object *obj;
2025         unsigned long hole_start, hole_end;
2026         int ret;
2027
2028         BUG_ON(mappable_end > end);
2029
2030         /* Subtract the guard page ... */
2031         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2032
2033         dev_priv->gtt.base.start = start;
2034         dev_priv->gtt.base.total = end - start;
2035
2036         if (intel_vgpu_active(dev)) {
2037                 ret = intel_vgt_balloon(dev);
2038                 if (ret)
2039                         return ret;
2040         }
2041
2042         if (!HAS_LLC(dev))
2043                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2044
2045         /* Mark any preallocated objects as occupied */
2046         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2047                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2048
2049                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2050                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2051
2052                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2053                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2054                 if (ret) {
2055                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2056                         return ret;
2057                 }
2058                 vma->bound |= GLOBAL_BIND;
2059         }
2060
2061         /* Clear any non-preallocated blocks */
2062         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2063                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2064                               hole_start, hole_end);
2065                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2066                                      hole_end - hole_start, true);
2067         }
2068
2069         /* And finally clear the reserved guard page */
2070         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2071
2072         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2073                 struct i915_hw_ppgtt *ppgtt;
2074
2075                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2076                 if (!ppgtt)
2077                         return -ENOMEM;
2078
2079                 ret = __hw_ppgtt_init(dev, ppgtt);
2080                 if (ret) {
2081                         ppgtt->base.cleanup(&ppgtt->base);
2082                         kfree(ppgtt);
2083                         return ret;
2084                 }
2085
2086                 if (ppgtt->base.allocate_va_range)
2087                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2088                                                             ppgtt->base.total);
2089                 if (ret) {
2090                         ppgtt->base.cleanup(&ppgtt->base);
2091                         kfree(ppgtt);
2092                         return ret;
2093                 }
2094
2095                 ppgtt->base.clear_range(&ppgtt->base,
2096                                         ppgtt->base.start,
2097                                         ppgtt->base.total,
2098                                         true);
2099
2100                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2101         }
2102
2103         return 0;
2104 }
2105
2106 void i915_gem_init_global_gtt(struct drm_device *dev)
2107 {
2108         struct drm_i915_private *dev_priv = dev->dev_private;
2109         unsigned long gtt_size, mappable_size;
2110
2111         gtt_size = dev_priv->gtt.base.total;
2112         mappable_size = dev_priv->gtt.mappable_end;
2113
2114         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2115 }
2116
2117 void i915_global_gtt_cleanup(struct drm_device *dev)
2118 {
2119         struct drm_i915_private *dev_priv = dev->dev_private;
2120         struct i915_address_space *vm = &dev_priv->gtt.base;
2121
2122         if (dev_priv->mm.aliasing_ppgtt) {
2123                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2124
2125                 ppgtt->base.cleanup(&ppgtt->base);
2126         }
2127
2128         if (drm_mm_initialized(&vm->mm)) {
2129                 if (intel_vgpu_active(dev))
2130                         intel_vgt_deballoon();
2131
2132                 drm_mm_takedown(&vm->mm);
2133                 list_del(&vm->global_link);
2134         }
2135
2136         vm->cleanup(vm);
2137 }
2138
2139 static int setup_scratch_page(struct drm_device *dev)
2140 {
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142         struct page *page;
2143         dma_addr_t dma_addr;
2144
2145         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2146         if (page == NULL)
2147                 return -ENOMEM;
2148         set_pages_uc(page, 1);
2149
2150 #ifdef CONFIG_INTEL_IOMMU
2151         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2152                                 PCI_DMA_BIDIRECTIONAL);
2153         if (pci_dma_mapping_error(dev->pdev, dma_addr)) {
2154                 __free_page(page);
2155                 return -EINVAL;
2156         }
2157 #else
2158         dma_addr = page_to_phys(page);
2159 #endif
2160         dev_priv->gtt.base.scratch.page = page;
2161         dev_priv->gtt.base.scratch.addr = dma_addr;
2162
2163         return 0;
2164 }
2165
2166 static void teardown_scratch_page(struct drm_device *dev)
2167 {
2168         struct drm_i915_private *dev_priv = dev->dev_private;
2169         struct page *page = dev_priv->gtt.base.scratch.page;
2170
2171         set_pages_wb(page, 1);
2172         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2173                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2174         __free_page(page);
2175 }
2176
2177 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2178 {
2179         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2180         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2181         return snb_gmch_ctl << 20;
2182 }
2183
2184 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2185 {
2186         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2187         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2188         if (bdw_gmch_ctl)
2189                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2190
2191 #ifdef CONFIG_X86_32
2192         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2193         if (bdw_gmch_ctl > 4)
2194                 bdw_gmch_ctl = 4;
2195 #endif
2196
2197         return bdw_gmch_ctl << 20;
2198 }
2199
2200 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2201 {
2202         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2203         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2204
2205         if (gmch_ctrl)
2206                 return 1 << (20 + gmch_ctrl);
2207
2208         return 0;
2209 }
2210
2211 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2212 {
2213         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2214         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2215         return snb_gmch_ctl << 25; /* 32 MB units */
2216 }
2217
2218 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2219 {
2220         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2221         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2222         return bdw_gmch_ctl << 25; /* 32 MB units */
2223 }
2224
2225 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2226 {
2227         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2228         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2229
2230         /*
2231          * 0x0  to 0x10: 32MB increments starting at 0MB
2232          * 0x11 to 0x16: 4MB increments starting at 8MB
2233          * 0x17 to 0x1d: 4MB increments start at 36MB
2234          */
2235         if (gmch_ctrl < 0x11)
2236                 return gmch_ctrl << 25;
2237         else if (gmch_ctrl < 0x17)
2238                 return (gmch_ctrl - 0x11 + 2) << 22;
2239         else
2240                 return (gmch_ctrl - 0x17 + 9) << 22;
2241 }
2242
2243 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2244 {
2245         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2246         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2247
2248         if (gen9_gmch_ctl < 0xf0)
2249                 return gen9_gmch_ctl << 25; /* 32 MB units */
2250         else
2251                 /* 4MB increments starting at 0xf0 for 4MB */
2252                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2253 }
2254
2255 static int ggtt_probe_common(struct drm_device *dev,
2256                              size_t gtt_size)
2257 {
2258         struct drm_i915_private *dev_priv = dev->dev_private;
2259         phys_addr_t gtt_phys_addr;
2260         int ret;
2261
2262         /* For Modern GENs the PTEs and register space are split in the BAR */
2263         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2264                 (pci_resource_len(dev->pdev, 0) / 2);
2265
2266         /*
2267          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2268          * dropped. For WC mappings in general we have 64 byte burst writes
2269          * when the WC buffer is flushed, so we can't use it, but have to
2270          * resort to an uncached mapping. The WC issue is easily caught by the
2271          * readback check when writing GTT PTE entries.
2272          */
2273         if (IS_BROXTON(dev))
2274                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2275         else
2276                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2277         if (!dev_priv->gtt.gsm) {
2278                 DRM_ERROR("Failed to map the gtt page table\n");
2279                 return -ENOMEM;
2280         }
2281
2282         ret = setup_scratch_page(dev);
2283         if (ret) {
2284                 DRM_ERROR("Scratch setup failed\n");
2285                 /* iounmap will also get called at remove, but meh */
2286                 iounmap(dev_priv->gtt.gsm);
2287         }
2288
2289         return ret;
2290 }
2291
2292 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2293  * bits. When using advanced contexts each context stores its own PAT, but
2294  * writing this data shouldn't be harmful even in those cases. */
2295 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2296 {
2297         uint64_t pat;
2298
2299         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2300               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2301               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2302               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2303               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2304               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2305               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2306               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2307
2308         if (!USES_PPGTT(dev_priv->dev))
2309                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2310                  * so RTL will always use the value corresponding to
2311                  * pat_sel = 000".
2312                  * So let's disable cache for GGTT to avoid screen corruptions.
2313                  * MOCS still can be used though.
2314                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2315                  * before this patch, i.e. the same uncached + snooping access
2316                  * like on gen6/7 seems to be in effect.
2317                  * - So this just fixes blitter/render access. Again it looks
2318                  * like it's not just uncached access, but uncached + snooping.
2319                  * So we can still hold onto all our assumptions wrt cpu
2320                  * clflushing on LLC machines.
2321                  */
2322                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2323
2324         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2325          * write would work. */
2326         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2327         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2328 }
2329
2330 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2331 {
2332         uint64_t pat;
2333
2334         /*
2335          * Map WB on BDW to snooped on CHV.
2336          *
2337          * Only the snoop bit has meaning for CHV, the rest is
2338          * ignored.
2339          *
2340          * The hardware will never snoop for certain types of accesses:
2341          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2342          * - PPGTT page tables
2343          * - some other special cycles
2344          *
2345          * As with BDW, we also need to consider the following for GT accesses:
2346          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2347          * so RTL will always use the value corresponding to
2348          * pat_sel = 000".
2349          * Which means we must set the snoop bit in PAT entry 0
2350          * in order to keep the global status page working.
2351          */
2352         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2353               GEN8_PPAT(1, 0) |
2354               GEN8_PPAT(2, 0) |
2355               GEN8_PPAT(3, 0) |
2356               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2357               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2358               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2359               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2360
2361         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2362         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2363 }
2364
2365 static int gen8_gmch_probe(struct drm_device *dev,
2366                            size_t *gtt_total,
2367                            size_t *stolen,
2368                            phys_addr_t *mappable_base,
2369                            unsigned long *mappable_end)
2370 {
2371         struct drm_i915_private *dev_priv = dev->dev_private;
2372         unsigned int gtt_size;
2373         u16 snb_gmch_ctl;
2374         int ret;
2375
2376         /* TODO: We're not aware of mappable constraints on gen8 yet */
2377         *mappable_base = pci_resource_start(dev->pdev, 2);
2378         *mappable_end = pci_resource_len(dev->pdev, 2);
2379
2380         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2381                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2382
2383         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2384
2385         if (INTEL_INFO(dev)->gen >= 9) {
2386                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2387                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2388         } else if (IS_CHERRYVIEW(dev)) {
2389                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2390                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2391         } else {
2392                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2393                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2394         }
2395
2396         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2397
2398         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2399                 chv_setup_private_ppat(dev_priv);
2400         else
2401                 bdw_setup_private_ppat(dev_priv);
2402
2403         ret = ggtt_probe_common(dev, gtt_size);
2404
2405         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2406         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2407         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2408         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2409
2410         return ret;
2411 }
2412
2413 static int gen6_gmch_probe(struct drm_device *dev,
2414                            size_t *gtt_total,
2415                            size_t *stolen,
2416                            phys_addr_t *mappable_base,
2417                            unsigned long *mappable_end)
2418 {
2419         struct drm_i915_private *dev_priv = dev->dev_private;
2420         unsigned int gtt_size;
2421         u16 snb_gmch_ctl;
2422         int ret;
2423
2424         *mappable_base = pci_resource_start(dev->pdev, 2);
2425         *mappable_end = pci_resource_len(dev->pdev, 2);
2426
2427         /* 64/512MB is the current min/max we actually know of, but this is just
2428          * a coarse sanity check.
2429          */
2430         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2431                 DRM_ERROR("Unknown GMADR size (%lx)\n",
2432                           dev_priv->gtt.mappable_end);
2433                 return -ENXIO;
2434         }
2435
2436         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2437                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2438         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2439
2440         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2441
2442         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2443         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2444
2445         ret = ggtt_probe_common(dev, gtt_size);
2446
2447         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2448         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2449         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2450         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2451
2452         return ret;
2453 }
2454
2455 static void gen6_gmch_remove(struct i915_address_space *vm)
2456 {
2457
2458         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2459
2460         iounmap(gtt->gsm);
2461         teardown_scratch_page(vm->dev);
2462 }
2463
2464 static int i915_gmch_probe(struct drm_device *dev,
2465                            size_t *gtt_total,
2466                            size_t *stolen,
2467                            phys_addr_t *mappable_base,
2468                            unsigned long *mappable_end)
2469 {
2470         struct drm_i915_private *dev_priv = dev->dev_private;
2471         int ret;
2472
2473         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2474         if (!ret) {
2475                 DRM_ERROR("failed to set up gmch\n");
2476                 return -EIO;
2477         }
2478
2479         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2480
2481         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2482         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2483         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2484         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2485         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2486
2487         if (unlikely(dev_priv->gtt.do_idle_maps))
2488                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2489
2490         return 0;
2491 }
2492
2493 static void i915_gmch_remove(struct i915_address_space *vm)
2494 {
2495         intel_gmch_remove();
2496 }
2497
2498 int i915_gem_gtt_init(struct drm_device *dev)
2499 {
2500         struct drm_i915_private *dev_priv = dev->dev_private;
2501         struct i915_gtt *gtt = &dev_priv->gtt;
2502         int ret;
2503
2504         if (INTEL_INFO(dev)->gen <= 5) {
2505                 gtt->gtt_probe = i915_gmch_probe;
2506                 gtt->base.cleanup = i915_gmch_remove;
2507         } else if (INTEL_INFO(dev)->gen < 8) {
2508                 gtt->gtt_probe = gen6_gmch_probe;
2509                 gtt->base.cleanup = gen6_gmch_remove;
2510                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2511                         gtt->base.pte_encode = iris_pte_encode;
2512                 else if (IS_HASWELL(dev))
2513                         gtt->base.pte_encode = hsw_pte_encode;
2514                 else if (IS_VALLEYVIEW(dev))
2515                         gtt->base.pte_encode = byt_pte_encode;
2516                 else if (INTEL_INFO(dev)->gen >= 7)
2517                         gtt->base.pte_encode = ivb_pte_encode;
2518                 else
2519                         gtt->base.pte_encode = snb_pte_encode;
2520         } else {
2521                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2522                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2523         }
2524
2525         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2526                              &gtt->mappable_base, &gtt->mappable_end);
2527         if (ret)
2528                 return ret;
2529
2530         gtt->base.dev = dev;
2531
2532         /* GMADR is the PCI mmio aperture into the global GTT. */
2533         DRM_INFO("Memory usable by graphics device = %zdM\n",
2534                  gtt->base.total >> 20);
2535         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2536         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2537 #ifdef CONFIG_INTEL_IOMMU
2538         if (intel_iommu_gfx_mapped)
2539                 DRM_INFO("VT-d active for gfx access\n");
2540 #endif
2541         /*
2542          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2543          * user's requested state against the hardware/driver capabilities.  We
2544          * do this now so that we can print out any log messages once rather
2545          * than every time we check intel_enable_ppgtt().
2546          */
2547         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2548         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2549
2550         return 0;
2551 }
2552
2553 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2554 {
2555         struct drm_i915_private *dev_priv = dev->dev_private;
2556         struct drm_i915_gem_object *obj;
2557         struct i915_address_space *vm;
2558
2559         i915_check_and_clear_faults(dev);
2560
2561         /* First fill our portion of the GTT with scratch pages */
2562         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2563                                        dev_priv->gtt.base.start,
2564                                        dev_priv->gtt.base.total,
2565                                        true);
2566
2567         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2568                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
2569                                                            &dev_priv->gtt.base);
2570                 if (!vma)
2571                         continue;
2572
2573                 i915_gem_clflush_object(obj, obj->pin_display);
2574                 WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE));
2575         }
2576
2577
2578         if (INTEL_INFO(dev)->gen >= 8) {
2579                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2580                         chv_setup_private_ppat(dev_priv);
2581                 else
2582                         bdw_setup_private_ppat(dev_priv);
2583
2584                 return;
2585         }
2586
2587         if (USES_PPGTT(dev)) {
2588                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2589                         /* TODO: Perhaps it shouldn't be gen6 specific */
2590
2591                         struct i915_hw_ppgtt *ppgtt =
2592                                         container_of(vm, struct i915_hw_ppgtt,
2593                                                      base);
2594
2595                         if (i915_is_ggtt(vm))
2596                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2597
2598                         gen6_write_page_range(dev_priv, &ppgtt->pd,
2599                                               0, ppgtt->base.total);
2600                 }
2601         }
2602
2603         i915_ggtt_flush(dev_priv);
2604 }
2605
2606 static struct i915_vma *
2607 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2608                       struct i915_address_space *vm,
2609                       const struct i915_ggtt_view *ggtt_view)
2610 {
2611         struct i915_vma *vma;
2612
2613         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2614                 return ERR_PTR(-EINVAL);
2615
2616         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2617         if (vma == NULL)
2618                 return ERR_PTR(-ENOMEM);
2619
2620         INIT_LIST_HEAD(&vma->vma_link);
2621         INIT_LIST_HEAD(&vma->mm_list);
2622         INIT_LIST_HEAD(&vma->exec_list);
2623         vma->vm = vm;
2624         vma->obj = obj;
2625
2626         if (i915_is_ggtt(vm))
2627                 vma->ggtt_view = *ggtt_view;
2628
2629         list_add_tail(&vma->vma_link, &obj->vma_list);
2630         if (!i915_is_ggtt(vm))
2631                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2632
2633         return vma;
2634 }
2635
2636 struct i915_vma *
2637 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2638                                   struct i915_address_space *vm)
2639 {
2640         struct i915_vma *vma;
2641
2642         vma = i915_gem_obj_to_vma(obj, vm);
2643         if (!vma)
2644                 vma = __i915_gem_vma_create(obj, vm,
2645                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2646
2647         return vma;
2648 }
2649
2650 struct i915_vma *
2651 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2652                                        const struct i915_ggtt_view *view)
2653 {
2654         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2655         struct i915_vma *vma;
2656
2657         if (WARN_ON(!view))
2658                 return ERR_PTR(-EINVAL);
2659
2660         vma = i915_gem_obj_to_ggtt_view(obj, view);
2661
2662         if (IS_ERR(vma))
2663                 return vma;
2664
2665         if (!vma)
2666                 vma = __i915_gem_vma_create(obj, ggtt, view);
2667
2668         return vma;
2669
2670 }
2671
2672 static void
2673 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2674              struct sg_table *st)
2675 {
2676         unsigned int column, row;
2677         unsigned int src_idx;
2678         struct scatterlist *sg = st->sgl;
2679
2680         st->nents = 0;
2681
2682         for (column = 0; column < width; column++) {
2683                 src_idx = width * (height - 1) + column;
2684                 for (row = 0; row < height; row++) {
2685                         st->nents++;
2686                         /* We don't need the pages, but need to initialize
2687                          * the entries so the sg list can be happily traversed.
2688                          * The only thing we need are DMA addresses.
2689                          */
2690                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
2691                         sg_dma_address(sg) = in[src_idx];
2692                         sg_dma_len(sg) = PAGE_SIZE;
2693                         sg = sg_next(sg);
2694                         src_idx -= width;
2695                 }
2696         }
2697 }
2698
2699 static struct sg_table *
2700 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2701                           struct drm_i915_gem_object *obj)
2702 {
2703         struct drm_device *dev = obj->base.dev;
2704         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2705         unsigned long size, pages, rot_pages;
2706         struct sg_page_iter sg_iter;
2707         unsigned long i;
2708         dma_addr_t *page_addr_list;
2709         struct sg_table *st;
2710         unsigned int tile_pitch, tile_height;
2711         unsigned int width_pages, height_pages;
2712         int ret = -ENOMEM;
2713
2714         pages = obj->base.size / PAGE_SIZE;
2715
2716         /* Calculate tiling geometry. */
2717         tile_height = intel_tile_height(dev, rot_info->pixel_format,
2718                                         rot_info->fb_modifier);
2719         tile_pitch = PAGE_SIZE / tile_height;
2720         width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2721         height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2722         rot_pages = width_pages * height_pages;
2723         size = rot_pages * PAGE_SIZE;
2724
2725         /* Allocate a temporary list of source pages for random access. */
2726         page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2727         if (!page_addr_list)
2728                 return ERR_PTR(ret);
2729
2730         /* Allocate target SG list. */
2731         st = kmalloc(sizeof(*st), GFP_KERNEL);
2732         if (!st)
2733                 goto err_st_alloc;
2734
2735         ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2736         if (ret)
2737                 goto err_sg_alloc;
2738
2739         /* Populate source page list from the object. */
2740         i = 0;
2741         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2742                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2743                 i++;
2744         }
2745
2746         /* Rotate the pages. */
2747         rotate_pages(page_addr_list, width_pages, height_pages, st);
2748
2749         DRM_DEBUG_KMS(
2750                       "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2751                       size, rot_info->pitch, rot_info->height,
2752                       rot_info->pixel_format, width_pages, height_pages,
2753                       rot_pages);
2754
2755         drm_free_large(page_addr_list);
2756
2757         return st;
2758
2759 err_sg_alloc:
2760         kfree(st);
2761 err_st_alloc:
2762         drm_free_large(page_addr_list);
2763
2764         DRM_DEBUG_KMS(
2765                       "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2766                       size, ret, rot_info->pitch, rot_info->height,
2767                       rot_info->pixel_format, width_pages, height_pages,
2768                       rot_pages);
2769         return ERR_PTR(ret);
2770 }
2771
2772 static struct sg_table *
2773 intel_partial_pages(const struct i915_ggtt_view *view,
2774                     struct drm_i915_gem_object *obj)
2775 {
2776         struct sg_table *st;
2777         struct scatterlist *sg;
2778         struct sg_page_iter obj_sg_iter;
2779         int ret = -ENOMEM;
2780
2781         st = kmalloc(sizeof(*st), GFP_KERNEL);
2782         if (!st)
2783                 goto err_st_alloc;
2784
2785         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2786         if (ret)
2787                 goto err_sg_alloc;
2788
2789         sg = st->sgl;
2790         st->nents = 0;
2791         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2792                 view->params.partial.offset)
2793         {
2794                 if (st->nents >= view->params.partial.size)
2795                         break;
2796
2797                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2798                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2799                 sg_dma_len(sg) = PAGE_SIZE;
2800
2801                 sg = sg_next(sg);
2802                 st->nents++;
2803         }
2804
2805         return st;
2806
2807 err_sg_alloc:
2808         kfree(st);
2809 err_st_alloc:
2810         return ERR_PTR(ret);
2811 }
2812
2813 static int
2814 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2815 {
2816         int ret = 0;
2817
2818         if (vma->ggtt_view.pages)
2819                 return 0;
2820
2821         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2822                 vma->ggtt_view.pages = vma->obj->pages;
2823         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2824                 vma->ggtt_view.pages =
2825                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2826         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2827                 vma->ggtt_view.pages =
2828                         intel_partial_pages(&vma->ggtt_view, vma->obj);
2829         else
2830                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2831                           vma->ggtt_view.type);
2832
2833         if (!vma->ggtt_view.pages) {
2834                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2835                           vma->ggtt_view.type);
2836                 ret = -EINVAL;
2837         } else if (IS_ERR(vma->ggtt_view.pages)) {
2838                 ret = PTR_ERR(vma->ggtt_view.pages);
2839                 vma->ggtt_view.pages = NULL;
2840                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2841                           vma->ggtt_view.type, ret);
2842         }
2843
2844         return ret;
2845 }
2846
2847 /**
2848  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2849  * @vma: VMA to map
2850  * @cache_level: mapping cache level
2851  * @flags: flags like global or local mapping
2852  *
2853  * DMA addresses are taken from the scatter-gather table of this object (or of
2854  * this VMA in case of non-default GGTT views) and PTE entries set up.
2855  * Note that DMA addresses are also the only part of the SG table we care about.
2856  */
2857 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2858                   u32 flags)
2859 {
2860         int ret;
2861         u32 bind_flags;
2862
2863         if (WARN_ON(flags == 0))
2864                 return -EINVAL;
2865
2866         bind_flags = 0;
2867         if (flags & PIN_GLOBAL)
2868                 bind_flags |= GLOBAL_BIND;
2869         if (flags & PIN_USER)
2870                 bind_flags |= LOCAL_BIND;
2871
2872         if (flags & PIN_UPDATE)
2873                 bind_flags |= vma->bound;
2874         else
2875                 bind_flags &= ~vma->bound;
2876
2877         if (bind_flags == 0)
2878                 return 0;
2879
2880         if (vma->bound == 0 && vma->vm->allocate_va_range) {
2881                 trace_i915_va_alloc(vma->vm,
2882                                     vma->node.start,
2883                                     vma->node.size,
2884                                     VM_TO_TRACE_NAME(vma->vm));
2885
2886                 ret = vma->vm->allocate_va_range(vma->vm,
2887                                                  vma->node.start,
2888                                                  vma->node.size);
2889                 if (ret)
2890                         return ret;
2891         }
2892
2893         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2894         if (ret)
2895                 return ret;
2896
2897         vma->bound |= bind_flags;
2898
2899         return 0;
2900 }
2901
2902 /**
2903  * i915_ggtt_view_size - Get the size of a GGTT view.
2904  * @obj: Object the view is of.
2905  * @view: The view in question.
2906  *
2907  * @return The size of the GGTT view in bytes.
2908  */
2909 size_t
2910 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2911                     const struct i915_ggtt_view *view)
2912 {
2913         if (view->type == I915_GGTT_VIEW_NORMAL ||
2914             view->type == I915_GGTT_VIEW_ROTATED) {
2915                 return obj->base.size;
2916         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2917                 return view->params.partial.size << PAGE_SHIFT;
2918         } else {
2919                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2920                 return obj->base.size;
2921         }
2922 }