drm/i915: Can i915_gem_init_ioctl
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
34 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
35
36 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
37 {
38         bool has_aliasing_ppgtt;
39         bool has_full_ppgtt;
40
41         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
42         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
43         if (IS_GEN8(dev))
44                 has_full_ppgtt = false; /* XXX why? */
45
46         /*
47          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
48          * execlists, the sole mechanism available to submit work.
49          */
50         if (INTEL_INFO(dev)->gen < 9 &&
51             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
52                 return 0;
53
54         if (enable_ppgtt == 1)
55                 return 1;
56
57         if (enable_ppgtt == 2 && has_full_ppgtt)
58                 return 2;
59
60 #ifdef CONFIG_INTEL_IOMMU
61         /* Disable ppgtt on SNB if VT-d is on. */
62         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
63                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
64                 return 0;
65         }
66 #endif
67
68         /* Early VLV doesn't have this */
69         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
70             dev->pdev->revision < 0xb) {
71                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
72                 return 0;
73         }
74
75         return has_aliasing_ppgtt ? 1 : 0;
76 }
77
78
79 static void ppgtt_bind_vma(struct i915_vma *vma,
80                            enum i915_cache_level cache_level,
81                            u32 flags);
82 static void ppgtt_unbind_vma(struct i915_vma *vma);
83
84 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
85                                              enum i915_cache_level level,
86                                              bool valid)
87 {
88         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
89         pte |= addr;
90
91         switch (level) {
92         case I915_CACHE_NONE:
93                 pte |= PPAT_UNCACHED_INDEX;
94                 break;
95         case I915_CACHE_WT:
96                 pte |= PPAT_DISPLAY_ELLC_INDEX;
97                 break;
98         default:
99                 pte |= PPAT_CACHED_INDEX;
100                 break;
101         }
102
103         return pte;
104 }
105
106 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
107                                              dma_addr_t addr,
108                                              enum i915_cache_level level)
109 {
110         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
111         pde |= addr;
112         if (level != I915_CACHE_NONE)
113                 pde |= PPAT_CACHED_PDE_INDEX;
114         else
115                 pde |= PPAT_UNCACHED_INDEX;
116         return pde;
117 }
118
119 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
120                                      enum i915_cache_level level,
121                                      bool valid, u32 unused)
122 {
123         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
124         pte |= GEN6_PTE_ADDR_ENCODE(addr);
125
126         switch (level) {
127         case I915_CACHE_L3_LLC:
128         case I915_CACHE_LLC:
129                 pte |= GEN6_PTE_CACHE_LLC;
130                 break;
131         case I915_CACHE_NONE:
132                 pte |= GEN6_PTE_UNCACHED;
133                 break;
134         default:
135                 WARN_ON(1);
136         }
137
138         return pte;
139 }
140
141 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
142                                      enum i915_cache_level level,
143                                      bool valid, u32 unused)
144 {
145         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
146         pte |= GEN6_PTE_ADDR_ENCODE(addr);
147
148         switch (level) {
149         case I915_CACHE_L3_LLC:
150                 pte |= GEN7_PTE_CACHE_L3_LLC;
151                 break;
152         case I915_CACHE_LLC:
153                 pte |= GEN6_PTE_CACHE_LLC;
154                 break;
155         case I915_CACHE_NONE:
156                 pte |= GEN6_PTE_UNCACHED;
157                 break;
158         default:
159                 WARN_ON(1);
160         }
161
162         return pte;
163 }
164
165 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
166                                      enum i915_cache_level level,
167                                      bool valid, u32 flags)
168 {
169         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
170         pte |= GEN6_PTE_ADDR_ENCODE(addr);
171
172         if (!(flags & PTE_READ_ONLY))
173                 pte |= BYT_PTE_WRITEABLE;
174
175         if (level != I915_CACHE_NONE)
176                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
177
178         return pte;
179 }
180
181 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
182                                      enum i915_cache_level level,
183                                      bool valid, u32 unused)
184 {
185         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
186         pte |= HSW_PTE_ADDR_ENCODE(addr);
187
188         if (level != I915_CACHE_NONE)
189                 pte |= HSW_WB_LLC_AGE3;
190
191         return pte;
192 }
193
194 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
195                                       enum i915_cache_level level,
196                                       bool valid, u32 unused)
197 {
198         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
199         pte |= HSW_PTE_ADDR_ENCODE(addr);
200
201         switch (level) {
202         case I915_CACHE_NONE:
203                 break;
204         case I915_CACHE_WT:
205                 pte |= HSW_WT_ELLC_LLC_AGE3;
206                 break;
207         default:
208                 pte |= HSW_WB_ELLC_LLC_AGE3;
209                 break;
210         }
211
212         return pte;
213 }
214
215 /* Broadwell Page Directory Pointer Descriptors */
216 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
217                            uint64_t val)
218 {
219         int ret;
220
221         BUG_ON(entry >= 4);
222
223         ret = intel_ring_begin(ring, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
228         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
229         intel_ring_emit(ring, (u32)(val >> 32));
230         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
231         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
232         intel_ring_emit(ring, (u32)(val));
233         intel_ring_advance(ring);
234
235         return 0;
236 }
237
238 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
239                           struct intel_engine_cs *ring)
240 {
241         int i, ret;
242
243         /* bit of a hack to find the actual last used pd */
244         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
245
246         for (i = used_pd - 1; i >= 0; i--) {
247                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
248                 ret = gen8_write_pdp(ring, i, addr);
249                 if (ret)
250                         return ret;
251         }
252
253         return 0;
254 }
255
256 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
257                                    uint64_t start,
258                                    uint64_t length,
259                                    bool use_scratch)
260 {
261         struct i915_hw_ppgtt *ppgtt =
262                 container_of(vm, struct i915_hw_ppgtt, base);
263         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
264         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
265         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
266         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
267         unsigned num_entries = length >> PAGE_SHIFT;
268         unsigned last_pte, i;
269
270         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
271                                       I915_CACHE_LLC, use_scratch);
272
273         while (num_entries) {
274                 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
275
276                 last_pte = pte + num_entries;
277                 if (last_pte > GEN8_PTES_PER_PAGE)
278                         last_pte = GEN8_PTES_PER_PAGE;
279
280                 pt_vaddr = kmap_atomic(page_table);
281
282                 for (i = pte; i < last_pte; i++) {
283                         pt_vaddr[i] = scratch_pte;
284                         num_entries--;
285                 }
286
287                 if (!HAS_LLC(ppgtt->base.dev))
288                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
289                 kunmap_atomic(pt_vaddr);
290
291                 pte = 0;
292                 if (++pde == GEN8_PDES_PER_PAGE) {
293                         pdpe++;
294                         pde = 0;
295                 }
296         }
297 }
298
299 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
300                                       struct sg_table *pages,
301                                       uint64_t start,
302                                       enum i915_cache_level cache_level, u32 unused)
303 {
304         struct i915_hw_ppgtt *ppgtt =
305                 container_of(vm, struct i915_hw_ppgtt, base);
306         gen8_gtt_pte_t *pt_vaddr;
307         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
308         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
309         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
310         struct sg_page_iter sg_iter;
311
312         pt_vaddr = NULL;
313
314         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
315                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
316                         break;
317
318                 if (pt_vaddr == NULL)
319                         pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
320
321                 pt_vaddr[pte] =
322                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
323                                         cache_level, true);
324                 if (++pte == GEN8_PTES_PER_PAGE) {
325                         if (!HAS_LLC(ppgtt->base.dev))
326                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
327                         kunmap_atomic(pt_vaddr);
328                         pt_vaddr = NULL;
329                         if (++pde == GEN8_PDES_PER_PAGE) {
330                                 pdpe++;
331                                 pde = 0;
332                         }
333                         pte = 0;
334                 }
335         }
336         if (pt_vaddr) {
337                 if (!HAS_LLC(ppgtt->base.dev))
338                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
339                 kunmap_atomic(pt_vaddr);
340         }
341 }
342
343 static void gen8_free_page_tables(struct page **pt_pages)
344 {
345         int i;
346
347         if (pt_pages == NULL)
348                 return;
349
350         for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
351                 if (pt_pages[i])
352                         __free_pages(pt_pages[i], 0);
353 }
354
355 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
356 {
357         int i;
358
359         for (i = 0; i < ppgtt->num_pd_pages; i++) {
360                 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
361                 kfree(ppgtt->gen8_pt_pages[i]);
362                 kfree(ppgtt->gen8_pt_dma_addr[i]);
363         }
364
365         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
366 }
367
368 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
369 {
370         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
371         int i, j;
372
373         for (i = 0; i < ppgtt->num_pd_pages; i++) {
374                 /* TODO: In the future we'll support sparse mappings, so this
375                  * will have to change. */
376                 if (!ppgtt->pd_dma_addr[i])
377                         continue;
378
379                 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
380                                PCI_DMA_BIDIRECTIONAL);
381
382                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
383                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
384                         if (addr)
385                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
386                                                PCI_DMA_BIDIRECTIONAL);
387                 }
388         }
389 }
390
391 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
392 {
393         struct i915_hw_ppgtt *ppgtt =
394                 container_of(vm, struct i915_hw_ppgtt, base);
395
396         gen8_ppgtt_unmap_pages(ppgtt);
397         gen8_ppgtt_free(ppgtt);
398 }
399
400 static struct page **__gen8_alloc_page_tables(void)
401 {
402         struct page **pt_pages;
403         int i;
404
405         pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
406         if (!pt_pages)
407                 return ERR_PTR(-ENOMEM);
408
409         for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
410                 pt_pages[i] = alloc_page(GFP_KERNEL);
411                 if (!pt_pages[i])
412                         goto bail;
413         }
414
415         return pt_pages;
416
417 bail:
418         gen8_free_page_tables(pt_pages);
419         kfree(pt_pages);
420         return ERR_PTR(-ENOMEM);
421 }
422
423 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
424                                            const int max_pdp)
425 {
426         struct page **pt_pages[GEN8_LEGACY_PDPS];
427         int i, ret;
428
429         for (i = 0; i < max_pdp; i++) {
430                 pt_pages[i] = __gen8_alloc_page_tables();
431                 if (IS_ERR(pt_pages[i])) {
432                         ret = PTR_ERR(pt_pages[i]);
433                         goto unwind_out;
434                 }
435         }
436
437         /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
438          * "atomic" - for cleanup purposes.
439          */
440         for (i = 0; i < max_pdp; i++)
441                 ppgtt->gen8_pt_pages[i] = pt_pages[i];
442
443         return 0;
444
445 unwind_out:
446         while (i--) {
447                 gen8_free_page_tables(pt_pages[i]);
448                 kfree(pt_pages[i]);
449         }
450
451         return ret;
452 }
453
454 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
455 {
456         int i;
457
458         for (i = 0; i < ppgtt->num_pd_pages; i++) {
459                 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
460                                                      sizeof(dma_addr_t),
461                                                      GFP_KERNEL);
462                 if (!ppgtt->gen8_pt_dma_addr[i])
463                         return -ENOMEM;
464         }
465
466         return 0;
467 }
468
469 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
470                                                 const int max_pdp)
471 {
472         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
473         if (!ppgtt->pd_pages)
474                 return -ENOMEM;
475
476         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
477         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
478
479         return 0;
480 }
481
482 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
483                             const int max_pdp)
484 {
485         int ret;
486
487         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
488         if (ret)
489                 return ret;
490
491         ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
492         if (ret) {
493                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
494                 return ret;
495         }
496
497         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
498
499         ret = gen8_ppgtt_allocate_dma(ppgtt);
500         if (ret)
501                 gen8_ppgtt_free(ppgtt);
502
503         return ret;
504 }
505
506 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
507                                              const int pd)
508 {
509         dma_addr_t pd_addr;
510         int ret;
511
512         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
513                                &ppgtt->pd_pages[pd], 0,
514                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
515
516         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
517         if (ret)
518                 return ret;
519
520         ppgtt->pd_dma_addr[pd] = pd_addr;
521
522         return 0;
523 }
524
525 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
526                                         const int pd,
527                                         const int pt)
528 {
529         dma_addr_t pt_addr;
530         struct page *p;
531         int ret;
532
533         p = ppgtt->gen8_pt_pages[pd][pt];
534         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
535                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
536         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
537         if (ret)
538                 return ret;
539
540         ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
541
542         return 0;
543 }
544
545 /**
546  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
547  * with a net effect resembling a 2-level page table in normal x86 terms. Each
548  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
549  * space.
550  *
551  * FIXME: split allocation into smaller pieces. For now we only ever do this
552  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
553  * TODO: Do something with the size parameter
554  */
555 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
556 {
557         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
558         const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
559         int i, j, ret;
560
561         if (size % (1<<30))
562                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
563
564         /* 1. Do all our allocations for page directories and page tables. */
565         ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
566         if (ret)
567                 return ret;
568
569         /*
570          * 2. Create DMA mappings for the page directories and page tables.
571          */
572         for (i = 0; i < max_pdp; i++) {
573                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
574                 if (ret)
575                         goto bail;
576
577                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
578                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
579                         if (ret)
580                                 goto bail;
581                 }
582         }
583
584         /*
585          * 3. Map all the page directory entires to point to the page tables
586          * we've allocated.
587          *
588          * For now, the PPGTT helper functions all require that the PDEs are
589          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
590          * will never need to touch the PDEs again.
591          */
592         for (i = 0; i < max_pdp; i++) {
593                 gen8_ppgtt_pde_t *pd_vaddr;
594                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
595                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
596                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
597                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
598                                                       I915_CACHE_LLC);
599                 }
600                 if (!HAS_LLC(ppgtt->base.dev))
601                         drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
602                 kunmap_atomic(pd_vaddr);
603         }
604
605         ppgtt->switch_mm = gen8_mm_switch;
606         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
607         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
608         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
609         ppgtt->base.start = 0;
610         ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
611
612         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
613
614         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
615                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
616         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
617                          ppgtt->num_pd_entries,
618                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
619         return 0;
620
621 bail:
622         gen8_ppgtt_unmap_pages(ppgtt);
623         gen8_ppgtt_free(ppgtt);
624         return ret;
625 }
626
627 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
628 {
629         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
630         struct i915_address_space *vm = &ppgtt->base;
631         gen6_gtt_pte_t __iomem *pd_addr;
632         gen6_gtt_pte_t scratch_pte;
633         uint32_t pd_entry;
634         int pte, pde;
635
636         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
637
638         pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
639                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
640
641         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
642                    ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
643         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
644                 u32 expected;
645                 gen6_gtt_pte_t *pt_vaddr;
646                 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
647                 pd_entry = readl(pd_addr + pde);
648                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
649
650                 if (pd_entry != expected)
651                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
652                                    pde,
653                                    pd_entry,
654                                    expected);
655                 seq_printf(m, "\tPDE: %x\n", pd_entry);
656
657                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
658                 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
659                         unsigned long va =
660                                 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
661                                 (pte * PAGE_SIZE);
662                         int i;
663                         bool found = false;
664                         for (i = 0; i < 4; i++)
665                                 if (pt_vaddr[pte + i] != scratch_pte)
666                                         found = true;
667                         if (!found)
668                                 continue;
669
670                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
671                         for (i = 0; i < 4; i++) {
672                                 if (pt_vaddr[pte + i] != scratch_pte)
673                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
674                                 else
675                                         seq_puts(m, "  SCRATCH ");
676                         }
677                         seq_puts(m, "\n");
678                 }
679                 kunmap_atomic(pt_vaddr);
680         }
681 }
682
683 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
684 {
685         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
686         gen6_gtt_pte_t __iomem *pd_addr;
687         uint32_t pd_entry;
688         int i;
689
690         WARN_ON(ppgtt->pd_offset & 0x3f);
691         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
692                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
693         for (i = 0; i < ppgtt->num_pd_entries; i++) {
694                 dma_addr_t pt_addr;
695
696                 pt_addr = ppgtt->pt_dma_addr[i];
697                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
698                 pd_entry |= GEN6_PDE_VALID;
699
700                 writel(pd_entry, pd_addr + i);
701         }
702         readl(pd_addr);
703 }
704
705 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
706 {
707         BUG_ON(ppgtt->pd_offset & 0x3f);
708
709         return (ppgtt->pd_offset / 64) << 16;
710 }
711
712 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
713                          struct intel_engine_cs *ring)
714 {
715         int ret;
716
717         /* NB: TLBs must be flushed and invalidated before a switch */
718         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
719         if (ret)
720                 return ret;
721
722         ret = intel_ring_begin(ring, 6);
723         if (ret)
724                 return ret;
725
726         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
727         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
728         intel_ring_emit(ring, PP_DIR_DCLV_2G);
729         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
730         intel_ring_emit(ring, get_pd_offset(ppgtt));
731         intel_ring_emit(ring, MI_NOOP);
732         intel_ring_advance(ring);
733
734         return 0;
735 }
736
737 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
738                           struct intel_engine_cs *ring)
739 {
740         int ret;
741
742         /* NB: TLBs must be flushed and invalidated before a switch */
743         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
744         if (ret)
745                 return ret;
746
747         ret = intel_ring_begin(ring, 6);
748         if (ret)
749                 return ret;
750
751         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
752         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
753         intel_ring_emit(ring, PP_DIR_DCLV_2G);
754         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
755         intel_ring_emit(ring, get_pd_offset(ppgtt));
756         intel_ring_emit(ring, MI_NOOP);
757         intel_ring_advance(ring);
758
759         /* XXX: RCS is the only one to auto invalidate the TLBs? */
760         if (ring->id != RCS) {
761                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
762                 if (ret)
763                         return ret;
764         }
765
766         return 0;
767 }
768
769 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
770                           struct intel_engine_cs *ring)
771 {
772         struct drm_device *dev = ppgtt->base.dev;
773         struct drm_i915_private *dev_priv = dev->dev_private;
774
775
776         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
777         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
778
779         POSTING_READ(RING_PP_DIR_DCLV(ring));
780
781         return 0;
782 }
783
784 static void gen8_ppgtt_enable(struct drm_device *dev)
785 {
786         struct drm_i915_private *dev_priv = dev->dev_private;
787         struct intel_engine_cs *ring;
788         int j;
789
790         for_each_ring(ring, dev_priv, j) {
791                 I915_WRITE(RING_MODE_GEN7(ring),
792                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
793         }
794 }
795
796 static void gen7_ppgtt_enable(struct drm_device *dev)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         struct intel_engine_cs *ring;
800         uint32_t ecochk, ecobits;
801         int i;
802
803         ecobits = I915_READ(GAC_ECO_BITS);
804         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
805
806         ecochk = I915_READ(GAM_ECOCHK);
807         if (IS_HASWELL(dev)) {
808                 ecochk |= ECOCHK_PPGTT_WB_HSW;
809         } else {
810                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
811                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
812         }
813         I915_WRITE(GAM_ECOCHK, ecochk);
814
815         for_each_ring(ring, dev_priv, i) {
816                 /* GFX_MODE is per-ring on gen7+ */
817                 I915_WRITE(RING_MODE_GEN7(ring),
818                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
819         }
820 }
821
822 static void gen6_ppgtt_enable(struct drm_device *dev)
823 {
824         struct drm_i915_private *dev_priv = dev->dev_private;
825         uint32_t ecochk, gab_ctl, ecobits;
826
827         ecobits = I915_READ(GAC_ECO_BITS);
828         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
829                    ECOBITS_PPGTT_CACHE64B);
830
831         gab_ctl = I915_READ(GAB_CTL);
832         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
833
834         ecochk = I915_READ(GAM_ECOCHK);
835         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
836
837         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
838 }
839
840 /* PPGTT support for Sandybdrige/Gen6 and later */
841 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
842                                    uint64_t start,
843                                    uint64_t length,
844                                    bool use_scratch)
845 {
846         struct i915_hw_ppgtt *ppgtt =
847                 container_of(vm, struct i915_hw_ppgtt, base);
848         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
849         unsigned first_entry = start >> PAGE_SHIFT;
850         unsigned num_entries = length >> PAGE_SHIFT;
851         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
852         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
853         unsigned last_pte, i;
854
855         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
856
857         while (num_entries) {
858                 last_pte = first_pte + num_entries;
859                 if (last_pte > I915_PPGTT_PT_ENTRIES)
860                         last_pte = I915_PPGTT_PT_ENTRIES;
861
862                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
863
864                 for (i = first_pte; i < last_pte; i++)
865                         pt_vaddr[i] = scratch_pte;
866
867                 kunmap_atomic(pt_vaddr);
868
869                 num_entries -= last_pte - first_pte;
870                 first_pte = 0;
871                 act_pt++;
872         }
873 }
874
875 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
876                                       struct sg_table *pages,
877                                       uint64_t start,
878                                       enum i915_cache_level cache_level, u32 flags)
879 {
880         struct i915_hw_ppgtt *ppgtt =
881                 container_of(vm, struct i915_hw_ppgtt, base);
882         gen6_gtt_pte_t *pt_vaddr;
883         unsigned first_entry = start >> PAGE_SHIFT;
884         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
885         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
886         struct sg_page_iter sg_iter;
887
888         pt_vaddr = NULL;
889         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
890                 if (pt_vaddr == NULL)
891                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
892
893                 pt_vaddr[act_pte] =
894                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
895                                        cache_level, true, flags);
896
897                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
898                         kunmap_atomic(pt_vaddr);
899                         pt_vaddr = NULL;
900                         act_pt++;
901                         act_pte = 0;
902                 }
903         }
904         if (pt_vaddr)
905                 kunmap_atomic(pt_vaddr);
906 }
907
908 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
909 {
910         int i;
911
912         if (ppgtt->pt_dma_addr) {
913                 for (i = 0; i < ppgtt->num_pd_entries; i++)
914                         pci_unmap_page(ppgtt->base.dev->pdev,
915                                        ppgtt->pt_dma_addr[i],
916                                        4096, PCI_DMA_BIDIRECTIONAL);
917         }
918 }
919
920 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
921 {
922         int i;
923
924         kfree(ppgtt->pt_dma_addr);
925         for (i = 0; i < ppgtt->num_pd_entries; i++)
926                 __free_page(ppgtt->pt_pages[i]);
927         kfree(ppgtt->pt_pages);
928 }
929
930 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
931 {
932         struct i915_hw_ppgtt *ppgtt =
933                 container_of(vm, struct i915_hw_ppgtt, base);
934
935         drm_mm_remove_node(&ppgtt->node);
936
937         gen6_ppgtt_unmap_pages(ppgtt);
938         gen6_ppgtt_free(ppgtt);
939 }
940
941 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
942 {
943         struct drm_device *dev = ppgtt->base.dev;
944         struct drm_i915_private *dev_priv = dev->dev_private;
945         bool retried = false;
946         int ret;
947
948         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
949          * allocator works in address space sizes, so it's multiplied by page
950          * size. We allocate at the top of the GTT to avoid fragmentation.
951          */
952         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
953 alloc:
954         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
955                                                   &ppgtt->node, GEN6_PD_SIZE,
956                                                   GEN6_PD_ALIGN, 0,
957                                                   0, dev_priv->gtt.base.total,
958                                                   DRM_MM_TOPDOWN);
959         if (ret == -ENOSPC && !retried) {
960                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
961                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
962                                                I915_CACHE_NONE,
963                                                0, dev_priv->gtt.base.total,
964                                                0);
965                 if (ret)
966                         return ret;
967
968                 retried = true;
969                 goto alloc;
970         }
971
972         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
973                 DRM_DEBUG("Forced to use aperture for PDEs\n");
974
975         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
976         return ret;
977 }
978
979 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
980 {
981         int i;
982
983         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
984                                   GFP_KERNEL);
985
986         if (!ppgtt->pt_pages)
987                 return -ENOMEM;
988
989         for (i = 0; i < ppgtt->num_pd_entries; i++) {
990                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
991                 if (!ppgtt->pt_pages[i]) {
992                         gen6_ppgtt_free(ppgtt);
993                         return -ENOMEM;
994                 }
995         }
996
997         return 0;
998 }
999
1000 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1001 {
1002         int ret;
1003
1004         ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1005         if (ret)
1006                 return ret;
1007
1008         ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1009         if (ret) {
1010                 drm_mm_remove_node(&ppgtt->node);
1011                 return ret;
1012         }
1013
1014         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1015                                      GFP_KERNEL);
1016         if (!ppgtt->pt_dma_addr) {
1017                 drm_mm_remove_node(&ppgtt->node);
1018                 gen6_ppgtt_free(ppgtt);
1019                 return -ENOMEM;
1020         }
1021
1022         return 0;
1023 }
1024
1025 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1026 {
1027         struct drm_device *dev = ppgtt->base.dev;
1028         int i;
1029
1030         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1031                 dma_addr_t pt_addr;
1032
1033                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1034                                        PCI_DMA_BIDIRECTIONAL);
1035
1036                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1037                         gen6_ppgtt_unmap_pages(ppgtt);
1038                         return -EIO;
1039                 }
1040
1041                 ppgtt->pt_dma_addr[i] = pt_addr;
1042         }
1043
1044         return 0;
1045 }
1046
1047 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1048 {
1049         struct drm_device *dev = ppgtt->base.dev;
1050         struct drm_i915_private *dev_priv = dev->dev_private;
1051         int ret;
1052
1053         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1054         if (IS_GEN6(dev)) {
1055                 ppgtt->switch_mm = gen6_mm_switch;
1056         } else if (IS_HASWELL(dev)) {
1057                 ppgtt->switch_mm = hsw_mm_switch;
1058         } else if (IS_GEN7(dev)) {
1059                 ppgtt->switch_mm = gen7_mm_switch;
1060         } else
1061                 BUG();
1062
1063         ret = gen6_ppgtt_alloc(ppgtt);
1064         if (ret)
1065                 return ret;
1066
1067         ret = gen6_ppgtt_setup_page_tables(ppgtt);
1068         if (ret) {
1069                 gen6_ppgtt_free(ppgtt);
1070                 return ret;
1071         }
1072
1073         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1074         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1075         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1076         ppgtt->base.start = 0;
1077         ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1078         ppgtt->debug_dump = gen6_dump_ppgtt;
1079
1080         ppgtt->pd_offset =
1081                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1082
1083         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1084
1085         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1086                          ppgtt->node.size >> 20,
1087                          ppgtt->node.start / PAGE_SIZE);
1088
1089         gen6_write_pdes(ppgtt);
1090         DRM_DEBUG("Adding PPGTT at offset %x\n",
1091                   ppgtt->pd_offset << 10);
1092
1093         return 0;
1094 }
1095
1096 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1097 {
1098         struct drm_i915_private *dev_priv = dev->dev_private;
1099
1100         ppgtt->base.dev = dev;
1101         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1102
1103         if (INTEL_INFO(dev)->gen < 8)
1104                 return gen6_ppgtt_init(ppgtt);
1105         else if (IS_GEN8(dev) || IS_GEN9(dev))
1106                 return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1107         else
1108                 BUG();
1109 }
1110 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1111 {
1112         struct drm_i915_private *dev_priv = dev->dev_private;
1113         int ret = 0;
1114
1115         ret = __hw_ppgtt_init(dev, ppgtt);
1116         if (ret == 0) {
1117                 kref_init(&ppgtt->ref);
1118                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1119                             ppgtt->base.total);
1120                 i915_init_vm(dev_priv, &ppgtt->base);
1121         }
1122
1123         return ret;
1124 }
1125
1126 int i915_ppgtt_init_hw(struct drm_device *dev)
1127 {
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         struct intel_engine_cs *ring;
1130         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1131         int i, ret = 0;
1132
1133         /* In the case of execlists, PPGTT is enabled by the context descriptor
1134          * and the PDPs are contained within the context itself.  We don't
1135          * need to do anything here. */
1136         if (i915.enable_execlists)
1137                 return 0;
1138
1139         if (!USES_PPGTT(dev))
1140                 return 0;
1141
1142         if (IS_GEN6(dev))
1143                 gen6_ppgtt_enable(dev);
1144         else if (IS_GEN7(dev))
1145                 gen7_ppgtt_enable(dev);
1146         else if (INTEL_INFO(dev)->gen >= 8)
1147                 gen8_ppgtt_enable(dev);
1148         else
1149                 WARN_ON(1);
1150
1151         if (ppgtt) {
1152                 for_each_ring(ring, dev_priv, i) {
1153                         ret = ppgtt->switch_mm(ppgtt, ring);
1154                         if (ret != 0)
1155                                 return ret;
1156                 }
1157         }
1158
1159         return ret;
1160 }
1161 struct i915_hw_ppgtt *
1162 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1163 {
1164         struct i915_hw_ppgtt *ppgtt;
1165         int ret;
1166
1167         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1168         if (!ppgtt)
1169                 return ERR_PTR(-ENOMEM);
1170
1171         ret = i915_ppgtt_init(dev, ppgtt);
1172         if (ret) {
1173                 kfree(ppgtt);
1174                 return ERR_PTR(ret);
1175         }
1176
1177         ppgtt->file_priv = fpriv;
1178
1179         trace_i915_ppgtt_create(&ppgtt->base);
1180
1181         return ppgtt;
1182 }
1183
1184 void  i915_ppgtt_release(struct kref *kref)
1185 {
1186         struct i915_hw_ppgtt *ppgtt =
1187                 container_of(kref, struct i915_hw_ppgtt, ref);
1188
1189         trace_i915_ppgtt_release(&ppgtt->base);
1190
1191         /* vmas should already be unbound */
1192         WARN_ON(!list_empty(&ppgtt->base.active_list));
1193         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1194
1195         list_del(&ppgtt->base.global_link);
1196         drm_mm_takedown(&ppgtt->base.mm);
1197
1198         ppgtt->base.cleanup(&ppgtt->base);
1199         kfree(ppgtt);
1200 }
1201
1202 static void
1203 ppgtt_bind_vma(struct i915_vma *vma,
1204                enum i915_cache_level cache_level,
1205                u32 flags)
1206 {
1207         /* Currently applicable only to VLV */
1208         if (vma->obj->gt_ro)
1209                 flags |= PTE_READ_ONLY;
1210
1211         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1212                                 cache_level, flags);
1213 }
1214
1215 static void ppgtt_unbind_vma(struct i915_vma *vma)
1216 {
1217         vma->vm->clear_range(vma->vm,
1218                              vma->node.start,
1219                              vma->obj->base.size,
1220                              true);
1221 }
1222
1223 extern int intel_iommu_gfx_mapped;
1224 /* Certain Gen5 chipsets require require idling the GPU before
1225  * unmapping anything from the GTT when VT-d is enabled.
1226  */
1227 static inline bool needs_idle_maps(struct drm_device *dev)
1228 {
1229 #ifdef CONFIG_INTEL_IOMMU
1230         /* Query intel_iommu to see if we need the workaround. Presumably that
1231          * was loaded first.
1232          */
1233         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1234                 return true;
1235 #endif
1236         return false;
1237 }
1238
1239 static bool do_idling(struct drm_i915_private *dev_priv)
1240 {
1241         bool ret = dev_priv->mm.interruptible;
1242
1243         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1244                 dev_priv->mm.interruptible = false;
1245                 if (i915_gpu_idle(dev_priv->dev)) {
1246                         DRM_ERROR("Couldn't idle GPU\n");
1247                         /* Wait a bit, in hopes it avoids the hang */
1248                         udelay(10);
1249                 }
1250         }
1251
1252         return ret;
1253 }
1254
1255 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1256 {
1257         if (unlikely(dev_priv->gtt.do_idle_maps))
1258                 dev_priv->mm.interruptible = interruptible;
1259 }
1260
1261 void i915_check_and_clear_faults(struct drm_device *dev)
1262 {
1263         struct drm_i915_private *dev_priv = dev->dev_private;
1264         struct intel_engine_cs *ring;
1265         int i;
1266
1267         if (INTEL_INFO(dev)->gen < 6)
1268                 return;
1269
1270         for_each_ring(ring, dev_priv, i) {
1271                 u32 fault_reg;
1272                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1273                 if (fault_reg & RING_FAULT_VALID) {
1274                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1275                                          "\tAddr: 0x%08lx\n"
1276                                          "\tAddress space: %s\n"
1277                                          "\tSource ID: %d\n"
1278                                          "\tType: %d\n",
1279                                          fault_reg & PAGE_MASK,
1280                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1281                                          RING_FAULT_SRCID(fault_reg),
1282                                          RING_FAULT_FAULT_TYPE(fault_reg));
1283                         I915_WRITE(RING_FAULT_REG(ring),
1284                                    fault_reg & ~RING_FAULT_VALID);
1285                 }
1286         }
1287         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1288 }
1289
1290 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1291 {
1292         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1293                 intel_gtt_chipset_flush();
1294         } else {
1295                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1296                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1297         }
1298 }
1299
1300 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1301 {
1302         struct drm_i915_private *dev_priv = dev->dev_private;
1303
1304         /* Don't bother messing with faults pre GEN6 as we have little
1305          * documentation supporting that it's a good idea.
1306          */
1307         if (INTEL_INFO(dev)->gen < 6)
1308                 return;
1309
1310         i915_check_and_clear_faults(dev);
1311
1312         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1313                                        dev_priv->gtt.base.start,
1314                                        dev_priv->gtt.base.total,
1315                                        true);
1316
1317         i915_ggtt_flush(dev_priv);
1318 }
1319
1320 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1321 {
1322         struct drm_i915_private *dev_priv = dev->dev_private;
1323         struct drm_i915_gem_object *obj;
1324         struct i915_address_space *vm;
1325
1326         i915_check_and_clear_faults(dev);
1327
1328         /* First fill our portion of the GTT with scratch pages */
1329         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1330                                        dev_priv->gtt.base.start,
1331                                        dev_priv->gtt.base.total,
1332                                        true);
1333
1334         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1335                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1336                                                            &dev_priv->gtt.base);
1337                 if (!vma)
1338                         continue;
1339
1340                 i915_gem_clflush_object(obj, obj->pin_display);
1341                 /* The bind_vma code tries to be smart about tracking mappings.
1342                  * Unfortunately above, we've just wiped out the mappings
1343                  * without telling our object about it. So we need to fake it.
1344                  */
1345                 vma->bound &= ~GLOBAL_BIND;
1346                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1347         }
1348
1349
1350         if (INTEL_INFO(dev)->gen >= 8) {
1351                 if (IS_CHERRYVIEW(dev))
1352                         chv_setup_private_ppat(dev_priv);
1353                 else
1354                         bdw_setup_private_ppat(dev_priv);
1355
1356                 return;
1357         }
1358
1359         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1360                 /* TODO: Perhaps it shouldn't be gen6 specific */
1361                 if (i915_is_ggtt(vm)) {
1362                         if (dev_priv->mm.aliasing_ppgtt)
1363                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1364                         continue;
1365                 }
1366
1367                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1368         }
1369
1370         i915_ggtt_flush(dev_priv);
1371 }
1372
1373 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1374 {
1375         if (obj->has_dma_mapping)
1376                 return 0;
1377
1378         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1379                         obj->pages->sgl, obj->pages->nents,
1380                         PCI_DMA_BIDIRECTIONAL))
1381                 return -ENOSPC;
1382
1383         return 0;
1384 }
1385
1386 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1387 {
1388 #ifdef writeq
1389         writeq(pte, addr);
1390 #else
1391         iowrite32((u32)pte, addr);
1392         iowrite32(pte >> 32, addr + 4);
1393 #endif
1394 }
1395
1396 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1397                                      struct sg_table *st,
1398                                      uint64_t start,
1399                                      enum i915_cache_level level, u32 unused)
1400 {
1401         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1402         unsigned first_entry = start >> PAGE_SHIFT;
1403         gen8_gtt_pte_t __iomem *gtt_entries =
1404                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1405         int i = 0;
1406         struct sg_page_iter sg_iter;
1407         dma_addr_t addr = 0; /* shut up gcc */
1408
1409         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1410                 addr = sg_dma_address(sg_iter.sg) +
1411                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1412                 gen8_set_pte(&gtt_entries[i],
1413                              gen8_pte_encode(addr, level, true));
1414                 i++;
1415         }
1416
1417         /*
1418          * XXX: This serves as a posting read to make sure that the PTE has
1419          * actually been updated. There is some concern that even though
1420          * registers and PTEs are within the same BAR that they are potentially
1421          * of NUMA access patterns. Therefore, even with the way we assume
1422          * hardware should work, we must keep this posting read for paranoia.
1423          */
1424         if (i != 0)
1425                 WARN_ON(readq(&gtt_entries[i-1])
1426                         != gen8_pte_encode(addr, level, true));
1427
1428         /* This next bit makes the above posting read even more important. We
1429          * want to flush the TLBs only after we're certain all the PTE updates
1430          * have finished.
1431          */
1432         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1433         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1434 }
1435
1436 /*
1437  * Binds an object into the global gtt with the specified cache level. The object
1438  * will be accessible to the GPU via commands whose operands reference offsets
1439  * within the global GTT as well as accessible by the GPU through the GMADR
1440  * mapped BAR (dev_priv->mm.gtt->gtt).
1441  */
1442 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1443                                      struct sg_table *st,
1444                                      uint64_t start,
1445                                      enum i915_cache_level level, u32 flags)
1446 {
1447         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1448         unsigned first_entry = start >> PAGE_SHIFT;
1449         gen6_gtt_pte_t __iomem *gtt_entries =
1450                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1451         int i = 0;
1452         struct sg_page_iter sg_iter;
1453         dma_addr_t addr = 0;
1454
1455         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1456                 addr = sg_page_iter_dma_address(&sg_iter);
1457                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1458                 i++;
1459         }
1460
1461         /* XXX: This serves as a posting read to make sure that the PTE has
1462          * actually been updated. There is some concern that even though
1463          * registers and PTEs are within the same BAR that they are potentially
1464          * of NUMA access patterns. Therefore, even with the way we assume
1465          * hardware should work, we must keep this posting read for paranoia.
1466          */
1467         if (i != 0) {
1468                 unsigned long gtt = readl(&gtt_entries[i-1]);
1469                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1470         }
1471
1472         /* This next bit makes the above posting read even more important. We
1473          * want to flush the TLBs only after we're certain all the PTE updates
1474          * have finished.
1475          */
1476         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1477         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1478 }
1479
1480 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1481                                   uint64_t start,
1482                                   uint64_t length,
1483                                   bool use_scratch)
1484 {
1485         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1486         unsigned first_entry = start >> PAGE_SHIFT;
1487         unsigned num_entries = length >> PAGE_SHIFT;
1488         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1489                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1490         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1491         int i;
1492
1493         if (WARN(num_entries > max_entries,
1494                  "First entry = %d; Num entries = %d (max=%d)\n",
1495                  first_entry, num_entries, max_entries))
1496                 num_entries = max_entries;
1497
1498         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1499                                       I915_CACHE_LLC,
1500                                       use_scratch);
1501         for (i = 0; i < num_entries; i++)
1502                 gen8_set_pte(&gtt_base[i], scratch_pte);
1503         readl(gtt_base);
1504 }
1505
1506 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1507                                   uint64_t start,
1508                                   uint64_t length,
1509                                   bool use_scratch)
1510 {
1511         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1512         unsigned first_entry = start >> PAGE_SHIFT;
1513         unsigned num_entries = length >> PAGE_SHIFT;
1514         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1515                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1516         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1517         int i;
1518
1519         if (WARN(num_entries > max_entries,
1520                  "First entry = %d; Num entries = %d (max=%d)\n",
1521                  first_entry, num_entries, max_entries))
1522                 num_entries = max_entries;
1523
1524         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1525
1526         for (i = 0; i < num_entries; i++)
1527                 iowrite32(scratch_pte, &gtt_base[i]);
1528         readl(gtt_base);
1529 }
1530
1531
1532 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1533                                enum i915_cache_level cache_level,
1534                                u32 unused)
1535 {
1536         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1537         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1538                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1539
1540         BUG_ON(!i915_is_ggtt(vma->vm));
1541         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1542         vma->bound = GLOBAL_BIND;
1543 }
1544
1545 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1546                                   uint64_t start,
1547                                   uint64_t length,
1548                                   bool unused)
1549 {
1550         unsigned first_entry = start >> PAGE_SHIFT;
1551         unsigned num_entries = length >> PAGE_SHIFT;
1552         intel_gtt_clear_range(first_entry, num_entries);
1553 }
1554
1555 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1556 {
1557         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1558         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1559
1560         BUG_ON(!i915_is_ggtt(vma->vm));
1561         vma->bound = 0;
1562         intel_gtt_clear_range(first, size);
1563 }
1564
1565 static void ggtt_bind_vma(struct i915_vma *vma,
1566                           enum i915_cache_level cache_level,
1567                           u32 flags)
1568 {
1569         struct drm_device *dev = vma->vm->dev;
1570         struct drm_i915_private *dev_priv = dev->dev_private;
1571         struct drm_i915_gem_object *obj = vma->obj;
1572
1573         /* Currently applicable only to VLV */
1574         if (obj->gt_ro)
1575                 flags |= PTE_READ_ONLY;
1576
1577         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1578          * or we have a global mapping already but the cacheability flags have
1579          * changed, set the global PTEs.
1580          *
1581          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1582          * instead if none of the above hold true.
1583          *
1584          * NB: A global mapping should only be needed for special regions like
1585          * "gtt mappable", SNB errata, or if specified via special execbuf
1586          * flags. At all other times, the GPU will use the aliasing PPGTT.
1587          */
1588         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1589                 if (!(vma->bound & GLOBAL_BIND) ||
1590                     (cache_level != obj->cache_level)) {
1591                         vma->vm->insert_entries(vma->vm, obj->pages,
1592                                                 vma->node.start,
1593                                                 cache_level, flags);
1594                         vma->bound |= GLOBAL_BIND;
1595                 }
1596         }
1597
1598         if (dev_priv->mm.aliasing_ppgtt &&
1599             (!(vma->bound & LOCAL_BIND) ||
1600              (cache_level != obj->cache_level))) {
1601                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1602                 appgtt->base.insert_entries(&appgtt->base,
1603                                             vma->obj->pages,
1604                                             vma->node.start,
1605                                             cache_level, flags);
1606                 vma->bound |= LOCAL_BIND;
1607         }
1608 }
1609
1610 static void ggtt_unbind_vma(struct i915_vma *vma)
1611 {
1612         struct drm_device *dev = vma->vm->dev;
1613         struct drm_i915_private *dev_priv = dev->dev_private;
1614         struct drm_i915_gem_object *obj = vma->obj;
1615
1616         if (vma->bound & GLOBAL_BIND) {
1617                 vma->vm->clear_range(vma->vm,
1618                                      vma->node.start,
1619                                      obj->base.size,
1620                                      true);
1621                 vma->bound &= ~GLOBAL_BIND;
1622         }
1623
1624         if (vma->bound & LOCAL_BIND) {
1625                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1626                 appgtt->base.clear_range(&appgtt->base,
1627                                          vma->node.start,
1628                                          obj->base.size,
1629                                          true);
1630                 vma->bound &= ~LOCAL_BIND;
1631         }
1632 }
1633
1634 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1635 {
1636         struct drm_device *dev = obj->base.dev;
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638         bool interruptible;
1639
1640         interruptible = do_idling(dev_priv);
1641
1642         if (!obj->has_dma_mapping)
1643                 dma_unmap_sg(&dev->pdev->dev,
1644                              obj->pages->sgl, obj->pages->nents,
1645                              PCI_DMA_BIDIRECTIONAL);
1646
1647         undo_idling(dev_priv, interruptible);
1648 }
1649
1650 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1651                                   unsigned long color,
1652                                   unsigned long *start,
1653                                   unsigned long *end)
1654 {
1655         if (node->color != color)
1656                 *start += 4096;
1657
1658         if (!list_empty(&node->node_list)) {
1659                 node = list_entry(node->node_list.next,
1660                                   struct drm_mm_node,
1661                                   node_list);
1662                 if (node->allocated && node->color != color)
1663                         *end -= 4096;
1664         }
1665 }
1666
1667 static int i915_gem_setup_global_gtt(struct drm_device *dev,
1668                                      unsigned long start,
1669                                      unsigned long mappable_end,
1670                                      unsigned long end)
1671 {
1672         /* Let GEM Manage all of the aperture.
1673          *
1674          * However, leave one page at the end still bound to the scratch page.
1675          * There are a number of places where the hardware apparently prefetches
1676          * past the end of the object, and we've seen multiple hangs with the
1677          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1678          * aperture.  One page should be enough to keep any prefetching inside
1679          * of the aperture.
1680          */
1681         struct drm_i915_private *dev_priv = dev->dev_private;
1682         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1683         struct drm_mm_node *entry;
1684         struct drm_i915_gem_object *obj;
1685         unsigned long hole_start, hole_end;
1686         int ret;
1687
1688         BUG_ON(mappable_end > end);
1689
1690         /* Subtract the guard page ... */
1691         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1692         if (!HAS_LLC(dev))
1693                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1694
1695         /* Mark any preallocated objects as occupied */
1696         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1697                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1698
1699                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1700                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1701
1702                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1703                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1704                 if (ret) {
1705                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
1706                         return ret;
1707                 }
1708                 vma->bound |= GLOBAL_BIND;
1709         }
1710
1711         dev_priv->gtt.base.start = start;
1712         dev_priv->gtt.base.total = end - start;
1713
1714         /* Clear any non-preallocated blocks */
1715         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1716                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1717                               hole_start, hole_end);
1718                 ggtt_vm->clear_range(ggtt_vm, hole_start,
1719                                      hole_end - hole_start, true);
1720         }
1721
1722         /* And finally clear the reserved guard page */
1723         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1724
1725         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
1726                 struct i915_hw_ppgtt *ppgtt;
1727
1728                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1729                 if (!ppgtt)
1730                         return -ENOMEM;
1731
1732                 ret = __hw_ppgtt_init(dev, ppgtt);
1733                 if (ret != 0)
1734                         return ret;
1735
1736                 dev_priv->mm.aliasing_ppgtt = ppgtt;
1737         }
1738
1739         return 0;
1740 }
1741
1742 void i915_gem_init_global_gtt(struct drm_device *dev)
1743 {
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         unsigned long gtt_size, mappable_size;
1746
1747         gtt_size = dev_priv->gtt.base.total;
1748         mappable_size = dev_priv->gtt.mappable_end;
1749
1750         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1751 }
1752
1753 void i915_global_gtt_cleanup(struct drm_device *dev)
1754 {
1755         struct drm_i915_private *dev_priv = dev->dev_private;
1756         struct i915_address_space *vm = &dev_priv->gtt.base;
1757
1758         if (dev_priv->mm.aliasing_ppgtt) {
1759                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1760
1761                 ppgtt->base.cleanup(&ppgtt->base);
1762         }
1763
1764         if (drm_mm_initialized(&vm->mm)) {
1765                 drm_mm_takedown(&vm->mm);
1766                 list_del(&vm->global_link);
1767         }
1768
1769         vm->cleanup(vm);
1770 }
1771
1772 static int setup_scratch_page(struct drm_device *dev)
1773 {
1774         struct drm_i915_private *dev_priv = dev->dev_private;
1775         struct page *page;
1776         dma_addr_t dma_addr;
1777
1778         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1779         if (page == NULL)
1780                 return -ENOMEM;
1781         set_pages_uc(page, 1);
1782
1783 #ifdef CONFIG_INTEL_IOMMU
1784         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1785                                 PCI_DMA_BIDIRECTIONAL);
1786         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1787                 return -EINVAL;
1788 #else
1789         dma_addr = page_to_phys(page);
1790 #endif
1791         dev_priv->gtt.base.scratch.page = page;
1792         dev_priv->gtt.base.scratch.addr = dma_addr;
1793
1794         return 0;
1795 }
1796
1797 static void teardown_scratch_page(struct drm_device *dev)
1798 {
1799         struct drm_i915_private *dev_priv = dev->dev_private;
1800         struct page *page = dev_priv->gtt.base.scratch.page;
1801
1802         set_pages_wb(page, 1);
1803         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1804                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1805         __free_page(page);
1806 }
1807
1808 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1809 {
1810         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1811         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1812         return snb_gmch_ctl << 20;
1813 }
1814
1815 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1816 {
1817         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1818         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1819         if (bdw_gmch_ctl)
1820                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1821
1822 #ifdef CONFIG_X86_32
1823         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1824         if (bdw_gmch_ctl > 4)
1825                 bdw_gmch_ctl = 4;
1826 #endif
1827
1828         return bdw_gmch_ctl << 20;
1829 }
1830
1831 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1832 {
1833         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1834         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1835
1836         if (gmch_ctrl)
1837                 return 1 << (20 + gmch_ctrl);
1838
1839         return 0;
1840 }
1841
1842 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1843 {
1844         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1845         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1846         return snb_gmch_ctl << 25; /* 32 MB units */
1847 }
1848
1849 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1850 {
1851         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1852         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1853         return bdw_gmch_ctl << 25; /* 32 MB units */
1854 }
1855
1856 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1857 {
1858         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1859         gmch_ctrl &= SNB_GMCH_GMS_MASK;
1860
1861         /*
1862          * 0x0  to 0x10: 32MB increments starting at 0MB
1863          * 0x11 to 0x16: 4MB increments starting at 8MB
1864          * 0x17 to 0x1d: 4MB increments start at 36MB
1865          */
1866         if (gmch_ctrl < 0x11)
1867                 return gmch_ctrl << 25;
1868         else if (gmch_ctrl < 0x17)
1869                 return (gmch_ctrl - 0x11 + 2) << 22;
1870         else
1871                 return (gmch_ctrl - 0x17 + 9) << 22;
1872 }
1873
1874 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
1875 {
1876         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1877         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
1878
1879         if (gen9_gmch_ctl < 0xf0)
1880                 return gen9_gmch_ctl << 25; /* 32 MB units */
1881         else
1882                 /* 4MB increments starting at 0xf0 for 4MB */
1883                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
1884 }
1885
1886 static int ggtt_probe_common(struct drm_device *dev,
1887                              size_t gtt_size)
1888 {
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         phys_addr_t gtt_phys_addr;
1891         int ret;
1892
1893         /* For Modern GENs the PTEs and register space are split in the BAR */
1894         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1895                 (pci_resource_len(dev->pdev, 0) / 2);
1896
1897         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1898         if (!dev_priv->gtt.gsm) {
1899                 DRM_ERROR("Failed to map the gtt page table\n");
1900                 return -ENOMEM;
1901         }
1902
1903         ret = setup_scratch_page(dev);
1904         if (ret) {
1905                 DRM_ERROR("Scratch setup failed\n");
1906                 /* iounmap will also get called at remove, but meh */
1907                 iounmap(dev_priv->gtt.gsm);
1908         }
1909
1910         return ret;
1911 }
1912
1913 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1914  * bits. When using advanced contexts each context stores its own PAT, but
1915  * writing this data shouldn't be harmful even in those cases. */
1916 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1917 {
1918         uint64_t pat;
1919
1920         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1921               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1922               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1923               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1924               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1925               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1926               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1927               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1928
1929         if (!USES_PPGTT(dev_priv->dev))
1930                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
1931                  * so RTL will always use the value corresponding to
1932                  * pat_sel = 000".
1933                  * So let's disable cache for GGTT to avoid screen corruptions.
1934                  * MOCS still can be used though.
1935                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
1936                  * before this patch, i.e. the same uncached + snooping access
1937                  * like on gen6/7 seems to be in effect.
1938                  * - So this just fixes blitter/render access. Again it looks
1939                  * like it's not just uncached access, but uncached + snooping.
1940                  * So we can still hold onto all our assumptions wrt cpu
1941                  * clflushing on LLC machines.
1942                  */
1943                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
1944
1945         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1946          * write would work. */
1947         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1948         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1949 }
1950
1951 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
1952 {
1953         uint64_t pat;
1954
1955         /*
1956          * Map WB on BDW to snooped on CHV.
1957          *
1958          * Only the snoop bit has meaning for CHV, the rest is
1959          * ignored.
1960          *
1961          * The hardware will never snoop for certain types of accesses:
1962          * - CPU GTT (GMADR->GGTT->no snoop->memory)
1963          * - PPGTT page tables
1964          * - some other special cycles
1965          *
1966          * As with BDW, we also need to consider the following for GT accesses:
1967          * "For GGTT, there is NO pat_sel[2:0] from the entry,
1968          * so RTL will always use the value corresponding to
1969          * pat_sel = 000".
1970          * Which means we must set the snoop bit in PAT entry 0
1971          * in order to keep the global status page working.
1972          */
1973         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1974               GEN8_PPAT(1, 0) |
1975               GEN8_PPAT(2, 0) |
1976               GEN8_PPAT(3, 0) |
1977               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1978               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1979               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1980               GEN8_PPAT(7, CHV_PPAT_SNOOP);
1981
1982         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1983         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1984 }
1985
1986 static int gen8_gmch_probe(struct drm_device *dev,
1987                            size_t *gtt_total,
1988                            size_t *stolen,
1989                            phys_addr_t *mappable_base,
1990                            unsigned long *mappable_end)
1991 {
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         unsigned int gtt_size;
1994         u16 snb_gmch_ctl;
1995         int ret;
1996
1997         /* TODO: We're not aware of mappable constraints on gen8 yet */
1998         *mappable_base = pci_resource_start(dev->pdev, 2);
1999         *mappable_end = pci_resource_len(dev->pdev, 2);
2000
2001         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2002                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2003
2004         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2005
2006         if (INTEL_INFO(dev)->gen >= 9) {
2007                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2008                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2009         } else if (IS_CHERRYVIEW(dev)) {
2010                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2011                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2012         } else {
2013                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2014                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2015         }
2016
2017         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
2018
2019         if (IS_CHERRYVIEW(dev))
2020                 chv_setup_private_ppat(dev_priv);
2021         else
2022                 bdw_setup_private_ppat(dev_priv);
2023
2024         ret = ggtt_probe_common(dev, gtt_size);
2025
2026         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2027         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2028
2029         return ret;
2030 }
2031
2032 static int gen6_gmch_probe(struct drm_device *dev,
2033                            size_t *gtt_total,
2034                            size_t *stolen,
2035                            phys_addr_t *mappable_base,
2036                            unsigned long *mappable_end)
2037 {
2038         struct drm_i915_private *dev_priv = dev->dev_private;
2039         unsigned int gtt_size;
2040         u16 snb_gmch_ctl;
2041         int ret;
2042
2043         *mappable_base = pci_resource_start(dev->pdev, 2);
2044         *mappable_end = pci_resource_len(dev->pdev, 2);
2045
2046         /* 64/512MB is the current min/max we actually know of, but this is just
2047          * a coarse sanity check.
2048          */
2049         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2050                 DRM_ERROR("Unknown GMADR size (%lx)\n",
2051                           dev_priv->gtt.mappable_end);
2052                 return -ENXIO;
2053         }
2054
2055         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2056                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2057         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2058
2059         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2060
2061         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2062         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
2063
2064         ret = ggtt_probe_common(dev, gtt_size);
2065
2066         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2067         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2068
2069         return ret;
2070 }
2071
2072 static void gen6_gmch_remove(struct i915_address_space *vm)
2073 {
2074
2075         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2076
2077         iounmap(gtt->gsm);
2078         teardown_scratch_page(vm->dev);
2079 }
2080
2081 static int i915_gmch_probe(struct drm_device *dev,
2082                            size_t *gtt_total,
2083                            size_t *stolen,
2084                            phys_addr_t *mappable_base,
2085                            unsigned long *mappable_end)
2086 {
2087         struct drm_i915_private *dev_priv = dev->dev_private;
2088         int ret;
2089
2090         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2091         if (!ret) {
2092                 DRM_ERROR("failed to set up gmch\n");
2093                 return -EIO;
2094         }
2095
2096         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2097
2098         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2099         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2100
2101         if (unlikely(dev_priv->gtt.do_idle_maps))
2102                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2103
2104         return 0;
2105 }
2106
2107 static void i915_gmch_remove(struct i915_address_space *vm)
2108 {
2109         intel_gmch_remove();
2110 }
2111
2112 int i915_gem_gtt_init(struct drm_device *dev)
2113 {
2114         struct drm_i915_private *dev_priv = dev->dev_private;
2115         struct i915_gtt *gtt = &dev_priv->gtt;
2116         int ret;
2117
2118         if (INTEL_INFO(dev)->gen <= 5) {
2119                 gtt->gtt_probe = i915_gmch_probe;
2120                 gtt->base.cleanup = i915_gmch_remove;
2121         } else if (INTEL_INFO(dev)->gen < 8) {
2122                 gtt->gtt_probe = gen6_gmch_probe;
2123                 gtt->base.cleanup = gen6_gmch_remove;
2124                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2125                         gtt->base.pte_encode = iris_pte_encode;
2126                 else if (IS_HASWELL(dev))
2127                         gtt->base.pte_encode = hsw_pte_encode;
2128                 else if (IS_VALLEYVIEW(dev))
2129                         gtt->base.pte_encode = byt_pte_encode;
2130                 else if (INTEL_INFO(dev)->gen >= 7)
2131                         gtt->base.pte_encode = ivb_pte_encode;
2132                 else
2133                         gtt->base.pte_encode = snb_pte_encode;
2134         } else {
2135                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2136                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2137         }
2138
2139         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2140                              &gtt->mappable_base, &gtt->mappable_end);
2141         if (ret)
2142                 return ret;
2143
2144         gtt->base.dev = dev;
2145
2146         /* GMADR is the PCI mmio aperture into the global GTT. */
2147         DRM_INFO("Memory usable by graphics device = %zdM\n",
2148                  gtt->base.total >> 20);
2149         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2150         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2151 #ifdef CONFIG_INTEL_IOMMU
2152         if (intel_iommu_gfx_mapped)
2153                 DRM_INFO("VT-d active for gfx access\n");
2154 #endif
2155         /*
2156          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2157          * user's requested state against the hardware/driver capabilities.  We
2158          * do this now so that we can print out any log messages once rather
2159          * than every time we check intel_enable_ppgtt().
2160          */
2161         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2162         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2163
2164         return 0;
2165 }
2166
2167 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2168                                               struct i915_address_space *vm)
2169 {
2170         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2171         if (vma == NULL)
2172                 return ERR_PTR(-ENOMEM);
2173
2174         INIT_LIST_HEAD(&vma->vma_link);
2175         INIT_LIST_HEAD(&vma->mm_list);
2176         INIT_LIST_HEAD(&vma->exec_list);
2177         vma->vm = vm;
2178         vma->obj = obj;
2179
2180         switch (INTEL_INFO(vm->dev)->gen) {
2181         case 9:
2182         case 8:
2183         case 7:
2184         case 6:
2185                 if (i915_is_ggtt(vm)) {
2186                         vma->unbind_vma = ggtt_unbind_vma;
2187                         vma->bind_vma = ggtt_bind_vma;
2188                 } else {
2189                         vma->unbind_vma = ppgtt_unbind_vma;
2190                         vma->bind_vma = ppgtt_bind_vma;
2191                 }
2192                 break;
2193         case 5:
2194         case 4:
2195         case 3:
2196         case 2:
2197                 BUG_ON(!i915_is_ggtt(vm));
2198                 vma->unbind_vma = i915_ggtt_unbind_vma;
2199                 vma->bind_vma = i915_ggtt_bind_vma;
2200                 break;
2201         default:
2202                 BUG();
2203         }
2204
2205         /* Keep GGTT vmas first to make debug easier */
2206         if (i915_is_ggtt(vm))
2207                 list_add(&vma->vma_link, &obj->vma_list);
2208         else {
2209                 list_add_tail(&vma->vma_link, &obj->vma_list);
2210                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2211         }
2212
2213         return vma;
2214 }
2215
2216 struct i915_vma *
2217 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2218                                   struct i915_address_space *vm)
2219 {
2220         struct i915_vma *vma;
2221
2222         vma = i915_gem_obj_to_vma(obj, vm);
2223         if (!vma)
2224                 vma = __i915_gem_vma_create(obj, vm);
2225
2226         return vma;
2227 }