7d61ca2a01dfad8e03b149998efd269904414a47
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41         [HPD_CRT] = SDE_CRT_HOTPLUG,
42         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86         POSTING_READ(GEN8_##type##_IMR(which)); \
87         I915_WRITE(GEN8_##type##_IER(which), 0); \
88         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89         POSTING_READ(GEN8_##type##_IIR(which)); \
90         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91         POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95         I915_WRITE(type##IMR, 0xffffffff); \
96         POSTING_READ(type##IMR); \
97         I915_WRITE(type##IER, 0); \
98         I915_WRITE(type##IIR, 0xffffffff); \
99         POSTING_READ(type##IIR); \
100         I915_WRITE(type##IIR, 0xffffffff); \
101         POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108         u32 val = I915_READ(reg); \
109         if (val) { \
110                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111                      (reg), val); \
112                 I915_WRITE((reg), 0xffffffff); \
113                 POSTING_READ(reg); \
114                 I915_WRITE((reg), 0xffffffff); \
115                 POSTING_READ(reg); \
116         } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123         POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128         I915_WRITE(type##IMR, (imr_val)); \
129         I915_WRITE(type##IER, (ier_val)); \
130         POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137         assert_spin_locked(&dev_priv->irq_lock);
138
139         if (WARN_ON(dev_priv->pm.irqs_disabled))
140                 return;
141
142         if ((dev_priv->irq_mask & mask) != 0) {
143                 dev_priv->irq_mask &= ~mask;
144                 I915_WRITE(DEIMR, dev_priv->irq_mask);
145                 POSTING_READ(DEIMR);
146         }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152         assert_spin_locked(&dev_priv->irq_lock);
153
154         if (WARN_ON(dev_priv->pm.irqs_disabled))
155                 return;
156
157         if ((dev_priv->irq_mask & mask) != mask) {
158                 dev_priv->irq_mask |= mask;
159                 I915_WRITE(DEIMR, dev_priv->irq_mask);
160                 POSTING_READ(DEIMR);
161         }
162 }
163
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171                               uint32_t interrupt_mask,
172                               uint32_t enabled_irq_mask)
173 {
174         assert_spin_locked(&dev_priv->irq_lock);
175
176         if (WARN_ON(dev_priv->pm.irqs_disabled))
177                 return;
178
179         dev_priv->gt_irq_mask &= ~interrupt_mask;
180         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182         POSTING_READ(GTIMR);
183 }
184
185 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187         ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192         ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202                               uint32_t interrupt_mask,
203                               uint32_t enabled_irq_mask)
204 {
205         uint32_t new_val;
206
207         assert_spin_locked(&dev_priv->irq_lock);
208
209         if (WARN_ON(dev_priv->pm.irqs_disabled))
210                 return;
211
212         new_val = dev_priv->pm_irq_mask;
213         new_val &= ~interrupt_mask;
214         new_val |= (~enabled_irq_mask & interrupt_mask);
215
216         if (new_val != dev_priv->pm_irq_mask) {
217                 dev_priv->pm_irq_mask = new_val;
218                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219                 POSTING_READ(GEN6_PMIMR);
220         }
221 }
222
223 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225         snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230         snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         struct intel_crtc *crtc;
237         enum pipe pipe;
238
239         assert_spin_locked(&dev_priv->irq_lock);
240
241         for_each_pipe(pipe) {
242                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244                 if (crtc->cpu_fifo_underrun_disabled)
245                         return false;
246         }
247
248         return true;
249 }
250
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260                               uint32_t interrupt_mask,
261                               uint32_t enabled_irq_mask)
262 {
263         uint32_t new_val;
264
265         assert_spin_locked(&dev_priv->irq_lock);
266
267         if (WARN_ON(dev_priv->pm.irqs_disabled))
268                 return;
269
270         new_val = dev_priv->pm_irq_mask;
271         new_val &= ~interrupt_mask;
272         new_val |= (~enabled_irq_mask & interrupt_mask);
273
274         if (new_val != dev_priv->pm_irq_mask) {
275                 dev_priv->pm_irq_mask = new_val;
276                 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277                 POSTING_READ(GEN8_GT_IMR(2));
278         }
279 }
280
281 void bdw_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283         bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void bdw_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288         bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293         struct drm_i915_private *dev_priv = dev->dev_private;
294         enum pipe pipe;
295         struct intel_crtc *crtc;
296
297         assert_spin_locked(&dev_priv->irq_lock);
298
299         for_each_pipe(pipe) {
300                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302                 if (crtc->pch_fifo_underrun_disabled)
303                         return false;
304         }
305
306         return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311         struct drm_i915_private *dev_priv = dev->dev_private;
312         struct intel_crtc *crtc;
313         unsigned long flags;
314
315         spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317         for_each_intel_crtc(dev, crtc) {
318                 u32 reg = PIPESTAT(crtc->pipe);
319                 u32 pipestat;
320
321                 if (crtc->cpu_fifo_underrun_disabled)
322                         continue;
323
324                 pipestat = I915_READ(reg) & 0xffff0000;
325                 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326                         continue;
327
328                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329                 POSTING_READ(reg);
330
331                 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332         }
333
334         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338                                              enum pipe pipe,
339                                              bool enable, bool old)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         u32 reg = PIPESTAT(pipe);
343         u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345         assert_spin_locked(&dev_priv->irq_lock);
346
347         if (enable) {
348                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349                 POSTING_READ(reg);
350         } else {
351                 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353         }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357                                                  enum pipe pipe, bool enable)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361                                           DE_PIPEB_FIFO_UNDERRUN;
362
363         if (enable)
364                 ironlake_enable_display_irq(dev_priv, bit);
365         else
366                 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370                                                   enum pipe pipe,
371                                                   bool enable, bool old)
372 {
373         struct drm_i915_private *dev_priv = dev->dev_private;
374         if (enable) {
375                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377                 if (!ivb_can_enable_err_int(dev))
378                         return;
379
380                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381         } else {
382                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384                 if (old &&
385                     I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386                         DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387                                   pipe_name(pipe));
388                 }
389         }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393                                                   enum pipe pipe, bool enable)
394 {
395         struct drm_i915_private *dev_priv = dev->dev_private;
396
397         assert_spin_locked(&dev_priv->irq_lock);
398
399         if (enable)
400                 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401         else
402                 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414                                          uint32_t interrupt_mask,
415                                          uint32_t enabled_irq_mask)
416 {
417         uint32_t sdeimr = I915_READ(SDEIMR);
418         sdeimr &= ~interrupt_mask;
419         sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421         assert_spin_locked(&dev_priv->irq_lock);
422
423         if (WARN_ON(dev_priv->pm.irqs_disabled))
424                 return;
425
426         I915_WRITE(SDEIMR, sdeimr);
427         POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430         ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432         ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435                                             enum transcoder pch_transcoder,
436                                             bool enable)
437 {
438         struct drm_i915_private *dev_priv = dev->dev_private;
439         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442         if (enable)
443                 ibx_enable_display_interrupt(dev_priv, bit);
444         else
445                 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449                                             enum transcoder pch_transcoder,
450                                             bool enable, bool old)
451 {
452         struct drm_i915_private *dev_priv = dev->dev_private;
453
454         if (enable) {
455                 I915_WRITE(SERR_INT,
456                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458                 if (!cpt_can_enable_serr_int(dev))
459                         return;
460
461                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462         } else {
463                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465                 if (old && I915_READ(SERR_INT) &
466                     SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467                         DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468                                   transcoder_name(pch_transcoder));
469                 }
470         }
471 }
472
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488                                                     enum pipe pipe, bool enable)
489 {
490         struct drm_i915_private *dev_priv = dev->dev_private;
491         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493         bool old;
494
495         assert_spin_locked(&dev_priv->irq_lock);
496
497         old = !intel_crtc->cpu_fifo_underrun_disabled;
498         intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500         if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501                 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502         else if (IS_GEN5(dev) || IS_GEN6(dev))
503                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504         else if (IS_GEN7(dev))
505                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506         else if (IS_GEN8(dev))
507                 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509         return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513                                            enum pipe pipe, bool enable)
514 {
515         struct drm_i915_private *dev_priv = dev->dev_private;
516         unsigned long flags;
517         bool ret;
518
519         spin_lock_irqsave(&dev_priv->irq_lock, flags);
520         ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523         return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527                                                   enum pipe pipe)
528 {
529         struct drm_i915_private *dev_priv = dev->dev_private;
530         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533         return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551                                            enum transcoder pch_transcoder,
552                                            bool enable)
553 {
554         struct drm_i915_private *dev_priv = dev->dev_private;
555         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557         unsigned long flags;
558         bool old;
559
560         /*
561          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562          * has only one pch transcoder A that all pipes can use. To avoid racy
563          * pch transcoder -> pipe lookups from interrupt code simply store the
564          * underrun statistics in crtc A. Since we never expose this anywhere
565          * nor use it outside of the fifo underrun code here using the "wrong"
566          * crtc on LPT won't cause issues.
567          */
568
569         spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571         old = !intel_crtc->pch_fifo_underrun_disabled;
572         intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574         if (HAS_PCH_IBX(dev))
575                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576         else
577                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580         return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586                        u32 enable_mask, u32 status_mask)
587 {
588         u32 reg = PIPESTAT(pipe);
589         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591         assert_spin_locked(&dev_priv->irq_lock);
592
593         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
595                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596                       pipe_name(pipe), enable_mask, status_mask))
597                 return;
598
599         if ((pipestat & enable_mask) == enable_mask)
600                 return;
601
602         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604         /* Enable the interrupt, clear any pending status */
605         pipestat |= enable_mask | status_mask;
606         I915_WRITE(reg, pipestat);
607         POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612                         u32 enable_mask, u32 status_mask)
613 {
614         u32 reg = PIPESTAT(pipe);
615         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617         assert_spin_locked(&dev_priv->irq_lock);
618
619         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
621                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622                       pipe_name(pipe), enable_mask, status_mask))
623                 return;
624
625         if ((pipestat & enable_mask) == 0)
626                 return;
627
628         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630         pipestat &= ~enable_mask;
631         I915_WRITE(reg, pipestat);
632         POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637         u32 enable_mask = status_mask << 16;
638
639         /*
640          * On pipe A we don't support the PSR interrupt yet,
641          * on pipe B and C the same bit MBZ.
642          */
643         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644                 return 0;
645         /*
646          * On pipe B and C we don't support the PSR interrupt yet, on pipe
647          * A the same bit is for perf counters which we don't use either.
648          */
649         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650                 return 0;
651
652         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653                          SPRITE0_FLIP_DONE_INT_EN_VLV |
654                          SPRITE1_FLIP_DONE_INT_EN_VLV);
655         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660         return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665                      u32 status_mask)
666 {
667         u32 enable_mask;
668
669         if (IS_VALLEYVIEW(dev_priv->dev))
670                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671                                                            status_mask);
672         else
673                 enable_mask = status_mask << 16;
674         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679                       u32 status_mask)
680 {
681         u32 enable_mask;
682
683         if (IS_VALLEYVIEW(dev_priv->dev))
684                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685                                                            status_mask);
686         else
687                 enable_mask = status_mask << 16;
688         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696         struct drm_i915_private *dev_priv = dev->dev_private;
697         unsigned long irqflags;
698
699         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700                 return;
701
702         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705         if (INTEL_INFO(dev)->gen >= 4)
706                 i915_enable_pipestat(dev_priv, PIPE_A,
707                                      PIPE_LEGACY_BLC_EVENT_STATUS);
708
709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725
726         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727                 /* Locking is horribly broken here, but whatever. */
728                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731                 return intel_crtc->active;
732         } else {
733                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734         }
735 }
736
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789         /* Gen2 doesn't have a hardware frame counter */
790         return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         unsigned long high_frame;
800         unsigned long low_frame;
801         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803         if (!i915_pipe_enabled(dev, pipe)) {
804                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805                                 "pipe %c\n", pipe_name(pipe));
806                 return 0;
807         }
808
809         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810                 struct intel_crtc *intel_crtc =
811                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812                 const struct drm_display_mode *mode =
813                         &intel_crtc->config.adjusted_mode;
814
815                 htotal = mode->crtc_htotal;
816                 hsync_start = mode->crtc_hsync_start;
817                 vbl_start = mode->crtc_vblank_start;
818                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
820         } else {
821                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
829         }
830
831         /* Convert to pixel count */
832         vbl_start *= htotal;
833
834         /* Start of vblank event occurs at start of hsync */
835         vbl_start -= htotal - hsync_start;
836
837         high_frame = PIPEFRAME(pipe);
838         low_frame = PIPEFRAMEPIXEL(pipe);
839
840         /*
841          * High & low register fields aren't synchronized, so make sure
842          * we get a low value that's stable across two reads of the high
843          * register.
844          */
845         do {
846                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847                 low   = I915_READ(low_frame);
848                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849         } while (high1 != high2);
850
851         high1 >>= PIPE_FRAME_HIGH_SHIFT;
852         pixel = low & PIPE_PIXEL_MASK;
853         low >>= PIPE_FRAME_LOW_SHIFT;
854
855         /*
856          * The frame counter increments at beginning of active.
857          * Cook up a vblank counter by also checking the pixel
858          * counter against vblank start.
859          */
860         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868         if (!i915_pipe_enabled(dev, pipe)) {
869                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870                                  "pipe %c\n", pipe_name(pipe));
871                 return 0;
872         }
873
874         return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882         struct drm_device *dev = crtc->base.dev;
883         struct drm_i915_private *dev_priv = dev->dev_private;
884         const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885         enum pipe pipe = crtc->pipe;
886         int position, vtotal;
887
888         vtotal = mode->crtc_vtotal;
889         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890                 vtotal /= 2;
891
892         if (IS_GEN2(dev))
893                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894         else
895                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897         /*
898          * See update_scanline_offset() for the details on the
899          * scanline_offset adjustment.
900          */
901         return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905                                     unsigned int flags, int *vpos, int *hpos,
906                                     ktime_t *stime, ktime_t *etime)
907 {
908         struct drm_i915_private *dev_priv = dev->dev_private;
909         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912         int position;
913         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914         bool in_vbl = true;
915         int ret = 0;
916         unsigned long irqflags;
917
918         if (!intel_crtc->active) {
919                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920                                  "pipe %c\n", pipe_name(pipe));
921                 return 0;
922         }
923
924         htotal = mode->crtc_htotal;
925         hsync_start = mode->crtc_hsync_start;
926         vtotal = mode->crtc_vtotal;
927         vbl_start = mode->crtc_vblank_start;
928         vbl_end = mode->crtc_vblank_end;
929
930         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932                 vbl_end /= 2;
933                 vtotal /= 2;
934         }
935
936         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938         /*
939          * Lock uncore.lock, as we will do multiple timing critical raw
940          * register reads, potentially with preemption disabled, so the
941          * following code must not block on uncore.lock.
942          */
943         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947         /* Get optional system timestamp before query. */
948         if (stime)
949                 *stime = ktime_get();
950
951         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952                 /* No obvious pixelcount register. Only query vertical
953                  * scanout position from Display scan line register.
954                  */
955                 position = __intel_get_crtc_scanline(intel_crtc);
956         } else {
957                 /* Have access to pixelcount since start of frame.
958                  * We can split this into vertical and horizontal
959                  * scanout position.
960                  */
961                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963                 /* convert to pixel counts */
964                 vbl_start *= htotal;
965                 vbl_end *= htotal;
966                 vtotal *= htotal;
967
968                 /*
969                  * In interlaced modes, the pixel counter counts all pixels,
970                  * so one field will have htotal more pixels. In order to avoid
971                  * the reported position from jumping backwards when the pixel
972                  * counter is beyond the length of the shorter field, just
973                  * clamp the position the length of the shorter field. This
974                  * matches how the scanline counter based position works since
975                  * the scanline counter doesn't count the two half lines.
976                  */
977                 if (position >= vtotal)
978                         position = vtotal - 1;
979
980                 /*
981                  * Start of vblank interrupt is triggered at start of hsync,
982                  * just prior to the first active line of vblank. However we
983                  * consider lines to start at the leading edge of horizontal
984                  * active. So, should we get here before we've crossed into
985                  * the horizontal active of the first line in vblank, we would
986                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987                  * always add htotal-hsync_start to the current pixel position.
988                  */
989                 position = (position + htotal - hsync_start) % vtotal;
990         }
991
992         /* Get optional system timestamp after query. */
993         if (etime)
994                 *etime = ktime_get();
995
996         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000         in_vbl = position >= vbl_start && position < vbl_end;
1001
1002         /*
1003          * While in vblank, position will be negative
1004          * counting up towards 0 at vbl_end. And outside
1005          * vblank, position will be positive counting
1006          * up since vbl_end.
1007          */
1008         if (position >= vbl_start)
1009                 position -= vbl_end;
1010         else
1011                 position += vtotal - vbl_end;
1012
1013         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014                 *vpos = position;
1015                 *hpos = 0;
1016         } else {
1017                 *vpos = position / htotal;
1018                 *hpos = position - (*vpos * htotal);
1019         }
1020
1021         /* In vblank? */
1022         if (in_vbl)
1023                 ret |= DRM_SCANOUTPOS_INVBL;
1024
1025         return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031         unsigned long irqflags;
1032         int position;
1033
1034         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035         position = __intel_get_crtc_scanline(crtc);
1036         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038         return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042                               int *max_error,
1043                               struct timeval *vblank_time,
1044                               unsigned flags)
1045 {
1046         struct drm_crtc *crtc;
1047
1048         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049                 DRM_ERROR("Invalid crtc %d\n", pipe);
1050                 return -EINVAL;
1051         }
1052
1053         /* Get drm_crtc to timestamp: */
1054         crtc = intel_get_crtc_for_pipe(dev, pipe);
1055         if (crtc == NULL) {
1056                 DRM_ERROR("Invalid crtc %d\n", pipe);
1057                 return -EINVAL;
1058         }
1059
1060         if (!crtc->enabled) {
1061                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062                 return -EBUSY;
1063         }
1064
1065         /* Helper routine in DRM core does all the work: */
1066         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067                                                      vblank_time, flags,
1068                                                      crtc,
1069                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073                                 struct drm_connector *connector)
1074 {
1075         enum drm_connector_status old_status;
1076
1077         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078         old_status = connector->status;
1079
1080         connector->status = connector->funcs->detect(connector, false);
1081         if (old_status == connector->status)
1082                 return false;
1083
1084         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085                       connector->base.id,
1086                       connector->name,
1087                       drm_get_connector_status_name(old_status),
1088                       drm_get_connector_status_name(connector->status));
1089
1090         return true;
1091 }
1092
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095         struct drm_i915_private *dev_priv =
1096                 container_of(work, struct drm_i915_private, dig_port_work);
1097         unsigned long irqflags;
1098         u32 long_port_mask, short_port_mask;
1099         struct intel_digital_port *intel_dig_port;
1100         int i, ret;
1101         u32 old_bits = 0;
1102
1103         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104         long_port_mask = dev_priv->long_hpd_port_mask;
1105         dev_priv->long_hpd_port_mask = 0;
1106         short_port_mask = dev_priv->short_hpd_port_mask;
1107         dev_priv->short_hpd_port_mask = 0;
1108         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109
1110         for (i = 0; i < I915_MAX_PORTS; i++) {
1111                 bool valid = false;
1112                 bool long_hpd = false;
1113                 intel_dig_port = dev_priv->hpd_irq_port[i];
1114                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115                         continue;
1116
1117                 if (long_port_mask & (1 << i))  {
1118                         valid = true;
1119                         long_hpd = true;
1120                 } else if (short_port_mask & (1 << i))
1121                         valid = true;
1122
1123                 if (valid) {
1124                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125                         if (ret == true) {
1126                                 /* if we get true fallback to old school hpd */
1127                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128                         }
1129                 }
1130         }
1131
1132         if (old_bits) {
1133                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134                 dev_priv->hpd_event_bits |= old_bits;
1135                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136                 schedule_work(&dev_priv->hotplug_work);
1137         }
1138 }
1139
1140 /*
1141  * Handle hotplug events outside the interrupt handler proper.
1142  */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147         struct drm_i915_private *dev_priv =
1148                 container_of(work, struct drm_i915_private, hotplug_work);
1149         struct drm_device *dev = dev_priv->dev;
1150         struct drm_mode_config *mode_config = &dev->mode_config;
1151         struct intel_connector *intel_connector;
1152         struct intel_encoder *intel_encoder;
1153         struct drm_connector *connector;
1154         unsigned long irqflags;
1155         bool hpd_disabled = false;
1156         bool changed = false;
1157         u32 hpd_event_bits;
1158
1159         /* HPD irq before everything is fully set up. */
1160         if (!dev_priv->enable_hotplug_processing)
1161                 return;
1162
1163         mutex_lock(&mode_config->mutex);
1164         DRM_DEBUG_KMS("running encoder hotplug functions\n");
1165
1166         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1167
1168         hpd_event_bits = dev_priv->hpd_event_bits;
1169         dev_priv->hpd_event_bits = 0;
1170         list_for_each_entry(connector, &mode_config->connector_list, head) {
1171                 intel_connector = to_intel_connector(connector);
1172                 intel_encoder = intel_connector->encoder;
1173                 if (intel_encoder->hpd_pin > HPD_NONE &&
1174                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1175                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
1176                         DRM_INFO("HPD interrupt storm detected on connector %s: "
1177                                  "switching from hotplug detection to polling\n",
1178                                 connector->name);
1179                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1180                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
1181                                 | DRM_CONNECTOR_POLL_DISCONNECT;
1182                         hpd_disabled = true;
1183                 }
1184                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1185                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1186                                       connector->name, intel_encoder->hpd_pin);
1187                 }
1188         }
1189          /* if there were no outputs to poll, poll was disabled,
1190           * therefore make sure it's enabled when disabling HPD on
1191           * some connectors */
1192         if (hpd_disabled) {
1193                 drm_kms_helper_poll_enable(dev);
1194                 mod_timer(&dev_priv->hotplug_reenable_timer,
1195                           jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1196         }
1197
1198         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1199
1200         list_for_each_entry(connector, &mode_config->connector_list, head) {
1201                 intel_connector = to_intel_connector(connector);
1202                 intel_encoder = intel_connector->encoder;
1203                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204                         if (intel_encoder->hot_plug)
1205                                 intel_encoder->hot_plug(intel_encoder);
1206                         if (intel_hpd_irq_event(dev, connector))
1207                                 changed = true;
1208                 }
1209         }
1210         mutex_unlock(&mode_config->mutex);
1211
1212         if (changed)
1213                 drm_kms_helper_hotplug_event(dev);
1214 }
1215
1216 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1217 {
1218         del_timer_sync(&dev_priv->hotplug_reenable_timer);
1219 }
1220
1221 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1222 {
1223         struct drm_i915_private *dev_priv = dev->dev_private;
1224         u32 busy_up, busy_down, max_avg, min_avg;
1225         u8 new_delay;
1226
1227         spin_lock(&mchdev_lock);
1228
1229         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1230
1231         new_delay = dev_priv->ips.cur_delay;
1232
1233         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1234         busy_up = I915_READ(RCPREVBSYTUPAVG);
1235         busy_down = I915_READ(RCPREVBSYTDNAVG);
1236         max_avg = I915_READ(RCBMAXAVG);
1237         min_avg = I915_READ(RCBMINAVG);
1238
1239         /* Handle RCS change request from hw */
1240         if (busy_up > max_avg) {
1241                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1242                         new_delay = dev_priv->ips.cur_delay - 1;
1243                 if (new_delay < dev_priv->ips.max_delay)
1244                         new_delay = dev_priv->ips.max_delay;
1245         } else if (busy_down < min_avg) {
1246                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1247                         new_delay = dev_priv->ips.cur_delay + 1;
1248                 if (new_delay > dev_priv->ips.min_delay)
1249                         new_delay = dev_priv->ips.min_delay;
1250         }
1251
1252         if (ironlake_set_drps(dev, new_delay))
1253                 dev_priv->ips.cur_delay = new_delay;
1254
1255         spin_unlock(&mchdev_lock);
1256
1257         return;
1258 }
1259
1260 static void notify_ring(struct drm_device *dev,
1261                         struct intel_engine_cs *ring)
1262 {
1263         if (!intel_ring_initialized(ring))
1264                 return;
1265
1266         trace_i915_gem_request_complete(ring);
1267
1268         if (drm_core_check_feature(dev, DRIVER_MODESET))
1269                 intel_notify_mmio_flip(ring);
1270
1271         wake_up_all(&ring->irq_queue);
1272         i915_queue_hangcheck(dev);
1273 }
1274
1275 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1276                             struct intel_rps_ei *rps_ei)
1277 {
1278         u32 cz_ts, cz_freq_khz;
1279         u32 render_count, media_count;
1280         u32 elapsed_render, elapsed_media, elapsed_time;
1281         u32 residency = 0;
1282
1283         cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1284         cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1285
1286         render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1287         media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1288
1289         if (rps_ei->cz_clock == 0) {
1290                 rps_ei->cz_clock = cz_ts;
1291                 rps_ei->render_c0 = render_count;
1292                 rps_ei->media_c0 = media_count;
1293
1294                 return dev_priv->rps.cur_freq;
1295         }
1296
1297         elapsed_time = cz_ts - rps_ei->cz_clock;
1298         rps_ei->cz_clock = cz_ts;
1299
1300         elapsed_render = render_count - rps_ei->render_c0;
1301         rps_ei->render_c0 = render_count;
1302
1303         elapsed_media = media_count - rps_ei->media_c0;
1304         rps_ei->media_c0 = media_count;
1305
1306         /* Convert all the counters into common unit of milli sec */
1307         elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1308         elapsed_render /=  cz_freq_khz;
1309         elapsed_media /= cz_freq_khz;
1310
1311         /*
1312          * Calculate overall C0 residency percentage
1313          * only if elapsed time is non zero
1314          */
1315         if (elapsed_time) {
1316                 residency =
1317                         ((max(elapsed_render, elapsed_media) * 100)
1318                                 / elapsed_time);
1319         }
1320
1321         return residency;
1322 }
1323
1324 /**
1325  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1326  * busy-ness calculated from C0 counters of render & media power wells
1327  * @dev_priv: DRM device private
1328  *
1329  */
1330 static u32 vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1331 {
1332         u32 residency_C0_up = 0, residency_C0_down = 0;
1333         u8 new_delay, adj;
1334
1335         dev_priv->rps.ei_interrupt_count++;
1336
1337         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1338
1339
1340         if (dev_priv->rps.up_ei.cz_clock == 0) {
1341                 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1342                 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1343                 return dev_priv->rps.cur_freq;
1344         }
1345
1346
1347         /*
1348          * To down throttle, C0 residency should be less than down threshold
1349          * for continous EI intervals. So calculate down EI counters
1350          * once in VLV_INT_COUNT_FOR_DOWN_EI
1351          */
1352         if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1353
1354                 dev_priv->rps.ei_interrupt_count = 0;
1355
1356                 residency_C0_down = vlv_c0_residency(dev_priv,
1357                                                      &dev_priv->rps.down_ei);
1358         } else {
1359                 residency_C0_up = vlv_c0_residency(dev_priv,
1360                                                    &dev_priv->rps.up_ei);
1361         }
1362
1363         new_delay = dev_priv->rps.cur_freq;
1364
1365         adj = dev_priv->rps.last_adj;
1366         /* C0 residency is greater than UP threshold. Increase Frequency */
1367         if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1368                 if (adj > 0)
1369                         adj *= 2;
1370                 else
1371                         adj = 1;
1372
1373                 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1374                         new_delay = dev_priv->rps.cur_freq + adj;
1375
1376                 /*
1377                  * For better performance, jump directly
1378                  * to RPe if we're below it.
1379                  */
1380                 if (new_delay < dev_priv->rps.efficient_freq)
1381                         new_delay = dev_priv->rps.efficient_freq;
1382
1383         } else if (!dev_priv->rps.ei_interrupt_count &&
1384                         (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1385                 if (adj < 0)
1386                         adj *= 2;
1387                 else
1388                         adj = -1;
1389                 /*
1390                  * This means, C0 residency is less than down threshold over
1391                  * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1392                  */
1393                 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1394                         new_delay = dev_priv->rps.cur_freq + adj;
1395         }
1396
1397         return new_delay;
1398 }
1399
1400 static void gen6_pm_rps_work(struct work_struct *work)
1401 {
1402         struct drm_i915_private *dev_priv =
1403                 container_of(work, struct drm_i915_private, rps.work);
1404         u32 pm_iir;
1405         int new_delay, adj;
1406
1407         spin_lock_irq(&dev_priv->irq_lock);
1408         pm_iir = dev_priv->rps.pm_iir;
1409         dev_priv->rps.pm_iir = 0;
1410         if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1411                 bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1412         else {
1413                 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1414                 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1415         }
1416         spin_unlock_irq(&dev_priv->irq_lock);
1417
1418         /* Make sure we didn't queue anything we're not going to process. */
1419         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1420
1421         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1422                 return;
1423
1424         mutex_lock(&dev_priv->rps.hw_lock);
1425
1426         adj = dev_priv->rps.last_adj;
1427         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1428                 if (adj > 0)
1429                         adj *= 2;
1430                 else {
1431                         /* CHV needs even encode values */
1432                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1433                 }
1434                 new_delay = dev_priv->rps.cur_freq + adj;
1435
1436                 /*
1437                  * For better performance, jump directly
1438                  * to RPe if we're below it.
1439                  */
1440                 if (new_delay < dev_priv->rps.efficient_freq)
1441                         new_delay = dev_priv->rps.efficient_freq;
1442         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1443                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1444                         new_delay = dev_priv->rps.efficient_freq;
1445                 else
1446                         new_delay = dev_priv->rps.min_freq_softlimit;
1447                 adj = 0;
1448         } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1449                 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1450         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1451                 if (adj < 0)
1452                         adj *= 2;
1453                 else {
1454                         /* CHV needs even encode values */
1455                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1456                 }
1457                 new_delay = dev_priv->rps.cur_freq + adj;
1458         } else { /* unknown event */
1459                 new_delay = dev_priv->rps.cur_freq;
1460         }
1461
1462         /* sysfs frequency interfaces may have snuck in while servicing the
1463          * interrupt
1464          */
1465         new_delay = clamp_t(int, new_delay,
1466                             dev_priv->rps.min_freq_softlimit,
1467                             dev_priv->rps.max_freq_softlimit);
1468
1469         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1470
1471         if (IS_VALLEYVIEW(dev_priv->dev))
1472                 valleyview_set_rps(dev_priv->dev, new_delay);
1473         else
1474                 gen6_set_rps(dev_priv->dev, new_delay);
1475
1476         mutex_unlock(&dev_priv->rps.hw_lock);
1477 }
1478
1479
1480 /**
1481  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1482  * occurred.
1483  * @work: workqueue struct
1484  *
1485  * Doesn't actually do anything except notify userspace. As a consequence of
1486  * this event, userspace should try to remap the bad rows since statistically
1487  * it is likely the same row is more likely to go bad again.
1488  */
1489 static void ivybridge_parity_work(struct work_struct *work)
1490 {
1491         struct drm_i915_private *dev_priv =
1492                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1493         u32 error_status, row, bank, subbank;
1494         char *parity_event[6];
1495         uint32_t misccpctl;
1496         unsigned long flags;
1497         uint8_t slice = 0;
1498
1499         /* We must turn off DOP level clock gating to access the L3 registers.
1500          * In order to prevent a get/put style interface, acquire struct mutex
1501          * any time we access those registers.
1502          */
1503         mutex_lock(&dev_priv->dev->struct_mutex);
1504
1505         /* If we've screwed up tracking, just let the interrupt fire again */
1506         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1507                 goto out;
1508
1509         misccpctl = I915_READ(GEN7_MISCCPCTL);
1510         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1511         POSTING_READ(GEN7_MISCCPCTL);
1512
1513         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1514                 u32 reg;
1515
1516                 slice--;
1517                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1518                         break;
1519
1520                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1521
1522                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1523
1524                 error_status = I915_READ(reg);
1525                 row = GEN7_PARITY_ERROR_ROW(error_status);
1526                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1527                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1528
1529                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1530                 POSTING_READ(reg);
1531
1532                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1533                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1534                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1535                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1536                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1537                 parity_event[5] = NULL;
1538
1539                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1540                                    KOBJ_CHANGE, parity_event);
1541
1542                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1543                           slice, row, bank, subbank);
1544
1545                 kfree(parity_event[4]);
1546                 kfree(parity_event[3]);
1547                 kfree(parity_event[2]);
1548                 kfree(parity_event[1]);
1549         }
1550
1551         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1552
1553 out:
1554         WARN_ON(dev_priv->l3_parity.which_slice);
1555         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1556         ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1557         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1558
1559         mutex_unlock(&dev_priv->dev->struct_mutex);
1560 }
1561
1562 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1563 {
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565
1566         if (!HAS_L3_DPF(dev))
1567                 return;
1568
1569         spin_lock(&dev_priv->irq_lock);
1570         ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1571         spin_unlock(&dev_priv->irq_lock);
1572
1573         iir &= GT_PARITY_ERROR(dev);
1574         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1575                 dev_priv->l3_parity.which_slice |= 1 << 1;
1576
1577         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1578                 dev_priv->l3_parity.which_slice |= 1 << 0;
1579
1580         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1581 }
1582
1583 static void ilk_gt_irq_handler(struct drm_device *dev,
1584                                struct drm_i915_private *dev_priv,
1585                                u32 gt_iir)
1586 {
1587         if (gt_iir &
1588             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1589                 notify_ring(dev, &dev_priv->ring[RCS]);
1590         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1591                 notify_ring(dev, &dev_priv->ring[VCS]);
1592 }
1593
1594 static void snb_gt_irq_handler(struct drm_device *dev,
1595                                struct drm_i915_private *dev_priv,
1596                                u32 gt_iir)
1597 {
1598
1599         if (gt_iir &
1600             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1601                 notify_ring(dev, &dev_priv->ring[RCS]);
1602         if (gt_iir & GT_BSD_USER_INTERRUPT)
1603                 notify_ring(dev, &dev_priv->ring[VCS]);
1604         if (gt_iir & GT_BLT_USER_INTERRUPT)
1605                 notify_ring(dev, &dev_priv->ring[BCS]);
1606
1607         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1608                       GT_BSD_CS_ERROR_INTERRUPT |
1609                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1610                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1611                                   gt_iir);
1612         }
1613
1614         if (gt_iir & GT_PARITY_ERROR(dev))
1615                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1616 }
1617
1618 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1619 {
1620         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1621                 return;
1622
1623         spin_lock(&dev_priv->irq_lock);
1624         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1625         bdw_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1626         spin_unlock(&dev_priv->irq_lock);
1627
1628         queue_work(dev_priv->wq, &dev_priv->rps.work);
1629 }
1630
1631 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1632                                        struct drm_i915_private *dev_priv,
1633                                        u32 master_ctl)
1634 {
1635         u32 rcs, bcs, vcs;
1636         uint32_t tmp = 0;
1637         irqreturn_t ret = IRQ_NONE;
1638
1639         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1640                 tmp = I915_READ(GEN8_GT_IIR(0));
1641                 if (tmp) {
1642                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1643                         ret = IRQ_HANDLED;
1644                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1645                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1646                         if (rcs & GT_RENDER_USER_INTERRUPT)
1647                                 notify_ring(dev, &dev_priv->ring[RCS]);
1648                         if (bcs & GT_RENDER_USER_INTERRUPT)
1649                                 notify_ring(dev, &dev_priv->ring[BCS]);
1650                 } else
1651                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1652         }
1653
1654         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1655                 tmp = I915_READ(GEN8_GT_IIR(1));
1656                 if (tmp) {
1657                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1658                         ret = IRQ_HANDLED;
1659                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1660                         if (vcs & GT_RENDER_USER_INTERRUPT)
1661                                 notify_ring(dev, &dev_priv->ring[VCS]);
1662                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1663                         if (vcs & GT_RENDER_USER_INTERRUPT)
1664                                 notify_ring(dev, &dev_priv->ring[VCS2]);
1665                 } else
1666                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1667         }
1668
1669         if (master_ctl & GEN8_GT_PM_IRQ) {
1670                 tmp = I915_READ(GEN8_GT_IIR(2));
1671                 if (tmp & dev_priv->pm_rps_events) {
1672                         I915_WRITE(GEN8_GT_IIR(2),
1673                                    tmp & dev_priv->pm_rps_events);
1674                         ret = IRQ_HANDLED;
1675                         gen8_rps_irq_handler(dev_priv, tmp);
1676                 } else
1677                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1678         }
1679
1680         if (master_ctl & GEN8_GT_VECS_IRQ) {
1681                 tmp = I915_READ(GEN8_GT_IIR(3));
1682                 if (tmp) {
1683                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1684                         ret = IRQ_HANDLED;
1685                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1686                         if (vcs & GT_RENDER_USER_INTERRUPT)
1687                                 notify_ring(dev, &dev_priv->ring[VECS]);
1688                 } else
1689                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1690         }
1691
1692         return ret;
1693 }
1694
1695 #define HPD_STORM_DETECT_PERIOD 1000
1696 #define HPD_STORM_THRESHOLD 5
1697
1698 static int ilk_port_to_hotplug_shift(enum port port)
1699 {
1700         switch (port) {
1701         case PORT_A:
1702         case PORT_E:
1703         default:
1704                 return -1;
1705         case PORT_B:
1706                 return 0;
1707         case PORT_C:
1708                 return 8;
1709         case PORT_D:
1710                 return 16;
1711         }
1712 }
1713
1714 static int g4x_port_to_hotplug_shift(enum port port)
1715 {
1716         switch (port) {
1717         case PORT_A:
1718         case PORT_E:
1719         default:
1720                 return -1;
1721         case PORT_B:
1722                 return 17;
1723         case PORT_C:
1724                 return 19;
1725         case PORT_D:
1726                 return 21;
1727         }
1728 }
1729
1730 static inline enum port get_port_from_pin(enum hpd_pin pin)
1731 {
1732         switch (pin) {
1733         case HPD_PORT_B:
1734                 return PORT_B;
1735         case HPD_PORT_C:
1736                 return PORT_C;
1737         case HPD_PORT_D:
1738                 return PORT_D;
1739         default:
1740                 return PORT_A; /* no hpd */
1741         }
1742 }
1743
1744 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1745                                          u32 hotplug_trigger,
1746                                          u32 dig_hotplug_reg,
1747                                          const u32 *hpd)
1748 {
1749         struct drm_i915_private *dev_priv = dev->dev_private;
1750         int i;
1751         enum port port;
1752         bool storm_detected = false;
1753         bool queue_dig = false, queue_hp = false;
1754         u32 dig_shift;
1755         u32 dig_port_mask = 0;
1756
1757         if (!hotplug_trigger)
1758                 return;
1759
1760         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1761                          hotplug_trigger, dig_hotplug_reg);
1762
1763         spin_lock(&dev_priv->irq_lock);
1764         for (i = 1; i < HPD_NUM_PINS; i++) {
1765                 if (!(hpd[i] & hotplug_trigger))
1766                         continue;
1767
1768                 port = get_port_from_pin(i);
1769                 if (port && dev_priv->hpd_irq_port[port]) {
1770                         bool long_hpd;
1771
1772                         if (IS_G4X(dev)) {
1773                                 dig_shift = g4x_port_to_hotplug_shift(port);
1774                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1775                         } else {
1776                                 dig_shift = ilk_port_to_hotplug_shift(port);
1777                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1778                         }
1779
1780                         DRM_DEBUG_DRIVER("digital hpd port %d %d\n", port, long_hpd);
1781                         /* for long HPD pulses we want to have the digital queue happen,
1782                            but we still want HPD storm detection to function. */
1783                         if (long_hpd) {
1784                                 dev_priv->long_hpd_port_mask |= (1 << port);
1785                                 dig_port_mask |= hpd[i];
1786                         } else {
1787                                 /* for short HPD just trigger the digital queue */
1788                                 dev_priv->short_hpd_port_mask |= (1 << port);
1789                                 hotplug_trigger &= ~hpd[i];
1790                         }
1791                         queue_dig = true;
1792                 }
1793         }
1794
1795         for (i = 1; i < HPD_NUM_PINS; i++) {
1796                 if (hpd[i] & hotplug_trigger &&
1797                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1798                         /*
1799                          * On GMCH platforms the interrupt mask bits only
1800                          * prevent irq generation, not the setting of the
1801                          * hotplug bits itself. So only WARN about unexpected
1802                          * interrupts on saner platforms.
1803                          */
1804                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1805                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1806                                   hotplug_trigger, i, hpd[i]);
1807
1808                         continue;
1809                 }
1810
1811                 if (!(hpd[i] & hotplug_trigger) ||
1812                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1813                         continue;
1814
1815                 if (!(dig_port_mask & hpd[i])) {
1816                         dev_priv->hpd_event_bits |= (1 << i);
1817                         queue_hp = true;
1818                 }
1819
1820                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1821                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1822                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1823                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1824                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1825                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1826                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1827                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1828                         dev_priv->hpd_event_bits &= ~(1 << i);
1829                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1830                         storm_detected = true;
1831                 } else {
1832                         dev_priv->hpd_stats[i].hpd_cnt++;
1833                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1834                                       dev_priv->hpd_stats[i].hpd_cnt);
1835                 }
1836         }
1837
1838         if (storm_detected)
1839                 dev_priv->display.hpd_irq_setup(dev);
1840         spin_unlock(&dev_priv->irq_lock);
1841
1842         /*
1843          * Our hotplug handler can grab modeset locks (by calling down into the
1844          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1845          * queue for otherwise the flush_work in the pageflip code will
1846          * deadlock.
1847          */
1848         if (queue_dig)
1849                 schedule_work(&dev_priv->dig_port_work);
1850         if (queue_hp)
1851                 schedule_work(&dev_priv->hotplug_work);
1852 }
1853
1854 static void gmbus_irq_handler(struct drm_device *dev)
1855 {
1856         struct drm_i915_private *dev_priv = dev->dev_private;
1857
1858         wake_up_all(&dev_priv->gmbus_wait_queue);
1859 }
1860
1861 static void dp_aux_irq_handler(struct drm_device *dev)
1862 {
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864
1865         wake_up_all(&dev_priv->gmbus_wait_queue);
1866 }
1867
1868 #if defined(CONFIG_DEBUG_FS)
1869 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1870                                          uint32_t crc0, uint32_t crc1,
1871                                          uint32_t crc2, uint32_t crc3,
1872                                          uint32_t crc4)
1873 {
1874         struct drm_i915_private *dev_priv = dev->dev_private;
1875         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1876         struct intel_pipe_crc_entry *entry;
1877         int head, tail;
1878
1879         spin_lock(&pipe_crc->lock);
1880
1881         if (!pipe_crc->entries) {
1882                 spin_unlock(&pipe_crc->lock);
1883                 DRM_ERROR("spurious interrupt\n");
1884                 return;
1885         }
1886
1887         head = pipe_crc->head;
1888         tail = pipe_crc->tail;
1889
1890         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1891                 spin_unlock(&pipe_crc->lock);
1892                 DRM_ERROR("CRC buffer overflowing\n");
1893                 return;
1894         }
1895
1896         entry = &pipe_crc->entries[head];
1897
1898         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1899         entry->crc[0] = crc0;
1900         entry->crc[1] = crc1;
1901         entry->crc[2] = crc2;
1902         entry->crc[3] = crc3;
1903         entry->crc[4] = crc4;
1904
1905         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1906         pipe_crc->head = head;
1907
1908         spin_unlock(&pipe_crc->lock);
1909
1910         wake_up_interruptible(&pipe_crc->wq);
1911 }
1912 #else
1913 static inline void
1914 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1915                              uint32_t crc0, uint32_t crc1,
1916                              uint32_t crc2, uint32_t crc3,
1917                              uint32_t crc4) {}
1918 #endif
1919
1920
1921 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1922 {
1923         struct drm_i915_private *dev_priv = dev->dev_private;
1924
1925         display_pipe_crc_irq_handler(dev, pipe,
1926                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1927                                      0, 0, 0, 0);
1928 }
1929
1930 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1931 {
1932         struct drm_i915_private *dev_priv = dev->dev_private;
1933
1934         display_pipe_crc_irq_handler(dev, pipe,
1935                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1936                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1937                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1938                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1939                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1940 }
1941
1942 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1943 {
1944         struct drm_i915_private *dev_priv = dev->dev_private;
1945         uint32_t res1, res2;
1946
1947         if (INTEL_INFO(dev)->gen >= 3)
1948                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1949         else
1950                 res1 = 0;
1951
1952         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1953                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1954         else
1955                 res2 = 0;
1956
1957         display_pipe_crc_irq_handler(dev, pipe,
1958                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1959                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1960                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1961                                      res1, res2);
1962 }
1963
1964 /* The RPS events need forcewake, so we add them to a work queue and mask their
1965  * IMR bits until the work is done. Other interrupts can be processed without
1966  * the work queue. */
1967 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1968 {
1969         if (pm_iir & dev_priv->pm_rps_events) {
1970                 spin_lock(&dev_priv->irq_lock);
1971                 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1972                 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1973                 spin_unlock(&dev_priv->irq_lock);
1974
1975                 queue_work(dev_priv->wq, &dev_priv->rps.work);
1976         }
1977
1978         if (HAS_VEBOX(dev_priv->dev)) {
1979                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1980                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1981
1982                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1983                         i915_handle_error(dev_priv->dev, false,
1984                                           "VEBOX CS error interrupt 0x%08x",
1985                                           pm_iir);
1986                 }
1987         }
1988 }
1989
1990 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1991 {
1992         struct intel_crtc *crtc;
1993
1994         if (!drm_handle_vblank(dev, pipe))
1995                 return false;
1996
1997         crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1998         wake_up(&crtc->vbl_wait);
1999
2000         return true;
2001 }
2002
2003 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
2004 {
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006         u32 pipe_stats[I915_MAX_PIPES] = { };
2007         int pipe;
2008
2009         spin_lock(&dev_priv->irq_lock);
2010         for_each_pipe(pipe) {
2011                 int reg;
2012                 u32 mask, iir_bit = 0;
2013
2014                 /*
2015                  * PIPESTAT bits get signalled even when the interrupt is
2016                  * disabled with the mask bits, and some of the status bits do
2017                  * not generate interrupts at all (like the underrun bit). Hence
2018                  * we need to be careful that we only handle what we want to
2019                  * handle.
2020                  */
2021                 mask = 0;
2022                 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2023                         mask |= PIPE_FIFO_UNDERRUN_STATUS;
2024
2025                 switch (pipe) {
2026                 case PIPE_A:
2027                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2028                         break;
2029                 case PIPE_B:
2030                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2031                         break;
2032                 case PIPE_C:
2033                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2034                         break;
2035                 }
2036                 if (iir & iir_bit)
2037                         mask |= dev_priv->pipestat_irq_mask[pipe];
2038
2039                 if (!mask)
2040                         continue;
2041
2042                 reg = PIPESTAT(pipe);
2043                 mask |= PIPESTAT_INT_ENABLE_MASK;
2044                 pipe_stats[pipe] = I915_READ(reg) & mask;
2045
2046                 /*
2047                  * Clear the PIPE*STAT regs before the IIR
2048                  */
2049                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2050                                         PIPESTAT_INT_STATUS_MASK))
2051                         I915_WRITE(reg, pipe_stats[pipe]);
2052         }
2053         spin_unlock(&dev_priv->irq_lock);
2054
2055         for_each_pipe(pipe) {
2056                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2057                         intel_pipe_handle_vblank(dev, pipe);
2058
2059                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2060                         intel_prepare_page_flip(dev, pipe);
2061                         intel_finish_page_flip(dev, pipe);
2062                 }
2063
2064                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2065                         i9xx_pipe_crc_irq_handler(dev, pipe);
2066
2067                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2068                     intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2069                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2070         }
2071
2072         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2073                 gmbus_irq_handler(dev);
2074 }
2075
2076 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2077 {
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2080
2081         if (hotplug_status) {
2082                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2083                 /*
2084                  * Make sure hotplug status is cleared before we clear IIR, or else we
2085                  * may miss hotplug events.
2086                  */
2087                 POSTING_READ(PORT_HOTPLUG_STAT);
2088
2089                 if (IS_G4X(dev)) {
2090                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2091
2092                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2093                 } else {
2094                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2095
2096                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2097                 }
2098
2099                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2100                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2101                         dp_aux_irq_handler(dev);
2102         }
2103 }
2104
2105 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2106 {
2107         struct drm_device *dev = arg;
2108         struct drm_i915_private *dev_priv = dev->dev_private;
2109         u32 iir, gt_iir, pm_iir;
2110         irqreturn_t ret = IRQ_NONE;
2111
2112         while (true) {
2113                 /* Find, clear, then process each source of interrupt */
2114
2115                 gt_iir = I915_READ(GTIIR);
2116                 if (gt_iir)
2117                         I915_WRITE(GTIIR, gt_iir);
2118
2119                 pm_iir = I915_READ(GEN6_PMIIR);
2120                 if (pm_iir)
2121                         I915_WRITE(GEN6_PMIIR, pm_iir);
2122
2123                 iir = I915_READ(VLV_IIR);
2124                 if (iir) {
2125                         /* Consume port before clearing IIR or we'll miss events */
2126                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
2127                                 i9xx_hpd_irq_handler(dev);
2128                         I915_WRITE(VLV_IIR, iir);
2129                 }
2130
2131                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2132                         goto out;
2133
2134                 ret = IRQ_HANDLED;
2135
2136                 if (gt_iir)
2137                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2138                 if (pm_iir)
2139                         gen6_rps_irq_handler(dev_priv, pm_iir);
2140                 /* Call regardless, as some status bits might not be
2141                  * signalled in iir */
2142                 valleyview_pipestat_irq_handler(dev, iir);
2143         }
2144
2145 out:
2146         return ret;
2147 }
2148
2149 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2150 {
2151         struct drm_device *dev = arg;
2152         struct drm_i915_private *dev_priv = dev->dev_private;
2153         u32 master_ctl, iir;
2154         irqreturn_t ret = IRQ_NONE;
2155
2156         for (;;) {
2157                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2158                 iir = I915_READ(VLV_IIR);
2159
2160                 if (master_ctl == 0 && iir == 0)
2161                         break;
2162
2163                 ret = IRQ_HANDLED;
2164
2165                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2166
2167                 /* Find, clear, then process each source of interrupt */
2168
2169                 if (iir) {
2170                         /* Consume port before clearing IIR or we'll miss events */
2171                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
2172                                 i9xx_hpd_irq_handler(dev);
2173                         I915_WRITE(VLV_IIR, iir);
2174                 }
2175
2176                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2177
2178                 /* Call regardless, as some status bits might not be
2179                  * signalled in iir */
2180                 valleyview_pipestat_irq_handler(dev, iir);
2181
2182                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2183                 POSTING_READ(GEN8_MASTER_IRQ);
2184         }
2185
2186         return ret;
2187 }
2188
2189 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2190 {
2191         struct drm_i915_private *dev_priv = dev->dev_private;
2192         int pipe;
2193         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2194         u32 dig_hotplug_reg;
2195
2196         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2197         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2198
2199         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2200
2201         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2202                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2203                                SDE_AUDIO_POWER_SHIFT);
2204                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2205                                  port_name(port));
2206         }
2207
2208         if (pch_iir & SDE_AUX_MASK)
2209                 dp_aux_irq_handler(dev);
2210
2211         if (pch_iir & SDE_GMBUS)
2212                 gmbus_irq_handler(dev);
2213
2214         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2215                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2216
2217         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2218                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2219
2220         if (pch_iir & SDE_POISON)
2221                 DRM_ERROR("PCH poison interrupt\n");
2222
2223         if (pch_iir & SDE_FDI_MASK)
2224                 for_each_pipe(pipe)
2225                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2226                                          pipe_name(pipe),
2227                                          I915_READ(FDI_RX_IIR(pipe)));
2228
2229         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2230                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2231
2232         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2233                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2234
2235         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2236                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2237                                                           false))
2238                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
2239
2240         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2241                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2242                                                           false))
2243                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2244 }
2245
2246 static void ivb_err_int_handler(struct drm_device *dev)
2247 {
2248         struct drm_i915_private *dev_priv = dev->dev_private;
2249         u32 err_int = I915_READ(GEN7_ERR_INT);
2250         enum pipe pipe;
2251
2252         if (err_int & ERR_INT_POISON)
2253                 DRM_ERROR("Poison interrupt\n");
2254
2255         for_each_pipe(pipe) {
2256                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2257                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2258                                                                   false))
2259                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2260                                           pipe_name(pipe));
2261                 }
2262
2263                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2264                         if (IS_IVYBRIDGE(dev))
2265                                 ivb_pipe_crc_irq_handler(dev, pipe);
2266                         else
2267                                 hsw_pipe_crc_irq_handler(dev, pipe);
2268                 }
2269         }
2270
2271         I915_WRITE(GEN7_ERR_INT, err_int);
2272 }
2273
2274 static void cpt_serr_int_handler(struct drm_device *dev)
2275 {
2276         struct drm_i915_private *dev_priv = dev->dev_private;
2277         u32 serr_int = I915_READ(SERR_INT);
2278
2279         if (serr_int & SERR_INT_POISON)
2280                 DRM_ERROR("PCH poison interrupt\n");
2281
2282         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2283                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2284                                                           false))
2285                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
2286
2287         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2288                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2289                                                           false))
2290                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2291
2292         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2293                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2294                                                           false))
2295                         DRM_ERROR("PCH transcoder C FIFO underrun\n");
2296
2297         I915_WRITE(SERR_INT, serr_int);
2298 }
2299
2300 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2301 {
2302         struct drm_i915_private *dev_priv = dev->dev_private;
2303         int pipe;
2304         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2305         u32 dig_hotplug_reg;
2306
2307         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2308         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2309
2310         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2311
2312         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2313                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2314                                SDE_AUDIO_POWER_SHIFT_CPT);
2315                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2316                                  port_name(port));
2317         }
2318
2319         if (pch_iir & SDE_AUX_MASK_CPT)
2320                 dp_aux_irq_handler(dev);
2321
2322         if (pch_iir & SDE_GMBUS_CPT)
2323                 gmbus_irq_handler(dev);
2324
2325         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2326                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2327
2328         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2329                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2330
2331         if (pch_iir & SDE_FDI_MASK_CPT)
2332                 for_each_pipe(pipe)
2333                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2334                                          pipe_name(pipe),
2335                                          I915_READ(FDI_RX_IIR(pipe)));
2336
2337         if (pch_iir & SDE_ERROR_CPT)
2338                 cpt_serr_int_handler(dev);
2339 }
2340
2341 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2342 {
2343         struct drm_i915_private *dev_priv = dev->dev_private;
2344         enum pipe pipe;
2345
2346         if (de_iir & DE_AUX_CHANNEL_A)
2347                 dp_aux_irq_handler(dev);
2348
2349         if (de_iir & DE_GSE)
2350                 intel_opregion_asle_intr(dev);
2351
2352         if (de_iir & DE_POISON)
2353                 DRM_ERROR("Poison interrupt\n");
2354
2355         for_each_pipe(pipe) {
2356                 if (de_iir & DE_PIPE_VBLANK(pipe))
2357                         intel_pipe_handle_vblank(dev, pipe);
2358
2359                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2360                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2361                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2362                                           pipe_name(pipe));
2363
2364                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2365                         i9xx_pipe_crc_irq_handler(dev, pipe);
2366
2367                 /* plane/pipes map 1:1 on ilk+ */
2368                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2369                         intel_prepare_page_flip(dev, pipe);
2370                         intel_finish_page_flip_plane(dev, pipe);
2371                 }
2372         }
2373
2374         /* check event from PCH */
2375         if (de_iir & DE_PCH_EVENT) {
2376                 u32 pch_iir = I915_READ(SDEIIR);
2377
2378                 if (HAS_PCH_CPT(dev))
2379                         cpt_irq_handler(dev, pch_iir);
2380                 else
2381                         ibx_irq_handler(dev, pch_iir);
2382
2383                 /* should clear PCH hotplug event before clear CPU irq */
2384                 I915_WRITE(SDEIIR, pch_iir);
2385         }
2386
2387         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2388                 ironlake_rps_change_irq_handler(dev);
2389 }
2390
2391 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2392 {
2393         struct drm_i915_private *dev_priv = dev->dev_private;
2394         enum pipe pipe;
2395
2396         if (de_iir & DE_ERR_INT_IVB)
2397                 ivb_err_int_handler(dev);
2398
2399         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2400                 dp_aux_irq_handler(dev);
2401
2402         if (de_iir & DE_GSE_IVB)
2403                 intel_opregion_asle_intr(dev);
2404
2405         for_each_pipe(pipe) {
2406                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2407                         intel_pipe_handle_vblank(dev, pipe);
2408
2409                 /* plane/pipes map 1:1 on ilk+ */
2410                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2411                         intel_prepare_page_flip(dev, pipe);
2412                         intel_finish_page_flip_plane(dev, pipe);
2413                 }
2414         }
2415
2416         /* check event from PCH */
2417         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2418                 u32 pch_iir = I915_READ(SDEIIR);
2419
2420                 cpt_irq_handler(dev, pch_iir);
2421
2422                 /* clear PCH hotplug event before clear CPU irq */
2423                 I915_WRITE(SDEIIR, pch_iir);
2424         }
2425 }
2426
2427 /*
2428  * To handle irqs with the minimum potential races with fresh interrupts, we:
2429  * 1 - Disable Master Interrupt Control.
2430  * 2 - Find the source(s) of the interrupt.
2431  * 3 - Clear the Interrupt Identity bits (IIR).
2432  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2433  * 5 - Re-enable Master Interrupt Control.
2434  */
2435 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2436 {
2437         struct drm_device *dev = arg;
2438         struct drm_i915_private *dev_priv = dev->dev_private;
2439         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2440         irqreturn_t ret = IRQ_NONE;
2441
2442         /* We get interrupts on unclaimed registers, so check for this before we
2443          * do any I915_{READ,WRITE}. */
2444         intel_uncore_check_errors(dev);
2445
2446         /* disable master interrupt before clearing iir  */
2447         de_ier = I915_READ(DEIER);
2448         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2449         POSTING_READ(DEIER);
2450
2451         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2452          * interrupts will will be stored on its back queue, and then we'll be
2453          * able to process them after we restore SDEIER (as soon as we restore
2454          * it, we'll get an interrupt if SDEIIR still has something to process
2455          * due to its back queue). */
2456         if (!HAS_PCH_NOP(dev)) {
2457                 sde_ier = I915_READ(SDEIER);
2458                 I915_WRITE(SDEIER, 0);
2459                 POSTING_READ(SDEIER);
2460         }
2461
2462         /* Find, clear, then process each source of interrupt */
2463
2464         gt_iir = I915_READ(GTIIR);
2465         if (gt_iir) {
2466                 I915_WRITE(GTIIR, gt_iir);
2467                 ret = IRQ_HANDLED;
2468                 if (INTEL_INFO(dev)->gen >= 6)
2469                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2470                 else
2471                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2472         }
2473
2474         de_iir = I915_READ(DEIIR);
2475         if (de_iir) {
2476                 I915_WRITE(DEIIR, de_iir);
2477                 ret = IRQ_HANDLED;
2478                 if (INTEL_INFO(dev)->gen >= 7)
2479                         ivb_display_irq_handler(dev, de_iir);
2480                 else
2481                         ilk_display_irq_handler(dev, de_iir);
2482         }
2483
2484         if (INTEL_INFO(dev)->gen >= 6) {
2485                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2486                 if (pm_iir) {
2487                         I915_WRITE(GEN6_PMIIR, pm_iir);
2488                         ret = IRQ_HANDLED;
2489                         gen6_rps_irq_handler(dev_priv, pm_iir);
2490                 }
2491         }
2492
2493         I915_WRITE(DEIER, de_ier);
2494         POSTING_READ(DEIER);
2495         if (!HAS_PCH_NOP(dev)) {
2496                 I915_WRITE(SDEIER, sde_ier);
2497                 POSTING_READ(SDEIER);
2498         }
2499
2500         return ret;
2501 }
2502
2503 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2504 {
2505         struct drm_device *dev = arg;
2506         struct drm_i915_private *dev_priv = dev->dev_private;
2507         u32 master_ctl;
2508         irqreturn_t ret = IRQ_NONE;
2509         uint32_t tmp = 0;
2510         enum pipe pipe;
2511
2512         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2513         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2514         if (!master_ctl)
2515                 return IRQ_NONE;
2516
2517         I915_WRITE(GEN8_MASTER_IRQ, 0);
2518         POSTING_READ(GEN8_MASTER_IRQ);
2519
2520         /* Find, clear, then process each source of interrupt */
2521
2522         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2523
2524         if (master_ctl & GEN8_DE_MISC_IRQ) {
2525                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2526                 if (tmp) {
2527                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2528                         ret = IRQ_HANDLED;
2529                         if (tmp & GEN8_DE_MISC_GSE)
2530                                 intel_opregion_asle_intr(dev);
2531                         else
2532                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2533                 }
2534                 else
2535                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2536         }
2537
2538         if (master_ctl & GEN8_DE_PORT_IRQ) {
2539                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2540                 if (tmp) {
2541                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2542                         ret = IRQ_HANDLED;
2543                         if (tmp & GEN8_AUX_CHANNEL_A)
2544                                 dp_aux_irq_handler(dev);
2545                         else
2546                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2547                 }
2548                 else
2549                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2550         }
2551
2552         for_each_pipe(pipe) {
2553                 uint32_t pipe_iir;
2554
2555                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2556                         continue;
2557
2558                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2559                 if (pipe_iir) {
2560                         ret = IRQ_HANDLED;
2561                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2562                         if (pipe_iir & GEN8_PIPE_VBLANK)
2563                                 intel_pipe_handle_vblank(dev, pipe);
2564
2565                         if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2566                                 intel_prepare_page_flip(dev, pipe);
2567                                 intel_finish_page_flip_plane(dev, pipe);
2568                         }
2569
2570                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2571                                 hsw_pipe_crc_irq_handler(dev, pipe);
2572
2573                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2574                                 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2575                                                                           false))
2576                                         DRM_ERROR("Pipe %c FIFO underrun\n",
2577                                                   pipe_name(pipe));
2578                         }
2579
2580                         if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2581                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2582                                           pipe_name(pipe),
2583                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2584                         }
2585                 } else
2586                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2587         }
2588
2589         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2590                 /*
2591                  * FIXME(BDW): Assume for now that the new interrupt handling
2592                  * scheme also closed the SDE interrupt handling race we've seen
2593                  * on older pch-split platforms. But this needs testing.
2594                  */
2595                 u32 pch_iir = I915_READ(SDEIIR);
2596                 if (pch_iir) {
2597                         I915_WRITE(SDEIIR, pch_iir);
2598                         ret = IRQ_HANDLED;
2599                         cpt_irq_handler(dev, pch_iir);
2600                 } else
2601                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2602
2603         }
2604
2605         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2606         POSTING_READ(GEN8_MASTER_IRQ);
2607
2608         return ret;
2609 }
2610
2611 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2612                                bool reset_completed)
2613 {
2614         struct intel_engine_cs *ring;
2615         int i;
2616
2617         /*
2618          * Notify all waiters for GPU completion events that reset state has
2619          * been changed, and that they need to restart their wait after
2620          * checking for potential errors (and bail out to drop locks if there is
2621          * a gpu reset pending so that i915_error_work_func can acquire them).
2622          */
2623
2624         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2625         for_each_ring(ring, dev_priv, i)
2626                 wake_up_all(&ring->irq_queue);
2627
2628         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2629         wake_up_all(&dev_priv->pending_flip_queue);
2630
2631         /*
2632          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2633          * reset state is cleared.
2634          */
2635         if (reset_completed)
2636                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2637 }
2638
2639 /**
2640  * i915_error_work_func - do process context error handling work
2641  * @work: work struct
2642  *
2643  * Fire an error uevent so userspace can see that a hang or error
2644  * was detected.
2645  */
2646 static void i915_error_work_func(struct work_struct *work)
2647 {
2648         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2649                                                     work);
2650         struct drm_i915_private *dev_priv =
2651                 container_of(error, struct drm_i915_private, gpu_error);
2652         struct drm_device *dev = dev_priv->dev;
2653         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2654         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2655         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2656         int ret;
2657
2658         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2659
2660         /*
2661          * Note that there's only one work item which does gpu resets, so we
2662          * need not worry about concurrent gpu resets potentially incrementing
2663          * error->reset_counter twice. We only need to take care of another
2664          * racing irq/hangcheck declaring the gpu dead for a second time. A
2665          * quick check for that is good enough: schedule_work ensures the
2666          * correct ordering between hang detection and this work item, and since
2667          * the reset in-progress bit is only ever set by code outside of this
2668          * work we don't need to worry about any other races.
2669          */
2670         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2671                 DRM_DEBUG_DRIVER("resetting chip\n");
2672                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2673                                    reset_event);
2674
2675                 /*
2676                  * In most cases it's guaranteed that we get here with an RPM
2677                  * reference held, for example because there is a pending GPU
2678                  * request that won't finish until the reset is done. This
2679                  * isn't the case at least when we get here by doing a
2680                  * simulated reset via debugs, so get an RPM reference.
2681                  */
2682                 intel_runtime_pm_get(dev_priv);
2683                 /*
2684                  * All state reset _must_ be completed before we update the
2685                  * reset counter, for otherwise waiters might miss the reset
2686                  * pending state and not properly drop locks, resulting in
2687                  * deadlocks with the reset work.
2688                  */
2689                 ret = i915_reset(dev);
2690
2691                 intel_display_handle_reset(dev);
2692
2693                 intel_runtime_pm_put(dev_priv);
2694
2695                 if (ret == 0) {
2696                         /*
2697                          * After all the gem state is reset, increment the reset
2698                          * counter and wake up everyone waiting for the reset to
2699                          * complete.
2700                          *
2701                          * Since unlock operations are a one-sided barrier only,
2702                          * we need to insert a barrier here to order any seqno
2703                          * updates before
2704                          * the counter increment.
2705                          */
2706                         smp_mb__before_atomic();
2707                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2708
2709                         kobject_uevent_env(&dev->primary->kdev->kobj,
2710                                            KOBJ_CHANGE, reset_done_event);
2711                 } else {
2712                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2713                 }
2714
2715                 /*
2716                  * Note: The wake_up also serves as a memory barrier so that
2717                  * waiters see the update value of the reset counter atomic_t.
2718                  */
2719                 i915_error_wake_up(dev_priv, true);
2720         }
2721 }
2722
2723 static void i915_report_and_clear_eir(struct drm_device *dev)
2724 {
2725         struct drm_i915_private *dev_priv = dev->dev_private;
2726         uint32_t instdone[I915_NUM_INSTDONE_REG];
2727         u32 eir = I915_READ(EIR);
2728         int pipe, i;
2729
2730         if (!eir)
2731                 return;
2732
2733         pr_err("render error detected, EIR: 0x%08x\n", eir);
2734
2735         i915_get_extra_instdone(dev, instdone);
2736
2737         if (IS_G4X(dev)) {
2738                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2739                         u32 ipeir = I915_READ(IPEIR_I965);
2740
2741                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2742                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2743                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2744                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2745                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2746                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2747                         I915_WRITE(IPEIR_I965, ipeir);
2748                         POSTING_READ(IPEIR_I965);
2749                 }
2750                 if (eir & GM45_ERROR_PAGE_TABLE) {
2751                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2752                         pr_err("page table error\n");
2753                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2754                         I915_WRITE(PGTBL_ER, pgtbl_err);
2755                         POSTING_READ(PGTBL_ER);
2756                 }
2757         }
2758
2759         if (!IS_GEN2(dev)) {
2760                 if (eir & I915_ERROR_PAGE_TABLE) {
2761                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2762                         pr_err("page table error\n");
2763                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2764                         I915_WRITE(PGTBL_ER, pgtbl_err);
2765                         POSTING_READ(PGTBL_ER);
2766                 }
2767         }
2768
2769         if (eir & I915_ERROR_MEMORY_REFRESH) {
2770                 pr_err("memory refresh error:\n");
2771                 for_each_pipe(pipe)
2772                         pr_err("pipe %c stat: 0x%08x\n",
2773                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2774                 /* pipestat has already been acked */
2775         }
2776         if (eir & I915_ERROR_INSTRUCTION) {
2777                 pr_err("instruction error\n");
2778                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2779                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2780                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2781                 if (INTEL_INFO(dev)->gen < 4) {
2782                         u32 ipeir = I915_READ(IPEIR);
2783
2784                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2785                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2786                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2787                         I915_WRITE(IPEIR, ipeir);
2788                         POSTING_READ(IPEIR);
2789                 } else {
2790                         u32 ipeir = I915_READ(IPEIR_I965);
2791
2792                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2793                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2794                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2795                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2796                         I915_WRITE(IPEIR_I965, ipeir);
2797                         POSTING_READ(IPEIR_I965);
2798                 }
2799         }
2800
2801         I915_WRITE(EIR, eir);
2802         POSTING_READ(EIR);
2803         eir = I915_READ(EIR);
2804         if (eir) {
2805                 /*
2806                  * some errors might have become stuck,
2807                  * mask them.
2808                  */
2809                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2810                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2811                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2812         }
2813 }
2814
2815 /**
2816  * i915_handle_error - handle an error interrupt
2817  * @dev: drm device
2818  *
2819  * Do some basic checking of regsiter state at error interrupt time and
2820  * dump it to the syslog.  Also call i915_capture_error_state() to make
2821  * sure we get a record and make it available in debugfs.  Fire a uevent
2822  * so userspace knows something bad happened (should trigger collection
2823  * of a ring dump etc.).
2824  */
2825 void i915_handle_error(struct drm_device *dev, bool wedged,
2826                        const char *fmt, ...)
2827 {
2828         struct drm_i915_private *dev_priv = dev->dev_private;
2829         va_list args;
2830         char error_msg[80];
2831
2832         va_start(args, fmt);
2833         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2834         va_end(args);
2835
2836         i915_capture_error_state(dev, wedged, error_msg);
2837         i915_report_and_clear_eir(dev);
2838
2839         if (wedged) {
2840                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2841                                 &dev_priv->gpu_error.reset_counter);
2842
2843                 /*
2844                  * Wakeup waiting processes so that the reset work function
2845                  * i915_error_work_func doesn't deadlock trying to grab various
2846                  * locks. By bumping the reset counter first, the woken
2847                  * processes will see a reset in progress and back off,
2848                  * releasing their locks and then wait for the reset completion.
2849                  * We must do this for _all_ gpu waiters that might hold locks
2850                  * that the reset work needs to acquire.
2851                  *
2852                  * Note: The wake_up serves as the required memory barrier to
2853                  * ensure that the waiters see the updated value of the reset
2854                  * counter atomic_t.
2855                  */
2856                 i915_error_wake_up(dev_priv, false);
2857         }
2858
2859         /*
2860          * Our reset work can grab modeset locks (since it needs to reset the
2861          * state of outstanding pagelips). Hence it must not be run on our own
2862          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2863          * code will deadlock.
2864          */
2865         schedule_work(&dev_priv->gpu_error.work);
2866 }
2867
2868 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2869 {
2870         struct drm_i915_private *dev_priv = dev->dev_private;
2871         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2872         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2873         struct drm_i915_gem_object *obj;
2874         struct intel_unpin_work *work;
2875         unsigned long flags;
2876         bool stall_detected;
2877
2878         /* Ignore early vblank irqs */
2879         if (intel_crtc == NULL)
2880                 return;
2881
2882         spin_lock_irqsave(&dev->event_lock, flags);
2883         work = intel_crtc->unpin_work;
2884
2885         if (work == NULL ||
2886             atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2887             !work->enable_stall_check) {
2888                 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2889                 spin_unlock_irqrestore(&dev->event_lock, flags);
2890                 return;
2891         }
2892
2893         /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2894         obj = work->pending_flip_obj;
2895         if (INTEL_INFO(dev)->gen >= 4) {
2896                 int dspsurf = DSPSURF(intel_crtc->plane);
2897                 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2898                                         i915_gem_obj_ggtt_offset(obj);
2899         } else {
2900                 int dspaddr = DSPADDR(intel_crtc->plane);
2901                 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2902                                                         crtc->y * crtc->primary->fb->pitches[0] +
2903                                                         crtc->x * crtc->primary->fb->bits_per_pixel/8);
2904         }
2905
2906         spin_unlock_irqrestore(&dev->event_lock, flags);
2907
2908         if (stall_detected) {
2909                 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2910                 intel_prepare_page_flip(dev, intel_crtc->plane);
2911         }
2912 }
2913
2914 /* Called from drm generic code, passed 'crtc' which
2915  * we use as a pipe index
2916  */
2917 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2918 {
2919         struct drm_i915_private *dev_priv = dev->dev_private;
2920         unsigned long irqflags;
2921
2922         if (!i915_pipe_enabled(dev, pipe))
2923                 return -EINVAL;
2924
2925         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2926         if (INTEL_INFO(dev)->gen >= 4)
2927                 i915_enable_pipestat(dev_priv, pipe,
2928                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2929         else
2930                 i915_enable_pipestat(dev_priv, pipe,
2931                                      PIPE_VBLANK_INTERRUPT_STATUS);
2932         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2933
2934         return 0;
2935 }
2936
2937 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2938 {
2939         struct drm_i915_private *dev_priv = dev->dev_private;
2940         unsigned long irqflags;
2941         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2942                                                      DE_PIPE_VBLANK(pipe);
2943
2944         if (!i915_pipe_enabled(dev, pipe))
2945                 return -EINVAL;
2946
2947         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2948         ironlake_enable_display_irq(dev_priv, bit);
2949         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2950
2951         return 0;
2952 }
2953
2954 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2955 {
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         unsigned long irqflags;
2958
2959         if (!i915_pipe_enabled(dev, pipe))
2960                 return -EINVAL;
2961
2962         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2963         i915_enable_pipestat(dev_priv, pipe,
2964                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2965         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2966
2967         return 0;
2968 }
2969
2970 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2971 {
2972         struct drm_i915_private *dev_priv = dev->dev_private;
2973         unsigned long irqflags;
2974
2975         if (!i915_pipe_enabled(dev, pipe))
2976                 return -EINVAL;
2977
2978         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2979         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2980         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2981         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2982         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2983         return 0;
2984 }
2985
2986 /* Called from drm generic code, passed 'crtc' which
2987  * we use as a pipe index
2988  */
2989 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2990 {
2991         struct drm_i915_private *dev_priv = dev->dev_private;
2992         unsigned long irqflags;
2993
2994         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2995         i915_disable_pipestat(dev_priv, pipe,
2996                               PIPE_VBLANK_INTERRUPT_STATUS |
2997                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2998         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2999 }
3000
3001 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
3002 {
3003         struct drm_i915_private *dev_priv = dev->dev_private;
3004         unsigned long irqflags;
3005         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
3006                                                      DE_PIPE_VBLANK(pipe);
3007
3008         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3009         ironlake_disable_display_irq(dev_priv, bit);
3010         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3011 }
3012
3013 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
3014 {
3015         struct drm_i915_private *dev_priv = dev->dev_private;
3016         unsigned long irqflags;
3017
3018         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3019         i915_disable_pipestat(dev_priv, pipe,
3020                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3021         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3022 }
3023
3024 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
3025 {
3026         struct drm_i915_private *dev_priv = dev->dev_private;
3027         unsigned long irqflags;
3028
3029         if (!i915_pipe_enabled(dev, pipe))
3030                 return;
3031
3032         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3033         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3034         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3035         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3036         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3037 }
3038
3039 static u32
3040 ring_last_seqno(struct intel_engine_cs *ring)
3041 {
3042         return list_entry(ring->request_list.prev,
3043                           struct drm_i915_gem_request, list)->seqno;
3044 }
3045
3046 static bool
3047 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3048 {
3049         return (list_empty(&ring->request_list) ||
3050                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
3051 }
3052
3053 static bool
3054 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3055 {
3056         if (INTEL_INFO(dev)->gen >= 8) {
3057                 return (ipehr >> 23) == 0x1c;
3058         } else {
3059                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3060                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3061                                  MI_SEMAPHORE_REGISTER);
3062         }
3063 }
3064
3065 static struct intel_engine_cs *
3066 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3067 {
3068         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3069         struct intel_engine_cs *signaller;
3070         int i;
3071
3072         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3073                 for_each_ring(signaller, dev_priv, i) {
3074                         if (ring == signaller)
3075                                 continue;
3076
3077                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
3078                                 return signaller;
3079                 }
3080         } else {
3081                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3082
3083                 for_each_ring(signaller, dev_priv, i) {
3084                         if(ring == signaller)
3085                                 continue;
3086
3087                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3088                                 return signaller;
3089                 }
3090         }
3091
3092         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3093                   ring->id, ipehr, offset);
3094
3095         return NULL;
3096 }
3097
3098 static struct intel_engine_cs *
3099 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3100 {
3101         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3102         u32 cmd, ipehr, head;
3103         u64 offset = 0;
3104         int i, backwards;
3105
3106         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3107         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3108                 return NULL;
3109
3110         /*
3111          * HEAD is likely pointing to the dword after the actual command,
3112          * so scan backwards until we find the MBOX. But limit it to just 3
3113          * or 4 dwords depending on the semaphore wait command size.
3114          * Note that we don't care about ACTHD here since that might
3115          * point at at batch, and semaphores are always emitted into the
3116          * ringbuffer itself.
3117          */
3118         head = I915_READ_HEAD(ring) & HEAD_ADDR;
3119         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3120
3121         for (i = backwards; i; --i) {
3122                 /*
3123                  * Be paranoid and presume the hw has gone off into the wild -
3124                  * our ring is smaller than what the hardware (and hence
3125                  * HEAD_ADDR) allows. Also handles wrap-around.
3126                  */
3127                 head &= ring->buffer->size - 1;
3128
3129                 /* This here seems to blow up */
3130                 cmd = ioread32(ring->buffer->virtual_start + head);
3131                 if (cmd == ipehr)
3132                         break;
3133
3134                 head -= 4;
3135         }
3136
3137         if (!i)
3138                 return NULL;
3139
3140         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3141         if (INTEL_INFO(ring->dev)->gen >= 8) {
3142                 offset = ioread32(ring->buffer->virtual_start + head + 12);
3143                 offset <<= 32;
3144                 offset = ioread32(ring->buffer->virtual_start + head + 8);
3145         }
3146         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3147 }
3148
3149 static int semaphore_passed(struct intel_engine_cs *ring)
3150 {
3151         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3152         struct intel_engine_cs *signaller;
3153         u32 seqno, ctl;
3154
3155         ring->hangcheck.deadlock++;
3156
3157         signaller = semaphore_waits_for(ring, &seqno);
3158         if (signaller == NULL)
3159                 return -1;
3160
3161         /* Prevent pathological recursion due to driver bugs */
3162         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3163                 return -1;
3164
3165         /* cursory check for an unkickable deadlock */
3166         ctl = I915_READ_CTL(signaller);
3167         if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
3168                 return -1;
3169
3170         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3171                 return 1;
3172
3173         if (signaller->hangcheck.deadlock)
3174                 return -1;
3175
3176         return 0;
3177 }
3178
3179 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3180 {
3181         struct intel_engine_cs *ring;
3182         int i;
3183
3184         for_each_ring(ring, dev_priv, i)
3185                 ring->hangcheck.deadlock = 0;
3186 }
3187
3188 static enum intel_ring_hangcheck_action
3189 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3190 {
3191         struct drm_device *dev = ring->dev;
3192         struct drm_i915_private *dev_priv = dev->dev_private;
3193         u32 tmp;
3194
3195         if (ring->hangcheck.acthd != acthd)
3196                 return HANGCHECK_ACTIVE;
3197
3198         if (IS_GEN2(dev))
3199                 return HANGCHECK_HUNG;
3200
3201         /* Is the chip hanging on a WAIT_FOR_EVENT?
3202          * If so we can simply poke the RB_WAIT bit
3203          * and break the hang. This should work on
3204          * all but the second generation chipsets.
3205          */
3206         tmp = I915_READ_CTL(ring);
3207         if (tmp & RING_WAIT) {
3208                 i915_handle_error(dev, false,
3209                                   "Kicking stuck wait on %s",
3210                                   ring->name);
3211                 I915_WRITE_CTL(ring, tmp);
3212                 return HANGCHECK_KICK;
3213         }
3214
3215         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3216                 switch (semaphore_passed(ring)) {
3217                 default:
3218                         return HANGCHECK_HUNG;
3219                 case 1:
3220                         i915_handle_error(dev, false,
3221                                           "Kicking stuck semaphore on %s",
3222                                           ring->name);
3223                         I915_WRITE_CTL(ring, tmp);
3224                         return HANGCHECK_KICK;
3225                 case 0:
3226                         return HANGCHECK_WAIT;
3227                 }
3228         }
3229
3230         return HANGCHECK_HUNG;
3231 }
3232
3233 /**
3234  * This is called when the chip hasn't reported back with completed
3235  * batchbuffers in a long time. We keep track per ring seqno progress and
3236  * if there are no progress, hangcheck score for that ring is increased.
3237  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3238  * we kick the ring. If we see no progress on three subsequent calls
3239  * we assume chip is wedged and try to fix it by resetting the chip.
3240  */
3241 static void i915_hangcheck_elapsed(unsigned long data)
3242 {
3243         struct drm_device *dev = (struct drm_device *)data;
3244         struct drm_i915_private *dev_priv = dev->dev_private;
3245         struct intel_engine_cs *ring;
3246         int i;
3247         int busy_count = 0, rings_hung = 0;
3248         bool stuck[I915_NUM_RINGS] = { 0 };
3249 #define BUSY 1
3250 #define KICK 5
3251 #define HUNG 20
3252
3253         if (!i915.enable_hangcheck)
3254                 return;
3255
3256         for_each_ring(ring, dev_priv, i) {
3257                 u64 acthd;
3258                 u32 seqno;
3259                 bool busy = true;
3260
3261                 semaphore_clear_deadlocks(dev_priv);
3262
3263                 seqno = ring->get_seqno(ring, false);
3264                 acthd = intel_ring_get_active_head(ring);
3265
3266                 if (ring->hangcheck.seqno == seqno) {
3267                         if (ring_idle(ring, seqno)) {
3268                                 ring->hangcheck.action = HANGCHECK_IDLE;
3269
3270                                 if (waitqueue_active(&ring->irq_queue)) {
3271                                         /* Issue a wake-up to catch stuck h/w. */
3272                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3273                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3274                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3275                                                                   ring->name);
3276                                                 else
3277                                                         DRM_INFO("Fake missed irq on %s\n",
3278                                                                  ring->name);
3279                                                 wake_up_all(&ring->irq_queue);
3280                                         }
3281                                         /* Safeguard against driver failure */
3282                                         ring->hangcheck.score += BUSY;
3283                                 } else
3284                                         busy = false;
3285                         } else {
3286                                 /* We always increment the hangcheck score
3287                                  * if the ring is busy and still processing
3288                                  * the same request, so that no single request
3289                                  * can run indefinitely (such as a chain of
3290                                  * batches). The only time we do not increment
3291                                  * the hangcheck score on this ring, if this
3292                                  * ring is in a legitimate wait for another
3293                                  * ring. In that case the waiting ring is a
3294                                  * victim and we want to be sure we catch the
3295                                  * right culprit. Then every time we do kick
3296                                  * the ring, add a small increment to the
3297                                  * score so that we can catch a batch that is
3298                                  * being repeatedly kicked and so responsible
3299                                  * for stalling the machine.
3300                                  */
3301                                 ring->hangcheck.action = ring_stuck(ring,
3302                                                                     acthd);
3303
3304                                 switch (ring->hangcheck.action) {
3305                                 case HANGCHECK_IDLE:
3306                                 case HANGCHECK_WAIT:
3307                                         break;
3308                                 case HANGCHECK_ACTIVE:
3309                                         ring->hangcheck.score += BUSY;
3310                                         break;
3311                                 case HANGCHECK_KICK:
3312                                         ring->hangcheck.score += KICK;
3313                                         break;
3314                                 case HANGCHECK_HUNG:
3315                                         ring->hangcheck.score += HUNG;
3316                                         stuck[i] = true;
3317                                         break;
3318                                 }
3319                         }
3320                 } else {
3321                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3322
3323                         /* Gradually reduce the count so that we catch DoS
3324                          * attempts across multiple batches.
3325                          */
3326                         if (ring->hangcheck.score > 0)
3327                                 ring->hangcheck.score--;
3328                 }
3329
3330                 ring->hangcheck.seqno = seqno;
3331                 ring->hangcheck.acthd = acthd;
3332                 busy_count += busy;
3333         }
3334
3335         for_each_ring(ring, dev_priv, i) {
3336                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3337                         DRM_INFO("%s on %s\n",
3338                                  stuck[i] ? "stuck" : "no progress",
3339                                  ring->name);
3340                         rings_hung++;
3341                 }
3342         }
3343
3344         if (rings_hung)
3345                 return i915_handle_error(dev, true, "Ring hung");
3346
3347         if (busy_count)
3348                 /* Reset timer case chip hangs without another request
3349                  * being added */
3350                 i915_queue_hangcheck(dev);
3351 }
3352
3353 void i915_queue_hangcheck(struct drm_device *dev)
3354 {
3355         struct drm_i915_private *dev_priv = dev->dev_private;
3356         if (!i915.enable_hangcheck)
3357                 return;
3358
3359         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3360                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3361 }
3362
3363 static void ibx_irq_reset(struct drm_device *dev)
3364 {
3365         struct drm_i915_private *dev_priv = dev->dev_private;
3366
3367         if (HAS_PCH_NOP(dev))
3368                 return;
3369
3370         GEN5_IRQ_RESET(SDE);
3371
3372         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3373                 I915_WRITE(SERR_INT, 0xffffffff);
3374 }
3375
3376 /*
3377  * SDEIER is also touched by the interrupt handler to work around missed PCH
3378  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3379  * instead we unconditionally enable all PCH interrupt sources here, but then
3380  * only unmask them as needed with SDEIMR.
3381  *
3382  * This function needs to be called before interrupts are enabled.
3383  */
3384 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3385 {
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387
3388         if (HAS_PCH_NOP(dev))
3389                 return;
3390
3391         WARN_ON(I915_READ(SDEIER) != 0);
3392         I915_WRITE(SDEIER, 0xffffffff);
3393         POSTING_READ(SDEIER);
3394 }
3395
3396 static void gen5_gt_irq_reset(struct drm_device *dev)
3397 {
3398         struct drm_i915_private *dev_priv = dev->dev_private;
3399
3400         GEN5_IRQ_RESET(GT);
3401         if (INTEL_INFO(dev)->gen >= 6)
3402                 GEN5_IRQ_RESET(GEN6_PM);
3403 }
3404
3405 /* drm_dma.h hooks
3406 */
3407 static void ironlake_irq_reset(struct drm_device *dev)
3408 {
3409         struct drm_i915_private *dev_priv = dev->dev_private;
3410
3411         I915_WRITE(HWSTAM, 0xffffffff);
3412
3413         GEN5_IRQ_RESET(DE);
3414         if (IS_GEN7(dev))
3415                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3416
3417         gen5_gt_irq_reset(dev);
3418
3419         ibx_irq_reset(dev);
3420 }
3421
3422 static void valleyview_irq_preinstall(struct drm_device *dev)
3423 {
3424         struct drm_i915_private *dev_priv = dev->dev_private;
3425         int pipe;
3426
3427         /* VLV magic */
3428         I915_WRITE(VLV_IMR, 0);
3429         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3430         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3431         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3432
3433         /* and GT */
3434         I915_WRITE(GTIIR, I915_READ(GTIIR));
3435         I915_WRITE(GTIIR, I915_READ(GTIIR));
3436
3437         gen5_gt_irq_reset(dev);
3438
3439         I915_WRITE(DPINVGTT, 0xff);
3440
3441         I915_WRITE(PORT_HOTPLUG_EN, 0);
3442         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3443         for_each_pipe(pipe)
3444                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3445         I915_WRITE(VLV_IIR, 0xffffffff);
3446         I915_WRITE(VLV_IMR, 0xffffffff);
3447         I915_WRITE(VLV_IER, 0x0);
3448         POSTING_READ(VLV_IER);
3449 }
3450
3451 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3452 {
3453         GEN8_IRQ_RESET_NDX(GT, 0);
3454         GEN8_IRQ_RESET_NDX(GT, 1);
3455         GEN8_IRQ_RESET_NDX(GT, 2);
3456         GEN8_IRQ_RESET_NDX(GT, 3);
3457 }
3458
3459 static void gen8_irq_reset(struct drm_device *dev)
3460 {
3461         struct drm_i915_private *dev_priv = dev->dev_private;
3462         int pipe;
3463
3464         I915_WRITE(GEN8_MASTER_IRQ, 0);
3465         POSTING_READ(GEN8_MASTER_IRQ);
3466
3467         gen8_gt_irq_reset(dev_priv);
3468
3469         for_each_pipe(pipe)
3470                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3471
3472         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3473         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3474         GEN5_IRQ_RESET(GEN8_PCU_);
3475
3476         ibx_irq_reset(dev);
3477 }
3478
3479 static void cherryview_irq_preinstall(struct drm_device *dev)
3480 {
3481         struct drm_i915_private *dev_priv = dev->dev_private;
3482         int pipe;
3483
3484         I915_WRITE(GEN8_MASTER_IRQ, 0);
3485         POSTING_READ(GEN8_MASTER_IRQ);
3486
3487         gen8_gt_irq_reset(dev_priv);
3488
3489         GEN5_IRQ_RESET(GEN8_PCU_);
3490
3491         POSTING_READ(GEN8_PCU_IIR);
3492
3493         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3494
3495         I915_WRITE(PORT_HOTPLUG_EN, 0);
3496         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3497
3498         for_each_pipe(pipe)
3499                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3500
3501         I915_WRITE(VLV_IMR, 0xffffffff);
3502         I915_WRITE(VLV_IER, 0x0);
3503         I915_WRITE(VLV_IIR, 0xffffffff);
3504         POSTING_READ(VLV_IIR);
3505 }
3506
3507 static void ibx_hpd_irq_setup(struct drm_device *dev)
3508 {
3509         struct drm_i915_private *dev_priv = dev->dev_private;
3510         struct drm_mode_config *mode_config = &dev->mode_config;
3511         struct intel_encoder *intel_encoder;
3512         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3513
3514         if (HAS_PCH_IBX(dev)) {
3515                 hotplug_irqs = SDE_HOTPLUG_MASK;
3516                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3517                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3518                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3519         } else {
3520                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3521                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3522                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3523                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3524         }
3525
3526         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3527
3528         /*
3529          * Enable digital hotplug on the PCH, and configure the DP short pulse
3530          * duration to 2ms (which is the minimum in the Display Port spec)
3531          *
3532          * This register is the same on all known PCH chips.
3533          */
3534         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3535         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3536         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3537         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3538         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3539         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3540 }
3541
3542 static void ibx_irq_postinstall(struct drm_device *dev)
3543 {
3544         struct drm_i915_private *dev_priv = dev->dev_private;
3545         u32 mask;
3546
3547         if (HAS_PCH_NOP(dev))
3548                 return;
3549
3550         if (HAS_PCH_IBX(dev))
3551                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3552         else
3553                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3554
3555         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3556         I915_WRITE(SDEIMR, ~mask);
3557 }
3558
3559 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3560 {
3561         struct drm_i915_private *dev_priv = dev->dev_private;
3562         u32 pm_irqs, gt_irqs;
3563
3564         pm_irqs = gt_irqs = 0;
3565
3566         dev_priv->gt_irq_mask = ~0;
3567         if (HAS_L3_DPF(dev)) {
3568                 /* L3 parity interrupt is always unmasked. */
3569                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3570                 gt_irqs |= GT_PARITY_ERROR(dev);
3571         }
3572
3573         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3574         if (IS_GEN5(dev)) {
3575                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3576                            ILK_BSD_USER_INTERRUPT;
3577         } else {
3578                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3579         }
3580
3581         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3582
3583         if (INTEL_INFO(dev)->gen >= 6) {
3584                 pm_irqs |= dev_priv->pm_rps_events;
3585
3586                 if (HAS_VEBOX(dev))
3587                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3588
3589                 dev_priv->pm_irq_mask = 0xffffffff;
3590                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3591         }
3592 }
3593
3594 static int ironlake_irq_postinstall(struct drm_device *dev)
3595 {
3596         unsigned long irqflags;
3597         struct drm_i915_private *dev_priv = dev->dev_private;
3598         u32 display_mask, extra_mask;
3599
3600         if (INTEL_INFO(dev)->gen >= 7) {
3601                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3602                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3603                                 DE_PLANEB_FLIP_DONE_IVB |
3604                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3605                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3606                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3607         } else {
3608                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3609                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3610                                 DE_AUX_CHANNEL_A |
3611                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3612                                 DE_POISON);
3613                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3614                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3615         }
3616
3617         dev_priv->irq_mask = ~display_mask;
3618
3619         I915_WRITE(HWSTAM, 0xeffe);
3620
3621         ibx_irq_pre_postinstall(dev);
3622
3623         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3624
3625         gen5_gt_irq_postinstall(dev);
3626
3627         ibx_irq_postinstall(dev);
3628
3629         if (IS_IRONLAKE_M(dev)) {
3630                 /* Enable PCU event interrupts
3631                  *
3632                  * spinlocking not required here for correctness since interrupt
3633                  * setup is guaranteed to run in single-threaded context. But we
3634                  * need it to make the assert_spin_locked happy. */
3635                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3636                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3637                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3638         }
3639
3640         return 0;
3641 }
3642
3643 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3644 {
3645         u32 pipestat_mask;
3646         u32 iir_mask;
3647
3648         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3649                         PIPE_FIFO_UNDERRUN_STATUS;
3650
3651         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3652         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3653         POSTING_READ(PIPESTAT(PIPE_A));
3654
3655         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3656                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3657
3658         i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3659                                                PIPE_GMBUS_INTERRUPT_STATUS);
3660         i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3661
3662         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3663                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3664                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3665         dev_priv->irq_mask &= ~iir_mask;
3666
3667         I915_WRITE(VLV_IIR, iir_mask);
3668         I915_WRITE(VLV_IIR, iir_mask);
3669         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3670         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3671         POSTING_READ(VLV_IER);
3672 }
3673
3674 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3675 {
3676         u32 pipestat_mask;
3677         u32 iir_mask;
3678
3679         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3680                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3681                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3682
3683         dev_priv->irq_mask |= iir_mask;
3684         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3685         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3686         I915_WRITE(VLV_IIR, iir_mask);
3687         I915_WRITE(VLV_IIR, iir_mask);
3688         POSTING_READ(VLV_IIR);
3689
3690         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3691                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3692
3693         i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3694                                                 PIPE_GMBUS_INTERRUPT_STATUS);
3695         i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3696
3697         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3698                         PIPE_FIFO_UNDERRUN_STATUS;
3699         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3700         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3701         POSTING_READ(PIPESTAT(PIPE_A));
3702 }
3703
3704 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3705 {
3706         assert_spin_locked(&dev_priv->irq_lock);
3707
3708         if (dev_priv->display_irqs_enabled)
3709                 return;
3710
3711         dev_priv->display_irqs_enabled = true;
3712
3713         if (dev_priv->dev->irq_enabled)
3714                 valleyview_display_irqs_install(dev_priv);
3715 }
3716
3717 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3718 {
3719         assert_spin_locked(&dev_priv->irq_lock);
3720
3721         if (!dev_priv->display_irqs_enabled)
3722                 return;
3723
3724         dev_priv->display_irqs_enabled = false;
3725
3726         if (dev_priv->dev->irq_enabled)
3727                 valleyview_display_irqs_uninstall(dev_priv);
3728 }
3729
3730 static int valleyview_irq_postinstall(struct drm_device *dev)
3731 {
3732         struct drm_i915_private *dev_priv = dev->dev_private;
3733         unsigned long irqflags;
3734
3735         dev_priv->irq_mask = ~0;
3736
3737         I915_WRITE(PORT_HOTPLUG_EN, 0);
3738         POSTING_READ(PORT_HOTPLUG_EN);
3739
3740         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3741         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3742         I915_WRITE(VLV_IIR, 0xffffffff);
3743         POSTING_READ(VLV_IER);
3744
3745         /* Interrupt setup is already guaranteed to be single-threaded, this is
3746          * just to make the assert_spin_locked check happy. */
3747         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3748         if (dev_priv->display_irqs_enabled)
3749                 valleyview_display_irqs_install(dev_priv);
3750         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3751
3752         I915_WRITE(VLV_IIR, 0xffffffff);
3753         I915_WRITE(VLV_IIR, 0xffffffff);
3754
3755         gen5_gt_irq_postinstall(dev);
3756
3757         /* ack & enable invalid PTE error interrupts */
3758 #if 0 /* FIXME: add support to irq handler for checking these bits */
3759         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3760         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3761 #endif
3762
3763         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3764
3765         return 0;
3766 }
3767
3768 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3769 {
3770         int i;
3771
3772         /* These are interrupts we'll toggle with the ring mask register */
3773         uint32_t gt_interrupts[] = {
3774                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3775                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3776                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3777                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3778                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3779                 0,
3780                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3781                 };
3782
3783         for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3784                 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3785
3786         dev_priv->pm_irq_mask = 0xffffffff;
3787 }
3788
3789 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3790 {
3791         struct drm_device *dev = dev_priv->dev;
3792         uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3793                 GEN8_PIPE_CDCLK_CRC_DONE |
3794                 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3795         uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3796                 GEN8_PIPE_FIFO_UNDERRUN;
3797         int pipe;
3798         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3799         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3800         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3801
3802         for_each_pipe(pipe)
3803                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3804                                   de_pipe_enables);
3805
3806         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3807 }
3808
3809 static int gen8_irq_postinstall(struct drm_device *dev)
3810 {
3811         struct drm_i915_private *dev_priv = dev->dev_private;
3812
3813         ibx_irq_pre_postinstall(dev);
3814
3815         gen8_gt_irq_postinstall(dev_priv);
3816         gen8_de_irq_postinstall(dev_priv);
3817
3818         ibx_irq_postinstall(dev);
3819
3820         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3821         POSTING_READ(GEN8_MASTER_IRQ);
3822
3823         return 0;
3824 }
3825
3826 static int cherryview_irq_postinstall(struct drm_device *dev)
3827 {
3828         struct drm_i915_private *dev_priv = dev->dev_private;
3829         u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3830                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3831                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3832                 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3833         u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3834                 PIPE_CRC_DONE_INTERRUPT_STATUS;
3835         unsigned long irqflags;
3836         int pipe;
3837
3838         /*
3839          * Leave vblank interrupts masked initially.  enable/disable will
3840          * toggle them based on usage.
3841          */
3842         dev_priv->irq_mask = ~enable_mask;
3843
3844         for_each_pipe(pipe)
3845                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3846
3847         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3848         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3849         for_each_pipe(pipe)
3850                 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3851         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3852
3853         I915_WRITE(VLV_IIR, 0xffffffff);
3854         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3855         I915_WRITE(VLV_IER, enable_mask);
3856
3857         gen8_gt_irq_postinstall(dev_priv);
3858
3859         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3860         POSTING_READ(GEN8_MASTER_IRQ);
3861
3862         return 0;
3863 }
3864
3865 static void gen8_irq_uninstall(struct drm_device *dev)
3866 {
3867         struct drm_i915_private *dev_priv = dev->dev_private;
3868
3869         if (!dev_priv)
3870                 return;
3871
3872         intel_hpd_irq_uninstall(dev_priv);
3873
3874         gen8_irq_reset(dev);
3875 }
3876
3877 static void valleyview_irq_uninstall(struct drm_device *dev)
3878 {
3879         struct drm_i915_private *dev_priv = dev->dev_private;
3880         unsigned long irqflags;
3881         int pipe;
3882
3883         if (!dev_priv)
3884                 return;
3885
3886         I915_WRITE(VLV_MASTER_IER, 0);
3887
3888         intel_hpd_irq_uninstall(dev_priv);
3889
3890         for_each_pipe(pipe)
3891                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3892
3893         I915_WRITE(HWSTAM, 0xffffffff);
3894         I915_WRITE(PORT_HOTPLUG_EN, 0);
3895         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3896
3897         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3898         if (dev_priv->display_irqs_enabled)
3899                 valleyview_display_irqs_uninstall(dev_priv);
3900         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3901
3902         dev_priv->irq_mask = 0;
3903
3904         I915_WRITE(VLV_IIR, 0xffffffff);
3905         I915_WRITE(VLV_IMR, 0xffffffff);
3906         I915_WRITE(VLV_IER, 0x0);
3907         POSTING_READ(VLV_IER);
3908 }
3909
3910 static void cherryview_irq_uninstall(struct drm_device *dev)
3911 {
3912         struct drm_i915_private *dev_priv = dev->dev_private;
3913         int pipe;
3914
3915         if (!dev_priv)
3916                 return;
3917
3918         I915_WRITE(GEN8_MASTER_IRQ, 0);
3919         POSTING_READ(GEN8_MASTER_IRQ);
3920
3921 #define GEN8_IRQ_FINI_NDX(type, which)                          \
3922 do {                                                            \
3923         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);       \
3924         I915_WRITE(GEN8_##type##_IER(which), 0);                \
3925         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3926         POSTING_READ(GEN8_##type##_IIR(which));                 \
3927         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3928 } while (0)
3929
3930 #define GEN8_IRQ_FINI(type)                             \
3931 do {                                                    \
3932         I915_WRITE(GEN8_##type##_IMR, 0xffffffff);      \
3933         I915_WRITE(GEN8_##type##_IER, 0);               \
3934         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3935         POSTING_READ(GEN8_##type##_IIR);                \
3936         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3937 } while (0)
3938
3939         GEN8_IRQ_FINI_NDX(GT, 0);
3940         GEN8_IRQ_FINI_NDX(GT, 1);
3941         GEN8_IRQ_FINI_NDX(GT, 2);
3942         GEN8_IRQ_FINI_NDX(GT, 3);
3943
3944         GEN8_IRQ_FINI(PCU);
3945
3946 #undef GEN8_IRQ_FINI
3947 #undef GEN8_IRQ_FINI_NDX
3948
3949         I915_WRITE(PORT_HOTPLUG_EN, 0);
3950         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3951
3952         for_each_pipe(pipe)
3953                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3954
3955         I915_WRITE(VLV_IMR, 0xffffffff);
3956         I915_WRITE(VLV_IER, 0x0);
3957         I915_WRITE(VLV_IIR, 0xffffffff);
3958         POSTING_READ(VLV_IIR);
3959 }
3960
3961 static void ironlake_irq_uninstall(struct drm_device *dev)
3962 {
3963         struct drm_i915_private *dev_priv = dev->dev_private;
3964
3965         if (!dev_priv)
3966                 return;
3967
3968         intel_hpd_irq_uninstall(dev_priv);
3969
3970         ironlake_irq_reset(dev);
3971 }
3972
3973 static void i8xx_irq_preinstall(struct drm_device * dev)
3974 {
3975         struct drm_i915_private *dev_priv = dev->dev_private;
3976         int pipe;
3977
3978         for_each_pipe(pipe)
3979                 I915_WRITE(PIPESTAT(pipe), 0);
3980         I915_WRITE16(IMR, 0xffff);
3981         I915_WRITE16(IER, 0x0);
3982         POSTING_READ16(IER);
3983 }
3984
3985 static int i8xx_irq_postinstall(struct drm_device *dev)
3986 {
3987         struct drm_i915_private *dev_priv = dev->dev_private;
3988         unsigned long irqflags;
3989
3990         I915_WRITE16(EMR,
3991                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3992
3993         /* Unmask the interrupts that we always want on. */
3994         dev_priv->irq_mask =
3995                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3996                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3997                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3998                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3999                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4000         I915_WRITE16(IMR, dev_priv->irq_mask);
4001
4002         I915_WRITE16(IER,
4003                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4004                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4005                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4006                      I915_USER_INTERRUPT);
4007         POSTING_READ16(IER);
4008
4009         /* Interrupt setup is already guaranteed to be single-threaded, this is
4010          * just to make the assert_spin_locked check happy. */
4011         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4012         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4013         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4014         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4015
4016         return 0;
4017 }
4018
4019 /*
4020  * Returns true when a page flip has completed.
4021  */
4022 static bool i8xx_handle_vblank(struct drm_device *dev,
4023                                int plane, int pipe, u32 iir)
4024 {
4025         struct drm_i915_private *dev_priv = dev->dev_private;
4026         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4027
4028         if (!intel_pipe_handle_vblank(dev, pipe))
4029                 return false;
4030
4031         if ((iir & flip_pending) == 0)
4032                 return false;
4033
4034         intel_prepare_page_flip(dev, plane);
4035
4036         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4037          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4038          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4039          * the flip is completed (no longer pending). Since this doesn't raise
4040          * an interrupt per se, we watch for the change at vblank.
4041          */
4042         if (I915_READ16(ISR) & flip_pending)
4043                 return false;
4044
4045         intel_finish_page_flip(dev, pipe);
4046
4047         return true;
4048 }
4049
4050 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4051 {
4052         struct drm_device *dev = arg;
4053         struct drm_i915_private *dev_priv = dev->dev_private;
4054         u16 iir, new_iir;
4055         u32 pipe_stats[2];
4056         unsigned long irqflags;
4057         int pipe;
4058         u16 flip_mask =
4059                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4060                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4061
4062         iir = I915_READ16(IIR);
4063         if (iir == 0)
4064                 return IRQ_NONE;
4065
4066         while (iir & ~flip_mask) {
4067                 /* Can't rely on pipestat interrupt bit in iir as it might
4068                  * have been cleared after the pipestat interrupt was received.
4069                  * It doesn't set the bit in iir again, but it still produces
4070                  * interrupts (for non-MSI).
4071                  */
4072                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4073                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4074                         i915_handle_error(dev, false,
4075                                           "Command parser error, iir 0x%08x",
4076                                           iir);
4077
4078                 for_each_pipe(pipe) {
4079                         int reg = PIPESTAT(pipe);
4080                         pipe_stats[pipe] = I915_READ(reg);
4081
4082                         /*
4083                          * Clear the PIPE*STAT regs before the IIR
4084                          */
4085                         if (pipe_stats[pipe] & 0x8000ffff)
4086                                 I915_WRITE(reg, pipe_stats[pipe]);
4087                 }
4088                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4089
4090                 I915_WRITE16(IIR, iir & ~flip_mask);
4091                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4092
4093                 i915_update_dri1_breadcrumb(dev);
4094
4095                 if (iir & I915_USER_INTERRUPT)
4096                         notify_ring(dev, &dev_priv->ring[RCS]);
4097
4098                 for_each_pipe(pipe) {
4099                         int plane = pipe;
4100                         if (HAS_FBC(dev))
4101                                 plane = !plane;
4102
4103                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4104                             i8xx_handle_vblank(dev, plane, pipe, iir))
4105                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4106
4107                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4108                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4109
4110                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4111                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4112                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4113                 }
4114
4115                 iir = new_iir;
4116         }
4117
4118         return IRQ_HANDLED;
4119 }
4120
4121 static void i8xx_irq_uninstall(struct drm_device * dev)
4122 {
4123         struct drm_i915_private *dev_priv = dev->dev_private;
4124         int pipe;
4125
4126         for_each_pipe(pipe) {
4127                 /* Clear enable bits; then clear status bits */
4128                 I915_WRITE(PIPESTAT(pipe), 0);
4129                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4130         }
4131         I915_WRITE16(IMR, 0xffff);
4132         I915_WRITE16(IER, 0x0);
4133         I915_WRITE16(IIR, I915_READ16(IIR));
4134 }
4135
4136 static void i915_irq_preinstall(struct drm_device * dev)
4137 {
4138         struct drm_i915_private *dev_priv = dev->dev_private;
4139         int pipe;
4140
4141         if (I915_HAS_HOTPLUG(dev)) {
4142                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4143                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4144         }
4145
4146         I915_WRITE16(HWSTAM, 0xeffe);
4147         for_each_pipe(pipe)
4148                 I915_WRITE(PIPESTAT(pipe), 0);
4149         I915_WRITE(IMR, 0xffffffff);
4150         I915_WRITE(IER, 0x0);
4151         POSTING_READ(IER);
4152 }
4153
4154 static int i915_irq_postinstall(struct drm_device *dev)
4155 {
4156         struct drm_i915_private *dev_priv = dev->dev_private;
4157         u32 enable_mask;
4158         unsigned long irqflags;
4159
4160         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4161
4162         /* Unmask the interrupts that we always want on. */
4163         dev_priv->irq_mask =
4164                 ~(I915_ASLE_INTERRUPT |
4165                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4166                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4167                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4168                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4169                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4170
4171         enable_mask =
4172                 I915_ASLE_INTERRUPT |
4173                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4174                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4175                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4176                 I915_USER_INTERRUPT;
4177
4178         if (I915_HAS_HOTPLUG(dev)) {
4179                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4180                 POSTING_READ(PORT_HOTPLUG_EN);
4181
4182                 /* Enable in IER... */
4183                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4184                 /* and unmask in IMR */
4185                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4186         }
4187
4188         I915_WRITE(IMR, dev_priv->irq_mask);
4189         I915_WRITE(IER, enable_mask);
4190         POSTING_READ(IER);
4191
4192         i915_enable_asle_pipestat(dev);
4193
4194         /* Interrupt setup is already guaranteed to be single-threaded, this is
4195          * just to make the assert_spin_locked check happy. */
4196         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4197         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4198         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4199         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4200
4201         return 0;
4202 }
4203
4204 /*
4205  * Returns true when a page flip has completed.
4206  */
4207 static bool i915_handle_vblank(struct drm_device *dev,
4208                                int plane, int pipe, u32 iir)
4209 {
4210         struct drm_i915_private *dev_priv = dev->dev_private;
4211         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4212
4213         if (!intel_pipe_handle_vblank(dev, pipe))
4214                 return false;
4215
4216         if ((iir & flip_pending) == 0)
4217                 return false;
4218
4219         intel_prepare_page_flip(dev, plane);
4220
4221         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4222          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4223          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4224          * the flip is completed (no longer pending). Since this doesn't raise
4225          * an interrupt per se, we watch for the change at vblank.
4226          */
4227         if (I915_READ(ISR) & flip_pending)
4228                 return false;
4229
4230         intel_finish_page_flip(dev, pipe);
4231
4232         return true;
4233 }
4234
4235 static irqreturn_t i915_irq_handler(int irq, void *arg)
4236 {
4237         struct drm_device *dev = arg;
4238         struct drm_i915_private *dev_priv = dev->dev_private;
4239         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4240         unsigned long irqflags;
4241         u32 flip_mask =
4242                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4243                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4244         int pipe, ret = IRQ_NONE;
4245
4246         iir = I915_READ(IIR);
4247         do {
4248                 bool irq_received = (iir & ~flip_mask) != 0;
4249                 bool blc_event = false;
4250
4251                 /* Can't rely on pipestat interrupt bit in iir as it might
4252                  * have been cleared after the pipestat interrupt was received.
4253                  * It doesn't set the bit in iir again, but it still produces
4254                  * interrupts (for non-MSI).
4255                  */
4256                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4257                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4258                         i915_handle_error(dev, false,
4259                                           "Command parser error, iir 0x%08x",
4260                                           iir);
4261
4262                 for_each_pipe(pipe) {
4263                         int reg = PIPESTAT(pipe);
4264                         pipe_stats[pipe] = I915_READ(reg);
4265
4266                         /* Clear the PIPE*STAT regs before the IIR */
4267                         if (pipe_stats[pipe] & 0x8000ffff) {
4268                                 I915_WRITE(reg, pipe_stats[pipe]);
4269                                 irq_received = true;
4270                         }
4271                 }
4272                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4273
4274                 if (!irq_received)
4275                         break;
4276
4277                 /* Consume port.  Then clear IIR or we'll miss events */
4278                 if (I915_HAS_HOTPLUG(dev) &&
4279                     iir & I915_DISPLAY_PORT_INTERRUPT)
4280                         i9xx_hpd_irq_handler(dev);
4281
4282                 I915_WRITE(IIR, iir & ~flip_mask);
4283                 new_iir = I915_READ(IIR); /* Flush posted writes */
4284
4285                 if (iir & I915_USER_INTERRUPT)
4286                         notify_ring(dev, &dev_priv->ring[RCS]);
4287
4288                 for_each_pipe(pipe) {
4289                         int plane = pipe;
4290                         if (HAS_FBC(dev))
4291                                 plane = !plane;
4292
4293                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4294                             i915_handle_vblank(dev, plane, pipe, iir))
4295                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4296
4297                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4298                                 blc_event = true;
4299
4300                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4301                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4302
4303                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4304                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4305                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4306                 }
4307
4308                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4309                         intel_opregion_asle_intr(dev);
4310
4311                 /* With MSI, interrupts are only generated when iir
4312                  * transitions from zero to nonzero.  If another bit got
4313                  * set while we were handling the existing iir bits, then
4314                  * we would never get another interrupt.
4315                  *
4316                  * This is fine on non-MSI as well, as if we hit this path
4317                  * we avoid exiting the interrupt handler only to generate
4318                  * another one.
4319                  *
4320                  * Note that for MSI this could cause a stray interrupt report
4321                  * if an interrupt landed in the time between writing IIR and
4322                  * the posting read.  This should be rare enough to never
4323                  * trigger the 99% of 100,000 interrupts test for disabling
4324                  * stray interrupts.
4325                  */
4326                 ret = IRQ_HANDLED;
4327                 iir = new_iir;
4328         } while (iir & ~flip_mask);
4329
4330         i915_update_dri1_breadcrumb(dev);
4331
4332         return ret;
4333 }
4334
4335 static void i915_irq_uninstall(struct drm_device * dev)
4336 {
4337         struct drm_i915_private *dev_priv = dev->dev_private;
4338         int pipe;
4339
4340         intel_hpd_irq_uninstall(dev_priv);
4341
4342         if (I915_HAS_HOTPLUG(dev)) {
4343                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4344                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4345         }
4346
4347         I915_WRITE16(HWSTAM, 0xffff);
4348         for_each_pipe(pipe) {
4349                 /* Clear enable bits; then clear status bits */
4350                 I915_WRITE(PIPESTAT(pipe), 0);
4351                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4352         }
4353         I915_WRITE(IMR, 0xffffffff);
4354         I915_WRITE(IER, 0x0);
4355
4356         I915_WRITE(IIR, I915_READ(IIR));
4357 }
4358
4359 static void i965_irq_preinstall(struct drm_device * dev)
4360 {
4361         struct drm_i915_private *dev_priv = dev->dev_private;
4362         int pipe;
4363
4364         I915_WRITE(PORT_HOTPLUG_EN, 0);
4365         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4366
4367         I915_WRITE(HWSTAM, 0xeffe);
4368         for_each_pipe(pipe)
4369                 I915_WRITE(PIPESTAT(pipe), 0);
4370         I915_WRITE(IMR, 0xffffffff);
4371         I915_WRITE(IER, 0x0);
4372         POSTING_READ(IER);
4373 }
4374
4375 static int i965_irq_postinstall(struct drm_device *dev)
4376 {
4377         struct drm_i915_private *dev_priv = dev->dev_private;
4378         u32 enable_mask;
4379         u32 error_mask;
4380         unsigned long irqflags;
4381
4382         /* Unmask the interrupts that we always want on. */
4383         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4384                                I915_DISPLAY_PORT_INTERRUPT |
4385                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4386                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4387                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4388                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4389                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4390
4391         enable_mask = ~dev_priv->irq_mask;
4392         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4393                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4394         enable_mask |= I915_USER_INTERRUPT;
4395
4396         if (IS_G4X(dev))
4397                 enable_mask |= I915_BSD_USER_INTERRUPT;
4398
4399         /* Interrupt setup is already guaranteed to be single-threaded, this is
4400          * just to make the assert_spin_locked check happy. */
4401         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4402         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4403         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4404         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4405         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4406
4407         /*
4408          * Enable some error detection, note the instruction error mask
4409          * bit is reserved, so we leave it masked.
4410          */
4411         if (IS_G4X(dev)) {
4412                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4413                                GM45_ERROR_MEM_PRIV |
4414                                GM45_ERROR_CP_PRIV |
4415                                I915_ERROR_MEMORY_REFRESH);
4416         } else {
4417                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4418                                I915_ERROR_MEMORY_REFRESH);
4419         }
4420         I915_WRITE(EMR, error_mask);
4421
4422         I915_WRITE(IMR, dev_priv->irq_mask);
4423         I915_WRITE(IER, enable_mask);
4424         POSTING_READ(IER);
4425
4426         I915_WRITE(PORT_HOTPLUG_EN, 0);
4427         POSTING_READ(PORT_HOTPLUG_EN);
4428
4429         i915_enable_asle_pipestat(dev);
4430
4431         return 0;
4432 }
4433
4434 static void i915_hpd_irq_setup(struct drm_device *dev)
4435 {
4436         struct drm_i915_private *dev_priv = dev->dev_private;
4437         struct drm_mode_config *mode_config = &dev->mode_config;
4438         struct intel_encoder *intel_encoder;
4439         u32 hotplug_en;
4440
4441         assert_spin_locked(&dev_priv->irq_lock);
4442
4443         if (I915_HAS_HOTPLUG(dev)) {
4444                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4445                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4446                 /* Note HDMI and DP share hotplug bits */
4447                 /* enable bits are the same for all generations */
4448                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4449                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4450                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4451                 /* Programming the CRT detection parameters tends
4452                    to generate a spurious hotplug event about three
4453                    seconds later.  So just do it once.
4454                 */
4455                 if (IS_G4X(dev))
4456                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4457                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4458                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4459
4460                 /* Ignore TV since it's buggy */
4461                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4462         }
4463 }
4464
4465 static irqreturn_t i965_irq_handler(int irq, void *arg)
4466 {
4467         struct drm_device *dev = arg;
4468         struct drm_i915_private *dev_priv = dev->dev_private;
4469         u32 iir, new_iir;
4470         u32 pipe_stats[I915_MAX_PIPES];
4471         unsigned long irqflags;
4472         int ret = IRQ_NONE, pipe;
4473         u32 flip_mask =
4474                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4475                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4476
4477         iir = I915_READ(IIR);
4478
4479         for (;;) {
4480                 bool irq_received = (iir & ~flip_mask) != 0;
4481                 bool blc_event = false;
4482
4483                 /* Can't rely on pipestat interrupt bit in iir as it might
4484                  * have been cleared after the pipestat interrupt was received.
4485                  * It doesn't set the bit in iir again, but it still produces
4486                  * interrupts (for non-MSI).
4487                  */
4488                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4489                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4490                         i915_handle_error(dev, false,
4491                                           "Command parser error, iir 0x%08x",
4492                                           iir);
4493
4494                 for_each_pipe(pipe) {
4495                         int reg = PIPESTAT(pipe);
4496                         pipe_stats[pipe] = I915_READ(reg);
4497
4498                         /*
4499                          * Clear the PIPE*STAT regs before the IIR
4500                          */
4501                         if (pipe_stats[pipe] & 0x8000ffff) {
4502                                 I915_WRITE(reg, pipe_stats[pipe]);
4503                                 irq_received = true;
4504                         }
4505                 }
4506                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4507
4508                 if (!irq_received)
4509                         break;
4510
4511                 ret = IRQ_HANDLED;
4512
4513                 /* Consume port.  Then clear IIR or we'll miss events */
4514                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4515                         i9xx_hpd_irq_handler(dev);
4516
4517                 I915_WRITE(IIR, iir & ~flip_mask);
4518                 new_iir = I915_READ(IIR); /* Flush posted writes */
4519
4520                 if (iir & I915_USER_INTERRUPT)
4521                         notify_ring(dev, &dev_priv->ring[RCS]);
4522                 if (iir & I915_BSD_USER_INTERRUPT)
4523                         notify_ring(dev, &dev_priv->ring[VCS]);
4524
4525                 for_each_pipe(pipe) {
4526                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4527                             i915_handle_vblank(dev, pipe, pipe, iir))
4528                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4529
4530                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4531                                 blc_event = true;
4532
4533                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4534                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4535
4536                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4537                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4538                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4539                 }
4540
4541                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4542                         intel_opregion_asle_intr(dev);
4543
4544                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4545                         gmbus_irq_handler(dev);
4546
4547                 /* With MSI, interrupts are only generated when iir
4548                  * transitions from zero to nonzero.  If another bit got
4549                  * set while we were handling the existing iir bits, then
4550                  * we would never get another interrupt.
4551                  *
4552                  * This is fine on non-MSI as well, as if we hit this path
4553                  * we avoid exiting the interrupt handler only to generate
4554                  * another one.
4555                  *
4556                  * Note that for MSI this could cause a stray interrupt report
4557                  * if an interrupt landed in the time between writing IIR and
4558                  * the posting read.  This should be rare enough to never
4559                  * trigger the 99% of 100,000 interrupts test for disabling
4560                  * stray interrupts.
4561                  */
4562                 iir = new_iir;
4563         }
4564
4565         i915_update_dri1_breadcrumb(dev);
4566
4567         return ret;
4568 }
4569
4570 static void i965_irq_uninstall(struct drm_device * dev)
4571 {
4572         struct drm_i915_private *dev_priv = dev->dev_private;
4573         int pipe;
4574
4575         if (!dev_priv)
4576                 return;
4577
4578         intel_hpd_irq_uninstall(dev_priv);
4579
4580         I915_WRITE(PORT_HOTPLUG_EN, 0);
4581         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4582
4583         I915_WRITE(HWSTAM, 0xffffffff);
4584         for_each_pipe(pipe)
4585                 I915_WRITE(PIPESTAT(pipe), 0);
4586         I915_WRITE(IMR, 0xffffffff);
4587         I915_WRITE(IER, 0x0);
4588
4589         for_each_pipe(pipe)
4590                 I915_WRITE(PIPESTAT(pipe),
4591                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4592         I915_WRITE(IIR, I915_READ(IIR));
4593 }
4594
4595 static void intel_hpd_irq_reenable(unsigned long data)
4596 {
4597         struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
4598         struct drm_device *dev = dev_priv->dev;
4599         struct drm_mode_config *mode_config = &dev->mode_config;
4600         unsigned long irqflags;
4601         int i;
4602
4603         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4604         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4605                 struct drm_connector *connector;
4606
4607                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4608                         continue;
4609
4610                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4611
4612                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4613                         struct intel_connector *intel_connector = to_intel_connector(connector);
4614
4615                         if (intel_connector->encoder->hpd_pin == i) {
4616                                 if (connector->polled != intel_connector->polled)
4617                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4618                                                          connector->name);
4619                                 connector->polled = intel_connector->polled;
4620                                 if (!connector->polled)
4621                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4622                         }
4623                 }
4624         }
4625         if (dev_priv->display.hpd_irq_setup)
4626                 dev_priv->display.hpd_irq_setup(dev);
4627         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4628 }
4629
4630 void intel_irq_init(struct drm_device *dev)
4631 {
4632         struct drm_i915_private *dev_priv = dev->dev_private;
4633
4634         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4635         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4636         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4637         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4638         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4639
4640         /* Let's track the enabled rps events */
4641         if (IS_VALLEYVIEW(dev))
4642                 /* WaGsvRC0ResidenncyMethod:VLV */
4643                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4644         else
4645                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4646
4647         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4648                     i915_hangcheck_elapsed,
4649                     (unsigned long) dev);
4650         setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4651                     (unsigned long) dev_priv);
4652
4653         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4654
4655         if (IS_GEN2(dev)) {
4656                 dev->max_vblank_count = 0;
4657                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4658         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4659                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4660                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4661         } else {
4662                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4663                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4664         }
4665
4666         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4667                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4668                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4669         }
4670
4671         if (IS_CHERRYVIEW(dev)) {
4672                 dev->driver->irq_handler = cherryview_irq_handler;
4673                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4674                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4675                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4676                 dev->driver->enable_vblank = valleyview_enable_vblank;
4677                 dev->driver->disable_vblank = valleyview_disable_vblank;
4678                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4679         } else if (IS_VALLEYVIEW(dev)) {
4680                 dev->driver->irq_handler = valleyview_irq_handler;
4681                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4682                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4683                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4684                 dev->driver->enable_vblank = valleyview_enable_vblank;
4685                 dev->driver->disable_vblank = valleyview_disable_vblank;
4686                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4687         } else if (IS_GEN8(dev)) {
4688                 dev->driver->irq_handler = gen8_irq_handler;
4689                 dev->driver->irq_preinstall = gen8_irq_reset;
4690                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4691                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4692                 dev->driver->enable_vblank = gen8_enable_vblank;
4693                 dev->driver->disable_vblank = gen8_disable_vblank;
4694                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4695         } else if (HAS_PCH_SPLIT(dev)) {
4696                 dev->driver->irq_handler = ironlake_irq_handler;
4697                 dev->driver->irq_preinstall = ironlake_irq_reset;
4698                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4699                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4700                 dev->driver->enable_vblank = ironlake_enable_vblank;
4701                 dev->driver->disable_vblank = ironlake_disable_vblank;
4702                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4703         } else {
4704                 if (INTEL_INFO(dev)->gen == 2) {
4705                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4706                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4707                         dev->driver->irq_handler = i8xx_irq_handler;
4708                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4709                 } else if (INTEL_INFO(dev)->gen == 3) {
4710                         dev->driver->irq_preinstall = i915_irq_preinstall;
4711                         dev->driver->irq_postinstall = i915_irq_postinstall;
4712                         dev->driver->irq_uninstall = i915_irq_uninstall;
4713                         dev->driver->irq_handler = i915_irq_handler;
4714                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4715                 } else {
4716                         dev->driver->irq_preinstall = i965_irq_preinstall;
4717                         dev->driver->irq_postinstall = i965_irq_postinstall;
4718                         dev->driver->irq_uninstall = i965_irq_uninstall;
4719                         dev->driver->irq_handler = i965_irq_handler;
4720                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4721                 }
4722                 dev->driver->enable_vblank = i915_enable_vblank;
4723                 dev->driver->disable_vblank = i915_disable_vblank;
4724         }
4725 }
4726
4727 void intel_hpd_init(struct drm_device *dev)
4728 {
4729         struct drm_i915_private *dev_priv = dev->dev_private;
4730         struct drm_mode_config *mode_config = &dev->mode_config;
4731         struct drm_connector *connector;
4732         unsigned long irqflags;
4733         int i;
4734
4735         for (i = 1; i < HPD_NUM_PINS; i++) {
4736                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4737                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4738         }
4739         list_for_each_entry(connector, &mode_config->connector_list, head) {
4740                 struct intel_connector *intel_connector = to_intel_connector(connector);
4741                 connector->polled = intel_connector->polled;
4742                 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4743                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4744         }
4745
4746         /* Interrupt setup is already guaranteed to be single-threaded, this is
4747          * just to make the assert_spin_locked checks happy. */
4748         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4749         if (dev_priv->display.hpd_irq_setup)
4750                 dev_priv->display.hpd_irq_setup(dev);
4751         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4752 }
4753
4754 /* Disable interrupts so we can allow runtime PM. */
4755 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4756 {
4757         struct drm_i915_private *dev_priv = dev->dev_private;
4758
4759         dev->driver->irq_uninstall(dev);
4760         dev_priv->pm.irqs_disabled = true;
4761 }
4762
4763 /* Restore interrupts so we can recover from runtime PM. */
4764 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4765 {
4766         struct drm_i915_private *dev_priv = dev->dev_private;
4767
4768         dev_priv->pm.irqs_disabled = false;
4769         dev->driver->irq_preinstall(dev);
4770         dev->driver->irq_postinstall(dev);
4771 }