c8d2445b259c722670b8991d5ae70091d50bc9e6
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41         [HPD_CRT] = SDE_CRT_HOTPLUG,
42         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
86 {
87         assert_spin_locked(&dev_priv->irq_lock);
88
89         if (dev_priv->pm.irqs_disabled) {
90                 WARN(1, "IRQs disabled\n");
91                 dev_priv->pm.regsave.deimr &= ~mask;
92                 return;
93         }
94
95         if ((dev_priv->irq_mask & mask) != 0) {
96                 dev_priv->irq_mask &= ~mask;
97                 I915_WRITE(DEIMR, dev_priv->irq_mask);
98                 POSTING_READ(DEIMR);
99         }
100 }
101
102 static void
103 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
104 {
105         assert_spin_locked(&dev_priv->irq_lock);
106
107         if (dev_priv->pm.irqs_disabled) {
108                 WARN(1, "IRQs disabled\n");
109                 dev_priv->pm.regsave.deimr |= mask;
110                 return;
111         }
112
113         if ((dev_priv->irq_mask & mask) != mask) {
114                 dev_priv->irq_mask |= mask;
115                 I915_WRITE(DEIMR, dev_priv->irq_mask);
116                 POSTING_READ(DEIMR);
117         }
118 }
119
120 /**
121  * ilk_update_gt_irq - update GTIMR
122  * @dev_priv: driver private
123  * @interrupt_mask: mask of interrupt bits to update
124  * @enabled_irq_mask: mask of interrupt bits to enable
125  */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127                               uint32_t interrupt_mask,
128                               uint32_t enabled_irq_mask)
129 {
130         assert_spin_locked(&dev_priv->irq_lock);
131
132         if (dev_priv->pm.irqs_disabled) {
133                 WARN(1, "IRQs disabled\n");
134                 dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
135                 dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
136                                                 interrupt_mask);
137                 return;
138         }
139
140         dev_priv->gt_irq_mask &= ~interrupt_mask;
141         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143         POSTING_READ(GTIMR);
144 }
145
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148         ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153         ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155
156 /**
157   * snb_update_pm_irq - update GEN6_PMIMR
158   * @dev_priv: driver private
159   * @interrupt_mask: mask of interrupt bits to update
160   * @enabled_irq_mask: mask of interrupt bits to enable
161   */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163                               uint32_t interrupt_mask,
164                               uint32_t enabled_irq_mask)
165 {
166         uint32_t new_val;
167
168         assert_spin_locked(&dev_priv->irq_lock);
169
170         if (dev_priv->pm.irqs_disabled) {
171                 WARN(1, "IRQs disabled\n");
172                 dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
173                 dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
174                                                      interrupt_mask);
175                 return;
176         }
177
178         new_val = dev_priv->pm_irq_mask;
179         new_val &= ~interrupt_mask;
180         new_val |= (~enabled_irq_mask & interrupt_mask);
181
182         if (new_val != dev_priv->pm_irq_mask) {
183                 dev_priv->pm_irq_mask = new_val;
184                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185                 POSTING_READ(GEN6_PMIMR);
186         }
187 }
188
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191         snb_update_pm_irq(dev_priv, mask, mask);
192 }
193
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196         snb_update_pm_irq(dev_priv, mask, 0);
197 }
198
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201         struct drm_i915_private *dev_priv = dev->dev_private;
202         struct intel_crtc *crtc;
203         enum pipe pipe;
204
205         assert_spin_locked(&dev_priv->irq_lock);
206
207         for_each_pipe(pipe) {
208                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209
210                 if (crtc->cpu_fifo_underrun_disabled)
211                         return false;
212         }
213
214         return true;
215 }
216
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         enum pipe pipe;
221         struct intel_crtc *crtc;
222
223         assert_spin_locked(&dev_priv->irq_lock);
224
225         for_each_pipe(pipe) {
226                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227
228                 if (crtc->pch_fifo_underrun_disabled)
229                         return false;
230         }
231
232         return true;
233 }
234
235 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
236 {
237         struct drm_i915_private *dev_priv = dev->dev_private;
238         u32 reg = PIPESTAT(pipe);
239         u32 pipestat = I915_READ(reg) & 0x7fff0000;
240
241         assert_spin_locked(&dev_priv->irq_lock);
242
243         I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
244         POSTING_READ(reg);
245 }
246
247 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
248                                                  enum pipe pipe, bool enable)
249 {
250         struct drm_i915_private *dev_priv = dev->dev_private;
251         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
252                                           DE_PIPEB_FIFO_UNDERRUN;
253
254         if (enable)
255                 ironlake_enable_display_irq(dev_priv, bit);
256         else
257                 ironlake_disable_display_irq(dev_priv, bit);
258 }
259
260 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
261                                                   enum pipe pipe, bool enable)
262 {
263         struct drm_i915_private *dev_priv = dev->dev_private;
264         if (enable) {
265                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
266
267                 if (!ivb_can_enable_err_int(dev))
268                         return;
269
270                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
271         } else {
272                 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
273
274                 /* Change the state _after_ we've read out the current one. */
275                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
276
277                 if (!was_enabled &&
278                     (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
279                         DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
280                                       pipe_name(pipe));
281                 }
282         }
283 }
284
285 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
286                                                   enum pipe pipe, bool enable)
287 {
288         struct drm_i915_private *dev_priv = dev->dev_private;
289
290         assert_spin_locked(&dev_priv->irq_lock);
291
292         if (enable)
293                 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
294         else
295                 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
296         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
297         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
298 }
299
300 /**
301  * ibx_display_interrupt_update - update SDEIMR
302  * @dev_priv: driver private
303  * @interrupt_mask: mask of interrupt bits to update
304  * @enabled_irq_mask: mask of interrupt bits to enable
305  */
306 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
307                                          uint32_t interrupt_mask,
308                                          uint32_t enabled_irq_mask)
309 {
310         uint32_t sdeimr = I915_READ(SDEIMR);
311         sdeimr &= ~interrupt_mask;
312         sdeimr |= (~enabled_irq_mask & interrupt_mask);
313
314         assert_spin_locked(&dev_priv->irq_lock);
315
316         if (dev_priv->pm.irqs_disabled &&
317             (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
318                 WARN(1, "IRQs disabled\n");
319                 dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
320                 dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
321                                                  interrupt_mask);
322                 return;
323         }
324
325         I915_WRITE(SDEIMR, sdeimr);
326         POSTING_READ(SDEIMR);
327 }
328 #define ibx_enable_display_interrupt(dev_priv, bits) \
329         ibx_display_interrupt_update((dev_priv), (bits), (bits))
330 #define ibx_disable_display_interrupt(dev_priv, bits) \
331         ibx_display_interrupt_update((dev_priv), (bits), 0)
332
333 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
334                                             enum transcoder pch_transcoder,
335                                             bool enable)
336 {
337         struct drm_i915_private *dev_priv = dev->dev_private;
338         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
339                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
340
341         if (enable)
342                 ibx_enable_display_interrupt(dev_priv, bit);
343         else
344                 ibx_disable_display_interrupt(dev_priv, bit);
345 }
346
347 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
348                                             enum transcoder pch_transcoder,
349                                             bool enable)
350 {
351         struct drm_i915_private *dev_priv = dev->dev_private;
352
353         if (enable) {
354                 I915_WRITE(SERR_INT,
355                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
356
357                 if (!cpt_can_enable_serr_int(dev))
358                         return;
359
360                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
361         } else {
362                 uint32_t tmp = I915_READ(SERR_INT);
363                 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
364
365                 /* Change the state _after_ we've read out the current one. */
366                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
367
368                 if (!was_enabled &&
369                     (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
370                         DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
371                                       transcoder_name(pch_transcoder));
372                 }
373         }
374 }
375
376 /**
377  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
378  * @dev: drm device
379  * @pipe: pipe
380  * @enable: true if we want to report FIFO underrun errors, false otherwise
381  *
382  * This function makes us disable or enable CPU fifo underruns for a specific
383  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
384  * reporting for one pipe may also disable all the other CPU error interruts for
385  * the other pipes, due to the fact that there's just one interrupt mask/enable
386  * bit for all the pipes.
387  *
388  * Returns the previous state of underrun reporting.
389  */
390 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
391                                              enum pipe pipe, bool enable)
392 {
393         struct drm_i915_private *dev_priv = dev->dev_private;
394         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
396         bool ret;
397
398         assert_spin_locked(&dev_priv->irq_lock);
399
400         ret = !intel_crtc->cpu_fifo_underrun_disabled;
401
402         if (enable == ret)
403                 goto done;
404
405         intel_crtc->cpu_fifo_underrun_disabled = !enable;
406
407         if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
408                 i9xx_clear_fifo_underrun(dev, pipe);
409         else if (IS_GEN5(dev) || IS_GEN6(dev))
410                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
411         else if (IS_GEN7(dev))
412                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
413         else if (IS_GEN8(dev))
414                 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
415
416 done:
417         return ret;
418 }
419
420 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
421                                            enum pipe pipe, bool enable)
422 {
423         struct drm_i915_private *dev_priv = dev->dev_private;
424         unsigned long flags;
425         bool ret;
426
427         spin_lock_irqsave(&dev_priv->irq_lock, flags);
428         ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
429         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
430
431         return ret;
432 }
433
434 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
435                                                   enum pipe pipe)
436 {
437         struct drm_i915_private *dev_priv = dev->dev_private;
438         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
439         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
440
441         return !intel_crtc->cpu_fifo_underrun_disabled;
442 }
443
444 /**
445  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
446  * @dev: drm device
447  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
448  * @enable: true if we want to report FIFO underrun errors, false otherwise
449  *
450  * This function makes us disable or enable PCH fifo underruns for a specific
451  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
452  * underrun reporting for one transcoder may also disable all the other PCH
453  * error interruts for the other transcoders, due to the fact that there's just
454  * one interrupt mask/enable bit for all the transcoders.
455  *
456  * Returns the previous state of underrun reporting.
457  */
458 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
459                                            enum transcoder pch_transcoder,
460                                            bool enable)
461 {
462         struct drm_i915_private *dev_priv = dev->dev_private;
463         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
465         unsigned long flags;
466         bool ret;
467
468         /*
469          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
470          * has only one pch transcoder A that all pipes can use. To avoid racy
471          * pch transcoder -> pipe lookups from interrupt code simply store the
472          * underrun statistics in crtc A. Since we never expose this anywhere
473          * nor use it outside of the fifo underrun code here using the "wrong"
474          * crtc on LPT won't cause issues.
475          */
476
477         spin_lock_irqsave(&dev_priv->irq_lock, flags);
478
479         ret = !intel_crtc->pch_fifo_underrun_disabled;
480
481         if (enable == ret)
482                 goto done;
483
484         intel_crtc->pch_fifo_underrun_disabled = !enable;
485
486         if (HAS_PCH_IBX(dev))
487                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
488         else
489                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
490
491 done:
492         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
493         return ret;
494 }
495
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499                        u32 enable_mask, u32 status_mask)
500 {
501         u32 reg = PIPESTAT(pipe);
502         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504         assert_spin_locked(&dev_priv->irq_lock);
505
506         if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
507                          status_mask & ~PIPESTAT_INT_STATUS_MASK))
508                 return;
509
510         if ((pipestat & enable_mask) == enable_mask)
511                 return;
512
513         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
514
515         /* Enable the interrupt, clear any pending status */
516         pipestat |= enable_mask | status_mask;
517         I915_WRITE(reg, pipestat);
518         POSTING_READ(reg);
519 }
520
521 static void
522 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
523                         u32 enable_mask, u32 status_mask)
524 {
525         u32 reg = PIPESTAT(pipe);
526         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
527
528         assert_spin_locked(&dev_priv->irq_lock);
529
530         if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
531                          status_mask & ~PIPESTAT_INT_STATUS_MASK))
532                 return;
533
534         if ((pipestat & enable_mask) == 0)
535                 return;
536
537         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
538
539         pipestat &= ~enable_mask;
540         I915_WRITE(reg, pipestat);
541         POSTING_READ(reg);
542 }
543
544 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
545 {
546         u32 enable_mask = status_mask << 16;
547
548         /*
549          * On pipe A we don't support the PSR interrupt yet, on pipe B the
550          * same bit MBZ.
551          */
552         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
553                 return 0;
554
555         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
556                          SPRITE0_FLIP_DONE_INT_EN_VLV |
557                          SPRITE1_FLIP_DONE_INT_EN_VLV);
558         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
559                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
560         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
561                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
562
563         return enable_mask;
564 }
565
566 void
567 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
568                      u32 status_mask)
569 {
570         u32 enable_mask;
571
572         if (IS_VALLEYVIEW(dev_priv->dev))
573                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
574                                                            status_mask);
575         else
576                 enable_mask = status_mask << 16;
577         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
578 }
579
580 void
581 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
582                       u32 status_mask)
583 {
584         u32 enable_mask;
585
586         if (IS_VALLEYVIEW(dev_priv->dev))
587                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
588                                                            status_mask);
589         else
590                 enable_mask = status_mask << 16;
591         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
592 }
593
594 /**
595  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
596  */
597 static void i915_enable_asle_pipestat(struct drm_device *dev)
598 {
599         struct drm_i915_private *dev_priv = dev->dev_private;
600         unsigned long irqflags;
601
602         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
603                 return;
604
605         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
606
607         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
608         if (INTEL_INFO(dev)->gen >= 4)
609                 i915_enable_pipestat(dev_priv, PIPE_A,
610                                      PIPE_LEGACY_BLC_EVENT_STATUS);
611
612         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
613 }
614
615 /**
616  * i915_pipe_enabled - check if a pipe is enabled
617  * @dev: DRM device
618  * @pipe: pipe to check
619  *
620  * Reading certain registers when the pipe is disabled can hang the chip.
621  * Use this routine to make sure the PLL is running and the pipe is active
622  * before reading such registers if unsure.
623  */
624 static int
625 i915_pipe_enabled(struct drm_device *dev, int pipe)
626 {
627         struct drm_i915_private *dev_priv = dev->dev_private;
628
629         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
630                 /* Locking is horribly broken here, but whatever. */
631                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
632                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
633
634                 return intel_crtc->active;
635         } else {
636                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
637         }
638 }
639
640 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
641 {
642         /* Gen2 doesn't have a hardware frame counter */
643         return 0;
644 }
645
646 /* Called from drm generic code, passed a 'crtc', which
647  * we use as a pipe index
648  */
649 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
650 {
651         struct drm_i915_private *dev_priv = dev->dev_private;
652         unsigned long high_frame;
653         unsigned long low_frame;
654         u32 high1, high2, low, pixel, vbl_start;
655
656         if (!i915_pipe_enabled(dev, pipe)) {
657                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
658                                 "pipe %c\n", pipe_name(pipe));
659                 return 0;
660         }
661
662         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
663                 struct intel_crtc *intel_crtc =
664                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
665                 const struct drm_display_mode *mode =
666                         &intel_crtc->config.adjusted_mode;
667
668                 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
669         } else {
670                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
671                 u32 htotal;
672
673                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
674                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
675
676                 vbl_start *= htotal;
677         }
678
679         high_frame = PIPEFRAME(pipe);
680         low_frame = PIPEFRAMEPIXEL(pipe);
681
682         /*
683          * High & low register fields aren't synchronized, so make sure
684          * we get a low value that's stable across two reads of the high
685          * register.
686          */
687         do {
688                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
689                 low   = I915_READ(low_frame);
690                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
691         } while (high1 != high2);
692
693         high1 >>= PIPE_FRAME_HIGH_SHIFT;
694         pixel = low & PIPE_PIXEL_MASK;
695         low >>= PIPE_FRAME_LOW_SHIFT;
696
697         /*
698          * The frame counter increments at beginning of active.
699          * Cook up a vblank counter by also checking the pixel
700          * counter against vblank start.
701          */
702         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
703 }
704
705 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
706 {
707         struct drm_i915_private *dev_priv = dev->dev_private;
708         int reg = PIPE_FRMCOUNT_GM45(pipe);
709
710         if (!i915_pipe_enabled(dev, pipe)) {
711                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
712                                  "pipe %c\n", pipe_name(pipe));
713                 return 0;
714         }
715
716         return I915_READ(reg);
717 }
718
719 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
720 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
721
722 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725         uint32_t status;
726         int reg;
727
728         if (INTEL_INFO(dev)->gen >= 8) {
729                 status = GEN8_PIPE_VBLANK;
730                 reg = GEN8_DE_PIPE_ISR(pipe);
731         } else if (INTEL_INFO(dev)->gen >= 7) {
732                 status = DE_PIPE_VBLANK_IVB(pipe);
733                 reg = DEISR;
734         } else {
735                 status = DE_PIPE_VBLANK(pipe);
736                 reg = DEISR;
737         }
738
739         return __raw_i915_read32(dev_priv, reg) & status;
740 }
741
742 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
743                                     unsigned int flags, int *vpos, int *hpos,
744                                     ktime_t *stime, ktime_t *etime)
745 {
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
748         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
749         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
750         int position;
751         int vbl_start, vbl_end, htotal, vtotal;
752         bool in_vbl = true;
753         int ret = 0;
754         unsigned long irqflags;
755
756         if (!intel_crtc->active) {
757                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
758                                  "pipe %c\n", pipe_name(pipe));
759                 return 0;
760         }
761
762         htotal = mode->crtc_htotal;
763         vtotal = mode->crtc_vtotal;
764         vbl_start = mode->crtc_vblank_start;
765         vbl_end = mode->crtc_vblank_end;
766
767         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
768                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
769                 vbl_end /= 2;
770                 vtotal /= 2;
771         }
772
773         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
774
775         /*
776          * Lock uncore.lock, as we will do multiple timing critical raw
777          * register reads, potentially with preemption disabled, so the
778          * following code must not block on uncore.lock.
779          */
780         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
781         
782         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
783
784         /* Get optional system timestamp before query. */
785         if (stime)
786                 *stime = ktime_get();
787
788         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
789                 /* No obvious pixelcount register. Only query vertical
790                  * scanout position from Display scan line register.
791                  */
792                 if (IS_GEN2(dev))
793                         position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
794                 else
795                         position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
796
797                 if (HAS_DDI(dev)) {
798                         /*
799                          * On HSW HDMI outputs there seems to be a 2 line
800                          * difference, whereas eDP has the normal 1 line
801                          * difference that earlier platforms have. External
802                          * DP is unknown. For now just check for the 2 line
803                          * difference case on all output types on HSW+.
804                          *
805                          * This might misinterpret the scanline counter being
806                          * one line too far along on eDP, but that's less
807                          * dangerous than the alternative since that would lead
808                          * the vblank timestamp code astray when it sees a
809                          * scanline count before vblank_start during a vblank
810                          * interrupt.
811                          */
812                         in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
813                         if ((in_vbl && (position == vbl_start - 2 ||
814                                         position == vbl_start - 1)) ||
815                             (!in_vbl && (position == vbl_end - 2 ||
816                                          position == vbl_end - 1)))
817                                 position = (position + 2) % vtotal;
818                 } else if (HAS_PCH_SPLIT(dev)) {
819                         /*
820                          * The scanline counter increments at the leading edge
821                          * of hsync, ie. it completely misses the active portion
822                          * of the line. Fix up the counter at both edges of vblank
823                          * to get a more accurate picture whether we're in vblank
824                          * or not.
825                          */
826                         in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
827                         if ((in_vbl && position == vbl_start - 1) ||
828                             (!in_vbl && position == vbl_end - 1))
829                                 position = (position + 1) % vtotal;
830                 } else {
831                         /*
832                          * ISR vblank status bits don't work the way we'd want
833                          * them to work on non-PCH platforms (for
834                          * ilk_pipe_in_vblank_locked()), and there doesn't
835                          * appear any other way to determine if we're currently
836                          * in vblank.
837                          *
838                          * Instead let's assume that we're already in vblank if
839                          * we got called from the vblank interrupt and the
840                          * scanline counter value indicates that we're on the
841                          * line just prior to vblank start. This should result
842                          * in the correct answer, unless the vblank interrupt
843                          * delivery really got delayed for almost exactly one
844                          * full frame/field.
845                          */
846                         if (flags & DRM_CALLED_FROM_VBLIRQ &&
847                             position == vbl_start - 1) {
848                                 position = (position + 1) % vtotal;
849
850                                 /* Signal this correction as "applied". */
851                                 ret |= 0x8;
852                         }
853                 }
854         } else {
855                 /* Have access to pixelcount since start of frame.
856                  * We can split this into vertical and horizontal
857                  * scanout position.
858                  */
859                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
860
861                 /* convert to pixel counts */
862                 vbl_start *= htotal;
863                 vbl_end *= htotal;
864                 vtotal *= htotal;
865         }
866
867         /* Get optional system timestamp after query. */
868         if (etime)
869                 *etime = ktime_get();
870
871         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
872
873         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
874
875         in_vbl = position >= vbl_start && position < vbl_end;
876
877         /*
878          * While in vblank, position will be negative
879          * counting up towards 0 at vbl_end. And outside
880          * vblank, position will be positive counting
881          * up since vbl_end.
882          */
883         if (position >= vbl_start)
884                 position -= vbl_end;
885         else
886                 position += vtotal - vbl_end;
887
888         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
889                 *vpos = position;
890                 *hpos = 0;
891         } else {
892                 *vpos = position / htotal;
893                 *hpos = position - (*vpos * htotal);
894         }
895
896         /* In vblank? */
897         if (in_vbl)
898                 ret |= DRM_SCANOUTPOS_INVBL;
899
900         return ret;
901 }
902
903 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
904                               int *max_error,
905                               struct timeval *vblank_time,
906                               unsigned flags)
907 {
908         struct drm_crtc *crtc;
909
910         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
911                 DRM_ERROR("Invalid crtc %d\n", pipe);
912                 return -EINVAL;
913         }
914
915         /* Get drm_crtc to timestamp: */
916         crtc = intel_get_crtc_for_pipe(dev, pipe);
917         if (crtc == NULL) {
918                 DRM_ERROR("Invalid crtc %d\n", pipe);
919                 return -EINVAL;
920         }
921
922         if (!crtc->enabled) {
923                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
924                 return -EBUSY;
925         }
926
927         /* Helper routine in DRM core does all the work: */
928         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
929                                                      vblank_time, flags,
930                                                      crtc,
931                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
932 }
933
934 static bool intel_hpd_irq_event(struct drm_device *dev,
935                                 struct drm_connector *connector)
936 {
937         enum drm_connector_status old_status;
938
939         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
940         old_status = connector->status;
941
942         connector->status = connector->funcs->detect(connector, false);
943         if (old_status == connector->status)
944                 return false;
945
946         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
947                       connector->base.id,
948                       drm_get_connector_name(connector),
949                       drm_get_connector_status_name(old_status),
950                       drm_get_connector_status_name(connector->status));
951
952         return true;
953 }
954
955 /*
956  * Handle hotplug events outside the interrupt handler proper.
957  */
958 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
959
960 static void i915_hotplug_work_func(struct work_struct *work)
961 {
962         struct drm_i915_private *dev_priv =
963                 container_of(work, struct drm_i915_private, hotplug_work);
964         struct drm_device *dev = dev_priv->dev;
965         struct drm_mode_config *mode_config = &dev->mode_config;
966         struct intel_connector *intel_connector;
967         struct intel_encoder *intel_encoder;
968         struct drm_connector *connector;
969         unsigned long irqflags;
970         bool hpd_disabled = false;
971         bool changed = false;
972         u32 hpd_event_bits;
973
974         /* HPD irq before everything is fully set up. */
975         if (!dev_priv->enable_hotplug_processing)
976                 return;
977
978         mutex_lock(&mode_config->mutex);
979         DRM_DEBUG_KMS("running encoder hotplug functions\n");
980
981         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
982
983         hpd_event_bits = dev_priv->hpd_event_bits;
984         dev_priv->hpd_event_bits = 0;
985         list_for_each_entry(connector, &mode_config->connector_list, head) {
986                 intel_connector = to_intel_connector(connector);
987                 intel_encoder = intel_connector->encoder;
988                 if (intel_encoder->hpd_pin > HPD_NONE &&
989                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
990                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
991                         DRM_INFO("HPD interrupt storm detected on connector %s: "
992                                  "switching from hotplug detection to polling\n",
993                                 drm_get_connector_name(connector));
994                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
995                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
996                                 | DRM_CONNECTOR_POLL_DISCONNECT;
997                         hpd_disabled = true;
998                 }
999                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1000                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1001                                       drm_get_connector_name(connector), intel_encoder->hpd_pin);
1002                 }
1003         }
1004          /* if there were no outputs to poll, poll was disabled,
1005           * therefore make sure it's enabled when disabling HPD on
1006           * some connectors */
1007         if (hpd_disabled) {
1008                 drm_kms_helper_poll_enable(dev);
1009                 mod_timer(&dev_priv->hotplug_reenable_timer,
1010                           jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1011         }
1012
1013         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1014
1015         list_for_each_entry(connector, &mode_config->connector_list, head) {
1016                 intel_connector = to_intel_connector(connector);
1017                 intel_encoder = intel_connector->encoder;
1018                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1019                         if (intel_encoder->hot_plug)
1020                                 intel_encoder->hot_plug(intel_encoder);
1021                         if (intel_hpd_irq_event(dev, connector))
1022                                 changed = true;
1023                 }
1024         }
1025         mutex_unlock(&mode_config->mutex);
1026
1027         if (changed)
1028                 drm_kms_helper_hotplug_event(dev);
1029 }
1030
1031 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1032 {
1033         del_timer_sync(&dev_priv->hotplug_reenable_timer);
1034 }
1035
1036 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1037 {
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039         u32 busy_up, busy_down, max_avg, min_avg;
1040         u8 new_delay;
1041
1042         spin_lock(&mchdev_lock);
1043
1044         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1045
1046         new_delay = dev_priv->ips.cur_delay;
1047
1048         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1049         busy_up = I915_READ(RCPREVBSYTUPAVG);
1050         busy_down = I915_READ(RCPREVBSYTDNAVG);
1051         max_avg = I915_READ(RCBMAXAVG);
1052         min_avg = I915_READ(RCBMINAVG);
1053
1054         /* Handle RCS change request from hw */
1055         if (busy_up > max_avg) {
1056                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1057                         new_delay = dev_priv->ips.cur_delay - 1;
1058                 if (new_delay < dev_priv->ips.max_delay)
1059                         new_delay = dev_priv->ips.max_delay;
1060         } else if (busy_down < min_avg) {
1061                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1062                         new_delay = dev_priv->ips.cur_delay + 1;
1063                 if (new_delay > dev_priv->ips.min_delay)
1064                         new_delay = dev_priv->ips.min_delay;
1065         }
1066
1067         if (ironlake_set_drps(dev, new_delay))
1068                 dev_priv->ips.cur_delay = new_delay;
1069
1070         spin_unlock(&mchdev_lock);
1071
1072         return;
1073 }
1074
1075 static void notify_ring(struct drm_device *dev,
1076                         struct intel_ring_buffer *ring)
1077 {
1078         if (ring->obj == NULL)
1079                 return;
1080
1081         trace_i915_gem_request_complete(ring);
1082
1083         wake_up_all(&ring->irq_queue);
1084         i915_queue_hangcheck(dev);
1085 }
1086
1087 static void gen6_pm_rps_work(struct work_struct *work)
1088 {
1089         struct drm_i915_private *dev_priv =
1090                 container_of(work, struct drm_i915_private, rps.work);
1091         u32 pm_iir;
1092         int new_delay, adj;
1093
1094         spin_lock_irq(&dev_priv->irq_lock);
1095         pm_iir = dev_priv->rps.pm_iir;
1096         dev_priv->rps.pm_iir = 0;
1097         /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1098         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1099         spin_unlock_irq(&dev_priv->irq_lock);
1100
1101         /* Make sure we didn't queue anything we're not going to process. */
1102         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1103
1104         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1105                 return;
1106
1107         mutex_lock(&dev_priv->rps.hw_lock);
1108
1109         adj = dev_priv->rps.last_adj;
1110         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1111                 if (adj > 0)
1112                         adj *= 2;
1113                 else
1114                         adj = 1;
1115                 new_delay = dev_priv->rps.cur_freq + adj;
1116
1117                 /*
1118                  * For better performance, jump directly
1119                  * to RPe if we're below it.
1120                  */
1121                 if (new_delay < dev_priv->rps.efficient_freq)
1122                         new_delay = dev_priv->rps.efficient_freq;
1123         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1124                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1125                         new_delay = dev_priv->rps.efficient_freq;
1126                 else
1127                         new_delay = dev_priv->rps.min_freq_softlimit;
1128                 adj = 0;
1129         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1130                 if (adj < 0)
1131                         adj *= 2;
1132                 else
1133                         adj = -1;
1134                 new_delay = dev_priv->rps.cur_freq + adj;
1135         } else { /* unknown event */
1136                 new_delay = dev_priv->rps.cur_freq;
1137         }
1138
1139         /* sysfs frequency interfaces may have snuck in while servicing the
1140          * interrupt
1141          */
1142         new_delay = clamp_t(int, new_delay,
1143                             dev_priv->rps.min_freq_softlimit,
1144                             dev_priv->rps.max_freq_softlimit);
1145
1146         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1147
1148         if (IS_VALLEYVIEW(dev_priv->dev))
1149                 valleyview_set_rps(dev_priv->dev, new_delay);
1150         else
1151                 gen6_set_rps(dev_priv->dev, new_delay);
1152
1153         mutex_unlock(&dev_priv->rps.hw_lock);
1154 }
1155
1156
1157 /**
1158  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1159  * occurred.
1160  * @work: workqueue struct
1161  *
1162  * Doesn't actually do anything except notify userspace. As a consequence of
1163  * this event, userspace should try to remap the bad rows since statistically
1164  * it is likely the same row is more likely to go bad again.
1165  */
1166 static void ivybridge_parity_work(struct work_struct *work)
1167 {
1168         struct drm_i915_private *dev_priv =
1169                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1170         u32 error_status, row, bank, subbank;
1171         char *parity_event[6];
1172         uint32_t misccpctl;
1173         unsigned long flags;
1174         uint8_t slice = 0;
1175
1176         /* We must turn off DOP level clock gating to access the L3 registers.
1177          * In order to prevent a get/put style interface, acquire struct mutex
1178          * any time we access those registers.
1179          */
1180         mutex_lock(&dev_priv->dev->struct_mutex);
1181
1182         /* If we've screwed up tracking, just let the interrupt fire again */
1183         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184                 goto out;
1185
1186         misccpctl = I915_READ(GEN7_MISCCPCTL);
1187         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188         POSTING_READ(GEN7_MISCCPCTL);
1189
1190         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191                 u32 reg;
1192
1193                 slice--;
1194                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195                         break;
1196
1197                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198
1199                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200
1201                 error_status = I915_READ(reg);
1202                 row = GEN7_PARITY_ERROR_ROW(error_status);
1203                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1204                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205
1206                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207                 POSTING_READ(reg);
1208
1209                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214                 parity_event[5] = NULL;
1215
1216                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217                                    KOBJ_CHANGE, parity_event);
1218
1219                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220                           slice, row, bank, subbank);
1221
1222                 kfree(parity_event[4]);
1223                 kfree(parity_event[3]);
1224                 kfree(parity_event[2]);
1225                 kfree(parity_event[1]);
1226         }
1227
1228         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229
1230 out:
1231         WARN_ON(dev_priv->l3_parity.which_slice);
1232         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1233         ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1235
1236         mutex_unlock(&dev_priv->dev->struct_mutex);
1237 }
1238
1239 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240 {
1241         struct drm_i915_private *dev_priv = dev->dev_private;
1242
1243         if (!HAS_L3_DPF(dev))
1244                 return;
1245
1246         spin_lock(&dev_priv->irq_lock);
1247         ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248         spin_unlock(&dev_priv->irq_lock);
1249
1250         iir &= GT_PARITY_ERROR(dev);
1251         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252                 dev_priv->l3_parity.which_slice |= 1 << 1;
1253
1254         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255                 dev_priv->l3_parity.which_slice |= 1 << 0;
1256
1257         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1258 }
1259
1260 static void ilk_gt_irq_handler(struct drm_device *dev,
1261                                struct drm_i915_private *dev_priv,
1262                                u32 gt_iir)
1263 {
1264         if (gt_iir &
1265             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266                 notify_ring(dev, &dev_priv->ring[RCS]);
1267         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268                 notify_ring(dev, &dev_priv->ring[VCS]);
1269 }
1270
1271 static void snb_gt_irq_handler(struct drm_device *dev,
1272                                struct drm_i915_private *dev_priv,
1273                                u32 gt_iir)
1274 {
1275
1276         if (gt_iir &
1277             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278                 notify_ring(dev, &dev_priv->ring[RCS]);
1279         if (gt_iir & GT_BSD_USER_INTERRUPT)
1280                 notify_ring(dev, &dev_priv->ring[VCS]);
1281         if (gt_iir & GT_BLT_USER_INTERRUPT)
1282                 notify_ring(dev, &dev_priv->ring[BCS]);
1283
1284         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285                       GT_BSD_CS_ERROR_INTERRUPT |
1286                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1287                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1288                                   gt_iir);
1289         }
1290
1291         if (gt_iir & GT_PARITY_ERROR(dev))
1292                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1293 }
1294
1295 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1296                                        struct drm_i915_private *dev_priv,
1297                                        u32 master_ctl)
1298 {
1299         u32 rcs, bcs, vcs;
1300         uint32_t tmp = 0;
1301         irqreturn_t ret = IRQ_NONE;
1302
1303         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1304                 tmp = I915_READ(GEN8_GT_IIR(0));
1305                 if (tmp) {
1306                         ret = IRQ_HANDLED;
1307                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1308                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1309                         if (rcs & GT_RENDER_USER_INTERRUPT)
1310                                 notify_ring(dev, &dev_priv->ring[RCS]);
1311                         if (bcs & GT_RENDER_USER_INTERRUPT)
1312                                 notify_ring(dev, &dev_priv->ring[BCS]);
1313                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1314                 } else
1315                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1316         }
1317
1318         if (master_ctl & GEN8_GT_VCS1_IRQ) {
1319                 tmp = I915_READ(GEN8_GT_IIR(1));
1320                 if (tmp) {
1321                         ret = IRQ_HANDLED;
1322                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1323                         if (vcs & GT_RENDER_USER_INTERRUPT)
1324                                 notify_ring(dev, &dev_priv->ring[VCS]);
1325                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1326                 } else
1327                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1328         }
1329
1330         if (master_ctl & GEN8_GT_VECS_IRQ) {
1331                 tmp = I915_READ(GEN8_GT_IIR(3));
1332                 if (tmp) {
1333                         ret = IRQ_HANDLED;
1334                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1335                         if (vcs & GT_RENDER_USER_INTERRUPT)
1336                                 notify_ring(dev, &dev_priv->ring[VECS]);
1337                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1338                 } else
1339                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1340         }
1341
1342         return ret;
1343 }
1344
1345 #define HPD_STORM_DETECT_PERIOD 1000
1346 #define HPD_STORM_THRESHOLD 5
1347
1348 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1349                                          u32 hotplug_trigger,
1350                                          const u32 *hpd)
1351 {
1352         struct drm_i915_private *dev_priv = dev->dev_private;
1353         int i;
1354         bool storm_detected = false;
1355
1356         if (!hotplug_trigger)
1357                 return;
1358
1359         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1360                           hotplug_trigger);
1361
1362         spin_lock(&dev_priv->irq_lock);
1363         for (i = 1; i < HPD_NUM_PINS; i++) {
1364
1365                 WARN_ONCE(hpd[i] & hotplug_trigger &&
1366                           dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1367                           "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1368                           hotplug_trigger, i, hpd[i]);
1369
1370                 if (!(hpd[i] & hotplug_trigger) ||
1371                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1372                         continue;
1373
1374                 dev_priv->hpd_event_bits |= (1 << i);
1375                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1376                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1377                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1378                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1379                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1380                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1381                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1382                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1383                         dev_priv->hpd_event_bits &= ~(1 << i);
1384                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1385                         storm_detected = true;
1386                 } else {
1387                         dev_priv->hpd_stats[i].hpd_cnt++;
1388                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1389                                       dev_priv->hpd_stats[i].hpd_cnt);
1390                 }
1391         }
1392
1393         if (storm_detected)
1394                 dev_priv->display.hpd_irq_setup(dev);
1395         spin_unlock(&dev_priv->irq_lock);
1396
1397         /*
1398          * Our hotplug handler can grab modeset locks (by calling down into the
1399          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1400          * queue for otherwise the flush_work in the pageflip code will
1401          * deadlock.
1402          */
1403         schedule_work(&dev_priv->hotplug_work);
1404 }
1405
1406 static void gmbus_irq_handler(struct drm_device *dev)
1407 {
1408         struct drm_i915_private *dev_priv = dev->dev_private;
1409
1410         wake_up_all(&dev_priv->gmbus_wait_queue);
1411 }
1412
1413 static void dp_aux_irq_handler(struct drm_device *dev)
1414 {
1415         struct drm_i915_private *dev_priv = dev->dev_private;
1416
1417         wake_up_all(&dev_priv->gmbus_wait_queue);
1418 }
1419
1420 #if defined(CONFIG_DEBUG_FS)
1421 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1422                                          uint32_t crc0, uint32_t crc1,
1423                                          uint32_t crc2, uint32_t crc3,
1424                                          uint32_t crc4)
1425 {
1426         struct drm_i915_private *dev_priv = dev->dev_private;
1427         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1428         struct intel_pipe_crc_entry *entry;
1429         int head, tail;
1430
1431         spin_lock(&pipe_crc->lock);
1432
1433         if (!pipe_crc->entries) {
1434                 spin_unlock(&pipe_crc->lock);
1435                 DRM_ERROR("spurious interrupt\n");
1436                 return;
1437         }
1438
1439         head = pipe_crc->head;
1440         tail = pipe_crc->tail;
1441
1442         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1443                 spin_unlock(&pipe_crc->lock);
1444                 DRM_ERROR("CRC buffer overflowing\n");
1445                 return;
1446         }
1447
1448         entry = &pipe_crc->entries[head];
1449
1450         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1451         entry->crc[0] = crc0;
1452         entry->crc[1] = crc1;
1453         entry->crc[2] = crc2;
1454         entry->crc[3] = crc3;
1455         entry->crc[4] = crc4;
1456
1457         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1458         pipe_crc->head = head;
1459
1460         spin_unlock(&pipe_crc->lock);
1461
1462         wake_up_interruptible(&pipe_crc->wq);
1463 }
1464 #else
1465 static inline void
1466 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1467                              uint32_t crc0, uint32_t crc1,
1468                              uint32_t crc2, uint32_t crc3,
1469                              uint32_t crc4) {}
1470 #endif
1471
1472
1473 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1474 {
1475         struct drm_i915_private *dev_priv = dev->dev_private;
1476
1477         display_pipe_crc_irq_handler(dev, pipe,
1478                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1479                                      0, 0, 0, 0);
1480 }
1481
1482 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1483 {
1484         struct drm_i915_private *dev_priv = dev->dev_private;
1485
1486         display_pipe_crc_irq_handler(dev, pipe,
1487                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1488                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1489                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1490                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1491                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1492 }
1493
1494 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1495 {
1496         struct drm_i915_private *dev_priv = dev->dev_private;
1497         uint32_t res1, res2;
1498
1499         if (INTEL_INFO(dev)->gen >= 3)
1500                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1501         else
1502                 res1 = 0;
1503
1504         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1505                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1506         else
1507                 res2 = 0;
1508
1509         display_pipe_crc_irq_handler(dev, pipe,
1510                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1511                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1512                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1513                                      res1, res2);
1514 }
1515
1516 /* The RPS events need forcewake, so we add them to a work queue and mask their
1517  * IMR bits until the work is done. Other interrupts can be processed without
1518  * the work queue. */
1519 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1520 {
1521         if (pm_iir & dev_priv->pm_rps_events) {
1522                 spin_lock(&dev_priv->irq_lock);
1523                 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1524                 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1525                 spin_unlock(&dev_priv->irq_lock);
1526
1527                 queue_work(dev_priv->wq, &dev_priv->rps.work);
1528         }
1529
1530         if (HAS_VEBOX(dev_priv->dev)) {
1531                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1532                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1533
1534                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1535                         i915_handle_error(dev_priv->dev, false,
1536                                           "VEBOX CS error interrupt 0x%08x",
1537                                           pm_iir);
1538                 }
1539         }
1540 }
1541
1542 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1543 {
1544         struct drm_i915_private *dev_priv = dev->dev_private;
1545         u32 pipe_stats[I915_MAX_PIPES] = { };
1546         int pipe;
1547
1548         spin_lock(&dev_priv->irq_lock);
1549         for_each_pipe(pipe) {
1550                 int reg;
1551                 u32 mask, iir_bit = 0;
1552
1553                 /*
1554                  * PIPESTAT bits get signalled even when the interrupt is
1555                  * disabled with the mask bits, and some of the status bits do
1556                  * not generate interrupts at all (like the underrun bit). Hence
1557                  * we need to be careful that we only handle what we want to
1558                  * handle.
1559                  */
1560                 mask = 0;
1561                 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1562                         mask |= PIPE_FIFO_UNDERRUN_STATUS;
1563
1564                 switch (pipe) {
1565                 case PIPE_A:
1566                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1567                         break;
1568                 case PIPE_B:
1569                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1570                         break;
1571                 }
1572                 if (iir & iir_bit)
1573                         mask |= dev_priv->pipestat_irq_mask[pipe];
1574
1575                 if (!mask)
1576                         continue;
1577
1578                 reg = PIPESTAT(pipe);
1579                 mask |= PIPESTAT_INT_ENABLE_MASK;
1580                 pipe_stats[pipe] = I915_READ(reg) & mask;
1581
1582                 /*
1583                  * Clear the PIPE*STAT regs before the IIR
1584                  */
1585                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1586                                         PIPESTAT_INT_STATUS_MASK))
1587                         I915_WRITE(reg, pipe_stats[pipe]);
1588         }
1589         spin_unlock(&dev_priv->irq_lock);
1590
1591         for_each_pipe(pipe) {
1592                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1593                         drm_handle_vblank(dev, pipe);
1594
1595                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1596                         intel_prepare_page_flip(dev, pipe);
1597                         intel_finish_page_flip(dev, pipe);
1598                 }
1599
1600                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1601                         i9xx_pipe_crc_irq_handler(dev, pipe);
1602
1603                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1604                     intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1605                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1606         }
1607
1608         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1609                 gmbus_irq_handler(dev);
1610 }
1611
1612 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1613 {
1614         struct drm_device *dev = (struct drm_device *) arg;
1615         struct drm_i915_private *dev_priv = dev->dev_private;
1616         u32 iir, gt_iir, pm_iir;
1617         irqreturn_t ret = IRQ_NONE;
1618
1619         while (true) {
1620                 iir = I915_READ(VLV_IIR);
1621                 gt_iir = I915_READ(GTIIR);
1622                 pm_iir = I915_READ(GEN6_PMIIR);
1623
1624                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1625                         goto out;
1626
1627                 ret = IRQ_HANDLED;
1628
1629                 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1630
1631                 valleyview_pipestat_irq_handler(dev, iir);
1632
1633                 /* Consume port.  Then clear IIR or we'll miss events */
1634                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1635                         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1636                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1637
1638                         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1639
1640                         if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1641                                 dp_aux_irq_handler(dev);
1642
1643                         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1644                         I915_READ(PORT_HOTPLUG_STAT);
1645                 }
1646
1647
1648                 if (pm_iir)
1649                         gen6_rps_irq_handler(dev_priv, pm_iir);
1650
1651                 I915_WRITE(GTIIR, gt_iir);
1652                 I915_WRITE(GEN6_PMIIR, pm_iir);
1653                 I915_WRITE(VLV_IIR, iir);
1654         }
1655
1656 out:
1657         return ret;
1658 }
1659
1660 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1661 {
1662         struct drm_i915_private *dev_priv = dev->dev_private;
1663         int pipe;
1664         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1665
1666         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1667
1668         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1669                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1670                                SDE_AUDIO_POWER_SHIFT);
1671                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1672                                  port_name(port));
1673         }
1674
1675         if (pch_iir & SDE_AUX_MASK)
1676                 dp_aux_irq_handler(dev);
1677
1678         if (pch_iir & SDE_GMBUS)
1679                 gmbus_irq_handler(dev);
1680
1681         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1682                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1683
1684         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1685                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1686
1687         if (pch_iir & SDE_POISON)
1688                 DRM_ERROR("PCH poison interrupt\n");
1689
1690         if (pch_iir & SDE_FDI_MASK)
1691                 for_each_pipe(pipe)
1692                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1693                                          pipe_name(pipe),
1694                                          I915_READ(FDI_RX_IIR(pipe)));
1695
1696         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1697                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1698
1699         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1700                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1701
1702         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1703                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1704                                                           false))
1705                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1706
1707         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1708                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1709                                                           false))
1710                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
1711 }
1712
1713 static void ivb_err_int_handler(struct drm_device *dev)
1714 {
1715         struct drm_i915_private *dev_priv = dev->dev_private;
1716         u32 err_int = I915_READ(GEN7_ERR_INT);
1717         enum pipe pipe;
1718
1719         if (err_int & ERR_INT_POISON)
1720                 DRM_ERROR("Poison interrupt\n");
1721
1722         for_each_pipe(pipe) {
1723                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1724                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1725                                                                   false))
1726                                 DRM_ERROR("Pipe %c FIFO underrun\n",
1727                                           pipe_name(pipe));
1728                 }
1729
1730                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1731                         if (IS_IVYBRIDGE(dev))
1732                                 ivb_pipe_crc_irq_handler(dev, pipe);
1733                         else
1734                                 hsw_pipe_crc_irq_handler(dev, pipe);
1735                 }
1736         }
1737
1738         I915_WRITE(GEN7_ERR_INT, err_int);
1739 }
1740
1741 static void cpt_serr_int_handler(struct drm_device *dev)
1742 {
1743         struct drm_i915_private *dev_priv = dev->dev_private;
1744         u32 serr_int = I915_READ(SERR_INT);
1745
1746         if (serr_int & SERR_INT_POISON)
1747                 DRM_ERROR("PCH poison interrupt\n");
1748
1749         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1750                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1751                                                           false))
1752                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1753
1754         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1755                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1756                                                           false))
1757                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
1758
1759         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1760                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1761                                                           false))
1762                         DRM_ERROR("PCH transcoder C FIFO underrun\n");
1763
1764         I915_WRITE(SERR_INT, serr_int);
1765 }
1766
1767 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1768 {
1769         struct drm_i915_private *dev_priv = dev->dev_private;
1770         int pipe;
1771         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1772
1773         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1774
1775         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1776                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1777                                SDE_AUDIO_POWER_SHIFT_CPT);
1778                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1779                                  port_name(port));
1780         }
1781
1782         if (pch_iir & SDE_AUX_MASK_CPT)
1783                 dp_aux_irq_handler(dev);
1784
1785         if (pch_iir & SDE_GMBUS_CPT)
1786                 gmbus_irq_handler(dev);
1787
1788         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1789                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1790
1791         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1792                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1793
1794         if (pch_iir & SDE_FDI_MASK_CPT)
1795                 for_each_pipe(pipe)
1796                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1797                                          pipe_name(pipe),
1798                                          I915_READ(FDI_RX_IIR(pipe)));
1799
1800         if (pch_iir & SDE_ERROR_CPT)
1801                 cpt_serr_int_handler(dev);
1802 }
1803
1804 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1805 {
1806         struct drm_i915_private *dev_priv = dev->dev_private;
1807         enum pipe pipe;
1808
1809         if (de_iir & DE_AUX_CHANNEL_A)
1810                 dp_aux_irq_handler(dev);
1811
1812         if (de_iir & DE_GSE)
1813                 intel_opregion_asle_intr(dev);
1814
1815         if (de_iir & DE_POISON)
1816                 DRM_ERROR("Poison interrupt\n");
1817
1818         for_each_pipe(pipe) {
1819                 if (de_iir & DE_PIPE_VBLANK(pipe))
1820                         drm_handle_vblank(dev, pipe);
1821
1822                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1823                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1824                                 DRM_ERROR("Pipe %c FIFO underrun\n",
1825                                           pipe_name(pipe));
1826
1827                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1828                         i9xx_pipe_crc_irq_handler(dev, pipe);
1829
1830                 /* plane/pipes map 1:1 on ilk+ */
1831                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1832                         intel_prepare_page_flip(dev, pipe);
1833                         intel_finish_page_flip_plane(dev, pipe);
1834                 }
1835         }
1836
1837         /* check event from PCH */
1838         if (de_iir & DE_PCH_EVENT) {
1839                 u32 pch_iir = I915_READ(SDEIIR);
1840
1841                 if (HAS_PCH_CPT(dev))
1842                         cpt_irq_handler(dev, pch_iir);
1843                 else
1844                         ibx_irq_handler(dev, pch_iir);
1845
1846                 /* should clear PCH hotplug event before clear CPU irq */
1847                 I915_WRITE(SDEIIR, pch_iir);
1848         }
1849
1850         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1851                 ironlake_rps_change_irq_handler(dev);
1852 }
1853
1854 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1855 {
1856         struct drm_i915_private *dev_priv = dev->dev_private;
1857         enum pipe pipe;
1858
1859         if (de_iir & DE_ERR_INT_IVB)
1860                 ivb_err_int_handler(dev);
1861
1862         if (de_iir & DE_AUX_CHANNEL_A_IVB)
1863                 dp_aux_irq_handler(dev);
1864
1865         if (de_iir & DE_GSE_IVB)
1866                 intel_opregion_asle_intr(dev);
1867
1868         for_each_pipe(pipe) {
1869                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1870                         drm_handle_vblank(dev, pipe);
1871
1872                 /* plane/pipes map 1:1 on ilk+ */
1873                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1874                         intel_prepare_page_flip(dev, pipe);
1875                         intel_finish_page_flip_plane(dev, pipe);
1876                 }
1877         }
1878
1879         /* check event from PCH */
1880         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1881                 u32 pch_iir = I915_READ(SDEIIR);
1882
1883                 cpt_irq_handler(dev, pch_iir);
1884
1885                 /* clear PCH hotplug event before clear CPU irq */
1886                 I915_WRITE(SDEIIR, pch_iir);
1887         }
1888 }
1889
1890 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1891 {
1892         struct drm_device *dev = (struct drm_device *) arg;
1893         struct drm_i915_private *dev_priv = dev->dev_private;
1894         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1895         irqreturn_t ret = IRQ_NONE;
1896
1897         /* We get interrupts on unclaimed registers, so check for this before we
1898          * do any I915_{READ,WRITE}. */
1899         intel_uncore_check_errors(dev);
1900
1901         /* disable master interrupt before clearing iir  */
1902         de_ier = I915_READ(DEIER);
1903         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1904         POSTING_READ(DEIER);
1905
1906         /* Disable south interrupts. We'll only write to SDEIIR once, so further
1907          * interrupts will will be stored on its back queue, and then we'll be
1908          * able to process them after we restore SDEIER (as soon as we restore
1909          * it, we'll get an interrupt if SDEIIR still has something to process
1910          * due to its back queue). */
1911         if (!HAS_PCH_NOP(dev)) {
1912                 sde_ier = I915_READ(SDEIER);
1913                 I915_WRITE(SDEIER, 0);
1914                 POSTING_READ(SDEIER);
1915         }
1916
1917         gt_iir = I915_READ(GTIIR);
1918         if (gt_iir) {
1919                 if (INTEL_INFO(dev)->gen >= 6)
1920                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1921                 else
1922                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1923                 I915_WRITE(GTIIR, gt_iir);
1924                 ret = IRQ_HANDLED;
1925         }
1926
1927         de_iir = I915_READ(DEIIR);
1928         if (de_iir) {
1929                 if (INTEL_INFO(dev)->gen >= 7)
1930                         ivb_display_irq_handler(dev, de_iir);
1931                 else
1932                         ilk_display_irq_handler(dev, de_iir);
1933                 I915_WRITE(DEIIR, de_iir);
1934                 ret = IRQ_HANDLED;
1935         }
1936
1937         if (INTEL_INFO(dev)->gen >= 6) {
1938                 u32 pm_iir = I915_READ(GEN6_PMIIR);
1939                 if (pm_iir) {
1940                         gen6_rps_irq_handler(dev_priv, pm_iir);
1941                         I915_WRITE(GEN6_PMIIR, pm_iir);
1942                         ret = IRQ_HANDLED;
1943                 }
1944         }
1945
1946         I915_WRITE(DEIER, de_ier);
1947         POSTING_READ(DEIER);
1948         if (!HAS_PCH_NOP(dev)) {
1949                 I915_WRITE(SDEIER, sde_ier);
1950                 POSTING_READ(SDEIER);
1951         }
1952
1953         return ret;
1954 }
1955
1956 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1957 {
1958         struct drm_device *dev = arg;
1959         struct drm_i915_private *dev_priv = dev->dev_private;
1960         u32 master_ctl;
1961         irqreturn_t ret = IRQ_NONE;
1962         uint32_t tmp = 0;
1963         enum pipe pipe;
1964
1965         master_ctl = I915_READ(GEN8_MASTER_IRQ);
1966         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1967         if (!master_ctl)
1968                 return IRQ_NONE;
1969
1970         I915_WRITE(GEN8_MASTER_IRQ, 0);
1971         POSTING_READ(GEN8_MASTER_IRQ);
1972
1973         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1974
1975         if (master_ctl & GEN8_DE_MISC_IRQ) {
1976                 tmp = I915_READ(GEN8_DE_MISC_IIR);
1977                 if (tmp & GEN8_DE_MISC_GSE)
1978                         intel_opregion_asle_intr(dev);
1979                 else if (tmp)
1980                         DRM_ERROR("Unexpected DE Misc interrupt\n");
1981                 else
1982                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1983
1984                 if (tmp) {
1985                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1986                         ret = IRQ_HANDLED;
1987                 }
1988         }
1989
1990         if (master_ctl & GEN8_DE_PORT_IRQ) {
1991                 tmp = I915_READ(GEN8_DE_PORT_IIR);
1992                 if (tmp & GEN8_AUX_CHANNEL_A)
1993                         dp_aux_irq_handler(dev);
1994                 else if (tmp)
1995                         DRM_ERROR("Unexpected DE Port interrupt\n");
1996                 else
1997                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
1998
1999                 if (tmp) {
2000                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2001                         ret = IRQ_HANDLED;
2002                 }
2003         }
2004
2005         for_each_pipe(pipe) {
2006                 uint32_t pipe_iir;
2007
2008                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2009                         continue;
2010
2011                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2012                 if (pipe_iir & GEN8_PIPE_VBLANK)
2013                         drm_handle_vblank(dev, pipe);
2014
2015                 if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2016                         intel_prepare_page_flip(dev, pipe);
2017                         intel_finish_page_flip_plane(dev, pipe);
2018                 }
2019
2020                 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2021                         hsw_pipe_crc_irq_handler(dev, pipe);
2022
2023                 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2024                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2025                                                                   false))
2026                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2027                                           pipe_name(pipe));
2028                 }
2029
2030                 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2031                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2032                                   pipe_name(pipe),
2033                                   pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2034                 }
2035
2036                 if (pipe_iir) {
2037                         ret = IRQ_HANDLED;
2038                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2039                 } else
2040                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2041         }
2042
2043         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2044                 /*
2045                  * FIXME(BDW): Assume for now that the new interrupt handling
2046                  * scheme also closed the SDE interrupt handling race we've seen
2047                  * on older pch-split platforms. But this needs testing.
2048                  */
2049                 u32 pch_iir = I915_READ(SDEIIR);
2050
2051                 cpt_irq_handler(dev, pch_iir);
2052
2053                 if (pch_iir) {
2054                         I915_WRITE(SDEIIR, pch_iir);
2055                         ret = IRQ_HANDLED;
2056                 }
2057         }
2058
2059         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2060         POSTING_READ(GEN8_MASTER_IRQ);
2061
2062         return ret;
2063 }
2064
2065 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2066                                bool reset_completed)
2067 {
2068         struct intel_ring_buffer *ring;
2069         int i;
2070
2071         /*
2072          * Notify all waiters for GPU completion events that reset state has
2073          * been changed, and that they need to restart their wait after
2074          * checking for potential errors (and bail out to drop locks if there is
2075          * a gpu reset pending so that i915_error_work_func can acquire them).
2076          */
2077
2078         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2079         for_each_ring(ring, dev_priv, i)
2080                 wake_up_all(&ring->irq_queue);
2081
2082         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2083         wake_up_all(&dev_priv->pending_flip_queue);
2084
2085         /*
2086          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2087          * reset state is cleared.
2088          */
2089         if (reset_completed)
2090                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2091 }
2092
2093 /**
2094  * i915_error_work_func - do process context error handling work
2095  * @work: work struct
2096  *
2097  * Fire an error uevent so userspace can see that a hang or error
2098  * was detected.
2099  */
2100 static void i915_error_work_func(struct work_struct *work)
2101 {
2102         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2103                                                     work);
2104         struct drm_i915_private *dev_priv =
2105                 container_of(error, struct drm_i915_private, gpu_error);
2106         struct drm_device *dev = dev_priv->dev;
2107         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2108         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2109         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2110         int ret;
2111
2112         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2113
2114         /*
2115          * Note that there's only one work item which does gpu resets, so we
2116          * need not worry about concurrent gpu resets potentially incrementing
2117          * error->reset_counter twice. We only need to take care of another
2118          * racing irq/hangcheck declaring the gpu dead for a second time. A
2119          * quick check for that is good enough: schedule_work ensures the
2120          * correct ordering between hang detection and this work item, and since
2121          * the reset in-progress bit is only ever set by code outside of this
2122          * work we don't need to worry about any other races.
2123          */
2124         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2125                 DRM_DEBUG_DRIVER("resetting chip\n");
2126                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2127                                    reset_event);
2128
2129                 /*
2130                  * All state reset _must_ be completed before we update the
2131                  * reset counter, for otherwise waiters might miss the reset
2132                  * pending state and not properly drop locks, resulting in
2133                  * deadlocks with the reset work.
2134                  */
2135                 ret = i915_reset(dev);
2136
2137                 intel_display_handle_reset(dev);
2138
2139                 if (ret == 0) {
2140                         /*
2141                          * After all the gem state is reset, increment the reset
2142                          * counter and wake up everyone waiting for the reset to
2143                          * complete.
2144                          *
2145                          * Since unlock operations are a one-sided barrier only,
2146                          * we need to insert a barrier here to order any seqno
2147                          * updates before
2148                          * the counter increment.
2149                          */
2150                         smp_mb__before_atomic_inc();
2151                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2152
2153                         kobject_uevent_env(&dev->primary->kdev->kobj,
2154                                            KOBJ_CHANGE, reset_done_event);
2155                 } else {
2156                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2157                 }
2158
2159                 /*
2160                  * Note: The wake_up also serves as a memory barrier so that
2161                  * waiters see the update value of the reset counter atomic_t.
2162                  */
2163                 i915_error_wake_up(dev_priv, true);
2164         }
2165 }
2166
2167 static void i915_report_and_clear_eir(struct drm_device *dev)
2168 {
2169         struct drm_i915_private *dev_priv = dev->dev_private;
2170         uint32_t instdone[I915_NUM_INSTDONE_REG];
2171         u32 eir = I915_READ(EIR);
2172         int pipe, i;
2173
2174         if (!eir)
2175                 return;
2176
2177         pr_err("render error detected, EIR: 0x%08x\n", eir);
2178
2179         i915_get_extra_instdone(dev, instdone);
2180
2181         if (IS_G4X(dev)) {
2182                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2183                         u32 ipeir = I915_READ(IPEIR_I965);
2184
2185                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2186                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2187                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2188                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2189                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2190                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2191                         I915_WRITE(IPEIR_I965, ipeir);
2192                         POSTING_READ(IPEIR_I965);
2193                 }
2194                 if (eir & GM45_ERROR_PAGE_TABLE) {
2195                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2196                         pr_err("page table error\n");
2197                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2198                         I915_WRITE(PGTBL_ER, pgtbl_err);
2199                         POSTING_READ(PGTBL_ER);
2200                 }
2201         }
2202
2203         if (!IS_GEN2(dev)) {
2204                 if (eir & I915_ERROR_PAGE_TABLE) {
2205                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2206                         pr_err("page table error\n");
2207                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2208                         I915_WRITE(PGTBL_ER, pgtbl_err);
2209                         POSTING_READ(PGTBL_ER);
2210                 }
2211         }
2212
2213         if (eir & I915_ERROR_MEMORY_REFRESH) {
2214                 pr_err("memory refresh error:\n");
2215                 for_each_pipe(pipe)
2216                         pr_err("pipe %c stat: 0x%08x\n",
2217                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2218                 /* pipestat has already been acked */
2219         }
2220         if (eir & I915_ERROR_INSTRUCTION) {
2221                 pr_err("instruction error\n");
2222                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2223                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2224                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2225                 if (INTEL_INFO(dev)->gen < 4) {
2226                         u32 ipeir = I915_READ(IPEIR);
2227
2228                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2229                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2230                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2231                         I915_WRITE(IPEIR, ipeir);
2232                         POSTING_READ(IPEIR);
2233                 } else {
2234                         u32 ipeir = I915_READ(IPEIR_I965);
2235
2236                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2237                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2238                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2239                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2240                         I915_WRITE(IPEIR_I965, ipeir);
2241                         POSTING_READ(IPEIR_I965);
2242                 }
2243         }
2244
2245         I915_WRITE(EIR, eir);
2246         POSTING_READ(EIR);
2247         eir = I915_READ(EIR);
2248         if (eir) {
2249                 /*
2250                  * some errors might have become stuck,
2251                  * mask them.
2252                  */
2253                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2254                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2255                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2256         }
2257 }
2258
2259 /**
2260  * i915_handle_error - handle an error interrupt
2261  * @dev: drm device
2262  *
2263  * Do some basic checking of regsiter state at error interrupt time and
2264  * dump it to the syslog.  Also call i915_capture_error_state() to make
2265  * sure we get a record and make it available in debugfs.  Fire a uevent
2266  * so userspace knows something bad happened (should trigger collection
2267  * of a ring dump etc.).
2268  */
2269 void i915_handle_error(struct drm_device *dev, bool wedged,
2270                        const char *fmt, ...)
2271 {
2272         struct drm_i915_private *dev_priv = dev->dev_private;
2273         va_list args;
2274         char error_msg[80];
2275
2276         va_start(args, fmt);
2277         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2278         va_end(args);
2279
2280         i915_capture_error_state(dev, wedged, error_msg);
2281         i915_report_and_clear_eir(dev);
2282
2283         if (wedged) {
2284                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2285                                 &dev_priv->gpu_error.reset_counter);
2286
2287                 /*
2288                  * Wakeup waiting processes so that the reset work function
2289                  * i915_error_work_func doesn't deadlock trying to grab various
2290                  * locks. By bumping the reset counter first, the woken
2291                  * processes will see a reset in progress and back off,
2292                  * releasing their locks and then wait for the reset completion.
2293                  * We must do this for _all_ gpu waiters that might hold locks
2294                  * that the reset work needs to acquire.
2295                  *
2296                  * Note: The wake_up serves as the required memory barrier to
2297                  * ensure that the waiters see the updated value of the reset
2298                  * counter atomic_t.
2299                  */
2300                 i915_error_wake_up(dev_priv, false);
2301         }
2302
2303         /*
2304          * Our reset work can grab modeset locks (since it needs to reset the
2305          * state of outstanding pagelips). Hence it must not be run on our own
2306          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2307          * code will deadlock.
2308          */
2309         schedule_work(&dev_priv->gpu_error.work);
2310 }
2311
2312 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2313 {
2314         struct drm_i915_private *dev_priv = dev->dev_private;
2315         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2317         struct drm_i915_gem_object *obj;
2318         struct intel_unpin_work *work;
2319         unsigned long flags;
2320         bool stall_detected;
2321
2322         /* Ignore early vblank irqs */
2323         if (intel_crtc == NULL)
2324                 return;
2325
2326         spin_lock_irqsave(&dev->event_lock, flags);
2327         work = intel_crtc->unpin_work;
2328
2329         if (work == NULL ||
2330             atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2331             !work->enable_stall_check) {
2332                 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2333                 spin_unlock_irqrestore(&dev->event_lock, flags);
2334                 return;
2335         }
2336
2337         /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2338         obj = work->pending_flip_obj;
2339         if (INTEL_INFO(dev)->gen >= 4) {
2340                 int dspsurf = DSPSURF(intel_crtc->plane);
2341                 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2342                                         i915_gem_obj_ggtt_offset(obj);
2343         } else {
2344                 int dspaddr = DSPADDR(intel_crtc->plane);
2345                 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2346                                                         crtc->y * crtc->fb->pitches[0] +
2347                                                         crtc->x * crtc->fb->bits_per_pixel/8);
2348         }
2349
2350         spin_unlock_irqrestore(&dev->event_lock, flags);
2351
2352         if (stall_detected) {
2353                 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2354                 intel_prepare_page_flip(dev, intel_crtc->plane);
2355         }
2356 }
2357
2358 /* Called from drm generic code, passed 'crtc' which
2359  * we use as a pipe index
2360  */
2361 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2362 {
2363         struct drm_i915_private *dev_priv = dev->dev_private;
2364         unsigned long irqflags;
2365
2366         if (!i915_pipe_enabled(dev, pipe))
2367                 return -EINVAL;
2368
2369         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2370         if (INTEL_INFO(dev)->gen >= 4)
2371                 i915_enable_pipestat(dev_priv, pipe,
2372                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2373         else
2374                 i915_enable_pipestat(dev_priv, pipe,
2375                                      PIPE_VBLANK_INTERRUPT_STATUS);
2376
2377         /* maintain vblank delivery even in deep C-states */
2378         if (INTEL_INFO(dev)->gen == 3)
2379                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2380         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2381
2382         return 0;
2383 }
2384
2385 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2386 {
2387         struct drm_i915_private *dev_priv = dev->dev_private;
2388         unsigned long irqflags;
2389         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2390                                                      DE_PIPE_VBLANK(pipe);
2391
2392         if (!i915_pipe_enabled(dev, pipe))
2393                 return -EINVAL;
2394
2395         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2396         ironlake_enable_display_irq(dev_priv, bit);
2397         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2398
2399         return 0;
2400 }
2401
2402 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2403 {
2404         struct drm_i915_private *dev_priv = dev->dev_private;
2405         unsigned long irqflags;
2406
2407         if (!i915_pipe_enabled(dev, pipe))
2408                 return -EINVAL;
2409
2410         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2411         i915_enable_pipestat(dev_priv, pipe,
2412                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2413         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2414
2415         return 0;
2416 }
2417
2418 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2419 {
2420         struct drm_i915_private *dev_priv = dev->dev_private;
2421         unsigned long irqflags;
2422
2423         if (!i915_pipe_enabled(dev, pipe))
2424                 return -EINVAL;
2425
2426         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2427         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2428         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2429         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2430         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2431         return 0;
2432 }
2433
2434 /* Called from drm generic code, passed 'crtc' which
2435  * we use as a pipe index
2436  */
2437 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2438 {
2439         struct drm_i915_private *dev_priv = dev->dev_private;
2440         unsigned long irqflags;
2441
2442         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2443         if (INTEL_INFO(dev)->gen == 3)
2444                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2445
2446         i915_disable_pipestat(dev_priv, pipe,
2447                               PIPE_VBLANK_INTERRUPT_STATUS |
2448                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2449         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2450 }
2451
2452 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2453 {
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455         unsigned long irqflags;
2456         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2457                                                      DE_PIPE_VBLANK(pipe);
2458
2459         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2460         ironlake_disable_display_irq(dev_priv, bit);
2461         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2462 }
2463
2464 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2465 {
2466         struct drm_i915_private *dev_priv = dev->dev_private;
2467         unsigned long irqflags;
2468
2469         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2470         i915_disable_pipestat(dev_priv, pipe,
2471                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2472         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2473 }
2474
2475 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2476 {
2477         struct drm_i915_private *dev_priv = dev->dev_private;
2478         unsigned long irqflags;
2479
2480         if (!i915_pipe_enabled(dev, pipe))
2481                 return;
2482
2483         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2484         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2485         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2486         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2487         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2488 }
2489
2490 static u32
2491 ring_last_seqno(struct intel_ring_buffer *ring)
2492 {
2493         return list_entry(ring->request_list.prev,
2494                           struct drm_i915_gem_request, list)->seqno;
2495 }
2496
2497 static bool
2498 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2499 {
2500         return (list_empty(&ring->request_list) ||
2501                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2502 }
2503
2504 static bool
2505 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2506 {
2507         if (INTEL_INFO(dev)->gen >= 8) {
2508                 /*
2509                  * FIXME: gen8 semaphore support - currently we don't emit
2510                  * semaphores on bdw anyway, but this needs to be addressed when
2511                  * we merge that code.
2512                  */
2513                 return false;
2514         } else {
2515                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2516                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2517                                  MI_SEMAPHORE_REGISTER);
2518         }
2519 }
2520
2521 static struct intel_ring_buffer *
2522 semaphore_wait_to_signaller_ring(struct intel_ring_buffer *ring, u32 ipehr)
2523 {
2524         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2525         struct intel_ring_buffer *signaller;
2526         int i;
2527
2528         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2529                 /*
2530                  * FIXME: gen8 semaphore support - currently we don't emit
2531                  * semaphores on bdw anyway, but this needs to be addressed when
2532                  * we merge that code.
2533                  */
2534                 return NULL;
2535         } else {
2536                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2537
2538                 for_each_ring(signaller, dev_priv, i) {
2539                         if(ring == signaller)
2540                                 continue;
2541
2542                         if (sync_bits ==
2543                             signaller->semaphore_register[ring->id])
2544                                 return signaller;
2545                 }
2546         }
2547
2548         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2549                   ring->id, ipehr);
2550
2551         return NULL;
2552 }
2553
2554 static struct intel_ring_buffer *
2555 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2556 {
2557         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2558         u32 cmd, ipehr, head;
2559         int i;
2560
2561         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2562         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2563                 return NULL;
2564
2565         /*
2566          * HEAD is likely pointing to the dword after the actual command,
2567          * so scan backwards until we find the MBOX. But limit it to just 3
2568          * dwords. Note that we don't care about ACTHD here since that might
2569          * point at at batch, and semaphores are always emitted into the
2570          * ringbuffer itself.
2571          */
2572         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2573
2574         for (i = 4; i; --i) {
2575                 /*
2576                  * Be paranoid and presume the hw has gone off into the wild -
2577                  * our ring is smaller than what the hardware (and hence
2578                  * HEAD_ADDR) allows. Also handles wrap-around.
2579                  */
2580                 head &= ring->size - 1;
2581
2582                 /* This here seems to blow up */
2583                 cmd = ioread32(ring->virtual_start + head);
2584                 if (cmd == ipehr)
2585                         break;
2586
2587                 head -= 4;
2588         }
2589
2590         if (!i)
2591                 return NULL;
2592
2593         *seqno = ioread32(ring->virtual_start + head + 4) + 1;
2594         return semaphore_wait_to_signaller_ring(ring, ipehr);
2595 }
2596
2597 static int semaphore_passed(struct intel_ring_buffer *ring)
2598 {
2599         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2600         struct intel_ring_buffer *signaller;
2601         u32 seqno, ctl;
2602
2603         ring->hangcheck.deadlock = true;
2604
2605         signaller = semaphore_waits_for(ring, &seqno);
2606         if (signaller == NULL || signaller->hangcheck.deadlock)
2607                 return -1;
2608
2609         /* cursory check for an unkickable deadlock */
2610         ctl = I915_READ_CTL(signaller);
2611         if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2612                 return -1;
2613
2614         return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2615 }
2616
2617 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2618 {
2619         struct intel_ring_buffer *ring;
2620         int i;
2621
2622         for_each_ring(ring, dev_priv, i)
2623                 ring->hangcheck.deadlock = false;
2624 }
2625
2626 static enum intel_ring_hangcheck_action
2627 ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2628 {
2629         struct drm_device *dev = ring->dev;
2630         struct drm_i915_private *dev_priv = dev->dev_private;
2631         u32 tmp;
2632
2633         if (ring->hangcheck.acthd != acthd)
2634                 return HANGCHECK_ACTIVE;
2635
2636         if (IS_GEN2(dev))
2637                 return HANGCHECK_HUNG;
2638
2639         /* Is the chip hanging on a WAIT_FOR_EVENT?
2640          * If so we can simply poke the RB_WAIT bit
2641          * and break the hang. This should work on
2642          * all but the second generation chipsets.
2643          */
2644         tmp = I915_READ_CTL(ring);
2645         if (tmp & RING_WAIT) {
2646                 i915_handle_error(dev, false,
2647                                   "Kicking stuck wait on %s",
2648                                   ring->name);
2649                 I915_WRITE_CTL(ring, tmp);
2650                 return HANGCHECK_KICK;
2651         }
2652
2653         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2654                 switch (semaphore_passed(ring)) {
2655                 default:
2656                         return HANGCHECK_HUNG;
2657                 case 1:
2658                         i915_handle_error(dev, false,
2659                                           "Kicking stuck semaphore on %s",
2660                                           ring->name);
2661                         I915_WRITE_CTL(ring, tmp);
2662                         return HANGCHECK_KICK;
2663                 case 0:
2664                         return HANGCHECK_WAIT;
2665                 }
2666         }
2667
2668         return HANGCHECK_HUNG;
2669 }
2670
2671 /**
2672  * This is called when the chip hasn't reported back with completed
2673  * batchbuffers in a long time. We keep track per ring seqno progress and
2674  * if there are no progress, hangcheck score for that ring is increased.
2675  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2676  * we kick the ring. If we see no progress on three subsequent calls
2677  * we assume chip is wedged and try to fix it by resetting the chip.
2678  */
2679 static void i915_hangcheck_elapsed(unsigned long data)
2680 {
2681         struct drm_device *dev = (struct drm_device *)data;
2682         struct drm_i915_private *dev_priv = dev->dev_private;
2683         struct intel_ring_buffer *ring;
2684         int i;
2685         int busy_count = 0, rings_hung = 0;
2686         bool stuck[I915_NUM_RINGS] = { 0 };
2687 #define BUSY 1
2688 #define KICK 5
2689 #define HUNG 20
2690
2691         if (!i915.enable_hangcheck)
2692                 return;
2693
2694         for_each_ring(ring, dev_priv, i) {
2695                 u64 acthd;
2696                 u32 seqno;
2697                 bool busy = true;
2698
2699                 semaphore_clear_deadlocks(dev_priv);
2700
2701                 seqno = ring->get_seqno(ring, false);
2702                 acthd = intel_ring_get_active_head(ring);
2703
2704                 if (ring->hangcheck.seqno == seqno) {
2705                         if (ring_idle(ring, seqno)) {
2706                                 ring->hangcheck.action = HANGCHECK_IDLE;
2707
2708                                 if (waitqueue_active(&ring->irq_queue)) {
2709                                         /* Issue a wake-up to catch stuck h/w. */
2710                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2711                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2712                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2713                                                                   ring->name);
2714                                                 else
2715                                                         DRM_INFO("Fake missed irq on %s\n",
2716                                                                  ring->name);
2717                                                 wake_up_all(&ring->irq_queue);
2718                                         }
2719                                         /* Safeguard against driver failure */
2720                                         ring->hangcheck.score += BUSY;
2721                                 } else
2722                                         busy = false;
2723                         } else {
2724                                 /* We always increment the hangcheck score
2725                                  * if the ring is busy and still processing
2726                                  * the same request, so that no single request
2727                                  * can run indefinitely (such as a chain of
2728                                  * batches). The only time we do not increment
2729                                  * the hangcheck score on this ring, if this
2730                                  * ring is in a legitimate wait for another
2731                                  * ring. In that case the waiting ring is a
2732                                  * victim and we want to be sure we catch the
2733                                  * right culprit. Then every time we do kick
2734                                  * the ring, add a small increment to the
2735                                  * score so that we can catch a batch that is
2736                                  * being repeatedly kicked and so responsible
2737                                  * for stalling the machine.
2738                                  */
2739                                 ring->hangcheck.action = ring_stuck(ring,
2740                                                                     acthd);
2741
2742                                 switch (ring->hangcheck.action) {
2743                                 case HANGCHECK_IDLE:
2744                                 case HANGCHECK_WAIT:
2745                                         break;
2746                                 case HANGCHECK_ACTIVE:
2747                                         ring->hangcheck.score += BUSY;
2748                                         break;
2749                                 case HANGCHECK_KICK:
2750                                         ring->hangcheck.score += KICK;
2751                                         break;
2752                                 case HANGCHECK_HUNG:
2753                                         ring->hangcheck.score += HUNG;
2754                                         stuck[i] = true;
2755                                         break;
2756                                 }
2757                         }
2758                 } else {
2759                         ring->hangcheck.action = HANGCHECK_ACTIVE;
2760
2761                         /* Gradually reduce the count so that we catch DoS
2762                          * attempts across multiple batches.
2763                          */
2764                         if (ring->hangcheck.score > 0)
2765                                 ring->hangcheck.score--;
2766                 }
2767
2768                 ring->hangcheck.seqno = seqno;
2769                 ring->hangcheck.acthd = acthd;
2770                 busy_count += busy;
2771         }
2772
2773         for_each_ring(ring, dev_priv, i) {
2774                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2775                         DRM_INFO("%s on %s\n",
2776                                  stuck[i] ? "stuck" : "no progress",
2777                                  ring->name);
2778                         rings_hung++;
2779                 }
2780         }
2781
2782         if (rings_hung)
2783                 return i915_handle_error(dev, true, "Ring hung");
2784
2785         if (busy_count)
2786                 /* Reset timer case chip hangs without another request
2787                  * being added */
2788                 i915_queue_hangcheck(dev);
2789 }
2790
2791 void i915_queue_hangcheck(struct drm_device *dev)
2792 {
2793         struct drm_i915_private *dev_priv = dev->dev_private;
2794         if (!i915.enable_hangcheck)
2795                 return;
2796
2797         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2798                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2799 }
2800
2801 static void ibx_irq_preinstall(struct drm_device *dev)
2802 {
2803         struct drm_i915_private *dev_priv = dev->dev_private;
2804
2805         if (HAS_PCH_NOP(dev))
2806                 return;
2807
2808         /* south display irq */
2809         I915_WRITE(SDEIMR, 0xffffffff);
2810         /*
2811          * SDEIER is also touched by the interrupt handler to work around missed
2812          * PCH interrupts. Hence we can't update it after the interrupt handler
2813          * is enabled - instead we unconditionally enable all PCH interrupt
2814          * sources here, but then only unmask them as needed with SDEIMR.
2815          */
2816         I915_WRITE(SDEIER, 0xffffffff);
2817         POSTING_READ(SDEIER);
2818 }
2819
2820 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2821 {
2822         struct drm_i915_private *dev_priv = dev->dev_private;
2823
2824         /* and GT */
2825         I915_WRITE(GTIMR, 0xffffffff);
2826         I915_WRITE(GTIER, 0x0);
2827         POSTING_READ(GTIER);
2828
2829         if (INTEL_INFO(dev)->gen >= 6) {
2830                 /* and PM */
2831                 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2832                 I915_WRITE(GEN6_PMIER, 0x0);
2833                 POSTING_READ(GEN6_PMIER);
2834         }
2835 }
2836
2837 /* drm_dma.h hooks
2838 */
2839 static void ironlake_irq_preinstall(struct drm_device *dev)
2840 {
2841         struct drm_i915_private *dev_priv = dev->dev_private;
2842
2843         I915_WRITE(HWSTAM, 0xeffe);
2844
2845         I915_WRITE(DEIMR, 0xffffffff);
2846         I915_WRITE(DEIER, 0x0);
2847         POSTING_READ(DEIER);
2848
2849         gen5_gt_irq_preinstall(dev);
2850
2851         ibx_irq_preinstall(dev);
2852 }
2853
2854 static void valleyview_irq_preinstall(struct drm_device *dev)
2855 {
2856         struct drm_i915_private *dev_priv = dev->dev_private;
2857         int pipe;
2858
2859         /* VLV magic */
2860         I915_WRITE(VLV_IMR, 0);
2861         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2862         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2863         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2864
2865         /* and GT */
2866         I915_WRITE(GTIIR, I915_READ(GTIIR));
2867         I915_WRITE(GTIIR, I915_READ(GTIIR));
2868
2869         gen5_gt_irq_preinstall(dev);
2870
2871         I915_WRITE(DPINVGTT, 0xff);
2872
2873         I915_WRITE(PORT_HOTPLUG_EN, 0);
2874         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2875         for_each_pipe(pipe)
2876                 I915_WRITE(PIPESTAT(pipe), 0xffff);
2877         I915_WRITE(VLV_IIR, 0xffffffff);
2878         I915_WRITE(VLV_IMR, 0xffffffff);
2879         I915_WRITE(VLV_IER, 0x0);
2880         POSTING_READ(VLV_IER);
2881 }
2882
2883 static void gen8_irq_preinstall(struct drm_device *dev)
2884 {
2885         struct drm_i915_private *dev_priv = dev->dev_private;
2886         int pipe;
2887
2888         I915_WRITE(GEN8_MASTER_IRQ, 0);
2889         POSTING_READ(GEN8_MASTER_IRQ);
2890
2891         /* IIR can theoretically queue up two events. Be paranoid */
2892 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2893                 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2894                 POSTING_READ(GEN8_##type##_IMR(which)); \
2895                 I915_WRITE(GEN8_##type##_IER(which), 0); \
2896                 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2897                 POSTING_READ(GEN8_##type##_IIR(which)); \
2898                 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2899         } while (0)
2900
2901 #define GEN8_IRQ_INIT(type) do { \
2902                 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2903                 POSTING_READ(GEN8_##type##_IMR); \
2904                 I915_WRITE(GEN8_##type##_IER, 0); \
2905                 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2906                 POSTING_READ(GEN8_##type##_IIR); \
2907                 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2908         } while (0)
2909
2910         GEN8_IRQ_INIT_NDX(GT, 0);
2911         GEN8_IRQ_INIT_NDX(GT, 1);
2912         GEN8_IRQ_INIT_NDX(GT, 2);
2913         GEN8_IRQ_INIT_NDX(GT, 3);
2914
2915         for_each_pipe(pipe) {
2916                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2917         }
2918
2919         GEN8_IRQ_INIT(DE_PORT);
2920         GEN8_IRQ_INIT(DE_MISC);
2921         GEN8_IRQ_INIT(PCU);
2922 #undef GEN8_IRQ_INIT
2923 #undef GEN8_IRQ_INIT_NDX
2924
2925         POSTING_READ(GEN8_PCU_IIR);
2926
2927         ibx_irq_preinstall(dev);
2928 }
2929
2930 static void ibx_hpd_irq_setup(struct drm_device *dev)
2931 {
2932         struct drm_i915_private *dev_priv = dev->dev_private;
2933         struct drm_mode_config *mode_config = &dev->mode_config;
2934         struct intel_encoder *intel_encoder;
2935         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2936
2937         if (HAS_PCH_IBX(dev)) {
2938                 hotplug_irqs = SDE_HOTPLUG_MASK;
2939                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2940                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2941                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2942         } else {
2943                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2944                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2945                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2946                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2947         }
2948
2949         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2950
2951         /*
2952          * Enable digital hotplug on the PCH, and configure the DP short pulse
2953          * duration to 2ms (which is the minimum in the Display Port spec)
2954          *
2955          * This register is the same on all known PCH chips.
2956          */
2957         hotplug = I915_READ(PCH_PORT_HOTPLUG);
2958         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2959         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2960         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2961         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2962         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2963 }
2964
2965 static void ibx_irq_postinstall(struct drm_device *dev)
2966 {
2967         struct drm_i915_private *dev_priv = dev->dev_private;
2968         u32 mask;
2969
2970         if (HAS_PCH_NOP(dev))
2971                 return;
2972
2973         if (HAS_PCH_IBX(dev)) {
2974                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2975         } else {
2976                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2977
2978                 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2979         }
2980
2981         I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2982         I915_WRITE(SDEIMR, ~mask);
2983 }
2984
2985 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2986 {
2987         struct drm_i915_private *dev_priv = dev->dev_private;
2988         u32 pm_irqs, gt_irqs;
2989
2990         pm_irqs = gt_irqs = 0;
2991
2992         dev_priv->gt_irq_mask = ~0;
2993         if (HAS_L3_DPF(dev)) {
2994                 /* L3 parity interrupt is always unmasked. */
2995                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2996                 gt_irqs |= GT_PARITY_ERROR(dev);
2997         }
2998
2999         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3000         if (IS_GEN5(dev)) {
3001                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3002                            ILK_BSD_USER_INTERRUPT;
3003         } else {
3004                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3005         }
3006
3007         I915_WRITE(GTIIR, I915_READ(GTIIR));
3008         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
3009         I915_WRITE(GTIER, gt_irqs);
3010         POSTING_READ(GTIER);
3011
3012         if (INTEL_INFO(dev)->gen >= 6) {
3013                 pm_irqs |= dev_priv->pm_rps_events;
3014
3015                 if (HAS_VEBOX(dev))
3016                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3017
3018                 dev_priv->pm_irq_mask = 0xffffffff;
3019                 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
3020                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
3021                 I915_WRITE(GEN6_PMIER, pm_irqs);
3022                 POSTING_READ(GEN6_PMIER);
3023         }
3024 }
3025
3026 static int ironlake_irq_postinstall(struct drm_device *dev)
3027 {
3028         unsigned long irqflags;
3029         struct drm_i915_private *dev_priv = dev->dev_private;
3030         u32 display_mask, extra_mask;
3031
3032         if (INTEL_INFO(dev)->gen >= 7) {
3033                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3034                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3035                                 DE_PLANEB_FLIP_DONE_IVB |
3036                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3037                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3038                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3039
3040                 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3041         } else {
3042                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3043                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3044                                 DE_AUX_CHANNEL_A |
3045                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3046                                 DE_POISON);
3047                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3048                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3049         }
3050
3051         dev_priv->irq_mask = ~display_mask;
3052
3053         /* should always can generate irq */
3054         I915_WRITE(DEIIR, I915_READ(DEIIR));
3055         I915_WRITE(DEIMR, dev_priv->irq_mask);
3056         I915_WRITE(DEIER, display_mask | extra_mask);
3057         POSTING_READ(DEIER);
3058
3059         gen5_gt_irq_postinstall(dev);
3060
3061         ibx_irq_postinstall(dev);
3062
3063         if (IS_IRONLAKE_M(dev)) {
3064                 /* Enable PCU event interrupts
3065                  *
3066                  * spinlocking not required here for correctness since interrupt
3067                  * setup is guaranteed to run in single-threaded context. But we
3068                  * need it to make the assert_spin_locked happy. */
3069                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3070                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3071                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3072         }
3073
3074         return 0;
3075 }
3076
3077 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3078 {
3079         u32 pipestat_mask;
3080         u32 iir_mask;
3081
3082         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3083                         PIPE_FIFO_UNDERRUN_STATUS;
3084
3085         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3086         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3087         POSTING_READ(PIPESTAT(PIPE_A));
3088
3089         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3090                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3091
3092         i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3093                                                PIPE_GMBUS_INTERRUPT_STATUS);
3094         i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3095
3096         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3097                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3098                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3099         dev_priv->irq_mask &= ~iir_mask;
3100
3101         I915_WRITE(VLV_IIR, iir_mask);
3102         I915_WRITE(VLV_IIR, iir_mask);
3103         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3104         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3105         POSTING_READ(VLV_IER);
3106 }
3107
3108 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3109 {
3110         u32 pipestat_mask;
3111         u32 iir_mask;
3112
3113         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3114                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3115                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3116
3117         dev_priv->irq_mask |= iir_mask;
3118         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3119         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3120         I915_WRITE(VLV_IIR, iir_mask);
3121         I915_WRITE(VLV_IIR, iir_mask);
3122         POSTING_READ(VLV_IIR);
3123
3124         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3125                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3126
3127         i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3128                                                 PIPE_GMBUS_INTERRUPT_STATUS);
3129         i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3130
3131         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3132                         PIPE_FIFO_UNDERRUN_STATUS;
3133         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3134         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3135         POSTING_READ(PIPESTAT(PIPE_A));
3136 }
3137
3138 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3139 {
3140         assert_spin_locked(&dev_priv->irq_lock);
3141
3142         if (dev_priv->display_irqs_enabled)
3143                 return;
3144
3145         dev_priv->display_irqs_enabled = true;
3146
3147         if (dev_priv->dev->irq_enabled)
3148                 valleyview_display_irqs_install(dev_priv);
3149 }
3150
3151 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3152 {
3153         assert_spin_locked(&dev_priv->irq_lock);
3154
3155         if (!dev_priv->display_irqs_enabled)
3156                 return;
3157
3158         dev_priv->display_irqs_enabled = false;
3159
3160         if (dev_priv->dev->irq_enabled)
3161                 valleyview_display_irqs_uninstall(dev_priv);
3162 }
3163
3164 static int valleyview_irq_postinstall(struct drm_device *dev)
3165 {
3166         struct drm_i915_private *dev_priv = dev->dev_private;
3167         unsigned long irqflags;
3168
3169         dev_priv->irq_mask = ~0;
3170
3171         I915_WRITE(PORT_HOTPLUG_EN, 0);
3172         POSTING_READ(PORT_HOTPLUG_EN);
3173
3174         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3175         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3176         I915_WRITE(VLV_IIR, 0xffffffff);
3177         POSTING_READ(VLV_IER);
3178
3179         /* Interrupt setup is already guaranteed to be single-threaded, this is
3180          * just to make the assert_spin_locked check happy. */
3181         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3182         if (dev_priv->display_irqs_enabled)
3183                 valleyview_display_irqs_install(dev_priv);
3184         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3185
3186         I915_WRITE(VLV_IIR, 0xffffffff);
3187         I915_WRITE(VLV_IIR, 0xffffffff);
3188
3189         gen5_gt_irq_postinstall(dev);
3190
3191         /* ack & enable invalid PTE error interrupts */
3192 #if 0 /* FIXME: add support to irq handler for checking these bits */
3193         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3194         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3195 #endif
3196
3197         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3198
3199         return 0;
3200 }
3201
3202 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3203 {
3204         int i;
3205
3206         /* These are interrupts we'll toggle with the ring mask register */
3207         uint32_t gt_interrupts[] = {
3208                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3209                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3210                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3211                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3212                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3213                 0,
3214                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3215                 };
3216
3217         for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
3218                 u32 tmp = I915_READ(GEN8_GT_IIR(i));
3219                 if (tmp)
3220                         DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3221                                   i, tmp);
3222                 I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
3223                 I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
3224         }
3225         POSTING_READ(GEN8_GT_IER(0));
3226 }
3227
3228 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3229 {
3230         struct drm_device *dev = dev_priv->dev;
3231         uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3232                 GEN8_PIPE_CDCLK_CRC_DONE |
3233                 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3234         uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3235                 GEN8_PIPE_FIFO_UNDERRUN;
3236         int pipe;
3237         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3238         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3239         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3240
3241         for_each_pipe(pipe) {
3242                 u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
3243                 if (tmp)
3244                         DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3245                                   pipe, tmp);
3246                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3247                 I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
3248         }
3249         POSTING_READ(GEN8_DE_PIPE_ISR(0));
3250
3251         I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
3252         I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
3253         POSTING_READ(GEN8_DE_PORT_IER);
3254 }
3255
3256 static int gen8_irq_postinstall(struct drm_device *dev)
3257 {
3258         struct drm_i915_private *dev_priv = dev->dev_private;
3259
3260         gen8_gt_irq_postinstall(dev_priv);
3261         gen8_de_irq_postinstall(dev_priv);
3262
3263         ibx_irq_postinstall(dev);
3264
3265         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3266         POSTING_READ(GEN8_MASTER_IRQ);
3267
3268         return 0;
3269 }
3270
3271 static void gen8_irq_uninstall(struct drm_device *dev)
3272 {
3273         struct drm_i915_private *dev_priv = dev->dev_private;
3274         int pipe;
3275
3276         if (!dev_priv)
3277                 return;
3278
3279         I915_WRITE(GEN8_MASTER_IRQ, 0);
3280
3281 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3282                 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3283                 I915_WRITE(GEN8_##type##_IER(which), 0); \
3284                 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3285         } while (0)
3286
3287 #define GEN8_IRQ_FINI(type) do { \
3288                 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3289                 I915_WRITE(GEN8_##type##_IER, 0); \
3290                 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3291         } while (0)
3292
3293         GEN8_IRQ_FINI_NDX(GT, 0);
3294         GEN8_IRQ_FINI_NDX(GT, 1);
3295         GEN8_IRQ_FINI_NDX(GT, 2);
3296         GEN8_IRQ_FINI_NDX(GT, 3);
3297
3298         for_each_pipe(pipe) {
3299                 GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3300         }
3301
3302         GEN8_IRQ_FINI(DE_PORT);
3303         GEN8_IRQ_FINI(DE_MISC);
3304         GEN8_IRQ_FINI(PCU);
3305 #undef GEN8_IRQ_FINI
3306 #undef GEN8_IRQ_FINI_NDX
3307
3308         POSTING_READ(GEN8_PCU_IIR);
3309 }
3310
3311 static void valleyview_irq_uninstall(struct drm_device *dev)
3312 {
3313         struct drm_i915_private *dev_priv = dev->dev_private;
3314         unsigned long irqflags;
3315         int pipe;
3316
3317         if (!dev_priv)
3318                 return;
3319
3320         intel_hpd_irq_uninstall(dev_priv);
3321
3322         for_each_pipe(pipe)
3323                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3324
3325         I915_WRITE(HWSTAM, 0xffffffff);
3326         I915_WRITE(PORT_HOTPLUG_EN, 0);
3327         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3328
3329         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3330         if (dev_priv->display_irqs_enabled)
3331                 valleyview_display_irqs_uninstall(dev_priv);
3332         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3333
3334         dev_priv->irq_mask = 0;
3335
3336         I915_WRITE(VLV_IIR, 0xffffffff);
3337         I915_WRITE(VLV_IMR, 0xffffffff);
3338         I915_WRITE(VLV_IER, 0x0);
3339         POSTING_READ(VLV_IER);
3340 }
3341
3342 static void ironlake_irq_uninstall(struct drm_device *dev)
3343 {
3344         struct drm_i915_private *dev_priv = dev->dev_private;
3345
3346         if (!dev_priv)
3347                 return;
3348
3349         intel_hpd_irq_uninstall(dev_priv);
3350
3351         I915_WRITE(HWSTAM, 0xffffffff);
3352
3353         I915_WRITE(DEIMR, 0xffffffff);
3354         I915_WRITE(DEIER, 0x0);
3355         I915_WRITE(DEIIR, I915_READ(DEIIR));
3356         if (IS_GEN7(dev))
3357                 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3358
3359         I915_WRITE(GTIMR, 0xffffffff);
3360         I915_WRITE(GTIER, 0x0);
3361         I915_WRITE(GTIIR, I915_READ(GTIIR));
3362
3363         if (HAS_PCH_NOP(dev))
3364                 return;
3365
3366         I915_WRITE(SDEIMR, 0xffffffff);
3367         I915_WRITE(SDEIER, 0x0);
3368         I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3369         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3370                 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3371 }
3372
3373 static void i8xx_irq_preinstall(struct drm_device * dev)
3374 {
3375         struct drm_i915_private *dev_priv = dev->dev_private;
3376         int pipe;
3377
3378         for_each_pipe(pipe)
3379                 I915_WRITE(PIPESTAT(pipe), 0);
3380         I915_WRITE16(IMR, 0xffff);
3381         I915_WRITE16(IER, 0x0);
3382         POSTING_READ16(IER);
3383 }
3384
3385 static int i8xx_irq_postinstall(struct drm_device *dev)
3386 {
3387         struct drm_i915_private *dev_priv = dev->dev_private;
3388         unsigned long irqflags;
3389
3390         I915_WRITE16(EMR,
3391                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3392
3393         /* Unmask the interrupts that we always want on. */
3394         dev_priv->irq_mask =
3395                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3396                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3397                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3398                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3399                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3400         I915_WRITE16(IMR, dev_priv->irq_mask);
3401
3402         I915_WRITE16(IER,
3403                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3404                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3405                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3406                      I915_USER_INTERRUPT);
3407         POSTING_READ16(IER);
3408
3409         /* Interrupt setup is already guaranteed to be single-threaded, this is
3410          * just to make the assert_spin_locked check happy. */
3411         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3412         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3413         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3414         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3415
3416         return 0;
3417 }
3418
3419 /*
3420  * Returns true when a page flip has completed.
3421  */
3422 static bool i8xx_handle_vblank(struct drm_device *dev,
3423                                int plane, int pipe, u32 iir)
3424 {
3425         struct drm_i915_private *dev_priv = dev->dev_private;
3426         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3427
3428         if (!drm_handle_vblank(dev, pipe))
3429                 return false;
3430
3431         if ((iir & flip_pending) == 0)
3432                 return false;
3433
3434         intel_prepare_page_flip(dev, plane);
3435
3436         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3437          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3438          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3439          * the flip is completed (no longer pending). Since this doesn't raise
3440          * an interrupt per se, we watch for the change at vblank.
3441          */
3442         if (I915_READ16(ISR) & flip_pending)
3443                 return false;
3444
3445         intel_finish_page_flip(dev, pipe);
3446
3447         return true;
3448 }
3449
3450 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3451 {
3452         struct drm_device *dev = (struct drm_device *) arg;
3453         struct drm_i915_private *dev_priv = dev->dev_private;
3454         u16 iir, new_iir;
3455         u32 pipe_stats[2];
3456         unsigned long irqflags;
3457         int pipe;
3458         u16 flip_mask =
3459                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3460                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3461
3462         iir = I915_READ16(IIR);
3463         if (iir == 0)
3464                 return IRQ_NONE;
3465
3466         while (iir & ~flip_mask) {
3467                 /* Can't rely on pipestat interrupt bit in iir as it might
3468                  * have been cleared after the pipestat interrupt was received.
3469                  * It doesn't set the bit in iir again, but it still produces
3470                  * interrupts (for non-MSI).
3471                  */
3472                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3473                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3474                         i915_handle_error(dev, false,
3475                                           "Command parser error, iir 0x%08x",
3476                                           iir);
3477
3478                 for_each_pipe(pipe) {
3479                         int reg = PIPESTAT(pipe);
3480                         pipe_stats[pipe] = I915_READ(reg);
3481
3482                         /*
3483                          * Clear the PIPE*STAT regs before the IIR
3484                          */
3485                         if (pipe_stats[pipe] & 0x8000ffff)
3486                                 I915_WRITE(reg, pipe_stats[pipe]);
3487                 }
3488                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3489
3490                 I915_WRITE16(IIR, iir & ~flip_mask);
3491                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3492
3493                 i915_update_dri1_breadcrumb(dev);
3494
3495                 if (iir & I915_USER_INTERRUPT)
3496                         notify_ring(dev, &dev_priv->ring[RCS]);
3497
3498                 for_each_pipe(pipe) {
3499                         int plane = pipe;
3500                         if (HAS_FBC(dev))
3501                                 plane = !plane;
3502
3503                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3504                             i8xx_handle_vblank(dev, plane, pipe, iir))
3505                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3506
3507                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3508                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3509
3510                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3511                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3512                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3513                 }
3514
3515                 iir = new_iir;
3516         }
3517
3518         return IRQ_HANDLED;
3519 }
3520
3521 static void i8xx_irq_uninstall(struct drm_device * dev)
3522 {
3523         struct drm_i915_private *dev_priv = dev->dev_private;
3524         int pipe;
3525
3526         for_each_pipe(pipe) {
3527                 /* Clear enable bits; then clear status bits */
3528                 I915_WRITE(PIPESTAT(pipe), 0);
3529                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3530         }
3531         I915_WRITE16(IMR, 0xffff);
3532         I915_WRITE16(IER, 0x0);
3533         I915_WRITE16(IIR, I915_READ16(IIR));
3534 }
3535
3536 static void i915_irq_preinstall(struct drm_device * dev)
3537 {
3538         struct drm_i915_private *dev_priv = dev->dev_private;
3539         int pipe;
3540
3541         if (I915_HAS_HOTPLUG(dev)) {
3542                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3543                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3544         }
3545
3546         I915_WRITE16(HWSTAM, 0xeffe);
3547         for_each_pipe(pipe)
3548                 I915_WRITE(PIPESTAT(pipe), 0);
3549         I915_WRITE(IMR, 0xffffffff);
3550         I915_WRITE(IER, 0x0);
3551         POSTING_READ(IER);
3552 }
3553
3554 static int i915_irq_postinstall(struct drm_device *dev)
3555 {
3556         struct drm_i915_private *dev_priv = dev->dev_private;
3557         u32 enable_mask;
3558         unsigned long irqflags;
3559
3560         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3561
3562         /* Unmask the interrupts that we always want on. */
3563         dev_priv->irq_mask =
3564                 ~(I915_ASLE_INTERRUPT |
3565                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3566                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3567                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3568                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3569                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3570
3571         enable_mask =
3572                 I915_ASLE_INTERRUPT |
3573                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3574                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3575                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3576                 I915_USER_INTERRUPT;
3577
3578         if (I915_HAS_HOTPLUG(dev)) {
3579                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3580                 POSTING_READ(PORT_HOTPLUG_EN);
3581
3582                 /* Enable in IER... */
3583                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3584                 /* and unmask in IMR */
3585                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3586         }
3587
3588         I915_WRITE(IMR, dev_priv->irq_mask);
3589         I915_WRITE(IER, enable_mask);
3590         POSTING_READ(IER);
3591
3592         i915_enable_asle_pipestat(dev);
3593
3594         /* Interrupt setup is already guaranteed to be single-threaded, this is
3595          * just to make the assert_spin_locked check happy. */
3596         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3597         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3598         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3599         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3600
3601         return 0;
3602 }
3603
3604 /*
3605  * Returns true when a page flip has completed.
3606  */
3607 static bool i915_handle_vblank(struct drm_device *dev,
3608                                int plane, int pipe, u32 iir)
3609 {
3610         struct drm_i915_private *dev_priv = dev->dev_private;
3611         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3612
3613         if (!drm_handle_vblank(dev, pipe))
3614                 return false;
3615
3616         if ((iir & flip_pending) == 0)
3617                 return false;
3618
3619         intel_prepare_page_flip(dev, plane);
3620
3621         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3622          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3623          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3624          * the flip is completed (no longer pending). Since this doesn't raise
3625          * an interrupt per se, we watch for the change at vblank.
3626          */
3627         if (I915_READ(ISR) & flip_pending)
3628                 return false;
3629
3630         intel_finish_page_flip(dev, pipe);
3631
3632         return true;
3633 }
3634
3635 static irqreturn_t i915_irq_handler(int irq, void *arg)
3636 {
3637         struct drm_device *dev = (struct drm_device *) arg;
3638         struct drm_i915_private *dev_priv = dev->dev_private;
3639         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3640         unsigned long irqflags;
3641         u32 flip_mask =
3642                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3643                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3644         int pipe, ret = IRQ_NONE;
3645
3646         iir = I915_READ(IIR);
3647         do {
3648                 bool irq_received = (iir & ~flip_mask) != 0;
3649                 bool blc_event = false;
3650
3651                 /* Can't rely on pipestat interrupt bit in iir as it might
3652                  * have been cleared after the pipestat interrupt was received.
3653                  * It doesn't set the bit in iir again, but it still produces
3654                  * interrupts (for non-MSI).
3655                  */
3656                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3657                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3658                         i915_handle_error(dev, false,
3659                                           "Command parser error, iir 0x%08x",
3660                                           iir);
3661
3662                 for_each_pipe(pipe) {
3663                         int reg = PIPESTAT(pipe);
3664                         pipe_stats[pipe] = I915_READ(reg);
3665
3666                         /* Clear the PIPE*STAT regs before the IIR */
3667                         if (pipe_stats[pipe] & 0x8000ffff) {
3668                                 I915_WRITE(reg, pipe_stats[pipe]);
3669                                 irq_received = true;
3670                         }
3671                 }
3672                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3673
3674                 if (!irq_received)
3675                         break;
3676
3677                 /* Consume port.  Then clear IIR or we'll miss events */
3678                 if ((I915_HAS_HOTPLUG(dev)) &&
3679                     (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3680                         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3681                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3682
3683                         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3684
3685                         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3686                         POSTING_READ(PORT_HOTPLUG_STAT);
3687                 }
3688
3689                 I915_WRITE(IIR, iir & ~flip_mask);
3690                 new_iir = I915_READ(IIR); /* Flush posted writes */
3691
3692                 if (iir & I915_USER_INTERRUPT)
3693                         notify_ring(dev, &dev_priv->ring[RCS]);
3694
3695                 for_each_pipe(pipe) {
3696                         int plane = pipe;
3697                         if (HAS_FBC(dev))
3698                                 plane = !plane;
3699
3700                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3701                             i915_handle_vblank(dev, plane, pipe, iir))
3702                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3703
3704                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3705                                 blc_event = true;
3706
3707                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3708                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3709
3710                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3711                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3712                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3713                 }
3714
3715                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3716                         intel_opregion_asle_intr(dev);
3717
3718                 /* With MSI, interrupts are only generated when iir
3719                  * transitions from zero to nonzero.  If another bit got
3720                  * set while we were handling the existing iir bits, then
3721                  * we would never get another interrupt.
3722                  *
3723                  * This is fine on non-MSI as well, as if we hit this path
3724                  * we avoid exiting the interrupt handler only to generate
3725                  * another one.
3726                  *
3727                  * Note that for MSI this could cause a stray interrupt report
3728                  * if an interrupt landed in the time between writing IIR and
3729                  * the posting read.  This should be rare enough to never
3730                  * trigger the 99% of 100,000 interrupts test for disabling
3731                  * stray interrupts.
3732                  */
3733                 ret = IRQ_HANDLED;
3734                 iir = new_iir;
3735         } while (iir & ~flip_mask);
3736
3737         i915_update_dri1_breadcrumb(dev);
3738
3739         return ret;
3740 }
3741
3742 static void i915_irq_uninstall(struct drm_device * dev)
3743 {
3744         struct drm_i915_private *dev_priv = dev->dev_private;
3745         int pipe;
3746
3747         intel_hpd_irq_uninstall(dev_priv);
3748
3749         if (I915_HAS_HOTPLUG(dev)) {
3750                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3751                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3752         }
3753
3754         I915_WRITE16(HWSTAM, 0xffff);
3755         for_each_pipe(pipe) {
3756                 /* Clear enable bits; then clear status bits */
3757                 I915_WRITE(PIPESTAT(pipe), 0);
3758                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3759         }
3760         I915_WRITE(IMR, 0xffffffff);
3761         I915_WRITE(IER, 0x0);
3762
3763         I915_WRITE(IIR, I915_READ(IIR));
3764 }
3765
3766 static void i965_irq_preinstall(struct drm_device * dev)
3767 {
3768         struct drm_i915_private *dev_priv = dev->dev_private;
3769         int pipe;
3770
3771         I915_WRITE(PORT_HOTPLUG_EN, 0);
3772         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3773
3774         I915_WRITE(HWSTAM, 0xeffe);
3775         for_each_pipe(pipe)
3776                 I915_WRITE(PIPESTAT(pipe), 0);
3777         I915_WRITE(IMR, 0xffffffff);
3778         I915_WRITE(IER, 0x0);
3779         POSTING_READ(IER);
3780 }
3781
3782 static int i965_irq_postinstall(struct drm_device *dev)
3783 {
3784         struct drm_i915_private *dev_priv = dev->dev_private;
3785         u32 enable_mask;
3786         u32 error_mask;
3787         unsigned long irqflags;
3788
3789         /* Unmask the interrupts that we always want on. */
3790         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3791                                I915_DISPLAY_PORT_INTERRUPT |
3792                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3793                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3794                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3795                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3796                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3797
3798         enable_mask = ~dev_priv->irq_mask;
3799         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3800                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3801         enable_mask |= I915_USER_INTERRUPT;
3802
3803         if (IS_G4X(dev))
3804                 enable_mask |= I915_BSD_USER_INTERRUPT;
3805
3806         /* Interrupt setup is already guaranteed to be single-threaded, this is
3807          * just to make the assert_spin_locked check happy. */
3808         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3809         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3810         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3811         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3812         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3813
3814         /*
3815          * Enable some error detection, note the instruction error mask
3816          * bit is reserved, so we leave it masked.
3817          */
3818         if (IS_G4X(dev)) {
3819                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3820                                GM45_ERROR_MEM_PRIV |
3821                                GM45_ERROR_CP_PRIV |
3822                                I915_ERROR_MEMORY_REFRESH);
3823         } else {
3824                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3825                                I915_ERROR_MEMORY_REFRESH);
3826         }
3827         I915_WRITE(EMR, error_mask);
3828
3829         I915_WRITE(IMR, dev_priv->irq_mask);
3830         I915_WRITE(IER, enable_mask);
3831         POSTING_READ(IER);
3832
3833         I915_WRITE(PORT_HOTPLUG_EN, 0);
3834         POSTING_READ(PORT_HOTPLUG_EN);
3835
3836         i915_enable_asle_pipestat(dev);
3837
3838         return 0;
3839 }
3840
3841 static void i915_hpd_irq_setup(struct drm_device *dev)
3842 {
3843         struct drm_i915_private *dev_priv = dev->dev_private;
3844         struct drm_mode_config *mode_config = &dev->mode_config;
3845         struct intel_encoder *intel_encoder;
3846         u32 hotplug_en;
3847
3848         assert_spin_locked(&dev_priv->irq_lock);
3849
3850         if (I915_HAS_HOTPLUG(dev)) {
3851                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3852                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3853                 /* Note HDMI and DP share hotplug bits */
3854                 /* enable bits are the same for all generations */
3855                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3856                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3857                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3858                 /* Programming the CRT detection parameters tends
3859                    to generate a spurious hotplug event about three
3860                    seconds later.  So just do it once.
3861                 */
3862                 if (IS_G4X(dev))
3863                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3864                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3865                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3866
3867                 /* Ignore TV since it's buggy */
3868                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3869         }
3870 }
3871
3872 static irqreturn_t i965_irq_handler(int irq, void *arg)
3873 {
3874         struct drm_device *dev = (struct drm_device *) arg;
3875         struct drm_i915_private *dev_priv = dev->dev_private;
3876         u32 iir, new_iir;
3877         u32 pipe_stats[I915_MAX_PIPES];
3878         unsigned long irqflags;
3879         int ret = IRQ_NONE, pipe;
3880         u32 flip_mask =
3881                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3882                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3883
3884         iir = I915_READ(IIR);
3885
3886         for (;;) {
3887                 bool irq_received = (iir & ~flip_mask) != 0;
3888                 bool blc_event = false;
3889
3890                 /* Can't rely on pipestat interrupt bit in iir as it might
3891                  * have been cleared after the pipestat interrupt was received.
3892                  * It doesn't set the bit in iir again, but it still produces
3893                  * interrupts (for non-MSI).
3894                  */
3895                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3896                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3897                         i915_handle_error(dev, false,
3898                                           "Command parser error, iir 0x%08x",
3899                                           iir);
3900
3901                 for_each_pipe(pipe) {
3902                         int reg = PIPESTAT(pipe);
3903                         pipe_stats[pipe] = I915_READ(reg);
3904
3905                         /*
3906                          * Clear the PIPE*STAT regs before the IIR
3907                          */
3908                         if (pipe_stats[pipe] & 0x8000ffff) {
3909                                 I915_WRITE(reg, pipe_stats[pipe]);
3910                                 irq_received = true;
3911                         }
3912                 }
3913                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3914
3915                 if (!irq_received)
3916                         break;
3917
3918                 ret = IRQ_HANDLED;
3919
3920                 /* Consume port.  Then clear IIR or we'll miss events */
3921                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3922                         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3923                         u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3924                                                                   HOTPLUG_INT_STATUS_G4X :
3925                                                                   HOTPLUG_INT_STATUS_I915);
3926
3927                         intel_hpd_irq_handler(dev, hotplug_trigger,
3928                                               IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3929
3930                         if (IS_G4X(dev) &&
3931                             (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3932                                 dp_aux_irq_handler(dev);
3933
3934                         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3935                         I915_READ(PORT_HOTPLUG_STAT);
3936                 }
3937
3938                 I915_WRITE(IIR, iir & ~flip_mask);
3939                 new_iir = I915_READ(IIR); /* Flush posted writes */
3940
3941                 if (iir & I915_USER_INTERRUPT)
3942                         notify_ring(dev, &dev_priv->ring[RCS]);
3943                 if (iir & I915_BSD_USER_INTERRUPT)
3944                         notify_ring(dev, &dev_priv->ring[VCS]);
3945
3946                 for_each_pipe(pipe) {
3947                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3948                             i915_handle_vblank(dev, pipe, pipe, iir))
3949                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3950
3951                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3952                                 blc_event = true;
3953
3954                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3955                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3956
3957                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3958                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3959                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3960                 }
3961
3962                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3963                         intel_opregion_asle_intr(dev);
3964
3965                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3966                         gmbus_irq_handler(dev);
3967
3968                 /* With MSI, interrupts are only generated when iir
3969                  * transitions from zero to nonzero.  If another bit got
3970                  * set while we were handling the existing iir bits, then
3971                  * we would never get another interrupt.
3972                  *
3973                  * This is fine on non-MSI as well, as if we hit this path
3974                  * we avoid exiting the interrupt handler only to generate
3975                  * another one.
3976                  *
3977                  * Note that for MSI this could cause a stray interrupt report
3978                  * if an interrupt landed in the time between writing IIR and
3979                  * the posting read.  This should be rare enough to never
3980                  * trigger the 99% of 100,000 interrupts test for disabling
3981                  * stray interrupts.
3982                  */
3983                 iir = new_iir;
3984         }
3985
3986         i915_update_dri1_breadcrumb(dev);
3987
3988         return ret;
3989 }
3990
3991 static void i965_irq_uninstall(struct drm_device * dev)
3992 {
3993         struct drm_i915_private *dev_priv = dev->dev_private;
3994         int pipe;
3995
3996         if (!dev_priv)
3997                 return;
3998
3999         intel_hpd_irq_uninstall(dev_priv);
4000
4001         I915_WRITE(PORT_HOTPLUG_EN, 0);
4002         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4003
4004         I915_WRITE(HWSTAM, 0xffffffff);
4005         for_each_pipe(pipe)
4006                 I915_WRITE(PIPESTAT(pipe), 0);
4007         I915_WRITE(IMR, 0xffffffff);
4008         I915_WRITE(IER, 0x0);
4009
4010         for_each_pipe(pipe)
4011                 I915_WRITE(PIPESTAT(pipe),
4012                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4013         I915_WRITE(IIR, I915_READ(IIR));
4014 }
4015
4016 static void intel_hpd_irq_reenable(unsigned long data)
4017 {
4018         struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
4019         struct drm_device *dev = dev_priv->dev;
4020         struct drm_mode_config *mode_config = &dev->mode_config;
4021         unsigned long irqflags;
4022         int i;
4023
4024         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4025         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4026                 struct drm_connector *connector;
4027
4028                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4029                         continue;
4030
4031                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4032
4033                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4034                         struct intel_connector *intel_connector = to_intel_connector(connector);
4035
4036                         if (intel_connector->encoder->hpd_pin == i) {
4037                                 if (connector->polled != intel_connector->polled)
4038                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4039                                                          drm_get_connector_name(connector));
4040                                 connector->polled = intel_connector->polled;
4041                                 if (!connector->polled)
4042                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4043                         }
4044                 }
4045         }
4046         if (dev_priv->display.hpd_irq_setup)
4047                 dev_priv->display.hpd_irq_setup(dev);
4048         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4049 }
4050
4051 void intel_irq_init(struct drm_device *dev)
4052 {
4053         struct drm_i915_private *dev_priv = dev->dev_private;
4054
4055         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4056         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4057         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4058         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4059
4060         /* Let's track the enabled rps events */
4061         dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4062
4063         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4064                     i915_hangcheck_elapsed,
4065                     (unsigned long) dev);
4066         setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4067                     (unsigned long) dev_priv);
4068
4069         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4070
4071         if (IS_GEN2(dev)) {
4072                 dev->max_vblank_count = 0;
4073                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4074         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4075                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4076                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4077         } else {
4078                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4079                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4080         }
4081
4082         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4083                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4084                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4085         }
4086
4087         if (IS_VALLEYVIEW(dev)) {
4088                 dev->driver->irq_handler = valleyview_irq_handler;
4089                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4090                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4091                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4092                 dev->driver->enable_vblank = valleyview_enable_vblank;
4093                 dev->driver->disable_vblank = valleyview_disable_vblank;
4094                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4095         } else if (IS_GEN8(dev)) {
4096                 dev->driver->irq_handler = gen8_irq_handler;
4097                 dev->driver->irq_preinstall = gen8_irq_preinstall;
4098                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4099                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4100                 dev->driver->enable_vblank = gen8_enable_vblank;
4101                 dev->driver->disable_vblank = gen8_disable_vblank;
4102                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4103         } else if (HAS_PCH_SPLIT(dev)) {
4104                 dev->driver->irq_handler = ironlake_irq_handler;
4105                 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4106                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4107                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4108                 dev->driver->enable_vblank = ironlake_enable_vblank;
4109                 dev->driver->disable_vblank = ironlake_disable_vblank;
4110                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4111         } else {
4112                 if (INTEL_INFO(dev)->gen == 2) {
4113                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4114                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4115                         dev->driver->irq_handler = i8xx_irq_handler;
4116                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4117                 } else if (INTEL_INFO(dev)->gen == 3) {
4118                         dev->driver->irq_preinstall = i915_irq_preinstall;
4119                         dev->driver->irq_postinstall = i915_irq_postinstall;
4120                         dev->driver->irq_uninstall = i915_irq_uninstall;
4121                         dev->driver->irq_handler = i915_irq_handler;
4122                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4123                 } else {
4124                         dev->driver->irq_preinstall = i965_irq_preinstall;
4125                         dev->driver->irq_postinstall = i965_irq_postinstall;
4126                         dev->driver->irq_uninstall = i965_irq_uninstall;
4127                         dev->driver->irq_handler = i965_irq_handler;
4128                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4129                 }
4130                 dev->driver->enable_vblank = i915_enable_vblank;
4131                 dev->driver->disable_vblank = i915_disable_vblank;
4132         }
4133 }
4134
4135 void intel_hpd_init(struct drm_device *dev)
4136 {
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         struct drm_mode_config *mode_config = &dev->mode_config;
4139         struct drm_connector *connector;
4140         unsigned long irqflags;
4141         int i;
4142
4143         for (i = 1; i < HPD_NUM_PINS; i++) {
4144                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4145                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4146         }
4147         list_for_each_entry(connector, &mode_config->connector_list, head) {
4148                 struct intel_connector *intel_connector = to_intel_connector(connector);
4149                 connector->polled = intel_connector->polled;
4150                 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4151                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4152         }
4153
4154         /* Interrupt setup is already guaranteed to be single-threaded, this is
4155          * just to make the assert_spin_locked checks happy. */
4156         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4157         if (dev_priv->display.hpd_irq_setup)
4158                 dev_priv->display.hpd_irq_setup(dev);
4159         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4160 }
4161
4162 /* Disable interrupts so we can allow runtime PM. */
4163 void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
4164 {
4165         struct drm_i915_private *dev_priv = dev->dev_private;
4166         unsigned long irqflags;
4167
4168         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4169
4170         dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
4171         dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
4172         dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
4173         dev_priv->pm.regsave.gtier = I915_READ(GTIER);
4174         dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
4175
4176         ironlake_disable_display_irq(dev_priv, 0xffffffff);
4177         ibx_disable_display_interrupt(dev_priv, 0xffffffff);
4178         ilk_disable_gt_irq(dev_priv, 0xffffffff);
4179         snb_disable_pm_irq(dev_priv, 0xffffffff);
4180
4181         dev_priv->pm.irqs_disabled = true;
4182
4183         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4184 }
4185
4186 /* Restore interrupts so we can recover from runtime PM. */
4187 void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
4188 {
4189         struct drm_i915_private *dev_priv = dev->dev_private;
4190         unsigned long irqflags;
4191         uint32_t val;
4192
4193         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4194
4195         val = I915_READ(DEIMR);
4196         WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
4197
4198         val = I915_READ(SDEIMR);
4199         WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
4200
4201         val = I915_READ(GTIMR);
4202         WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
4203
4204         val = I915_READ(GEN6_PMIMR);
4205         WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
4206
4207         dev_priv->pm.irqs_disabled = false;
4208
4209         ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
4210         ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
4211         ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
4212         snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
4213         I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
4214
4215         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4216 }