drm/i915: Make intel_crtc->config a pointer
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = { /* i915 and valleyview are the same */
83         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94         POSTING_READ(GEN8_##type##_IMR(which)); \
95         I915_WRITE(GEN8_##type##_IER(which), 0); \
96         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97         POSTING_READ(GEN8_##type##_IIR(which)); \
98         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99         POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103         I915_WRITE(type##IMR, 0xffffffff); \
104         POSTING_READ(type##IMR); \
105         I915_WRITE(type##IER, 0); \
106         I915_WRITE(type##IIR, 0xffffffff); \
107         POSTING_READ(type##IIR); \
108         I915_WRITE(type##IIR, 0xffffffff); \
109         POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114  */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116         u32 val = I915_READ(reg); \
117         if (val) { \
118                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119                      (reg), val); \
120                 I915_WRITE((reg), 0xffffffff); \
121                 POSTING_READ(reg); \
122                 I915_WRITE((reg), 0xffffffff); \
123                 POSTING_READ(reg); \
124         } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131         POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136         I915_WRITE(type##IER, (ier_val)); \
137         I915_WRITE(type##IMR, (imr_val)); \
138         POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147         assert_spin_locked(&dev_priv->irq_lock);
148
149         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150                 return;
151
152         if ((dev_priv->irq_mask & mask) != 0) {
153                 dev_priv->irq_mask &= ~mask;
154                 I915_WRITE(DEIMR, dev_priv->irq_mask);
155                 POSTING_READ(DEIMR);
156         }
157 }
158
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162         assert_spin_locked(&dev_priv->irq_lock);
163
164         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165                 return;
166
167         if ((dev_priv->irq_mask & mask) != mask) {
168                 dev_priv->irq_mask |= mask;
169                 I915_WRITE(DEIMR, dev_priv->irq_mask);
170                 POSTING_READ(DEIMR);
171         }
172 }
173
174 /**
175  * ilk_update_gt_irq - update GTIMR
176  * @dev_priv: driver private
177  * @interrupt_mask: mask of interrupt bits to update
178  * @enabled_irq_mask: mask of interrupt bits to enable
179  */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181                               uint32_t interrupt_mask,
182                               uint32_t enabled_irq_mask)
183 {
184         assert_spin_locked(&dev_priv->irq_lock);
185
186         WARN_ON(enabled_irq_mask & ~interrupt_mask);
187
188         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
189                 return;
190
191         dev_priv->gt_irq_mask &= ~interrupt_mask;
192         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
193         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
194         POSTING_READ(GTIMR);
195 }
196
197 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
198 {
199         ilk_update_gt_irq(dev_priv, mask, mask);
200 }
201
202 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
203 {
204         ilk_update_gt_irq(dev_priv, mask, 0);
205 }
206
207 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
208 {
209         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
210 }
211
212 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
213 {
214         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
215 }
216
217 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
218 {
219         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
220 }
221
222 /**
223   * snb_update_pm_irq - update GEN6_PMIMR
224   * @dev_priv: driver private
225   * @interrupt_mask: mask of interrupt bits to update
226   * @enabled_irq_mask: mask of interrupt bits to enable
227   */
228 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
229                               uint32_t interrupt_mask,
230                               uint32_t enabled_irq_mask)
231 {
232         uint32_t new_val;
233
234         WARN_ON(enabled_irq_mask & ~interrupt_mask);
235
236         assert_spin_locked(&dev_priv->irq_lock);
237
238         new_val = dev_priv->pm_irq_mask;
239         new_val &= ~interrupt_mask;
240         new_val |= (~enabled_irq_mask & interrupt_mask);
241
242         if (new_val != dev_priv->pm_irq_mask) {
243                 dev_priv->pm_irq_mask = new_val;
244                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
245                 POSTING_READ(gen6_pm_imr(dev_priv));
246         }
247 }
248
249 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
250 {
251         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
252                 return;
253
254         snb_update_pm_irq(dev_priv, mask, mask);
255 }
256
257 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
258                                   uint32_t mask)
259 {
260         snb_update_pm_irq(dev_priv, mask, 0);
261 }
262
263 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
264 {
265         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
266                 return;
267
268         __gen6_disable_pm_irq(dev_priv, mask);
269 }
270
271 void gen6_reset_rps_interrupts(struct drm_device *dev)
272 {
273         struct drm_i915_private *dev_priv = dev->dev_private;
274         uint32_t reg = gen6_pm_iir(dev_priv);
275
276         spin_lock_irq(&dev_priv->irq_lock);
277         I915_WRITE(reg, dev_priv->pm_rps_events);
278         I915_WRITE(reg, dev_priv->pm_rps_events);
279         POSTING_READ(reg);
280         spin_unlock_irq(&dev_priv->irq_lock);
281 }
282
283 void gen6_enable_rps_interrupts(struct drm_device *dev)
284 {
285         struct drm_i915_private *dev_priv = dev->dev_private;
286
287         spin_lock_irq(&dev_priv->irq_lock);
288
289         WARN_ON(dev_priv->rps.pm_iir);
290         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
291         dev_priv->rps.interrupts_enabled = true;
292         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
293                                 dev_priv->pm_rps_events);
294         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
295
296         spin_unlock_irq(&dev_priv->irq_lock);
297 }
298
299 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
300 {
301         /*
302          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
303          * if GEN6_PM_UP_EI_EXPIRED is masked.
304          *
305          * TODO: verify if this can be reproduced on VLV,CHV.
306          */
307         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
308                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
309
310         if (INTEL_INFO(dev_priv)->gen >= 8)
311                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
312
313         return mask;
314 }
315
316 void gen6_disable_rps_interrupts(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         spin_lock_irq(&dev_priv->irq_lock);
321         dev_priv->rps.interrupts_enabled = false;
322         spin_unlock_irq(&dev_priv->irq_lock);
323
324         cancel_work_sync(&dev_priv->rps.work);
325
326         spin_lock_irq(&dev_priv->irq_lock);
327
328         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
329
330         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
331         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
332                                 ~dev_priv->pm_rps_events);
333         I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
334         I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
335
336         dev_priv->rps.pm_iir = 0;
337
338         spin_unlock_irq(&dev_priv->irq_lock);
339 }
340
341 /**
342  * ibx_display_interrupt_update - update SDEIMR
343  * @dev_priv: driver private
344  * @interrupt_mask: mask of interrupt bits to update
345  * @enabled_irq_mask: mask of interrupt bits to enable
346  */
347 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
348                                   uint32_t interrupt_mask,
349                                   uint32_t enabled_irq_mask)
350 {
351         uint32_t sdeimr = I915_READ(SDEIMR);
352         sdeimr &= ~interrupt_mask;
353         sdeimr |= (~enabled_irq_mask & interrupt_mask);
354
355         WARN_ON(enabled_irq_mask & ~interrupt_mask);
356
357         assert_spin_locked(&dev_priv->irq_lock);
358
359         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
360                 return;
361
362         I915_WRITE(SDEIMR, sdeimr);
363         POSTING_READ(SDEIMR);
364 }
365
366 static void
367 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
368                        u32 enable_mask, u32 status_mask)
369 {
370         u32 reg = PIPESTAT(pipe);
371         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
372
373         assert_spin_locked(&dev_priv->irq_lock);
374         WARN_ON(!intel_irqs_enabled(dev_priv));
375
376         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
377                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
378                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
379                       pipe_name(pipe), enable_mask, status_mask))
380                 return;
381
382         if ((pipestat & enable_mask) == enable_mask)
383                 return;
384
385         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
386
387         /* Enable the interrupt, clear any pending status */
388         pipestat |= enable_mask | status_mask;
389         I915_WRITE(reg, pipestat);
390         POSTING_READ(reg);
391 }
392
393 static void
394 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
395                         u32 enable_mask, u32 status_mask)
396 {
397         u32 reg = PIPESTAT(pipe);
398         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
399
400         assert_spin_locked(&dev_priv->irq_lock);
401         WARN_ON(!intel_irqs_enabled(dev_priv));
402
403         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
404                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
405                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
406                       pipe_name(pipe), enable_mask, status_mask))
407                 return;
408
409         if ((pipestat & enable_mask) == 0)
410                 return;
411
412         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
413
414         pipestat &= ~enable_mask;
415         I915_WRITE(reg, pipestat);
416         POSTING_READ(reg);
417 }
418
419 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
420 {
421         u32 enable_mask = status_mask << 16;
422
423         /*
424          * On pipe A we don't support the PSR interrupt yet,
425          * on pipe B and C the same bit MBZ.
426          */
427         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
428                 return 0;
429         /*
430          * On pipe B and C we don't support the PSR interrupt yet, on pipe
431          * A the same bit is for perf counters which we don't use either.
432          */
433         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
434                 return 0;
435
436         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
437                          SPRITE0_FLIP_DONE_INT_EN_VLV |
438                          SPRITE1_FLIP_DONE_INT_EN_VLV);
439         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
440                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
441         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
442                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
443
444         return enable_mask;
445 }
446
447 void
448 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
449                      u32 status_mask)
450 {
451         u32 enable_mask;
452
453         if (IS_VALLEYVIEW(dev_priv->dev))
454                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
455                                                            status_mask);
456         else
457                 enable_mask = status_mask << 16;
458         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
459 }
460
461 void
462 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
463                       u32 status_mask)
464 {
465         u32 enable_mask;
466
467         if (IS_VALLEYVIEW(dev_priv->dev))
468                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
469                                                            status_mask);
470         else
471                 enable_mask = status_mask << 16;
472         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
473 }
474
475 /**
476  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
477  */
478 static void i915_enable_asle_pipestat(struct drm_device *dev)
479 {
480         struct drm_i915_private *dev_priv = dev->dev_private;
481
482         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
483                 return;
484
485         spin_lock_irq(&dev_priv->irq_lock);
486
487         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
488         if (INTEL_INFO(dev)->gen >= 4)
489                 i915_enable_pipestat(dev_priv, PIPE_A,
490                                      PIPE_LEGACY_BLC_EVENT_STATUS);
491
492         spin_unlock_irq(&dev_priv->irq_lock);
493 }
494
495 /**
496  * i915_pipe_enabled - check if a pipe is enabled
497  * @dev: DRM device
498  * @pipe: pipe to check
499  *
500  * Reading certain registers when the pipe is disabled can hang the chip.
501  * Use this routine to make sure the PLL is running and the pipe is active
502  * before reading such registers if unsure.
503  */
504 static int
505 i915_pipe_enabled(struct drm_device *dev, int pipe)
506 {
507         struct drm_i915_private *dev_priv = dev->dev_private;
508
509         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
510                 /* Locking is horribly broken here, but whatever. */
511                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
512                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
513
514                 return intel_crtc->active;
515         } else {
516                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
517         }
518 }
519
520 /*
521  * This timing diagram depicts the video signal in and
522  * around the vertical blanking period.
523  *
524  * Assumptions about the fictitious mode used in this example:
525  *  vblank_start >= 3
526  *  vsync_start = vblank_start + 1
527  *  vsync_end = vblank_start + 2
528  *  vtotal = vblank_start + 3
529  *
530  *           start of vblank:
531  *           latch double buffered registers
532  *           increment frame counter (ctg+)
533  *           generate start of vblank interrupt (gen4+)
534  *           |
535  *           |          frame start:
536  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
537  *           |          may be shifted forward 1-3 extra lines via PIPECONF
538  *           |          |
539  *           |          |  start of vsync:
540  *           |          |  generate vsync interrupt
541  *           |          |  |
542  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
543  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
544  * ----va---> <-----------------vb--------------------> <--------va-------------
545  *       |          |       <----vs----->                     |
546  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
547  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
548  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
549  *       |          |                                         |
550  *       last visible pixel                                   first visible pixel
551  *                  |                                         increment frame counter (gen3/4)
552  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
553  *
554  * x  = horizontal active
555  * _  = horizontal blanking
556  * hs = horizontal sync
557  * va = vertical active
558  * vb = vertical blanking
559  * vs = vertical sync
560  * vbs = vblank_start (number)
561  *
562  * Summary:
563  * - most events happen at the start of horizontal sync
564  * - frame start happens at the start of horizontal blank, 1-4 lines
565  *   (depending on PIPECONF settings) after the start of vblank
566  * - gen3/4 pixel and frame counter are synchronized with the start
567  *   of horizontal active on the first line of vertical active
568  */
569
570 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
571 {
572         /* Gen2 doesn't have a hardware frame counter */
573         return 0;
574 }
575
576 /* Called from drm generic code, passed a 'crtc', which
577  * we use as a pipe index
578  */
579 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
580 {
581         struct drm_i915_private *dev_priv = dev->dev_private;
582         unsigned long high_frame;
583         unsigned long low_frame;
584         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
585
586         if (!i915_pipe_enabled(dev, pipe)) {
587                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
588                                 "pipe %c\n", pipe_name(pipe));
589                 return 0;
590         }
591
592         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
593                 struct intel_crtc *intel_crtc =
594                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
595                 const struct drm_display_mode *mode =
596                         &intel_crtc->config->base.adjusted_mode;
597
598                 htotal = mode->crtc_htotal;
599                 hsync_start = mode->crtc_hsync_start;
600                 vbl_start = mode->crtc_vblank_start;
601                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
602                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
603         } else {
604                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
605
606                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
607                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
608                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
609                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
610                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
611                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
612         }
613
614         /* Convert to pixel count */
615         vbl_start *= htotal;
616
617         /* Start of vblank event occurs at start of hsync */
618         vbl_start -= htotal - hsync_start;
619
620         high_frame = PIPEFRAME(pipe);
621         low_frame = PIPEFRAMEPIXEL(pipe);
622
623         /*
624          * High & low register fields aren't synchronized, so make sure
625          * we get a low value that's stable across two reads of the high
626          * register.
627          */
628         do {
629                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
630                 low   = I915_READ(low_frame);
631                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
632         } while (high1 != high2);
633
634         high1 >>= PIPE_FRAME_HIGH_SHIFT;
635         pixel = low & PIPE_PIXEL_MASK;
636         low >>= PIPE_FRAME_LOW_SHIFT;
637
638         /*
639          * The frame counter increments at beginning of active.
640          * Cook up a vblank counter by also checking the pixel
641          * counter against vblank start.
642          */
643         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
644 }
645
646 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
647 {
648         struct drm_i915_private *dev_priv = dev->dev_private;
649         int reg = PIPE_FRMCOUNT_GM45(pipe);
650
651         if (!i915_pipe_enabled(dev, pipe)) {
652                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
653                                  "pipe %c\n", pipe_name(pipe));
654                 return 0;
655         }
656
657         return I915_READ(reg);
658 }
659
660 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
661 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
662
663 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
664 {
665         struct drm_device *dev = crtc->base.dev;
666         struct drm_i915_private *dev_priv = dev->dev_private;
667         const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
668         enum pipe pipe = crtc->pipe;
669         int position, vtotal;
670
671         vtotal = mode->crtc_vtotal;
672         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
673                 vtotal /= 2;
674
675         if (IS_GEN2(dev))
676                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
677         else
678                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
679
680         /*
681          * See update_scanline_offset() for the details on the
682          * scanline_offset adjustment.
683          */
684         return (position + crtc->scanline_offset) % vtotal;
685 }
686
687 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
688                                     unsigned int flags, int *vpos, int *hpos,
689                                     ktime_t *stime, ktime_t *etime)
690 {
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
693         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
694         const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
695         int position;
696         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
697         bool in_vbl = true;
698         int ret = 0;
699         unsigned long irqflags;
700
701         if (!intel_crtc->active) {
702                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
703                                  "pipe %c\n", pipe_name(pipe));
704                 return 0;
705         }
706
707         htotal = mode->crtc_htotal;
708         hsync_start = mode->crtc_hsync_start;
709         vtotal = mode->crtc_vtotal;
710         vbl_start = mode->crtc_vblank_start;
711         vbl_end = mode->crtc_vblank_end;
712
713         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
714                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
715                 vbl_end /= 2;
716                 vtotal /= 2;
717         }
718
719         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
720
721         /*
722          * Lock uncore.lock, as we will do multiple timing critical raw
723          * register reads, potentially with preemption disabled, so the
724          * following code must not block on uncore.lock.
725          */
726         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
727
728         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
729
730         /* Get optional system timestamp before query. */
731         if (stime)
732                 *stime = ktime_get();
733
734         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
735                 /* No obvious pixelcount register. Only query vertical
736                  * scanout position from Display scan line register.
737                  */
738                 position = __intel_get_crtc_scanline(intel_crtc);
739         } else {
740                 /* Have access to pixelcount since start of frame.
741                  * We can split this into vertical and horizontal
742                  * scanout position.
743                  */
744                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
745
746                 /* convert to pixel counts */
747                 vbl_start *= htotal;
748                 vbl_end *= htotal;
749                 vtotal *= htotal;
750
751                 /*
752                  * In interlaced modes, the pixel counter counts all pixels,
753                  * so one field will have htotal more pixels. In order to avoid
754                  * the reported position from jumping backwards when the pixel
755                  * counter is beyond the length of the shorter field, just
756                  * clamp the position the length of the shorter field. This
757                  * matches how the scanline counter based position works since
758                  * the scanline counter doesn't count the two half lines.
759                  */
760                 if (position >= vtotal)
761                         position = vtotal - 1;
762
763                 /*
764                  * Start of vblank interrupt is triggered at start of hsync,
765                  * just prior to the first active line of vblank. However we
766                  * consider lines to start at the leading edge of horizontal
767                  * active. So, should we get here before we've crossed into
768                  * the horizontal active of the first line in vblank, we would
769                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
770                  * always add htotal-hsync_start to the current pixel position.
771                  */
772                 position = (position + htotal - hsync_start) % vtotal;
773         }
774
775         /* Get optional system timestamp after query. */
776         if (etime)
777                 *etime = ktime_get();
778
779         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
780
781         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
782
783         in_vbl = position >= vbl_start && position < vbl_end;
784
785         /*
786          * While in vblank, position will be negative
787          * counting up towards 0 at vbl_end. And outside
788          * vblank, position will be positive counting
789          * up since vbl_end.
790          */
791         if (position >= vbl_start)
792                 position -= vbl_end;
793         else
794                 position += vtotal - vbl_end;
795
796         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
797                 *vpos = position;
798                 *hpos = 0;
799         } else {
800                 *vpos = position / htotal;
801                 *hpos = position - (*vpos * htotal);
802         }
803
804         /* In vblank? */
805         if (in_vbl)
806                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
807
808         return ret;
809 }
810
811 int intel_get_crtc_scanline(struct intel_crtc *crtc)
812 {
813         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
814         unsigned long irqflags;
815         int position;
816
817         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
818         position = __intel_get_crtc_scanline(crtc);
819         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
820
821         return position;
822 }
823
824 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
825                               int *max_error,
826                               struct timeval *vblank_time,
827                               unsigned flags)
828 {
829         struct drm_crtc *crtc;
830
831         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
832                 DRM_ERROR("Invalid crtc %d\n", pipe);
833                 return -EINVAL;
834         }
835
836         /* Get drm_crtc to timestamp: */
837         crtc = intel_get_crtc_for_pipe(dev, pipe);
838         if (crtc == NULL) {
839                 DRM_ERROR("Invalid crtc %d\n", pipe);
840                 return -EINVAL;
841         }
842
843         if (!crtc->enabled) {
844                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
845                 return -EBUSY;
846         }
847
848         /* Helper routine in DRM core does all the work: */
849         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
850                                                      vblank_time, flags,
851                                                      crtc,
852                                                      &to_intel_crtc(crtc)->config->base.adjusted_mode);
853 }
854
855 static bool intel_hpd_irq_event(struct drm_device *dev,
856                                 struct drm_connector *connector)
857 {
858         enum drm_connector_status old_status;
859
860         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
861         old_status = connector->status;
862
863         connector->status = connector->funcs->detect(connector, false);
864         if (old_status == connector->status)
865                 return false;
866
867         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
868                       connector->base.id,
869                       connector->name,
870                       drm_get_connector_status_name(old_status),
871                       drm_get_connector_status_name(connector->status));
872
873         return true;
874 }
875
876 static void i915_digport_work_func(struct work_struct *work)
877 {
878         struct drm_i915_private *dev_priv =
879                 container_of(work, struct drm_i915_private, dig_port_work);
880         u32 long_port_mask, short_port_mask;
881         struct intel_digital_port *intel_dig_port;
882         int i, ret;
883         u32 old_bits = 0;
884
885         spin_lock_irq(&dev_priv->irq_lock);
886         long_port_mask = dev_priv->long_hpd_port_mask;
887         dev_priv->long_hpd_port_mask = 0;
888         short_port_mask = dev_priv->short_hpd_port_mask;
889         dev_priv->short_hpd_port_mask = 0;
890         spin_unlock_irq(&dev_priv->irq_lock);
891
892         for (i = 0; i < I915_MAX_PORTS; i++) {
893                 bool valid = false;
894                 bool long_hpd = false;
895                 intel_dig_port = dev_priv->hpd_irq_port[i];
896                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
897                         continue;
898
899                 if (long_port_mask & (1 << i))  {
900                         valid = true;
901                         long_hpd = true;
902                 } else if (short_port_mask & (1 << i))
903                         valid = true;
904
905                 if (valid) {
906                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
907                         if (ret == true) {
908                                 /* if we get true fallback to old school hpd */
909                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
910                         }
911                 }
912         }
913
914         if (old_bits) {
915                 spin_lock_irq(&dev_priv->irq_lock);
916                 dev_priv->hpd_event_bits |= old_bits;
917                 spin_unlock_irq(&dev_priv->irq_lock);
918                 schedule_work(&dev_priv->hotplug_work);
919         }
920 }
921
922 /*
923  * Handle hotplug events outside the interrupt handler proper.
924  */
925 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
926
927 static void i915_hotplug_work_func(struct work_struct *work)
928 {
929         struct drm_i915_private *dev_priv =
930                 container_of(work, struct drm_i915_private, hotplug_work);
931         struct drm_device *dev = dev_priv->dev;
932         struct drm_mode_config *mode_config = &dev->mode_config;
933         struct intel_connector *intel_connector;
934         struct intel_encoder *intel_encoder;
935         struct drm_connector *connector;
936         bool hpd_disabled = false;
937         bool changed = false;
938         u32 hpd_event_bits;
939
940         mutex_lock(&mode_config->mutex);
941         DRM_DEBUG_KMS("running encoder hotplug functions\n");
942
943         spin_lock_irq(&dev_priv->irq_lock);
944
945         hpd_event_bits = dev_priv->hpd_event_bits;
946         dev_priv->hpd_event_bits = 0;
947         list_for_each_entry(connector, &mode_config->connector_list, head) {
948                 intel_connector = to_intel_connector(connector);
949                 if (!intel_connector->encoder)
950                         continue;
951                 intel_encoder = intel_connector->encoder;
952                 if (intel_encoder->hpd_pin > HPD_NONE &&
953                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
954                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
955                         DRM_INFO("HPD interrupt storm detected on connector %s: "
956                                  "switching from hotplug detection to polling\n",
957                                 connector->name);
958                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
959                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
960                                 | DRM_CONNECTOR_POLL_DISCONNECT;
961                         hpd_disabled = true;
962                 }
963                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
964                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
965                                       connector->name, intel_encoder->hpd_pin);
966                 }
967         }
968          /* if there were no outputs to poll, poll was disabled,
969           * therefore make sure it's enabled when disabling HPD on
970           * some connectors */
971         if (hpd_disabled) {
972                 drm_kms_helper_poll_enable(dev);
973                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
974                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
975         }
976
977         spin_unlock_irq(&dev_priv->irq_lock);
978
979         list_for_each_entry(connector, &mode_config->connector_list, head) {
980                 intel_connector = to_intel_connector(connector);
981                 if (!intel_connector->encoder)
982                         continue;
983                 intel_encoder = intel_connector->encoder;
984                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
985                         if (intel_encoder->hot_plug)
986                                 intel_encoder->hot_plug(intel_encoder);
987                         if (intel_hpd_irq_event(dev, connector))
988                                 changed = true;
989                 }
990         }
991         mutex_unlock(&mode_config->mutex);
992
993         if (changed)
994                 drm_kms_helper_hotplug_event(dev);
995 }
996
997 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
998 {
999         struct drm_i915_private *dev_priv = dev->dev_private;
1000         u32 busy_up, busy_down, max_avg, min_avg;
1001         u8 new_delay;
1002
1003         spin_lock(&mchdev_lock);
1004
1005         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1006
1007         new_delay = dev_priv->ips.cur_delay;
1008
1009         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1010         busy_up = I915_READ(RCPREVBSYTUPAVG);
1011         busy_down = I915_READ(RCPREVBSYTDNAVG);
1012         max_avg = I915_READ(RCBMAXAVG);
1013         min_avg = I915_READ(RCBMINAVG);
1014
1015         /* Handle RCS change request from hw */
1016         if (busy_up > max_avg) {
1017                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1018                         new_delay = dev_priv->ips.cur_delay - 1;
1019                 if (new_delay < dev_priv->ips.max_delay)
1020                         new_delay = dev_priv->ips.max_delay;
1021         } else if (busy_down < min_avg) {
1022                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1023                         new_delay = dev_priv->ips.cur_delay + 1;
1024                 if (new_delay > dev_priv->ips.min_delay)
1025                         new_delay = dev_priv->ips.min_delay;
1026         }
1027
1028         if (ironlake_set_drps(dev, new_delay))
1029                 dev_priv->ips.cur_delay = new_delay;
1030
1031         spin_unlock(&mchdev_lock);
1032
1033         return;
1034 }
1035
1036 static void notify_ring(struct drm_device *dev,
1037                         struct intel_engine_cs *ring)
1038 {
1039         if (!intel_ring_initialized(ring))
1040                 return;
1041
1042         trace_i915_gem_request_notify(ring);
1043
1044         wake_up_all(&ring->irq_queue);
1045 }
1046
1047 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1048                             struct intel_rps_ei *rps_ei)
1049 {
1050         u32 cz_ts, cz_freq_khz;
1051         u32 render_count, media_count;
1052         u32 elapsed_render, elapsed_media, elapsed_time;
1053         u32 residency = 0;
1054
1055         cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1056         cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1057
1058         render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1059         media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1060
1061         if (rps_ei->cz_clock == 0) {
1062                 rps_ei->cz_clock = cz_ts;
1063                 rps_ei->render_c0 = render_count;
1064                 rps_ei->media_c0 = media_count;
1065
1066                 return dev_priv->rps.cur_freq;
1067         }
1068
1069         elapsed_time = cz_ts - rps_ei->cz_clock;
1070         rps_ei->cz_clock = cz_ts;
1071
1072         elapsed_render = render_count - rps_ei->render_c0;
1073         rps_ei->render_c0 = render_count;
1074
1075         elapsed_media = media_count - rps_ei->media_c0;
1076         rps_ei->media_c0 = media_count;
1077
1078         /* Convert all the counters into common unit of milli sec */
1079         elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1080         elapsed_render /=  cz_freq_khz;
1081         elapsed_media /= cz_freq_khz;
1082
1083         /*
1084          * Calculate overall C0 residency percentage
1085          * only if elapsed time is non zero
1086          */
1087         if (elapsed_time) {
1088                 residency =
1089                         ((max(elapsed_render, elapsed_media) * 100)
1090                                 / elapsed_time);
1091         }
1092
1093         return residency;
1094 }
1095
1096 /**
1097  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1098  * busy-ness calculated from C0 counters of render & media power wells
1099  * @dev_priv: DRM device private
1100  *
1101  */
1102 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1103 {
1104         u32 residency_C0_up = 0, residency_C0_down = 0;
1105         int new_delay, adj;
1106
1107         dev_priv->rps.ei_interrupt_count++;
1108
1109         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1110
1111
1112         if (dev_priv->rps.up_ei.cz_clock == 0) {
1113                 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1114                 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1115                 return dev_priv->rps.cur_freq;
1116         }
1117
1118
1119         /*
1120          * To down throttle, C0 residency should be less than down threshold
1121          * for continous EI intervals. So calculate down EI counters
1122          * once in VLV_INT_COUNT_FOR_DOWN_EI
1123          */
1124         if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1125
1126                 dev_priv->rps.ei_interrupt_count = 0;
1127
1128                 residency_C0_down = vlv_c0_residency(dev_priv,
1129                                                      &dev_priv->rps.down_ei);
1130         } else {
1131                 residency_C0_up = vlv_c0_residency(dev_priv,
1132                                                    &dev_priv->rps.up_ei);
1133         }
1134
1135         new_delay = dev_priv->rps.cur_freq;
1136
1137         adj = dev_priv->rps.last_adj;
1138         /* C0 residency is greater than UP threshold. Increase Frequency */
1139         if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1140                 if (adj > 0)
1141                         adj *= 2;
1142                 else
1143                         adj = 1;
1144
1145                 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1146                         new_delay = dev_priv->rps.cur_freq + adj;
1147
1148                 /*
1149                  * For better performance, jump directly
1150                  * to RPe if we're below it.
1151                  */
1152                 if (new_delay < dev_priv->rps.efficient_freq)
1153                         new_delay = dev_priv->rps.efficient_freq;
1154
1155         } else if (!dev_priv->rps.ei_interrupt_count &&
1156                         (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1157                 if (adj < 0)
1158                         adj *= 2;
1159                 else
1160                         adj = -1;
1161                 /*
1162                  * This means, C0 residency is less than down threshold over
1163                  * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1164                  */
1165                 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1166                         new_delay = dev_priv->rps.cur_freq + adj;
1167         }
1168
1169         return new_delay;
1170 }
1171
1172 static void gen6_pm_rps_work(struct work_struct *work)
1173 {
1174         struct drm_i915_private *dev_priv =
1175                 container_of(work, struct drm_i915_private, rps.work);
1176         u32 pm_iir;
1177         int new_delay, adj;
1178
1179         spin_lock_irq(&dev_priv->irq_lock);
1180         /* Speed up work cancelation during disabling rps interrupts. */
1181         if (!dev_priv->rps.interrupts_enabled) {
1182                 spin_unlock_irq(&dev_priv->irq_lock);
1183                 return;
1184         }
1185         pm_iir = dev_priv->rps.pm_iir;
1186         dev_priv->rps.pm_iir = 0;
1187         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1188         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1189         spin_unlock_irq(&dev_priv->irq_lock);
1190
1191         /* Make sure we didn't queue anything we're not going to process. */
1192         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1193
1194         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1195                 return;
1196
1197         mutex_lock(&dev_priv->rps.hw_lock);
1198
1199         adj = dev_priv->rps.last_adj;
1200         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1201                 if (adj > 0)
1202                         adj *= 2;
1203                 else {
1204                         /* CHV needs even encode values */
1205                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1206                 }
1207                 new_delay = dev_priv->rps.cur_freq + adj;
1208
1209                 /*
1210                  * For better performance, jump directly
1211                  * to RPe if we're below it.
1212                  */
1213                 if (new_delay < dev_priv->rps.efficient_freq)
1214                         new_delay = dev_priv->rps.efficient_freq;
1215         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1216                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1217                         new_delay = dev_priv->rps.efficient_freq;
1218                 else
1219                         new_delay = dev_priv->rps.min_freq_softlimit;
1220                 adj = 0;
1221         } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1222                 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1223         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1224                 if (adj < 0)
1225                         adj *= 2;
1226                 else {
1227                         /* CHV needs even encode values */
1228                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1229                 }
1230                 new_delay = dev_priv->rps.cur_freq + adj;
1231         } else { /* unknown event */
1232                 new_delay = dev_priv->rps.cur_freq;
1233         }
1234
1235         /* sysfs frequency interfaces may have snuck in while servicing the
1236          * interrupt
1237          */
1238         new_delay = clamp_t(int, new_delay,
1239                             dev_priv->rps.min_freq_softlimit,
1240                             dev_priv->rps.max_freq_softlimit);
1241
1242         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1243
1244         if (IS_VALLEYVIEW(dev_priv->dev))
1245                 valleyview_set_rps(dev_priv->dev, new_delay);
1246         else
1247                 gen6_set_rps(dev_priv->dev, new_delay);
1248
1249         mutex_unlock(&dev_priv->rps.hw_lock);
1250 }
1251
1252
1253 /**
1254  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1255  * occurred.
1256  * @work: workqueue struct
1257  *
1258  * Doesn't actually do anything except notify userspace. As a consequence of
1259  * this event, userspace should try to remap the bad rows since statistically
1260  * it is likely the same row is more likely to go bad again.
1261  */
1262 static void ivybridge_parity_work(struct work_struct *work)
1263 {
1264         struct drm_i915_private *dev_priv =
1265                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1266         u32 error_status, row, bank, subbank;
1267         char *parity_event[6];
1268         uint32_t misccpctl;
1269         uint8_t slice = 0;
1270
1271         /* We must turn off DOP level clock gating to access the L3 registers.
1272          * In order to prevent a get/put style interface, acquire struct mutex
1273          * any time we access those registers.
1274          */
1275         mutex_lock(&dev_priv->dev->struct_mutex);
1276
1277         /* If we've screwed up tracking, just let the interrupt fire again */
1278         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1279                 goto out;
1280
1281         misccpctl = I915_READ(GEN7_MISCCPCTL);
1282         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1283         POSTING_READ(GEN7_MISCCPCTL);
1284
1285         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1286                 u32 reg;
1287
1288                 slice--;
1289                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1290                         break;
1291
1292                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1293
1294                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1295
1296                 error_status = I915_READ(reg);
1297                 row = GEN7_PARITY_ERROR_ROW(error_status);
1298                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1299                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1300
1301                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1302                 POSTING_READ(reg);
1303
1304                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1305                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1306                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1307                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1308                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1309                 parity_event[5] = NULL;
1310
1311                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1312                                    KOBJ_CHANGE, parity_event);
1313
1314                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1315                           slice, row, bank, subbank);
1316
1317                 kfree(parity_event[4]);
1318                 kfree(parity_event[3]);
1319                 kfree(parity_event[2]);
1320                 kfree(parity_event[1]);
1321         }
1322
1323         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1324
1325 out:
1326         WARN_ON(dev_priv->l3_parity.which_slice);
1327         spin_lock_irq(&dev_priv->irq_lock);
1328         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1329         spin_unlock_irq(&dev_priv->irq_lock);
1330
1331         mutex_unlock(&dev_priv->dev->struct_mutex);
1332 }
1333
1334 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1335 {
1336         struct drm_i915_private *dev_priv = dev->dev_private;
1337
1338         if (!HAS_L3_DPF(dev))
1339                 return;
1340
1341         spin_lock(&dev_priv->irq_lock);
1342         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1343         spin_unlock(&dev_priv->irq_lock);
1344
1345         iir &= GT_PARITY_ERROR(dev);
1346         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1347                 dev_priv->l3_parity.which_slice |= 1 << 1;
1348
1349         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1350                 dev_priv->l3_parity.which_slice |= 1 << 0;
1351
1352         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1353 }
1354
1355 static void ilk_gt_irq_handler(struct drm_device *dev,
1356                                struct drm_i915_private *dev_priv,
1357                                u32 gt_iir)
1358 {
1359         if (gt_iir &
1360             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1361                 notify_ring(dev, &dev_priv->ring[RCS]);
1362         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1363                 notify_ring(dev, &dev_priv->ring[VCS]);
1364 }
1365
1366 static void snb_gt_irq_handler(struct drm_device *dev,
1367                                struct drm_i915_private *dev_priv,
1368                                u32 gt_iir)
1369 {
1370
1371         if (gt_iir &
1372             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1373                 notify_ring(dev, &dev_priv->ring[RCS]);
1374         if (gt_iir & GT_BSD_USER_INTERRUPT)
1375                 notify_ring(dev, &dev_priv->ring[VCS]);
1376         if (gt_iir & GT_BLT_USER_INTERRUPT)
1377                 notify_ring(dev, &dev_priv->ring[BCS]);
1378
1379         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1380                       GT_BSD_CS_ERROR_INTERRUPT |
1381                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1382                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1383
1384         if (gt_iir & GT_PARITY_ERROR(dev))
1385                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1386 }
1387
1388 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1389                                        struct drm_i915_private *dev_priv,
1390                                        u32 master_ctl)
1391 {
1392         struct intel_engine_cs *ring;
1393         u32 rcs, bcs, vcs;
1394         uint32_t tmp = 0;
1395         irqreturn_t ret = IRQ_NONE;
1396
1397         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1398                 tmp = I915_READ(GEN8_GT_IIR(0));
1399                 if (tmp) {
1400                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1401                         ret = IRQ_HANDLED;
1402
1403                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1404                         ring = &dev_priv->ring[RCS];
1405                         if (rcs & GT_RENDER_USER_INTERRUPT)
1406                                 notify_ring(dev, ring);
1407                         if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1408                                 intel_lrc_irq_handler(ring);
1409
1410                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1411                         ring = &dev_priv->ring[BCS];
1412                         if (bcs & GT_RENDER_USER_INTERRUPT)
1413                                 notify_ring(dev, ring);
1414                         if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1415                                 intel_lrc_irq_handler(ring);
1416                 } else
1417                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1418         }
1419
1420         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1421                 tmp = I915_READ(GEN8_GT_IIR(1));
1422                 if (tmp) {
1423                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1424                         ret = IRQ_HANDLED;
1425
1426                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1427                         ring = &dev_priv->ring[VCS];
1428                         if (vcs & GT_RENDER_USER_INTERRUPT)
1429                                 notify_ring(dev, ring);
1430                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1431                                 intel_lrc_irq_handler(ring);
1432
1433                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1434                         ring = &dev_priv->ring[VCS2];
1435                         if (vcs & GT_RENDER_USER_INTERRUPT)
1436                                 notify_ring(dev, ring);
1437                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1438                                 intel_lrc_irq_handler(ring);
1439                 } else
1440                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1441         }
1442
1443         if (master_ctl & GEN8_GT_PM_IRQ) {
1444                 tmp = I915_READ(GEN8_GT_IIR(2));
1445                 if (tmp & dev_priv->pm_rps_events) {
1446                         I915_WRITE(GEN8_GT_IIR(2),
1447                                    tmp & dev_priv->pm_rps_events);
1448                         ret = IRQ_HANDLED;
1449                         gen6_rps_irq_handler(dev_priv, tmp);
1450                 } else
1451                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1452         }
1453
1454         if (master_ctl & GEN8_GT_VECS_IRQ) {
1455                 tmp = I915_READ(GEN8_GT_IIR(3));
1456                 if (tmp) {
1457                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1458                         ret = IRQ_HANDLED;
1459
1460                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1461                         ring = &dev_priv->ring[VECS];
1462                         if (vcs & GT_RENDER_USER_INTERRUPT)
1463                                 notify_ring(dev, ring);
1464                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1465                                 intel_lrc_irq_handler(ring);
1466                 } else
1467                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1468         }
1469
1470         return ret;
1471 }
1472
1473 #define HPD_STORM_DETECT_PERIOD 1000
1474 #define HPD_STORM_THRESHOLD 5
1475
1476 static int pch_port_to_hotplug_shift(enum port port)
1477 {
1478         switch (port) {
1479         case PORT_A:
1480         case PORT_E:
1481         default:
1482                 return -1;
1483         case PORT_B:
1484                 return 0;
1485         case PORT_C:
1486                 return 8;
1487         case PORT_D:
1488                 return 16;
1489         }
1490 }
1491
1492 static int i915_port_to_hotplug_shift(enum port port)
1493 {
1494         switch (port) {
1495         case PORT_A:
1496         case PORT_E:
1497         default:
1498                 return -1;
1499         case PORT_B:
1500                 return 17;
1501         case PORT_C:
1502                 return 19;
1503         case PORT_D:
1504                 return 21;
1505         }
1506 }
1507
1508 static inline enum port get_port_from_pin(enum hpd_pin pin)
1509 {
1510         switch (pin) {
1511         case HPD_PORT_B:
1512                 return PORT_B;
1513         case HPD_PORT_C:
1514                 return PORT_C;
1515         case HPD_PORT_D:
1516                 return PORT_D;
1517         default:
1518                 return PORT_A; /* no hpd */
1519         }
1520 }
1521
1522 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1523                                          u32 hotplug_trigger,
1524                                          u32 dig_hotplug_reg,
1525                                          const u32 hpd[HPD_NUM_PINS])
1526 {
1527         struct drm_i915_private *dev_priv = dev->dev_private;
1528         int i;
1529         enum port port;
1530         bool storm_detected = false;
1531         bool queue_dig = false, queue_hp = false;
1532         u32 dig_shift;
1533         u32 dig_port_mask = 0;
1534
1535         if (!hotplug_trigger)
1536                 return;
1537
1538         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1539                          hotplug_trigger, dig_hotplug_reg);
1540
1541         spin_lock(&dev_priv->irq_lock);
1542         for (i = 1; i < HPD_NUM_PINS; i++) {
1543                 if (!(hpd[i] & hotplug_trigger))
1544                         continue;
1545
1546                 port = get_port_from_pin(i);
1547                 if (port && dev_priv->hpd_irq_port[port]) {
1548                         bool long_hpd;
1549
1550                         if (HAS_PCH_SPLIT(dev)) {
1551                                 dig_shift = pch_port_to_hotplug_shift(port);
1552                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1553                         } else {
1554                                 dig_shift = i915_port_to_hotplug_shift(port);
1555                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1556                         }
1557
1558                         DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1559                                          port_name(port),
1560                                          long_hpd ? "long" : "short");
1561                         /* for long HPD pulses we want to have the digital queue happen,
1562                            but we still want HPD storm detection to function. */
1563                         if (long_hpd) {
1564                                 dev_priv->long_hpd_port_mask |= (1 << port);
1565                                 dig_port_mask |= hpd[i];
1566                         } else {
1567                                 /* for short HPD just trigger the digital queue */
1568                                 dev_priv->short_hpd_port_mask |= (1 << port);
1569                                 hotplug_trigger &= ~hpd[i];
1570                         }
1571                         queue_dig = true;
1572                 }
1573         }
1574
1575         for (i = 1; i < HPD_NUM_PINS; i++) {
1576                 if (hpd[i] & hotplug_trigger &&
1577                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1578                         /*
1579                          * On GMCH platforms the interrupt mask bits only
1580                          * prevent irq generation, not the setting of the
1581                          * hotplug bits itself. So only WARN about unexpected
1582                          * interrupts on saner platforms.
1583                          */
1584                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1585                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1586                                   hotplug_trigger, i, hpd[i]);
1587
1588                         continue;
1589                 }
1590
1591                 if (!(hpd[i] & hotplug_trigger) ||
1592                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1593                         continue;
1594
1595                 if (!(dig_port_mask & hpd[i])) {
1596                         dev_priv->hpd_event_bits |= (1 << i);
1597                         queue_hp = true;
1598                 }
1599
1600                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1601                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1602                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1603                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1604                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1605                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1606                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1607                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1608                         dev_priv->hpd_event_bits &= ~(1 << i);
1609                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1610                         storm_detected = true;
1611                 } else {
1612                         dev_priv->hpd_stats[i].hpd_cnt++;
1613                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1614                                       dev_priv->hpd_stats[i].hpd_cnt);
1615                 }
1616         }
1617
1618         if (storm_detected)
1619                 dev_priv->display.hpd_irq_setup(dev);
1620         spin_unlock(&dev_priv->irq_lock);
1621
1622         /*
1623          * Our hotplug handler can grab modeset locks (by calling down into the
1624          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1625          * queue for otherwise the flush_work in the pageflip code will
1626          * deadlock.
1627          */
1628         if (queue_dig)
1629                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1630         if (queue_hp)
1631                 schedule_work(&dev_priv->hotplug_work);
1632 }
1633
1634 static void gmbus_irq_handler(struct drm_device *dev)
1635 {
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637
1638         wake_up_all(&dev_priv->gmbus_wait_queue);
1639 }
1640
1641 static void dp_aux_irq_handler(struct drm_device *dev)
1642 {
1643         struct drm_i915_private *dev_priv = dev->dev_private;
1644
1645         wake_up_all(&dev_priv->gmbus_wait_queue);
1646 }
1647
1648 #if defined(CONFIG_DEBUG_FS)
1649 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1650                                          uint32_t crc0, uint32_t crc1,
1651                                          uint32_t crc2, uint32_t crc3,
1652                                          uint32_t crc4)
1653 {
1654         struct drm_i915_private *dev_priv = dev->dev_private;
1655         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1656         struct intel_pipe_crc_entry *entry;
1657         int head, tail;
1658
1659         spin_lock(&pipe_crc->lock);
1660
1661         if (!pipe_crc->entries) {
1662                 spin_unlock(&pipe_crc->lock);
1663                 DRM_DEBUG_KMS("spurious interrupt\n");
1664                 return;
1665         }
1666
1667         head = pipe_crc->head;
1668         tail = pipe_crc->tail;
1669
1670         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1671                 spin_unlock(&pipe_crc->lock);
1672                 DRM_ERROR("CRC buffer overflowing\n");
1673                 return;
1674         }
1675
1676         entry = &pipe_crc->entries[head];
1677
1678         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1679         entry->crc[0] = crc0;
1680         entry->crc[1] = crc1;
1681         entry->crc[2] = crc2;
1682         entry->crc[3] = crc3;
1683         entry->crc[4] = crc4;
1684
1685         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1686         pipe_crc->head = head;
1687
1688         spin_unlock(&pipe_crc->lock);
1689
1690         wake_up_interruptible(&pipe_crc->wq);
1691 }
1692 #else
1693 static inline void
1694 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1695                              uint32_t crc0, uint32_t crc1,
1696                              uint32_t crc2, uint32_t crc3,
1697                              uint32_t crc4) {}
1698 #endif
1699
1700
1701 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1702 {
1703         struct drm_i915_private *dev_priv = dev->dev_private;
1704
1705         display_pipe_crc_irq_handler(dev, pipe,
1706                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1707                                      0, 0, 0, 0);
1708 }
1709
1710 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1711 {
1712         struct drm_i915_private *dev_priv = dev->dev_private;
1713
1714         display_pipe_crc_irq_handler(dev, pipe,
1715                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1716                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1717                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1718                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1719                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1720 }
1721
1722 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1723 {
1724         struct drm_i915_private *dev_priv = dev->dev_private;
1725         uint32_t res1, res2;
1726
1727         if (INTEL_INFO(dev)->gen >= 3)
1728                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1729         else
1730                 res1 = 0;
1731
1732         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1733                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1734         else
1735                 res2 = 0;
1736
1737         display_pipe_crc_irq_handler(dev, pipe,
1738                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1739                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1740                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1741                                      res1, res2);
1742 }
1743
1744 /* The RPS events need forcewake, so we add them to a work queue and mask their
1745  * IMR bits until the work is done. Other interrupts can be processed without
1746  * the work queue. */
1747 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1748 {
1749         /* TODO: RPS on GEN9+ is not supported yet. */
1750         if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1751                       "GEN9+: unexpected RPS IRQ\n"))
1752                 return;
1753
1754         if (pm_iir & dev_priv->pm_rps_events) {
1755                 spin_lock(&dev_priv->irq_lock);
1756                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1757                 if (dev_priv->rps.interrupts_enabled) {
1758                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1759                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1760                 }
1761                 spin_unlock(&dev_priv->irq_lock);
1762         }
1763
1764         if (INTEL_INFO(dev_priv)->gen >= 8)
1765                 return;
1766
1767         if (HAS_VEBOX(dev_priv->dev)) {
1768                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1769                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1770
1771                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1772                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1773         }
1774 }
1775
1776 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1777 {
1778         if (!drm_handle_vblank(dev, pipe))
1779                 return false;
1780
1781         return true;
1782 }
1783
1784 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1785 {
1786         struct drm_i915_private *dev_priv = dev->dev_private;
1787         u32 pipe_stats[I915_MAX_PIPES] = { };
1788         int pipe;
1789
1790         spin_lock(&dev_priv->irq_lock);
1791         for_each_pipe(dev_priv, pipe) {
1792                 int reg;
1793                 u32 mask, iir_bit = 0;
1794
1795                 /*
1796                  * PIPESTAT bits get signalled even when the interrupt is
1797                  * disabled with the mask bits, and some of the status bits do
1798                  * not generate interrupts at all (like the underrun bit). Hence
1799                  * we need to be careful that we only handle what we want to
1800                  * handle.
1801                  */
1802
1803                 /* fifo underruns are filterered in the underrun handler. */
1804                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1805
1806                 switch (pipe) {
1807                 case PIPE_A:
1808                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1809                         break;
1810                 case PIPE_B:
1811                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1812                         break;
1813                 case PIPE_C:
1814                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1815                         break;
1816                 }
1817                 if (iir & iir_bit)
1818                         mask |= dev_priv->pipestat_irq_mask[pipe];
1819
1820                 if (!mask)
1821                         continue;
1822
1823                 reg = PIPESTAT(pipe);
1824                 mask |= PIPESTAT_INT_ENABLE_MASK;
1825                 pipe_stats[pipe] = I915_READ(reg) & mask;
1826
1827                 /*
1828                  * Clear the PIPE*STAT regs before the IIR
1829                  */
1830                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1831                                         PIPESTAT_INT_STATUS_MASK))
1832                         I915_WRITE(reg, pipe_stats[pipe]);
1833         }
1834         spin_unlock(&dev_priv->irq_lock);
1835
1836         for_each_pipe(dev_priv, pipe) {
1837                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1838                     intel_pipe_handle_vblank(dev, pipe))
1839                         intel_check_page_flip(dev, pipe);
1840
1841                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1842                         intel_prepare_page_flip(dev, pipe);
1843                         intel_finish_page_flip(dev, pipe);
1844                 }
1845
1846                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1847                         i9xx_pipe_crc_irq_handler(dev, pipe);
1848
1849                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1850                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1851         }
1852
1853         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1854                 gmbus_irq_handler(dev);
1855 }
1856
1857 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1858 {
1859         struct drm_i915_private *dev_priv = dev->dev_private;
1860         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1861
1862         if (hotplug_status) {
1863                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1864                 /*
1865                  * Make sure hotplug status is cleared before we clear IIR, or else we
1866                  * may miss hotplug events.
1867                  */
1868                 POSTING_READ(PORT_HOTPLUG_STAT);
1869
1870                 if (IS_G4X(dev)) {
1871                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1872
1873                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1874                 } else {
1875                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1876
1877                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1878                 }
1879
1880                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1881                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1882                         dp_aux_irq_handler(dev);
1883         }
1884 }
1885
1886 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1887 {
1888         struct drm_device *dev = arg;
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         u32 iir, gt_iir, pm_iir;
1891         irqreturn_t ret = IRQ_NONE;
1892
1893         while (true) {
1894                 /* Find, clear, then process each source of interrupt */
1895
1896                 gt_iir = I915_READ(GTIIR);
1897                 if (gt_iir)
1898                         I915_WRITE(GTIIR, gt_iir);
1899
1900                 pm_iir = I915_READ(GEN6_PMIIR);
1901                 if (pm_iir)
1902                         I915_WRITE(GEN6_PMIIR, pm_iir);
1903
1904                 iir = I915_READ(VLV_IIR);
1905                 if (iir) {
1906                         /* Consume port before clearing IIR or we'll miss events */
1907                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1908                                 i9xx_hpd_irq_handler(dev);
1909                         I915_WRITE(VLV_IIR, iir);
1910                 }
1911
1912                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1913                         goto out;
1914
1915                 ret = IRQ_HANDLED;
1916
1917                 if (gt_iir)
1918                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1919                 if (pm_iir)
1920                         gen6_rps_irq_handler(dev_priv, pm_iir);
1921                 /* Call regardless, as some status bits might not be
1922                  * signalled in iir */
1923                 valleyview_pipestat_irq_handler(dev, iir);
1924         }
1925
1926 out:
1927         return ret;
1928 }
1929
1930 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1931 {
1932         struct drm_device *dev = arg;
1933         struct drm_i915_private *dev_priv = dev->dev_private;
1934         u32 master_ctl, iir;
1935         irqreturn_t ret = IRQ_NONE;
1936
1937         for (;;) {
1938                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1939                 iir = I915_READ(VLV_IIR);
1940
1941                 if (master_ctl == 0 && iir == 0)
1942                         break;
1943
1944                 ret = IRQ_HANDLED;
1945
1946                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1947
1948                 /* Find, clear, then process each source of interrupt */
1949
1950                 if (iir) {
1951                         /* Consume port before clearing IIR or we'll miss events */
1952                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1953                                 i9xx_hpd_irq_handler(dev);
1954                         I915_WRITE(VLV_IIR, iir);
1955                 }
1956
1957                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1958
1959                 /* Call regardless, as some status bits might not be
1960                  * signalled in iir */
1961                 valleyview_pipestat_irq_handler(dev, iir);
1962
1963                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1964                 POSTING_READ(GEN8_MASTER_IRQ);
1965         }
1966
1967         return ret;
1968 }
1969
1970 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1971 {
1972         struct drm_i915_private *dev_priv = dev->dev_private;
1973         int pipe;
1974         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1975         u32 dig_hotplug_reg;
1976
1977         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1978         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1979
1980         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1981
1982         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1983                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1984                                SDE_AUDIO_POWER_SHIFT);
1985                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1986                                  port_name(port));
1987         }
1988
1989         if (pch_iir & SDE_AUX_MASK)
1990                 dp_aux_irq_handler(dev);
1991
1992         if (pch_iir & SDE_GMBUS)
1993                 gmbus_irq_handler(dev);
1994
1995         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1996                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1997
1998         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1999                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2000
2001         if (pch_iir & SDE_POISON)
2002                 DRM_ERROR("PCH poison interrupt\n");
2003
2004         if (pch_iir & SDE_FDI_MASK)
2005                 for_each_pipe(dev_priv, pipe)
2006                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2007                                          pipe_name(pipe),
2008                                          I915_READ(FDI_RX_IIR(pipe)));
2009
2010         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2011                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2012
2013         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2014                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2015
2016         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2017                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2018
2019         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2020                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2021 }
2022
2023 static void ivb_err_int_handler(struct drm_device *dev)
2024 {
2025         struct drm_i915_private *dev_priv = dev->dev_private;
2026         u32 err_int = I915_READ(GEN7_ERR_INT);
2027         enum pipe pipe;
2028
2029         if (err_int & ERR_INT_POISON)
2030                 DRM_ERROR("Poison interrupt\n");
2031
2032         for_each_pipe(dev_priv, pipe) {
2033                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2034                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2035
2036                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2037                         if (IS_IVYBRIDGE(dev))
2038                                 ivb_pipe_crc_irq_handler(dev, pipe);
2039                         else
2040                                 hsw_pipe_crc_irq_handler(dev, pipe);
2041                 }
2042         }
2043
2044         I915_WRITE(GEN7_ERR_INT, err_int);
2045 }
2046
2047 static void cpt_serr_int_handler(struct drm_device *dev)
2048 {
2049         struct drm_i915_private *dev_priv = dev->dev_private;
2050         u32 serr_int = I915_READ(SERR_INT);
2051
2052         if (serr_int & SERR_INT_POISON)
2053                 DRM_ERROR("PCH poison interrupt\n");
2054
2055         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2056                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2057
2058         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2059                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2060
2061         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2062                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2063
2064         I915_WRITE(SERR_INT, serr_int);
2065 }
2066
2067 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2068 {
2069         struct drm_i915_private *dev_priv = dev->dev_private;
2070         int pipe;
2071         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2072         u32 dig_hotplug_reg;
2073
2074         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2075         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2076
2077         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2078
2079         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2080                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2081                                SDE_AUDIO_POWER_SHIFT_CPT);
2082                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2083                                  port_name(port));
2084         }
2085
2086         if (pch_iir & SDE_AUX_MASK_CPT)
2087                 dp_aux_irq_handler(dev);
2088
2089         if (pch_iir & SDE_GMBUS_CPT)
2090                 gmbus_irq_handler(dev);
2091
2092         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2093                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2094
2095         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2096                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2097
2098         if (pch_iir & SDE_FDI_MASK_CPT)
2099                 for_each_pipe(dev_priv, pipe)
2100                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2101                                          pipe_name(pipe),
2102                                          I915_READ(FDI_RX_IIR(pipe)));
2103
2104         if (pch_iir & SDE_ERROR_CPT)
2105                 cpt_serr_int_handler(dev);
2106 }
2107
2108 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2109 {
2110         struct drm_i915_private *dev_priv = dev->dev_private;
2111         enum pipe pipe;
2112
2113         if (de_iir & DE_AUX_CHANNEL_A)
2114                 dp_aux_irq_handler(dev);
2115
2116         if (de_iir & DE_GSE)
2117                 intel_opregion_asle_intr(dev);
2118
2119         if (de_iir & DE_POISON)
2120                 DRM_ERROR("Poison interrupt\n");
2121
2122         for_each_pipe(dev_priv, pipe) {
2123                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2124                     intel_pipe_handle_vblank(dev, pipe))
2125                         intel_check_page_flip(dev, pipe);
2126
2127                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2128                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2129
2130                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2131                         i9xx_pipe_crc_irq_handler(dev, pipe);
2132
2133                 /* plane/pipes map 1:1 on ilk+ */
2134                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2135                         intel_prepare_page_flip(dev, pipe);
2136                         intel_finish_page_flip_plane(dev, pipe);
2137                 }
2138         }
2139
2140         /* check event from PCH */
2141         if (de_iir & DE_PCH_EVENT) {
2142                 u32 pch_iir = I915_READ(SDEIIR);
2143
2144                 if (HAS_PCH_CPT(dev))
2145                         cpt_irq_handler(dev, pch_iir);
2146                 else
2147                         ibx_irq_handler(dev, pch_iir);
2148
2149                 /* should clear PCH hotplug event before clear CPU irq */
2150                 I915_WRITE(SDEIIR, pch_iir);
2151         }
2152
2153         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2154                 ironlake_rps_change_irq_handler(dev);
2155 }
2156
2157 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2158 {
2159         struct drm_i915_private *dev_priv = dev->dev_private;
2160         enum pipe pipe;
2161
2162         if (de_iir & DE_ERR_INT_IVB)
2163                 ivb_err_int_handler(dev);
2164
2165         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2166                 dp_aux_irq_handler(dev);
2167
2168         if (de_iir & DE_GSE_IVB)
2169                 intel_opregion_asle_intr(dev);
2170
2171         for_each_pipe(dev_priv, pipe) {
2172                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2173                     intel_pipe_handle_vblank(dev, pipe))
2174                         intel_check_page_flip(dev, pipe);
2175
2176                 /* plane/pipes map 1:1 on ilk+ */
2177                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2178                         intel_prepare_page_flip(dev, pipe);
2179                         intel_finish_page_flip_plane(dev, pipe);
2180                 }
2181         }
2182
2183         /* check event from PCH */
2184         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2185                 u32 pch_iir = I915_READ(SDEIIR);
2186
2187                 cpt_irq_handler(dev, pch_iir);
2188
2189                 /* clear PCH hotplug event before clear CPU irq */
2190                 I915_WRITE(SDEIIR, pch_iir);
2191         }
2192 }
2193
2194 /*
2195  * To handle irqs with the minimum potential races with fresh interrupts, we:
2196  * 1 - Disable Master Interrupt Control.
2197  * 2 - Find the source(s) of the interrupt.
2198  * 3 - Clear the Interrupt Identity bits (IIR).
2199  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2200  * 5 - Re-enable Master Interrupt Control.
2201  */
2202 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2203 {
2204         struct drm_device *dev = arg;
2205         struct drm_i915_private *dev_priv = dev->dev_private;
2206         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2207         irqreturn_t ret = IRQ_NONE;
2208
2209         /* We get interrupts on unclaimed registers, so check for this before we
2210          * do any I915_{READ,WRITE}. */
2211         intel_uncore_check_errors(dev);
2212
2213         /* disable master interrupt before clearing iir  */
2214         de_ier = I915_READ(DEIER);
2215         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2216         POSTING_READ(DEIER);
2217
2218         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2219          * interrupts will will be stored on its back queue, and then we'll be
2220          * able to process them after we restore SDEIER (as soon as we restore
2221          * it, we'll get an interrupt if SDEIIR still has something to process
2222          * due to its back queue). */
2223         if (!HAS_PCH_NOP(dev)) {
2224                 sde_ier = I915_READ(SDEIER);
2225                 I915_WRITE(SDEIER, 0);
2226                 POSTING_READ(SDEIER);
2227         }
2228
2229         /* Find, clear, then process each source of interrupt */
2230
2231         gt_iir = I915_READ(GTIIR);
2232         if (gt_iir) {
2233                 I915_WRITE(GTIIR, gt_iir);
2234                 ret = IRQ_HANDLED;
2235                 if (INTEL_INFO(dev)->gen >= 6)
2236                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2237                 else
2238                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2239         }
2240
2241         de_iir = I915_READ(DEIIR);
2242         if (de_iir) {
2243                 I915_WRITE(DEIIR, de_iir);
2244                 ret = IRQ_HANDLED;
2245                 if (INTEL_INFO(dev)->gen >= 7)
2246                         ivb_display_irq_handler(dev, de_iir);
2247                 else
2248                         ilk_display_irq_handler(dev, de_iir);
2249         }
2250
2251         if (INTEL_INFO(dev)->gen >= 6) {
2252                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2253                 if (pm_iir) {
2254                         I915_WRITE(GEN6_PMIIR, pm_iir);
2255                         ret = IRQ_HANDLED;
2256                         gen6_rps_irq_handler(dev_priv, pm_iir);
2257                 }
2258         }
2259
2260         I915_WRITE(DEIER, de_ier);
2261         POSTING_READ(DEIER);
2262         if (!HAS_PCH_NOP(dev)) {
2263                 I915_WRITE(SDEIER, sde_ier);
2264                 POSTING_READ(SDEIER);
2265         }
2266
2267         return ret;
2268 }
2269
2270 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2271 {
2272         struct drm_device *dev = arg;
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274         u32 master_ctl;
2275         irqreturn_t ret = IRQ_NONE;
2276         uint32_t tmp = 0;
2277         enum pipe pipe;
2278         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2279
2280         if (IS_GEN9(dev))
2281                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2282                         GEN9_AUX_CHANNEL_D;
2283
2284         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2285         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2286         if (!master_ctl)
2287                 return IRQ_NONE;
2288
2289         I915_WRITE(GEN8_MASTER_IRQ, 0);
2290         POSTING_READ(GEN8_MASTER_IRQ);
2291
2292         /* Find, clear, then process each source of interrupt */
2293
2294         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2295
2296         if (master_ctl & GEN8_DE_MISC_IRQ) {
2297                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2298                 if (tmp) {
2299                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2300                         ret = IRQ_HANDLED;
2301                         if (tmp & GEN8_DE_MISC_GSE)
2302                                 intel_opregion_asle_intr(dev);
2303                         else
2304                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2305                 }
2306                 else
2307                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2308         }
2309
2310         if (master_ctl & GEN8_DE_PORT_IRQ) {
2311                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2312                 if (tmp) {
2313                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2314                         ret = IRQ_HANDLED;
2315
2316                         if (tmp & aux_mask)
2317                                 dp_aux_irq_handler(dev);
2318                         else
2319                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2320                 }
2321                 else
2322                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2323         }
2324
2325         for_each_pipe(dev_priv, pipe) {
2326                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2327
2328                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2329                         continue;
2330
2331                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2332                 if (pipe_iir) {
2333                         ret = IRQ_HANDLED;
2334                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2335
2336                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2337                             intel_pipe_handle_vblank(dev, pipe))
2338                                 intel_check_page_flip(dev, pipe);
2339
2340                         if (IS_GEN9(dev))
2341                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2342                         else
2343                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2344
2345                         if (flip_done) {
2346                                 intel_prepare_page_flip(dev, pipe);
2347                                 intel_finish_page_flip_plane(dev, pipe);
2348                         }
2349
2350                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2351                                 hsw_pipe_crc_irq_handler(dev, pipe);
2352
2353                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2354                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2355                                                                     pipe);
2356
2357
2358                         if (IS_GEN9(dev))
2359                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2360                         else
2361                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2362
2363                         if (fault_errors)
2364                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2365                                           pipe_name(pipe),
2366                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2367                 } else
2368                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2369         }
2370
2371         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2372                 /*
2373                  * FIXME(BDW): Assume for now that the new interrupt handling
2374                  * scheme also closed the SDE interrupt handling race we've seen
2375                  * on older pch-split platforms. But this needs testing.
2376                  */
2377                 u32 pch_iir = I915_READ(SDEIIR);
2378                 if (pch_iir) {
2379                         I915_WRITE(SDEIIR, pch_iir);
2380                         ret = IRQ_HANDLED;
2381                         cpt_irq_handler(dev, pch_iir);
2382                 } else
2383                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2384
2385         }
2386
2387         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2388         POSTING_READ(GEN8_MASTER_IRQ);
2389
2390         return ret;
2391 }
2392
2393 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2394                                bool reset_completed)
2395 {
2396         struct intel_engine_cs *ring;
2397         int i;
2398
2399         /*
2400          * Notify all waiters for GPU completion events that reset state has
2401          * been changed, and that they need to restart their wait after
2402          * checking for potential errors (and bail out to drop locks if there is
2403          * a gpu reset pending so that i915_error_work_func can acquire them).
2404          */
2405
2406         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2407         for_each_ring(ring, dev_priv, i)
2408                 wake_up_all(&ring->irq_queue);
2409
2410         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2411         wake_up_all(&dev_priv->pending_flip_queue);
2412
2413         /*
2414          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2415          * reset state is cleared.
2416          */
2417         if (reset_completed)
2418                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2419 }
2420
2421 /**
2422  * i915_error_work_func - do process context error handling work
2423  * @work: work struct
2424  *
2425  * Fire an error uevent so userspace can see that a hang or error
2426  * was detected.
2427  */
2428 static void i915_error_work_func(struct work_struct *work)
2429 {
2430         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2431                                                     work);
2432         struct drm_i915_private *dev_priv =
2433                 container_of(error, struct drm_i915_private, gpu_error);
2434         struct drm_device *dev = dev_priv->dev;
2435         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2436         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2437         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2438         int ret;
2439
2440         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2441
2442         /*
2443          * Note that there's only one work item which does gpu resets, so we
2444          * need not worry about concurrent gpu resets potentially incrementing
2445          * error->reset_counter twice. We only need to take care of another
2446          * racing irq/hangcheck declaring the gpu dead for a second time. A
2447          * quick check for that is good enough: schedule_work ensures the
2448          * correct ordering between hang detection and this work item, and since
2449          * the reset in-progress bit is only ever set by code outside of this
2450          * work we don't need to worry about any other races.
2451          */
2452         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2453                 DRM_DEBUG_DRIVER("resetting chip\n");
2454                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2455                                    reset_event);
2456
2457                 /*
2458                  * In most cases it's guaranteed that we get here with an RPM
2459                  * reference held, for example because there is a pending GPU
2460                  * request that won't finish until the reset is done. This
2461                  * isn't the case at least when we get here by doing a
2462                  * simulated reset via debugs, so get an RPM reference.
2463                  */
2464                 intel_runtime_pm_get(dev_priv);
2465
2466                 intel_prepare_reset(dev);
2467
2468                 /*
2469                  * All state reset _must_ be completed before we update the
2470                  * reset counter, for otherwise waiters might miss the reset
2471                  * pending state and not properly drop locks, resulting in
2472                  * deadlocks with the reset work.
2473                  */
2474                 ret = i915_reset(dev);
2475
2476                 intel_finish_reset(dev);
2477
2478                 intel_runtime_pm_put(dev_priv);
2479
2480                 if (ret == 0) {
2481                         /*
2482                          * After all the gem state is reset, increment the reset
2483                          * counter and wake up everyone waiting for the reset to
2484                          * complete.
2485                          *
2486                          * Since unlock operations are a one-sided barrier only,
2487                          * we need to insert a barrier here to order any seqno
2488                          * updates before
2489                          * the counter increment.
2490                          */
2491                         smp_mb__before_atomic();
2492                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2493
2494                         kobject_uevent_env(&dev->primary->kdev->kobj,
2495                                            KOBJ_CHANGE, reset_done_event);
2496                 } else {
2497                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2498                 }
2499
2500                 /*
2501                  * Note: The wake_up also serves as a memory barrier so that
2502                  * waiters see the update value of the reset counter atomic_t.
2503                  */
2504                 i915_error_wake_up(dev_priv, true);
2505         }
2506 }
2507
2508 static void i915_report_and_clear_eir(struct drm_device *dev)
2509 {
2510         struct drm_i915_private *dev_priv = dev->dev_private;
2511         uint32_t instdone[I915_NUM_INSTDONE_REG];
2512         u32 eir = I915_READ(EIR);
2513         int pipe, i;
2514
2515         if (!eir)
2516                 return;
2517
2518         pr_err("render error detected, EIR: 0x%08x\n", eir);
2519
2520         i915_get_extra_instdone(dev, instdone);
2521
2522         if (IS_G4X(dev)) {
2523                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2524                         u32 ipeir = I915_READ(IPEIR_I965);
2525
2526                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2527                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2528                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2529                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2530                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2531                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2532                         I915_WRITE(IPEIR_I965, ipeir);
2533                         POSTING_READ(IPEIR_I965);
2534                 }
2535                 if (eir & GM45_ERROR_PAGE_TABLE) {
2536                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2537                         pr_err("page table error\n");
2538                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2539                         I915_WRITE(PGTBL_ER, pgtbl_err);
2540                         POSTING_READ(PGTBL_ER);
2541                 }
2542         }
2543
2544         if (!IS_GEN2(dev)) {
2545                 if (eir & I915_ERROR_PAGE_TABLE) {
2546                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2547                         pr_err("page table error\n");
2548                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2549                         I915_WRITE(PGTBL_ER, pgtbl_err);
2550                         POSTING_READ(PGTBL_ER);
2551                 }
2552         }
2553
2554         if (eir & I915_ERROR_MEMORY_REFRESH) {
2555                 pr_err("memory refresh error:\n");
2556                 for_each_pipe(dev_priv, pipe)
2557                         pr_err("pipe %c stat: 0x%08x\n",
2558                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2559                 /* pipestat has already been acked */
2560         }
2561         if (eir & I915_ERROR_INSTRUCTION) {
2562                 pr_err("instruction error\n");
2563                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2564                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2565                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2566                 if (INTEL_INFO(dev)->gen < 4) {
2567                         u32 ipeir = I915_READ(IPEIR);
2568
2569                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2570                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2571                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2572                         I915_WRITE(IPEIR, ipeir);
2573                         POSTING_READ(IPEIR);
2574                 } else {
2575                         u32 ipeir = I915_READ(IPEIR_I965);
2576
2577                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2578                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2579                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2580                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2581                         I915_WRITE(IPEIR_I965, ipeir);
2582                         POSTING_READ(IPEIR_I965);
2583                 }
2584         }
2585
2586         I915_WRITE(EIR, eir);
2587         POSTING_READ(EIR);
2588         eir = I915_READ(EIR);
2589         if (eir) {
2590                 /*
2591                  * some errors might have become stuck,
2592                  * mask them.
2593                  */
2594                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2595                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2596                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2597         }
2598 }
2599
2600 /**
2601  * i915_handle_error - handle an error interrupt
2602  * @dev: drm device
2603  *
2604  * Do some basic checking of regsiter state at error interrupt time and
2605  * dump it to the syslog.  Also call i915_capture_error_state() to make
2606  * sure we get a record and make it available in debugfs.  Fire a uevent
2607  * so userspace knows something bad happened (should trigger collection
2608  * of a ring dump etc.).
2609  */
2610 void i915_handle_error(struct drm_device *dev, bool wedged,
2611                        const char *fmt, ...)
2612 {
2613         struct drm_i915_private *dev_priv = dev->dev_private;
2614         va_list args;
2615         char error_msg[80];
2616
2617         va_start(args, fmt);
2618         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2619         va_end(args);
2620
2621         i915_capture_error_state(dev, wedged, error_msg);
2622         i915_report_and_clear_eir(dev);
2623
2624         if (wedged) {
2625                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2626                                 &dev_priv->gpu_error.reset_counter);
2627
2628                 /*
2629                  * Wakeup waiting processes so that the reset work function
2630                  * i915_error_work_func doesn't deadlock trying to grab various
2631                  * locks. By bumping the reset counter first, the woken
2632                  * processes will see a reset in progress and back off,
2633                  * releasing their locks and then wait for the reset completion.
2634                  * We must do this for _all_ gpu waiters that might hold locks
2635                  * that the reset work needs to acquire.
2636                  *
2637                  * Note: The wake_up serves as the required memory barrier to
2638                  * ensure that the waiters see the updated value of the reset
2639                  * counter atomic_t.
2640                  */
2641                 i915_error_wake_up(dev_priv, false);
2642         }
2643
2644         /*
2645          * Our reset work can grab modeset locks (since it needs to reset the
2646          * state of outstanding pagelips). Hence it must not be run on our own
2647          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2648          * code will deadlock.
2649          */
2650         schedule_work(&dev_priv->gpu_error.work);
2651 }
2652
2653 /* Called from drm generic code, passed 'crtc' which
2654  * we use as a pipe index
2655  */
2656 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2657 {
2658         struct drm_i915_private *dev_priv = dev->dev_private;
2659         unsigned long irqflags;
2660
2661         if (!i915_pipe_enabled(dev, pipe))
2662                 return -EINVAL;
2663
2664         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2665         if (INTEL_INFO(dev)->gen >= 4)
2666                 i915_enable_pipestat(dev_priv, pipe,
2667                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2668         else
2669                 i915_enable_pipestat(dev_priv, pipe,
2670                                      PIPE_VBLANK_INTERRUPT_STATUS);
2671         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2672
2673         return 0;
2674 }
2675
2676 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2677 {
2678         struct drm_i915_private *dev_priv = dev->dev_private;
2679         unsigned long irqflags;
2680         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2681                                                      DE_PIPE_VBLANK(pipe);
2682
2683         if (!i915_pipe_enabled(dev, pipe))
2684                 return -EINVAL;
2685
2686         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2687         ironlake_enable_display_irq(dev_priv, bit);
2688         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2689
2690         return 0;
2691 }
2692
2693 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2694 {
2695         struct drm_i915_private *dev_priv = dev->dev_private;
2696         unsigned long irqflags;
2697
2698         if (!i915_pipe_enabled(dev, pipe))
2699                 return -EINVAL;
2700
2701         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2702         i915_enable_pipestat(dev_priv, pipe,
2703                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2704         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2705
2706         return 0;
2707 }
2708
2709 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2710 {
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         unsigned long irqflags;
2713
2714         if (!i915_pipe_enabled(dev, pipe))
2715                 return -EINVAL;
2716
2717         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2718         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2719         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2720         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2721         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2722         return 0;
2723 }
2724
2725 /* Called from drm generic code, passed 'crtc' which
2726  * we use as a pipe index
2727  */
2728 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2729 {
2730         struct drm_i915_private *dev_priv = dev->dev_private;
2731         unsigned long irqflags;
2732
2733         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2734         i915_disable_pipestat(dev_priv, pipe,
2735                               PIPE_VBLANK_INTERRUPT_STATUS |
2736                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2737         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2738 }
2739
2740 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2741 {
2742         struct drm_i915_private *dev_priv = dev->dev_private;
2743         unsigned long irqflags;
2744         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2745                                                      DE_PIPE_VBLANK(pipe);
2746
2747         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2748         ironlake_disable_display_irq(dev_priv, bit);
2749         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2750 }
2751
2752 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2753 {
2754         struct drm_i915_private *dev_priv = dev->dev_private;
2755         unsigned long irqflags;
2756
2757         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2758         i915_disable_pipestat(dev_priv, pipe,
2759                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2760         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2761 }
2762
2763 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2764 {
2765         struct drm_i915_private *dev_priv = dev->dev_private;
2766         unsigned long irqflags;
2767
2768         if (!i915_pipe_enabled(dev, pipe))
2769                 return;
2770
2771         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2772         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2773         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2774         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2775         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2776 }
2777
2778 static struct drm_i915_gem_request *
2779 ring_last_request(struct intel_engine_cs *ring)
2780 {
2781         return list_entry(ring->request_list.prev,
2782                           struct drm_i915_gem_request, list);
2783 }
2784
2785 static bool
2786 ring_idle(struct intel_engine_cs *ring)
2787 {
2788         return (list_empty(&ring->request_list) ||
2789                 i915_gem_request_completed(ring_last_request(ring), false));
2790 }
2791
2792 static bool
2793 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2794 {
2795         if (INTEL_INFO(dev)->gen >= 8) {
2796                 return (ipehr >> 23) == 0x1c;
2797         } else {
2798                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2799                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2800                                  MI_SEMAPHORE_REGISTER);
2801         }
2802 }
2803
2804 static struct intel_engine_cs *
2805 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2806 {
2807         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2808         struct intel_engine_cs *signaller;
2809         int i;
2810
2811         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2812                 for_each_ring(signaller, dev_priv, i) {
2813                         if (ring == signaller)
2814                                 continue;
2815
2816                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2817                                 return signaller;
2818                 }
2819         } else {
2820                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2821
2822                 for_each_ring(signaller, dev_priv, i) {
2823                         if(ring == signaller)
2824                                 continue;
2825
2826                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2827                                 return signaller;
2828                 }
2829         }
2830
2831         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2832                   ring->id, ipehr, offset);
2833
2834         return NULL;
2835 }
2836
2837 static struct intel_engine_cs *
2838 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2839 {
2840         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2841         u32 cmd, ipehr, head;
2842         u64 offset = 0;
2843         int i, backwards;
2844
2845         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2846         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2847                 return NULL;
2848
2849         /*
2850          * HEAD is likely pointing to the dword after the actual command,
2851          * so scan backwards until we find the MBOX. But limit it to just 3
2852          * or 4 dwords depending on the semaphore wait command size.
2853          * Note that we don't care about ACTHD here since that might
2854          * point at at batch, and semaphores are always emitted into the
2855          * ringbuffer itself.
2856          */
2857         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2858         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2859
2860         for (i = backwards; i; --i) {
2861                 /*
2862                  * Be paranoid and presume the hw has gone off into the wild -
2863                  * our ring is smaller than what the hardware (and hence
2864                  * HEAD_ADDR) allows. Also handles wrap-around.
2865                  */
2866                 head &= ring->buffer->size - 1;
2867
2868                 /* This here seems to blow up */
2869                 cmd = ioread32(ring->buffer->virtual_start + head);
2870                 if (cmd == ipehr)
2871                         break;
2872
2873                 head -= 4;
2874         }
2875
2876         if (!i)
2877                 return NULL;
2878
2879         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2880         if (INTEL_INFO(ring->dev)->gen >= 8) {
2881                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2882                 offset <<= 32;
2883                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2884         }
2885         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2886 }
2887
2888 static int semaphore_passed(struct intel_engine_cs *ring)
2889 {
2890         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2891         struct intel_engine_cs *signaller;
2892         u32 seqno;
2893
2894         ring->hangcheck.deadlock++;
2895
2896         signaller = semaphore_waits_for(ring, &seqno);
2897         if (signaller == NULL)
2898                 return -1;
2899
2900         /* Prevent pathological recursion due to driver bugs */
2901         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2902                 return -1;
2903
2904         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2905                 return 1;
2906
2907         /* cursory check for an unkickable deadlock */
2908         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2909             semaphore_passed(signaller) < 0)
2910                 return -1;
2911
2912         return 0;
2913 }
2914
2915 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2916 {
2917         struct intel_engine_cs *ring;
2918         int i;
2919
2920         for_each_ring(ring, dev_priv, i)
2921                 ring->hangcheck.deadlock = 0;
2922 }
2923
2924 static enum intel_ring_hangcheck_action
2925 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2926 {
2927         struct drm_device *dev = ring->dev;
2928         struct drm_i915_private *dev_priv = dev->dev_private;
2929         u32 tmp;
2930
2931         if (acthd != ring->hangcheck.acthd) {
2932                 if (acthd > ring->hangcheck.max_acthd) {
2933                         ring->hangcheck.max_acthd = acthd;
2934                         return HANGCHECK_ACTIVE;
2935                 }
2936
2937                 return HANGCHECK_ACTIVE_LOOP;
2938         }
2939
2940         if (IS_GEN2(dev))
2941                 return HANGCHECK_HUNG;
2942
2943         /* Is the chip hanging on a WAIT_FOR_EVENT?
2944          * If so we can simply poke the RB_WAIT bit
2945          * and break the hang. This should work on
2946          * all but the second generation chipsets.
2947          */
2948         tmp = I915_READ_CTL(ring);
2949         if (tmp & RING_WAIT) {
2950                 i915_handle_error(dev, false,
2951                                   "Kicking stuck wait on %s",
2952                                   ring->name);
2953                 I915_WRITE_CTL(ring, tmp);
2954                 return HANGCHECK_KICK;
2955         }
2956
2957         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2958                 switch (semaphore_passed(ring)) {
2959                 default:
2960                         return HANGCHECK_HUNG;
2961                 case 1:
2962                         i915_handle_error(dev, false,
2963                                           "Kicking stuck semaphore on %s",
2964                                           ring->name);
2965                         I915_WRITE_CTL(ring, tmp);
2966                         return HANGCHECK_KICK;
2967                 case 0:
2968                         return HANGCHECK_WAIT;
2969                 }
2970         }
2971
2972         return HANGCHECK_HUNG;
2973 }
2974
2975 /**
2976  * This is called when the chip hasn't reported back with completed
2977  * batchbuffers in a long time. We keep track per ring seqno progress and
2978  * if there are no progress, hangcheck score for that ring is increased.
2979  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2980  * we kick the ring. If we see no progress on three subsequent calls
2981  * we assume chip is wedged and try to fix it by resetting the chip.
2982  */
2983 static void i915_hangcheck_elapsed(unsigned long data)
2984 {
2985         struct drm_device *dev = (struct drm_device *)data;
2986         struct drm_i915_private *dev_priv = dev->dev_private;
2987         struct intel_engine_cs *ring;
2988         int i;
2989         int busy_count = 0, rings_hung = 0;
2990         bool stuck[I915_NUM_RINGS] = { 0 };
2991 #define BUSY 1
2992 #define KICK 5
2993 #define HUNG 20
2994
2995         if (!i915.enable_hangcheck)
2996                 return;
2997
2998         for_each_ring(ring, dev_priv, i) {
2999                 u64 acthd;
3000                 u32 seqno;
3001                 bool busy = true;
3002
3003                 semaphore_clear_deadlocks(dev_priv);
3004
3005                 seqno = ring->get_seqno(ring, false);
3006                 acthd = intel_ring_get_active_head(ring);
3007
3008                 if (ring->hangcheck.seqno == seqno) {
3009                         if (ring_idle(ring)) {
3010                                 ring->hangcheck.action = HANGCHECK_IDLE;
3011
3012                                 if (waitqueue_active(&ring->irq_queue)) {
3013                                         /* Issue a wake-up to catch stuck h/w. */
3014                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3015                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3016                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3017                                                                   ring->name);
3018                                                 else
3019                                                         DRM_INFO("Fake missed irq on %s\n",
3020                                                                  ring->name);
3021                                                 wake_up_all(&ring->irq_queue);
3022                                         }
3023                                         /* Safeguard against driver failure */
3024                                         ring->hangcheck.score += BUSY;
3025                                 } else
3026                                         busy = false;
3027                         } else {
3028                                 /* We always increment the hangcheck score
3029                                  * if the ring is busy and still processing
3030                                  * the same request, so that no single request
3031                                  * can run indefinitely (such as a chain of
3032                                  * batches). The only time we do not increment
3033                                  * the hangcheck score on this ring, if this
3034                                  * ring is in a legitimate wait for another
3035                                  * ring. In that case the waiting ring is a
3036                                  * victim and we want to be sure we catch the
3037                                  * right culprit. Then every time we do kick
3038                                  * the ring, add a small increment to the
3039                                  * score so that we can catch a batch that is
3040                                  * being repeatedly kicked and so responsible
3041                                  * for stalling the machine.
3042                                  */
3043                                 ring->hangcheck.action = ring_stuck(ring,
3044                                                                     acthd);
3045
3046                                 switch (ring->hangcheck.action) {
3047                                 case HANGCHECK_IDLE:
3048                                 case HANGCHECK_WAIT:
3049                                 case HANGCHECK_ACTIVE:
3050                                         break;
3051                                 case HANGCHECK_ACTIVE_LOOP:
3052                                         ring->hangcheck.score += BUSY;
3053                                         break;
3054                                 case HANGCHECK_KICK:
3055                                         ring->hangcheck.score += KICK;
3056                                         break;
3057                                 case HANGCHECK_HUNG:
3058                                         ring->hangcheck.score += HUNG;
3059                                         stuck[i] = true;
3060                                         break;
3061                                 }
3062                         }
3063                 } else {
3064                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3065
3066                         /* Gradually reduce the count so that we catch DoS
3067                          * attempts across multiple batches.
3068                          */
3069                         if (ring->hangcheck.score > 0)
3070                                 ring->hangcheck.score--;
3071
3072                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3073                 }
3074
3075                 ring->hangcheck.seqno = seqno;
3076                 ring->hangcheck.acthd = acthd;
3077                 busy_count += busy;
3078         }
3079
3080         for_each_ring(ring, dev_priv, i) {
3081                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3082                         DRM_INFO("%s on %s\n",
3083                                  stuck[i] ? "stuck" : "no progress",
3084                                  ring->name);
3085                         rings_hung++;
3086                 }
3087         }
3088
3089         if (rings_hung)
3090                 return i915_handle_error(dev, true, "Ring hung");
3091
3092         if (busy_count)
3093                 /* Reset timer case chip hangs without another request
3094                  * being added */
3095                 i915_queue_hangcheck(dev);
3096 }
3097
3098 void i915_queue_hangcheck(struct drm_device *dev)
3099 {
3100         struct drm_i915_private *dev_priv = dev->dev_private;
3101         struct timer_list *timer = &dev_priv->gpu_error.hangcheck_timer;
3102
3103         if (!i915.enable_hangcheck)
3104                 return;
3105
3106         /* Don't continually defer the hangcheck, but make sure it is active */
3107         if (timer_pending(timer))
3108                 return;
3109         mod_timer(timer,
3110                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3111 }
3112
3113 static void ibx_irq_reset(struct drm_device *dev)
3114 {
3115         struct drm_i915_private *dev_priv = dev->dev_private;
3116
3117         if (HAS_PCH_NOP(dev))
3118                 return;
3119
3120         GEN5_IRQ_RESET(SDE);
3121
3122         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3123                 I915_WRITE(SERR_INT, 0xffffffff);
3124 }
3125
3126 /*
3127  * SDEIER is also touched by the interrupt handler to work around missed PCH
3128  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3129  * instead we unconditionally enable all PCH interrupt sources here, but then
3130  * only unmask them as needed with SDEIMR.
3131  *
3132  * This function needs to be called before interrupts are enabled.
3133  */
3134 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3135 {
3136         struct drm_i915_private *dev_priv = dev->dev_private;
3137
3138         if (HAS_PCH_NOP(dev))
3139                 return;
3140
3141         WARN_ON(I915_READ(SDEIER) != 0);
3142         I915_WRITE(SDEIER, 0xffffffff);
3143         POSTING_READ(SDEIER);
3144 }
3145
3146 static void gen5_gt_irq_reset(struct drm_device *dev)
3147 {
3148         struct drm_i915_private *dev_priv = dev->dev_private;
3149
3150         GEN5_IRQ_RESET(GT);
3151         if (INTEL_INFO(dev)->gen >= 6)
3152                 GEN5_IRQ_RESET(GEN6_PM);
3153 }
3154
3155 /* drm_dma.h hooks
3156 */
3157 static void ironlake_irq_reset(struct drm_device *dev)
3158 {
3159         struct drm_i915_private *dev_priv = dev->dev_private;
3160
3161         I915_WRITE(HWSTAM, 0xffffffff);
3162
3163         GEN5_IRQ_RESET(DE);
3164         if (IS_GEN7(dev))
3165                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3166
3167         gen5_gt_irq_reset(dev);
3168
3169         ibx_irq_reset(dev);
3170 }
3171
3172 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3173 {
3174         enum pipe pipe;
3175
3176         I915_WRITE(PORT_HOTPLUG_EN, 0);
3177         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3178
3179         for_each_pipe(dev_priv, pipe)
3180                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3181
3182         GEN5_IRQ_RESET(VLV_);
3183 }
3184
3185 static void valleyview_irq_preinstall(struct drm_device *dev)
3186 {
3187         struct drm_i915_private *dev_priv = dev->dev_private;
3188
3189         /* VLV magic */
3190         I915_WRITE(VLV_IMR, 0);
3191         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3192         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3193         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3194
3195         gen5_gt_irq_reset(dev);
3196
3197         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3198
3199         vlv_display_irq_reset(dev_priv);
3200 }
3201
3202 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3203 {
3204         GEN8_IRQ_RESET_NDX(GT, 0);
3205         GEN8_IRQ_RESET_NDX(GT, 1);
3206         GEN8_IRQ_RESET_NDX(GT, 2);
3207         GEN8_IRQ_RESET_NDX(GT, 3);
3208 }
3209
3210 static void gen8_irq_reset(struct drm_device *dev)
3211 {
3212         struct drm_i915_private *dev_priv = dev->dev_private;
3213         int pipe;
3214
3215         I915_WRITE(GEN8_MASTER_IRQ, 0);
3216         POSTING_READ(GEN8_MASTER_IRQ);
3217
3218         gen8_gt_irq_reset(dev_priv);
3219
3220         for_each_pipe(dev_priv, pipe)
3221                 if (intel_display_power_is_enabled(dev_priv,
3222                                                    POWER_DOMAIN_PIPE(pipe)))
3223                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3224
3225         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3226         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3227         GEN5_IRQ_RESET(GEN8_PCU_);
3228
3229         ibx_irq_reset(dev);
3230 }
3231
3232 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3233 {
3234         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3235
3236         spin_lock_irq(&dev_priv->irq_lock);
3237         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3238                           ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3239         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3240                           ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3241         spin_unlock_irq(&dev_priv->irq_lock);
3242 }
3243
3244 static void cherryview_irq_preinstall(struct drm_device *dev)
3245 {
3246         struct drm_i915_private *dev_priv = dev->dev_private;
3247
3248         I915_WRITE(GEN8_MASTER_IRQ, 0);
3249         POSTING_READ(GEN8_MASTER_IRQ);
3250
3251         gen8_gt_irq_reset(dev_priv);
3252
3253         GEN5_IRQ_RESET(GEN8_PCU_);
3254
3255         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3256
3257         vlv_display_irq_reset(dev_priv);
3258 }
3259
3260 static void ibx_hpd_irq_setup(struct drm_device *dev)
3261 {
3262         struct drm_i915_private *dev_priv = dev->dev_private;
3263         struct intel_encoder *intel_encoder;
3264         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3265
3266         if (HAS_PCH_IBX(dev)) {
3267                 hotplug_irqs = SDE_HOTPLUG_MASK;
3268                 for_each_intel_encoder(dev, intel_encoder)
3269                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3270                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3271         } else {
3272                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3273                 for_each_intel_encoder(dev, intel_encoder)
3274                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3275                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3276         }
3277
3278         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3279
3280         /*
3281          * Enable digital hotplug on the PCH, and configure the DP short pulse
3282          * duration to 2ms (which is the minimum in the Display Port spec)
3283          *
3284          * This register is the same on all known PCH chips.
3285          */
3286         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3287         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3288         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3289         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3290         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3291         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3292 }
3293
3294 static void ibx_irq_postinstall(struct drm_device *dev)
3295 {
3296         struct drm_i915_private *dev_priv = dev->dev_private;
3297         u32 mask;
3298
3299         if (HAS_PCH_NOP(dev))
3300                 return;
3301
3302         if (HAS_PCH_IBX(dev))
3303                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3304         else
3305                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3306
3307         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3308         I915_WRITE(SDEIMR, ~mask);
3309 }
3310
3311 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3312 {
3313         struct drm_i915_private *dev_priv = dev->dev_private;
3314         u32 pm_irqs, gt_irqs;
3315
3316         pm_irqs = gt_irqs = 0;
3317
3318         dev_priv->gt_irq_mask = ~0;
3319         if (HAS_L3_DPF(dev)) {
3320                 /* L3 parity interrupt is always unmasked. */
3321                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3322                 gt_irqs |= GT_PARITY_ERROR(dev);
3323         }
3324
3325         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3326         if (IS_GEN5(dev)) {
3327                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3328                            ILK_BSD_USER_INTERRUPT;
3329         } else {
3330                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3331         }
3332
3333         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3334
3335         if (INTEL_INFO(dev)->gen >= 6) {
3336                 /*
3337                  * RPS interrupts will get enabled/disabled on demand when RPS
3338                  * itself is enabled/disabled.
3339                  */
3340                 if (HAS_VEBOX(dev))
3341                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3342
3343                 dev_priv->pm_irq_mask = 0xffffffff;
3344                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3345         }
3346 }
3347
3348 static int ironlake_irq_postinstall(struct drm_device *dev)
3349 {
3350         struct drm_i915_private *dev_priv = dev->dev_private;
3351         u32 display_mask, extra_mask;
3352
3353         if (INTEL_INFO(dev)->gen >= 7) {
3354                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3355                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3356                                 DE_PLANEB_FLIP_DONE_IVB |
3357                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3358                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3359                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3360         } else {
3361                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3362                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3363                                 DE_AUX_CHANNEL_A |
3364                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3365                                 DE_POISON);
3366                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3367                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3368         }
3369
3370         dev_priv->irq_mask = ~display_mask;
3371
3372         I915_WRITE(HWSTAM, 0xeffe);
3373
3374         ibx_irq_pre_postinstall(dev);
3375
3376         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3377
3378         gen5_gt_irq_postinstall(dev);
3379
3380         ibx_irq_postinstall(dev);
3381
3382         if (IS_IRONLAKE_M(dev)) {
3383                 /* Enable PCU event interrupts
3384                  *
3385                  * spinlocking not required here for correctness since interrupt
3386                  * setup is guaranteed to run in single-threaded context. But we
3387                  * need it to make the assert_spin_locked happy. */
3388                 spin_lock_irq(&dev_priv->irq_lock);
3389                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3390                 spin_unlock_irq(&dev_priv->irq_lock);
3391         }
3392
3393         return 0;
3394 }
3395
3396 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3397 {
3398         u32 pipestat_mask;
3399         u32 iir_mask;
3400         enum pipe pipe;
3401
3402         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3403                         PIPE_FIFO_UNDERRUN_STATUS;
3404
3405         for_each_pipe(dev_priv, pipe)
3406                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3407         POSTING_READ(PIPESTAT(PIPE_A));
3408
3409         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3410                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3411
3412         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3413         for_each_pipe(dev_priv, pipe)
3414                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3415
3416         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3417                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3418                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3419         if (IS_CHERRYVIEW(dev_priv))
3420                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3421         dev_priv->irq_mask &= ~iir_mask;
3422
3423         I915_WRITE(VLV_IIR, iir_mask);
3424         I915_WRITE(VLV_IIR, iir_mask);
3425         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3426         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3427         POSTING_READ(VLV_IMR);
3428 }
3429
3430 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3431 {
3432         u32 pipestat_mask;
3433         u32 iir_mask;
3434         enum pipe pipe;
3435
3436         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3437                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3438                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3439         if (IS_CHERRYVIEW(dev_priv))
3440                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3441
3442         dev_priv->irq_mask |= iir_mask;
3443         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3444         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3445         I915_WRITE(VLV_IIR, iir_mask);
3446         I915_WRITE(VLV_IIR, iir_mask);
3447         POSTING_READ(VLV_IIR);
3448
3449         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3450                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3451
3452         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3453         for_each_pipe(dev_priv, pipe)
3454                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3455
3456         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3457                         PIPE_FIFO_UNDERRUN_STATUS;
3458
3459         for_each_pipe(dev_priv, pipe)
3460                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3461         POSTING_READ(PIPESTAT(PIPE_A));
3462 }
3463
3464 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3465 {
3466         assert_spin_locked(&dev_priv->irq_lock);
3467
3468         if (dev_priv->display_irqs_enabled)
3469                 return;
3470
3471         dev_priv->display_irqs_enabled = true;
3472
3473         if (intel_irqs_enabled(dev_priv))
3474                 valleyview_display_irqs_install(dev_priv);
3475 }
3476
3477 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3478 {
3479         assert_spin_locked(&dev_priv->irq_lock);
3480
3481         if (!dev_priv->display_irqs_enabled)
3482                 return;
3483
3484         dev_priv->display_irqs_enabled = false;
3485
3486         if (intel_irqs_enabled(dev_priv))
3487                 valleyview_display_irqs_uninstall(dev_priv);
3488 }
3489
3490 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3491 {
3492         dev_priv->irq_mask = ~0;
3493
3494         I915_WRITE(PORT_HOTPLUG_EN, 0);
3495         POSTING_READ(PORT_HOTPLUG_EN);
3496
3497         I915_WRITE(VLV_IIR, 0xffffffff);
3498         I915_WRITE(VLV_IIR, 0xffffffff);
3499         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3500         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3501         POSTING_READ(VLV_IMR);
3502
3503         /* Interrupt setup is already guaranteed to be single-threaded, this is
3504          * just to make the assert_spin_locked check happy. */
3505         spin_lock_irq(&dev_priv->irq_lock);
3506         if (dev_priv->display_irqs_enabled)
3507                 valleyview_display_irqs_install(dev_priv);
3508         spin_unlock_irq(&dev_priv->irq_lock);
3509 }
3510
3511 static int valleyview_irq_postinstall(struct drm_device *dev)
3512 {
3513         struct drm_i915_private *dev_priv = dev->dev_private;
3514
3515         vlv_display_irq_postinstall(dev_priv);
3516
3517         gen5_gt_irq_postinstall(dev);
3518
3519         /* ack & enable invalid PTE error interrupts */
3520 #if 0 /* FIXME: add support to irq handler for checking these bits */
3521         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3522         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3523 #endif
3524
3525         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3526
3527         return 0;
3528 }
3529
3530 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3531 {
3532         /* These are interrupts we'll toggle with the ring mask register */
3533         uint32_t gt_interrupts[] = {
3534                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3535                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3536                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3537                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3538                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3539                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3540                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3541                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3542                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3543                 0,
3544                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3545                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3546                 };
3547
3548         dev_priv->pm_irq_mask = 0xffffffff;
3549         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3550         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3551         /*
3552          * RPS interrupts will get enabled/disabled on demand when RPS itself
3553          * is enabled/disabled.
3554          */
3555         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3556         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3557 }
3558
3559 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3560 {
3561         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3562         uint32_t de_pipe_enables;
3563         int pipe;
3564         u32 aux_en = GEN8_AUX_CHANNEL_A;
3565
3566         if (IS_GEN9(dev_priv)) {
3567                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3568                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3569                 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3570                         GEN9_AUX_CHANNEL_D;
3571         } else
3572                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3573                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3574
3575         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3576                                            GEN8_PIPE_FIFO_UNDERRUN;
3577
3578         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3579         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3580         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3581
3582         for_each_pipe(dev_priv, pipe)
3583                 if (intel_display_power_is_enabled(dev_priv,
3584                                 POWER_DOMAIN_PIPE(pipe)))
3585                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3586                                           dev_priv->de_irq_mask[pipe],
3587                                           de_pipe_enables);
3588
3589         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3590 }
3591
3592 static int gen8_irq_postinstall(struct drm_device *dev)
3593 {
3594         struct drm_i915_private *dev_priv = dev->dev_private;
3595
3596         ibx_irq_pre_postinstall(dev);
3597
3598         gen8_gt_irq_postinstall(dev_priv);
3599         gen8_de_irq_postinstall(dev_priv);
3600
3601         ibx_irq_postinstall(dev);
3602
3603         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3604         POSTING_READ(GEN8_MASTER_IRQ);
3605
3606         return 0;
3607 }
3608
3609 static int cherryview_irq_postinstall(struct drm_device *dev)
3610 {
3611         struct drm_i915_private *dev_priv = dev->dev_private;
3612
3613         vlv_display_irq_postinstall(dev_priv);
3614
3615         gen8_gt_irq_postinstall(dev_priv);
3616
3617         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3618         POSTING_READ(GEN8_MASTER_IRQ);
3619
3620         return 0;
3621 }
3622
3623 static void gen8_irq_uninstall(struct drm_device *dev)
3624 {
3625         struct drm_i915_private *dev_priv = dev->dev_private;
3626
3627         if (!dev_priv)
3628                 return;
3629
3630         gen8_irq_reset(dev);
3631 }
3632
3633 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3634 {
3635         /* Interrupt setup is already guaranteed to be single-threaded, this is
3636          * just to make the assert_spin_locked check happy. */
3637         spin_lock_irq(&dev_priv->irq_lock);
3638         if (dev_priv->display_irqs_enabled)
3639                 valleyview_display_irqs_uninstall(dev_priv);
3640         spin_unlock_irq(&dev_priv->irq_lock);
3641
3642         vlv_display_irq_reset(dev_priv);
3643
3644         dev_priv->irq_mask = ~0;
3645 }
3646
3647 static void valleyview_irq_uninstall(struct drm_device *dev)
3648 {
3649         struct drm_i915_private *dev_priv = dev->dev_private;
3650
3651         if (!dev_priv)
3652                 return;
3653
3654         I915_WRITE(VLV_MASTER_IER, 0);
3655
3656         gen5_gt_irq_reset(dev);
3657
3658         I915_WRITE(HWSTAM, 0xffffffff);
3659
3660         vlv_display_irq_uninstall(dev_priv);
3661 }
3662
3663 static void cherryview_irq_uninstall(struct drm_device *dev)
3664 {
3665         struct drm_i915_private *dev_priv = dev->dev_private;
3666
3667         if (!dev_priv)
3668                 return;
3669
3670         I915_WRITE(GEN8_MASTER_IRQ, 0);
3671         POSTING_READ(GEN8_MASTER_IRQ);
3672
3673         gen8_gt_irq_reset(dev_priv);
3674
3675         GEN5_IRQ_RESET(GEN8_PCU_);
3676
3677         vlv_display_irq_uninstall(dev_priv);
3678 }
3679
3680 static void ironlake_irq_uninstall(struct drm_device *dev)
3681 {
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683
3684         if (!dev_priv)
3685                 return;
3686
3687         ironlake_irq_reset(dev);
3688 }
3689
3690 static void i8xx_irq_preinstall(struct drm_device * dev)
3691 {
3692         struct drm_i915_private *dev_priv = dev->dev_private;
3693         int pipe;
3694
3695         for_each_pipe(dev_priv, pipe)
3696                 I915_WRITE(PIPESTAT(pipe), 0);
3697         I915_WRITE16(IMR, 0xffff);
3698         I915_WRITE16(IER, 0x0);
3699         POSTING_READ16(IER);
3700 }
3701
3702 static int i8xx_irq_postinstall(struct drm_device *dev)
3703 {
3704         struct drm_i915_private *dev_priv = dev->dev_private;
3705
3706         I915_WRITE16(EMR,
3707                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3708
3709         /* Unmask the interrupts that we always want on. */
3710         dev_priv->irq_mask =
3711                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3712                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3713                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3714                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3715                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3716         I915_WRITE16(IMR, dev_priv->irq_mask);
3717
3718         I915_WRITE16(IER,
3719                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3720                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3721                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3722                      I915_USER_INTERRUPT);
3723         POSTING_READ16(IER);
3724
3725         /* Interrupt setup is already guaranteed to be single-threaded, this is
3726          * just to make the assert_spin_locked check happy. */
3727         spin_lock_irq(&dev_priv->irq_lock);
3728         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3729         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3730         spin_unlock_irq(&dev_priv->irq_lock);
3731
3732         return 0;
3733 }
3734
3735 /*
3736  * Returns true when a page flip has completed.
3737  */
3738 static bool i8xx_handle_vblank(struct drm_device *dev,
3739                                int plane, int pipe, u32 iir)
3740 {
3741         struct drm_i915_private *dev_priv = dev->dev_private;
3742         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3743
3744         if (!intel_pipe_handle_vblank(dev, pipe))
3745                 return false;
3746
3747         if ((iir & flip_pending) == 0)
3748                 goto check_page_flip;
3749
3750         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3751          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3752          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3753          * the flip is completed (no longer pending). Since this doesn't raise
3754          * an interrupt per se, we watch for the change at vblank.
3755          */
3756         if (I915_READ16(ISR) & flip_pending)
3757                 goto check_page_flip;
3758
3759         intel_prepare_page_flip(dev, plane);
3760         intel_finish_page_flip(dev, pipe);
3761         return true;
3762
3763 check_page_flip:
3764         intel_check_page_flip(dev, pipe);
3765         return false;
3766 }
3767
3768 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3769 {
3770         struct drm_device *dev = arg;
3771         struct drm_i915_private *dev_priv = dev->dev_private;
3772         u16 iir, new_iir;
3773         u32 pipe_stats[2];
3774         int pipe;
3775         u16 flip_mask =
3776                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3777                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3778
3779         iir = I915_READ16(IIR);
3780         if (iir == 0)
3781                 return IRQ_NONE;
3782
3783         while (iir & ~flip_mask) {
3784                 /* Can't rely on pipestat interrupt bit in iir as it might
3785                  * have been cleared after the pipestat interrupt was received.
3786                  * It doesn't set the bit in iir again, but it still produces
3787                  * interrupts (for non-MSI).
3788                  */
3789                 spin_lock(&dev_priv->irq_lock);
3790                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3791                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3792
3793                 for_each_pipe(dev_priv, pipe) {
3794                         int reg = PIPESTAT(pipe);
3795                         pipe_stats[pipe] = I915_READ(reg);
3796
3797                         /*
3798                          * Clear the PIPE*STAT regs before the IIR
3799                          */
3800                         if (pipe_stats[pipe] & 0x8000ffff)
3801                                 I915_WRITE(reg, pipe_stats[pipe]);
3802                 }
3803                 spin_unlock(&dev_priv->irq_lock);
3804
3805                 I915_WRITE16(IIR, iir & ~flip_mask);
3806                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3807
3808                 if (iir & I915_USER_INTERRUPT)
3809                         notify_ring(dev, &dev_priv->ring[RCS]);
3810
3811                 for_each_pipe(dev_priv, pipe) {
3812                         int plane = pipe;
3813                         if (HAS_FBC(dev))
3814                                 plane = !plane;
3815
3816                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3817                             i8xx_handle_vblank(dev, plane, pipe, iir))
3818                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3819
3820                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3821                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3822
3823                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3824                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3825                                                                     pipe);
3826                 }
3827
3828                 iir = new_iir;
3829         }
3830
3831         return IRQ_HANDLED;
3832 }
3833
3834 static void i8xx_irq_uninstall(struct drm_device * dev)
3835 {
3836         struct drm_i915_private *dev_priv = dev->dev_private;
3837         int pipe;
3838
3839         for_each_pipe(dev_priv, pipe) {
3840                 /* Clear enable bits; then clear status bits */
3841                 I915_WRITE(PIPESTAT(pipe), 0);
3842                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3843         }
3844         I915_WRITE16(IMR, 0xffff);
3845         I915_WRITE16(IER, 0x0);
3846         I915_WRITE16(IIR, I915_READ16(IIR));
3847 }
3848
3849 static void i915_irq_preinstall(struct drm_device * dev)
3850 {
3851         struct drm_i915_private *dev_priv = dev->dev_private;
3852         int pipe;
3853
3854         if (I915_HAS_HOTPLUG(dev)) {
3855                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3856                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3857         }
3858
3859         I915_WRITE16(HWSTAM, 0xeffe);
3860         for_each_pipe(dev_priv, pipe)
3861                 I915_WRITE(PIPESTAT(pipe), 0);
3862         I915_WRITE(IMR, 0xffffffff);
3863         I915_WRITE(IER, 0x0);
3864         POSTING_READ(IER);
3865 }
3866
3867 static int i915_irq_postinstall(struct drm_device *dev)
3868 {
3869         struct drm_i915_private *dev_priv = dev->dev_private;
3870         u32 enable_mask;
3871
3872         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3873
3874         /* Unmask the interrupts that we always want on. */
3875         dev_priv->irq_mask =
3876                 ~(I915_ASLE_INTERRUPT |
3877                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3878                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3879                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3880                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3881                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3882
3883         enable_mask =
3884                 I915_ASLE_INTERRUPT |
3885                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3886                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3887                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3888                 I915_USER_INTERRUPT;
3889
3890         if (I915_HAS_HOTPLUG(dev)) {
3891                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3892                 POSTING_READ(PORT_HOTPLUG_EN);
3893
3894                 /* Enable in IER... */
3895                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3896                 /* and unmask in IMR */
3897                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3898         }
3899
3900         I915_WRITE(IMR, dev_priv->irq_mask);
3901         I915_WRITE(IER, enable_mask);
3902         POSTING_READ(IER);
3903
3904         i915_enable_asle_pipestat(dev);
3905
3906         /* Interrupt setup is already guaranteed to be single-threaded, this is
3907          * just to make the assert_spin_locked check happy. */
3908         spin_lock_irq(&dev_priv->irq_lock);
3909         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3911         spin_unlock_irq(&dev_priv->irq_lock);
3912
3913         return 0;
3914 }
3915
3916 /*
3917  * Returns true when a page flip has completed.
3918  */
3919 static bool i915_handle_vblank(struct drm_device *dev,
3920                                int plane, int pipe, u32 iir)
3921 {
3922         struct drm_i915_private *dev_priv = dev->dev_private;
3923         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3924
3925         if (!intel_pipe_handle_vblank(dev, pipe))
3926                 return false;
3927
3928         if ((iir & flip_pending) == 0)
3929                 goto check_page_flip;
3930
3931         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3932          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3933          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3934          * the flip is completed (no longer pending). Since this doesn't raise
3935          * an interrupt per se, we watch for the change at vblank.
3936          */
3937         if (I915_READ(ISR) & flip_pending)
3938                 goto check_page_flip;
3939
3940         intel_prepare_page_flip(dev, plane);
3941         intel_finish_page_flip(dev, pipe);
3942         return true;
3943
3944 check_page_flip:
3945         intel_check_page_flip(dev, pipe);
3946         return false;
3947 }
3948
3949 static irqreturn_t i915_irq_handler(int irq, void *arg)
3950 {
3951         struct drm_device *dev = arg;
3952         struct drm_i915_private *dev_priv = dev->dev_private;
3953         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3954         u32 flip_mask =
3955                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3956                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3957         int pipe, ret = IRQ_NONE;
3958
3959         iir = I915_READ(IIR);
3960         do {
3961                 bool irq_received = (iir & ~flip_mask) != 0;
3962                 bool blc_event = false;
3963
3964                 /* Can't rely on pipestat interrupt bit in iir as it might
3965                  * have been cleared after the pipestat interrupt was received.
3966                  * It doesn't set the bit in iir again, but it still produces
3967                  * interrupts (for non-MSI).
3968                  */
3969                 spin_lock(&dev_priv->irq_lock);
3970                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3971                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3972
3973                 for_each_pipe(dev_priv, pipe) {
3974                         int reg = PIPESTAT(pipe);
3975                         pipe_stats[pipe] = I915_READ(reg);
3976
3977                         /* Clear the PIPE*STAT regs before the IIR */
3978                         if (pipe_stats[pipe] & 0x8000ffff) {
3979                                 I915_WRITE(reg, pipe_stats[pipe]);
3980                                 irq_received = true;
3981                         }
3982                 }
3983                 spin_unlock(&dev_priv->irq_lock);
3984
3985                 if (!irq_received)
3986                         break;
3987
3988                 /* Consume port.  Then clear IIR or we'll miss events */
3989                 if (I915_HAS_HOTPLUG(dev) &&
3990                     iir & I915_DISPLAY_PORT_INTERRUPT)
3991                         i9xx_hpd_irq_handler(dev);
3992
3993                 I915_WRITE(IIR, iir & ~flip_mask);
3994                 new_iir = I915_READ(IIR); /* Flush posted writes */
3995
3996                 if (iir & I915_USER_INTERRUPT)
3997                         notify_ring(dev, &dev_priv->ring[RCS]);
3998
3999                 for_each_pipe(dev_priv, pipe) {
4000                         int plane = pipe;
4001                         if (HAS_FBC(dev))
4002                                 plane = !plane;
4003
4004                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4005                             i915_handle_vblank(dev, plane, pipe, iir))
4006                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4007
4008                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4009                                 blc_event = true;
4010
4011                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4012                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4013
4014                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4015                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4016                                                                     pipe);
4017                 }
4018
4019                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4020                         intel_opregion_asle_intr(dev);
4021
4022                 /* With MSI, interrupts are only generated when iir
4023                  * transitions from zero to nonzero.  If another bit got
4024                  * set while we were handling the existing iir bits, then
4025                  * we would never get another interrupt.
4026                  *
4027                  * This is fine on non-MSI as well, as if we hit this path
4028                  * we avoid exiting the interrupt handler only to generate
4029                  * another one.
4030                  *
4031                  * Note that for MSI this could cause a stray interrupt report
4032                  * if an interrupt landed in the time between writing IIR and
4033                  * the posting read.  This should be rare enough to never
4034                  * trigger the 99% of 100,000 interrupts test for disabling
4035                  * stray interrupts.
4036                  */
4037                 ret = IRQ_HANDLED;
4038                 iir = new_iir;
4039         } while (iir & ~flip_mask);
4040
4041         return ret;
4042 }
4043
4044 static void i915_irq_uninstall(struct drm_device * dev)
4045 {
4046         struct drm_i915_private *dev_priv = dev->dev_private;
4047         int pipe;
4048
4049         if (I915_HAS_HOTPLUG(dev)) {
4050                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4051                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4052         }
4053
4054         I915_WRITE16(HWSTAM, 0xffff);
4055         for_each_pipe(dev_priv, pipe) {
4056                 /* Clear enable bits; then clear status bits */
4057                 I915_WRITE(PIPESTAT(pipe), 0);
4058                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4059         }
4060         I915_WRITE(IMR, 0xffffffff);
4061         I915_WRITE(IER, 0x0);
4062
4063         I915_WRITE(IIR, I915_READ(IIR));
4064 }
4065
4066 static void i965_irq_preinstall(struct drm_device * dev)
4067 {
4068         struct drm_i915_private *dev_priv = dev->dev_private;
4069         int pipe;
4070
4071         I915_WRITE(PORT_HOTPLUG_EN, 0);
4072         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4073
4074         I915_WRITE(HWSTAM, 0xeffe);
4075         for_each_pipe(dev_priv, pipe)
4076                 I915_WRITE(PIPESTAT(pipe), 0);
4077         I915_WRITE(IMR, 0xffffffff);
4078         I915_WRITE(IER, 0x0);
4079         POSTING_READ(IER);
4080 }
4081
4082 static int i965_irq_postinstall(struct drm_device *dev)
4083 {
4084         struct drm_i915_private *dev_priv = dev->dev_private;
4085         u32 enable_mask;
4086         u32 error_mask;
4087
4088         /* Unmask the interrupts that we always want on. */
4089         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4090                                I915_DISPLAY_PORT_INTERRUPT |
4091                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4092                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4093                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4094                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4095                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4096
4097         enable_mask = ~dev_priv->irq_mask;
4098         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4099                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4100         enable_mask |= I915_USER_INTERRUPT;
4101
4102         if (IS_G4X(dev))
4103                 enable_mask |= I915_BSD_USER_INTERRUPT;
4104
4105         /* Interrupt setup is already guaranteed to be single-threaded, this is
4106          * just to make the assert_spin_locked check happy. */
4107         spin_lock_irq(&dev_priv->irq_lock);
4108         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4109         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4110         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4111         spin_unlock_irq(&dev_priv->irq_lock);
4112
4113         /*
4114          * Enable some error detection, note the instruction error mask
4115          * bit is reserved, so we leave it masked.
4116          */
4117         if (IS_G4X(dev)) {
4118                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4119                                GM45_ERROR_MEM_PRIV |
4120                                GM45_ERROR_CP_PRIV |
4121                                I915_ERROR_MEMORY_REFRESH);
4122         } else {
4123                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4124                                I915_ERROR_MEMORY_REFRESH);
4125         }
4126         I915_WRITE(EMR, error_mask);
4127
4128         I915_WRITE(IMR, dev_priv->irq_mask);
4129         I915_WRITE(IER, enable_mask);
4130         POSTING_READ(IER);
4131
4132         I915_WRITE(PORT_HOTPLUG_EN, 0);
4133         POSTING_READ(PORT_HOTPLUG_EN);
4134
4135         i915_enable_asle_pipestat(dev);
4136
4137         return 0;
4138 }
4139
4140 static void i915_hpd_irq_setup(struct drm_device *dev)
4141 {
4142         struct drm_i915_private *dev_priv = dev->dev_private;
4143         struct intel_encoder *intel_encoder;
4144         u32 hotplug_en;
4145
4146         assert_spin_locked(&dev_priv->irq_lock);
4147
4148         hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4149         hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4150         /* Note HDMI and DP share hotplug bits */
4151         /* enable bits are the same for all generations */
4152         for_each_intel_encoder(dev, intel_encoder)
4153                 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4154                         hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4155         /* Programming the CRT detection parameters tends
4156            to generate a spurious hotplug event about three
4157            seconds later.  So just do it once.
4158         */
4159         if (IS_G4X(dev))
4160                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4161         hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4162         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4163
4164         /* Ignore TV since it's buggy */
4165         I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4166 }
4167
4168 static irqreturn_t i965_irq_handler(int irq, void *arg)
4169 {
4170         struct drm_device *dev = arg;
4171         struct drm_i915_private *dev_priv = dev->dev_private;
4172         u32 iir, new_iir;
4173         u32 pipe_stats[I915_MAX_PIPES];
4174         int ret = IRQ_NONE, pipe;
4175         u32 flip_mask =
4176                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4177                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4178
4179         iir = I915_READ(IIR);
4180
4181         for (;;) {
4182                 bool irq_received = (iir & ~flip_mask) != 0;
4183                 bool blc_event = false;
4184
4185                 /* Can't rely on pipestat interrupt bit in iir as it might
4186                  * have been cleared after the pipestat interrupt was received.
4187                  * It doesn't set the bit in iir again, but it still produces
4188                  * interrupts (for non-MSI).
4189                  */
4190                 spin_lock(&dev_priv->irq_lock);
4191                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4192                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4193
4194                 for_each_pipe(dev_priv, pipe) {
4195                         int reg = PIPESTAT(pipe);
4196                         pipe_stats[pipe] = I915_READ(reg);
4197
4198                         /*
4199                          * Clear the PIPE*STAT regs before the IIR
4200                          */
4201                         if (pipe_stats[pipe] & 0x8000ffff) {
4202                                 I915_WRITE(reg, pipe_stats[pipe]);
4203                                 irq_received = true;
4204                         }
4205                 }
4206                 spin_unlock(&dev_priv->irq_lock);
4207
4208                 if (!irq_received)
4209                         break;
4210
4211                 ret = IRQ_HANDLED;
4212
4213                 /* Consume port.  Then clear IIR or we'll miss events */
4214                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4215                         i9xx_hpd_irq_handler(dev);
4216
4217                 I915_WRITE(IIR, iir & ~flip_mask);
4218                 new_iir = I915_READ(IIR); /* Flush posted writes */
4219
4220                 if (iir & I915_USER_INTERRUPT)
4221                         notify_ring(dev, &dev_priv->ring[RCS]);
4222                 if (iir & I915_BSD_USER_INTERRUPT)
4223                         notify_ring(dev, &dev_priv->ring[VCS]);
4224
4225                 for_each_pipe(dev_priv, pipe) {
4226                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4227                             i915_handle_vblank(dev, pipe, pipe, iir))
4228                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4229
4230                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4231                                 blc_event = true;
4232
4233                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4234                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4235
4236                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4237                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4238                 }
4239
4240                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4241                         intel_opregion_asle_intr(dev);
4242
4243                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4244                         gmbus_irq_handler(dev);
4245
4246                 /* With MSI, interrupts are only generated when iir
4247                  * transitions from zero to nonzero.  If another bit got
4248                  * set while we were handling the existing iir bits, then
4249                  * we would never get another interrupt.
4250                  *
4251                  * This is fine on non-MSI as well, as if we hit this path
4252                  * we avoid exiting the interrupt handler only to generate
4253                  * another one.
4254                  *
4255                  * Note that for MSI this could cause a stray interrupt report
4256                  * if an interrupt landed in the time between writing IIR and
4257                  * the posting read.  This should be rare enough to never
4258                  * trigger the 99% of 100,000 interrupts test for disabling
4259                  * stray interrupts.
4260                  */
4261                 iir = new_iir;
4262         }
4263
4264         return ret;
4265 }
4266
4267 static void i965_irq_uninstall(struct drm_device * dev)
4268 {
4269         struct drm_i915_private *dev_priv = dev->dev_private;
4270         int pipe;
4271
4272         if (!dev_priv)
4273                 return;
4274
4275         I915_WRITE(PORT_HOTPLUG_EN, 0);
4276         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4277
4278         I915_WRITE(HWSTAM, 0xffffffff);
4279         for_each_pipe(dev_priv, pipe)
4280                 I915_WRITE(PIPESTAT(pipe), 0);
4281         I915_WRITE(IMR, 0xffffffff);
4282         I915_WRITE(IER, 0x0);
4283
4284         for_each_pipe(dev_priv, pipe)
4285                 I915_WRITE(PIPESTAT(pipe),
4286                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4287         I915_WRITE(IIR, I915_READ(IIR));
4288 }
4289
4290 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4291 {
4292         struct drm_i915_private *dev_priv =
4293                 container_of(work, typeof(*dev_priv),
4294                              hotplug_reenable_work.work);
4295         struct drm_device *dev = dev_priv->dev;
4296         struct drm_mode_config *mode_config = &dev->mode_config;
4297         int i;
4298
4299         intel_runtime_pm_get(dev_priv);
4300
4301         spin_lock_irq(&dev_priv->irq_lock);
4302         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4303                 struct drm_connector *connector;
4304
4305                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4306                         continue;
4307
4308                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4309
4310                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4311                         struct intel_connector *intel_connector = to_intel_connector(connector);
4312
4313                         if (intel_connector->encoder->hpd_pin == i) {
4314                                 if (connector->polled != intel_connector->polled)
4315                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4316                                                          connector->name);
4317                                 connector->polled = intel_connector->polled;
4318                                 if (!connector->polled)
4319                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4320                         }
4321                 }
4322         }
4323         if (dev_priv->display.hpd_irq_setup)
4324                 dev_priv->display.hpd_irq_setup(dev);
4325         spin_unlock_irq(&dev_priv->irq_lock);
4326
4327         intel_runtime_pm_put(dev_priv);
4328 }
4329
4330 /**
4331  * intel_irq_init - initializes irq support
4332  * @dev_priv: i915 device instance
4333  *
4334  * This function initializes all the irq support including work items, timers
4335  * and all the vtables. It does not setup the interrupt itself though.
4336  */
4337 void intel_irq_init(struct drm_i915_private *dev_priv)
4338 {
4339         struct drm_device *dev = dev_priv->dev;
4340
4341         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4342         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4343         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4344         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4345         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4346
4347         /* Let's track the enabled rps events */
4348         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4349                 /* WaGsvRC0ResidencyMethod:vlv */
4350                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4351         else
4352                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4353
4354         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4355                     i915_hangcheck_elapsed,
4356                     (unsigned long) dev);
4357         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4358                           intel_hpd_irq_reenable_work);
4359
4360         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4361
4362         if (IS_GEN2(dev_priv)) {
4363                 dev->max_vblank_count = 0;
4364                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4365         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4366                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4367                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4368         } else {
4369                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4370                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4371         }
4372
4373         /*
4374          * Opt out of the vblank disable timer on everything except gen2.
4375          * Gen2 doesn't have a hardware frame counter and so depends on
4376          * vblank interrupts to produce sane vblank seuquence numbers.
4377          */
4378         if (!IS_GEN2(dev_priv))
4379                 dev->vblank_disable_immediate = true;
4380
4381         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4382                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4383                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4384         }
4385
4386         if (IS_CHERRYVIEW(dev_priv)) {
4387                 dev->driver->irq_handler = cherryview_irq_handler;
4388                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4389                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4390                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4391                 dev->driver->enable_vblank = valleyview_enable_vblank;
4392                 dev->driver->disable_vblank = valleyview_disable_vblank;
4393                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4394         } else if (IS_VALLEYVIEW(dev_priv)) {
4395                 dev->driver->irq_handler = valleyview_irq_handler;
4396                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4397                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4398                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4399                 dev->driver->enable_vblank = valleyview_enable_vblank;
4400                 dev->driver->disable_vblank = valleyview_disable_vblank;
4401                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4402         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4403                 dev->driver->irq_handler = gen8_irq_handler;
4404                 dev->driver->irq_preinstall = gen8_irq_reset;
4405                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4406                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4407                 dev->driver->enable_vblank = gen8_enable_vblank;
4408                 dev->driver->disable_vblank = gen8_disable_vblank;
4409                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4410         } else if (HAS_PCH_SPLIT(dev)) {
4411                 dev->driver->irq_handler = ironlake_irq_handler;
4412                 dev->driver->irq_preinstall = ironlake_irq_reset;
4413                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4414                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4415                 dev->driver->enable_vblank = ironlake_enable_vblank;
4416                 dev->driver->disable_vblank = ironlake_disable_vblank;
4417                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4418         } else {
4419                 if (INTEL_INFO(dev_priv)->gen == 2) {
4420                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4421                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4422                         dev->driver->irq_handler = i8xx_irq_handler;
4423                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4424                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4425                         dev->driver->irq_preinstall = i915_irq_preinstall;
4426                         dev->driver->irq_postinstall = i915_irq_postinstall;
4427                         dev->driver->irq_uninstall = i915_irq_uninstall;
4428                         dev->driver->irq_handler = i915_irq_handler;
4429                 } else {
4430                         dev->driver->irq_preinstall = i965_irq_preinstall;
4431                         dev->driver->irq_postinstall = i965_irq_postinstall;
4432                         dev->driver->irq_uninstall = i965_irq_uninstall;
4433                         dev->driver->irq_handler = i965_irq_handler;
4434                 }
4435                 if (I915_HAS_HOTPLUG(dev_priv))
4436                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4437                 dev->driver->enable_vblank = i915_enable_vblank;
4438                 dev->driver->disable_vblank = i915_disable_vblank;
4439         }
4440 }
4441
4442 /**
4443  * intel_hpd_init - initializes and enables hpd support
4444  * @dev_priv: i915 device instance
4445  *
4446  * This function enables the hotplug support. It requires that interrupts have
4447  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4448  * poll request can run concurrently to other code, so locking rules must be
4449  * obeyed.
4450  *
4451  * This is a separate step from interrupt enabling to simplify the locking rules
4452  * in the driver load and resume code.
4453  */
4454 void intel_hpd_init(struct drm_i915_private *dev_priv)
4455 {
4456         struct drm_device *dev = dev_priv->dev;
4457         struct drm_mode_config *mode_config = &dev->mode_config;
4458         struct drm_connector *connector;
4459         int i;
4460
4461         for (i = 1; i < HPD_NUM_PINS; i++) {
4462                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4463                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4464         }
4465         list_for_each_entry(connector, &mode_config->connector_list, head) {
4466                 struct intel_connector *intel_connector = to_intel_connector(connector);
4467                 connector->polled = intel_connector->polled;
4468                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4469                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4470                 if (intel_connector->mst_port)
4471                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4472         }
4473
4474         /* Interrupt setup is already guaranteed to be single-threaded, this is
4475          * just to make the assert_spin_locked checks happy. */
4476         spin_lock_irq(&dev_priv->irq_lock);
4477         if (dev_priv->display.hpd_irq_setup)
4478                 dev_priv->display.hpd_irq_setup(dev);
4479         spin_unlock_irq(&dev_priv->irq_lock);
4480 }
4481
4482 /**
4483  * intel_irq_install - enables the hardware interrupt
4484  * @dev_priv: i915 device instance
4485  *
4486  * This function enables the hardware interrupt handling, but leaves the hotplug
4487  * handling still disabled. It is called after intel_irq_init().
4488  *
4489  * In the driver load and resume code we need working interrupts in a few places
4490  * but don't want to deal with the hassle of concurrent probe and hotplug
4491  * workers. Hence the split into this two-stage approach.
4492  */
4493 int intel_irq_install(struct drm_i915_private *dev_priv)
4494 {
4495         /*
4496          * We enable some interrupt sources in our postinstall hooks, so mark
4497          * interrupts as enabled _before_ actually enabling them to avoid
4498          * special cases in our ordering checks.
4499          */
4500         dev_priv->pm.irqs_enabled = true;
4501
4502         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4503 }
4504
4505 /**
4506  * intel_irq_uninstall - finilizes all irq handling
4507  * @dev_priv: i915 device instance
4508  *
4509  * This stops interrupt and hotplug handling and unregisters and frees all
4510  * resources acquired in the init functions.
4511  */
4512 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4513 {
4514         drm_irq_uninstall(dev_priv->dev);
4515         intel_hpd_cancel_work(dev_priv);
4516         dev_priv->pm.irqs_enabled = false;
4517 }
4518
4519 /**
4520  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4521  * @dev_priv: i915 device instance
4522  *
4523  * This function is used to disable interrupts at runtime, both in the runtime
4524  * pm and the system suspend/resume code.
4525  */
4526 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4527 {
4528         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4529         dev_priv->pm.irqs_enabled = false;
4530 }
4531
4532 /**
4533  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4534  * @dev_priv: i915 device instance
4535  *
4536  * This function is used to enable interrupts at runtime, both in the runtime
4537  * pm and the system suspend/resume code.
4538  */
4539 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4540 {
4541         dev_priv->pm.irqs_enabled = true;
4542         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4543         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4544 }