drm/i915: Do not call intel_crtc_disable if the crtc is already disabled.
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32         u32 trans1;     /* balance leg enable, de-emph level */
33         u32 trans2;     /* vref sel, vswing */
34 };
35
36 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
37  * them for both DP and FDI transports, allowing those ports to
38  * automatically adapt to HDMI connections as well
39  */
40 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
41         { 0x00FFFFFF, 0x0006000E },
42         { 0x00D75FFF, 0x0005000A },
43         { 0x00C30FFF, 0x00040006 },
44         { 0x80AAAFFF, 0x000B0000 },
45         { 0x00FFFFFF, 0x0005000A },
46         { 0x00D75FFF, 0x000C0004 },
47         { 0x80C30FFF, 0x000B0000 },
48         { 0x00FFFFFF, 0x00040006 },
49         { 0x80D75FFF, 0x000B0000 },
50 };
51
52 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
53         { 0x00FFFFFF, 0x0007000E },
54         { 0x00D75FFF, 0x000F000A },
55         { 0x00C30FFF, 0x00060006 },
56         { 0x00AAAFFF, 0x001E0000 },
57         { 0x00FFFFFF, 0x000F000A },
58         { 0x00D75FFF, 0x00160004 },
59         { 0x00C30FFF, 0x001E0000 },
60         { 0x00FFFFFF, 0x00060006 },
61         { 0x00D75FFF, 0x001E0000 },
62 };
63
64 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
65                                         /* Idx  NT mV d T mV d  db      */
66         { 0x00FFFFFF, 0x0006000E },     /* 0:   400     400     0       */
67         { 0x00E79FFF, 0x000E000C },     /* 1:   400     500     2       */
68         { 0x00D75FFF, 0x0005000A },     /* 2:   400     600     3.5     */
69         { 0x00FFFFFF, 0x0005000A },     /* 3:   600     600     0       */
70         { 0x00E79FFF, 0x001D0007 },     /* 4:   600     750     2       */
71         { 0x00D75FFF, 0x000C0004 },     /* 5:   600     900     3.5     */
72         { 0x00FFFFFF, 0x00040006 },     /* 6:   800     800     0       */
73         { 0x80E79FFF, 0x00030002 },     /* 7:   800     1000    2       */
74         { 0x00FFFFFF, 0x00140005 },     /* 8:   850     850     0       */
75         { 0x00FFFFFF, 0x000C0004 },     /* 9:   900     900     0       */
76         { 0x00FFFFFF, 0x001C0003 },     /* 10:  950     950     0       */
77         { 0x80FFFFFF, 0x00030002 },     /* 11:  1000    1000    0       */
78 };
79
80 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
81         { 0x00FFFFFF, 0x00000012 },
82         { 0x00EBAFFF, 0x00020011 },
83         { 0x00C71FFF, 0x0006000F },
84         { 0x00AAAFFF, 0x000E000A },
85         { 0x00FFFFFF, 0x00020011 },
86         { 0x00DB6FFF, 0x0005000F },
87         { 0x00BEEFFF, 0x000A000C },
88         { 0x00FFFFFF, 0x0005000F },
89         { 0x00DB6FFF, 0x000A000C },
90 };
91
92 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
93         { 0x00FFFFFF, 0x0007000E },
94         { 0x00D75FFF, 0x000E000A },
95         { 0x00BEFFFF, 0x00140006 },
96         { 0x80B2CFFF, 0x001B0002 },
97         { 0x00FFFFFF, 0x000E000A },
98         { 0x00DB6FFF, 0x00160005 },
99         { 0x80C71FFF, 0x001A0002 },
100         { 0x00F7DFFF, 0x00180004 },
101         { 0x80D75FFF, 0x001B0002 },
102 };
103
104 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
105         { 0x00FFFFFF, 0x0001000E },
106         { 0x00D75FFF, 0x0004000A },
107         { 0x00C30FFF, 0x00070006 },
108         { 0x00AAAFFF, 0x000C0000 },
109         { 0x00FFFFFF, 0x0004000A },
110         { 0x00D75FFF, 0x00090004 },
111         { 0x00C30FFF, 0x000C0000 },
112         { 0x00FFFFFF, 0x00070006 },
113         { 0x00D75FFF, 0x000C0000 },
114 };
115
116 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
117                                         /* Idx  NT mV d T mV df db      */
118         { 0x00FFFFFF, 0x0007000E },     /* 0:   400     400     0       */
119         { 0x00D75FFF, 0x000E000A },     /* 1:   400     600     3.5     */
120         { 0x00BEFFFF, 0x00140006 },     /* 2:   400     800     6       */
121         { 0x00FFFFFF, 0x0009000D },     /* 3:   450     450     0       */
122         { 0x00FFFFFF, 0x000E000A },     /* 4:   600     600     0       */
123         { 0x00D7FFFF, 0x00140006 },     /* 5:   600     800     2.5     */
124         { 0x80CB2FFF, 0x001B0002 },     /* 6:   600     1000    4.5     */
125         { 0x00FFFFFF, 0x00140006 },     /* 7:   800     800     0       */
126         { 0x80E79FFF, 0x001B0002 },     /* 8:   800     1000    2       */
127         { 0x80FFFFFF, 0x001B0002 },     /* 9:   1000    1000    0       */
128 };
129
130 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
131         { 0x00000018, 0x000000a2 },
132         { 0x00004014, 0x0000009B },
133         { 0x00006012, 0x00000088 },
134         { 0x00008010, 0x00000087 },
135         { 0x00000018, 0x0000009B },
136         { 0x00004014, 0x00000088 },
137         { 0x00006012, 0x00000087 },
138         { 0x00000018, 0x00000088 },
139         { 0x00004014, 0x00000087 },
140 };
141
142 /* eDP 1.4 low vswing translation parameters */
143 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
144         { 0x00000018, 0x000000a8 },
145         { 0x00002016, 0x000000ab },
146         { 0x00006012, 0x000000a2 },
147         { 0x00008010, 0x00000088 },
148         { 0x00000018, 0x000000ab },
149         { 0x00004014, 0x000000a2 },
150         { 0x00006012, 0x000000a6 },
151         { 0x00000018, 0x000000a2 },
152         { 0x00005013, 0x0000009c },
153         { 0x00000018, 0x00000088 },
154 };
155
156
157 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
158         { 0x00000018, 0x000000ac },
159         { 0x00005012, 0x0000009d },
160         { 0x00007011, 0x00000088 },
161         { 0x00000018, 0x000000a1 },
162         { 0x00000018, 0x00000098 },
163         { 0x00004013, 0x00000088 },
164         { 0x00006012, 0x00000087 },
165         { 0x00000018, 0x000000df },
166         { 0x00003015, 0x00000087 },
167         { 0x00003015, 0x000000c7 },
168         { 0x00000018, 0x000000c7 },
169 };
170
171 struct bxt_ddi_buf_trans {
172         u32 margin;     /* swing value */
173         u32 scale;      /* scale value */
174         u32 enable;     /* scale enable */
175         u32 deemphasis;
176         bool default_index; /* true if the entry represents default value */
177 };
178
179 /* BSpec does not define separate vswing/pre-emphasis values for eDP.
180  * Using DP values for eDP as well.
181  */
182 static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
183                                         /* Idx  NT mV diff      db  */
184         { 52,  0,    0, 128, true  },   /* 0:   400             0   */
185         { 78,  0,    0, 85,  false },   /* 1:   400             3.5 */
186         { 104, 0,    0, 64,  false },   /* 2:   400             6   */
187         { 154, 0,    0, 43,  false },   /* 3:   400             9.5 */
188         { 77,  0,    0, 128, false },   /* 4:   600             0   */
189         { 116, 0,    0, 85,  false },   /* 5:   600             3.5 */
190         { 154, 0,    0, 64,  false },   /* 6:   600             6   */
191         { 102, 0,    0, 128, false },   /* 7:   800             0   */
192         { 154, 0,    0, 85,  false },   /* 8:   800             3.5 */
193         { 154, 0x9A, 1, 128, false },  /* 9:    1200            0   */
194 };
195
196 /* BSpec has 2 recommended values - entries 0 and 8.
197  * Using the entry with higher vswing.
198  */
199 static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
200                                         /* Idx  NT mV diff      db  */
201         { 52,  0,    0, 128, false },   /* 0:   400             0   */
202         { 52,  0,    0, 85,  false },   /* 1:   400             3.5 */
203         { 52,  0,    0, 64,  false },   /* 2:   400             6   */
204         { 42,  0,    0, 43,  false },   /* 3:   400             9.5 */
205         { 77,  0,    0, 128, false },   /* 4:   600             0   */
206         { 77,  0,    0, 85,  false },   /* 5:   600             3.5 */
207         { 77,  0,    0, 64,  false },   /* 6:   600             6   */
208         { 102, 0,    0, 128, false },   /* 7:   800             0   */
209         { 102, 0,    0, 85,  false },   /* 8:   800             3.5 */
210         { 154, 0x9A, 1, 128, true },    /* 9:   1200            0   */
211 };
212
213 static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
214                                  struct intel_digital_port **dig_port,
215                                  enum port *port)
216 {
217         struct drm_encoder *encoder = &intel_encoder->base;
218         int type = intel_encoder->type;
219
220         if (type == INTEL_OUTPUT_DP_MST) {
221                 *dig_port = enc_to_mst(encoder)->primary;
222                 *port = (*dig_port)->port;
223         } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
224             type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
225                 *dig_port = enc_to_dig_port(encoder);
226                 *port = (*dig_port)->port;
227         } else if (type == INTEL_OUTPUT_ANALOG) {
228                 *dig_port = NULL;
229                 *port = PORT_E;
230         } else {
231                 DRM_ERROR("Invalid DDI encoder type %d\n", type);
232                 BUG();
233         }
234 }
235
236 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
237 {
238         struct intel_digital_port *dig_port;
239         enum port port;
240
241         ddi_get_encoder_port(intel_encoder, &dig_port, &port);
242
243         return port;
244 }
245
246 static bool
247 intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
248 {
249         return intel_dig_port->hdmi.hdmi_reg;
250 }
251
252 /*
253  * Starting with Haswell, DDI port buffers must be programmed with correct
254  * values in advance. The buffer values are different for FDI and DP modes,
255  * but the HDMI/DVI fields are shared among those. So we program the DDI
256  * in either FDI or DP modes only, as HDMI connections will work with both
257  * of those
258  */
259 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
260                                       bool supports_hdmi)
261 {
262         struct drm_i915_private *dev_priv = dev->dev_private;
263         u32 reg;
264         int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
265             size;
266         int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
267         const struct ddi_buf_trans *ddi_translations_fdi;
268         const struct ddi_buf_trans *ddi_translations_dp;
269         const struct ddi_buf_trans *ddi_translations_edp;
270         const struct ddi_buf_trans *ddi_translations_hdmi;
271         const struct ddi_buf_trans *ddi_translations;
272
273         if (IS_BROXTON(dev)) {
274                 if (!supports_hdmi)
275                         return;
276
277                 /* Vswing programming for HDMI */
278                 bxt_ddi_vswing_sequence(dev, hdmi_level, port,
279                                         INTEL_OUTPUT_HDMI);
280                 return;
281         } else if (IS_SKYLAKE(dev)) {
282                 ddi_translations_fdi = NULL;
283                 ddi_translations_dp = skl_ddi_translations_dp;
284                 n_dp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
285                 if (dev_priv->edp_low_vswing) {
286                         ddi_translations_edp = skl_ddi_translations_edp;
287                         n_edp_entries = ARRAY_SIZE(skl_ddi_translations_edp);
288                 } else {
289                         ddi_translations_edp = skl_ddi_translations_dp;
290                         n_edp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
291                 }
292
293                 ddi_translations_hdmi = skl_ddi_translations_hdmi;
294                 n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
295                 hdmi_default_entry = 7;
296         } else if (IS_BROADWELL(dev)) {
297                 ddi_translations_fdi = bdw_ddi_translations_fdi;
298                 ddi_translations_dp = bdw_ddi_translations_dp;
299                 ddi_translations_edp = bdw_ddi_translations_edp;
300                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
301                 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
302                 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
303                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
304                 hdmi_default_entry = 7;
305         } else if (IS_HASWELL(dev)) {
306                 ddi_translations_fdi = hsw_ddi_translations_fdi;
307                 ddi_translations_dp = hsw_ddi_translations_dp;
308                 ddi_translations_edp = hsw_ddi_translations_dp;
309                 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
310                 n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
311                 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
312                 hdmi_default_entry = 6;
313         } else {
314                 WARN(1, "ddi translation table missing\n");
315                 ddi_translations_edp = bdw_ddi_translations_dp;
316                 ddi_translations_fdi = bdw_ddi_translations_fdi;
317                 ddi_translations_dp = bdw_ddi_translations_dp;
318                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
319                 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
320                 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
321                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
322                 hdmi_default_entry = 7;
323         }
324
325         switch (port) {
326         case PORT_A:
327                 ddi_translations = ddi_translations_edp;
328                 size = n_edp_entries;
329                 break;
330         case PORT_B:
331         case PORT_C:
332                 ddi_translations = ddi_translations_dp;
333                 size = n_dp_entries;
334                 break;
335         case PORT_D:
336                 if (intel_dp_is_edp(dev, PORT_D)) {
337                         ddi_translations = ddi_translations_edp;
338                         size = n_edp_entries;
339                 } else {
340                         ddi_translations = ddi_translations_dp;
341                         size = n_dp_entries;
342                 }
343                 break;
344         case PORT_E:
345                 if (ddi_translations_fdi)
346                         ddi_translations = ddi_translations_fdi;
347                 else
348                         ddi_translations = ddi_translations_dp;
349                 size = n_dp_entries;
350                 break;
351         default:
352                 BUG();
353         }
354
355         for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
356                 I915_WRITE(reg, ddi_translations[i].trans1);
357                 reg += 4;
358                 I915_WRITE(reg, ddi_translations[i].trans2);
359                 reg += 4;
360         }
361
362         if (!supports_hdmi)
363                 return;
364
365         /* Choose a good default if VBT is badly populated */
366         if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
367             hdmi_level >= n_hdmi_entries)
368                 hdmi_level = hdmi_default_entry;
369
370         /* Entry 9 is for HDMI: */
371         I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
372         reg += 4;
373         I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
374         reg += 4;
375 }
376
377 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
378  * mode and port E for FDI.
379  */
380 void intel_prepare_ddi(struct drm_device *dev)
381 {
382         struct intel_encoder *intel_encoder;
383         bool visited[I915_MAX_PORTS] = { 0, };
384
385         if (!HAS_DDI(dev))
386                 return;
387
388         for_each_intel_encoder(dev, intel_encoder) {
389                 struct intel_digital_port *intel_dig_port;
390                 enum port port;
391                 bool supports_hdmi;
392
393                 ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
394
395                 if (visited[port])
396                         continue;
397
398                 supports_hdmi = intel_dig_port &&
399                                 intel_dig_port_supports_hdmi(intel_dig_port);
400
401                 intel_prepare_ddi_buffers(dev, port, supports_hdmi);
402                 visited[port] = true;
403         }
404 }
405
406 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
407                                     enum port port)
408 {
409         uint32_t reg = DDI_BUF_CTL(port);
410         int i;
411
412         for (i = 0; i < 16; i++) {
413                 udelay(1);
414                 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
415                         return;
416         }
417         DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
418 }
419
420 /* Starting with Haswell, different DDI ports can work in FDI mode for
421  * connection to the PCH-located connectors. For this, it is necessary to train
422  * both the DDI port and PCH receiver for the desired DDI buffer settings.
423  *
424  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
425  * please note that when FDI mode is active on DDI E, it shares 2 lines with
426  * DDI A (which is used for eDP)
427  */
428
429 void hsw_fdi_link_train(struct drm_crtc *crtc)
430 {
431         struct drm_device *dev = crtc->dev;
432         struct drm_i915_private *dev_priv = dev->dev_private;
433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
434         u32 temp, i, rx_ctl_val;
435
436         /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
437          * mode set "sequence for CRT port" document:
438          * - TP1 to TP2 time with the default value
439          * - FDI delay to 90h
440          *
441          * WaFDIAutoLinkSetTimingOverrride:hsw
442          */
443         I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
444                                   FDI_RX_PWRDN_LANE0_VAL(2) |
445                                   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
446
447         /* Enable the PCH Receiver FDI PLL */
448         rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
449                      FDI_RX_PLL_ENABLE |
450                      FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
451         I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
452         POSTING_READ(_FDI_RXA_CTL);
453         udelay(220);
454
455         /* Switch from Rawclk to PCDclk */
456         rx_ctl_val |= FDI_PCDCLK;
457         I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
458
459         /* Configure Port Clock Select */
460         I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
461         WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
462
463         /* Start the training iterating through available voltages and emphasis,
464          * testing each value twice. */
465         for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
466                 /* Configure DP_TP_CTL with auto-training */
467                 I915_WRITE(DP_TP_CTL(PORT_E),
468                                         DP_TP_CTL_FDI_AUTOTRAIN |
469                                         DP_TP_CTL_ENHANCED_FRAME_ENABLE |
470                                         DP_TP_CTL_LINK_TRAIN_PAT1 |
471                                         DP_TP_CTL_ENABLE);
472
473                 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
474                  * DDI E does not support port reversal, the functionality is
475                  * achieved on the PCH side in FDI_RX_CTL, so no need to set the
476                  * port reversal bit */
477                 I915_WRITE(DDI_BUF_CTL(PORT_E),
478                            DDI_BUF_CTL_ENABLE |
479                            ((intel_crtc->config->fdi_lanes - 1) << 1) |
480                            DDI_BUF_TRANS_SELECT(i / 2));
481                 POSTING_READ(DDI_BUF_CTL(PORT_E));
482
483                 udelay(600);
484
485                 /* Program PCH FDI Receiver TU */
486                 I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
487
488                 /* Enable PCH FDI Receiver with auto-training */
489                 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
490                 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
491                 POSTING_READ(_FDI_RXA_CTL);
492
493                 /* Wait for FDI receiver lane calibration */
494                 udelay(30);
495
496                 /* Unset FDI_RX_MISC pwrdn lanes */
497                 temp = I915_READ(_FDI_RXA_MISC);
498                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
499                 I915_WRITE(_FDI_RXA_MISC, temp);
500                 POSTING_READ(_FDI_RXA_MISC);
501
502                 /* Wait for FDI auto training time */
503                 udelay(5);
504
505                 temp = I915_READ(DP_TP_STATUS(PORT_E));
506                 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
507                         DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
508
509                         /* Enable normal pixel sending for FDI */
510                         I915_WRITE(DP_TP_CTL(PORT_E),
511                                    DP_TP_CTL_FDI_AUTOTRAIN |
512                                    DP_TP_CTL_LINK_TRAIN_NORMAL |
513                                    DP_TP_CTL_ENHANCED_FRAME_ENABLE |
514                                    DP_TP_CTL_ENABLE);
515
516                         return;
517                 }
518
519                 temp = I915_READ(DDI_BUF_CTL(PORT_E));
520                 temp &= ~DDI_BUF_CTL_ENABLE;
521                 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
522                 POSTING_READ(DDI_BUF_CTL(PORT_E));
523
524                 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
525                 temp = I915_READ(DP_TP_CTL(PORT_E));
526                 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
527                 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
528                 I915_WRITE(DP_TP_CTL(PORT_E), temp);
529                 POSTING_READ(DP_TP_CTL(PORT_E));
530
531                 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
532
533                 rx_ctl_val &= ~FDI_RX_ENABLE;
534                 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
535                 POSTING_READ(_FDI_RXA_CTL);
536
537                 /* Reset FDI_RX_MISC pwrdn lanes */
538                 temp = I915_READ(_FDI_RXA_MISC);
539                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
540                 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
541                 I915_WRITE(_FDI_RXA_MISC, temp);
542                 POSTING_READ(_FDI_RXA_MISC);
543         }
544
545         DRM_ERROR("FDI link training failed!\n");
546 }
547
548 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
549 {
550         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
551         struct intel_digital_port *intel_dig_port =
552                 enc_to_dig_port(&encoder->base);
553
554         intel_dp->DP = intel_dig_port->saved_port_bits |
555                 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
556         intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
557
558 }
559
560 static struct intel_encoder *
561 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
562 {
563         struct drm_device *dev = crtc->dev;
564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
565         struct intel_encoder *intel_encoder, *ret = NULL;
566         int num_encoders = 0;
567
568         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
569                 ret = intel_encoder;
570                 num_encoders++;
571         }
572
573         if (num_encoders != 1)
574                 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
575                      pipe_name(intel_crtc->pipe));
576
577         BUG_ON(ret == NULL);
578         return ret;
579 }
580
581 struct intel_encoder *
582 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
583 {
584         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
585         struct intel_encoder *ret = NULL;
586         struct drm_atomic_state *state;
587         struct drm_connector *connector;
588         struct drm_connector_state *connector_state;
589         int num_encoders = 0;
590         int i;
591
592         state = crtc_state->base.state;
593
594         for_each_connector_in_state(state, connector, connector_state, i) {
595                 if (connector_state->crtc != crtc_state->base.crtc)
596                         continue;
597
598                 ret = to_intel_encoder(connector_state->best_encoder);
599                 num_encoders++;
600         }
601
602         WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
603              pipe_name(crtc->pipe));
604
605         BUG_ON(ret == NULL);
606         return ret;
607 }
608
609 #define LC_FREQ 2700
610 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
611
612 #define P_MIN 2
613 #define P_MAX 64
614 #define P_INC 2
615
616 /* Constraints for PLL good behavior */
617 #define REF_MIN 48
618 #define REF_MAX 400
619 #define VCO_MIN 2400
620 #define VCO_MAX 4800
621
622 #define abs_diff(a, b) ({                       \
623         typeof(a) __a = (a);                    \
624         typeof(b) __b = (b);                    \
625         (void) (&__a == &__b);                  \
626         __a > __b ? (__a - __b) : (__b - __a); })
627
628 struct wrpll_rnp {
629         unsigned p, n2, r2;
630 };
631
632 static unsigned wrpll_get_budget_for_freq(int clock)
633 {
634         unsigned budget;
635
636         switch (clock) {
637         case 25175000:
638         case 25200000:
639         case 27000000:
640         case 27027000:
641         case 37762500:
642         case 37800000:
643         case 40500000:
644         case 40541000:
645         case 54000000:
646         case 54054000:
647         case 59341000:
648         case 59400000:
649         case 72000000:
650         case 74176000:
651         case 74250000:
652         case 81000000:
653         case 81081000:
654         case 89012000:
655         case 89100000:
656         case 108000000:
657         case 108108000:
658         case 111264000:
659         case 111375000:
660         case 148352000:
661         case 148500000:
662         case 162000000:
663         case 162162000:
664         case 222525000:
665         case 222750000:
666         case 296703000:
667         case 297000000:
668                 budget = 0;
669                 break;
670         case 233500000:
671         case 245250000:
672         case 247750000:
673         case 253250000:
674         case 298000000:
675                 budget = 1500;
676                 break;
677         case 169128000:
678         case 169500000:
679         case 179500000:
680         case 202000000:
681                 budget = 2000;
682                 break;
683         case 256250000:
684         case 262500000:
685         case 270000000:
686         case 272500000:
687         case 273750000:
688         case 280750000:
689         case 281250000:
690         case 286000000:
691         case 291750000:
692                 budget = 4000;
693                 break;
694         case 267250000:
695         case 268500000:
696                 budget = 5000;
697                 break;
698         default:
699                 budget = 1000;
700                 break;
701         }
702
703         return budget;
704 }
705
706 static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
707                              unsigned r2, unsigned n2, unsigned p,
708                              struct wrpll_rnp *best)
709 {
710         uint64_t a, b, c, d, diff, diff_best;
711
712         /* No best (r,n,p) yet */
713         if (best->p == 0) {
714                 best->p = p;
715                 best->n2 = n2;
716                 best->r2 = r2;
717                 return;
718         }
719
720         /*
721          * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
722          * freq2k.
723          *
724          * delta = 1e6 *
725          *         abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
726          *         freq2k;
727          *
728          * and we would like delta <= budget.
729          *
730          * If the discrepancy is above the PPM-based budget, always prefer to
731          * improve upon the previous solution.  However, if you're within the
732          * budget, try to maximize Ref * VCO, that is N / (P * R^2).
733          */
734         a = freq2k * budget * p * r2;
735         b = freq2k * budget * best->p * best->r2;
736         diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
737         diff_best = abs_diff(freq2k * best->p * best->r2,
738                              LC_FREQ_2K * best->n2);
739         c = 1000000 * diff;
740         d = 1000000 * diff_best;
741
742         if (a < c && b < d) {
743                 /* If both are above the budget, pick the closer */
744                 if (best->p * best->r2 * diff < p * r2 * diff_best) {
745                         best->p = p;
746                         best->n2 = n2;
747                         best->r2 = r2;
748                 }
749         } else if (a >= c && b < d) {
750                 /* If A is below the threshold but B is above it?  Update. */
751                 best->p = p;
752                 best->n2 = n2;
753                 best->r2 = r2;
754         } else if (a >= c && b >= d) {
755                 /* Both are below the limit, so pick the higher n2/(r2*r2) */
756                 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
757                         best->p = p;
758                         best->n2 = n2;
759                         best->r2 = r2;
760                 }
761         }
762         /* Otherwise a < c && b >= d, do nothing */
763 }
764
765 static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
766                                      int reg)
767 {
768         int refclk = LC_FREQ;
769         int n, p, r;
770         u32 wrpll;
771
772         wrpll = I915_READ(reg);
773         switch (wrpll & WRPLL_PLL_REF_MASK) {
774         case WRPLL_PLL_SSC:
775         case WRPLL_PLL_NON_SSC:
776                 /*
777                  * We could calculate spread here, but our checking
778                  * code only cares about 5% accuracy, and spread is a max of
779                  * 0.5% downspread.
780                  */
781                 refclk = 135;
782                 break;
783         case WRPLL_PLL_LCPLL:
784                 refclk = LC_FREQ;
785                 break;
786         default:
787                 WARN(1, "bad wrpll refclk\n");
788                 return 0;
789         }
790
791         r = wrpll & WRPLL_DIVIDER_REF_MASK;
792         p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
793         n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
794
795         /* Convert to KHz, p & r have a fixed point portion */
796         return (refclk * n * 100) / (p * r);
797 }
798
799 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
800                                uint32_t dpll)
801 {
802         uint32_t cfgcr1_reg, cfgcr2_reg;
803         uint32_t cfgcr1_val, cfgcr2_val;
804         uint32_t p0, p1, p2, dco_freq;
805
806         cfgcr1_reg = GET_CFG_CR1_REG(dpll);
807         cfgcr2_reg = GET_CFG_CR2_REG(dpll);
808
809         cfgcr1_val = I915_READ(cfgcr1_reg);
810         cfgcr2_val = I915_READ(cfgcr2_reg);
811
812         p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
813         p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
814
815         if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
816                 p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
817         else
818                 p1 = 1;
819
820
821         switch (p0) {
822         case DPLL_CFGCR2_PDIV_1:
823                 p0 = 1;
824                 break;
825         case DPLL_CFGCR2_PDIV_2:
826                 p0 = 2;
827                 break;
828         case DPLL_CFGCR2_PDIV_3:
829                 p0 = 3;
830                 break;
831         case DPLL_CFGCR2_PDIV_7:
832                 p0 = 7;
833                 break;
834         }
835
836         switch (p2) {
837         case DPLL_CFGCR2_KDIV_5:
838                 p2 = 5;
839                 break;
840         case DPLL_CFGCR2_KDIV_2:
841                 p2 = 2;
842                 break;
843         case DPLL_CFGCR2_KDIV_3:
844                 p2 = 3;
845                 break;
846         case DPLL_CFGCR2_KDIV_1:
847                 p2 = 1;
848                 break;
849         }
850
851         dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
852
853         dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
854                 1000) / 0x8000;
855
856         return dco_freq / (p0 * p1 * p2 * 5);
857 }
858
859
860 static void skl_ddi_clock_get(struct intel_encoder *encoder,
861                                 struct intel_crtc_state *pipe_config)
862 {
863         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
864         int link_clock = 0;
865         uint32_t dpll_ctl1, dpll;
866
867         dpll = pipe_config->ddi_pll_sel;
868
869         dpll_ctl1 = I915_READ(DPLL_CTRL1);
870
871         if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
872                 link_clock = skl_calc_wrpll_link(dev_priv, dpll);
873         } else {
874                 link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
875                 link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
876
877                 switch (link_clock) {
878                 case DPLL_CTRL1_LINK_RATE_810:
879                         link_clock = 81000;
880                         break;
881                 case DPLL_CTRL1_LINK_RATE_1080:
882                         link_clock = 108000;
883                         break;
884                 case DPLL_CTRL1_LINK_RATE_1350:
885                         link_clock = 135000;
886                         break;
887                 case DPLL_CTRL1_LINK_RATE_1620:
888                         link_clock = 162000;
889                         break;
890                 case DPLL_CTRL1_LINK_RATE_2160:
891                         link_clock = 216000;
892                         break;
893                 case DPLL_CTRL1_LINK_RATE_2700:
894                         link_clock = 270000;
895                         break;
896                 default:
897                         WARN(1, "Unsupported link rate\n");
898                         break;
899                 }
900                 link_clock *= 2;
901         }
902
903         pipe_config->port_clock = link_clock;
904
905         if (pipe_config->has_dp_encoder)
906                 pipe_config->base.adjusted_mode.crtc_clock =
907                         intel_dotclock_calculate(pipe_config->port_clock,
908                                                  &pipe_config->dp_m_n);
909         else
910                 pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
911 }
912
913 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
914                               struct intel_crtc_state *pipe_config)
915 {
916         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
917         int link_clock = 0;
918         u32 val, pll;
919
920         val = pipe_config->ddi_pll_sel;
921         switch (val & PORT_CLK_SEL_MASK) {
922         case PORT_CLK_SEL_LCPLL_810:
923                 link_clock = 81000;
924                 break;
925         case PORT_CLK_SEL_LCPLL_1350:
926                 link_clock = 135000;
927                 break;
928         case PORT_CLK_SEL_LCPLL_2700:
929                 link_clock = 270000;
930                 break;
931         case PORT_CLK_SEL_WRPLL1:
932                 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
933                 break;
934         case PORT_CLK_SEL_WRPLL2:
935                 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
936                 break;
937         case PORT_CLK_SEL_SPLL:
938                 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
939                 if (pll == SPLL_PLL_FREQ_810MHz)
940                         link_clock = 81000;
941                 else if (pll == SPLL_PLL_FREQ_1350MHz)
942                         link_clock = 135000;
943                 else if (pll == SPLL_PLL_FREQ_2700MHz)
944                         link_clock = 270000;
945                 else {
946                         WARN(1, "bad spll freq\n");
947                         return;
948                 }
949                 break;
950         default:
951                 WARN(1, "bad port clock sel\n");
952                 return;
953         }
954
955         pipe_config->port_clock = link_clock * 2;
956
957         if (pipe_config->has_pch_encoder)
958                 pipe_config->base.adjusted_mode.crtc_clock =
959                         intel_dotclock_calculate(pipe_config->port_clock,
960                                                  &pipe_config->fdi_m_n);
961         else if (pipe_config->has_dp_encoder)
962                 pipe_config->base.adjusted_mode.crtc_clock =
963                         intel_dotclock_calculate(pipe_config->port_clock,
964                                                  &pipe_config->dp_m_n);
965         else
966                 pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
967 }
968
969 static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
970                                 enum intel_dpll_id dpll)
971 {
972         /* FIXME formula not available in bspec */
973         return 0;
974 }
975
976 static void bxt_ddi_clock_get(struct intel_encoder *encoder,
977                                 struct intel_crtc_state *pipe_config)
978 {
979         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
980         enum port port = intel_ddi_get_encoder_port(encoder);
981         uint32_t dpll = port;
982
983         pipe_config->port_clock =
984                 bxt_calc_pll_link(dev_priv, dpll);
985
986         if (pipe_config->has_dp_encoder)
987                 pipe_config->base.adjusted_mode.crtc_clock =
988                         intel_dotclock_calculate(pipe_config->port_clock,
989                                                         &pipe_config->dp_m_n);
990         else
991                 pipe_config->base.adjusted_mode.crtc_clock =
992                                                         pipe_config->port_clock;
993 }
994
995 void intel_ddi_clock_get(struct intel_encoder *encoder,
996                          struct intel_crtc_state *pipe_config)
997 {
998         struct drm_device *dev = encoder->base.dev;
999
1000         if (INTEL_INFO(dev)->gen <= 8)
1001                 hsw_ddi_clock_get(encoder, pipe_config);
1002         else if (IS_SKYLAKE(dev))
1003                 skl_ddi_clock_get(encoder, pipe_config);
1004         else if (IS_BROXTON(dev))
1005                 bxt_ddi_clock_get(encoder, pipe_config);
1006 }
1007
1008 static void
1009 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
1010                         unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1011 {
1012         uint64_t freq2k;
1013         unsigned p, n2, r2;
1014         struct wrpll_rnp best = { 0, 0, 0 };
1015         unsigned budget;
1016
1017         freq2k = clock / 100;
1018
1019         budget = wrpll_get_budget_for_freq(clock);
1020
1021         /* Special case handling for 540 pixel clock: bypass WR PLL entirely
1022          * and directly pass the LC PLL to it. */
1023         if (freq2k == 5400000) {
1024                 *n2_out = 2;
1025                 *p_out = 1;
1026                 *r2_out = 2;
1027                 return;
1028         }
1029
1030         /*
1031          * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
1032          * the WR PLL.
1033          *
1034          * We want R so that REF_MIN <= Ref <= REF_MAX.
1035          * Injecting R2 = 2 * R gives:
1036          *   REF_MAX * r2 > LC_FREQ * 2 and
1037          *   REF_MIN * r2 < LC_FREQ * 2
1038          *
1039          * Which means the desired boundaries for r2 are:
1040          *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
1041          *
1042          */
1043         for (r2 = LC_FREQ * 2 / REF_MAX + 1;
1044              r2 <= LC_FREQ * 2 / REF_MIN;
1045              r2++) {
1046
1047                 /*
1048                  * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
1049                  *
1050                  * Once again we want VCO_MIN <= VCO <= VCO_MAX.
1051                  * Injecting R2 = 2 * R and N2 = 2 * N, we get:
1052                  *   VCO_MAX * r2 > n2 * LC_FREQ and
1053                  *   VCO_MIN * r2 < n2 * LC_FREQ)
1054                  *
1055                  * Which means the desired boundaries for n2 are:
1056                  * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
1057                  */
1058                 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
1059                      n2 <= VCO_MAX * r2 / LC_FREQ;
1060                      n2++) {
1061
1062                         for (p = P_MIN; p <= P_MAX; p += P_INC)
1063                                 wrpll_update_rnp(freq2k, budget,
1064                                                  r2, n2, p, &best);
1065                 }
1066         }
1067
1068         *n2_out = best.n2;
1069         *p_out = best.p;
1070         *r2_out = best.r2;
1071 }
1072
1073 static bool
1074 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1075                    struct intel_crtc_state *crtc_state,
1076                    struct intel_encoder *intel_encoder,
1077                    int clock)
1078 {
1079         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1080                 struct intel_shared_dpll *pll;
1081                 uint32_t val;
1082                 unsigned p, n2, r2;
1083
1084                 hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
1085
1086                 val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
1087                       WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
1088                       WRPLL_DIVIDER_POST(p);
1089
1090                 memset(&crtc_state->dpll_hw_state, 0,
1091                        sizeof(crtc_state->dpll_hw_state));
1092
1093                 crtc_state->dpll_hw_state.wrpll = val;
1094
1095                 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1096                 if (pll == NULL) {
1097                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1098                                          pipe_name(intel_crtc->pipe));
1099                         return false;
1100                 }
1101
1102                 crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1103         }
1104
1105         return true;
1106 }
1107
1108 struct skl_wrpll_params {
1109         uint32_t        dco_fraction;
1110         uint32_t        dco_integer;
1111         uint32_t        qdiv_ratio;
1112         uint32_t        qdiv_mode;
1113         uint32_t        kdiv;
1114         uint32_t        pdiv;
1115         uint32_t        central_freq;
1116 };
1117
1118 static void
1119 skl_ddi_calculate_wrpll(int clock /* in Hz */,
1120                         struct skl_wrpll_params *wrpll_params)
1121 {
1122         uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1123         uint64_t dco_central_freq[3] = {8400000000ULL,
1124                                         9000000000ULL,
1125                                         9600000000ULL};
1126         uint32_t min_dco_deviation = 400;
1127         uint32_t min_dco_index = 3;
1128         uint32_t P0[4] = {1, 2, 3, 7};
1129         uint32_t P2[4] = {1, 2, 3, 5};
1130         bool found = false;
1131         uint32_t candidate_p = 0;
1132         uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
1133         uint32_t candidate_p2[3] = {0};
1134         uint32_t dco_central_freq_deviation[3];
1135         uint32_t i, P1, k, dco_count;
1136         bool retry_with_odd = false;
1137         uint64_t dco_freq;
1138
1139         /* Determine P0, P1 or P2 */
1140         for (dco_count = 0; dco_count < 3; dco_count++) {
1141                 found = false;
1142                 candidate_p =
1143                         div64_u64(dco_central_freq[dco_count], afe_clock);
1144                 if (retry_with_odd == false)
1145                         candidate_p = (candidate_p % 2 == 0 ?
1146                                 candidate_p : candidate_p + 1);
1147
1148                 for (P1 = 1; P1 < candidate_p; P1++) {
1149                         for (i = 0; i < 4; i++) {
1150                                 if (!(P0[i] != 1 || P1 == 1))
1151                                         continue;
1152
1153                                 for (k = 0; k < 4; k++) {
1154                                         if (P1 != 1 && P2[k] != 2)
1155                                                 continue;
1156
1157                                         if (candidate_p == P0[i] * P1 * P2[k]) {
1158                                                 /* Found possible P0, P1, P2 */
1159                                                 found = true;
1160                                                 candidate_p0[dco_count] = P0[i];
1161                                                 candidate_p1[dco_count] = P1;
1162                                                 candidate_p2[dco_count] = P2[k];
1163                                                 goto found;
1164                                         }
1165
1166                                 }
1167                         }
1168                 }
1169
1170 found:
1171                 if (found) {
1172                         dco_central_freq_deviation[dco_count] =
1173                                 div64_u64(10000 *
1174                                           abs_diff((candidate_p * afe_clock),
1175                                                    dco_central_freq[dco_count]),
1176                                           dco_central_freq[dco_count]);
1177
1178                         if (dco_central_freq_deviation[dco_count] <
1179                                 min_dco_deviation) {
1180                                 min_dco_deviation =
1181                                         dco_central_freq_deviation[dco_count];
1182                                 min_dco_index = dco_count;
1183                         }
1184                 }
1185
1186                 if (min_dco_index > 2 && dco_count == 2) {
1187                         retry_with_odd = true;
1188                         dco_count = 0;
1189                 }
1190         }
1191
1192         if (min_dco_index > 2) {
1193                 WARN(1, "No valid values found for the given pixel clock\n");
1194         } else {
1195                 wrpll_params->central_freq = dco_central_freq[min_dco_index];
1196
1197                 switch (dco_central_freq[min_dco_index]) {
1198                 case 9600000000ULL:
1199                         wrpll_params->central_freq = 0;
1200                         break;
1201                 case 9000000000ULL:
1202                         wrpll_params->central_freq = 1;
1203                         break;
1204                 case 8400000000ULL:
1205                         wrpll_params->central_freq = 3;
1206                 }
1207
1208                 switch (candidate_p0[min_dco_index]) {
1209                 case 1:
1210                         wrpll_params->pdiv = 0;
1211                         break;
1212                 case 2:
1213                         wrpll_params->pdiv = 1;
1214                         break;
1215                 case 3:
1216                         wrpll_params->pdiv = 2;
1217                         break;
1218                 case 7:
1219                         wrpll_params->pdiv = 4;
1220                         break;
1221                 default:
1222                         WARN(1, "Incorrect PDiv\n");
1223                 }
1224
1225                 switch (candidate_p2[min_dco_index]) {
1226                 case 5:
1227                         wrpll_params->kdiv = 0;
1228                         break;
1229                 case 2:
1230                         wrpll_params->kdiv = 1;
1231                         break;
1232                 case 3:
1233                         wrpll_params->kdiv = 2;
1234                         break;
1235                 case 1:
1236                         wrpll_params->kdiv = 3;
1237                         break;
1238                 default:
1239                         WARN(1, "Incorrect KDiv\n");
1240                 }
1241
1242                 wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
1243                 wrpll_params->qdiv_mode =
1244                         (wrpll_params->qdiv_ratio == 1) ? 0 : 1;
1245
1246                 dco_freq = candidate_p0[min_dco_index] *
1247                         candidate_p1[min_dco_index] *
1248                         candidate_p2[min_dco_index] * afe_clock;
1249
1250                 /*
1251                  * Intermediate values are in Hz.
1252                  * Divide by MHz to match bsepc
1253                  */
1254                 wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
1255                 wrpll_params->dco_fraction =
1256                         div_u64(((div_u64(dco_freq, 24) -
1257                                   wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
1258
1259         }
1260 }
1261
1262
1263 static bool
1264 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1265                    struct intel_crtc_state *crtc_state,
1266                    struct intel_encoder *intel_encoder,
1267                    int clock)
1268 {
1269         struct intel_shared_dpll *pll;
1270         uint32_t ctrl1, cfgcr1, cfgcr2;
1271
1272         /*
1273          * See comment in intel_dpll_hw_state to understand why we always use 0
1274          * as the DPLL id in this function.
1275          */
1276
1277         ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1278
1279         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1280                 struct skl_wrpll_params wrpll_params = { 0, };
1281
1282                 ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1283
1284                 skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
1285
1286                 cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1287                          DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1288                          wrpll_params.dco_integer;
1289
1290                 cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1291                          DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1292                          DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1293                          DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1294                          wrpll_params.central_freq;
1295         } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1296                 struct drm_encoder *encoder = &intel_encoder->base;
1297                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1298
1299                 switch (intel_dp->link_bw) {
1300                 case DP_LINK_BW_1_62:
1301                         ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1302                         break;
1303                 case DP_LINK_BW_2_7:
1304                         ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1305                         break;
1306                 case DP_LINK_BW_5_4:
1307                         ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1308                         break;
1309                 }
1310
1311                 cfgcr1 = cfgcr2 = 0;
1312         } else /* eDP */
1313                 return true;
1314
1315         memset(&crtc_state->dpll_hw_state, 0,
1316                sizeof(crtc_state->dpll_hw_state));
1317
1318         crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1319         crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1320         crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1321
1322         pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1323         if (pll == NULL) {
1324                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1325                                  pipe_name(intel_crtc->pipe));
1326                 return false;
1327         }
1328
1329         /* shared DPLL id 0 is DPLL 1 */
1330         crtc_state->ddi_pll_sel = pll->id + 1;
1331
1332         return true;
1333 }
1334
1335 /* bxt clock parameters */
1336 struct bxt_clk_div {
1337         uint32_t p1;
1338         uint32_t p2;
1339         uint32_t m2_int;
1340         uint32_t m2_frac;
1341         bool m2_frac_en;
1342         uint32_t n;
1343 };
1344
1345 /* pre-calculated values for DP linkrates */
1346 static struct bxt_clk_div bxt_dp_clk_val[7] = {
1347         /* 162 */ {4, 2, 32, 1677722, 1, 1},
1348         /* 270 */ {4, 1, 27,       0, 0, 1},
1349         /* 540 */ {2, 1, 27,       0, 0, 1},
1350         /* 216 */ {3, 2, 32, 1677722, 1, 1},
1351         /* 243 */ {4, 1, 24, 1258291, 1, 1},
1352         /* 324 */ {4, 1, 32, 1677722, 1, 1},
1353         /* 432 */ {3, 1, 32, 1677722, 1, 1}
1354 };
1355
1356 static bool
1357 bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
1358                    struct intel_crtc_state *crtc_state,
1359                    struct intel_encoder *intel_encoder,
1360                    int clock)
1361 {
1362         struct intel_shared_dpll *pll;
1363         struct bxt_clk_div clk_div = {0};
1364         int vco = 0;
1365         uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1366         uint32_t dcoampovr_en_h, dco_amp, lanestagger;
1367
1368         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1369                 intel_clock_t best_clock;
1370
1371                 /* Calculate HDMI div */
1372                 /*
1373                  * FIXME: tie the following calculation into
1374                  * i9xx_crtc_compute_clock
1375                  */
1376                 if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
1377                         DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
1378                                          clock, pipe_name(intel_crtc->pipe));
1379                         return false;
1380                 }
1381
1382                 clk_div.p1 = best_clock.p1;
1383                 clk_div.p2 = best_clock.p2;
1384                 WARN_ON(best_clock.m1 != 2);
1385                 clk_div.n = best_clock.n;
1386                 clk_div.m2_int = best_clock.m2 >> 22;
1387                 clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
1388                 clk_div.m2_frac_en = clk_div.m2_frac != 0;
1389
1390                 vco = best_clock.vco;
1391         } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
1392                         intel_encoder->type == INTEL_OUTPUT_EDP) {
1393                 struct drm_encoder *encoder = &intel_encoder->base;
1394                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1395
1396                 switch (intel_dp->link_bw) {
1397                 case DP_LINK_BW_1_62:
1398                         clk_div = bxt_dp_clk_val[0];
1399                         break;
1400                 case DP_LINK_BW_2_7:
1401                         clk_div = bxt_dp_clk_val[1];
1402                         break;
1403                 case DP_LINK_BW_5_4:
1404                         clk_div = bxt_dp_clk_val[2];
1405                         break;
1406                 default:
1407                         clk_div = bxt_dp_clk_val[0];
1408                         DRM_ERROR("Unknown link rate\n");
1409                 }
1410                 vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
1411         }
1412
1413         dco_amp = 15;
1414         dcoampovr_en_h = 0;
1415         if (vco >= 6200000 && vco <= 6480000) {
1416                 prop_coef = 4;
1417                 int_coef = 9;
1418                 gain_ctl = 3;
1419                 targ_cnt = 8;
1420         } else if ((vco > 5400000 && vco < 6200000) ||
1421                         (vco >= 4800000 && vco < 5400000)) {
1422                 prop_coef = 5;
1423                 int_coef = 11;
1424                 gain_ctl = 3;
1425                 targ_cnt = 9;
1426                 if (vco >= 4800000 && vco < 5400000)
1427                         dcoampovr_en_h = 1;
1428         } else if (vco == 5400000) {
1429                 prop_coef = 3;
1430                 int_coef = 8;
1431                 gain_ctl = 1;
1432                 targ_cnt = 9;
1433         } else {
1434                 DRM_ERROR("Invalid VCO\n");
1435                 return false;
1436         }
1437
1438         memset(&crtc_state->dpll_hw_state, 0,
1439                sizeof(crtc_state->dpll_hw_state));
1440
1441         if (clock > 270000)
1442                 lanestagger = 0x18;
1443         else if (clock > 135000)
1444                 lanestagger = 0x0d;
1445         else if (clock > 67000)
1446                 lanestagger = 0x07;
1447         else if (clock > 33000)
1448                 lanestagger = 0x04;
1449         else
1450                 lanestagger = 0x02;
1451
1452         crtc_state->dpll_hw_state.ebb0 =
1453                 PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
1454         crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
1455         crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
1456         crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
1457
1458         if (clk_div.m2_frac_en)
1459                 crtc_state->dpll_hw_state.pll3 =
1460                         PORT_PLL_M2_FRAC_ENABLE;
1461
1462         crtc_state->dpll_hw_state.pll6 =
1463                 prop_coef | PORT_PLL_INT_COEFF(int_coef);
1464         crtc_state->dpll_hw_state.pll6 |=
1465                 PORT_PLL_GAIN_CTL(gain_ctl);
1466
1467         crtc_state->dpll_hw_state.pll8 = targ_cnt;
1468
1469         if (dcoampovr_en_h)
1470                 crtc_state->dpll_hw_state.pll10 = PORT_PLL_DCO_AMP_OVR_EN_H;
1471
1472         crtc_state->dpll_hw_state.pll10 |= PORT_PLL_DCO_AMP(dco_amp);
1473
1474         crtc_state->dpll_hw_state.pcsdw12 =
1475                 LANESTAGGER_STRAP_OVRD | lanestagger;
1476
1477         pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1478         if (pll == NULL) {
1479                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1480                         pipe_name(intel_crtc->pipe));
1481                 return false;
1482         }
1483
1484         /* shared DPLL id 0 is DPLL A */
1485         crtc_state->ddi_pll_sel = pll->id;
1486
1487         return true;
1488 }
1489
1490 /*
1491  * Tries to find a *shared* PLL for the CRTC and store it in
1492  * intel_crtc->ddi_pll_sel.
1493  *
1494  * For private DPLLs, compute_config() should do the selection for us. This
1495  * function should be folded into compute_config() eventually.
1496  */
1497 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1498                           struct intel_crtc_state *crtc_state)
1499 {
1500         struct drm_device *dev = intel_crtc->base.dev;
1501         struct intel_encoder *intel_encoder =
1502                 intel_ddi_get_crtc_new_encoder(crtc_state);
1503         int clock = crtc_state->port_clock;
1504
1505         if (IS_SKYLAKE(dev))
1506                 return skl_ddi_pll_select(intel_crtc, crtc_state,
1507                                           intel_encoder, clock);
1508         else if (IS_BROXTON(dev))
1509                 return bxt_ddi_pll_select(intel_crtc, crtc_state,
1510                                           intel_encoder, clock);
1511         else
1512                 return hsw_ddi_pll_select(intel_crtc, crtc_state,
1513                                           intel_encoder, clock);
1514 }
1515
1516 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1517 {
1518         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1519         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1520         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1521         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1522         int type = intel_encoder->type;
1523         uint32_t temp;
1524
1525         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1526                 temp = TRANS_MSA_SYNC_CLK;
1527                 switch (intel_crtc->config->pipe_bpp) {
1528                 case 18:
1529                         temp |= TRANS_MSA_6_BPC;
1530                         break;
1531                 case 24:
1532                         temp |= TRANS_MSA_8_BPC;
1533                         break;
1534                 case 30:
1535                         temp |= TRANS_MSA_10_BPC;
1536                         break;
1537                 case 36:
1538                         temp |= TRANS_MSA_12_BPC;
1539                         break;
1540                 default:
1541                         BUG();
1542                 }
1543                 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1544         }
1545 }
1546
1547 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1548 {
1549         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1550         struct drm_device *dev = crtc->dev;
1551         struct drm_i915_private *dev_priv = dev->dev_private;
1552         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1553         uint32_t temp;
1554         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1555         if (state == true)
1556                 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1557         else
1558                 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1559         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1560 }
1561
1562 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1563 {
1564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1565         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1566         struct drm_encoder *encoder = &intel_encoder->base;
1567         struct drm_device *dev = crtc->dev;
1568         struct drm_i915_private *dev_priv = dev->dev_private;
1569         enum pipe pipe = intel_crtc->pipe;
1570         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1571         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1572         int type = intel_encoder->type;
1573         uint32_t temp;
1574
1575         /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1576         temp = TRANS_DDI_FUNC_ENABLE;
1577         temp |= TRANS_DDI_SELECT_PORT(port);
1578
1579         switch (intel_crtc->config->pipe_bpp) {
1580         case 18:
1581                 temp |= TRANS_DDI_BPC_6;
1582                 break;
1583         case 24:
1584                 temp |= TRANS_DDI_BPC_8;
1585                 break;
1586         case 30:
1587                 temp |= TRANS_DDI_BPC_10;
1588                 break;
1589         case 36:
1590                 temp |= TRANS_DDI_BPC_12;
1591                 break;
1592         default:
1593                 BUG();
1594         }
1595
1596         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1597                 temp |= TRANS_DDI_PVSYNC;
1598         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1599                 temp |= TRANS_DDI_PHSYNC;
1600
1601         if (cpu_transcoder == TRANSCODER_EDP) {
1602                 switch (pipe) {
1603                 case PIPE_A:
1604                         /* On Haswell, can only use the always-on power well for
1605                          * eDP when not using the panel fitter, and when not
1606                          * using motion blur mitigation (which we don't
1607                          * support). */
1608                         if (IS_HASWELL(dev) &&
1609                             (intel_crtc->config->pch_pfit.enabled ||
1610                              intel_crtc->config->pch_pfit.force_thru))
1611                                 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1612                         else
1613                                 temp |= TRANS_DDI_EDP_INPUT_A_ON;
1614                         break;
1615                 case PIPE_B:
1616                         temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1617                         break;
1618                 case PIPE_C:
1619                         temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1620                         break;
1621                 default:
1622                         BUG();
1623                         break;
1624                 }
1625         }
1626
1627         if (type == INTEL_OUTPUT_HDMI) {
1628                 if (intel_crtc->config->has_hdmi_sink)
1629                         temp |= TRANS_DDI_MODE_SELECT_HDMI;
1630                 else
1631                         temp |= TRANS_DDI_MODE_SELECT_DVI;
1632
1633         } else if (type == INTEL_OUTPUT_ANALOG) {
1634                 temp |= TRANS_DDI_MODE_SELECT_FDI;
1635                 temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1636
1637         } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1638                    type == INTEL_OUTPUT_EDP) {
1639                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1640
1641                 if (intel_dp->is_mst) {
1642                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1643                 } else
1644                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1645
1646                 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1647         } else if (type == INTEL_OUTPUT_DP_MST) {
1648                 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1649
1650                 if (intel_dp->is_mst) {
1651                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1652                 } else
1653                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1654
1655                 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1656         } else {
1657                 WARN(1, "Invalid encoder type %d for pipe %c\n",
1658                      intel_encoder->type, pipe_name(pipe));
1659         }
1660
1661         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1662 }
1663
1664 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1665                                        enum transcoder cpu_transcoder)
1666 {
1667         uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1668         uint32_t val = I915_READ(reg);
1669
1670         val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1671         val |= TRANS_DDI_PORT_NONE;
1672         I915_WRITE(reg, val);
1673 }
1674
1675 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1676 {
1677         struct drm_device *dev = intel_connector->base.dev;
1678         struct drm_i915_private *dev_priv = dev->dev_private;
1679         struct intel_encoder *intel_encoder = intel_connector->encoder;
1680         int type = intel_connector->base.connector_type;
1681         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1682         enum pipe pipe = 0;
1683         enum transcoder cpu_transcoder;
1684         enum intel_display_power_domain power_domain;
1685         uint32_t tmp;
1686
1687         power_domain = intel_display_port_power_domain(intel_encoder);
1688         if (!intel_display_power_is_enabled(dev_priv, power_domain))
1689                 return false;
1690
1691         if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1692                 return false;
1693
1694         if (port == PORT_A)
1695                 cpu_transcoder = TRANSCODER_EDP;
1696         else
1697                 cpu_transcoder = (enum transcoder) pipe;
1698
1699         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1700
1701         switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1702         case TRANS_DDI_MODE_SELECT_HDMI:
1703         case TRANS_DDI_MODE_SELECT_DVI:
1704                 return (type == DRM_MODE_CONNECTOR_HDMIA);
1705
1706         case TRANS_DDI_MODE_SELECT_DP_SST:
1707                 if (type == DRM_MODE_CONNECTOR_eDP)
1708                         return true;
1709                 return (type == DRM_MODE_CONNECTOR_DisplayPort);
1710         case TRANS_DDI_MODE_SELECT_DP_MST:
1711                 /* if the transcoder is in MST state then
1712                  * connector isn't connected */
1713                 return false;
1714
1715         case TRANS_DDI_MODE_SELECT_FDI:
1716                 return (type == DRM_MODE_CONNECTOR_VGA);
1717
1718         default:
1719                 return false;
1720         }
1721 }
1722
1723 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1724                             enum pipe *pipe)
1725 {
1726         struct drm_device *dev = encoder->base.dev;
1727         struct drm_i915_private *dev_priv = dev->dev_private;
1728         enum port port = intel_ddi_get_encoder_port(encoder);
1729         enum intel_display_power_domain power_domain;
1730         u32 tmp;
1731         int i;
1732
1733         power_domain = intel_display_port_power_domain(encoder);
1734         if (!intel_display_power_is_enabled(dev_priv, power_domain))
1735                 return false;
1736
1737         tmp = I915_READ(DDI_BUF_CTL(port));
1738
1739         if (!(tmp & DDI_BUF_CTL_ENABLE))
1740                 return false;
1741
1742         if (port == PORT_A) {
1743                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1744
1745                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1746                 case TRANS_DDI_EDP_INPUT_A_ON:
1747                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
1748                         *pipe = PIPE_A;
1749                         break;
1750                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
1751                         *pipe = PIPE_B;
1752                         break;
1753                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
1754                         *pipe = PIPE_C;
1755                         break;
1756                 }
1757
1758                 return true;
1759         } else {
1760                 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1761                         tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1762
1763                         if ((tmp & TRANS_DDI_PORT_MASK)
1764                             == TRANS_DDI_SELECT_PORT(port)) {
1765                                 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
1766                                         return false;
1767
1768                                 *pipe = i;
1769                                 return true;
1770                         }
1771                 }
1772         }
1773
1774         DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1775
1776         return false;
1777 }
1778
1779 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1780 {
1781         struct drm_crtc *crtc = &intel_crtc->base;
1782         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1783         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1784         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1785         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1786
1787         if (cpu_transcoder != TRANSCODER_EDP)
1788                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1789                            TRANS_CLK_SEL_PORT(port));
1790 }
1791
1792 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1793 {
1794         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1795         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1796
1797         if (cpu_transcoder != TRANSCODER_EDP)
1798                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1799                            TRANS_CLK_SEL_DISABLED);
1800 }
1801
1802 void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
1803                              enum port port, int type)
1804 {
1805         struct drm_i915_private *dev_priv = dev->dev_private;
1806         const struct bxt_ddi_buf_trans *ddi_translations;
1807         u32 n_entries, i;
1808         uint32_t val;
1809
1810         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1811                 n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
1812                 ddi_translations = bxt_ddi_translations_dp;
1813         } else if (type == INTEL_OUTPUT_HDMI) {
1814                 n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
1815                 ddi_translations = bxt_ddi_translations_hdmi;
1816         } else {
1817                 DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
1818                                 type);
1819                 return;
1820         }
1821
1822         /* Check if default value has to be used */
1823         if (level >= n_entries ||
1824             (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
1825                 for (i = 0; i < n_entries; i++) {
1826                         if (ddi_translations[i].default_index) {
1827                                 level = i;
1828                                 break;
1829                         }
1830                 }
1831         }
1832
1833         /*
1834          * While we write to the group register to program all lanes at once we
1835          * can read only lane registers and we pick lanes 0/1 for that.
1836          */
1837         val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1838         val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
1839         I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1840
1841         val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
1842         val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
1843         val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
1844                ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
1845         I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
1846
1847         val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
1848         val &= ~UNIQE_TRANGE_EN_METHOD;
1849         if (ddi_translations[level].enable)
1850                 val |= UNIQE_TRANGE_EN_METHOD;
1851         I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
1852
1853         val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
1854         val &= ~DE_EMPHASIS;
1855         val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
1856         I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
1857
1858         val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1859         val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
1860         I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1861 }
1862
1863 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1864 {
1865         struct drm_encoder *encoder = &intel_encoder->base;
1866         struct drm_device *dev = encoder->dev;
1867         struct drm_i915_private *dev_priv = dev->dev_private;
1868         struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1869         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1870         int type = intel_encoder->type;
1871         int hdmi_level;
1872
1873         if (type == INTEL_OUTPUT_EDP) {
1874                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1875                 intel_edp_panel_on(intel_dp);
1876         }
1877
1878         if (IS_SKYLAKE(dev)) {
1879                 uint32_t dpll = crtc->config->ddi_pll_sel;
1880                 uint32_t val;
1881
1882                 /*
1883                  * DPLL0 is used for eDP and is the only "private" DPLL (as
1884                  * opposed to shared) on SKL
1885                  */
1886                 if (type == INTEL_OUTPUT_EDP) {
1887                         WARN_ON(dpll != SKL_DPLL0);
1888
1889                         val = I915_READ(DPLL_CTRL1);
1890
1891                         val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
1892                                  DPLL_CTRL1_SSC(dpll) |
1893                                  DPLL_CTRL1_LINK_RATE_MASK(dpll));
1894                         val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
1895
1896                         I915_WRITE(DPLL_CTRL1, val);
1897                         POSTING_READ(DPLL_CTRL1);
1898                 }
1899
1900                 /* DDI -> PLL mapping  */
1901                 val = I915_READ(DPLL_CTRL2);
1902
1903                 val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1904                         DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1905                 val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1906                         DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1907
1908                 I915_WRITE(DPLL_CTRL2, val);
1909
1910         } else if (INTEL_INFO(dev)->gen < 9) {
1911                 WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
1912                 I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
1913         }
1914
1915         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1916                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1917
1918                 intel_ddi_init_dp_buf_reg(intel_encoder);
1919
1920                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1921                 intel_dp_start_link_train(intel_dp);
1922                 intel_dp_complete_link_train(intel_dp);
1923                 if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
1924                         intel_dp_stop_link_train(intel_dp);
1925         } else if (type == INTEL_OUTPUT_HDMI) {
1926                 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1927
1928                 if (IS_BROXTON(dev)) {
1929                         hdmi_level = dev_priv->vbt.
1930                                 ddi_port_info[port].hdmi_level_shift;
1931                         bxt_ddi_vswing_sequence(dev, hdmi_level, port,
1932                                         INTEL_OUTPUT_HDMI);
1933                 }
1934                 intel_hdmi->set_infoframes(encoder,
1935                                            crtc->config->has_hdmi_sink,
1936                                            &crtc->config->base.adjusted_mode);
1937         }
1938 }
1939
1940 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1941 {
1942         struct drm_encoder *encoder = &intel_encoder->base;
1943         struct drm_device *dev = encoder->dev;
1944         struct drm_i915_private *dev_priv = dev->dev_private;
1945         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1946         int type = intel_encoder->type;
1947         uint32_t val;
1948         bool wait = false;
1949
1950         val = I915_READ(DDI_BUF_CTL(port));
1951         if (val & DDI_BUF_CTL_ENABLE) {
1952                 val &= ~DDI_BUF_CTL_ENABLE;
1953                 I915_WRITE(DDI_BUF_CTL(port), val);
1954                 wait = true;
1955         }
1956
1957         val = I915_READ(DP_TP_CTL(port));
1958         val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1959         val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1960         I915_WRITE(DP_TP_CTL(port), val);
1961
1962         if (wait)
1963                 intel_wait_ddi_buf_idle(dev_priv, port);
1964
1965         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1966                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1967                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1968                 intel_edp_panel_vdd_on(intel_dp);
1969                 intel_edp_panel_off(intel_dp);
1970         }
1971
1972         if (IS_SKYLAKE(dev))
1973                 I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1974                                         DPLL_CTRL2_DDI_CLK_OFF(port)));
1975         else if (INTEL_INFO(dev)->gen < 9)
1976                 I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1977 }
1978
1979 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1980 {
1981         struct drm_encoder *encoder = &intel_encoder->base;
1982         struct drm_crtc *crtc = encoder->crtc;
1983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1984         struct drm_device *dev = encoder->dev;
1985         struct drm_i915_private *dev_priv = dev->dev_private;
1986         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1987         int type = intel_encoder->type;
1988
1989         if (type == INTEL_OUTPUT_HDMI) {
1990                 struct intel_digital_port *intel_dig_port =
1991                         enc_to_dig_port(encoder);
1992
1993                 /* In HDMI/DVI mode, the port width, and swing/emphasis values
1994                  * are ignored so nothing special needs to be done besides
1995                  * enabling the port.
1996                  */
1997                 I915_WRITE(DDI_BUF_CTL(port),
1998                            intel_dig_port->saved_port_bits |
1999                            DDI_BUF_CTL_ENABLE);
2000         } else if (type == INTEL_OUTPUT_EDP) {
2001                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2002
2003                 if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2004                         intel_dp_stop_link_train(intel_dp);
2005
2006                 intel_edp_backlight_on(intel_dp);
2007                 intel_psr_enable(intel_dp);
2008                 intel_edp_drrs_enable(intel_dp);
2009         }
2010
2011         if (intel_crtc->config->has_audio) {
2012                 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2013                 intel_audio_codec_enable(intel_encoder);
2014         }
2015 }
2016
2017 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2018 {
2019         struct drm_encoder *encoder = &intel_encoder->base;
2020         struct drm_crtc *crtc = encoder->crtc;
2021         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2022         int type = intel_encoder->type;
2023         struct drm_device *dev = encoder->dev;
2024         struct drm_i915_private *dev_priv = dev->dev_private;
2025
2026         if (intel_crtc->config->has_audio) {
2027                 intel_audio_codec_disable(intel_encoder);
2028                 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
2029         }
2030
2031         if (type == INTEL_OUTPUT_EDP) {
2032                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2033
2034                 intel_edp_drrs_disable(intel_dp);
2035                 intel_psr_disable(intel_dp);
2036                 intel_edp_backlight_off(intel_dp);
2037         }
2038 }
2039
2040 static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
2041                                struct intel_shared_dpll *pll)
2042 {
2043         I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2044         POSTING_READ(WRPLL_CTL(pll->id));
2045         udelay(20);
2046 }
2047
2048 static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
2049                                 struct intel_shared_dpll *pll)
2050 {
2051         uint32_t val;
2052
2053         val = I915_READ(WRPLL_CTL(pll->id));
2054         I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
2055         POSTING_READ(WRPLL_CTL(pll->id));
2056 }
2057
2058 static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2059                                      struct intel_shared_dpll *pll,
2060                                      struct intel_dpll_hw_state *hw_state)
2061 {
2062         uint32_t val;
2063
2064         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2065                 return false;
2066
2067         val = I915_READ(WRPLL_CTL(pll->id));
2068         hw_state->wrpll = val;
2069
2070         return val & WRPLL_PLL_ENABLE;
2071 }
2072
2073 static const char * const hsw_ddi_pll_names[] = {
2074         "WRPLL 1",
2075         "WRPLL 2",
2076 };
2077
2078 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
2079 {
2080         int i;
2081
2082         dev_priv->num_shared_dpll = 2;
2083
2084         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2085                 dev_priv->shared_dplls[i].id = i;
2086                 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2087                 dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
2088                 dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
2089                 dev_priv->shared_dplls[i].get_hw_state =
2090                         hsw_ddi_pll_get_hw_state;
2091         }
2092 }
2093
2094 static const char * const skl_ddi_pll_names[] = {
2095         "DPLL 1",
2096         "DPLL 2",
2097         "DPLL 3",
2098 };
2099
2100 struct skl_dpll_regs {
2101         u32 ctl, cfgcr1, cfgcr2;
2102 };
2103
2104 /* this array is indexed by the *shared* pll id */
2105 static const struct skl_dpll_regs skl_dpll_regs[3] = {
2106         {
2107                 /* DPLL 1 */
2108                 .ctl = LCPLL2_CTL,
2109                 .cfgcr1 = DPLL1_CFGCR1,
2110                 .cfgcr2 = DPLL1_CFGCR2,
2111         },
2112         {
2113                 /* DPLL 2 */
2114                 .ctl = WRPLL_CTL1,
2115                 .cfgcr1 = DPLL2_CFGCR1,
2116                 .cfgcr2 = DPLL2_CFGCR2,
2117         },
2118         {
2119                 /* DPLL 3 */
2120                 .ctl = WRPLL_CTL2,
2121                 .cfgcr1 = DPLL3_CFGCR1,
2122                 .cfgcr2 = DPLL3_CFGCR2,
2123         },
2124 };
2125
2126 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
2127                                struct intel_shared_dpll *pll)
2128 {
2129         uint32_t val;
2130         unsigned int dpll;
2131         const struct skl_dpll_regs *regs = skl_dpll_regs;
2132
2133         /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2134         dpll = pll->id + 1;
2135
2136         val = I915_READ(DPLL_CTRL1);
2137
2138         val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2139                  DPLL_CTRL1_LINK_RATE_MASK(dpll));
2140         val |= pll->config.hw_state.ctrl1 << (dpll * 6);
2141
2142         I915_WRITE(DPLL_CTRL1, val);
2143         POSTING_READ(DPLL_CTRL1);
2144
2145         I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
2146         I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
2147         POSTING_READ(regs[pll->id].cfgcr1);
2148         POSTING_READ(regs[pll->id].cfgcr2);
2149
2150         /* the enable bit is always bit 31 */
2151         I915_WRITE(regs[pll->id].ctl,
2152                    I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
2153
2154         if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
2155                 DRM_ERROR("DPLL %d not locked\n", dpll);
2156 }
2157
2158 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
2159                                 struct intel_shared_dpll *pll)
2160 {
2161         const struct skl_dpll_regs *regs = skl_dpll_regs;
2162
2163         /* the enable bit is always bit 31 */
2164         I915_WRITE(regs[pll->id].ctl,
2165                    I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
2166         POSTING_READ(regs[pll->id].ctl);
2167 }
2168
2169 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2170                                      struct intel_shared_dpll *pll,
2171                                      struct intel_dpll_hw_state *hw_state)
2172 {
2173         uint32_t val;
2174         unsigned int dpll;
2175         const struct skl_dpll_regs *regs = skl_dpll_regs;
2176
2177         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2178                 return false;
2179
2180         /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2181         dpll = pll->id + 1;
2182
2183         val = I915_READ(regs[pll->id].ctl);
2184         if (!(val & LCPLL_PLL_ENABLE))
2185                 return false;
2186
2187         val = I915_READ(DPLL_CTRL1);
2188         hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
2189
2190         /* avoid reading back stale values if HDMI mode is not enabled */
2191         if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
2192                 hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
2193                 hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
2194         }
2195
2196         return true;
2197 }
2198
2199 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
2200 {
2201         int i;
2202
2203         dev_priv->num_shared_dpll = 3;
2204
2205         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2206                 dev_priv->shared_dplls[i].id = i;
2207                 dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
2208                 dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
2209                 dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
2210                 dev_priv->shared_dplls[i].get_hw_state =
2211                         skl_ddi_pll_get_hw_state;
2212         }
2213 }
2214
2215 static void broxton_phy_init(struct drm_i915_private *dev_priv,
2216                              enum dpio_phy phy)
2217 {
2218         enum port port;
2219         uint32_t val;
2220
2221         val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
2222         val |= GT_DISPLAY_POWER_ON(phy);
2223         I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
2224
2225         /* Considering 10ms timeout until BSpec is updated */
2226         if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
2227                 DRM_ERROR("timeout during PHY%d power on\n", phy);
2228
2229         for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
2230              port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
2231                 int lane;
2232
2233                 for (lane = 0; lane < 4; lane++) {
2234                         val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
2235                         /*
2236                          * Note that on CHV this flag is called UPAR, but has
2237                          * the same function.
2238                          */
2239                         val &= ~LATENCY_OPTIM;
2240                         if (lane != 1)
2241                                 val |= LATENCY_OPTIM;
2242
2243                         I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
2244                 }
2245         }
2246
2247         /* Program PLL Rcomp code offset */
2248         val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
2249         val &= ~IREF0RC_OFFSET_MASK;
2250         val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
2251         I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
2252
2253         val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
2254         val &= ~IREF1RC_OFFSET_MASK;
2255         val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
2256         I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
2257
2258         /* Program power gating */
2259         val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
2260         val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
2261                 SUS_CLK_CONFIG;
2262         I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
2263
2264         if (phy == DPIO_PHY0) {
2265                 val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
2266                 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
2267                 I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
2268         }
2269
2270         val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
2271         val &= ~OCL2_LDOFUSE_PWR_DIS;
2272         /*
2273          * On PHY1 disable power on the second channel, since no port is
2274          * connected there. On PHY0 both channels have a port, so leave it
2275          * enabled.
2276          * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
2277          * power down the second channel on PHY0 as well.
2278          */
2279         if (phy == DPIO_PHY1)
2280                 val |= OCL2_LDOFUSE_PWR_DIS;
2281         I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
2282
2283         if (phy == DPIO_PHY0) {
2284                 uint32_t grc_code;
2285                 /*
2286                  * PHY0 isn't connected to an RCOMP resistor so copy over
2287                  * the corresponding calibrated value from PHY1, and disable
2288                  * the automatic calibration on PHY0.
2289                  */
2290                 if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
2291                              10))
2292                         DRM_ERROR("timeout waiting for PHY1 GRC\n");
2293
2294                 val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
2295                 val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
2296                 grc_code = val << GRC_CODE_FAST_SHIFT |
2297                            val << GRC_CODE_SLOW_SHIFT |
2298                            val;
2299                 I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
2300
2301                 val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
2302                 val |= GRC_DIS | GRC_RDY_OVRD;
2303                 I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
2304         }
2305
2306         val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2307         val |= COMMON_RESET_DIS;
2308         I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2309 }
2310
2311 void broxton_ddi_phy_init(struct drm_device *dev)
2312 {
2313         /* Enable PHY1 first since it provides Rcomp for PHY0 */
2314         broxton_phy_init(dev->dev_private, DPIO_PHY1);
2315         broxton_phy_init(dev->dev_private, DPIO_PHY0);
2316 }
2317
2318 static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
2319                                enum dpio_phy phy)
2320 {
2321         uint32_t val;
2322
2323         val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2324         val &= ~COMMON_RESET_DIS;
2325         I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2326 }
2327
2328 void broxton_ddi_phy_uninit(struct drm_device *dev)
2329 {
2330         struct drm_i915_private *dev_priv = dev->dev_private;
2331
2332         broxton_phy_uninit(dev_priv, DPIO_PHY1);
2333         broxton_phy_uninit(dev_priv, DPIO_PHY0);
2334
2335         /* FIXME: do this in broxton_phy_uninit per phy */
2336         I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
2337 }
2338
2339 static const char * const bxt_ddi_pll_names[] = {
2340         "PORT PLL A",
2341         "PORT PLL B",
2342         "PORT PLL C",
2343 };
2344
2345 static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
2346                                 struct intel_shared_dpll *pll)
2347 {
2348         uint32_t temp;
2349         enum port port = (enum port)pll->id;    /* 1:1 port->PLL mapping */
2350
2351         temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2352         temp &= ~PORT_PLL_REF_SEL;
2353         /* Non-SSC reference */
2354         I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2355
2356         /* Disable 10 bit clock */
2357         temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2358         temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2359         I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2360
2361         /* Write P1 & P2 */
2362         temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
2363         temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
2364         temp |= pll->config.hw_state.ebb0;
2365         I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
2366
2367         /* Write M2 integer */
2368         temp = I915_READ(BXT_PORT_PLL(port, 0));
2369         temp &= ~PORT_PLL_M2_MASK;
2370         temp |= pll->config.hw_state.pll0;
2371         I915_WRITE(BXT_PORT_PLL(port, 0), temp);
2372
2373         /* Write N */
2374         temp = I915_READ(BXT_PORT_PLL(port, 1));
2375         temp &= ~PORT_PLL_N_MASK;
2376         temp |= pll->config.hw_state.pll1;
2377         I915_WRITE(BXT_PORT_PLL(port, 1), temp);
2378
2379         /* Write M2 fraction */
2380         temp = I915_READ(BXT_PORT_PLL(port, 2));
2381         temp &= ~PORT_PLL_M2_FRAC_MASK;
2382         temp |= pll->config.hw_state.pll2;
2383         I915_WRITE(BXT_PORT_PLL(port, 2), temp);
2384
2385         /* Write M2 fraction enable */
2386         temp = I915_READ(BXT_PORT_PLL(port, 3));
2387         temp &= ~PORT_PLL_M2_FRAC_ENABLE;
2388         temp |= pll->config.hw_state.pll3;
2389         I915_WRITE(BXT_PORT_PLL(port, 3), temp);
2390
2391         /* Write coeff */
2392         temp = I915_READ(BXT_PORT_PLL(port, 6));
2393         temp &= ~PORT_PLL_PROP_COEFF_MASK;
2394         temp &= ~PORT_PLL_INT_COEFF_MASK;
2395         temp &= ~PORT_PLL_GAIN_CTL_MASK;
2396         temp |= pll->config.hw_state.pll6;
2397         I915_WRITE(BXT_PORT_PLL(port, 6), temp);
2398
2399         /* Write calibration val */
2400         temp = I915_READ(BXT_PORT_PLL(port, 8));
2401         temp &= ~PORT_PLL_TARGET_CNT_MASK;
2402         temp |= pll->config.hw_state.pll8;
2403         I915_WRITE(BXT_PORT_PLL(port, 8), temp);
2404
2405         temp = I915_READ(BXT_PORT_PLL(port, 9));
2406         temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2407         temp |= (5 << 1);
2408         I915_WRITE(BXT_PORT_PLL(port, 9), temp);
2409
2410         temp = I915_READ(BXT_PORT_PLL(port, 10));
2411         temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
2412         temp &= ~PORT_PLL_DCO_AMP_MASK;
2413         temp |= pll->config.hw_state.pll10;
2414         I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2415
2416         /* Recalibrate with new settings */
2417         temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2418         temp |= PORT_PLL_RECALIBRATE;
2419         I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2420         /* Enable 10 bit clock */
2421         temp |= PORT_PLL_10BIT_CLK_ENABLE;
2422         I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2423
2424         /* Enable PLL */
2425         temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2426         temp |= PORT_PLL_ENABLE;
2427         I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2428         POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2429
2430         if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
2431                         PORT_PLL_LOCK), 200))
2432                 DRM_ERROR("PLL %d not locked\n", port);
2433
2434         /*
2435          * While we write to the group register to program all lanes at once we
2436          * can read only lane registers and we pick lanes 0/1 for that.
2437          */
2438         temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2439         temp &= ~LANE_STAGGER_MASK;
2440         temp &= ~LANESTAGGER_STRAP_OVRD;
2441         temp |= pll->config.hw_state.pcsdw12;
2442         I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
2443 }
2444
2445 static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
2446                                         struct intel_shared_dpll *pll)
2447 {
2448         enum port port = (enum port)pll->id;    /* 1:1 port->PLL mapping */
2449         uint32_t temp;
2450
2451         temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2452         temp &= ~PORT_PLL_ENABLE;
2453         I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2454         POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2455 }
2456
2457 static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2458                                         struct intel_shared_dpll *pll,
2459                                         struct intel_dpll_hw_state *hw_state)
2460 {
2461         enum port port = (enum port)pll->id;    /* 1:1 port->PLL mapping */
2462         uint32_t val;
2463
2464         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2465                 return false;
2466
2467         val = I915_READ(BXT_PORT_PLL_ENABLE(port));
2468         if (!(val & PORT_PLL_ENABLE))
2469                 return false;
2470
2471         hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2472         hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2473         hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2474         hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2475         hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2476         hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2477         hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2478         hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2479         /*
2480          * While we write to the group register to program all lanes at once we
2481          * can read only lane registers. We configure all lanes the same way, so
2482          * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
2483          */
2484         hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2485         if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
2486                 DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
2487                                  hw_state->pcsdw12,
2488                                  I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2489
2490         return true;
2491 }
2492
2493 static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
2494 {
2495         int i;
2496
2497         dev_priv->num_shared_dpll = 3;
2498
2499         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2500                 dev_priv->shared_dplls[i].id = i;
2501                 dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
2502                 dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
2503                 dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
2504                 dev_priv->shared_dplls[i].get_hw_state =
2505                         bxt_ddi_pll_get_hw_state;
2506         }
2507 }
2508
2509 void intel_ddi_pll_init(struct drm_device *dev)
2510 {
2511         struct drm_i915_private *dev_priv = dev->dev_private;
2512         uint32_t val = I915_READ(LCPLL_CTL);
2513         int cdclk_freq;
2514
2515         if (IS_SKYLAKE(dev))
2516                 skl_shared_dplls_init(dev_priv);
2517         else if (IS_BROXTON(dev))
2518                 bxt_shared_dplls_init(dev_priv);
2519         else
2520                 hsw_shared_dplls_init(dev_priv);
2521
2522         cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2523         DRM_DEBUG_KMS("CDCLK running at %dKHz\n", cdclk_freq);
2524
2525         if (IS_SKYLAKE(dev)) {
2526                 dev_priv->skl_boot_cdclk = cdclk_freq;
2527                 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
2528                         DRM_ERROR("LCPLL1 is disabled\n");
2529                 else
2530                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
2531         } else if (IS_BROXTON(dev)) {
2532                 broxton_init_cdclk(dev);
2533                 broxton_ddi_phy_init(dev);
2534         } else {
2535                 /*
2536                  * The LCPLL register should be turned on by the BIOS. For now
2537                  * let's just check its state and print errors in case
2538                  * something is wrong.  Don't even try to turn it on.
2539                  */
2540
2541                 if (val & LCPLL_CD_SOURCE_FCLK)
2542                         DRM_ERROR("CDCLK source is not LCPLL\n");
2543
2544                 if (val & LCPLL_PLL_DISABLE)
2545                         DRM_ERROR("LCPLL is disabled\n");
2546         }
2547 }
2548
2549 void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
2550 {
2551         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2552         struct intel_dp *intel_dp = &intel_dig_port->dp;
2553         struct drm_i915_private *dev_priv = encoder->dev->dev_private;
2554         enum port port = intel_dig_port->port;
2555         uint32_t val;
2556         bool wait = false;
2557
2558         if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
2559                 val = I915_READ(DDI_BUF_CTL(port));
2560                 if (val & DDI_BUF_CTL_ENABLE) {
2561                         val &= ~DDI_BUF_CTL_ENABLE;
2562                         I915_WRITE(DDI_BUF_CTL(port), val);
2563                         wait = true;
2564                 }
2565
2566                 val = I915_READ(DP_TP_CTL(port));
2567                 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2568                 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2569                 I915_WRITE(DP_TP_CTL(port), val);
2570                 POSTING_READ(DP_TP_CTL(port));
2571
2572                 if (wait)
2573                         intel_wait_ddi_buf_idle(dev_priv, port);
2574         }
2575
2576         val = DP_TP_CTL_ENABLE |
2577               DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2578         if (intel_dp->is_mst)
2579                 val |= DP_TP_CTL_MODE_MST;
2580         else {
2581                 val |= DP_TP_CTL_MODE_SST;
2582                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2583                         val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
2584         }
2585         I915_WRITE(DP_TP_CTL(port), val);
2586         POSTING_READ(DP_TP_CTL(port));
2587
2588         intel_dp->DP |= DDI_BUF_CTL_ENABLE;
2589         I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
2590         POSTING_READ(DDI_BUF_CTL(port));
2591
2592         udelay(600);
2593 }
2594
2595 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
2596 {
2597         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2598         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2599         uint32_t val;
2600
2601         intel_ddi_post_disable(intel_encoder);
2602
2603         val = I915_READ(_FDI_RXA_CTL);
2604         val &= ~FDI_RX_ENABLE;
2605         I915_WRITE(_FDI_RXA_CTL, val);
2606
2607         val = I915_READ(_FDI_RXA_MISC);
2608         val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
2609         val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
2610         I915_WRITE(_FDI_RXA_MISC, val);
2611
2612         val = I915_READ(_FDI_RXA_CTL);
2613         val &= ~FDI_PCDCLK;
2614         I915_WRITE(_FDI_RXA_CTL, val);
2615
2616         val = I915_READ(_FDI_RXA_CTL);
2617         val &= ~FDI_RX_PLL_ENABLE;
2618         I915_WRITE(_FDI_RXA_CTL, val);
2619 }
2620
2621 static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
2622 {
2623         struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
2624         int type = intel_dig_port->base.type;
2625
2626         if (type != INTEL_OUTPUT_DISPLAYPORT &&
2627             type != INTEL_OUTPUT_EDP &&
2628             type != INTEL_OUTPUT_UNKNOWN) {
2629                 return;
2630         }
2631
2632         intel_dp_hot_plug(intel_encoder);
2633 }
2634
2635 void intel_ddi_get_config(struct intel_encoder *encoder,
2636                           struct intel_crtc_state *pipe_config)
2637 {
2638         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
2639         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2640         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2641         struct intel_hdmi *intel_hdmi;
2642         u32 temp, flags = 0;
2643
2644         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2645         if (temp & TRANS_DDI_PHSYNC)
2646                 flags |= DRM_MODE_FLAG_PHSYNC;
2647         else
2648                 flags |= DRM_MODE_FLAG_NHSYNC;
2649         if (temp & TRANS_DDI_PVSYNC)
2650                 flags |= DRM_MODE_FLAG_PVSYNC;
2651         else
2652                 flags |= DRM_MODE_FLAG_NVSYNC;
2653
2654         pipe_config->base.adjusted_mode.flags |= flags;
2655
2656         switch (temp & TRANS_DDI_BPC_MASK) {
2657         case TRANS_DDI_BPC_6:
2658                 pipe_config->pipe_bpp = 18;
2659                 break;
2660         case TRANS_DDI_BPC_8:
2661                 pipe_config->pipe_bpp = 24;
2662                 break;
2663         case TRANS_DDI_BPC_10:
2664                 pipe_config->pipe_bpp = 30;
2665                 break;
2666         case TRANS_DDI_BPC_12:
2667                 pipe_config->pipe_bpp = 36;
2668                 break;
2669         default:
2670                 break;
2671         }
2672
2673         switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2674         case TRANS_DDI_MODE_SELECT_HDMI:
2675                 pipe_config->has_hdmi_sink = true;
2676                 intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2677
2678                 if (intel_hdmi->infoframe_enabled(&encoder->base))
2679                         pipe_config->has_infoframe = true;
2680                 break;
2681         case TRANS_DDI_MODE_SELECT_DVI:
2682         case TRANS_DDI_MODE_SELECT_FDI:
2683                 break;
2684         case TRANS_DDI_MODE_SELECT_DP_SST:
2685         case TRANS_DDI_MODE_SELECT_DP_MST:
2686                 pipe_config->has_dp_encoder = true;
2687                 intel_dp_get_m_n(intel_crtc, pipe_config);
2688                 break;
2689         default:
2690                 break;
2691         }
2692
2693         if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2694                 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2695                 if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2696                         pipe_config->has_audio = true;
2697         }
2698
2699         if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
2700             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2701                 /*
2702                  * This is a big fat ugly hack.
2703                  *
2704                  * Some machines in UEFI boot mode provide us a VBT that has 18
2705                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2706                  * unknown we fail to light up. Yet the same BIOS boots up with
2707                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2708                  * max, not what it tells us to use.
2709                  *
2710                  * Note: This will still be broken if the eDP panel is not lit
2711                  * up by the BIOS, and thus we can't get the mode at module
2712                  * load.
2713                  */
2714                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2715                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2716                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2717         }
2718
2719         intel_ddi_clock_get(encoder, pipe_config);
2720 }
2721
2722 static void intel_ddi_destroy(struct drm_encoder *encoder)
2723 {
2724         /* HDMI has nothing special to destroy, so we can go with this. */
2725         intel_dp_encoder_destroy(encoder);
2726 }
2727
2728 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2729                                      struct intel_crtc_state *pipe_config)
2730 {
2731         int type = encoder->type;
2732         int port = intel_ddi_get_encoder_port(encoder);
2733
2734         WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2735
2736         if (port == PORT_A)
2737                 pipe_config->cpu_transcoder = TRANSCODER_EDP;
2738
2739         if (type == INTEL_OUTPUT_HDMI)
2740                 return intel_hdmi_compute_config(encoder, pipe_config);
2741         else
2742                 return intel_dp_compute_config(encoder, pipe_config);
2743 }
2744
2745 static const struct drm_encoder_funcs intel_ddi_funcs = {
2746         .destroy = intel_ddi_destroy,
2747 };
2748
2749 static struct intel_connector *
2750 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2751 {
2752         struct intel_connector *connector;
2753         enum port port = intel_dig_port->port;
2754
2755         connector = intel_connector_alloc();
2756         if (!connector)
2757                 return NULL;
2758
2759         intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2760         if (!intel_dp_init_connector(intel_dig_port, connector)) {
2761                 kfree(connector);
2762                 return NULL;
2763         }
2764
2765         return connector;
2766 }
2767
2768 static struct intel_connector *
2769 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2770 {
2771         struct intel_connector *connector;
2772         enum port port = intel_dig_port->port;
2773
2774         connector = intel_connector_alloc();
2775         if (!connector)
2776                 return NULL;
2777
2778         intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2779         intel_hdmi_init_connector(intel_dig_port, connector);
2780
2781         return connector;
2782 }
2783
2784 void intel_ddi_init(struct drm_device *dev, enum port port)
2785 {
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787         struct intel_digital_port *intel_dig_port;
2788         struct intel_encoder *intel_encoder;
2789         struct drm_encoder *encoder;
2790         bool init_hdmi, init_dp;
2791
2792         init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2793                      dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2794         init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2795         if (!init_dp && !init_hdmi) {
2796                 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
2797                               port_name(port));
2798                 init_hdmi = true;
2799                 init_dp = true;
2800         }
2801
2802         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2803         if (!intel_dig_port)
2804                 return;
2805
2806         intel_encoder = &intel_dig_port->base;
2807         encoder = &intel_encoder->base;
2808
2809         drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2810                          DRM_MODE_ENCODER_TMDS);
2811
2812         intel_encoder->compute_config = intel_ddi_compute_config;
2813         intel_encoder->enable = intel_enable_ddi;
2814         intel_encoder->pre_enable = intel_ddi_pre_enable;
2815         intel_encoder->disable = intel_disable_ddi;
2816         intel_encoder->post_disable = intel_ddi_post_disable;
2817         intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2818         intel_encoder->get_config = intel_ddi_get_config;
2819
2820         intel_dig_port->port = port;
2821         intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2822                                           (DDI_BUF_PORT_REVERSAL |
2823                                            DDI_A_4_LANES);
2824
2825         intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2826         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2827         intel_encoder->cloneable = 0;
2828         intel_encoder->hot_plug = intel_ddi_hot_plug;
2829
2830         if (init_dp) {
2831                 if (!intel_ddi_init_dp_connector(intel_dig_port))
2832                         goto err;
2833
2834                 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2835                 dev_priv->hpd_irq_port[port] = intel_dig_port;
2836         }
2837
2838         /* In theory we don't need the encoder->type check, but leave it just in
2839          * case we have some really bad VBTs... */
2840         if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2841                 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2842                         goto err;
2843         }
2844
2845         return;
2846
2847 err:
2848         drm_encoder_cleanup(encoder);
2849         kfree(intel_dig_port);
2850 }