Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32         u32 trans1;     /* balance leg enable, de-emph level */
33         u32 trans2;     /* vref sel, vswing */
34 };
35
36 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
37  * them for both DP and FDI transports, allowing those ports to
38  * automatically adapt to HDMI connections as well
39  */
40 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
41         { 0x00FFFFFF, 0x0006000E },
42         { 0x00D75FFF, 0x0005000A },
43         { 0x00C30FFF, 0x00040006 },
44         { 0x80AAAFFF, 0x000B0000 },
45         { 0x00FFFFFF, 0x0005000A },
46         { 0x00D75FFF, 0x000C0004 },
47         { 0x80C30FFF, 0x000B0000 },
48         { 0x00FFFFFF, 0x00040006 },
49         { 0x80D75FFF, 0x000B0000 },
50 };
51
52 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
53         { 0x00FFFFFF, 0x0007000E },
54         { 0x00D75FFF, 0x000F000A },
55         { 0x00C30FFF, 0x00060006 },
56         { 0x00AAAFFF, 0x001E0000 },
57         { 0x00FFFFFF, 0x000F000A },
58         { 0x00D75FFF, 0x00160004 },
59         { 0x00C30FFF, 0x001E0000 },
60         { 0x00FFFFFF, 0x00060006 },
61         { 0x00D75FFF, 0x001E0000 },
62 };
63
64 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
65                                         /* Idx  NT mV d T mV d  db      */
66         { 0x00FFFFFF, 0x0006000E },     /* 0:   400     400     0       */
67         { 0x00E79FFF, 0x000E000C },     /* 1:   400     500     2       */
68         { 0x00D75FFF, 0x0005000A },     /* 2:   400     600     3.5     */
69         { 0x00FFFFFF, 0x0005000A },     /* 3:   600     600     0       */
70         { 0x00E79FFF, 0x001D0007 },     /* 4:   600     750     2       */
71         { 0x00D75FFF, 0x000C0004 },     /* 5:   600     900     3.5     */
72         { 0x00FFFFFF, 0x00040006 },     /* 6:   800     800     0       */
73         { 0x80E79FFF, 0x00030002 },     /* 7:   800     1000    2       */
74         { 0x00FFFFFF, 0x00140005 },     /* 8:   850     850     0       */
75         { 0x00FFFFFF, 0x000C0004 },     /* 9:   900     900     0       */
76         { 0x00FFFFFF, 0x001C0003 },     /* 10:  950     950     0       */
77         { 0x80FFFFFF, 0x00030002 },     /* 11:  1000    1000    0       */
78 };
79
80 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
81         { 0x00FFFFFF, 0x00000012 },
82         { 0x00EBAFFF, 0x00020011 },
83         { 0x00C71FFF, 0x0006000F },
84         { 0x00AAAFFF, 0x000E000A },
85         { 0x00FFFFFF, 0x00020011 },
86         { 0x00DB6FFF, 0x0005000F },
87         { 0x00BEEFFF, 0x000A000C },
88         { 0x00FFFFFF, 0x0005000F },
89         { 0x00DB6FFF, 0x000A000C },
90 };
91
92 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
93         { 0x00FFFFFF, 0x0007000E },
94         { 0x00D75FFF, 0x000E000A },
95         { 0x00BEFFFF, 0x00140006 },
96         { 0x80B2CFFF, 0x001B0002 },
97         { 0x00FFFFFF, 0x000E000A },
98         { 0x00DB6FFF, 0x00160005 },
99         { 0x80C71FFF, 0x001A0002 },
100         { 0x00F7DFFF, 0x00180004 },
101         { 0x80D75FFF, 0x001B0002 },
102 };
103
104 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
105         { 0x00FFFFFF, 0x0001000E },
106         { 0x00D75FFF, 0x0004000A },
107         { 0x00C30FFF, 0x00070006 },
108         { 0x00AAAFFF, 0x000C0000 },
109         { 0x00FFFFFF, 0x0004000A },
110         { 0x00D75FFF, 0x00090004 },
111         { 0x00C30FFF, 0x000C0000 },
112         { 0x00FFFFFF, 0x00070006 },
113         { 0x00D75FFF, 0x000C0000 },
114 };
115
116 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
117                                         /* Idx  NT mV d T mV df db      */
118         { 0x00FFFFFF, 0x0007000E },     /* 0:   400     400     0       */
119         { 0x00D75FFF, 0x000E000A },     /* 1:   400     600     3.5     */
120         { 0x00BEFFFF, 0x00140006 },     /* 2:   400     800     6       */
121         { 0x00FFFFFF, 0x0009000D },     /* 3:   450     450     0       */
122         { 0x00FFFFFF, 0x000E000A },     /* 4:   600     600     0       */
123         { 0x00D7FFFF, 0x00140006 },     /* 5:   600     800     2.5     */
124         { 0x80CB2FFF, 0x001B0002 },     /* 6:   600     1000    4.5     */
125         { 0x00FFFFFF, 0x00140006 },     /* 7:   800     800     0       */
126         { 0x80E79FFF, 0x001B0002 },     /* 8:   800     1000    2       */
127         { 0x80FFFFFF, 0x001B0002 },     /* 9:   1000    1000    0       */
128 };
129
130 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
131         { 0x00000018, 0x000000a0 },
132         { 0x00004014, 0x00000098 },
133         { 0x00006012, 0x00000088 },
134         { 0x00008010, 0x00000080 },
135         { 0x00000018, 0x00000098 },
136         { 0x00004014, 0x00000088 },
137         { 0x00006012, 0x00000080 },
138         { 0x00000018, 0x00000088 },
139         { 0x00004014, 0x00000080 },
140 };
141
142 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
143                                         /* Idx  NT mV   T mV    db  */
144         { 0x00000018, 0x000000a0 },     /* 0:   400     400     0   */
145         { 0x00004014, 0x00000098 },     /* 1:   400     600     3.5 */
146         { 0x00006012, 0x00000088 },     /* 2:   400     800     6   */
147         { 0x00000018, 0x0000003c },     /* 3:   450     450     0   */
148         { 0x00000018, 0x00000098 },     /* 4:   600     600     0   */
149         { 0x00003015, 0x00000088 },     /* 5:   600     800     2.5 */
150         { 0x00005013, 0x00000080 },     /* 6:   600     1000    4.5 */
151         { 0x00000018, 0x00000088 },     /* 7:   800     800     0   */
152         { 0x00000096, 0x00000080 },     /* 8:   800     1000    2   */
153         { 0x00000018, 0x00000080 },     /* 9:   1200    1200    0   */
154 };
155
156 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
157 {
158         struct drm_encoder *encoder = &intel_encoder->base;
159         int type = intel_encoder->type;
160
161         if (type == INTEL_OUTPUT_DP_MST) {
162                 struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
163                 return intel_dig_port->port;
164         } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
165             type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
166                 struct intel_digital_port *intel_dig_port =
167                         enc_to_dig_port(encoder);
168                 return intel_dig_port->port;
169
170         } else if (type == INTEL_OUTPUT_ANALOG) {
171                 return PORT_E;
172
173         } else {
174                 DRM_ERROR("Invalid DDI encoder type %d\n", type);
175                 BUG();
176         }
177 }
178
179 /*
180  * Starting with Haswell, DDI port buffers must be programmed with correct
181  * values in advance. The buffer values are different for FDI and DP modes,
182  * but the HDMI/DVI fields are shared among those. So we program the DDI
183  * in either FDI or DP modes only, as HDMI connections will work with both
184  * of those
185  */
186 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
187 {
188         struct drm_i915_private *dev_priv = dev->dev_private;
189         u32 reg;
190         int i, n_hdmi_entries, hdmi_800mV_0dB;
191         int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
192         const struct ddi_buf_trans *ddi_translations_fdi;
193         const struct ddi_buf_trans *ddi_translations_dp;
194         const struct ddi_buf_trans *ddi_translations_edp;
195         const struct ddi_buf_trans *ddi_translations_hdmi;
196         const struct ddi_buf_trans *ddi_translations;
197
198         if (IS_SKYLAKE(dev)) {
199                 ddi_translations_fdi = NULL;
200                 ddi_translations_dp = skl_ddi_translations_dp;
201                 ddi_translations_edp = skl_ddi_translations_dp;
202                 ddi_translations_hdmi = skl_ddi_translations_hdmi;
203                 n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
204                 hdmi_800mV_0dB = 7;
205         } else if (IS_BROADWELL(dev)) {
206                 ddi_translations_fdi = bdw_ddi_translations_fdi;
207                 ddi_translations_dp = bdw_ddi_translations_dp;
208                 ddi_translations_edp = bdw_ddi_translations_edp;
209                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
210                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
211                 hdmi_800mV_0dB = 7;
212         } else if (IS_HASWELL(dev)) {
213                 ddi_translations_fdi = hsw_ddi_translations_fdi;
214                 ddi_translations_dp = hsw_ddi_translations_dp;
215                 ddi_translations_edp = hsw_ddi_translations_dp;
216                 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
217                 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
218                 hdmi_800mV_0dB = 6;
219         } else {
220                 WARN(1, "ddi translation table missing\n");
221                 ddi_translations_edp = bdw_ddi_translations_dp;
222                 ddi_translations_fdi = bdw_ddi_translations_fdi;
223                 ddi_translations_dp = bdw_ddi_translations_dp;
224                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
225                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
226                 hdmi_800mV_0dB = 7;
227         }
228
229         switch (port) {
230         case PORT_A:
231                 ddi_translations = ddi_translations_edp;
232                 break;
233         case PORT_B:
234         case PORT_C:
235                 ddi_translations = ddi_translations_dp;
236                 break;
237         case PORT_D:
238                 if (intel_dp_is_edp(dev, PORT_D))
239                         ddi_translations = ddi_translations_edp;
240                 else
241                         ddi_translations = ddi_translations_dp;
242                 break;
243         case PORT_E:
244                 if (ddi_translations_fdi)
245                         ddi_translations = ddi_translations_fdi;
246                 else
247                         ddi_translations = ddi_translations_dp;
248                 break;
249         default:
250                 BUG();
251         }
252
253         for (i = 0, reg = DDI_BUF_TRANS(port);
254              i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
255                 I915_WRITE(reg, ddi_translations[i].trans1);
256                 reg += 4;
257                 I915_WRITE(reg, ddi_translations[i].trans2);
258                 reg += 4;
259         }
260
261         /* Choose a good default if VBT is badly populated */
262         if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
263             hdmi_level >= n_hdmi_entries)
264                 hdmi_level = hdmi_800mV_0dB;
265
266         /* Entry 9 is for HDMI: */
267         I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
268         reg += 4;
269         I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
270         reg += 4;
271 }
272
273 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
274  * mode and port E for FDI.
275  */
276 void intel_prepare_ddi(struct drm_device *dev)
277 {
278         int port;
279
280         if (!HAS_DDI(dev))
281                 return;
282
283         for (port = PORT_A; port <= PORT_E; port++)
284                 intel_prepare_ddi_buffers(dev, port);
285 }
286
287 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
288                                     enum port port)
289 {
290         uint32_t reg = DDI_BUF_CTL(port);
291         int i;
292
293         for (i = 0; i < 8; i++) {
294                 udelay(1);
295                 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
296                         return;
297         }
298         DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
299 }
300
301 /* Starting with Haswell, different DDI ports can work in FDI mode for
302  * connection to the PCH-located connectors. For this, it is necessary to train
303  * both the DDI port and PCH receiver for the desired DDI buffer settings.
304  *
305  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
306  * please note that when FDI mode is active on DDI E, it shares 2 lines with
307  * DDI A (which is used for eDP)
308  */
309
310 void hsw_fdi_link_train(struct drm_crtc *crtc)
311 {
312         struct drm_device *dev = crtc->dev;
313         struct drm_i915_private *dev_priv = dev->dev_private;
314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
315         u32 temp, i, rx_ctl_val;
316
317         /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
318          * mode set "sequence for CRT port" document:
319          * - TP1 to TP2 time with the default value
320          * - FDI delay to 90h
321          *
322          * WaFDIAutoLinkSetTimingOverrride:hsw
323          */
324         I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
325                                   FDI_RX_PWRDN_LANE0_VAL(2) |
326                                   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
327
328         /* Enable the PCH Receiver FDI PLL */
329         rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
330                      FDI_RX_PLL_ENABLE |
331                      FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
332         I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
333         POSTING_READ(_FDI_RXA_CTL);
334         udelay(220);
335
336         /* Switch from Rawclk to PCDclk */
337         rx_ctl_val |= FDI_PCDCLK;
338         I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
339
340         /* Configure Port Clock Select */
341         I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config.ddi_pll_sel);
342         WARN_ON(intel_crtc->config.ddi_pll_sel != PORT_CLK_SEL_SPLL);
343
344         /* Start the training iterating through available voltages and emphasis,
345          * testing each value twice. */
346         for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
347                 /* Configure DP_TP_CTL with auto-training */
348                 I915_WRITE(DP_TP_CTL(PORT_E),
349                                         DP_TP_CTL_FDI_AUTOTRAIN |
350                                         DP_TP_CTL_ENHANCED_FRAME_ENABLE |
351                                         DP_TP_CTL_LINK_TRAIN_PAT1 |
352                                         DP_TP_CTL_ENABLE);
353
354                 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
355                  * DDI E does not support port reversal, the functionality is
356                  * achieved on the PCH side in FDI_RX_CTL, so no need to set the
357                  * port reversal bit */
358                 I915_WRITE(DDI_BUF_CTL(PORT_E),
359                            DDI_BUF_CTL_ENABLE |
360                            ((intel_crtc->config.fdi_lanes - 1) << 1) |
361                            DDI_BUF_TRANS_SELECT(i / 2));
362                 POSTING_READ(DDI_BUF_CTL(PORT_E));
363
364                 udelay(600);
365
366                 /* Program PCH FDI Receiver TU */
367                 I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
368
369                 /* Enable PCH FDI Receiver with auto-training */
370                 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
371                 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
372                 POSTING_READ(_FDI_RXA_CTL);
373
374                 /* Wait for FDI receiver lane calibration */
375                 udelay(30);
376
377                 /* Unset FDI_RX_MISC pwrdn lanes */
378                 temp = I915_READ(_FDI_RXA_MISC);
379                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
380                 I915_WRITE(_FDI_RXA_MISC, temp);
381                 POSTING_READ(_FDI_RXA_MISC);
382
383                 /* Wait for FDI auto training time */
384                 udelay(5);
385
386                 temp = I915_READ(DP_TP_STATUS(PORT_E));
387                 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
388                         DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
389
390                         /* Enable normal pixel sending for FDI */
391                         I915_WRITE(DP_TP_CTL(PORT_E),
392                                    DP_TP_CTL_FDI_AUTOTRAIN |
393                                    DP_TP_CTL_LINK_TRAIN_NORMAL |
394                                    DP_TP_CTL_ENHANCED_FRAME_ENABLE |
395                                    DP_TP_CTL_ENABLE);
396
397                         return;
398                 }
399
400                 temp = I915_READ(DDI_BUF_CTL(PORT_E));
401                 temp &= ~DDI_BUF_CTL_ENABLE;
402                 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
403                 POSTING_READ(DDI_BUF_CTL(PORT_E));
404
405                 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
406                 temp = I915_READ(DP_TP_CTL(PORT_E));
407                 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
408                 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
409                 I915_WRITE(DP_TP_CTL(PORT_E), temp);
410                 POSTING_READ(DP_TP_CTL(PORT_E));
411
412                 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
413
414                 rx_ctl_val &= ~FDI_RX_ENABLE;
415                 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
416                 POSTING_READ(_FDI_RXA_CTL);
417
418                 /* Reset FDI_RX_MISC pwrdn lanes */
419                 temp = I915_READ(_FDI_RXA_MISC);
420                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
421                 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
422                 I915_WRITE(_FDI_RXA_MISC, temp);
423                 POSTING_READ(_FDI_RXA_MISC);
424         }
425
426         DRM_ERROR("FDI link training failed!\n");
427 }
428
429 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
430 {
431         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
432         struct intel_digital_port *intel_dig_port =
433                 enc_to_dig_port(&encoder->base);
434
435         intel_dp->DP = intel_dig_port->saved_port_bits |
436                 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
437         intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
438
439 }
440
441 static struct intel_encoder *
442 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
443 {
444         struct drm_device *dev = crtc->dev;
445         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
446         struct intel_encoder *intel_encoder, *ret = NULL;
447         int num_encoders = 0;
448
449         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
450                 ret = intel_encoder;
451                 num_encoders++;
452         }
453
454         if (num_encoders != 1)
455                 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
456                      pipe_name(intel_crtc->pipe));
457
458         BUG_ON(ret == NULL);
459         return ret;
460 }
461
462 static struct intel_encoder *
463 intel_ddi_get_crtc_new_encoder(struct intel_crtc *crtc)
464 {
465         struct drm_device *dev = crtc->base.dev;
466         struct intel_encoder *intel_encoder, *ret = NULL;
467         int num_encoders = 0;
468
469         for_each_intel_encoder(dev, intel_encoder) {
470                 if (intel_encoder->new_crtc == crtc) {
471                         ret = intel_encoder;
472                         num_encoders++;
473                 }
474         }
475
476         WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
477              pipe_name(crtc->pipe));
478
479         BUG_ON(ret == NULL);
480         return ret;
481 }
482
483 #define LC_FREQ 2700
484 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
485
486 #define P_MIN 2
487 #define P_MAX 64
488 #define P_INC 2
489
490 /* Constraints for PLL good behavior */
491 #define REF_MIN 48
492 #define REF_MAX 400
493 #define VCO_MIN 2400
494 #define VCO_MAX 4800
495
496 #define abs_diff(a, b) ({                       \
497         typeof(a) __a = (a);                    \
498         typeof(b) __b = (b);                    \
499         (void) (&__a == &__b);                  \
500         __a > __b ? (__a - __b) : (__b - __a); })
501
502 struct wrpll_rnp {
503         unsigned p, n2, r2;
504 };
505
506 static unsigned wrpll_get_budget_for_freq(int clock)
507 {
508         unsigned budget;
509
510         switch (clock) {
511         case 25175000:
512         case 25200000:
513         case 27000000:
514         case 27027000:
515         case 37762500:
516         case 37800000:
517         case 40500000:
518         case 40541000:
519         case 54000000:
520         case 54054000:
521         case 59341000:
522         case 59400000:
523         case 72000000:
524         case 74176000:
525         case 74250000:
526         case 81000000:
527         case 81081000:
528         case 89012000:
529         case 89100000:
530         case 108000000:
531         case 108108000:
532         case 111264000:
533         case 111375000:
534         case 148352000:
535         case 148500000:
536         case 162000000:
537         case 162162000:
538         case 222525000:
539         case 222750000:
540         case 296703000:
541         case 297000000:
542                 budget = 0;
543                 break;
544         case 233500000:
545         case 245250000:
546         case 247750000:
547         case 253250000:
548         case 298000000:
549                 budget = 1500;
550                 break;
551         case 169128000:
552         case 169500000:
553         case 179500000:
554         case 202000000:
555                 budget = 2000;
556                 break;
557         case 256250000:
558         case 262500000:
559         case 270000000:
560         case 272500000:
561         case 273750000:
562         case 280750000:
563         case 281250000:
564         case 286000000:
565         case 291750000:
566                 budget = 4000;
567                 break;
568         case 267250000:
569         case 268500000:
570                 budget = 5000;
571                 break;
572         default:
573                 budget = 1000;
574                 break;
575         }
576
577         return budget;
578 }
579
580 static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
581                              unsigned r2, unsigned n2, unsigned p,
582                              struct wrpll_rnp *best)
583 {
584         uint64_t a, b, c, d, diff, diff_best;
585
586         /* No best (r,n,p) yet */
587         if (best->p == 0) {
588                 best->p = p;
589                 best->n2 = n2;
590                 best->r2 = r2;
591                 return;
592         }
593
594         /*
595          * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
596          * freq2k.
597          *
598          * delta = 1e6 *
599          *         abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
600          *         freq2k;
601          *
602          * and we would like delta <= budget.
603          *
604          * If the discrepancy is above the PPM-based budget, always prefer to
605          * improve upon the previous solution.  However, if you're within the
606          * budget, try to maximize Ref * VCO, that is N / (P * R^2).
607          */
608         a = freq2k * budget * p * r2;
609         b = freq2k * budget * best->p * best->r2;
610         diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
611         diff_best = abs_diff(freq2k * best->p * best->r2,
612                              LC_FREQ_2K * best->n2);
613         c = 1000000 * diff;
614         d = 1000000 * diff_best;
615
616         if (a < c && b < d) {
617                 /* If both are above the budget, pick the closer */
618                 if (best->p * best->r2 * diff < p * r2 * diff_best) {
619                         best->p = p;
620                         best->n2 = n2;
621                         best->r2 = r2;
622                 }
623         } else if (a >= c && b < d) {
624                 /* If A is below the threshold but B is above it?  Update. */
625                 best->p = p;
626                 best->n2 = n2;
627                 best->r2 = r2;
628         } else if (a >= c && b >= d) {
629                 /* Both are below the limit, so pick the higher n2/(r2*r2) */
630                 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
631                         best->p = p;
632                         best->n2 = n2;
633                         best->r2 = r2;
634                 }
635         }
636         /* Otherwise a < c && b >= d, do nothing */
637 }
638
639 static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
640                                      int reg)
641 {
642         int refclk = LC_FREQ;
643         int n, p, r;
644         u32 wrpll;
645
646         wrpll = I915_READ(reg);
647         switch (wrpll & WRPLL_PLL_REF_MASK) {
648         case WRPLL_PLL_SSC:
649         case WRPLL_PLL_NON_SSC:
650                 /*
651                  * We could calculate spread here, but our checking
652                  * code only cares about 5% accuracy, and spread is a max of
653                  * 0.5% downspread.
654                  */
655                 refclk = 135;
656                 break;
657         case WRPLL_PLL_LCPLL:
658                 refclk = LC_FREQ;
659                 break;
660         default:
661                 WARN(1, "bad wrpll refclk\n");
662                 return 0;
663         }
664
665         r = wrpll & WRPLL_DIVIDER_REF_MASK;
666         p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
667         n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
668
669         /* Convert to KHz, p & r have a fixed point portion */
670         return (refclk * n * 100) / (p * r);
671 }
672
673 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
674                                uint32_t dpll)
675 {
676         uint32_t cfgcr1_reg, cfgcr2_reg;
677         uint32_t cfgcr1_val, cfgcr2_val;
678         uint32_t p0, p1, p2, dco_freq;
679
680         cfgcr1_reg = GET_CFG_CR1_REG(dpll);
681         cfgcr2_reg = GET_CFG_CR2_REG(dpll);
682
683         cfgcr1_val = I915_READ(cfgcr1_reg);
684         cfgcr2_val = I915_READ(cfgcr2_reg);
685
686         p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
687         p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
688
689         if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
690                 p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
691         else
692                 p1 = 1;
693
694
695         switch (p0) {
696         case DPLL_CFGCR2_PDIV_1:
697                 p0 = 1;
698                 break;
699         case DPLL_CFGCR2_PDIV_2:
700                 p0 = 2;
701                 break;
702         case DPLL_CFGCR2_PDIV_3:
703                 p0 = 3;
704                 break;
705         case DPLL_CFGCR2_PDIV_7:
706                 p0 = 7;
707                 break;
708         }
709
710         switch (p2) {
711         case DPLL_CFGCR2_KDIV_5:
712                 p2 = 5;
713                 break;
714         case DPLL_CFGCR2_KDIV_2:
715                 p2 = 2;
716                 break;
717         case DPLL_CFGCR2_KDIV_3:
718                 p2 = 3;
719                 break;
720         case DPLL_CFGCR2_KDIV_1:
721                 p2 = 1;
722                 break;
723         }
724
725         dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
726
727         dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
728                 1000) / 0x8000;
729
730         return dco_freq / (p0 * p1 * p2 * 5);
731 }
732
733
734 static void skl_ddi_clock_get(struct intel_encoder *encoder,
735                                 struct intel_crtc_config *pipe_config)
736 {
737         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
738         int link_clock = 0;
739         uint32_t dpll_ctl1, dpll;
740
741         dpll = pipe_config->ddi_pll_sel;
742
743         dpll_ctl1 = I915_READ(DPLL_CTRL1);
744
745         if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
746                 link_clock = skl_calc_wrpll_link(dev_priv, dpll);
747         } else {
748                 link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
749                 link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);
750
751                 switch (link_clock) {
752                 case DPLL_CRTL1_LINK_RATE_810:
753                         link_clock = 81000;
754                         break;
755                 case DPLL_CRTL1_LINK_RATE_1350:
756                         link_clock = 135000;
757                         break;
758                 case DPLL_CRTL1_LINK_RATE_2700:
759                         link_clock = 270000;
760                         break;
761                 default:
762                         WARN(1, "Unsupported link rate\n");
763                         break;
764                 }
765                 link_clock *= 2;
766         }
767
768         pipe_config->port_clock = link_clock;
769
770         if (pipe_config->has_dp_encoder)
771                 pipe_config->adjusted_mode.crtc_clock =
772                         intel_dotclock_calculate(pipe_config->port_clock,
773                                                  &pipe_config->dp_m_n);
774         else
775                 pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
776 }
777
778 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
779                               struct intel_crtc_config *pipe_config)
780 {
781         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
782         int link_clock = 0;
783         u32 val, pll;
784
785         val = pipe_config->ddi_pll_sel;
786         switch (val & PORT_CLK_SEL_MASK) {
787         case PORT_CLK_SEL_LCPLL_810:
788                 link_clock = 81000;
789                 break;
790         case PORT_CLK_SEL_LCPLL_1350:
791                 link_clock = 135000;
792                 break;
793         case PORT_CLK_SEL_LCPLL_2700:
794                 link_clock = 270000;
795                 break;
796         case PORT_CLK_SEL_WRPLL1:
797                 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
798                 break;
799         case PORT_CLK_SEL_WRPLL2:
800                 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
801                 break;
802         case PORT_CLK_SEL_SPLL:
803                 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
804                 if (pll == SPLL_PLL_FREQ_810MHz)
805                         link_clock = 81000;
806                 else if (pll == SPLL_PLL_FREQ_1350MHz)
807                         link_clock = 135000;
808                 else if (pll == SPLL_PLL_FREQ_2700MHz)
809                         link_clock = 270000;
810                 else {
811                         WARN(1, "bad spll freq\n");
812                         return;
813                 }
814                 break;
815         default:
816                 WARN(1, "bad port clock sel\n");
817                 return;
818         }
819
820         pipe_config->port_clock = link_clock * 2;
821
822         if (pipe_config->has_pch_encoder)
823                 pipe_config->adjusted_mode.crtc_clock =
824                         intel_dotclock_calculate(pipe_config->port_clock,
825                                                  &pipe_config->fdi_m_n);
826         else if (pipe_config->has_dp_encoder)
827                 pipe_config->adjusted_mode.crtc_clock =
828                         intel_dotclock_calculate(pipe_config->port_clock,
829                                                  &pipe_config->dp_m_n);
830         else
831                 pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
832 }
833
834 void intel_ddi_clock_get(struct intel_encoder *encoder,
835                          struct intel_crtc_config *pipe_config)
836 {
837         hsw_ddi_clock_get(encoder, pipe_config);
838 }
839
840 static void
841 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
842                         unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
843 {
844         uint64_t freq2k;
845         unsigned p, n2, r2;
846         struct wrpll_rnp best = { 0, 0, 0 };
847         unsigned budget;
848
849         freq2k = clock / 100;
850
851         budget = wrpll_get_budget_for_freq(clock);
852
853         /* Special case handling for 540 pixel clock: bypass WR PLL entirely
854          * and directly pass the LC PLL to it. */
855         if (freq2k == 5400000) {
856                 *n2_out = 2;
857                 *p_out = 1;
858                 *r2_out = 2;
859                 return;
860         }
861
862         /*
863          * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
864          * the WR PLL.
865          *
866          * We want R so that REF_MIN <= Ref <= REF_MAX.
867          * Injecting R2 = 2 * R gives:
868          *   REF_MAX * r2 > LC_FREQ * 2 and
869          *   REF_MIN * r2 < LC_FREQ * 2
870          *
871          * Which means the desired boundaries for r2 are:
872          *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
873          *
874          */
875         for (r2 = LC_FREQ * 2 / REF_MAX + 1;
876              r2 <= LC_FREQ * 2 / REF_MIN;
877              r2++) {
878
879                 /*
880                  * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
881                  *
882                  * Once again we want VCO_MIN <= VCO <= VCO_MAX.
883                  * Injecting R2 = 2 * R and N2 = 2 * N, we get:
884                  *   VCO_MAX * r2 > n2 * LC_FREQ and
885                  *   VCO_MIN * r2 < n2 * LC_FREQ)
886                  *
887                  * Which means the desired boundaries for n2 are:
888                  * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
889                  */
890                 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
891                      n2 <= VCO_MAX * r2 / LC_FREQ;
892                      n2++) {
893
894                         for (p = P_MIN; p <= P_MAX; p += P_INC)
895                                 wrpll_update_rnp(freq2k, budget,
896                                                  r2, n2, p, &best);
897                 }
898         }
899
900         *n2_out = best.n2;
901         *p_out = best.p;
902         *r2_out = best.r2;
903 }
904
905 static bool
906 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
907                    struct intel_encoder *intel_encoder,
908                    int clock)
909 {
910         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
911                 struct intel_shared_dpll *pll;
912                 uint32_t val;
913                 unsigned p, n2, r2;
914
915                 hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
916
917                 val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
918                       WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
919                       WRPLL_DIVIDER_POST(p);
920
921                 intel_crtc->new_config->dpll_hw_state.wrpll = val;
922
923                 pll = intel_get_shared_dpll(intel_crtc);
924                 if (pll == NULL) {
925                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
926                                          pipe_name(intel_crtc->pipe));
927                         return false;
928                 }
929
930                 intel_crtc->new_config->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
931         }
932
933         return true;
934 }
935
936 struct skl_wrpll_params {
937         uint32_t        dco_fraction;
938         uint32_t        dco_integer;
939         uint32_t        qdiv_ratio;
940         uint32_t        qdiv_mode;
941         uint32_t        kdiv;
942         uint32_t        pdiv;
943         uint32_t        central_freq;
944 };
945
946 static void
947 skl_ddi_calculate_wrpll(int clock /* in Hz */,
948                         struct skl_wrpll_params *wrpll_params)
949 {
950         uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
951         uint64_t dco_central_freq[3] = {8400000000ULL,
952                                         9000000000ULL,
953                                         9600000000ULL};
954         uint32_t min_dco_deviation = 400;
955         uint32_t min_dco_index = 3;
956         uint32_t P0[4] = {1, 2, 3, 7};
957         uint32_t P2[4] = {1, 2, 3, 5};
958         bool found = false;
959         uint32_t candidate_p = 0;
960         uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
961         uint32_t candidate_p2[3] = {0};
962         uint32_t dco_central_freq_deviation[3];
963         uint32_t i, P1, k, dco_count;
964         bool retry_with_odd = false;
965         uint64_t dco_freq;
966
967         /* Determine P0, P1 or P2 */
968         for (dco_count = 0; dco_count < 3; dco_count++) {
969                 found = false;
970                 candidate_p =
971                         div64_u64(dco_central_freq[dco_count], afe_clock);
972                 if (retry_with_odd == false)
973                         candidate_p = (candidate_p % 2 == 0 ?
974                                 candidate_p : candidate_p + 1);
975
976                 for (P1 = 1; P1 < candidate_p; P1++) {
977                         for (i = 0; i < 4; i++) {
978                                 if (!(P0[i] != 1 || P1 == 1))
979                                         continue;
980
981                                 for (k = 0; k < 4; k++) {
982                                         if (P1 != 1 && P2[k] != 2)
983                                                 continue;
984
985                                         if (candidate_p == P0[i] * P1 * P2[k]) {
986                                                 /* Found possible P0, P1, P2 */
987                                                 found = true;
988                                                 candidate_p0[dco_count] = P0[i];
989                                                 candidate_p1[dco_count] = P1;
990                                                 candidate_p2[dco_count] = P2[k];
991                                                 goto found;
992                                         }
993
994                                 }
995                         }
996                 }
997
998 found:
999                 if (found) {
1000                         dco_central_freq_deviation[dco_count] =
1001                                 div64_u64(10000 *
1002                                           abs_diff((candidate_p * afe_clock),
1003                                                    dco_central_freq[dco_count]),
1004                                           dco_central_freq[dco_count]);
1005
1006                         if (dco_central_freq_deviation[dco_count] <
1007                                 min_dco_deviation) {
1008                                 min_dco_deviation =
1009                                         dco_central_freq_deviation[dco_count];
1010                                 min_dco_index = dco_count;
1011                         }
1012                 }
1013
1014                 if (min_dco_index > 2 && dco_count == 2) {
1015                         retry_with_odd = true;
1016                         dco_count = 0;
1017                 }
1018         }
1019
1020         if (min_dco_index > 2) {
1021                 WARN(1, "No valid values found for the given pixel clock\n");
1022         } else {
1023                  wrpll_params->central_freq = dco_central_freq[min_dco_index];
1024
1025                  switch (dco_central_freq[min_dco_index]) {
1026                  case 9600000000ULL:
1027                         wrpll_params->central_freq = 0;
1028                         break;
1029                  case 9000000000ULL:
1030                         wrpll_params->central_freq = 1;
1031                         break;
1032                  case 8400000000ULL:
1033                         wrpll_params->central_freq = 3;
1034                  }
1035
1036                  switch (candidate_p0[min_dco_index]) {
1037                  case 1:
1038                         wrpll_params->pdiv = 0;
1039                         break;
1040                  case 2:
1041                         wrpll_params->pdiv = 1;
1042                         break;
1043                  case 3:
1044                         wrpll_params->pdiv = 2;
1045                         break;
1046                  case 7:
1047                         wrpll_params->pdiv = 4;
1048                         break;
1049                  default:
1050                         WARN(1, "Incorrect PDiv\n");
1051                  }
1052
1053                  switch (candidate_p2[min_dco_index]) {
1054                  case 5:
1055                         wrpll_params->kdiv = 0;
1056                         break;
1057                  case 2:
1058                         wrpll_params->kdiv = 1;
1059                         break;
1060                  case 3:
1061                         wrpll_params->kdiv = 2;
1062                         break;
1063                  case 1:
1064                         wrpll_params->kdiv = 3;
1065                         break;
1066                  default:
1067                         WARN(1, "Incorrect KDiv\n");
1068                  }
1069
1070                  wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
1071                  wrpll_params->qdiv_mode =
1072                         (wrpll_params->qdiv_ratio == 1) ? 0 : 1;
1073
1074                  dco_freq = candidate_p0[min_dco_index] *
1075                          candidate_p1[min_dco_index] *
1076                          candidate_p2[min_dco_index] * afe_clock;
1077
1078                 /*
1079                 * Intermediate values are in Hz.
1080                 * Divide by MHz to match bsepc
1081                 */
1082                  wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
1083                  wrpll_params->dco_fraction =
1084                          div_u64(((div_u64(dco_freq, 24) -
1085                                    wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
1086
1087         }
1088 }
1089
1090
1091 static bool
1092 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1093                    struct intel_encoder *intel_encoder,
1094                    int clock)
1095 {
1096         struct intel_shared_dpll *pll;
1097         uint32_t ctrl1, cfgcr1, cfgcr2;
1098
1099         /*
1100          * See comment in intel_dpll_hw_state to understand why we always use 0
1101          * as the DPLL id in this function.
1102          */
1103
1104         ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1105
1106         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1107                 struct skl_wrpll_params wrpll_params = { 0, };
1108
1109                 ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1110
1111                 skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
1112
1113                 cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1114                          DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1115                          wrpll_params.dco_integer;
1116
1117                 cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1118                          DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1119                          DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1120                          DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1121                          wrpll_params.central_freq;
1122         } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1123                 struct drm_encoder *encoder = &intel_encoder->base;
1124                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1125
1126                 switch (intel_dp->link_bw) {
1127                 case DP_LINK_BW_1_62:
1128                         ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0);
1129                         break;
1130                 case DP_LINK_BW_2_7:
1131                         ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0);
1132                         break;
1133                 case DP_LINK_BW_5_4:
1134                         ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0);
1135                         break;
1136                 }
1137
1138                 cfgcr1 = cfgcr2 = 0;
1139         } else /* eDP */
1140                 return true;
1141
1142         intel_crtc->new_config->dpll_hw_state.ctrl1 = ctrl1;
1143         intel_crtc->new_config->dpll_hw_state.cfgcr1 = cfgcr1;
1144         intel_crtc->new_config->dpll_hw_state.cfgcr2 = cfgcr2;
1145
1146         pll = intel_get_shared_dpll(intel_crtc);
1147         if (pll == NULL) {
1148                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1149                                  pipe_name(intel_crtc->pipe));
1150                 return false;
1151         }
1152
1153         /* shared DPLL id 0 is DPLL 1 */
1154         intel_crtc->new_config->ddi_pll_sel = pll->id + 1;
1155
1156         return true;
1157 }
1158
1159 /*
1160  * Tries to find a *shared* PLL for the CRTC and store it in
1161  * intel_crtc->ddi_pll_sel.
1162  *
1163  * For private DPLLs, compute_config() should do the selection for us. This
1164  * function should be folded into compute_config() eventually.
1165  */
1166 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc)
1167 {
1168         struct drm_device *dev = intel_crtc->base.dev;
1169         struct intel_encoder *intel_encoder =
1170                 intel_ddi_get_crtc_new_encoder(intel_crtc);
1171         int clock = intel_crtc->new_config->port_clock;
1172
1173         if (IS_SKYLAKE(dev))
1174                 return skl_ddi_pll_select(intel_crtc, intel_encoder, clock);
1175         else
1176                 return hsw_ddi_pll_select(intel_crtc, intel_encoder, clock);
1177 }
1178
1179 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1180 {
1181         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1183         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1184         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1185         int type = intel_encoder->type;
1186         uint32_t temp;
1187
1188         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1189                 temp = TRANS_MSA_SYNC_CLK;
1190                 switch (intel_crtc->config.pipe_bpp) {
1191                 case 18:
1192                         temp |= TRANS_MSA_6_BPC;
1193                         break;
1194                 case 24:
1195                         temp |= TRANS_MSA_8_BPC;
1196                         break;
1197                 case 30:
1198                         temp |= TRANS_MSA_10_BPC;
1199                         break;
1200                 case 36:
1201                         temp |= TRANS_MSA_12_BPC;
1202                         break;
1203                 default:
1204                         BUG();
1205                 }
1206                 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1207         }
1208 }
1209
1210 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1211 {
1212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1213         struct drm_device *dev = crtc->dev;
1214         struct drm_i915_private *dev_priv = dev->dev_private;
1215         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1216         uint32_t temp;
1217         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1218         if (state == true)
1219                 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1220         else
1221                 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1222         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1223 }
1224
1225 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1226 {
1227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1228         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1229         struct drm_encoder *encoder = &intel_encoder->base;
1230         struct drm_device *dev = crtc->dev;
1231         struct drm_i915_private *dev_priv = dev->dev_private;
1232         enum pipe pipe = intel_crtc->pipe;
1233         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1234         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1235         int type = intel_encoder->type;
1236         uint32_t temp;
1237
1238         /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1239         temp = TRANS_DDI_FUNC_ENABLE;
1240         temp |= TRANS_DDI_SELECT_PORT(port);
1241
1242         switch (intel_crtc->config.pipe_bpp) {
1243         case 18:
1244                 temp |= TRANS_DDI_BPC_6;
1245                 break;
1246         case 24:
1247                 temp |= TRANS_DDI_BPC_8;
1248                 break;
1249         case 30:
1250                 temp |= TRANS_DDI_BPC_10;
1251                 break;
1252         case 36:
1253                 temp |= TRANS_DDI_BPC_12;
1254                 break;
1255         default:
1256                 BUG();
1257         }
1258
1259         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1260                 temp |= TRANS_DDI_PVSYNC;
1261         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1262                 temp |= TRANS_DDI_PHSYNC;
1263
1264         if (cpu_transcoder == TRANSCODER_EDP) {
1265                 switch (pipe) {
1266                 case PIPE_A:
1267                         /* On Haswell, can only use the always-on power well for
1268                          * eDP when not using the panel fitter, and when not
1269                          * using motion blur mitigation (which we don't
1270                          * support). */
1271                         if (IS_HASWELL(dev) &&
1272                             (intel_crtc->config.pch_pfit.enabled ||
1273                              intel_crtc->config.pch_pfit.force_thru))
1274                                 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1275                         else
1276                                 temp |= TRANS_DDI_EDP_INPUT_A_ON;
1277                         break;
1278                 case PIPE_B:
1279                         temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1280                         break;
1281                 case PIPE_C:
1282                         temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1283                         break;
1284                 default:
1285                         BUG();
1286                         break;
1287                 }
1288         }
1289
1290         if (type == INTEL_OUTPUT_HDMI) {
1291                 if (intel_crtc->config.has_hdmi_sink)
1292                         temp |= TRANS_DDI_MODE_SELECT_HDMI;
1293                 else
1294                         temp |= TRANS_DDI_MODE_SELECT_DVI;
1295
1296         } else if (type == INTEL_OUTPUT_ANALOG) {
1297                 temp |= TRANS_DDI_MODE_SELECT_FDI;
1298                 temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
1299
1300         } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1301                    type == INTEL_OUTPUT_EDP) {
1302                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1303
1304                 if (intel_dp->is_mst) {
1305                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1306                 } else
1307                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1308
1309                 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1310         } else if (type == INTEL_OUTPUT_DP_MST) {
1311                 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1312
1313                 if (intel_dp->is_mst) {
1314                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1315                 } else
1316                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1317
1318                 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1319         } else {
1320                 WARN(1, "Invalid encoder type %d for pipe %c\n",
1321                      intel_encoder->type, pipe_name(pipe));
1322         }
1323
1324         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1325 }
1326
1327 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1328                                        enum transcoder cpu_transcoder)
1329 {
1330         uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1331         uint32_t val = I915_READ(reg);
1332
1333         val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1334         val |= TRANS_DDI_PORT_NONE;
1335         I915_WRITE(reg, val);
1336 }
1337
1338 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1339 {
1340         struct drm_device *dev = intel_connector->base.dev;
1341         struct drm_i915_private *dev_priv = dev->dev_private;
1342         struct intel_encoder *intel_encoder = intel_connector->encoder;
1343         int type = intel_connector->base.connector_type;
1344         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1345         enum pipe pipe = 0;
1346         enum transcoder cpu_transcoder;
1347         enum intel_display_power_domain power_domain;
1348         uint32_t tmp;
1349
1350         power_domain = intel_display_port_power_domain(intel_encoder);
1351         if (!intel_display_power_is_enabled(dev_priv, power_domain))
1352                 return false;
1353
1354         if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1355                 return false;
1356
1357         if (port == PORT_A)
1358                 cpu_transcoder = TRANSCODER_EDP;
1359         else
1360                 cpu_transcoder = (enum transcoder) pipe;
1361
1362         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1363
1364         switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1365         case TRANS_DDI_MODE_SELECT_HDMI:
1366         case TRANS_DDI_MODE_SELECT_DVI:
1367                 return (type == DRM_MODE_CONNECTOR_HDMIA);
1368
1369         case TRANS_DDI_MODE_SELECT_DP_SST:
1370                 if (type == DRM_MODE_CONNECTOR_eDP)
1371                         return true;
1372                 return (type == DRM_MODE_CONNECTOR_DisplayPort);
1373         case TRANS_DDI_MODE_SELECT_DP_MST:
1374                 /* if the transcoder is in MST state then
1375                  * connector isn't connected */
1376                 return false;
1377
1378         case TRANS_DDI_MODE_SELECT_FDI:
1379                 return (type == DRM_MODE_CONNECTOR_VGA);
1380
1381         default:
1382                 return false;
1383         }
1384 }
1385
1386 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1387                             enum pipe *pipe)
1388 {
1389         struct drm_device *dev = encoder->base.dev;
1390         struct drm_i915_private *dev_priv = dev->dev_private;
1391         enum port port = intel_ddi_get_encoder_port(encoder);
1392         enum intel_display_power_domain power_domain;
1393         u32 tmp;
1394         int i;
1395
1396         power_domain = intel_display_port_power_domain(encoder);
1397         if (!intel_display_power_is_enabled(dev_priv, power_domain))
1398                 return false;
1399
1400         tmp = I915_READ(DDI_BUF_CTL(port));
1401
1402         if (!(tmp & DDI_BUF_CTL_ENABLE))
1403                 return false;
1404
1405         if (port == PORT_A) {
1406                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1407
1408                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1409                 case TRANS_DDI_EDP_INPUT_A_ON:
1410                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
1411                         *pipe = PIPE_A;
1412                         break;
1413                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
1414                         *pipe = PIPE_B;
1415                         break;
1416                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
1417                         *pipe = PIPE_C;
1418                         break;
1419                 }
1420
1421                 return true;
1422         } else {
1423                 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1424                         tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1425
1426                         if ((tmp & TRANS_DDI_PORT_MASK)
1427                             == TRANS_DDI_SELECT_PORT(port)) {
1428                                 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
1429                                         return false;
1430
1431                                 *pipe = i;
1432                                 return true;
1433                         }
1434                 }
1435         }
1436
1437         DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1438
1439         return false;
1440 }
1441
1442 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1443 {
1444         struct drm_crtc *crtc = &intel_crtc->base;
1445         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1446         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1447         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1448         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1449
1450         if (cpu_transcoder != TRANSCODER_EDP)
1451                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1452                            TRANS_CLK_SEL_PORT(port));
1453 }
1454
1455 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1456 {
1457         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1458         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1459
1460         if (cpu_transcoder != TRANSCODER_EDP)
1461                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1462                            TRANS_CLK_SEL_DISABLED);
1463 }
1464
1465 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1466 {
1467         struct drm_encoder *encoder = &intel_encoder->base;
1468         struct drm_device *dev = encoder->dev;
1469         struct drm_i915_private *dev_priv = dev->dev_private;
1470         struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1471         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1472         int type = intel_encoder->type;
1473
1474         if (type == INTEL_OUTPUT_EDP) {
1475                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1476                 intel_edp_panel_on(intel_dp);
1477         }
1478
1479         if (IS_SKYLAKE(dev)) {
1480                 uint32_t dpll = crtc->config.ddi_pll_sel;
1481                 uint32_t val;
1482
1483                 /*
1484                  * DPLL0 is used for eDP and is the only "private" DPLL (as
1485                  * opposed to shared) on SKL
1486                  */
1487                 if (type == INTEL_OUTPUT_EDP) {
1488                         WARN_ON(dpll != SKL_DPLL0);
1489
1490                         val = I915_READ(DPLL_CTRL1);
1491
1492                         val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
1493                                  DPLL_CTRL1_SSC(dpll) |
1494                                  DPLL_CRTL1_LINK_RATE_MASK(dpll));
1495                         val |= crtc->config.dpll_hw_state.ctrl1 << (dpll * 6);
1496
1497                         I915_WRITE(DPLL_CTRL1, val);
1498                         POSTING_READ(DPLL_CTRL1);
1499                 }
1500
1501                 /* DDI -> PLL mapping  */
1502                 val = I915_READ(DPLL_CTRL2);
1503
1504                 val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1505                         DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1506                 val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1507                         DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1508
1509                 I915_WRITE(DPLL_CTRL2, val);
1510
1511         } else {
1512                 WARN_ON(crtc->config.ddi_pll_sel == PORT_CLK_SEL_NONE);
1513                 I915_WRITE(PORT_CLK_SEL(port), crtc->config.ddi_pll_sel);
1514         }
1515
1516         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1517                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1518
1519                 intel_ddi_init_dp_buf_reg(intel_encoder);
1520
1521                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1522                 intel_dp_start_link_train(intel_dp);
1523                 intel_dp_complete_link_train(intel_dp);
1524                 if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
1525                         intel_dp_stop_link_train(intel_dp);
1526         } else if (type == INTEL_OUTPUT_HDMI) {
1527                 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1528
1529                 intel_hdmi->set_infoframes(encoder,
1530                                            crtc->config.has_hdmi_sink,
1531                                            &crtc->config.adjusted_mode);
1532         }
1533 }
1534
1535 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1536 {
1537         struct drm_encoder *encoder = &intel_encoder->base;
1538         struct drm_device *dev = encoder->dev;
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1541         int type = intel_encoder->type;
1542         uint32_t val;
1543         bool wait = false;
1544
1545         val = I915_READ(DDI_BUF_CTL(port));
1546         if (val & DDI_BUF_CTL_ENABLE) {
1547                 val &= ~DDI_BUF_CTL_ENABLE;
1548                 I915_WRITE(DDI_BUF_CTL(port), val);
1549                 wait = true;
1550         }
1551
1552         val = I915_READ(DP_TP_CTL(port));
1553         val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1554         val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1555         I915_WRITE(DP_TP_CTL(port), val);
1556
1557         if (wait)
1558                 intel_wait_ddi_buf_idle(dev_priv, port);
1559
1560         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1561                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1562                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1563                 intel_edp_panel_vdd_on(intel_dp);
1564                 intel_edp_panel_off(intel_dp);
1565         }
1566
1567         if (IS_SKYLAKE(dev))
1568                 I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1569                                         DPLL_CTRL2_DDI_CLK_OFF(port)));
1570         else
1571                 I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1572 }
1573
1574 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1575 {
1576         struct drm_encoder *encoder = &intel_encoder->base;
1577         struct drm_crtc *crtc = encoder->crtc;
1578         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1579         struct drm_device *dev = encoder->dev;
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1582         int type = intel_encoder->type;
1583
1584         if (type == INTEL_OUTPUT_HDMI) {
1585                 struct intel_digital_port *intel_dig_port =
1586                         enc_to_dig_port(encoder);
1587
1588                 /* In HDMI/DVI mode, the port width, and swing/emphasis values
1589                  * are ignored so nothing special needs to be done besides
1590                  * enabling the port.
1591                  */
1592                 I915_WRITE(DDI_BUF_CTL(port),
1593                            intel_dig_port->saved_port_bits |
1594                            DDI_BUF_CTL_ENABLE);
1595         } else if (type == INTEL_OUTPUT_EDP) {
1596                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1597
1598                 if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
1599                         intel_dp_stop_link_train(intel_dp);
1600
1601                 intel_edp_backlight_on(intel_dp);
1602                 intel_psr_enable(intel_dp);
1603         }
1604
1605         if (intel_crtc->config.has_audio) {
1606                 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1607                 intel_audio_codec_enable(intel_encoder);
1608         }
1609 }
1610
1611 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1612 {
1613         struct drm_encoder *encoder = &intel_encoder->base;
1614         struct drm_crtc *crtc = encoder->crtc;
1615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1616         int type = intel_encoder->type;
1617         struct drm_device *dev = encoder->dev;
1618         struct drm_i915_private *dev_priv = dev->dev_private;
1619
1620         if (intel_crtc->config.has_audio) {
1621                 intel_audio_codec_disable(intel_encoder);
1622                 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
1623         }
1624
1625         if (type == INTEL_OUTPUT_EDP) {
1626                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1627
1628                 intel_psr_disable(intel_dp);
1629                 intel_edp_backlight_off(intel_dp);
1630         }
1631 }
1632
1633 static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv)
1634 {
1635         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
1636         uint32_t cdctl = I915_READ(CDCLK_CTL);
1637         uint32_t linkrate;
1638
1639         if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
1640                 WARN(1, "LCPLL1 not enabled\n");
1641                 return 24000; /* 24MHz is the cd freq with NSSC ref */
1642         }
1643
1644         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
1645                 return 540000;
1646
1647         linkrate = (I915_READ(DPLL_CTRL1) &
1648                     DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1649
1650         if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
1651             linkrate == DPLL_CRTL1_LINK_RATE_1080) {
1652                 /* vco 8640 */
1653                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1654                 case CDCLK_FREQ_450_432:
1655                         return 432000;
1656                 case CDCLK_FREQ_337_308:
1657                         return 308570;
1658                 case CDCLK_FREQ_675_617:
1659                         return 617140;
1660                 default:
1661                         WARN(1, "Unknown cd freq selection\n");
1662                 }
1663         } else {
1664                 /* vco 8100 */
1665                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1666                 case CDCLK_FREQ_450_432:
1667                         return 450000;
1668                 case CDCLK_FREQ_337_308:
1669                         return 337500;
1670                 case CDCLK_FREQ_675_617:
1671                         return 675000;
1672                 default:
1673                         WARN(1, "Unknown cd freq selection\n");
1674                 }
1675         }
1676
1677         /* error case, do as if DPLL0 isn't enabled */
1678         return 24000;
1679 }
1680
1681 static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1682 {
1683         uint32_t lcpll = I915_READ(LCPLL_CTL);
1684         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1685
1686         if (lcpll & LCPLL_CD_SOURCE_FCLK)
1687                 return 800000;
1688         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1689                 return 450000;
1690         else if (freq == LCPLL_CLK_FREQ_450)
1691                 return 450000;
1692         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
1693                 return 540000;
1694         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
1695                 return 337500;
1696         else
1697                 return 675000;
1698 }
1699
1700 static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1701 {
1702         struct drm_device *dev = dev_priv->dev;
1703         uint32_t lcpll = I915_READ(LCPLL_CTL);
1704         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1705
1706         if (lcpll & LCPLL_CD_SOURCE_FCLK)
1707                 return 800000;
1708         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1709                 return 450000;
1710         else if (freq == LCPLL_CLK_FREQ_450)
1711                 return 450000;
1712         else if (IS_HSW_ULT(dev))
1713                 return 337500;
1714         else
1715                 return 540000;
1716 }
1717
1718 int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
1719 {
1720         struct drm_device *dev = dev_priv->dev;
1721
1722         if (IS_SKYLAKE(dev))
1723                 return skl_get_cdclk_freq(dev_priv);
1724
1725         if (IS_BROADWELL(dev))
1726                 return bdw_get_cdclk_freq(dev_priv);
1727
1728         /* Haswell */
1729         return hsw_get_cdclk_freq(dev_priv);
1730 }
1731
1732 static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
1733                                struct intel_shared_dpll *pll)
1734 {
1735         I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
1736         POSTING_READ(WRPLL_CTL(pll->id));
1737         udelay(20);
1738 }
1739
1740 static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
1741                                 struct intel_shared_dpll *pll)
1742 {
1743         uint32_t val;
1744
1745         val = I915_READ(WRPLL_CTL(pll->id));
1746         I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
1747         POSTING_READ(WRPLL_CTL(pll->id));
1748 }
1749
1750 static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1751                                      struct intel_shared_dpll *pll,
1752                                      struct intel_dpll_hw_state *hw_state)
1753 {
1754         uint32_t val;
1755
1756         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1757                 return false;
1758
1759         val = I915_READ(WRPLL_CTL(pll->id));
1760         hw_state->wrpll = val;
1761
1762         return val & WRPLL_PLL_ENABLE;
1763 }
1764
1765 static const char * const hsw_ddi_pll_names[] = {
1766         "WRPLL 1",
1767         "WRPLL 2",
1768 };
1769
1770 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
1771 {
1772         int i;
1773
1774         dev_priv->num_shared_dpll = 2;
1775
1776         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1777                 dev_priv->shared_dplls[i].id = i;
1778                 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
1779                 dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
1780                 dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
1781                 dev_priv->shared_dplls[i].get_hw_state =
1782                         hsw_ddi_pll_get_hw_state;
1783         }
1784 }
1785
1786 static const char * const skl_ddi_pll_names[] = {
1787         "DPLL 1",
1788         "DPLL 2",
1789         "DPLL 3",
1790 };
1791
1792 struct skl_dpll_regs {
1793         u32 ctl, cfgcr1, cfgcr2;
1794 };
1795
1796 /* this array is indexed by the *shared* pll id */
1797 static const struct skl_dpll_regs skl_dpll_regs[3] = {
1798         {
1799                 /* DPLL 1 */
1800                 .ctl = LCPLL2_CTL,
1801                 .cfgcr1 = DPLL1_CFGCR1,
1802                 .cfgcr2 = DPLL1_CFGCR2,
1803         },
1804         {
1805                 /* DPLL 2 */
1806                 .ctl = WRPLL_CTL1,
1807                 .cfgcr1 = DPLL2_CFGCR1,
1808                 .cfgcr2 = DPLL2_CFGCR2,
1809         },
1810         {
1811                 /* DPLL 3 */
1812                 .ctl = WRPLL_CTL2,
1813                 .cfgcr1 = DPLL3_CFGCR1,
1814                 .cfgcr2 = DPLL3_CFGCR2,
1815         },
1816 };
1817
1818 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
1819                                struct intel_shared_dpll *pll)
1820 {
1821         uint32_t val;
1822         unsigned int dpll;
1823         const struct skl_dpll_regs *regs = skl_dpll_regs;
1824
1825         /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1826         dpll = pll->id + 1;
1827
1828         val = I915_READ(DPLL_CTRL1);
1829
1830         val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
1831                  DPLL_CRTL1_LINK_RATE_MASK(dpll));
1832         val |= pll->config.hw_state.ctrl1 << (dpll * 6);
1833
1834         I915_WRITE(DPLL_CTRL1, val);
1835         POSTING_READ(DPLL_CTRL1);
1836
1837         I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
1838         I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
1839         POSTING_READ(regs[pll->id].cfgcr1);
1840         POSTING_READ(regs[pll->id].cfgcr2);
1841
1842         /* the enable bit is always bit 31 */
1843         I915_WRITE(regs[pll->id].ctl,
1844                    I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
1845
1846         if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
1847                 DRM_ERROR("DPLL %d not locked\n", dpll);
1848 }
1849
1850 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
1851                                 struct intel_shared_dpll *pll)
1852 {
1853         const struct skl_dpll_regs *regs = skl_dpll_regs;
1854
1855         /* the enable bit is always bit 31 */
1856         I915_WRITE(regs[pll->id].ctl,
1857                    I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
1858         POSTING_READ(regs[pll->id].ctl);
1859 }
1860
1861 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1862                                      struct intel_shared_dpll *pll,
1863                                      struct intel_dpll_hw_state *hw_state)
1864 {
1865         uint32_t val;
1866         unsigned int dpll;
1867         const struct skl_dpll_regs *regs = skl_dpll_regs;
1868
1869         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1870                 return false;
1871
1872         /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1873         dpll = pll->id + 1;
1874
1875         val = I915_READ(regs[pll->id].ctl);
1876         if (!(val & LCPLL_PLL_ENABLE))
1877                 return false;
1878
1879         val = I915_READ(DPLL_CTRL1);
1880         hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
1881
1882         /* avoid reading back stale values if HDMI mode is not enabled */
1883         if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
1884                 hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
1885                 hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
1886         }
1887
1888         return true;
1889 }
1890
1891 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
1892 {
1893         int i;
1894
1895         dev_priv->num_shared_dpll = 3;
1896
1897         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1898                 dev_priv->shared_dplls[i].id = i;
1899                 dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
1900                 dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
1901                 dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
1902                 dev_priv->shared_dplls[i].get_hw_state =
1903                         skl_ddi_pll_get_hw_state;
1904         }
1905 }
1906
1907 void intel_ddi_pll_init(struct drm_device *dev)
1908 {
1909         struct drm_i915_private *dev_priv = dev->dev_private;
1910         uint32_t val = I915_READ(LCPLL_CTL);
1911
1912         if (IS_SKYLAKE(dev))
1913                 skl_shared_dplls_init(dev_priv);
1914         else
1915                 hsw_shared_dplls_init(dev_priv);
1916
1917         DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
1918                       intel_ddi_get_cdclk_freq(dev_priv));
1919
1920         if (IS_SKYLAKE(dev)) {
1921                 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
1922                         DRM_ERROR("LCPLL1 is disabled\n");
1923         } else {
1924                 /*
1925                  * The LCPLL register should be turned on by the BIOS. For now
1926                  * let's just check its state and print errors in case
1927                  * something is wrong.  Don't even try to turn it on.
1928                  */
1929
1930                 if (val & LCPLL_CD_SOURCE_FCLK)
1931                         DRM_ERROR("CDCLK source is not LCPLL\n");
1932
1933                 if (val & LCPLL_PLL_DISABLE)
1934                         DRM_ERROR("LCPLL is disabled\n");
1935         }
1936 }
1937
1938 void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
1939 {
1940         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
1941         struct intel_dp *intel_dp = &intel_dig_port->dp;
1942         struct drm_i915_private *dev_priv = encoder->dev->dev_private;
1943         enum port port = intel_dig_port->port;
1944         uint32_t val;
1945         bool wait = false;
1946
1947         if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
1948                 val = I915_READ(DDI_BUF_CTL(port));
1949                 if (val & DDI_BUF_CTL_ENABLE) {
1950                         val &= ~DDI_BUF_CTL_ENABLE;
1951                         I915_WRITE(DDI_BUF_CTL(port), val);
1952                         wait = true;
1953                 }
1954
1955                 val = I915_READ(DP_TP_CTL(port));
1956                 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1957                 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1958                 I915_WRITE(DP_TP_CTL(port), val);
1959                 POSTING_READ(DP_TP_CTL(port));
1960
1961                 if (wait)
1962                         intel_wait_ddi_buf_idle(dev_priv, port);
1963         }
1964
1965         val = DP_TP_CTL_ENABLE |
1966               DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
1967         if (intel_dp->is_mst)
1968                 val |= DP_TP_CTL_MODE_MST;
1969         else {
1970                 val |= DP_TP_CTL_MODE_SST;
1971                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1972                         val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
1973         }
1974         I915_WRITE(DP_TP_CTL(port), val);
1975         POSTING_READ(DP_TP_CTL(port));
1976
1977         intel_dp->DP |= DDI_BUF_CTL_ENABLE;
1978         I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
1979         POSTING_READ(DDI_BUF_CTL(port));
1980
1981         udelay(600);
1982 }
1983
1984 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
1985 {
1986         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1987         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1988         uint32_t val;
1989
1990         intel_ddi_post_disable(intel_encoder);
1991
1992         val = I915_READ(_FDI_RXA_CTL);
1993         val &= ~FDI_RX_ENABLE;
1994         I915_WRITE(_FDI_RXA_CTL, val);
1995
1996         val = I915_READ(_FDI_RXA_MISC);
1997         val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
1998         val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
1999         I915_WRITE(_FDI_RXA_MISC, val);
2000
2001         val = I915_READ(_FDI_RXA_CTL);
2002         val &= ~FDI_PCDCLK;
2003         I915_WRITE(_FDI_RXA_CTL, val);
2004
2005         val = I915_READ(_FDI_RXA_CTL);
2006         val &= ~FDI_RX_PLL_ENABLE;
2007         I915_WRITE(_FDI_RXA_CTL, val);
2008 }
2009
2010 static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
2011 {
2012         struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
2013         int type = intel_dig_port->base.type;
2014
2015         if (type != INTEL_OUTPUT_DISPLAYPORT &&
2016             type != INTEL_OUTPUT_EDP &&
2017             type != INTEL_OUTPUT_UNKNOWN) {
2018                 return;
2019         }
2020
2021         intel_dp_hot_plug(intel_encoder);
2022 }
2023
2024 void intel_ddi_get_config(struct intel_encoder *encoder,
2025                           struct intel_crtc_config *pipe_config)
2026 {
2027         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
2028         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2029         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
2030         struct intel_hdmi *intel_hdmi;
2031         u32 temp, flags = 0;
2032         struct drm_device *dev = dev_priv->dev;
2033
2034         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2035         if (temp & TRANS_DDI_PHSYNC)
2036                 flags |= DRM_MODE_FLAG_PHSYNC;
2037         else
2038                 flags |= DRM_MODE_FLAG_NHSYNC;
2039         if (temp & TRANS_DDI_PVSYNC)
2040                 flags |= DRM_MODE_FLAG_PVSYNC;
2041         else
2042                 flags |= DRM_MODE_FLAG_NVSYNC;
2043
2044         pipe_config->adjusted_mode.flags |= flags;
2045
2046         switch (temp & TRANS_DDI_BPC_MASK) {
2047         case TRANS_DDI_BPC_6:
2048                 pipe_config->pipe_bpp = 18;
2049                 break;
2050         case TRANS_DDI_BPC_8:
2051                 pipe_config->pipe_bpp = 24;
2052                 break;
2053         case TRANS_DDI_BPC_10:
2054                 pipe_config->pipe_bpp = 30;
2055                 break;
2056         case TRANS_DDI_BPC_12:
2057                 pipe_config->pipe_bpp = 36;
2058                 break;
2059         default:
2060                 break;
2061         }
2062
2063         switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2064         case TRANS_DDI_MODE_SELECT_HDMI:
2065                 pipe_config->has_hdmi_sink = true;
2066                 intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2067
2068                 if (intel_hdmi->infoframe_enabled(&encoder->base))
2069                         pipe_config->has_infoframe = true;
2070                 break;
2071         case TRANS_DDI_MODE_SELECT_DVI:
2072         case TRANS_DDI_MODE_SELECT_FDI:
2073                 break;
2074         case TRANS_DDI_MODE_SELECT_DP_SST:
2075         case TRANS_DDI_MODE_SELECT_DP_MST:
2076                 pipe_config->has_dp_encoder = true;
2077                 intel_dp_get_m_n(intel_crtc, pipe_config);
2078                 break;
2079         default:
2080                 break;
2081         }
2082
2083         if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2084                 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2085                 if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2086                         pipe_config->has_audio = true;
2087         }
2088
2089         if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
2090             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2091                 /*
2092                  * This is a big fat ugly hack.
2093                  *
2094                  * Some machines in UEFI boot mode provide us a VBT that has 18
2095                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2096                  * unknown we fail to light up. Yet the same BIOS boots up with
2097                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2098                  * max, not what it tells us to use.
2099                  *
2100                  * Note: This will still be broken if the eDP panel is not lit
2101                  * up by the BIOS, and thus we can't get the mode at module
2102                  * load.
2103                  */
2104                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2105                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2106                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2107         }
2108
2109         if (INTEL_INFO(dev)->gen <= 8)
2110                 hsw_ddi_clock_get(encoder, pipe_config);
2111         else
2112                 skl_ddi_clock_get(encoder, pipe_config);
2113 }
2114
2115 static void intel_ddi_destroy(struct drm_encoder *encoder)
2116 {
2117         /* HDMI has nothing special to destroy, so we can go with this. */
2118         intel_dp_encoder_destroy(encoder);
2119 }
2120
2121 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2122                                      struct intel_crtc_config *pipe_config)
2123 {
2124         int type = encoder->type;
2125         int port = intel_ddi_get_encoder_port(encoder);
2126
2127         WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2128
2129         if (port == PORT_A)
2130                 pipe_config->cpu_transcoder = TRANSCODER_EDP;
2131
2132         if (type == INTEL_OUTPUT_HDMI)
2133                 return intel_hdmi_compute_config(encoder, pipe_config);
2134         else
2135                 return intel_dp_compute_config(encoder, pipe_config);
2136 }
2137
2138 static const struct drm_encoder_funcs intel_ddi_funcs = {
2139         .destroy = intel_ddi_destroy,
2140 };
2141
2142 static struct intel_connector *
2143 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2144 {
2145         struct intel_connector *connector;
2146         enum port port = intel_dig_port->port;
2147
2148         connector = kzalloc(sizeof(*connector), GFP_KERNEL);
2149         if (!connector)
2150                 return NULL;
2151
2152         intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2153         if (!intel_dp_init_connector(intel_dig_port, connector)) {
2154                 kfree(connector);
2155                 return NULL;
2156         }
2157
2158         return connector;
2159 }
2160
2161 static struct intel_connector *
2162 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2163 {
2164         struct intel_connector *connector;
2165         enum port port = intel_dig_port->port;
2166
2167         connector = kzalloc(sizeof(*connector), GFP_KERNEL);
2168         if (!connector)
2169                 return NULL;
2170
2171         intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2172         intel_hdmi_init_connector(intel_dig_port, connector);
2173
2174         return connector;
2175 }
2176
2177 void intel_ddi_init(struct drm_device *dev, enum port port)
2178 {
2179         struct drm_i915_private *dev_priv = dev->dev_private;
2180         struct intel_digital_port *intel_dig_port;
2181         struct intel_encoder *intel_encoder;
2182         struct drm_encoder *encoder;
2183         bool init_hdmi, init_dp;
2184
2185         init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2186                      dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2187         init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2188         if (!init_dp && !init_hdmi) {
2189                 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
2190                               port_name(port));
2191                 init_hdmi = true;
2192                 init_dp = true;
2193         }
2194
2195         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2196         if (!intel_dig_port)
2197                 return;
2198
2199         intel_encoder = &intel_dig_port->base;
2200         encoder = &intel_encoder->base;
2201
2202         drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2203                          DRM_MODE_ENCODER_TMDS);
2204
2205         intel_encoder->compute_config = intel_ddi_compute_config;
2206         intel_encoder->enable = intel_enable_ddi;
2207         intel_encoder->pre_enable = intel_ddi_pre_enable;
2208         intel_encoder->disable = intel_disable_ddi;
2209         intel_encoder->post_disable = intel_ddi_post_disable;
2210         intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2211         intel_encoder->get_config = intel_ddi_get_config;
2212
2213         intel_dig_port->port = port;
2214         intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2215                                           (DDI_BUF_PORT_REVERSAL |
2216                                            DDI_A_4_LANES);
2217
2218         intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2219         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2220         intel_encoder->cloneable = 0;
2221         intel_encoder->hot_plug = intel_ddi_hot_plug;
2222
2223         if (init_dp) {
2224                 if (!intel_ddi_init_dp_connector(intel_dig_port))
2225                         goto err;
2226
2227                 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2228                 dev_priv->hpd_irq_port[port] = intel_dig_port;
2229         }
2230
2231         /* In theory we don't need the encoder->type check, but leave it just in
2232          * case we have some really bad VBTs... */
2233         if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2234                 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2235                         goto err;
2236         }
2237
2238         return;
2239
2240 err:
2241         drm_encoder_cleanup(encoder);
2242         kfree(intel_dig_port);
2243 }