Merge branch 'linux-3.17' of git://anongit.freedesktop.org/git/nouveau/linux-2.6...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80                                     enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84                                 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86                                    struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89                           int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void intel_dp_set_m_n(struct intel_crtc *crtc);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98                                          struct intel_link_m_n *m_n);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103
104 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105 {
106         if (!connector->mst_port)
107                 return connector->encoder;
108         else
109                 return &connector->mst_port->mst_encoders[pipe]->base;
110 }
111
112 typedef struct {
113         int     min, max;
114 } intel_range_t;
115
116 typedef struct {
117         int     dot_limit;
118         int     p2_slow, p2_fast;
119 } intel_p2_t;
120
121 typedef struct intel_limit intel_limit_t;
122 struct intel_limit {
123         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
124         intel_p2_t          p2;
125 };
126
127 int
128 intel_pch_rawclk(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = dev->dev_private;
131
132         WARN_ON(!HAS_PCH_SPLIT(dev));
133
134         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135 }
136
137 static inline u32 /* units of 100MHz */
138 intel_fdi_link_freq(struct drm_device *dev)
139 {
140         if (IS_GEN5(dev)) {
141                 struct drm_i915_private *dev_priv = dev->dev_private;
142                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143         } else
144                 return 27;
145 }
146
147 static const intel_limit_t intel_limits_i8xx_dac = {
148         .dot = { .min = 25000, .max = 350000 },
149         .vco = { .min = 908000, .max = 1512000 },
150         .n = { .min = 2, .max = 16 },
151         .m = { .min = 96, .max = 140 },
152         .m1 = { .min = 18, .max = 26 },
153         .m2 = { .min = 6, .max = 16 },
154         .p = { .min = 4, .max = 128 },
155         .p1 = { .min = 2, .max = 33 },
156         .p2 = { .dot_limit = 165000,
157                 .p2_slow = 4, .p2_fast = 2 },
158 };
159
160 static const intel_limit_t intel_limits_i8xx_dvo = {
161         .dot = { .min = 25000, .max = 350000 },
162         .vco = { .min = 908000, .max = 1512000 },
163         .n = { .min = 2, .max = 16 },
164         .m = { .min = 96, .max = 140 },
165         .m1 = { .min = 18, .max = 26 },
166         .m2 = { .min = 6, .max = 16 },
167         .p = { .min = 4, .max = 128 },
168         .p1 = { .min = 2, .max = 33 },
169         .p2 = { .dot_limit = 165000,
170                 .p2_slow = 4, .p2_fast = 4 },
171 };
172
173 static const intel_limit_t intel_limits_i8xx_lvds = {
174         .dot = { .min = 25000, .max = 350000 },
175         .vco = { .min = 908000, .max = 1512000 },
176         .n = { .min = 2, .max = 16 },
177         .m = { .min = 96, .max = 140 },
178         .m1 = { .min = 18, .max = 26 },
179         .m2 = { .min = 6, .max = 16 },
180         .p = { .min = 4, .max = 128 },
181         .p1 = { .min = 1, .max = 6 },
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 14, .p2_fast = 7 },
184 };
185
186 static const intel_limit_t intel_limits_i9xx_sdvo = {
187         .dot = { .min = 20000, .max = 400000 },
188         .vco = { .min = 1400000, .max = 2800000 },
189         .n = { .min = 1, .max = 6 },
190         .m = { .min = 70, .max = 120 },
191         .m1 = { .min = 8, .max = 18 },
192         .m2 = { .min = 3, .max = 7 },
193         .p = { .min = 5, .max = 80 },
194         .p1 = { .min = 1, .max = 8 },
195         .p2 = { .dot_limit = 200000,
196                 .p2_slow = 10, .p2_fast = 5 },
197 };
198
199 static const intel_limit_t intel_limits_i9xx_lvds = {
200         .dot = { .min = 20000, .max = 400000 },
201         .vco = { .min = 1400000, .max = 2800000 },
202         .n = { .min = 1, .max = 6 },
203         .m = { .min = 70, .max = 120 },
204         .m1 = { .min = 8, .max = 18 },
205         .m2 = { .min = 3, .max = 7 },
206         .p = { .min = 7, .max = 98 },
207         .p1 = { .min = 1, .max = 8 },
208         .p2 = { .dot_limit = 112000,
209                 .p2_slow = 14, .p2_fast = 7 },
210 };
211
212
213 static const intel_limit_t intel_limits_g4x_sdvo = {
214         .dot = { .min = 25000, .max = 270000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 10, .max = 30 },
221         .p1 = { .min = 1, .max = 3},
222         .p2 = { .dot_limit = 270000,
223                 .p2_slow = 10,
224                 .p2_fast = 10
225         },
226 };
227
228 static const intel_limit_t intel_limits_g4x_hdmi = {
229         .dot = { .min = 22000, .max = 400000 },
230         .vco = { .min = 1750000, .max = 3500000},
231         .n = { .min = 1, .max = 4 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 16, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 5, .max = 80 },
236         .p1 = { .min = 1, .max = 8},
237         .p2 = { .dot_limit = 165000,
238                 .p2_slow = 10, .p2_fast = 5 },
239 };
240
241 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
242         .dot = { .min = 20000, .max = 115000 },
243         .vco = { .min = 1750000, .max = 3500000 },
244         .n = { .min = 1, .max = 3 },
245         .m = { .min = 104, .max = 138 },
246         .m1 = { .min = 17, .max = 23 },
247         .m2 = { .min = 5, .max = 11 },
248         .p = { .min = 28, .max = 112 },
249         .p1 = { .min = 2, .max = 8 },
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 14, .p2_fast = 14
252         },
253 };
254
255 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
256         .dot = { .min = 80000, .max = 224000 },
257         .vco = { .min = 1750000, .max = 3500000 },
258         .n = { .min = 1, .max = 3 },
259         .m = { .min = 104, .max = 138 },
260         .m1 = { .min = 17, .max = 23 },
261         .m2 = { .min = 5, .max = 11 },
262         .p = { .min = 14, .max = 42 },
263         .p1 = { .min = 2, .max = 6 },
264         .p2 = { .dot_limit = 0,
265                 .p2_slow = 7, .p2_fast = 7
266         },
267 };
268
269 static const intel_limit_t intel_limits_pineview_sdvo = {
270         .dot = { .min = 20000, .max = 400000},
271         .vco = { .min = 1700000, .max = 3500000 },
272         /* Pineview's Ncounter is a ring counter */
273         .n = { .min = 3, .max = 6 },
274         .m = { .min = 2, .max = 256 },
275         /* Pineview only has one combined m divider, which we treat as m2. */
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 5, .max = 80 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 200000,
281                 .p2_slow = 10, .p2_fast = 5 },
282 };
283
284 static const intel_limit_t intel_limits_pineview_lvds = {
285         .dot = { .min = 20000, .max = 400000 },
286         .vco = { .min = 1700000, .max = 3500000 },
287         .n = { .min = 3, .max = 6 },
288         .m = { .min = 2, .max = 256 },
289         .m1 = { .min = 0, .max = 0 },
290         .m2 = { .min = 0, .max = 254 },
291         .p = { .min = 7, .max = 112 },
292         .p1 = { .min = 1, .max = 8 },
293         .p2 = { .dot_limit = 112000,
294                 .p2_slow = 14, .p2_fast = 14 },
295 };
296
297 /* Ironlake / Sandybridge
298  *
299  * We calculate clock using (register_value + 2) for N/M1/M2, so here
300  * the range value for them is (actual_value - 2).
301  */
302 static const intel_limit_t intel_limits_ironlake_dac = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 5 },
306         .m = { .min = 79, .max = 127 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 5, .max = 80 },
310         .p1 = { .min = 1, .max = 8 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const intel_limit_t intel_limits_ironlake_single_lvds = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 3 },
319         .m = { .min = 79, .max = 118 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 28, .max = 112 },
323         .p1 = { .min = 2, .max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 14, .p2_fast = 14 },
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 127 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 14, .max = 56 },
336         .p1 = { .min = 2, .max = 8 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 7, .p2_fast = 7 },
339 };
340
341 /* LVDS 100mhz refclk limits. */
342 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
343         .dot = { .min = 25000, .max = 350000 },
344         .vco = { .min = 1760000, .max = 3510000 },
345         .n = { .min = 1, .max = 2 },
346         .m = { .min = 79, .max = 126 },
347         .m1 = { .min = 12, .max = 22 },
348         .m2 = { .min = 5, .max = 9 },
349         .p = { .min = 28, .max = 112 },
350         .p1 = { .min = 2, .max = 8 },
351         .p2 = { .dot_limit = 225000,
352                 .p2_slow = 14, .p2_fast = 14 },
353 };
354
355 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
356         .dot = { .min = 25000, .max = 350000 },
357         .vco = { .min = 1760000, .max = 3510000 },
358         .n = { .min = 1, .max = 3 },
359         .m = { .min = 79, .max = 126 },
360         .m1 = { .min = 12, .max = 22 },
361         .m2 = { .min = 5, .max = 9 },
362         .p = { .min = 14, .max = 42 },
363         .p1 = { .min = 2, .max = 6 },
364         .p2 = { .dot_limit = 225000,
365                 .p2_slow = 7, .p2_fast = 7 },
366 };
367
368 static const intel_limit_t intel_limits_vlv = {
369          /*
370           * These are the data rate limits (measured in fast clocks)
371           * since those are the strictest limits we have. The fast
372           * clock and actual rate limits are more relaxed, so checking
373           * them would make no difference.
374           */
375         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
376         .vco = { .min = 4000000, .max = 6000000 },
377         .n = { .min = 1, .max = 7 },
378         .m1 = { .min = 2, .max = 3 },
379         .m2 = { .min = 11, .max = 156 },
380         .p1 = { .min = 2, .max = 3 },
381         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
382 };
383
384 static const intel_limit_t intel_limits_chv = {
385         /*
386          * These are the data rate limits (measured in fast clocks)
387          * since those are the strictest limits we have.  The fast
388          * clock and actual rate limits are more relaxed, so checking
389          * them would make no difference.
390          */
391         .dot = { .min = 25000 * 5, .max = 540000 * 5},
392         .vco = { .min = 4860000, .max = 6700000 },
393         .n = { .min = 1, .max = 1 },
394         .m1 = { .min = 2, .max = 2 },
395         .m2 = { .min = 24 << 22, .max = 175 << 22 },
396         .p1 = { .min = 2, .max = 4 },
397         .p2 = { .p2_slow = 1, .p2_fast = 14 },
398 };
399
400 static void vlv_clock(int refclk, intel_clock_t *clock)
401 {
402         clock->m = clock->m1 * clock->m2;
403         clock->p = clock->p1 * clock->p2;
404         if (WARN_ON(clock->n == 0 || clock->p == 0))
405                 return;
406         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
408 }
409
410 /**
411  * Returns whether any output on the specified pipe is of the specified type
412  */
413 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
414 {
415         struct drm_device *dev = crtc->dev;
416         struct intel_encoder *encoder;
417
418         for_each_encoder_on_crtc(dev, crtc, encoder)
419                 if (encoder->type == type)
420                         return true;
421
422         return false;
423 }
424
425 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
426                                                 int refclk)
427 {
428         struct drm_device *dev = crtc->dev;
429         const intel_limit_t *limit;
430
431         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
432                 if (intel_is_dual_link_lvds(dev)) {
433                         if (refclk == 100000)
434                                 limit = &intel_limits_ironlake_dual_lvds_100m;
435                         else
436                                 limit = &intel_limits_ironlake_dual_lvds;
437                 } else {
438                         if (refclk == 100000)
439                                 limit = &intel_limits_ironlake_single_lvds_100m;
440                         else
441                                 limit = &intel_limits_ironlake_single_lvds;
442                 }
443         } else
444                 limit = &intel_limits_ironlake_dac;
445
446         return limit;
447 }
448
449 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
450 {
451         struct drm_device *dev = crtc->dev;
452         const intel_limit_t *limit;
453
454         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
455                 if (intel_is_dual_link_lvds(dev))
456                         limit = &intel_limits_g4x_dual_channel_lvds;
457                 else
458                         limit = &intel_limits_g4x_single_channel_lvds;
459         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
460                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
461                 limit = &intel_limits_g4x_hdmi;
462         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
463                 limit = &intel_limits_g4x_sdvo;
464         } else /* The option is for other outputs */
465                 limit = &intel_limits_i9xx_sdvo;
466
467         return limit;
468 }
469
470 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
471 {
472         struct drm_device *dev = crtc->dev;
473         const intel_limit_t *limit;
474
475         if (HAS_PCH_SPLIT(dev))
476                 limit = intel_ironlake_limit(crtc, refclk);
477         else if (IS_G4X(dev)) {
478                 limit = intel_g4x_limit(crtc);
479         } else if (IS_PINEVIEW(dev)) {
480                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
481                         limit = &intel_limits_pineview_lvds;
482                 else
483                         limit = &intel_limits_pineview_sdvo;
484         } else if (IS_CHERRYVIEW(dev)) {
485                 limit = &intel_limits_chv;
486         } else if (IS_VALLEYVIEW(dev)) {
487                 limit = &intel_limits_vlv;
488         } else if (!IS_GEN2(dev)) {
489                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
490                         limit = &intel_limits_i9xx_lvds;
491                 else
492                         limit = &intel_limits_i9xx_sdvo;
493         } else {
494                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
495                         limit = &intel_limits_i8xx_lvds;
496                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
497                         limit = &intel_limits_i8xx_dvo;
498                 else
499                         limit = &intel_limits_i8xx_dac;
500         }
501         return limit;
502 }
503
504 /* m1 is reserved as 0 in Pineview, n is a ring counter */
505 static void pineview_clock(int refclk, intel_clock_t *clock)
506 {
507         clock->m = clock->m2 + 2;
508         clock->p = clock->p1 * clock->p2;
509         if (WARN_ON(clock->n == 0 || clock->p == 0))
510                 return;
511         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
512         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
513 }
514
515 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
516 {
517         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
518 }
519
520 static void i9xx_clock(int refclk, intel_clock_t *clock)
521 {
522         clock->m = i9xx_dpll_compute_m(clock);
523         clock->p = clock->p1 * clock->p2;
524         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
525                 return;
526         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
527         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
528 }
529
530 static void chv_clock(int refclk, intel_clock_t *clock)
531 {
532         clock->m = clock->m1 * clock->m2;
533         clock->p = clock->p1 * clock->p2;
534         if (WARN_ON(clock->n == 0 || clock->p == 0))
535                 return;
536         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
537                         clock->n << 22);
538         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539 }
540
541 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
542 /**
543  * Returns whether the given set of divisors are valid for a given refclk with
544  * the given connectors.
545  */
546
547 static bool intel_PLL_is_valid(struct drm_device *dev,
548                                const intel_limit_t *limit,
549                                const intel_clock_t *clock)
550 {
551         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
552                 INTELPllInvalid("n out of range\n");
553         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
554                 INTELPllInvalid("p1 out of range\n");
555         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
556                 INTELPllInvalid("m2 out of range\n");
557         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
558                 INTELPllInvalid("m1 out of range\n");
559
560         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
561                 if (clock->m1 <= clock->m2)
562                         INTELPllInvalid("m1 <= m2\n");
563
564         if (!IS_VALLEYVIEW(dev)) {
565                 if (clock->p < limit->p.min || limit->p.max < clock->p)
566                         INTELPllInvalid("p out of range\n");
567                 if (clock->m < limit->m.min || limit->m.max < clock->m)
568                         INTELPllInvalid("m out of range\n");
569         }
570
571         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
572                 INTELPllInvalid("vco out of range\n");
573         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
574          * connector, etc., rather than just a single range.
575          */
576         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
577                 INTELPllInvalid("dot out of range\n");
578
579         return true;
580 }
581
582 static bool
583 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
584                     int target, int refclk, intel_clock_t *match_clock,
585                     intel_clock_t *best_clock)
586 {
587         struct drm_device *dev = crtc->dev;
588         intel_clock_t clock;
589         int err = target;
590
591         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592                 /*
593                  * For LVDS just rely on its current settings for dual-channel.
594                  * We haven't figured out how to reliably set up different
595                  * single/dual channel state, if we even can.
596                  */
597                 if (intel_is_dual_link_lvds(dev))
598                         clock.p2 = limit->p2.p2_fast;
599                 else
600                         clock.p2 = limit->p2.p2_slow;
601         } else {
602                 if (target < limit->p2.dot_limit)
603                         clock.p2 = limit->p2.p2_slow;
604                 else
605                         clock.p2 = limit->p2.p2_fast;
606         }
607
608         memset(best_clock, 0, sizeof(*best_clock));
609
610         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
611              clock.m1++) {
612                 for (clock.m2 = limit->m2.min;
613                      clock.m2 <= limit->m2.max; clock.m2++) {
614                         if (clock.m2 >= clock.m1)
615                                 break;
616                         for (clock.n = limit->n.min;
617                              clock.n <= limit->n.max; clock.n++) {
618                                 for (clock.p1 = limit->p1.min;
619                                         clock.p1 <= limit->p1.max; clock.p1++) {
620                                         int this_err;
621
622                                         i9xx_clock(refclk, &clock);
623                                         if (!intel_PLL_is_valid(dev, limit,
624                                                                 &clock))
625                                                 continue;
626                                         if (match_clock &&
627                                             clock.p != match_clock->p)
628                                                 continue;
629
630                                         this_err = abs(clock.dot - target);
631                                         if (this_err < err) {
632                                                 *best_clock = clock;
633                                                 err = this_err;
634                                         }
635                                 }
636                         }
637                 }
638         }
639
640         return (err != target);
641 }
642
643 static bool
644 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
645                    int target, int refclk, intel_clock_t *match_clock,
646                    intel_clock_t *best_clock)
647 {
648         struct drm_device *dev = crtc->dev;
649         intel_clock_t clock;
650         int err = target;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 /*
654                  * For LVDS just rely on its current settings for dual-channel.
655                  * We haven't figured out how to reliably set up different
656                  * single/dual channel state, if we even can.
657                  */
658                 if (intel_is_dual_link_lvds(dev))
659                         clock.p2 = limit->p2.p2_fast;
660                 else
661                         clock.p2 = limit->p2.p2_slow;
662         } else {
663                 if (target < limit->p2.dot_limit)
664                         clock.p2 = limit->p2.p2_slow;
665                 else
666                         clock.p2 = limit->p2.p2_fast;
667         }
668
669         memset(best_clock, 0, sizeof(*best_clock));
670
671         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672              clock.m1++) {
673                 for (clock.m2 = limit->m2.min;
674                      clock.m2 <= limit->m2.max; clock.m2++) {
675                         for (clock.n = limit->n.min;
676                              clock.n <= limit->n.max; clock.n++) {
677                                 for (clock.p1 = limit->p1.min;
678                                         clock.p1 <= limit->p1.max; clock.p1++) {
679                                         int this_err;
680
681                                         pineview_clock(refclk, &clock);
682                                         if (!intel_PLL_is_valid(dev, limit,
683                                                                 &clock))
684                                                 continue;
685                                         if (match_clock &&
686                                             clock.p != match_clock->p)
687                                                 continue;
688
689                                         this_err = abs(clock.dot - target);
690                                         if (this_err < err) {
691                                                 *best_clock = clock;
692                                                 err = this_err;
693                                         }
694                                 }
695                         }
696                 }
697         }
698
699         return (err != target);
700 }
701
702 static bool
703 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
704                    int target, int refclk, intel_clock_t *match_clock,
705                    intel_clock_t *best_clock)
706 {
707         struct drm_device *dev = crtc->dev;
708         intel_clock_t clock;
709         int max_n;
710         bool found;
711         /* approximately equals target * 0.00585 */
712         int err_most = (target >> 8) + (target >> 9);
713         found = false;
714
715         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
716                 if (intel_is_dual_link_lvds(dev))
717                         clock.p2 = limit->p2.p2_fast;
718                 else
719                         clock.p2 = limit->p2.p2_slow;
720         } else {
721                 if (target < limit->p2.dot_limit)
722                         clock.p2 = limit->p2.p2_slow;
723                 else
724                         clock.p2 = limit->p2.p2_fast;
725         }
726
727         memset(best_clock, 0, sizeof(*best_clock));
728         max_n = limit->n.max;
729         /* based on hardware requirement, prefer smaller n to precision */
730         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
731                 /* based on hardware requirement, prefere larger m1,m2 */
732                 for (clock.m1 = limit->m1.max;
733                      clock.m1 >= limit->m1.min; clock.m1--) {
734                         for (clock.m2 = limit->m2.max;
735                              clock.m2 >= limit->m2.min; clock.m2--) {
736                                 for (clock.p1 = limit->p1.max;
737                                      clock.p1 >= limit->p1.min; clock.p1--) {
738                                         int this_err;
739
740                                         i9xx_clock(refclk, &clock);
741                                         if (!intel_PLL_is_valid(dev, limit,
742                                                                 &clock))
743                                                 continue;
744
745                                         this_err = abs(clock.dot - target);
746                                         if (this_err < err_most) {
747                                                 *best_clock = clock;
748                                                 err_most = this_err;
749                                                 max_n = clock.n;
750                                                 found = true;
751                                         }
752                                 }
753                         }
754                 }
755         }
756         return found;
757 }
758
759 static bool
760 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
761                    int target, int refclk, intel_clock_t *match_clock,
762                    intel_clock_t *best_clock)
763 {
764         struct drm_device *dev = crtc->dev;
765         intel_clock_t clock;
766         unsigned int bestppm = 1000000;
767         /* min update 19.2 MHz */
768         int max_n = min(limit->n.max, refclk / 19200);
769         bool found = false;
770
771         target *= 5; /* fast clock */
772
773         memset(best_clock, 0, sizeof(*best_clock));
774
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
778                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
779                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
780                                 clock.p = clock.p1 * clock.p2;
781                                 /* based on hardware requirement, prefer bigger m1,m2 values */
782                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
783                                         unsigned int ppm, diff;
784
785                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
786                                                                      refclk * clock.m1);
787
788                                         vlv_clock(refclk, &clock);
789
790                                         if (!intel_PLL_is_valid(dev, limit,
791                                                                 &clock))
792                                                 continue;
793
794                                         diff = abs(clock.dot - target);
795                                         ppm = div_u64(1000000ULL * diff, target);
796
797                                         if (ppm < 100 && clock.p > best_clock->p) {
798                                                 bestppm = 0;
799                                                 *best_clock = clock;
800                                                 found = true;
801                                         }
802
803                                         if (bestppm >= 10 && ppm < bestppm - 10) {
804                                                 bestppm = ppm;
805                                                 *best_clock = clock;
806                                                 found = true;
807                                         }
808                                 }
809                         }
810                 }
811         }
812
813         return found;
814 }
815
816 static bool
817 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
818                    int target, int refclk, intel_clock_t *match_clock,
819                    intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc->dev;
822         intel_clock_t clock;
823         uint64_t m2;
824         int found = false;
825
826         memset(best_clock, 0, sizeof(*best_clock));
827
828         /*
829          * Based on hardware doc, the n always set to 1, and m1 always
830          * set to 2.  If requires to support 200Mhz refclk, we need to
831          * revisit this because n may not 1 anymore.
832          */
833         clock.n = 1, clock.m1 = 2;
834         target *= 5;    /* fast clock */
835
836         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
837                 for (clock.p2 = limit->p2.p2_fast;
838                                 clock.p2 >= limit->p2.p2_slow;
839                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840
841                         clock.p = clock.p1 * clock.p2;
842
843                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
844                                         clock.n) << 22, refclk * clock.m1);
845
846                         if (m2 > INT_MAX/clock.m1)
847                                 continue;
848
849                         clock.m2 = m2;
850
851                         chv_clock(refclk, &clock);
852
853                         if (!intel_PLL_is_valid(dev, limit, &clock))
854                                 continue;
855
856                         /* based on hardware requirement, prefer bigger p
857                          */
858                         if (clock.p > best_clock->p) {
859                                 *best_clock = clock;
860                                 found = true;
861                         }
862                 }
863         }
864
865         return found;
866 }
867
868 bool intel_crtc_active(struct drm_crtc *crtc)
869 {
870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
871
872         /* Be paranoid as we can arrive here with only partial
873          * state retrieved from the hardware during setup.
874          *
875          * We can ditch the adjusted_mode.crtc_clock check as soon
876          * as Haswell has gained clock readout/fastboot support.
877          *
878          * We can ditch the crtc->primary->fb check as soon as we can
879          * properly reconstruct framebuffers.
880          */
881         return intel_crtc->active && crtc->primary->fb &&
882                 intel_crtc->config.adjusted_mode.crtc_clock;
883 }
884
885 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886                                              enum pipe pipe)
887 {
888         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891         return intel_crtc->config.cpu_transcoder;
892 }
893
894 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
895 {
896         struct drm_i915_private *dev_priv = dev->dev_private;
897         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
898
899         frame = I915_READ(frame_reg);
900
901         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
902                 WARN(1, "vblank wait timed out\n");
903 }
904
905 /**
906  * intel_wait_for_vblank - wait for vblank on a given pipe
907  * @dev: drm device
908  * @pipe: pipe to wait for
909  *
910  * Wait for vblank to occur on a given pipe.  Needed for various bits of
911  * mode setting code.
912  */
913 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
914 {
915         struct drm_i915_private *dev_priv = dev->dev_private;
916         int pipestat_reg = PIPESTAT(pipe);
917
918         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
919                 g4x_wait_for_vblank(dev, pipe);
920                 return;
921         }
922
923         /* Clear existing vblank status. Note this will clear any other
924          * sticky status fields as well.
925          *
926          * This races with i915_driver_irq_handler() with the result
927          * that either function could miss a vblank event.  Here it is not
928          * fatal, as we will either wait upon the next vblank interrupt or
929          * timeout.  Generally speaking intel_wait_for_vblank() is only
930          * called during modeset at which time the GPU should be idle and
931          * should *not* be performing page flips and thus not waiting on
932          * vblanks...
933          * Currently, the result of us stealing a vblank from the irq
934          * handler is that a single frame will be skipped during swapbuffers.
935          */
936         I915_WRITE(pipestat_reg,
937                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
939         /* Wait for vblank interrupt bit to set */
940         if (wait_for(I915_READ(pipestat_reg) &
941                      PIPE_VBLANK_INTERRUPT_STATUS,
942                      50))
943                 DRM_DEBUG_KMS("vblank wait timed out\n");
944 }
945
946 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947 {
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         u32 reg = PIPEDSL(pipe);
950         u32 line1, line2;
951         u32 line_mask;
952
953         if (IS_GEN2(dev))
954                 line_mask = DSL_LINEMASK_GEN2;
955         else
956                 line_mask = DSL_LINEMASK_GEN3;
957
958         line1 = I915_READ(reg) & line_mask;
959         mdelay(5);
960         line2 = I915_READ(reg) & line_mask;
961
962         return line1 == line2;
963 }
964
965 /*
966  * intel_wait_for_pipe_off - wait for pipe to turn off
967  * @dev: drm device
968  * @pipe: pipe to wait for
969  *
970  * After disabling a pipe, we can't wait for vblank in the usual way,
971  * spinning on the vblank interrupt status bit, since we won't actually
972  * see an interrupt when the pipe is disabled.
973  *
974  * On Gen4 and above:
975  *   wait for the pipe register state bit to turn off
976  *
977  * Otherwise:
978  *   wait for the display line value to settle (it usually
979  *   ends up stopping at the start of the next frame).
980  *
981  */
982 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
983 {
984         struct drm_i915_private *dev_priv = dev->dev_private;
985         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
986                                                                       pipe);
987
988         if (INTEL_INFO(dev)->gen >= 4) {
989                 int reg = PIPECONF(cpu_transcoder);
990
991                 /* Wait for the Pipe State to go off */
992                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993                              100))
994                         WARN(1, "pipe_off wait timed out\n");
995         } else {
996                 /* Wait for the display line to settle */
997                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
998                         WARN(1, "pipe_off wait timed out\n");
999         }
1000 }
1001
1002 /*
1003  * ibx_digital_port_connected - is the specified port connected?
1004  * @dev_priv: i915 private structure
1005  * @port: the port to test
1006  *
1007  * Returns true if @port is connected, false otherwise.
1008  */
1009 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010                                 struct intel_digital_port *port)
1011 {
1012         u32 bit;
1013
1014         if (HAS_PCH_IBX(dev_priv->dev)) {
1015                 switch (port->port) {
1016                 case PORT_B:
1017                         bit = SDE_PORTB_HOTPLUG;
1018                         break;
1019                 case PORT_C:
1020                         bit = SDE_PORTC_HOTPLUG;
1021                         break;
1022                 case PORT_D:
1023                         bit = SDE_PORTD_HOTPLUG;
1024                         break;
1025                 default:
1026                         return true;
1027                 }
1028         } else {
1029                 switch (port->port) {
1030                 case PORT_B:
1031                         bit = SDE_PORTB_HOTPLUG_CPT;
1032                         break;
1033                 case PORT_C:
1034                         bit = SDE_PORTC_HOTPLUG_CPT;
1035                         break;
1036                 case PORT_D:
1037                         bit = SDE_PORTD_HOTPLUG_CPT;
1038                         break;
1039                 default:
1040                         return true;
1041                 }
1042         }
1043
1044         return I915_READ(SDEISR) & bit;
1045 }
1046
1047 static const char *state_string(bool enabled)
1048 {
1049         return enabled ? "on" : "off";
1050 }
1051
1052 /* Only for pre-ILK configs */
1053 void assert_pll(struct drm_i915_private *dev_priv,
1054                 enum pipe pipe, bool state)
1055 {
1056         int reg;
1057         u32 val;
1058         bool cur_state;
1059
1060         reg = DPLL(pipe);
1061         val = I915_READ(reg);
1062         cur_state = !!(val & DPLL_VCO_ENABLE);
1063         WARN(cur_state != state,
1064              "PLL state assertion failure (expected %s, current %s)\n",
1065              state_string(state), state_string(cur_state));
1066 }
1067
1068 /* XXX: the dsi pll is shared between MIPI DSI ports */
1069 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070 {
1071         u32 val;
1072         bool cur_state;
1073
1074         mutex_lock(&dev_priv->dpio_lock);
1075         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076         mutex_unlock(&dev_priv->dpio_lock);
1077
1078         cur_state = val & DSI_PLL_VCO_EN;
1079         WARN(cur_state != state,
1080              "DSI PLL state assertion failure (expected %s, current %s)\n",
1081              state_string(state), state_string(cur_state));
1082 }
1083 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
1086 struct intel_shared_dpll *
1087 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088 {
1089         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
1091         if (crtc->config.shared_dpll < 0)
1092                 return NULL;
1093
1094         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1095 }
1096
1097 /* For ILK+ */
1098 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099                         struct intel_shared_dpll *pll,
1100                         bool state)
1101 {
1102         bool cur_state;
1103         struct intel_dpll_hw_state hw_state;
1104
1105         if (WARN (!pll,
1106                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1107                 return;
1108
1109         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1110         WARN(cur_state != state,
1111              "%s assertion failure (expected %s, current %s)\n",
1112              pll->name, state_string(state), state_string(cur_state));
1113 }
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178                        enum pipe pipe, bool state)
1179 {
1180         int reg;
1181         u32 val;
1182         bool cur_state;
1183
1184         reg = FDI_RX_CTL(pipe);
1185         val = I915_READ(reg);
1186         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187         WARN(cur_state != state,
1188              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189              state_string(state), state_string(cur_state));
1190 }
1191
1192 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193                                   enum pipe pipe)
1194 {
1195         int pp_reg, lvds_reg;
1196         u32 val;
1197         enum pipe panel_pipe = PIPE_A;
1198         bool locked = true;
1199
1200         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201                 pp_reg = PCH_PP_CONTROL;
1202                 lvds_reg = PCH_LVDS;
1203         } else {
1204                 pp_reg = PP_CONTROL;
1205                 lvds_reg = LVDS;
1206         }
1207
1208         val = I915_READ(pp_reg);
1209         if (!(val & PANEL_POWER_ON) ||
1210             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211                 locked = false;
1212
1213         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214                 panel_pipe = PIPE_B;
1215
1216         WARN(panel_pipe == pipe && locked,
1217              "panel assertion failure, pipe %c regs locked\n",
1218              pipe_name(pipe));
1219 }
1220
1221 static void assert_cursor(struct drm_i915_private *dev_priv,
1222                           enum pipe pipe, bool state)
1223 {
1224         struct drm_device *dev = dev_priv->dev;
1225         bool cur_state;
1226
1227         if (IS_845G(dev) || IS_I865G(dev))
1228                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1229         else
1230                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1231
1232         WARN(cur_state != state,
1233              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1234              pipe_name(pipe), state_string(state), state_string(cur_state));
1235 }
1236 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1237 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1238
1239 void assert_pipe(struct drm_i915_private *dev_priv,
1240                  enum pipe pipe, bool state)
1241 {
1242         int reg;
1243         u32 val;
1244         bool cur_state;
1245         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246                                                                       pipe);
1247
1248         /* if we need the pipe A quirk it must be always on */
1249         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1250                 state = true;
1251
1252         if (!intel_display_power_enabled(dev_priv,
1253                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1254                 cur_state = false;
1255         } else {
1256                 reg = PIPECONF(cpu_transcoder);
1257                 val = I915_READ(reg);
1258                 cur_state = !!(val & PIPECONF_ENABLE);
1259         }
1260
1261         WARN(cur_state != state,
1262              "pipe %c assertion failure (expected %s, current %s)\n",
1263              pipe_name(pipe), state_string(state), state_string(cur_state));
1264 }
1265
1266 static void assert_plane(struct drm_i915_private *dev_priv,
1267                          enum plane plane, bool state)
1268 {
1269         int reg;
1270         u32 val;
1271         bool cur_state;
1272
1273         reg = DSPCNTR(plane);
1274         val = I915_READ(reg);
1275         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1276         WARN(cur_state != state,
1277              "plane %c assertion failure (expected %s, current %s)\n",
1278              plane_name(plane), state_string(state), state_string(cur_state));
1279 }
1280
1281 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1282 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1283
1284 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1285                                    enum pipe pipe)
1286 {
1287         struct drm_device *dev = dev_priv->dev;
1288         int reg, i;
1289         u32 val;
1290         int cur_pipe;
1291
1292         /* Primary planes are fixed to pipes on gen4+ */
1293         if (INTEL_INFO(dev)->gen >= 4) {
1294                 reg = DSPCNTR(pipe);
1295                 val = I915_READ(reg);
1296                 WARN(val & DISPLAY_PLANE_ENABLE,
1297                      "plane %c assertion failure, should be disabled but not\n",
1298                      plane_name(pipe));
1299                 return;
1300         }
1301
1302         /* Need to check both planes against the pipe */
1303         for_each_pipe(i) {
1304                 reg = DSPCNTR(i);
1305                 val = I915_READ(reg);
1306                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1307                         DISPPLANE_SEL_PIPE_SHIFT;
1308                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1309                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1310                      plane_name(i), pipe_name(pipe));
1311         }
1312 }
1313
1314 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1315                                     enum pipe pipe)
1316 {
1317         struct drm_device *dev = dev_priv->dev;
1318         int reg, sprite;
1319         u32 val;
1320
1321         if (IS_VALLEYVIEW(dev)) {
1322                 for_each_sprite(pipe, sprite) {
1323                         reg = SPCNTR(pipe, sprite);
1324                         val = I915_READ(reg);
1325                         WARN(val & SP_ENABLE,
1326                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1327                              sprite_name(pipe, sprite), pipe_name(pipe));
1328                 }
1329         } else if (INTEL_INFO(dev)->gen >= 7) {
1330                 reg = SPRCTL(pipe);
1331                 val = I915_READ(reg);
1332                 WARN(val & SPRITE_ENABLE,
1333                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1334                      plane_name(pipe), pipe_name(pipe));
1335         } else if (INTEL_INFO(dev)->gen >= 5) {
1336                 reg = DVSCNTR(pipe);
1337                 val = I915_READ(reg);
1338                 WARN(val & DVS_ENABLE,
1339                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1340                      plane_name(pipe), pipe_name(pipe));
1341         }
1342 }
1343
1344 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1345 {
1346         u32 val;
1347         bool enabled;
1348
1349         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1350
1351         val = I915_READ(PCH_DREF_CONTROL);
1352         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1353                             DREF_SUPERSPREAD_SOURCE_MASK));
1354         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1355 }
1356
1357 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1358                                            enum pipe pipe)
1359 {
1360         int reg;
1361         u32 val;
1362         bool enabled;
1363
1364         reg = PCH_TRANSCONF(pipe);
1365         val = I915_READ(reg);
1366         enabled = !!(val & TRANS_ENABLE);
1367         WARN(enabled,
1368              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369              pipe_name(pipe));
1370 }
1371
1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373                             enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375         if ((val & DP_PORT_EN) == 0)
1376                 return false;
1377
1378         if (HAS_PCH_CPT(dev_priv->dev)) {
1379                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1380                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1381                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1382                         return false;
1383         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1384                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1385                         return false;
1386         } else {
1387                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1388                         return false;
1389         }
1390         return true;
1391 }
1392
1393 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1394                               enum pipe pipe, u32 val)
1395 {
1396         if ((val & SDVO_ENABLE) == 0)
1397                 return false;
1398
1399         if (HAS_PCH_CPT(dev_priv->dev)) {
1400                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1401                         return false;
1402         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1403                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1404                         return false;
1405         } else {
1406                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1407                         return false;
1408         }
1409         return true;
1410 }
1411
1412 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1413                               enum pipe pipe, u32 val)
1414 {
1415         if ((val & LVDS_PORT_EN) == 0)
1416                 return false;
1417
1418         if (HAS_PCH_CPT(dev_priv->dev)) {
1419                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1420                         return false;
1421         } else {
1422                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1423                         return false;
1424         }
1425         return true;
1426 }
1427
1428 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1429                               enum pipe pipe, u32 val)
1430 {
1431         if ((val & ADPA_DAC_ENABLE) == 0)
1432                 return false;
1433         if (HAS_PCH_CPT(dev_priv->dev)) {
1434                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1435                         return false;
1436         } else {
1437                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1438                         return false;
1439         }
1440         return true;
1441 }
1442
1443 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1444                                    enum pipe pipe, int reg, u32 port_sel)
1445 {
1446         u32 val = I915_READ(reg);
1447         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449              reg, pipe_name(pipe));
1450
1451         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1452              && (val & DP_PIPEB_SELECT),
1453              "IBX PCH dp port still using transcoder B\n");
1454 }
1455
1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457                                      enum pipe pipe, int reg)
1458 {
1459         u32 val = I915_READ(reg);
1460         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462              reg, pipe_name(pipe));
1463
1464         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1465              && (val & SDVO_PIPE_B_SELECT),
1466              "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468
1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470                                       enum pipe pipe)
1471 {
1472         int reg;
1473         u32 val;
1474
1475         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1476         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1477         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1478
1479         reg = PCH_ADPA;
1480         val = I915_READ(reg);
1481         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1482              "PCH VGA enabled on transcoder %c, should be disabled\n",
1483              pipe_name(pipe));
1484
1485         reg = PCH_LVDS;
1486         val = I915_READ(reg);
1487         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1488              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1489              pipe_name(pipe));
1490
1491         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1492         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1493         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1494 }
1495
1496 static void intel_init_dpio(struct drm_device *dev)
1497 {
1498         struct drm_i915_private *dev_priv = dev->dev_private;
1499
1500         if (!IS_VALLEYVIEW(dev))
1501                 return;
1502
1503         /*
1504          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1505          * CHV x1 PHY (DP/HDMI D)
1506          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1507          */
1508         if (IS_CHERRYVIEW(dev)) {
1509                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1510                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1511         } else {
1512                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1513         }
1514 }
1515
1516 static void intel_reset_dpio(struct drm_device *dev)
1517 {
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520         if (IS_CHERRYVIEW(dev)) {
1521                 enum dpio_phy phy;
1522                 u32 val;
1523
1524                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1525                         /* Poll for phypwrgood signal */
1526                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1527                                                 PHY_POWERGOOD(phy), 1))
1528                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1529
1530                         /*
1531                          * Deassert common lane reset for PHY.
1532                          *
1533                          * This should only be done on init and resume from S3
1534                          * with both PLLs disabled, or we risk losing DPIO and
1535                          * PLL synchronization.
1536                          */
1537                         val = I915_READ(DISPLAY_PHY_CONTROL);
1538                         I915_WRITE(DISPLAY_PHY_CONTROL,
1539                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1540                 }
1541         }
1542 }
1543
1544 static void vlv_enable_pll(struct intel_crtc *crtc)
1545 {
1546         struct drm_device *dev = crtc->base.dev;
1547         struct drm_i915_private *dev_priv = dev->dev_private;
1548         int reg = DPLL(crtc->pipe);
1549         u32 dpll = crtc->config.dpll_hw_state.dpll;
1550
1551         assert_pipe_disabled(dev_priv, crtc->pipe);
1552
1553         /* No really, not for ILK+ */
1554         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1555
1556         /* PLL is protected by panel, make sure we can write it */
1557         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1558                 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560         I915_WRITE(reg, dpll);
1561         POSTING_READ(reg);
1562         udelay(150);
1563
1564         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1565                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1566
1567         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1568         POSTING_READ(DPLL_MD(crtc->pipe));
1569
1570         /* We do this three times for luck */
1571         I915_WRITE(reg, dpll);
1572         POSTING_READ(reg);
1573         udelay(150); /* wait for warmup */
1574         I915_WRITE(reg, dpll);
1575         POSTING_READ(reg);
1576         udelay(150); /* wait for warmup */
1577         I915_WRITE(reg, dpll);
1578         POSTING_READ(reg);
1579         udelay(150); /* wait for warmup */
1580 }
1581
1582 static void chv_enable_pll(struct intel_crtc *crtc)
1583 {
1584         struct drm_device *dev = crtc->base.dev;
1585         struct drm_i915_private *dev_priv = dev->dev_private;
1586         int pipe = crtc->pipe;
1587         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1588         u32 tmp;
1589
1590         assert_pipe_disabled(dev_priv, crtc->pipe);
1591
1592         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1593
1594         mutex_lock(&dev_priv->dpio_lock);
1595
1596         /* Enable back the 10bit clock to display controller */
1597         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1598         tmp |= DPIO_DCLKP_EN;
1599         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1600
1601         /*
1602          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1603          */
1604         udelay(1);
1605
1606         /* Enable PLL */
1607         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1608
1609         /* Check PLL is locked */
1610         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1611                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1612
1613         /* not sure when this should be written */
1614         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1615         POSTING_READ(DPLL_MD(pipe));
1616
1617         mutex_unlock(&dev_priv->dpio_lock);
1618 }
1619
1620 static void i9xx_enable_pll(struct intel_crtc *crtc)
1621 {
1622         struct drm_device *dev = crtc->base.dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         int reg = DPLL(crtc->pipe);
1625         u32 dpll = crtc->config.dpll_hw_state.dpll;
1626
1627         assert_pipe_disabled(dev_priv, crtc->pipe);
1628
1629         /* No really, not for ILK+ */
1630         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1631
1632         /* PLL is protected by panel, make sure we can write it */
1633         if (IS_MOBILE(dev) && !IS_I830(dev))
1634                 assert_panel_unlocked(dev_priv, crtc->pipe);
1635
1636         I915_WRITE(reg, dpll);
1637
1638         /* Wait for the clocks to stabilize. */
1639         POSTING_READ(reg);
1640         udelay(150);
1641
1642         if (INTEL_INFO(dev)->gen >= 4) {
1643                 I915_WRITE(DPLL_MD(crtc->pipe),
1644                            crtc->config.dpll_hw_state.dpll_md);
1645         } else {
1646                 /* The pixel multiplier can only be updated once the
1647                  * DPLL is enabled and the clocks are stable.
1648                  *
1649                  * So write it again.
1650                  */
1651                 I915_WRITE(reg, dpll);
1652         }
1653
1654         /* We do this three times for luck */
1655         I915_WRITE(reg, dpll);
1656         POSTING_READ(reg);
1657         udelay(150); /* wait for warmup */
1658         I915_WRITE(reg, dpll);
1659         POSTING_READ(reg);
1660         udelay(150); /* wait for warmup */
1661         I915_WRITE(reg, dpll);
1662         POSTING_READ(reg);
1663         udelay(150); /* wait for warmup */
1664 }
1665
1666 /**
1667  * i9xx_disable_pll - disable a PLL
1668  * @dev_priv: i915 private structure
1669  * @pipe: pipe PLL to disable
1670  *
1671  * Disable the PLL for @pipe, making sure the pipe is off first.
1672  *
1673  * Note!  This is for pre-ILK only.
1674  */
1675 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677         /* Don't disable pipe A or pipe A PLLs if needed */
1678         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1679                 return;
1680
1681         /* Make sure the pipe isn't still relying on us */
1682         assert_pipe_disabled(dev_priv, pipe);
1683
1684         I915_WRITE(DPLL(pipe), 0);
1685         POSTING_READ(DPLL(pipe));
1686 }
1687
1688 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1689 {
1690         u32 val = 0;
1691
1692         /* Make sure the pipe isn't still relying on us */
1693         assert_pipe_disabled(dev_priv, pipe);
1694
1695         /*
1696          * Leave integrated clock source and reference clock enabled for pipe B.
1697          * The latter is needed for VGA hotplug / manual detection.
1698          */
1699         if (pipe == PIPE_B)
1700                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1701         I915_WRITE(DPLL(pipe), val);
1702         POSTING_READ(DPLL(pipe));
1703
1704 }
1705
1706 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1707 {
1708         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1709         u32 val;
1710
1711         /* Make sure the pipe isn't still relying on us */
1712         assert_pipe_disabled(dev_priv, pipe);
1713
1714         /* Set PLL en = 0 */
1715         val = DPLL_SSC_REF_CLOCK_CHV;
1716         if (pipe != PIPE_A)
1717                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1718         I915_WRITE(DPLL(pipe), val);
1719         POSTING_READ(DPLL(pipe));
1720
1721         mutex_lock(&dev_priv->dpio_lock);
1722
1723         /* Disable 10bit clock to display controller */
1724         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1725         val &= ~DPIO_DCLKP_EN;
1726         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1727
1728         /* disable left/right clock distribution */
1729         if (pipe != PIPE_B) {
1730                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1731                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1732                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1733         } else {
1734                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1735                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1736                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1737         }
1738
1739         mutex_unlock(&dev_priv->dpio_lock);
1740 }
1741
1742 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1743                 struct intel_digital_port *dport)
1744 {
1745         u32 port_mask;
1746         int dpll_reg;
1747
1748         switch (dport->port) {
1749         case PORT_B:
1750                 port_mask = DPLL_PORTB_READY_MASK;
1751                 dpll_reg = DPLL(0);
1752                 break;
1753         case PORT_C:
1754                 port_mask = DPLL_PORTC_READY_MASK;
1755                 dpll_reg = DPLL(0);
1756                 break;
1757         case PORT_D:
1758                 port_mask = DPLL_PORTD_READY_MASK;
1759                 dpll_reg = DPIO_PHY_STATUS;
1760                 break;
1761         default:
1762                 BUG();
1763         }
1764
1765         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1766                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1767                      port_name(dport->port), I915_READ(dpll_reg));
1768 }
1769
1770 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1771 {
1772         struct drm_device *dev = crtc->base.dev;
1773         struct drm_i915_private *dev_priv = dev->dev_private;
1774         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1775
1776         if (WARN_ON(pll == NULL))
1777                 return;
1778
1779         WARN_ON(!pll->refcount);
1780         if (pll->active == 0) {
1781                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1782                 WARN_ON(pll->on);
1783                 assert_shared_dpll_disabled(dev_priv, pll);
1784
1785                 pll->mode_set(dev_priv, pll);
1786         }
1787 }
1788
1789 /**
1790  * intel_enable_shared_dpll - enable PCH PLL
1791  * @dev_priv: i915 private structure
1792  * @pipe: pipe PLL to enable
1793  *
1794  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1795  * drives the transcoder clock.
1796  */
1797 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1798 {
1799         struct drm_device *dev = crtc->base.dev;
1800         struct drm_i915_private *dev_priv = dev->dev_private;
1801         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1802
1803         if (WARN_ON(pll == NULL))
1804                 return;
1805
1806         if (WARN_ON(pll->refcount == 0))
1807                 return;
1808
1809         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1810                       pll->name, pll->active, pll->on,
1811                       crtc->base.base.id);
1812
1813         if (pll->active++) {
1814                 WARN_ON(!pll->on);
1815                 assert_shared_dpll_enabled(dev_priv, pll);
1816                 return;
1817         }
1818         WARN_ON(pll->on);
1819
1820         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1821
1822         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1823         pll->enable(dev_priv, pll);
1824         pll->on = true;
1825 }
1826
1827 void intel_disable_shared_dpll(struct intel_crtc *crtc)
1828 {
1829         struct drm_device *dev = crtc->base.dev;
1830         struct drm_i915_private *dev_priv = dev->dev_private;
1831         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1832
1833         /* PCH only available on ILK+ */
1834         BUG_ON(INTEL_INFO(dev)->gen < 5);
1835         if (WARN_ON(pll == NULL))
1836                return;
1837
1838         if (WARN_ON(pll->refcount == 0))
1839                 return;
1840
1841         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1842                       pll->name, pll->active, pll->on,
1843                       crtc->base.base.id);
1844
1845         if (WARN_ON(pll->active == 0)) {
1846                 assert_shared_dpll_disabled(dev_priv, pll);
1847                 return;
1848         }
1849
1850         assert_shared_dpll_enabled(dev_priv, pll);
1851         WARN_ON(!pll->on);
1852         if (--pll->active)
1853                 return;
1854
1855         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1856         pll->disable(dev_priv, pll);
1857         pll->on = false;
1858
1859         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1860 }
1861
1862 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1863                                            enum pipe pipe)
1864 {
1865         struct drm_device *dev = dev_priv->dev;
1866         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1867         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1868         uint32_t reg, val, pipeconf_val;
1869
1870         /* PCH only available on ILK+ */
1871         BUG_ON(INTEL_INFO(dev)->gen < 5);
1872
1873         /* Make sure PCH DPLL is enabled */
1874         assert_shared_dpll_enabled(dev_priv,
1875                                    intel_crtc_to_shared_dpll(intel_crtc));
1876
1877         /* FDI must be feeding us bits for PCH ports */
1878         assert_fdi_tx_enabled(dev_priv, pipe);
1879         assert_fdi_rx_enabled(dev_priv, pipe);
1880
1881         if (HAS_PCH_CPT(dev)) {
1882                 /* Workaround: Set the timing override bit before enabling the
1883                  * pch transcoder. */
1884                 reg = TRANS_CHICKEN2(pipe);
1885                 val = I915_READ(reg);
1886                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1887                 I915_WRITE(reg, val);
1888         }
1889
1890         reg = PCH_TRANSCONF(pipe);
1891         val = I915_READ(reg);
1892         pipeconf_val = I915_READ(PIPECONF(pipe));
1893
1894         if (HAS_PCH_IBX(dev_priv->dev)) {
1895                 /*
1896                  * make the BPC in transcoder be consistent with
1897                  * that in pipeconf reg.
1898                  */
1899                 val &= ~PIPECONF_BPC_MASK;
1900                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1901         }
1902
1903         val &= ~TRANS_INTERLACE_MASK;
1904         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1905                 if (HAS_PCH_IBX(dev_priv->dev) &&
1906                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1907                         val |= TRANS_LEGACY_INTERLACED_ILK;
1908                 else
1909                         val |= TRANS_INTERLACED;
1910         else
1911                 val |= TRANS_PROGRESSIVE;
1912
1913         I915_WRITE(reg, val | TRANS_ENABLE);
1914         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1915                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1916 }
1917
1918 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1919                                       enum transcoder cpu_transcoder)
1920 {
1921         u32 val, pipeconf_val;
1922
1923         /* PCH only available on ILK+ */
1924         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1925
1926         /* FDI must be feeding us bits for PCH ports */
1927         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1928         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1929
1930         /* Workaround: set timing override bit. */
1931         val = I915_READ(_TRANSA_CHICKEN2);
1932         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1933         I915_WRITE(_TRANSA_CHICKEN2, val);
1934
1935         val = TRANS_ENABLE;
1936         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1937
1938         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1939             PIPECONF_INTERLACED_ILK)
1940                 val |= TRANS_INTERLACED;
1941         else
1942                 val |= TRANS_PROGRESSIVE;
1943
1944         I915_WRITE(LPT_TRANSCONF, val);
1945         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1946                 DRM_ERROR("Failed to enable PCH transcoder\n");
1947 }
1948
1949 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1950                                             enum pipe pipe)
1951 {
1952         struct drm_device *dev = dev_priv->dev;
1953         uint32_t reg, val;
1954
1955         /* FDI relies on the transcoder */
1956         assert_fdi_tx_disabled(dev_priv, pipe);
1957         assert_fdi_rx_disabled(dev_priv, pipe);
1958
1959         /* Ports must be off as well */
1960         assert_pch_ports_disabled(dev_priv, pipe);
1961
1962         reg = PCH_TRANSCONF(pipe);
1963         val = I915_READ(reg);
1964         val &= ~TRANS_ENABLE;
1965         I915_WRITE(reg, val);
1966         /* wait for PCH transcoder off, transcoder state */
1967         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1968                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1969
1970         if (!HAS_PCH_IBX(dev)) {
1971                 /* Workaround: Clear the timing override chicken bit again. */
1972                 reg = TRANS_CHICKEN2(pipe);
1973                 val = I915_READ(reg);
1974                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1975                 I915_WRITE(reg, val);
1976         }
1977 }
1978
1979 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1980 {
1981         u32 val;
1982
1983         val = I915_READ(LPT_TRANSCONF);
1984         val &= ~TRANS_ENABLE;
1985         I915_WRITE(LPT_TRANSCONF, val);
1986         /* wait for PCH transcoder off, transcoder state */
1987         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1988                 DRM_ERROR("Failed to disable PCH transcoder\n");
1989
1990         /* Workaround: clear timing override bit. */
1991         val = I915_READ(_TRANSA_CHICKEN2);
1992         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1993         I915_WRITE(_TRANSA_CHICKEN2, val);
1994 }
1995
1996 /**
1997  * intel_enable_pipe - enable a pipe, asserting requirements
1998  * @crtc: crtc responsible for the pipe
1999  *
2000  * Enable @crtc's pipe, making sure that various hardware specific requirements
2001  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2002  */
2003 static void intel_enable_pipe(struct intel_crtc *crtc)
2004 {
2005         struct drm_device *dev = crtc->base.dev;
2006         struct drm_i915_private *dev_priv = dev->dev_private;
2007         enum pipe pipe = crtc->pipe;
2008         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2009                                                                       pipe);
2010         enum pipe pch_transcoder;
2011         int reg;
2012         u32 val;
2013
2014         assert_planes_disabled(dev_priv, pipe);
2015         assert_cursor_disabled(dev_priv, pipe);
2016         assert_sprites_disabled(dev_priv, pipe);
2017
2018         if (HAS_PCH_LPT(dev_priv->dev))
2019                 pch_transcoder = TRANSCODER_A;
2020         else
2021                 pch_transcoder = pipe;
2022
2023         /*
2024          * A pipe without a PLL won't actually be able to drive bits from
2025          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2026          * need the check.
2027          */
2028         if (!HAS_PCH_SPLIT(dev_priv->dev))
2029                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2030                         assert_dsi_pll_enabled(dev_priv);
2031                 else
2032                         assert_pll_enabled(dev_priv, pipe);
2033         else {
2034                 if (crtc->config.has_pch_encoder) {
2035                         /* if driving the PCH, we need FDI enabled */
2036                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2037                         assert_fdi_tx_pll_enabled(dev_priv,
2038                                                   (enum pipe) cpu_transcoder);
2039                 }
2040                 /* FIXME: assert CPU port conditions for SNB+ */
2041         }
2042
2043         reg = PIPECONF(cpu_transcoder);
2044         val = I915_READ(reg);
2045         if (val & PIPECONF_ENABLE) {
2046                 WARN_ON(!(pipe == PIPE_A &&
2047                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
2048                 return;
2049         }
2050
2051         I915_WRITE(reg, val | PIPECONF_ENABLE);
2052         POSTING_READ(reg);
2053 }
2054
2055 /**
2056  * intel_disable_pipe - disable a pipe, asserting requirements
2057  * @dev_priv: i915 private structure
2058  * @pipe: pipe to disable
2059  *
2060  * Disable @pipe, making sure that various hardware specific requirements
2061  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2062  *
2063  * @pipe should be %PIPE_A or %PIPE_B.
2064  *
2065  * Will wait until the pipe has shut down before returning.
2066  */
2067 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2068                                enum pipe pipe)
2069 {
2070         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2071                                                                       pipe);
2072         int reg;
2073         u32 val;
2074
2075         /*
2076          * Make sure planes won't keep trying to pump pixels to us,
2077          * or we might hang the display.
2078          */
2079         assert_planes_disabled(dev_priv, pipe);
2080         assert_cursor_disabled(dev_priv, pipe);
2081         assert_sprites_disabled(dev_priv, pipe);
2082
2083         /* Don't disable pipe A or pipe A PLLs if needed */
2084         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2085                 return;
2086
2087         reg = PIPECONF(cpu_transcoder);
2088         val = I915_READ(reg);
2089         if ((val & PIPECONF_ENABLE) == 0)
2090                 return;
2091
2092         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2093         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2094 }
2095
2096 /*
2097  * Plane regs are double buffered, going from enabled->disabled needs a
2098  * trigger in order to latch.  The display address reg provides this.
2099  */
2100 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2101                                enum plane plane)
2102 {
2103         struct drm_device *dev = dev_priv->dev;
2104         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2105
2106         I915_WRITE(reg, I915_READ(reg));
2107         POSTING_READ(reg);
2108 }
2109
2110 /**
2111  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2112  * @dev_priv: i915 private structure
2113  * @plane: plane to enable
2114  * @pipe: pipe being fed
2115  *
2116  * Enable @plane on @pipe, making sure that @pipe is running first.
2117  */
2118 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2119                                           enum plane plane, enum pipe pipe)
2120 {
2121         struct drm_device *dev = dev_priv->dev;
2122         struct intel_crtc *intel_crtc =
2123                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2124         int reg;
2125         u32 val;
2126
2127         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2128         assert_pipe_enabled(dev_priv, pipe);
2129
2130         if (intel_crtc->primary_enabled)
2131                 return;
2132
2133         intel_crtc->primary_enabled = true;
2134
2135         reg = DSPCNTR(plane);
2136         val = I915_READ(reg);
2137         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2138
2139         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2140         intel_flush_primary_plane(dev_priv, plane);
2141
2142         /*
2143          * BDW signals flip done immediately if the plane
2144          * is disabled, even if the plane enable is already
2145          * armed to occur at the next vblank :(
2146          */
2147         if (IS_BROADWELL(dev))
2148                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2149 }
2150
2151 /**
2152  * intel_disable_primary_hw_plane - disable the primary hardware plane
2153  * @dev_priv: i915 private structure
2154  * @plane: plane to disable
2155  * @pipe: pipe consuming the data
2156  *
2157  * Disable @plane; should be an independent operation.
2158  */
2159 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2160                                            enum plane plane, enum pipe pipe)
2161 {
2162         struct intel_crtc *intel_crtc =
2163                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2164         int reg;
2165         u32 val;
2166
2167         if (!intel_crtc->primary_enabled)
2168                 return;
2169
2170         intel_crtc->primary_enabled = false;
2171
2172         reg = DSPCNTR(plane);
2173         val = I915_READ(reg);
2174         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2175
2176         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2177         intel_flush_primary_plane(dev_priv, plane);
2178 }
2179
2180 static bool need_vtd_wa(struct drm_device *dev)
2181 {
2182 #ifdef CONFIG_INTEL_IOMMU
2183         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2184                 return true;
2185 #endif
2186         return false;
2187 }
2188
2189 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2190 {
2191         int tile_height;
2192
2193         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2194         return ALIGN(height, tile_height);
2195 }
2196
2197 int
2198 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2199                            struct drm_i915_gem_object *obj,
2200                            struct intel_engine_cs *pipelined)
2201 {
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         u32 alignment;
2204         int ret;
2205
2206         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2207
2208         switch (obj->tiling_mode) {
2209         case I915_TILING_NONE:
2210                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2211                         alignment = 128 * 1024;
2212                 else if (INTEL_INFO(dev)->gen >= 4)
2213                         alignment = 4 * 1024;
2214                 else
2215                         alignment = 64 * 1024;
2216                 break;
2217         case I915_TILING_X:
2218                 /* pin() will align the object as required by fence */
2219                 alignment = 0;
2220                 break;
2221         case I915_TILING_Y:
2222                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2223                 return -EINVAL;
2224         default:
2225                 BUG();
2226         }
2227
2228         /* Note that the w/a also requires 64 PTE of padding following the
2229          * bo. We currently fill all unused PTE with the shadow page and so
2230          * we should always have valid PTE following the scanout preventing
2231          * the VT-d warning.
2232          */
2233         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2234                 alignment = 256 * 1024;
2235
2236         dev_priv->mm.interruptible = false;
2237         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2238         if (ret)
2239                 goto err_interruptible;
2240
2241         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2242          * fence, whereas 965+ only requires a fence if using
2243          * framebuffer compression.  For simplicity, we always install
2244          * a fence as the cost is not that onerous.
2245          */
2246         ret = i915_gem_object_get_fence(obj);
2247         if (ret)
2248                 goto err_unpin;
2249
2250         i915_gem_object_pin_fence(obj);
2251
2252         dev_priv->mm.interruptible = true;
2253         return 0;
2254
2255 err_unpin:
2256         i915_gem_object_unpin_from_display_plane(obj);
2257 err_interruptible:
2258         dev_priv->mm.interruptible = true;
2259         return ret;
2260 }
2261
2262 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2263 {
2264         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2265
2266         i915_gem_object_unpin_fence(obj);
2267         i915_gem_object_unpin_from_display_plane(obj);
2268 }
2269
2270 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2271  * is assumed to be a power-of-two. */
2272 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2273                                              unsigned int tiling_mode,
2274                                              unsigned int cpp,
2275                                              unsigned int pitch)
2276 {
2277         if (tiling_mode != I915_TILING_NONE) {
2278                 unsigned int tile_rows, tiles;
2279
2280                 tile_rows = *y / 8;
2281                 *y %= 8;
2282
2283                 tiles = *x / (512/cpp);
2284                 *x %= 512/cpp;
2285
2286                 return tile_rows * pitch * 8 + tiles * 4096;
2287         } else {
2288                 unsigned int offset;
2289
2290                 offset = *y * pitch + *x * cpp;
2291                 *y = 0;
2292                 *x = (offset & 4095) / cpp;
2293                 return offset & -4096;
2294         }
2295 }
2296
2297 int intel_format_to_fourcc(int format)
2298 {
2299         switch (format) {
2300         case DISPPLANE_8BPP:
2301                 return DRM_FORMAT_C8;
2302         case DISPPLANE_BGRX555:
2303                 return DRM_FORMAT_XRGB1555;
2304         case DISPPLANE_BGRX565:
2305                 return DRM_FORMAT_RGB565;
2306         default:
2307         case DISPPLANE_BGRX888:
2308                 return DRM_FORMAT_XRGB8888;
2309         case DISPPLANE_RGBX888:
2310                 return DRM_FORMAT_XBGR8888;
2311         case DISPPLANE_BGRX101010:
2312                 return DRM_FORMAT_XRGB2101010;
2313         case DISPPLANE_RGBX101010:
2314                 return DRM_FORMAT_XBGR2101010;
2315         }
2316 }
2317
2318 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2319                                   struct intel_plane_config *plane_config)
2320 {
2321         struct drm_device *dev = crtc->base.dev;
2322         struct drm_i915_gem_object *obj = NULL;
2323         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2324         u32 base = plane_config->base;
2325
2326         if (plane_config->size == 0)
2327                 return false;
2328
2329         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2330                                                              plane_config->size);
2331         if (!obj)
2332                 return false;
2333
2334         if (plane_config->tiled) {
2335                 obj->tiling_mode = I915_TILING_X;
2336                 obj->stride = crtc->base.primary->fb->pitches[0];
2337         }
2338
2339         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2340         mode_cmd.width = crtc->base.primary->fb->width;
2341         mode_cmd.height = crtc->base.primary->fb->height;
2342         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2343
2344         mutex_lock(&dev->struct_mutex);
2345
2346         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2347                                    &mode_cmd, obj)) {
2348                 DRM_DEBUG_KMS("intel fb init failed\n");
2349                 goto out_unref_obj;
2350         }
2351
2352         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2353         mutex_unlock(&dev->struct_mutex);
2354
2355         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2356         return true;
2357
2358 out_unref_obj:
2359         drm_gem_object_unreference(&obj->base);
2360         mutex_unlock(&dev->struct_mutex);
2361         return false;
2362 }
2363
2364 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2365                                  struct intel_plane_config *plane_config)
2366 {
2367         struct drm_device *dev = intel_crtc->base.dev;
2368         struct drm_crtc *c;
2369         struct intel_crtc *i;
2370         struct drm_i915_gem_object *obj;
2371
2372         if (!intel_crtc->base.primary->fb)
2373                 return;
2374
2375         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2376                 return;
2377
2378         kfree(intel_crtc->base.primary->fb);
2379         intel_crtc->base.primary->fb = NULL;
2380
2381         /*
2382          * Failed to alloc the obj, check to see if we should share
2383          * an fb with another CRTC instead
2384          */
2385         for_each_crtc(dev, c) {
2386                 i = to_intel_crtc(c);
2387
2388                 if (c == &intel_crtc->base)
2389                         continue;
2390
2391                 if (!i->active)
2392                         continue;
2393
2394                 obj = intel_fb_obj(c->primary->fb);
2395                 if (obj == NULL)
2396                         continue;
2397
2398                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2399                         drm_framebuffer_reference(c->primary->fb);
2400                         intel_crtc->base.primary->fb = c->primary->fb;
2401                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2402                         break;
2403                 }
2404         }
2405 }
2406
2407 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2408                                       struct drm_framebuffer *fb,
2409                                       int x, int y)
2410 {
2411         struct drm_device *dev = crtc->dev;
2412         struct drm_i915_private *dev_priv = dev->dev_private;
2413         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2414         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2415         int plane = intel_crtc->plane;
2416         unsigned long linear_offset;
2417         u32 dspcntr;
2418         u32 reg;
2419
2420         reg = DSPCNTR(plane);
2421         dspcntr = I915_READ(reg);
2422         /* Mask out pixel format bits in case we change it */
2423         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2424         switch (fb->pixel_format) {
2425         case DRM_FORMAT_C8:
2426                 dspcntr |= DISPPLANE_8BPP;
2427                 break;
2428         case DRM_FORMAT_XRGB1555:
2429         case DRM_FORMAT_ARGB1555:
2430                 dspcntr |= DISPPLANE_BGRX555;
2431                 break;
2432         case DRM_FORMAT_RGB565:
2433                 dspcntr |= DISPPLANE_BGRX565;
2434                 break;
2435         case DRM_FORMAT_XRGB8888:
2436         case DRM_FORMAT_ARGB8888:
2437                 dspcntr |= DISPPLANE_BGRX888;
2438                 break;
2439         case DRM_FORMAT_XBGR8888:
2440         case DRM_FORMAT_ABGR8888:
2441                 dspcntr |= DISPPLANE_RGBX888;
2442                 break;
2443         case DRM_FORMAT_XRGB2101010:
2444         case DRM_FORMAT_ARGB2101010:
2445                 dspcntr |= DISPPLANE_BGRX101010;
2446                 break;
2447         case DRM_FORMAT_XBGR2101010:
2448         case DRM_FORMAT_ABGR2101010:
2449                 dspcntr |= DISPPLANE_RGBX101010;
2450                 break;
2451         default:
2452                 BUG();
2453         }
2454
2455         if (INTEL_INFO(dev)->gen >= 4) {
2456                 if (obj->tiling_mode != I915_TILING_NONE)
2457                         dspcntr |= DISPPLANE_TILED;
2458                 else
2459                         dspcntr &= ~DISPPLANE_TILED;
2460         }
2461
2462         if (IS_G4X(dev))
2463                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2464
2465         I915_WRITE(reg, dspcntr);
2466
2467         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2468
2469         if (INTEL_INFO(dev)->gen >= 4) {
2470                 intel_crtc->dspaddr_offset =
2471                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2472                                                        fb->bits_per_pixel / 8,
2473                                                        fb->pitches[0]);
2474                 linear_offset -= intel_crtc->dspaddr_offset;
2475         } else {
2476                 intel_crtc->dspaddr_offset = linear_offset;
2477         }
2478
2479         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2480                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2481                       fb->pitches[0]);
2482         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2483         if (INTEL_INFO(dev)->gen >= 4) {
2484                 I915_WRITE(DSPSURF(plane),
2485                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2486                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2487                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2488         } else
2489                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2490         POSTING_READ(reg);
2491 }
2492
2493 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2494                                           struct drm_framebuffer *fb,
2495                                           int x, int y)
2496 {
2497         struct drm_device *dev = crtc->dev;
2498         struct drm_i915_private *dev_priv = dev->dev_private;
2499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2500         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2501         int plane = intel_crtc->plane;
2502         unsigned long linear_offset;
2503         u32 dspcntr;
2504         u32 reg;
2505
2506         reg = DSPCNTR(plane);
2507         dspcntr = I915_READ(reg);
2508         /* Mask out pixel format bits in case we change it */
2509         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2510         switch (fb->pixel_format) {
2511         case DRM_FORMAT_C8:
2512                 dspcntr |= DISPPLANE_8BPP;
2513                 break;
2514         case DRM_FORMAT_RGB565:
2515                 dspcntr |= DISPPLANE_BGRX565;
2516                 break;
2517         case DRM_FORMAT_XRGB8888:
2518         case DRM_FORMAT_ARGB8888:
2519                 dspcntr |= DISPPLANE_BGRX888;
2520                 break;
2521         case DRM_FORMAT_XBGR8888:
2522         case DRM_FORMAT_ABGR8888:
2523                 dspcntr |= DISPPLANE_RGBX888;
2524                 break;
2525         case DRM_FORMAT_XRGB2101010:
2526         case DRM_FORMAT_ARGB2101010:
2527                 dspcntr |= DISPPLANE_BGRX101010;
2528                 break;
2529         case DRM_FORMAT_XBGR2101010:
2530         case DRM_FORMAT_ABGR2101010:
2531                 dspcntr |= DISPPLANE_RGBX101010;
2532                 break;
2533         default:
2534                 BUG();
2535         }
2536
2537         if (obj->tiling_mode != I915_TILING_NONE)
2538                 dspcntr |= DISPPLANE_TILED;
2539         else
2540                 dspcntr &= ~DISPPLANE_TILED;
2541
2542         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2543                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2544         else
2545                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2546
2547         I915_WRITE(reg, dspcntr);
2548
2549         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2550         intel_crtc->dspaddr_offset =
2551                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2552                                                fb->bits_per_pixel / 8,
2553                                                fb->pitches[0]);
2554         linear_offset -= intel_crtc->dspaddr_offset;
2555
2556         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2557                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2558                       fb->pitches[0]);
2559         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2560         I915_WRITE(DSPSURF(plane),
2561                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2562         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2563                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2564         } else {
2565                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2566                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2567         }
2568         POSTING_READ(reg);
2569 }
2570
2571 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2572 static int
2573 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2574                            int x, int y, enum mode_set_atomic state)
2575 {
2576         struct drm_device *dev = crtc->dev;
2577         struct drm_i915_private *dev_priv = dev->dev_private;
2578
2579         if (dev_priv->display.disable_fbc)
2580                 dev_priv->display.disable_fbc(dev);
2581         intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2582
2583         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2584
2585         return 0;
2586 }
2587
2588 void intel_display_handle_reset(struct drm_device *dev)
2589 {
2590         struct drm_i915_private *dev_priv = dev->dev_private;
2591         struct drm_crtc *crtc;
2592
2593         /*
2594          * Flips in the rings have been nuked by the reset,
2595          * so complete all pending flips so that user space
2596          * will get its events and not get stuck.
2597          *
2598          * Also update the base address of all primary
2599          * planes to the the last fb to make sure we're
2600          * showing the correct fb after a reset.
2601          *
2602          * Need to make two loops over the crtcs so that we
2603          * don't try to grab a crtc mutex before the
2604          * pending_flip_queue really got woken up.
2605          */
2606
2607         for_each_crtc(dev, crtc) {
2608                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2609                 enum plane plane = intel_crtc->plane;
2610
2611                 intel_prepare_page_flip(dev, plane);
2612                 intel_finish_page_flip_plane(dev, plane);
2613         }
2614
2615         for_each_crtc(dev, crtc) {
2616                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2617
2618                 drm_modeset_lock(&crtc->mutex, NULL);
2619                 /*
2620                  * FIXME: Once we have proper support for primary planes (and
2621                  * disabling them without disabling the entire crtc) allow again
2622                  * a NULL crtc->primary->fb.
2623                  */
2624                 if (intel_crtc->active && crtc->primary->fb)
2625                         dev_priv->display.update_primary_plane(crtc,
2626                                                                crtc->primary->fb,
2627                                                                crtc->x,
2628                                                                crtc->y);
2629                 drm_modeset_unlock(&crtc->mutex);
2630         }
2631 }
2632
2633 static int
2634 intel_finish_fb(struct drm_framebuffer *old_fb)
2635 {
2636         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2637         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2638         bool was_interruptible = dev_priv->mm.interruptible;
2639         int ret;
2640
2641         /* Big Hammer, we also need to ensure that any pending
2642          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2643          * current scanout is retired before unpinning the old
2644          * framebuffer.
2645          *
2646          * This should only fail upon a hung GPU, in which case we
2647          * can safely continue.
2648          */
2649         dev_priv->mm.interruptible = false;
2650         ret = i915_gem_object_finish_gpu(obj);
2651         dev_priv->mm.interruptible = was_interruptible;
2652
2653         return ret;
2654 }
2655
2656 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2657 {
2658         struct drm_device *dev = crtc->dev;
2659         struct drm_i915_private *dev_priv = dev->dev_private;
2660         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2661         unsigned long flags;
2662         bool pending;
2663
2664         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2665             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2666                 return false;
2667
2668         spin_lock_irqsave(&dev->event_lock, flags);
2669         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2670         spin_unlock_irqrestore(&dev->event_lock, flags);
2671
2672         return pending;
2673 }
2674
2675 static int
2676 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2677                     struct drm_framebuffer *fb)
2678 {
2679         struct drm_device *dev = crtc->dev;
2680         struct drm_i915_private *dev_priv = dev->dev_private;
2681         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2682         enum pipe pipe = intel_crtc->pipe;
2683         struct drm_framebuffer *old_fb = crtc->primary->fb;
2684         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2685         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2686         int ret;
2687
2688         if (intel_crtc_has_pending_flip(crtc)) {
2689                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2690                 return -EBUSY;
2691         }
2692
2693         /* no fb bound */
2694         if (!fb) {
2695                 DRM_ERROR("No FB bound\n");
2696                 return 0;
2697         }
2698
2699         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2700                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2701                           plane_name(intel_crtc->plane),
2702                           INTEL_INFO(dev)->num_pipes);
2703                 return -EINVAL;
2704         }
2705
2706         mutex_lock(&dev->struct_mutex);
2707         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2708         if (ret == 0)
2709                 i915_gem_track_fb(old_obj, obj,
2710                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2711         mutex_unlock(&dev->struct_mutex);
2712         if (ret != 0) {
2713                 DRM_ERROR("pin & fence failed\n");
2714                 return ret;
2715         }
2716
2717         /*
2718          * Update pipe size and adjust fitter if needed: the reason for this is
2719          * that in compute_mode_changes we check the native mode (not the pfit
2720          * mode) to see if we can flip rather than do a full mode set. In the
2721          * fastboot case, we'll flip, but if we don't update the pipesrc and
2722          * pfit state, we'll end up with a big fb scanned out into the wrong
2723          * sized surface.
2724          *
2725          * To fix this properly, we need to hoist the checks up into
2726          * compute_mode_changes (or above), check the actual pfit state and
2727          * whether the platform allows pfit disable with pipe active, and only
2728          * then update the pipesrc and pfit state, even on the flip path.
2729          */
2730         if (i915.fastboot) {
2731                 const struct drm_display_mode *adjusted_mode =
2732                         &intel_crtc->config.adjusted_mode;
2733
2734                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2735                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2736                            (adjusted_mode->crtc_vdisplay - 1));
2737                 if (!intel_crtc->config.pch_pfit.enabled &&
2738                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2739                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2740                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2741                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2742                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2743                 }
2744                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2745                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2746         }
2747
2748         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2749
2750         if (intel_crtc->active)
2751                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2752
2753         crtc->primary->fb = fb;
2754         crtc->x = x;
2755         crtc->y = y;
2756
2757         if (old_fb) {
2758                 if (intel_crtc->active && old_fb != fb)
2759                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2760                 mutex_lock(&dev->struct_mutex);
2761                 intel_unpin_fb_obj(old_obj);
2762                 mutex_unlock(&dev->struct_mutex);
2763         }
2764
2765         mutex_lock(&dev->struct_mutex);
2766         intel_update_fbc(dev);
2767         mutex_unlock(&dev->struct_mutex);
2768
2769         return 0;
2770 }
2771
2772 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2773 {
2774         struct drm_device *dev = crtc->dev;
2775         struct drm_i915_private *dev_priv = dev->dev_private;
2776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2777         int pipe = intel_crtc->pipe;
2778         u32 reg, temp;
2779
2780         /* enable normal train */
2781         reg = FDI_TX_CTL(pipe);
2782         temp = I915_READ(reg);
2783         if (IS_IVYBRIDGE(dev)) {
2784                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2785                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2786         } else {
2787                 temp &= ~FDI_LINK_TRAIN_NONE;
2788                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2789         }
2790         I915_WRITE(reg, temp);
2791
2792         reg = FDI_RX_CTL(pipe);
2793         temp = I915_READ(reg);
2794         if (HAS_PCH_CPT(dev)) {
2795                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2796                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2797         } else {
2798                 temp &= ~FDI_LINK_TRAIN_NONE;
2799                 temp |= FDI_LINK_TRAIN_NONE;
2800         }
2801         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2802
2803         /* wait one idle pattern time */
2804         POSTING_READ(reg);
2805         udelay(1000);
2806
2807         /* IVB wants error correction enabled */
2808         if (IS_IVYBRIDGE(dev))
2809                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2810                            FDI_FE_ERRC_ENABLE);
2811 }
2812
2813 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2814 {
2815         return crtc->base.enabled && crtc->active &&
2816                 crtc->config.has_pch_encoder;
2817 }
2818
2819 static void ivb_modeset_global_resources(struct drm_device *dev)
2820 {
2821         struct drm_i915_private *dev_priv = dev->dev_private;
2822         struct intel_crtc *pipe_B_crtc =
2823                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2824         struct intel_crtc *pipe_C_crtc =
2825                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2826         uint32_t temp;
2827
2828         /*
2829          * When everything is off disable fdi C so that we could enable fdi B
2830          * with all lanes. Note that we don't care about enabled pipes without
2831          * an enabled pch encoder.
2832          */
2833         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2834             !pipe_has_enabled_pch(pipe_C_crtc)) {
2835                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2836                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2837
2838                 temp = I915_READ(SOUTH_CHICKEN1);
2839                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2840                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2841                 I915_WRITE(SOUTH_CHICKEN1, temp);
2842         }
2843 }
2844
2845 /* The FDI link training functions for ILK/Ibexpeak. */
2846 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2847 {
2848         struct drm_device *dev = crtc->dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2851         int pipe = intel_crtc->pipe;
2852         u32 reg, temp, tries;
2853
2854         /* FDI needs bits from pipe first */
2855         assert_pipe_enabled(dev_priv, pipe);
2856
2857         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2858            for train result */
2859         reg = FDI_RX_IMR(pipe);
2860         temp = I915_READ(reg);
2861         temp &= ~FDI_RX_SYMBOL_LOCK;
2862         temp &= ~FDI_RX_BIT_LOCK;
2863         I915_WRITE(reg, temp);
2864         I915_READ(reg);
2865         udelay(150);
2866
2867         /* enable CPU FDI TX and PCH FDI RX */
2868         reg = FDI_TX_CTL(pipe);
2869         temp = I915_READ(reg);
2870         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2871         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2872         temp &= ~FDI_LINK_TRAIN_NONE;
2873         temp |= FDI_LINK_TRAIN_PATTERN_1;
2874         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2875
2876         reg = FDI_RX_CTL(pipe);
2877         temp = I915_READ(reg);
2878         temp &= ~FDI_LINK_TRAIN_NONE;
2879         temp |= FDI_LINK_TRAIN_PATTERN_1;
2880         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2881
2882         POSTING_READ(reg);
2883         udelay(150);
2884
2885         /* Ironlake workaround, enable clock pointer after FDI enable*/
2886         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2887         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2888                    FDI_RX_PHASE_SYNC_POINTER_EN);
2889
2890         reg = FDI_RX_IIR(pipe);
2891         for (tries = 0; tries < 5; tries++) {
2892                 temp = I915_READ(reg);
2893                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2894
2895                 if ((temp & FDI_RX_BIT_LOCK)) {
2896                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2897                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2898                         break;
2899                 }
2900         }
2901         if (tries == 5)
2902                 DRM_ERROR("FDI train 1 fail!\n");
2903
2904         /* Train 2 */
2905         reg = FDI_TX_CTL(pipe);
2906         temp = I915_READ(reg);
2907         temp &= ~FDI_LINK_TRAIN_NONE;
2908         temp |= FDI_LINK_TRAIN_PATTERN_2;
2909         I915_WRITE(reg, temp);
2910
2911         reg = FDI_RX_CTL(pipe);
2912         temp = I915_READ(reg);
2913         temp &= ~FDI_LINK_TRAIN_NONE;
2914         temp |= FDI_LINK_TRAIN_PATTERN_2;
2915         I915_WRITE(reg, temp);
2916
2917         POSTING_READ(reg);
2918         udelay(150);
2919
2920         reg = FDI_RX_IIR(pipe);
2921         for (tries = 0; tries < 5; tries++) {
2922                 temp = I915_READ(reg);
2923                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2924
2925                 if (temp & FDI_RX_SYMBOL_LOCK) {
2926                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2927                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2928                         break;
2929                 }
2930         }
2931         if (tries == 5)
2932                 DRM_ERROR("FDI train 2 fail!\n");
2933
2934         DRM_DEBUG_KMS("FDI train done\n");
2935
2936 }
2937
2938 static const int snb_b_fdi_train_param[] = {
2939         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2940         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2941         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2942         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2943 };
2944
2945 /* The FDI link training functions for SNB/Cougarpoint. */
2946 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2947 {
2948         struct drm_device *dev = crtc->dev;
2949         struct drm_i915_private *dev_priv = dev->dev_private;
2950         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2951         int pipe = intel_crtc->pipe;
2952         u32 reg, temp, i, retry;
2953
2954         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2955            for train result */
2956         reg = FDI_RX_IMR(pipe);
2957         temp = I915_READ(reg);
2958         temp &= ~FDI_RX_SYMBOL_LOCK;
2959         temp &= ~FDI_RX_BIT_LOCK;
2960         I915_WRITE(reg, temp);
2961
2962         POSTING_READ(reg);
2963         udelay(150);
2964
2965         /* enable CPU FDI TX and PCH FDI RX */
2966         reg = FDI_TX_CTL(pipe);
2967         temp = I915_READ(reg);
2968         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2969         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2970         temp &= ~FDI_LINK_TRAIN_NONE;
2971         temp |= FDI_LINK_TRAIN_PATTERN_1;
2972         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2973         /* SNB-B */
2974         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2975         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2976
2977         I915_WRITE(FDI_RX_MISC(pipe),
2978                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2979
2980         reg = FDI_RX_CTL(pipe);
2981         temp = I915_READ(reg);
2982         if (HAS_PCH_CPT(dev)) {
2983                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2984                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2985         } else {
2986                 temp &= ~FDI_LINK_TRAIN_NONE;
2987                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2988         }
2989         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2990
2991         POSTING_READ(reg);
2992         udelay(150);
2993
2994         for (i = 0; i < 4; i++) {
2995                 reg = FDI_TX_CTL(pipe);
2996                 temp = I915_READ(reg);
2997                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2998                 temp |= snb_b_fdi_train_param[i];
2999                 I915_WRITE(reg, temp);
3000
3001                 POSTING_READ(reg);
3002                 udelay(500);
3003
3004                 for (retry = 0; retry < 5; retry++) {
3005                         reg = FDI_RX_IIR(pipe);
3006                         temp = I915_READ(reg);
3007                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3008                         if (temp & FDI_RX_BIT_LOCK) {
3009                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3010                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3011                                 break;
3012                         }
3013                         udelay(50);
3014                 }
3015                 if (retry < 5)
3016                         break;
3017         }
3018         if (i == 4)
3019                 DRM_ERROR("FDI train 1 fail!\n");
3020
3021         /* Train 2 */
3022         reg = FDI_TX_CTL(pipe);
3023         temp = I915_READ(reg);
3024         temp &= ~FDI_LINK_TRAIN_NONE;
3025         temp |= FDI_LINK_TRAIN_PATTERN_2;
3026         if (IS_GEN6(dev)) {
3027                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3028                 /* SNB-B */
3029                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3030         }
3031         I915_WRITE(reg, temp);
3032
3033         reg = FDI_RX_CTL(pipe);
3034         temp = I915_READ(reg);
3035         if (HAS_PCH_CPT(dev)) {
3036                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3037                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3038         } else {
3039                 temp &= ~FDI_LINK_TRAIN_NONE;
3040                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3041         }
3042         I915_WRITE(reg, temp);
3043
3044         POSTING_READ(reg);
3045         udelay(150);
3046
3047         for (i = 0; i < 4; i++) {
3048                 reg = FDI_TX_CTL(pipe);
3049                 temp = I915_READ(reg);
3050                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3051                 temp |= snb_b_fdi_train_param[i];
3052                 I915_WRITE(reg, temp);
3053
3054                 POSTING_READ(reg);
3055                 udelay(500);
3056
3057                 for (retry = 0; retry < 5; retry++) {
3058                         reg = FDI_RX_IIR(pipe);
3059                         temp = I915_READ(reg);
3060                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3061                         if (temp & FDI_RX_SYMBOL_LOCK) {
3062                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3063                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3064                                 break;
3065                         }
3066                         udelay(50);
3067                 }
3068                 if (retry < 5)
3069                         break;
3070         }
3071         if (i == 4)
3072                 DRM_ERROR("FDI train 2 fail!\n");
3073
3074         DRM_DEBUG_KMS("FDI train done.\n");
3075 }
3076
3077 /* Manual link training for Ivy Bridge A0 parts */
3078 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3079 {
3080         struct drm_device *dev = crtc->dev;
3081         struct drm_i915_private *dev_priv = dev->dev_private;
3082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3083         int pipe = intel_crtc->pipe;
3084         u32 reg, temp, i, j;
3085
3086         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3087            for train result */
3088         reg = FDI_RX_IMR(pipe);
3089         temp = I915_READ(reg);
3090         temp &= ~FDI_RX_SYMBOL_LOCK;
3091         temp &= ~FDI_RX_BIT_LOCK;
3092         I915_WRITE(reg, temp);
3093
3094         POSTING_READ(reg);
3095         udelay(150);
3096
3097         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3098                       I915_READ(FDI_RX_IIR(pipe)));
3099
3100         /* Try each vswing and preemphasis setting twice before moving on */
3101         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3102                 /* disable first in case we need to retry */
3103                 reg = FDI_TX_CTL(pipe);
3104                 temp = I915_READ(reg);
3105                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3106                 temp &= ~FDI_TX_ENABLE;
3107                 I915_WRITE(reg, temp);
3108
3109                 reg = FDI_RX_CTL(pipe);
3110                 temp = I915_READ(reg);
3111                 temp &= ~FDI_LINK_TRAIN_AUTO;
3112                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3113                 temp &= ~FDI_RX_ENABLE;
3114                 I915_WRITE(reg, temp);
3115
3116                 /* enable CPU FDI TX and PCH FDI RX */
3117                 reg = FDI_TX_CTL(pipe);
3118                 temp = I915_READ(reg);
3119                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3120                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3121                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3122                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3123                 temp |= snb_b_fdi_train_param[j/2];
3124                 temp |= FDI_COMPOSITE_SYNC;
3125                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3126
3127                 I915_WRITE(FDI_RX_MISC(pipe),
3128                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3129
3130                 reg = FDI_RX_CTL(pipe);
3131                 temp = I915_READ(reg);
3132                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3133                 temp |= FDI_COMPOSITE_SYNC;
3134                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3135
3136                 POSTING_READ(reg);
3137                 udelay(1); /* should be 0.5us */
3138
3139                 for (i = 0; i < 4; i++) {
3140                         reg = FDI_RX_IIR(pipe);
3141                         temp = I915_READ(reg);
3142                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3143
3144                         if (temp & FDI_RX_BIT_LOCK ||
3145                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3146                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3147                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3148                                               i);
3149                                 break;
3150                         }
3151                         udelay(1); /* should be 0.5us */
3152                 }
3153                 if (i == 4) {
3154                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3155                         continue;
3156                 }
3157
3158                 /* Train 2 */
3159                 reg = FDI_TX_CTL(pipe);
3160                 temp = I915_READ(reg);
3161                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3162                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3163                 I915_WRITE(reg, temp);
3164
3165                 reg = FDI_RX_CTL(pipe);
3166                 temp = I915_READ(reg);
3167                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3168                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3169                 I915_WRITE(reg, temp);
3170
3171                 POSTING_READ(reg);
3172                 udelay(2); /* should be 1.5us */
3173
3174                 for (i = 0; i < 4; i++) {
3175                         reg = FDI_RX_IIR(pipe);
3176                         temp = I915_READ(reg);
3177                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3178
3179                         if (temp & FDI_RX_SYMBOL_LOCK ||
3180                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3181                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3182                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3183                                               i);
3184                                 goto train_done;
3185                         }
3186                         udelay(2); /* should be 1.5us */
3187                 }
3188                 if (i == 4)
3189                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3190         }
3191
3192 train_done:
3193         DRM_DEBUG_KMS("FDI train done.\n");
3194 }
3195
3196 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3197 {
3198         struct drm_device *dev = intel_crtc->base.dev;
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200         int pipe = intel_crtc->pipe;
3201         u32 reg, temp;
3202
3203
3204         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3205         reg = FDI_RX_CTL(pipe);
3206         temp = I915_READ(reg);
3207         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3208         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3209         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3210         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3211
3212         POSTING_READ(reg);
3213         udelay(200);
3214
3215         /* Switch from Rawclk to PCDclk */
3216         temp = I915_READ(reg);
3217         I915_WRITE(reg, temp | FDI_PCDCLK);
3218
3219         POSTING_READ(reg);
3220         udelay(200);
3221
3222         /* Enable CPU FDI TX PLL, always on for Ironlake */
3223         reg = FDI_TX_CTL(pipe);
3224         temp = I915_READ(reg);
3225         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3226                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3227
3228                 POSTING_READ(reg);
3229                 udelay(100);
3230         }
3231 }
3232
3233 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3234 {
3235         struct drm_device *dev = intel_crtc->base.dev;
3236         struct drm_i915_private *dev_priv = dev->dev_private;
3237         int pipe = intel_crtc->pipe;
3238         u32 reg, temp;
3239
3240         /* Switch from PCDclk to Rawclk */
3241         reg = FDI_RX_CTL(pipe);
3242         temp = I915_READ(reg);
3243         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3244
3245         /* Disable CPU FDI TX PLL */
3246         reg = FDI_TX_CTL(pipe);
3247         temp = I915_READ(reg);
3248         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3249
3250         POSTING_READ(reg);
3251         udelay(100);
3252
3253         reg = FDI_RX_CTL(pipe);
3254         temp = I915_READ(reg);
3255         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3256
3257         /* Wait for the clocks to turn off. */
3258         POSTING_READ(reg);
3259         udelay(100);
3260 }
3261
3262 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3263 {
3264         struct drm_device *dev = crtc->dev;
3265         struct drm_i915_private *dev_priv = dev->dev_private;
3266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3267         int pipe = intel_crtc->pipe;
3268         u32 reg, temp;
3269
3270         /* disable CPU FDI tx and PCH FDI rx */
3271         reg = FDI_TX_CTL(pipe);
3272         temp = I915_READ(reg);
3273         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3274         POSTING_READ(reg);
3275
3276         reg = FDI_RX_CTL(pipe);
3277         temp = I915_READ(reg);
3278         temp &= ~(0x7 << 16);
3279         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3280         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3281
3282         POSTING_READ(reg);
3283         udelay(100);
3284
3285         /* Ironlake workaround, disable clock pointer after downing FDI */
3286         if (HAS_PCH_IBX(dev))
3287                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3288
3289         /* still set train pattern 1 */
3290         reg = FDI_TX_CTL(pipe);
3291         temp = I915_READ(reg);
3292         temp &= ~FDI_LINK_TRAIN_NONE;
3293         temp |= FDI_LINK_TRAIN_PATTERN_1;
3294         I915_WRITE(reg, temp);
3295
3296         reg = FDI_RX_CTL(pipe);
3297         temp = I915_READ(reg);
3298         if (HAS_PCH_CPT(dev)) {
3299                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3301         } else {
3302                 temp &= ~FDI_LINK_TRAIN_NONE;
3303                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3304         }
3305         /* BPC in FDI rx is consistent with that in PIPECONF */
3306         temp &= ~(0x07 << 16);
3307         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3308         I915_WRITE(reg, temp);
3309
3310         POSTING_READ(reg);
3311         udelay(100);
3312 }
3313
3314 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3315 {
3316         struct intel_crtc *crtc;
3317
3318         /* Note that we don't need to be called with mode_config.lock here
3319          * as our list of CRTC objects is static for the lifetime of the
3320          * device and so cannot disappear as we iterate. Similarly, we can
3321          * happily treat the predicates as racy, atomic checks as userspace
3322          * cannot claim and pin a new fb without at least acquring the
3323          * struct_mutex and so serialising with us.
3324          */
3325         for_each_intel_crtc(dev, crtc) {
3326                 if (atomic_read(&crtc->unpin_work_count) == 0)
3327                         continue;
3328
3329                 if (crtc->unpin_work)
3330                         intel_wait_for_vblank(dev, crtc->pipe);
3331
3332                 return true;
3333         }
3334
3335         return false;
3336 }
3337
3338 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3339 {
3340         struct drm_device *dev = crtc->dev;
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342
3343         if (crtc->primary->fb == NULL)
3344                 return;
3345
3346         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3347
3348         WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3349                                    !intel_crtc_has_pending_flip(crtc),
3350                                    60*HZ) == 0);
3351
3352         mutex_lock(&dev->struct_mutex);
3353         intel_finish_fb(crtc->primary->fb);
3354         mutex_unlock(&dev->struct_mutex);
3355 }
3356
3357 /* Program iCLKIP clock to the desired frequency */
3358 static void lpt_program_iclkip(struct drm_crtc *crtc)
3359 {
3360         struct drm_device *dev = crtc->dev;
3361         struct drm_i915_private *dev_priv = dev->dev_private;
3362         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3363         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3364         u32 temp;
3365
3366         mutex_lock(&dev_priv->dpio_lock);
3367
3368         /* It is necessary to ungate the pixclk gate prior to programming
3369          * the divisors, and gate it back when it is done.
3370          */
3371         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3372
3373         /* Disable SSCCTL */
3374         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3375                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3376                                 SBI_SSCCTL_DISABLE,
3377                         SBI_ICLK);
3378
3379         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3380         if (clock == 20000) {
3381                 auxdiv = 1;
3382                 divsel = 0x41;
3383                 phaseinc = 0x20;
3384         } else {
3385                 /* The iCLK virtual clock root frequency is in MHz,
3386                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3387                  * divisors, it is necessary to divide one by another, so we
3388                  * convert the virtual clock precision to KHz here for higher
3389                  * precision.
3390                  */
3391                 u32 iclk_virtual_root_freq = 172800 * 1000;
3392                 u32 iclk_pi_range = 64;
3393                 u32 desired_divisor, msb_divisor_value, pi_value;
3394
3395                 desired_divisor = (iclk_virtual_root_freq / clock);
3396                 msb_divisor_value = desired_divisor / iclk_pi_range;
3397                 pi_value = desired_divisor % iclk_pi_range;
3398
3399                 auxdiv = 0;
3400                 divsel = msb_divisor_value - 2;
3401                 phaseinc = pi_value;
3402         }
3403
3404         /* This should not happen with any sane values */
3405         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3406                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3407         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3408                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3409
3410         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3411                         clock,
3412                         auxdiv,
3413                         divsel,
3414                         phasedir,
3415                         phaseinc);
3416
3417         /* Program SSCDIVINTPHASE6 */
3418         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3419         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3420         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3421         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3422         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3423         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3424         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3425         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3426
3427         /* Program SSCAUXDIV */
3428         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3429         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3430         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3431         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3432
3433         /* Enable modulator and associated divider */
3434         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3435         temp &= ~SBI_SSCCTL_DISABLE;
3436         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3437
3438         /* Wait for initialization time */
3439         udelay(24);
3440
3441         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3442
3443         mutex_unlock(&dev_priv->dpio_lock);
3444 }
3445
3446 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3447                                                 enum pipe pch_transcoder)
3448 {
3449         struct drm_device *dev = crtc->base.dev;
3450         struct drm_i915_private *dev_priv = dev->dev_private;
3451         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3452
3453         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3454                    I915_READ(HTOTAL(cpu_transcoder)));
3455         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3456                    I915_READ(HBLANK(cpu_transcoder)));
3457         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3458                    I915_READ(HSYNC(cpu_transcoder)));
3459
3460         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3461                    I915_READ(VTOTAL(cpu_transcoder)));
3462         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3463                    I915_READ(VBLANK(cpu_transcoder)));
3464         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3465                    I915_READ(VSYNC(cpu_transcoder)));
3466         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3467                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3468 }
3469
3470 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3471 {
3472         struct drm_i915_private *dev_priv = dev->dev_private;
3473         uint32_t temp;
3474
3475         temp = I915_READ(SOUTH_CHICKEN1);
3476         if (temp & FDI_BC_BIFURCATION_SELECT)
3477                 return;
3478
3479         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3480         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3481
3482         temp |= FDI_BC_BIFURCATION_SELECT;
3483         DRM_DEBUG_KMS("enabling fdi C rx\n");
3484         I915_WRITE(SOUTH_CHICKEN1, temp);
3485         POSTING_READ(SOUTH_CHICKEN1);
3486 }
3487
3488 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3489 {
3490         struct drm_device *dev = intel_crtc->base.dev;
3491         struct drm_i915_private *dev_priv = dev->dev_private;
3492
3493         switch (intel_crtc->pipe) {
3494         case PIPE_A:
3495                 break;
3496         case PIPE_B:
3497                 if (intel_crtc->config.fdi_lanes > 2)
3498                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3499                 else
3500                         cpt_enable_fdi_bc_bifurcation(dev);
3501
3502                 break;
3503         case PIPE_C:
3504                 cpt_enable_fdi_bc_bifurcation(dev);
3505
3506                 break;
3507         default:
3508                 BUG();
3509         }
3510 }
3511
3512 /*
3513  * Enable PCH resources required for PCH ports:
3514  *   - PCH PLLs
3515  *   - FDI training & RX/TX
3516  *   - update transcoder timings
3517  *   - DP transcoding bits
3518  *   - transcoder
3519  */
3520 static void ironlake_pch_enable(struct drm_crtc *crtc)
3521 {
3522         struct drm_device *dev = crtc->dev;
3523         struct drm_i915_private *dev_priv = dev->dev_private;
3524         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3525         int pipe = intel_crtc->pipe;
3526         u32 reg, temp;
3527
3528         assert_pch_transcoder_disabled(dev_priv, pipe);
3529
3530         if (IS_IVYBRIDGE(dev))
3531                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3532
3533         /* Write the TU size bits before fdi link training, so that error
3534          * detection works. */
3535         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3536                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3537
3538         /* For PCH output, training FDI link */
3539         dev_priv->display.fdi_link_train(crtc);
3540
3541         /* We need to program the right clock selection before writing the pixel
3542          * mutliplier into the DPLL. */
3543         if (HAS_PCH_CPT(dev)) {
3544                 u32 sel;
3545
3546                 temp = I915_READ(PCH_DPLL_SEL);
3547                 temp |= TRANS_DPLL_ENABLE(pipe);
3548                 sel = TRANS_DPLLB_SEL(pipe);
3549                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3550                         temp |= sel;
3551                 else
3552                         temp &= ~sel;
3553                 I915_WRITE(PCH_DPLL_SEL, temp);
3554         }
3555
3556         /* XXX: pch pll's can be enabled any time before we enable the PCH
3557          * transcoder, and we actually should do this to not upset any PCH
3558          * transcoder that already use the clock when we share it.
3559          *
3560          * Note that enable_shared_dpll tries to do the right thing, but
3561          * get_shared_dpll unconditionally resets the pll - we need that to have
3562          * the right LVDS enable sequence. */
3563         intel_enable_shared_dpll(intel_crtc);
3564
3565         /* set transcoder timing, panel must allow it */
3566         assert_panel_unlocked(dev_priv, pipe);
3567         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3568
3569         intel_fdi_normal_train(crtc);
3570
3571         /* For PCH DP, enable TRANS_DP_CTL */
3572         if (HAS_PCH_CPT(dev) &&
3573             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3574              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3575                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3576                 reg = TRANS_DP_CTL(pipe);
3577                 temp = I915_READ(reg);
3578                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3579                           TRANS_DP_SYNC_MASK |
3580                           TRANS_DP_BPC_MASK);
3581                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3582                          TRANS_DP_ENH_FRAMING);
3583                 temp |= bpc << 9; /* same format but at 11:9 */
3584
3585                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3586                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3587                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3588                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3589
3590                 switch (intel_trans_dp_port_sel(crtc)) {
3591                 case PCH_DP_B:
3592                         temp |= TRANS_DP_PORT_SEL_B;
3593                         break;
3594                 case PCH_DP_C:
3595                         temp |= TRANS_DP_PORT_SEL_C;
3596                         break;
3597                 case PCH_DP_D:
3598                         temp |= TRANS_DP_PORT_SEL_D;
3599                         break;
3600                 default:
3601                         BUG();
3602                 }
3603
3604                 I915_WRITE(reg, temp);
3605         }
3606
3607         ironlake_enable_pch_transcoder(dev_priv, pipe);
3608 }
3609
3610 static void lpt_pch_enable(struct drm_crtc *crtc)
3611 {
3612         struct drm_device *dev = crtc->dev;
3613         struct drm_i915_private *dev_priv = dev->dev_private;
3614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3616
3617         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3618
3619         lpt_program_iclkip(crtc);
3620
3621         /* Set transcoder timing. */
3622         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3623
3624         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3625 }
3626
3627 void intel_put_shared_dpll(struct intel_crtc *crtc)
3628 {
3629         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3630
3631         if (pll == NULL)
3632                 return;
3633
3634         if (pll->refcount == 0) {
3635                 WARN(1, "bad %s refcount\n", pll->name);
3636                 return;
3637         }
3638
3639         if (--pll->refcount == 0) {
3640                 WARN_ON(pll->on);
3641                 WARN_ON(pll->active);
3642         }
3643
3644         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3645 }
3646
3647 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3648 {
3649         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3650         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3651         enum intel_dpll_id i;
3652
3653         if (pll) {
3654                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3655                               crtc->base.base.id, pll->name);
3656                 intel_put_shared_dpll(crtc);
3657         }
3658
3659         if (HAS_PCH_IBX(dev_priv->dev)) {
3660                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3661                 i = (enum intel_dpll_id) crtc->pipe;
3662                 pll = &dev_priv->shared_dplls[i];
3663
3664                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3665                               crtc->base.base.id, pll->name);
3666
3667                 WARN_ON(pll->refcount);
3668
3669                 goto found;
3670         }
3671
3672         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3673                 pll = &dev_priv->shared_dplls[i];
3674
3675                 /* Only want to check enabled timings first */
3676                 if (pll->refcount == 0)
3677                         continue;
3678
3679                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3680                            sizeof(pll->hw_state)) == 0) {
3681                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3682                                       crtc->base.base.id,
3683                                       pll->name, pll->refcount, pll->active);
3684
3685                         goto found;
3686                 }
3687         }
3688
3689         /* Ok no matching timings, maybe there's a free one? */
3690         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3691                 pll = &dev_priv->shared_dplls[i];
3692                 if (pll->refcount == 0) {
3693                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3694                                       crtc->base.base.id, pll->name);
3695                         goto found;
3696                 }
3697         }
3698
3699         return NULL;
3700
3701 found:
3702         if (pll->refcount == 0)
3703                 pll->hw_state = crtc->config.dpll_hw_state;
3704
3705         crtc->config.shared_dpll = i;
3706         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3707                          pipe_name(crtc->pipe));
3708
3709         pll->refcount++;
3710
3711         return pll;
3712 }
3713
3714 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3715 {
3716         struct drm_i915_private *dev_priv = dev->dev_private;
3717         int dslreg = PIPEDSL(pipe);
3718         u32 temp;
3719
3720         temp = I915_READ(dslreg);
3721         udelay(500);
3722         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3723                 if (wait_for(I915_READ(dslreg) != temp, 5))
3724                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3725         }
3726 }
3727
3728 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3729 {
3730         struct drm_device *dev = crtc->base.dev;
3731         struct drm_i915_private *dev_priv = dev->dev_private;
3732         int pipe = crtc->pipe;
3733
3734         if (crtc->config.pch_pfit.enabled) {
3735                 /* Force use of hard-coded filter coefficients
3736                  * as some pre-programmed values are broken,
3737                  * e.g. x201.
3738                  */
3739                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3740                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3741                                                  PF_PIPE_SEL_IVB(pipe));
3742                 else
3743                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3744                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3745                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3746         }
3747 }
3748
3749 static void intel_enable_planes(struct drm_crtc *crtc)
3750 {
3751         struct drm_device *dev = crtc->dev;
3752         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3753         struct drm_plane *plane;
3754         struct intel_plane *intel_plane;
3755
3756         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3757                 intel_plane = to_intel_plane(plane);
3758                 if (intel_plane->pipe == pipe)
3759                         intel_plane_restore(&intel_plane->base);
3760         }
3761 }
3762
3763 static void intel_disable_planes(struct drm_crtc *crtc)
3764 {
3765         struct drm_device *dev = crtc->dev;
3766         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3767         struct drm_plane *plane;
3768         struct intel_plane *intel_plane;
3769
3770         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3771                 intel_plane = to_intel_plane(plane);
3772                 if (intel_plane->pipe == pipe)
3773                         intel_plane_disable(&intel_plane->base);
3774         }
3775 }
3776
3777 void hsw_enable_ips(struct intel_crtc *crtc)
3778 {
3779         struct drm_device *dev = crtc->base.dev;
3780         struct drm_i915_private *dev_priv = dev->dev_private;
3781
3782         if (!crtc->config.ips_enabled)
3783                 return;
3784
3785         /* We can only enable IPS after we enable a plane and wait for a vblank */
3786         intel_wait_for_vblank(dev, crtc->pipe);
3787
3788         assert_plane_enabled(dev_priv, crtc->plane);
3789         if (IS_BROADWELL(dev)) {
3790                 mutex_lock(&dev_priv->rps.hw_lock);
3791                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3792                 mutex_unlock(&dev_priv->rps.hw_lock);
3793                 /* Quoting Art Runyan: "its not safe to expect any particular
3794                  * value in IPS_CTL bit 31 after enabling IPS through the
3795                  * mailbox." Moreover, the mailbox may return a bogus state,
3796                  * so we need to just enable it and continue on.
3797                  */
3798         } else {
3799                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3800                 /* The bit only becomes 1 in the next vblank, so this wait here
3801                  * is essentially intel_wait_for_vblank. If we don't have this
3802                  * and don't wait for vblanks until the end of crtc_enable, then
3803                  * the HW state readout code will complain that the expected
3804                  * IPS_CTL value is not the one we read. */
3805                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3806                         DRM_ERROR("Timed out waiting for IPS enable\n");
3807         }
3808 }
3809
3810 void hsw_disable_ips(struct intel_crtc *crtc)
3811 {
3812         struct drm_device *dev = crtc->base.dev;
3813         struct drm_i915_private *dev_priv = dev->dev_private;
3814
3815         if (!crtc->config.ips_enabled)
3816                 return;
3817
3818         assert_plane_enabled(dev_priv, crtc->plane);
3819         if (IS_BROADWELL(dev)) {
3820                 mutex_lock(&dev_priv->rps.hw_lock);
3821                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3822                 mutex_unlock(&dev_priv->rps.hw_lock);
3823                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3824                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3825                         DRM_ERROR("Timed out waiting for IPS disable\n");
3826         } else {
3827                 I915_WRITE(IPS_CTL, 0);
3828                 POSTING_READ(IPS_CTL);
3829         }
3830
3831         /* We need to wait for a vblank before we can disable the plane. */
3832         intel_wait_for_vblank(dev, crtc->pipe);
3833 }
3834
3835 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3836 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3837 {
3838         struct drm_device *dev = crtc->dev;
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3841         enum pipe pipe = intel_crtc->pipe;
3842         int palreg = PALETTE(pipe);
3843         int i;
3844         bool reenable_ips = false;
3845
3846         /* The clocks have to be on to load the palette. */
3847         if (!crtc->enabled || !intel_crtc->active)
3848                 return;
3849
3850         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3851                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3852                         assert_dsi_pll_enabled(dev_priv);
3853                 else
3854                         assert_pll_enabled(dev_priv, pipe);
3855         }
3856
3857         /* use legacy palette for Ironlake */
3858         if (!HAS_GMCH_DISPLAY(dev))
3859                 palreg = LGC_PALETTE(pipe);
3860
3861         /* Workaround : Do not read or write the pipe palette/gamma data while
3862          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3863          */
3864         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3865             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3866              GAMMA_MODE_MODE_SPLIT)) {
3867                 hsw_disable_ips(intel_crtc);
3868                 reenable_ips = true;
3869         }
3870
3871         for (i = 0; i < 256; i++) {
3872                 I915_WRITE(palreg + 4 * i,
3873                            (intel_crtc->lut_r[i] << 16) |
3874                            (intel_crtc->lut_g[i] << 8) |
3875                            intel_crtc->lut_b[i]);
3876         }
3877
3878         if (reenable_ips)
3879                 hsw_enable_ips(intel_crtc);
3880 }
3881
3882 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3883 {
3884         if (!enable && intel_crtc->overlay) {
3885                 struct drm_device *dev = intel_crtc->base.dev;
3886                 struct drm_i915_private *dev_priv = dev->dev_private;
3887
3888                 mutex_lock(&dev->struct_mutex);
3889                 dev_priv->mm.interruptible = false;
3890                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3891                 dev_priv->mm.interruptible = true;
3892                 mutex_unlock(&dev->struct_mutex);
3893         }
3894
3895         /* Let userspace switch the overlay on again. In most cases userspace
3896          * has to recompute where to put it anyway.
3897          */
3898 }
3899
3900 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3901 {
3902         struct drm_device *dev = crtc->dev;
3903         struct drm_i915_private *dev_priv = dev->dev_private;
3904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3905         int pipe = intel_crtc->pipe;
3906         int plane = intel_crtc->plane;
3907
3908         drm_vblank_on(dev, pipe);
3909
3910         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3911         intel_enable_planes(crtc);
3912         intel_crtc_update_cursor(crtc, true);
3913         intel_crtc_dpms_overlay(intel_crtc, true);
3914
3915         hsw_enable_ips(intel_crtc);
3916
3917         mutex_lock(&dev->struct_mutex);
3918         intel_update_fbc(dev);
3919         mutex_unlock(&dev->struct_mutex);
3920
3921         /*
3922          * FIXME: Once we grow proper nuclear flip support out of this we need
3923          * to compute the mask of flip planes precisely. For the time being
3924          * consider this a flip from a NULL plane.
3925          */
3926         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3927 }
3928
3929 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3930 {
3931         struct drm_device *dev = crtc->dev;
3932         struct drm_i915_private *dev_priv = dev->dev_private;
3933         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3934         int pipe = intel_crtc->pipe;
3935         int plane = intel_crtc->plane;
3936
3937         intel_crtc_wait_for_pending_flips(crtc);
3938
3939         if (dev_priv->fbc.plane == plane)
3940                 intel_disable_fbc(dev);
3941
3942         hsw_disable_ips(intel_crtc);
3943
3944         intel_crtc_dpms_overlay(intel_crtc, false);
3945         intel_crtc_update_cursor(crtc, false);
3946         intel_disable_planes(crtc);
3947         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3948
3949         /*
3950          * FIXME: Once we grow proper nuclear flip support out of this we need
3951          * to compute the mask of flip planes precisely. For the time being
3952          * consider this a flip to a NULL plane.
3953          */
3954         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3955
3956         drm_vblank_off(dev, pipe);
3957 }
3958
3959 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3960 {
3961         struct drm_device *dev = crtc->dev;
3962         struct drm_i915_private *dev_priv = dev->dev_private;
3963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3964         struct intel_encoder *encoder;
3965         int pipe = intel_crtc->pipe;
3966         enum plane plane = intel_crtc->plane;
3967
3968         WARN_ON(!crtc->enabled);
3969
3970         if (intel_crtc->active)
3971                 return;
3972
3973         if (intel_crtc->config.has_pch_encoder)
3974                 intel_prepare_shared_dpll(intel_crtc);
3975
3976         if (intel_crtc->config.has_dp_encoder)
3977                 intel_dp_set_m_n(intel_crtc);
3978
3979         intel_set_pipe_timings(intel_crtc);
3980
3981         if (intel_crtc->config.has_pch_encoder) {
3982                 intel_cpu_transcoder_set_m_n(intel_crtc,
3983                                              &intel_crtc->config.fdi_m_n);
3984         }
3985
3986         ironlake_set_pipeconf(crtc);
3987
3988         /* Set up the display plane register */
3989         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3990         POSTING_READ(DSPCNTR(plane));
3991
3992         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3993                                                crtc->x, crtc->y);
3994
3995         intel_crtc->active = true;
3996
3997         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3998         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3999
4000         for_each_encoder_on_crtc(dev, crtc, encoder)
4001                 if (encoder->pre_enable)
4002                         encoder->pre_enable(encoder);
4003
4004         if (intel_crtc->config.has_pch_encoder) {
4005                 /* Note: FDI PLL enabling _must_ be done before we enable the
4006                  * cpu pipes, hence this is separate from all the other fdi/pch
4007                  * enabling. */
4008                 ironlake_fdi_pll_enable(intel_crtc);
4009         } else {
4010                 assert_fdi_tx_disabled(dev_priv, pipe);
4011                 assert_fdi_rx_disabled(dev_priv, pipe);
4012         }
4013
4014         ironlake_pfit_enable(intel_crtc);
4015
4016         /*
4017          * On ILK+ LUT must be loaded before the pipe is running but with
4018          * clocks enabled
4019          */
4020         intel_crtc_load_lut(crtc);
4021
4022         intel_update_watermarks(crtc);
4023         intel_enable_pipe(intel_crtc);
4024
4025         if (intel_crtc->config.has_pch_encoder)
4026                 ironlake_pch_enable(crtc);
4027
4028         for_each_encoder_on_crtc(dev, crtc, encoder)
4029                 encoder->enable(encoder);
4030
4031         if (HAS_PCH_CPT(dev))
4032                 cpt_verify_modeset(dev, intel_crtc->pipe);
4033
4034         intel_crtc_enable_planes(crtc);
4035 }
4036
4037 /* IPS only exists on ULT machines and is tied to pipe A. */
4038 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4039 {
4040         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4041 }
4042
4043 /*
4044  * This implements the workaround described in the "notes" section of the mode
4045  * set sequence documentation. When going from no pipes or single pipe to
4046  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4047  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4048  */
4049 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4050 {
4051         struct drm_device *dev = crtc->base.dev;
4052         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4053
4054         /* We want to get the other_active_crtc only if there's only 1 other
4055          * active crtc. */
4056         for_each_intel_crtc(dev, crtc_it) {
4057                 if (!crtc_it->active || crtc_it == crtc)
4058                         continue;
4059
4060                 if (other_active_crtc)
4061                         return;
4062
4063                 other_active_crtc = crtc_it;
4064         }
4065         if (!other_active_crtc)
4066                 return;
4067
4068         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4069         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4070 }
4071
4072 static void haswell_crtc_enable(struct drm_crtc *crtc)
4073 {
4074         struct drm_device *dev = crtc->dev;
4075         struct drm_i915_private *dev_priv = dev->dev_private;
4076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4077         struct intel_encoder *encoder;
4078         int pipe = intel_crtc->pipe;
4079         enum plane plane = intel_crtc->plane;
4080
4081         WARN_ON(!crtc->enabled);
4082
4083         if (intel_crtc->active)
4084                 return;
4085
4086         if (intel_crtc_to_shared_dpll(intel_crtc))
4087                 intel_enable_shared_dpll(intel_crtc);
4088
4089         if (intel_crtc->config.has_dp_encoder)
4090                 intel_dp_set_m_n(intel_crtc);
4091
4092         intel_set_pipe_timings(intel_crtc);
4093
4094         if (intel_crtc->config.has_pch_encoder) {
4095                 intel_cpu_transcoder_set_m_n(intel_crtc,
4096                                              &intel_crtc->config.fdi_m_n);
4097         }
4098
4099         haswell_set_pipeconf(crtc);
4100
4101         intel_set_pipe_csc(crtc);
4102
4103         /* Set up the display plane register */
4104         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4105         POSTING_READ(DSPCNTR(plane));
4106
4107         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4108                                                crtc->x, crtc->y);
4109
4110         intel_crtc->active = true;
4111
4112         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4113         for_each_encoder_on_crtc(dev, crtc, encoder)
4114                 if (encoder->pre_enable)
4115                         encoder->pre_enable(encoder);
4116
4117         if (intel_crtc->config.has_pch_encoder) {
4118                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4119                 dev_priv->display.fdi_link_train(crtc);
4120         }
4121
4122         intel_ddi_enable_pipe_clock(intel_crtc);
4123
4124         ironlake_pfit_enable(intel_crtc);
4125
4126         /*
4127          * On ILK+ LUT must be loaded before the pipe is running but with
4128          * clocks enabled
4129          */
4130         intel_crtc_load_lut(crtc);
4131
4132         intel_ddi_set_pipe_settings(crtc);
4133         intel_ddi_enable_transcoder_func(crtc);
4134
4135         intel_update_watermarks(crtc);
4136         intel_enable_pipe(intel_crtc);
4137
4138         if (intel_crtc->config.has_pch_encoder)
4139                 lpt_pch_enable(crtc);
4140
4141         if (intel_crtc->config.dp_encoder_is_mst)
4142                 intel_ddi_set_vc_payload_alloc(crtc, true);
4143
4144         for_each_encoder_on_crtc(dev, crtc, encoder) {
4145                 encoder->enable(encoder);
4146                 intel_opregion_notify_encoder(encoder, true);
4147         }
4148
4149         /* If we change the relative order between pipe/planes enabling, we need
4150          * to change the workaround. */
4151         haswell_mode_set_planes_workaround(intel_crtc);
4152         intel_crtc_enable_planes(crtc);
4153 }
4154
4155 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4156 {
4157         struct drm_device *dev = crtc->base.dev;
4158         struct drm_i915_private *dev_priv = dev->dev_private;
4159         int pipe = crtc->pipe;
4160
4161         /* To avoid upsetting the power well on haswell only disable the pfit if
4162          * it's in use. The hw state code will make sure we get this right. */
4163         if (crtc->config.pch_pfit.enabled) {
4164                 I915_WRITE(PF_CTL(pipe), 0);
4165                 I915_WRITE(PF_WIN_POS(pipe), 0);
4166                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4167         }
4168 }
4169
4170 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4171 {
4172         struct drm_device *dev = crtc->dev;
4173         struct drm_i915_private *dev_priv = dev->dev_private;
4174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4175         struct intel_encoder *encoder;
4176         int pipe = intel_crtc->pipe;
4177         u32 reg, temp;
4178
4179         if (!intel_crtc->active)
4180                 return;
4181
4182         intel_crtc_disable_planes(crtc);
4183
4184         for_each_encoder_on_crtc(dev, crtc, encoder)
4185                 encoder->disable(encoder);
4186
4187         if (intel_crtc->config.has_pch_encoder)
4188                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4189
4190         intel_disable_pipe(dev_priv, pipe);
4191
4192         if (intel_crtc->config.dp_encoder_is_mst)
4193                 intel_ddi_set_vc_payload_alloc(crtc, false);
4194
4195         ironlake_pfit_disable(intel_crtc);
4196
4197         for_each_encoder_on_crtc(dev, crtc, encoder)
4198                 if (encoder->post_disable)
4199                         encoder->post_disable(encoder);
4200
4201         if (intel_crtc->config.has_pch_encoder) {
4202                 ironlake_fdi_disable(crtc);
4203
4204                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4205                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4206
4207                 if (HAS_PCH_CPT(dev)) {
4208                         /* disable TRANS_DP_CTL */
4209                         reg = TRANS_DP_CTL(pipe);
4210                         temp = I915_READ(reg);
4211                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4212                                   TRANS_DP_PORT_SEL_MASK);
4213                         temp |= TRANS_DP_PORT_SEL_NONE;
4214                         I915_WRITE(reg, temp);
4215
4216                         /* disable DPLL_SEL */
4217                         temp = I915_READ(PCH_DPLL_SEL);
4218                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4219                         I915_WRITE(PCH_DPLL_SEL, temp);
4220                 }
4221
4222                 /* disable PCH DPLL */
4223                 intel_disable_shared_dpll(intel_crtc);
4224
4225                 ironlake_fdi_pll_disable(intel_crtc);
4226         }
4227
4228         intel_crtc->active = false;
4229         intel_update_watermarks(crtc);
4230
4231         mutex_lock(&dev->struct_mutex);
4232         intel_update_fbc(dev);
4233         mutex_unlock(&dev->struct_mutex);
4234 }
4235
4236 static void haswell_crtc_disable(struct drm_crtc *crtc)
4237 {
4238         struct drm_device *dev = crtc->dev;
4239         struct drm_i915_private *dev_priv = dev->dev_private;
4240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4241         struct intel_encoder *encoder;
4242         int pipe = intel_crtc->pipe;
4243         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4244
4245         if (!intel_crtc->active)
4246                 return;
4247
4248         intel_crtc_disable_planes(crtc);
4249
4250         for_each_encoder_on_crtc(dev, crtc, encoder) {
4251                 intel_opregion_notify_encoder(encoder, false);
4252                 encoder->disable(encoder);
4253         }
4254
4255         if (intel_crtc->config.has_pch_encoder)
4256                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4257         intel_disable_pipe(dev_priv, pipe);
4258
4259         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4260
4261         ironlake_pfit_disable(intel_crtc);
4262
4263         intel_ddi_disable_pipe_clock(intel_crtc);
4264
4265         if (intel_crtc->config.has_pch_encoder) {
4266                 lpt_disable_pch_transcoder(dev_priv);
4267                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4268                 intel_ddi_fdi_disable(crtc);
4269         }
4270
4271         for_each_encoder_on_crtc(dev, crtc, encoder)
4272                 if (encoder->post_disable)
4273                         encoder->post_disable(encoder);
4274
4275         intel_crtc->active = false;
4276         intel_update_watermarks(crtc);
4277
4278         mutex_lock(&dev->struct_mutex);
4279         intel_update_fbc(dev);
4280         mutex_unlock(&dev->struct_mutex);
4281
4282         if (intel_crtc_to_shared_dpll(intel_crtc))
4283                 intel_disable_shared_dpll(intel_crtc);
4284 }
4285
4286 static void ironlake_crtc_off(struct drm_crtc *crtc)
4287 {
4288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4289         intel_put_shared_dpll(intel_crtc);
4290 }
4291
4292
4293 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4294 {
4295         struct drm_device *dev = crtc->base.dev;
4296         struct drm_i915_private *dev_priv = dev->dev_private;
4297         struct intel_crtc_config *pipe_config = &crtc->config;
4298
4299         if (!crtc->config.gmch_pfit.control)
4300                 return;
4301
4302         /*
4303          * The panel fitter should only be adjusted whilst the pipe is disabled,
4304          * according to register description and PRM.
4305          */
4306         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4307         assert_pipe_disabled(dev_priv, crtc->pipe);
4308
4309         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4310         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4311
4312         /* Border color in case we don't scale up to the full screen. Black by
4313          * default, change to something else for debugging. */
4314         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4315 }
4316
4317 static enum intel_display_power_domain port_to_power_domain(enum port port)
4318 {
4319         switch (port) {
4320         case PORT_A:
4321                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4322         case PORT_B:
4323                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4324         case PORT_C:
4325                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4326         case PORT_D:
4327                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4328         default:
4329                 WARN_ON_ONCE(1);
4330                 return POWER_DOMAIN_PORT_OTHER;
4331         }
4332 }
4333
4334 #define for_each_power_domain(domain, mask)                             \
4335         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4336                 if ((1 << (domain)) & (mask))
4337
4338 enum intel_display_power_domain
4339 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4340 {
4341         struct drm_device *dev = intel_encoder->base.dev;
4342         struct intel_digital_port *intel_dig_port;
4343
4344         switch (intel_encoder->type) {
4345         case INTEL_OUTPUT_UNKNOWN:
4346                 /* Only DDI platforms should ever use this output type */
4347                 WARN_ON_ONCE(!HAS_DDI(dev));
4348         case INTEL_OUTPUT_DISPLAYPORT:
4349         case INTEL_OUTPUT_HDMI:
4350         case INTEL_OUTPUT_EDP:
4351                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4352                 return port_to_power_domain(intel_dig_port->port);
4353         case INTEL_OUTPUT_DP_MST:
4354                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4355                 return port_to_power_domain(intel_dig_port->port);
4356         case INTEL_OUTPUT_ANALOG:
4357                 return POWER_DOMAIN_PORT_CRT;
4358         case INTEL_OUTPUT_DSI:
4359                 return POWER_DOMAIN_PORT_DSI;
4360         default:
4361                 return POWER_DOMAIN_PORT_OTHER;
4362         }
4363 }
4364
4365 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4366 {
4367         struct drm_device *dev = crtc->dev;
4368         struct intel_encoder *intel_encoder;
4369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4370         enum pipe pipe = intel_crtc->pipe;
4371         unsigned long mask;
4372         enum transcoder transcoder;
4373
4374         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4375
4376         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4377         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4378         if (intel_crtc->config.pch_pfit.enabled ||
4379             intel_crtc->config.pch_pfit.force_thru)
4380                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4381
4382         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4383                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4384
4385         return mask;
4386 }
4387
4388 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4389                                   bool enable)
4390 {
4391         if (dev_priv->power_domains.init_power_on == enable)
4392                 return;
4393
4394         if (enable)
4395                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4396         else
4397                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4398
4399         dev_priv->power_domains.init_power_on = enable;
4400 }
4401
4402 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4403 {
4404         struct drm_i915_private *dev_priv = dev->dev_private;
4405         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4406         struct intel_crtc *crtc;
4407
4408         /*
4409          * First get all needed power domains, then put all unneeded, to avoid
4410          * any unnecessary toggling of the power wells.
4411          */
4412         for_each_intel_crtc(dev, crtc) {
4413                 enum intel_display_power_domain domain;
4414
4415                 if (!crtc->base.enabled)
4416                         continue;
4417
4418                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4419
4420                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4421                         intel_display_power_get(dev_priv, domain);
4422         }
4423
4424         for_each_intel_crtc(dev, crtc) {
4425                 enum intel_display_power_domain domain;
4426
4427                 for_each_power_domain(domain, crtc->enabled_power_domains)
4428                         intel_display_power_put(dev_priv, domain);
4429
4430                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4431         }
4432
4433         intel_display_set_init_power(dev_priv, false);
4434 }
4435
4436 /* returns HPLL frequency in kHz */
4437 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4438 {
4439         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4440
4441         /* Obtain SKU information */
4442         mutex_lock(&dev_priv->dpio_lock);
4443         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4444                 CCK_FUSE_HPLL_FREQ_MASK;
4445         mutex_unlock(&dev_priv->dpio_lock);
4446
4447         return vco_freq[hpll_freq] * 1000;
4448 }
4449
4450 static void vlv_update_cdclk(struct drm_device *dev)
4451 {
4452         struct drm_i915_private *dev_priv = dev->dev_private;
4453
4454         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4455         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4456                          dev_priv->vlv_cdclk_freq);
4457
4458         /*
4459          * Program the gmbus_freq based on the cdclk frequency.
4460          * BSpec erroneously claims we should aim for 4MHz, but
4461          * in fact 1MHz is the correct frequency.
4462          */
4463         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4464 }
4465
4466 /* Adjust CDclk dividers to allow high res or save power if possible */
4467 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4468 {
4469         struct drm_i915_private *dev_priv = dev->dev_private;
4470         u32 val, cmd;
4471
4472         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4473
4474         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4475                 cmd = 2;
4476         else if (cdclk == 266667)
4477                 cmd = 1;
4478         else
4479                 cmd = 0;
4480
4481         mutex_lock(&dev_priv->rps.hw_lock);
4482         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4483         val &= ~DSPFREQGUAR_MASK;
4484         val |= (cmd << DSPFREQGUAR_SHIFT);
4485         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4486         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4487                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4488                      50)) {
4489                 DRM_ERROR("timed out waiting for CDclk change\n");
4490         }
4491         mutex_unlock(&dev_priv->rps.hw_lock);
4492
4493         if (cdclk == 400000) {
4494                 u32 divider, vco;
4495
4496                 vco = valleyview_get_vco(dev_priv);
4497                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4498
4499                 mutex_lock(&dev_priv->dpio_lock);
4500                 /* adjust cdclk divider */
4501                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4502                 val &= ~DISPLAY_FREQUENCY_VALUES;
4503                 val |= divider;
4504                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4505
4506                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4507                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4508                              50))
4509                         DRM_ERROR("timed out waiting for CDclk change\n");
4510                 mutex_unlock(&dev_priv->dpio_lock);
4511         }
4512
4513         mutex_lock(&dev_priv->dpio_lock);
4514         /* adjust self-refresh exit latency value */
4515         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4516         val &= ~0x7f;
4517
4518         /*
4519          * For high bandwidth configs, we set a higher latency in the bunit
4520          * so that the core display fetch happens in time to avoid underruns.
4521          */
4522         if (cdclk == 400000)
4523                 val |= 4500 / 250; /* 4.5 usec */
4524         else
4525                 val |= 3000 / 250; /* 3.0 usec */
4526         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4527         mutex_unlock(&dev_priv->dpio_lock);
4528
4529         vlv_update_cdclk(dev);
4530 }
4531
4532 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4533                                  int max_pixclk)
4534 {
4535         int vco = valleyview_get_vco(dev_priv);
4536         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4537
4538         /*
4539          * Really only a few cases to deal with, as only 4 CDclks are supported:
4540          *   200MHz
4541          *   267MHz
4542          *   320/333MHz (depends on HPLL freq)
4543          *   400MHz
4544          * So we check to see whether we're above 90% of the lower bin and
4545          * adjust if needed.
4546          *
4547          * We seem to get an unstable or solid color picture at 200MHz.
4548          * Not sure what's wrong. For now use 200MHz only when all pipes
4549          * are off.
4550          */
4551         if (max_pixclk > freq_320*9/10)
4552                 return 400000;
4553         else if (max_pixclk > 266667*9/10)
4554                 return freq_320;
4555         else if (max_pixclk > 0)
4556                 return 266667;
4557         else
4558                 return 200000;
4559 }
4560
4561 /* compute the max pixel clock for new configuration */
4562 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4563 {
4564         struct drm_device *dev = dev_priv->dev;
4565         struct intel_crtc *intel_crtc;
4566         int max_pixclk = 0;
4567
4568         for_each_intel_crtc(dev, intel_crtc) {
4569                 if (intel_crtc->new_enabled)
4570                         max_pixclk = max(max_pixclk,
4571                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4572         }
4573
4574         return max_pixclk;
4575 }
4576
4577 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4578                                             unsigned *prepare_pipes)
4579 {
4580         struct drm_i915_private *dev_priv = dev->dev_private;
4581         struct intel_crtc *intel_crtc;
4582         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4583
4584         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4585             dev_priv->vlv_cdclk_freq)
4586                 return;
4587
4588         /* disable/enable all currently active pipes while we change cdclk */
4589         for_each_intel_crtc(dev, intel_crtc)
4590                 if (intel_crtc->base.enabled)
4591                         *prepare_pipes |= (1 << intel_crtc->pipe);
4592 }
4593
4594 static void valleyview_modeset_global_resources(struct drm_device *dev)
4595 {
4596         struct drm_i915_private *dev_priv = dev->dev_private;
4597         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4598         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4599
4600         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4601                 valleyview_set_cdclk(dev, req_cdclk);
4602         modeset_update_crtc_power_domains(dev);
4603 }
4604
4605 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4606 {
4607         struct drm_device *dev = crtc->dev;
4608         struct drm_i915_private *dev_priv = dev->dev_private;
4609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4610         struct intel_encoder *encoder;
4611         int pipe = intel_crtc->pipe;
4612         int plane = intel_crtc->plane;
4613         bool is_dsi;
4614         u32 dspcntr;
4615
4616         WARN_ON(!crtc->enabled);
4617
4618         if (intel_crtc->active)
4619                 return;
4620
4621         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4622
4623         if (!is_dsi && !IS_CHERRYVIEW(dev))
4624                 vlv_prepare_pll(intel_crtc);
4625
4626         /* Set up the display plane register */
4627         dspcntr = DISPPLANE_GAMMA_ENABLE;
4628
4629         if (intel_crtc->config.has_dp_encoder)
4630                 intel_dp_set_m_n(intel_crtc);
4631
4632         intel_set_pipe_timings(intel_crtc);
4633
4634         /* pipesrc and dspsize control the size that is scaled from,
4635          * which should always be the user's requested size.
4636          */
4637         I915_WRITE(DSPSIZE(plane),
4638                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4639                    (intel_crtc->config.pipe_src_w - 1));
4640         I915_WRITE(DSPPOS(plane), 0);
4641
4642         i9xx_set_pipeconf(intel_crtc);
4643
4644         I915_WRITE(DSPCNTR(plane), dspcntr);
4645         POSTING_READ(DSPCNTR(plane));
4646
4647         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4648                                                crtc->x, crtc->y);
4649
4650         intel_crtc->active = true;
4651
4652         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4653
4654         for_each_encoder_on_crtc(dev, crtc, encoder)
4655                 if (encoder->pre_pll_enable)
4656                         encoder->pre_pll_enable(encoder);
4657
4658         if (!is_dsi) {
4659                 if (IS_CHERRYVIEW(dev))
4660                         chv_enable_pll(intel_crtc);
4661                 else
4662                         vlv_enable_pll(intel_crtc);
4663         }
4664
4665         for_each_encoder_on_crtc(dev, crtc, encoder)
4666                 if (encoder->pre_enable)
4667                         encoder->pre_enable(encoder);
4668
4669         i9xx_pfit_enable(intel_crtc);
4670
4671         intel_crtc_load_lut(crtc);
4672
4673         intel_update_watermarks(crtc);
4674         intel_enable_pipe(intel_crtc);
4675
4676         for_each_encoder_on_crtc(dev, crtc, encoder)
4677                 encoder->enable(encoder);
4678
4679         intel_crtc_enable_planes(crtc);
4680
4681         /* Underruns don't raise interrupts, so check manually. */
4682         i9xx_check_fifo_underruns(dev);
4683 }
4684
4685 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4686 {
4687         struct drm_device *dev = crtc->base.dev;
4688         struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4691         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4692 }
4693
4694 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4695 {
4696         struct drm_device *dev = crtc->dev;
4697         struct drm_i915_private *dev_priv = dev->dev_private;
4698         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4699         struct intel_encoder *encoder;
4700         int pipe = intel_crtc->pipe;
4701         int plane = intel_crtc->plane;
4702         u32 dspcntr;
4703
4704         WARN_ON(!crtc->enabled);
4705
4706         if (intel_crtc->active)
4707                 return;
4708
4709         i9xx_set_pll_dividers(intel_crtc);
4710
4711         /* Set up the display plane register */
4712         dspcntr = DISPPLANE_GAMMA_ENABLE;
4713
4714         if (pipe == 0)
4715                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4716         else
4717                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4718
4719         if (intel_crtc->config.has_dp_encoder)
4720                 intel_dp_set_m_n(intel_crtc);
4721
4722         intel_set_pipe_timings(intel_crtc);
4723
4724         /* pipesrc and dspsize control the size that is scaled from,
4725          * which should always be the user's requested size.
4726          */
4727         I915_WRITE(DSPSIZE(plane),
4728                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4729                    (intel_crtc->config.pipe_src_w - 1));
4730         I915_WRITE(DSPPOS(plane), 0);
4731
4732         i9xx_set_pipeconf(intel_crtc);
4733
4734         I915_WRITE(DSPCNTR(plane), dspcntr);
4735         POSTING_READ(DSPCNTR(plane));
4736
4737         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4738                                                crtc->x, crtc->y);
4739
4740         intel_crtc->active = true;
4741
4742         if (!IS_GEN2(dev))
4743                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4744
4745         for_each_encoder_on_crtc(dev, crtc, encoder)
4746                 if (encoder->pre_enable)
4747                         encoder->pre_enable(encoder);
4748
4749         i9xx_enable_pll(intel_crtc);
4750
4751         i9xx_pfit_enable(intel_crtc);
4752
4753         intel_crtc_load_lut(crtc);
4754
4755         intel_update_watermarks(crtc);
4756         intel_enable_pipe(intel_crtc);
4757
4758         for_each_encoder_on_crtc(dev, crtc, encoder)
4759                 encoder->enable(encoder);
4760
4761         intel_crtc_enable_planes(crtc);
4762
4763         /*
4764          * Gen2 reports pipe underruns whenever all planes are disabled.
4765          * So don't enable underrun reporting before at least some planes
4766          * are enabled.
4767          * FIXME: Need to fix the logic to work when we turn off all planes
4768          * but leave the pipe running.
4769          */
4770         if (IS_GEN2(dev))
4771                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4772
4773         /* Underruns don't raise interrupts, so check manually. */
4774         i9xx_check_fifo_underruns(dev);
4775 }
4776
4777 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4778 {
4779         struct drm_device *dev = crtc->base.dev;
4780         struct drm_i915_private *dev_priv = dev->dev_private;
4781
4782         if (!crtc->config.gmch_pfit.control)
4783                 return;
4784
4785         assert_pipe_disabled(dev_priv, crtc->pipe);
4786
4787         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4788                          I915_READ(PFIT_CONTROL));
4789         I915_WRITE(PFIT_CONTROL, 0);
4790 }
4791
4792 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4793 {
4794         struct drm_device *dev = crtc->dev;
4795         struct drm_i915_private *dev_priv = dev->dev_private;
4796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4797         struct intel_encoder *encoder;
4798         int pipe = intel_crtc->pipe;
4799
4800         if (!intel_crtc->active)
4801                 return;
4802
4803         /*
4804          * Gen2 reports pipe underruns whenever all planes are disabled.
4805          * So diasble underrun reporting before all the planes get disabled.
4806          * FIXME: Need to fix the logic to work when we turn off all planes
4807          * but leave the pipe running.
4808          */
4809         if (IS_GEN2(dev))
4810                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4811
4812         /*
4813          * Vblank time updates from the shadow to live plane control register
4814          * are blocked if the memory self-refresh mode is active at that
4815          * moment. So to make sure the plane gets truly disabled, disable
4816          * first the self-refresh mode. The self-refresh enable bit in turn
4817          * will be checked/applied by the HW only at the next frame start
4818          * event which is after the vblank start event, so we need to have a
4819          * wait-for-vblank between disabling the plane and the pipe.
4820          */
4821         intel_set_memory_cxsr(dev_priv, false);
4822         intel_crtc_disable_planes(crtc);
4823
4824         for_each_encoder_on_crtc(dev, crtc, encoder)
4825                 encoder->disable(encoder);
4826
4827         /*
4828          * On gen2 planes are double buffered but the pipe isn't, so we must
4829          * wait for planes to fully turn off before disabling the pipe.
4830          * We also need to wait on all gmch platforms because of the
4831          * self-refresh mode constraint explained above.
4832          */
4833         intel_wait_for_vblank(dev, pipe);
4834
4835         intel_disable_pipe(dev_priv, pipe);
4836
4837         i9xx_pfit_disable(intel_crtc);
4838
4839         for_each_encoder_on_crtc(dev, crtc, encoder)
4840                 if (encoder->post_disable)
4841                         encoder->post_disable(encoder);
4842
4843         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4844                 if (IS_CHERRYVIEW(dev))
4845                         chv_disable_pll(dev_priv, pipe);
4846                 else if (IS_VALLEYVIEW(dev))
4847                         vlv_disable_pll(dev_priv, pipe);
4848                 else
4849                         i9xx_disable_pll(dev_priv, pipe);
4850         }
4851
4852         if (!IS_GEN2(dev))
4853                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4854
4855         intel_crtc->active = false;
4856         intel_update_watermarks(crtc);
4857
4858         mutex_lock(&dev->struct_mutex);
4859         intel_update_fbc(dev);
4860         mutex_unlock(&dev->struct_mutex);
4861 }
4862
4863 static void i9xx_crtc_off(struct drm_crtc *crtc)
4864 {
4865 }
4866
4867 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4868                                     bool enabled)
4869 {
4870         struct drm_device *dev = crtc->dev;
4871         struct drm_i915_master_private *master_priv;
4872         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4873         int pipe = intel_crtc->pipe;
4874
4875         if (!dev->primary->master)
4876                 return;
4877
4878         master_priv = dev->primary->master->driver_priv;
4879         if (!master_priv->sarea_priv)
4880                 return;
4881
4882         switch (pipe) {
4883         case 0:
4884                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4885                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4886                 break;
4887         case 1:
4888                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4889                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4890                 break;
4891         default:
4892                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4893                 break;
4894         }
4895 }
4896
4897 /* Master function to enable/disable CRTC and corresponding power wells */
4898 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4899 {
4900         struct drm_device *dev = crtc->dev;
4901         struct drm_i915_private *dev_priv = dev->dev_private;
4902         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4903         enum intel_display_power_domain domain;
4904         unsigned long domains;
4905
4906         if (enable) {
4907                 if (!intel_crtc->active) {
4908                         domains = get_crtc_power_domains(crtc);
4909                         for_each_power_domain(domain, domains)
4910                                 intel_display_power_get(dev_priv, domain);
4911                         intel_crtc->enabled_power_domains = domains;
4912
4913                         dev_priv->display.crtc_enable(crtc);
4914                 }
4915         } else {
4916                 if (intel_crtc->active) {
4917                         dev_priv->display.crtc_disable(crtc);
4918
4919                         domains = intel_crtc->enabled_power_domains;
4920                         for_each_power_domain(domain, domains)
4921                                 intel_display_power_put(dev_priv, domain);
4922                         intel_crtc->enabled_power_domains = 0;
4923                 }
4924         }
4925 }
4926
4927 /**
4928  * Sets the power management mode of the pipe and plane.
4929  */
4930 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4931 {
4932         struct drm_device *dev = crtc->dev;
4933         struct intel_encoder *intel_encoder;
4934         bool enable = false;
4935
4936         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4937                 enable |= intel_encoder->connectors_active;
4938
4939         intel_crtc_control(crtc, enable);
4940
4941         intel_crtc_update_sarea(crtc, enable);
4942 }
4943
4944 static void intel_crtc_disable(struct drm_crtc *crtc)
4945 {
4946         struct drm_device *dev = crtc->dev;
4947         struct drm_connector *connector;
4948         struct drm_i915_private *dev_priv = dev->dev_private;
4949         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
4950         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4951
4952         /* crtc should still be enabled when we disable it. */
4953         WARN_ON(!crtc->enabled);
4954
4955         dev_priv->display.crtc_disable(crtc);
4956         intel_crtc_update_sarea(crtc, false);
4957         dev_priv->display.off(crtc);
4958
4959         if (crtc->primary->fb) {
4960                 mutex_lock(&dev->struct_mutex);
4961                 intel_unpin_fb_obj(old_obj);
4962                 i915_gem_track_fb(old_obj, NULL,
4963                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
4964                 mutex_unlock(&dev->struct_mutex);
4965                 crtc->primary->fb = NULL;
4966         }
4967
4968         /* Update computed state. */
4969         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4970                 if (!connector->encoder || !connector->encoder->crtc)
4971                         continue;
4972
4973                 if (connector->encoder->crtc != crtc)
4974                         continue;
4975
4976                 connector->dpms = DRM_MODE_DPMS_OFF;
4977                 to_intel_encoder(connector->encoder)->connectors_active = false;
4978         }
4979 }
4980
4981 void intel_encoder_destroy(struct drm_encoder *encoder)
4982 {
4983         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4984
4985         drm_encoder_cleanup(encoder);
4986         kfree(intel_encoder);
4987 }
4988
4989 /* Simple dpms helper for encoders with just one connector, no cloning and only
4990  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4991  * state of the entire output pipe. */
4992 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4993 {
4994         if (mode == DRM_MODE_DPMS_ON) {
4995                 encoder->connectors_active = true;
4996
4997                 intel_crtc_update_dpms(encoder->base.crtc);
4998         } else {
4999                 encoder->connectors_active = false;
5000
5001                 intel_crtc_update_dpms(encoder->base.crtc);
5002         }
5003 }
5004
5005 /* Cross check the actual hw state with our own modeset state tracking (and it's
5006  * internal consistency). */
5007 static void intel_connector_check_state(struct intel_connector *connector)
5008 {
5009         if (connector->get_hw_state(connector)) {
5010                 struct intel_encoder *encoder = connector->encoder;
5011                 struct drm_crtc *crtc;
5012                 bool encoder_enabled;
5013                 enum pipe pipe;
5014
5015                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5016                               connector->base.base.id,
5017                               connector->base.name);
5018
5019                 /* there is no real hw state for MST connectors */
5020                 if (connector->mst_port)
5021                         return;
5022
5023                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5024                      "wrong connector dpms state\n");
5025                 WARN(connector->base.encoder != &encoder->base,
5026                      "active connector not linked to encoder\n");
5027
5028                 if (encoder) {
5029                         WARN(!encoder->connectors_active,
5030                              "encoder->connectors_active not set\n");
5031
5032                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5033                         WARN(!encoder_enabled, "encoder not enabled\n");
5034                         if (WARN_ON(!encoder->base.crtc))
5035                                 return;
5036
5037                         crtc = encoder->base.crtc;
5038
5039                         WARN(!crtc->enabled, "crtc not enabled\n");
5040                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5041                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5042                              "encoder active on the wrong pipe\n");
5043                 }
5044         }
5045 }
5046
5047 /* Even simpler default implementation, if there's really no special case to
5048  * consider. */
5049 void intel_connector_dpms(struct drm_connector *connector, int mode)
5050 {
5051         /* All the simple cases only support two dpms states. */
5052         if (mode != DRM_MODE_DPMS_ON)
5053                 mode = DRM_MODE_DPMS_OFF;
5054
5055         if (mode == connector->dpms)
5056                 return;
5057
5058         connector->dpms = mode;
5059
5060         /* Only need to change hw state when actually enabled */
5061         if (connector->encoder)
5062                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5063
5064         intel_modeset_check_state(connector->dev);
5065 }
5066
5067 /* Simple connector->get_hw_state implementation for encoders that support only
5068  * one connector and no cloning and hence the encoder state determines the state
5069  * of the connector. */
5070 bool intel_connector_get_hw_state(struct intel_connector *connector)
5071 {
5072         enum pipe pipe = 0;
5073         struct intel_encoder *encoder = connector->encoder;
5074
5075         return encoder->get_hw_state(encoder, &pipe);
5076 }
5077
5078 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5079                                      struct intel_crtc_config *pipe_config)
5080 {
5081         struct drm_i915_private *dev_priv = dev->dev_private;
5082         struct intel_crtc *pipe_B_crtc =
5083                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5084
5085         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5086                       pipe_name(pipe), pipe_config->fdi_lanes);
5087         if (pipe_config->fdi_lanes > 4) {
5088                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5089                               pipe_name(pipe), pipe_config->fdi_lanes);
5090                 return false;
5091         }
5092
5093         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5094                 if (pipe_config->fdi_lanes > 2) {
5095                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5096                                       pipe_config->fdi_lanes);
5097                         return false;
5098                 } else {
5099                         return true;
5100                 }
5101         }
5102
5103         if (INTEL_INFO(dev)->num_pipes == 2)
5104                 return true;
5105
5106         /* Ivybridge 3 pipe is really complicated */
5107         switch (pipe) {
5108         case PIPE_A:
5109                 return true;
5110         case PIPE_B:
5111                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5112                     pipe_config->fdi_lanes > 2) {
5113                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5114                                       pipe_name(pipe), pipe_config->fdi_lanes);
5115                         return false;
5116                 }
5117                 return true;
5118         case PIPE_C:
5119                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5120                     pipe_B_crtc->config.fdi_lanes <= 2) {
5121                         if (pipe_config->fdi_lanes > 2) {
5122                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5123                                               pipe_name(pipe), pipe_config->fdi_lanes);
5124                                 return false;
5125                         }
5126                 } else {
5127                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5128                         return false;
5129                 }
5130                 return true;
5131         default:
5132                 BUG();
5133         }
5134 }
5135
5136 #define RETRY 1
5137 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5138                                        struct intel_crtc_config *pipe_config)
5139 {
5140         struct drm_device *dev = intel_crtc->base.dev;
5141         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5142         int lane, link_bw, fdi_dotclock;
5143         bool setup_ok, needs_recompute = false;
5144
5145 retry:
5146         /* FDI is a binary signal running at ~2.7GHz, encoding
5147          * each output octet as 10 bits. The actual frequency
5148          * is stored as a divider into a 100MHz clock, and the
5149          * mode pixel clock is stored in units of 1KHz.
5150          * Hence the bw of each lane in terms of the mode signal
5151          * is:
5152          */
5153         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5154
5155         fdi_dotclock = adjusted_mode->crtc_clock;
5156
5157         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5158                                            pipe_config->pipe_bpp);
5159
5160         pipe_config->fdi_lanes = lane;
5161
5162         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5163                                link_bw, &pipe_config->fdi_m_n);
5164
5165         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5166                                             intel_crtc->pipe, pipe_config);
5167         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5168                 pipe_config->pipe_bpp -= 2*3;
5169                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5170                               pipe_config->pipe_bpp);
5171                 needs_recompute = true;
5172                 pipe_config->bw_constrained = true;
5173
5174                 goto retry;
5175         }
5176
5177         if (needs_recompute)
5178                 return RETRY;
5179
5180         return setup_ok ? 0 : -EINVAL;
5181 }
5182
5183 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5184                                    struct intel_crtc_config *pipe_config)
5185 {
5186         pipe_config->ips_enabled = i915.enable_ips &&
5187                                    hsw_crtc_supports_ips(crtc) &&
5188                                    pipe_config->pipe_bpp <= 24;
5189 }
5190
5191 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5192                                      struct intel_crtc_config *pipe_config)
5193 {
5194         struct drm_device *dev = crtc->base.dev;
5195         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5196
5197         /* FIXME should check pixel clock limits on all platforms */
5198         if (INTEL_INFO(dev)->gen < 4) {
5199                 struct drm_i915_private *dev_priv = dev->dev_private;
5200                 int clock_limit =
5201                         dev_priv->display.get_display_clock_speed(dev);
5202
5203                 /*
5204                  * Enable pixel doubling when the dot clock
5205                  * is > 90% of the (display) core speed.
5206                  *
5207                  * GDG double wide on either pipe,
5208                  * otherwise pipe A only.
5209                  */
5210                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5211                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5212                         clock_limit *= 2;
5213                         pipe_config->double_wide = true;
5214                 }
5215
5216                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5217                         return -EINVAL;
5218         }
5219
5220         /*
5221          * Pipe horizontal size must be even in:
5222          * - DVO ganged mode
5223          * - LVDS dual channel mode
5224          * - Double wide pipe
5225          */
5226         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5227              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5228                 pipe_config->pipe_src_w &= ~1;
5229
5230         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5231          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5232          */
5233         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5234                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5235                 return -EINVAL;
5236
5237         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5238                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5239         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5240                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5241                  * for lvds. */
5242                 pipe_config->pipe_bpp = 8*3;
5243         }
5244
5245         if (HAS_IPS(dev))
5246                 hsw_compute_ips_config(crtc, pipe_config);
5247
5248         /*
5249          * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5250          * old clock survives for now.
5251          */
5252         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5253                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5254
5255         if (pipe_config->has_pch_encoder)
5256                 return ironlake_fdi_compute_config(crtc, pipe_config);
5257
5258         return 0;
5259 }
5260
5261 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5262 {
5263         struct drm_i915_private *dev_priv = dev->dev_private;
5264         int vco = valleyview_get_vco(dev_priv);
5265         u32 val;
5266         int divider;
5267
5268         mutex_lock(&dev_priv->dpio_lock);
5269         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5270         mutex_unlock(&dev_priv->dpio_lock);
5271
5272         divider = val & DISPLAY_FREQUENCY_VALUES;
5273
5274         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5275              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5276              "cdclk change in progress\n");
5277
5278         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5279 }
5280
5281 static int i945_get_display_clock_speed(struct drm_device *dev)
5282 {
5283         return 400000;
5284 }
5285
5286 static int i915_get_display_clock_speed(struct drm_device *dev)
5287 {
5288         return 333000;
5289 }
5290
5291 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5292 {
5293         return 200000;
5294 }
5295
5296 static int pnv_get_display_clock_speed(struct drm_device *dev)
5297 {
5298         u16 gcfgc = 0;
5299
5300         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5301
5302         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5303         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5304                 return 267000;
5305         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5306                 return 333000;
5307         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5308                 return 444000;
5309         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5310                 return 200000;
5311         default:
5312                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5313         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5314                 return 133000;
5315         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5316                 return 167000;
5317         }
5318 }
5319
5320 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5321 {
5322         u16 gcfgc = 0;
5323
5324         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5325
5326         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5327                 return 133000;
5328         else {
5329                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5330                 case GC_DISPLAY_CLOCK_333_MHZ:
5331                         return 333000;
5332                 default:
5333                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5334                         return 190000;
5335                 }
5336         }
5337 }
5338
5339 static int i865_get_display_clock_speed(struct drm_device *dev)
5340 {
5341         return 266000;
5342 }
5343
5344 static int i855_get_display_clock_speed(struct drm_device *dev)
5345 {
5346         u16 hpllcc = 0;
5347         /* Assume that the hardware is in the high speed state.  This
5348          * should be the default.
5349          */
5350         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5351         case GC_CLOCK_133_200:
5352         case GC_CLOCK_100_200:
5353                 return 200000;
5354         case GC_CLOCK_166_250:
5355                 return 250000;
5356         case GC_CLOCK_100_133:
5357                 return 133000;
5358         }
5359
5360         /* Shouldn't happen */
5361         return 0;
5362 }
5363
5364 static int i830_get_display_clock_speed(struct drm_device *dev)
5365 {
5366         return 133000;
5367 }
5368
5369 static void
5370 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5371 {
5372         while (*num > DATA_LINK_M_N_MASK ||
5373                *den > DATA_LINK_M_N_MASK) {
5374                 *num >>= 1;
5375                 *den >>= 1;
5376         }
5377 }
5378
5379 static void compute_m_n(unsigned int m, unsigned int n,
5380                         uint32_t *ret_m, uint32_t *ret_n)
5381 {
5382         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5383         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5384         intel_reduce_m_n_ratio(ret_m, ret_n);
5385 }
5386
5387 void
5388 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5389                        int pixel_clock, int link_clock,
5390                        struct intel_link_m_n *m_n)
5391 {
5392         m_n->tu = 64;
5393
5394         compute_m_n(bits_per_pixel * pixel_clock,
5395                     link_clock * nlanes * 8,
5396                     &m_n->gmch_m, &m_n->gmch_n);
5397
5398         compute_m_n(pixel_clock, link_clock,
5399                     &m_n->link_m, &m_n->link_n);
5400 }
5401
5402 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5403 {
5404         if (i915.panel_use_ssc >= 0)
5405                 return i915.panel_use_ssc != 0;
5406         return dev_priv->vbt.lvds_use_ssc
5407                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5408 }
5409
5410 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5411 {
5412         struct drm_device *dev = crtc->dev;
5413         struct drm_i915_private *dev_priv = dev->dev_private;
5414         int refclk;
5415
5416         if (IS_VALLEYVIEW(dev)) {
5417                 refclk = 100000;
5418         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5419             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5420                 refclk = dev_priv->vbt.lvds_ssc_freq;
5421                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5422         } else if (!IS_GEN2(dev)) {
5423                 refclk = 96000;
5424         } else {
5425                 refclk = 48000;
5426         }
5427
5428         return refclk;
5429 }
5430
5431 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5432 {
5433         return (1 << dpll->n) << 16 | dpll->m2;
5434 }
5435
5436 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5437 {
5438         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5439 }
5440
5441 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5442                                      intel_clock_t *reduced_clock)
5443 {
5444         struct drm_device *dev = crtc->base.dev;
5445         u32 fp, fp2 = 0;
5446
5447         if (IS_PINEVIEW(dev)) {
5448                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5449                 if (reduced_clock)
5450                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5451         } else {
5452                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5453                 if (reduced_clock)
5454                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5455         }
5456
5457         crtc->config.dpll_hw_state.fp0 = fp;
5458
5459         crtc->lowfreq_avail = false;
5460         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5461             reduced_clock && i915.powersave) {
5462                 crtc->config.dpll_hw_state.fp1 = fp2;
5463                 crtc->lowfreq_avail = true;
5464         } else {
5465                 crtc->config.dpll_hw_state.fp1 = fp;
5466         }
5467 }
5468
5469 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5470                 pipe)
5471 {
5472         u32 reg_val;
5473
5474         /*
5475          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5476          * and set it to a reasonable value instead.
5477          */
5478         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5479         reg_val &= 0xffffff00;
5480         reg_val |= 0x00000030;
5481         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5482
5483         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5484         reg_val &= 0x8cffffff;
5485         reg_val = 0x8c000000;
5486         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5487
5488         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5489         reg_val &= 0xffffff00;
5490         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5491
5492         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5493         reg_val &= 0x00ffffff;
5494         reg_val |= 0xb0000000;
5495         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5496 }
5497
5498 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5499                                          struct intel_link_m_n *m_n)
5500 {
5501         struct drm_device *dev = crtc->base.dev;
5502         struct drm_i915_private *dev_priv = dev->dev_private;
5503         int pipe = crtc->pipe;
5504
5505         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5506         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5507         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5508         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5509 }
5510
5511 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5512                                          struct intel_link_m_n *m_n)
5513 {
5514         struct drm_device *dev = crtc->base.dev;
5515         struct drm_i915_private *dev_priv = dev->dev_private;
5516         int pipe = crtc->pipe;
5517         enum transcoder transcoder = crtc->config.cpu_transcoder;
5518
5519         if (INTEL_INFO(dev)->gen >= 5) {
5520                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5521                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5522                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5523                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5524         } else {
5525                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5526                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5527                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5528                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5529         }
5530 }
5531
5532 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5533 {
5534         if (crtc->config.has_pch_encoder)
5535                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5536         else
5537                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5538 }
5539
5540 static void vlv_update_pll(struct intel_crtc *crtc)
5541 {
5542         u32 dpll, dpll_md;
5543
5544         /*
5545          * Enable DPIO clock input. We should never disable the reference
5546          * clock for pipe B, since VGA hotplug / manual detection depends
5547          * on it.
5548          */
5549         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5550                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5551         /* We should never disable this, set it here for state tracking */
5552         if (crtc->pipe == PIPE_B)
5553                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5554         dpll |= DPLL_VCO_ENABLE;
5555         crtc->config.dpll_hw_state.dpll = dpll;
5556
5557         dpll_md = (crtc->config.pixel_multiplier - 1)
5558                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5559         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5560 }
5561
5562 static void vlv_prepare_pll(struct intel_crtc *crtc)
5563 {
5564         struct drm_device *dev = crtc->base.dev;
5565         struct drm_i915_private *dev_priv = dev->dev_private;
5566         int pipe = crtc->pipe;
5567         u32 mdiv;
5568         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5569         u32 coreclk, reg_val;
5570
5571         mutex_lock(&dev_priv->dpio_lock);
5572
5573         bestn = crtc->config.dpll.n;
5574         bestm1 = crtc->config.dpll.m1;
5575         bestm2 = crtc->config.dpll.m2;
5576         bestp1 = crtc->config.dpll.p1;
5577         bestp2 = crtc->config.dpll.p2;
5578
5579         /* See eDP HDMI DPIO driver vbios notes doc */
5580
5581         /* PLL B needs special handling */
5582         if (pipe == PIPE_B)
5583                 vlv_pllb_recal_opamp(dev_priv, pipe);
5584
5585         /* Set up Tx target for periodic Rcomp update */
5586         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5587
5588         /* Disable target IRef on PLL */
5589         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5590         reg_val &= 0x00ffffff;
5591         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5592
5593         /* Disable fast lock */
5594         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5595
5596         /* Set idtafcrecal before PLL is enabled */
5597         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5598         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5599         mdiv |= ((bestn << DPIO_N_SHIFT));
5600         mdiv |= (1 << DPIO_K_SHIFT);
5601
5602         /*
5603          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5604          * but we don't support that).
5605          * Note: don't use the DAC post divider as it seems unstable.
5606          */
5607         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5608         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5609
5610         mdiv |= DPIO_ENABLE_CALIBRATION;
5611         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5612
5613         /* Set HBR and RBR LPF coefficients */
5614         if (crtc->config.port_clock == 162000 ||
5615             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5616             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5617                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5618                                  0x009f0003);
5619         else
5620                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5621                                  0x00d0000f);
5622
5623         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5624             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5625                 /* Use SSC source */
5626                 if (pipe == PIPE_A)
5627                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5628                                          0x0df40000);
5629                 else
5630                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5631                                          0x0df70000);
5632         } else { /* HDMI or VGA */
5633                 /* Use bend source */
5634                 if (pipe == PIPE_A)
5635                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5636                                          0x0df70000);
5637                 else
5638                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5639                                          0x0df40000);
5640         }
5641
5642         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5643         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5644         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5645             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5646                 coreclk |= 0x01000000;
5647         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5648
5649         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5650         mutex_unlock(&dev_priv->dpio_lock);
5651 }
5652
5653 static void chv_update_pll(struct intel_crtc *crtc)
5654 {
5655         struct drm_device *dev = crtc->base.dev;
5656         struct drm_i915_private *dev_priv = dev->dev_private;
5657         int pipe = crtc->pipe;
5658         int dpll_reg = DPLL(crtc->pipe);
5659         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5660         u32 loopfilter, intcoeff;
5661         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5662         int refclk;
5663
5664         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5665                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5666                 DPLL_VCO_ENABLE;
5667         if (pipe != PIPE_A)
5668                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5669
5670         crtc->config.dpll_hw_state.dpll_md =
5671                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5672
5673         bestn = crtc->config.dpll.n;
5674         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5675         bestm1 = crtc->config.dpll.m1;
5676         bestm2 = crtc->config.dpll.m2 >> 22;
5677         bestp1 = crtc->config.dpll.p1;
5678         bestp2 = crtc->config.dpll.p2;
5679
5680         /*
5681          * Enable Refclk and SSC
5682          */
5683         I915_WRITE(dpll_reg,
5684                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5685
5686         mutex_lock(&dev_priv->dpio_lock);
5687
5688         /* p1 and p2 divider */
5689         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5690                         5 << DPIO_CHV_S1_DIV_SHIFT |
5691                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5692                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5693                         1 << DPIO_CHV_K_DIV_SHIFT);
5694
5695         /* Feedback post-divider - m2 */
5696         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5697
5698         /* Feedback refclk divider - n and m1 */
5699         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5700                         DPIO_CHV_M1_DIV_BY_2 |
5701                         1 << DPIO_CHV_N_DIV_SHIFT);
5702
5703         /* M2 fraction division */
5704         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5705
5706         /* M2 fraction division enable */
5707         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5708                        DPIO_CHV_FRAC_DIV_EN |
5709                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5710
5711         /* Loop filter */
5712         refclk = i9xx_get_refclk(&crtc->base, 0);
5713         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5714                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5715         if (refclk == 100000)
5716                 intcoeff = 11;
5717         else if (refclk == 38400)
5718                 intcoeff = 10;
5719         else
5720                 intcoeff = 9;
5721         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5722         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5723
5724         /* AFC Recal */
5725         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5726                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5727                         DPIO_AFC_RECAL);
5728
5729         mutex_unlock(&dev_priv->dpio_lock);
5730 }
5731
5732 static void i9xx_update_pll(struct intel_crtc *crtc,
5733                             intel_clock_t *reduced_clock,
5734                             int num_connectors)
5735 {
5736         struct drm_device *dev = crtc->base.dev;
5737         struct drm_i915_private *dev_priv = dev->dev_private;
5738         u32 dpll;
5739         bool is_sdvo;
5740         struct dpll *clock = &crtc->config.dpll;
5741
5742         i9xx_update_pll_dividers(crtc, reduced_clock);
5743
5744         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5745                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5746
5747         dpll = DPLL_VGA_MODE_DIS;
5748
5749         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5750                 dpll |= DPLLB_MODE_LVDS;
5751         else
5752                 dpll |= DPLLB_MODE_DAC_SERIAL;
5753
5754         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5755                 dpll |= (crtc->config.pixel_multiplier - 1)
5756                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5757         }
5758
5759         if (is_sdvo)
5760                 dpll |= DPLL_SDVO_HIGH_SPEED;
5761
5762         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5763                 dpll |= DPLL_SDVO_HIGH_SPEED;
5764
5765         /* compute bitmask from p1 value */
5766         if (IS_PINEVIEW(dev))
5767                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5768         else {
5769                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5770                 if (IS_G4X(dev) && reduced_clock)
5771                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5772         }
5773         switch (clock->p2) {
5774         case 5:
5775                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5776                 break;
5777         case 7:
5778                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5779                 break;
5780         case 10:
5781                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5782                 break;
5783         case 14:
5784                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5785                 break;
5786         }
5787         if (INTEL_INFO(dev)->gen >= 4)
5788                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5789
5790         if (crtc->config.sdvo_tv_clock)
5791                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5792         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5793                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5794                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5795         else
5796                 dpll |= PLL_REF_INPUT_DREFCLK;
5797
5798         dpll |= DPLL_VCO_ENABLE;
5799         crtc->config.dpll_hw_state.dpll = dpll;
5800
5801         if (INTEL_INFO(dev)->gen >= 4) {
5802                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5803                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5804                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5805         }
5806 }
5807
5808 static void i8xx_update_pll(struct intel_crtc *crtc,
5809                             intel_clock_t *reduced_clock,
5810                             int num_connectors)
5811 {
5812         struct drm_device *dev = crtc->base.dev;
5813         struct drm_i915_private *dev_priv = dev->dev_private;
5814         u32 dpll;
5815         struct dpll *clock = &crtc->config.dpll;
5816
5817         i9xx_update_pll_dividers(crtc, reduced_clock);
5818
5819         dpll = DPLL_VGA_MODE_DIS;
5820
5821         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5822                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5823         } else {
5824                 if (clock->p1 == 2)
5825                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5826                 else
5827                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5828                 if (clock->p2 == 4)
5829                         dpll |= PLL_P2_DIVIDE_BY_4;
5830         }
5831
5832         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5833                 dpll |= DPLL_DVO_2X_MODE;
5834
5835         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5836                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5837                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5838         else
5839                 dpll |= PLL_REF_INPUT_DREFCLK;
5840
5841         dpll |= DPLL_VCO_ENABLE;
5842         crtc->config.dpll_hw_state.dpll = dpll;
5843 }
5844
5845 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5846 {
5847         struct drm_device *dev = intel_crtc->base.dev;
5848         struct drm_i915_private *dev_priv = dev->dev_private;
5849         enum pipe pipe = intel_crtc->pipe;
5850         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5851         struct drm_display_mode *adjusted_mode =
5852                 &intel_crtc->config.adjusted_mode;
5853         uint32_t crtc_vtotal, crtc_vblank_end;
5854         int vsyncshift = 0;
5855
5856         /* We need to be careful not to changed the adjusted mode, for otherwise
5857          * the hw state checker will get angry at the mismatch. */
5858         crtc_vtotal = adjusted_mode->crtc_vtotal;
5859         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5860
5861         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5862                 /* the chip adds 2 halflines automatically */
5863                 crtc_vtotal -= 1;
5864                 crtc_vblank_end -= 1;
5865
5866                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5867                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5868                 else
5869                         vsyncshift = adjusted_mode->crtc_hsync_start -
5870                                 adjusted_mode->crtc_htotal / 2;
5871                 if (vsyncshift < 0)
5872                         vsyncshift += adjusted_mode->crtc_htotal;
5873         }
5874
5875         if (INTEL_INFO(dev)->gen > 3)
5876                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5877
5878         I915_WRITE(HTOTAL(cpu_transcoder),
5879                    (adjusted_mode->crtc_hdisplay - 1) |
5880                    ((adjusted_mode->crtc_htotal - 1) << 16));
5881         I915_WRITE(HBLANK(cpu_transcoder),
5882                    (adjusted_mode->crtc_hblank_start - 1) |
5883                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5884         I915_WRITE(HSYNC(cpu_transcoder),
5885                    (adjusted_mode->crtc_hsync_start - 1) |
5886                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5887
5888         I915_WRITE(VTOTAL(cpu_transcoder),
5889                    (adjusted_mode->crtc_vdisplay - 1) |
5890                    ((crtc_vtotal - 1) << 16));
5891         I915_WRITE(VBLANK(cpu_transcoder),
5892                    (adjusted_mode->crtc_vblank_start - 1) |
5893                    ((crtc_vblank_end - 1) << 16));
5894         I915_WRITE(VSYNC(cpu_transcoder),
5895                    (adjusted_mode->crtc_vsync_start - 1) |
5896                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5897
5898         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5899          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5900          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5901          * bits. */
5902         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5903             (pipe == PIPE_B || pipe == PIPE_C))
5904                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5905
5906         /* pipesrc controls the size that is scaled from, which should
5907          * always be the user's requested size.
5908          */
5909         I915_WRITE(PIPESRC(pipe),
5910                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5911                    (intel_crtc->config.pipe_src_h - 1));
5912 }
5913
5914 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5915                                    struct intel_crtc_config *pipe_config)
5916 {
5917         struct drm_device *dev = crtc->base.dev;
5918         struct drm_i915_private *dev_priv = dev->dev_private;
5919         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5920         uint32_t tmp;
5921
5922         tmp = I915_READ(HTOTAL(cpu_transcoder));
5923         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5924         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5925         tmp = I915_READ(HBLANK(cpu_transcoder));
5926         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5927         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5928         tmp = I915_READ(HSYNC(cpu_transcoder));
5929         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5930         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5931
5932         tmp = I915_READ(VTOTAL(cpu_transcoder));
5933         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5934         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5935         tmp = I915_READ(VBLANK(cpu_transcoder));
5936         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5937         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5938         tmp = I915_READ(VSYNC(cpu_transcoder));
5939         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5940         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5941
5942         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5943                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5944                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5945                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5946         }
5947
5948         tmp = I915_READ(PIPESRC(crtc->pipe));
5949         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5950         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5951
5952         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5953         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5954 }
5955
5956 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5957                                  struct intel_crtc_config *pipe_config)
5958 {
5959         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5960         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5961         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5962         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5963
5964         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5965         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5966         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5967         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5968
5969         mode->flags = pipe_config->adjusted_mode.flags;
5970
5971         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5972         mode->flags |= pipe_config->adjusted_mode.flags;
5973 }
5974
5975 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5976 {
5977         struct drm_device *dev = intel_crtc->base.dev;
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         uint32_t pipeconf;
5980
5981         pipeconf = 0;
5982
5983         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5984             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5985                 pipeconf |= PIPECONF_ENABLE;
5986
5987         if (intel_crtc->config.double_wide)
5988                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5989
5990         /* only g4x and later have fancy bpc/dither controls */
5991         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5992                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5993                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5994                         pipeconf |= PIPECONF_DITHER_EN |
5995                                     PIPECONF_DITHER_TYPE_SP;
5996
5997                 switch (intel_crtc->config.pipe_bpp) {
5998                 case 18:
5999                         pipeconf |= PIPECONF_6BPC;
6000                         break;
6001                 case 24:
6002                         pipeconf |= PIPECONF_8BPC;
6003                         break;
6004                 case 30:
6005                         pipeconf |= PIPECONF_10BPC;
6006                         break;
6007                 default:
6008                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6009                         BUG();
6010                 }
6011         }
6012
6013         if (HAS_PIPE_CXSR(dev)) {
6014                 if (intel_crtc->lowfreq_avail) {
6015                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6016                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6017                 } else {
6018                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6019                 }
6020         }
6021
6022         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6023                 if (INTEL_INFO(dev)->gen < 4 ||
6024                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6025                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6026                 else
6027                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6028         } else
6029                 pipeconf |= PIPECONF_PROGRESSIVE;
6030
6031         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6032                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6033
6034         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6035         POSTING_READ(PIPECONF(intel_crtc->pipe));
6036 }
6037
6038 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6039                               int x, int y,
6040                               struct drm_framebuffer *fb)
6041 {
6042         struct drm_device *dev = crtc->dev;
6043         struct drm_i915_private *dev_priv = dev->dev_private;
6044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6045         int refclk, num_connectors = 0;
6046         intel_clock_t clock, reduced_clock;
6047         bool ok, has_reduced_clock = false;
6048         bool is_lvds = false, is_dsi = false;
6049         struct intel_encoder *encoder;
6050         const intel_limit_t *limit;
6051
6052         for_each_encoder_on_crtc(dev, crtc, encoder) {
6053                 switch (encoder->type) {
6054                 case INTEL_OUTPUT_LVDS:
6055                         is_lvds = true;
6056                         break;
6057                 case INTEL_OUTPUT_DSI:
6058                         is_dsi = true;
6059                         break;
6060                 }
6061
6062                 num_connectors++;
6063         }
6064
6065         if (is_dsi)
6066                 return 0;
6067
6068         if (!intel_crtc->config.clock_set) {
6069                 refclk = i9xx_get_refclk(crtc, num_connectors);
6070
6071                 /*
6072                  * Returns a set of divisors for the desired target clock with
6073                  * the given refclk, or FALSE.  The returned values represent
6074                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6075                  * 2) / p1 / p2.
6076                  */
6077                 limit = intel_limit(crtc, refclk);
6078                 ok = dev_priv->display.find_dpll(limit, crtc,
6079                                                  intel_crtc->config.port_clock,
6080                                                  refclk, NULL, &clock);
6081                 if (!ok) {
6082                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6083                         return -EINVAL;
6084                 }
6085
6086                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6087                         /*
6088                          * Ensure we match the reduced clock's P to the target
6089                          * clock.  If the clocks don't match, we can't switch
6090                          * the display clock by using the FP0/FP1. In such case
6091                          * we will disable the LVDS downclock feature.
6092                          */
6093                         has_reduced_clock =
6094                                 dev_priv->display.find_dpll(limit, crtc,
6095                                                             dev_priv->lvds_downclock,
6096                                                             refclk, &clock,
6097                                                             &reduced_clock);
6098                 }
6099                 /* Compat-code for transition, will disappear. */
6100                 intel_crtc->config.dpll.n = clock.n;
6101                 intel_crtc->config.dpll.m1 = clock.m1;
6102                 intel_crtc->config.dpll.m2 = clock.m2;
6103                 intel_crtc->config.dpll.p1 = clock.p1;
6104                 intel_crtc->config.dpll.p2 = clock.p2;
6105         }
6106
6107         if (IS_GEN2(dev)) {
6108                 i8xx_update_pll(intel_crtc,
6109                                 has_reduced_clock ? &reduced_clock : NULL,
6110                                 num_connectors);
6111         } else if (IS_CHERRYVIEW(dev)) {
6112                 chv_update_pll(intel_crtc);
6113         } else if (IS_VALLEYVIEW(dev)) {
6114                 vlv_update_pll(intel_crtc);
6115         } else {
6116                 i9xx_update_pll(intel_crtc,
6117                                 has_reduced_clock ? &reduced_clock : NULL,
6118                                 num_connectors);
6119         }
6120
6121         return 0;
6122 }
6123
6124 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6125                                  struct intel_crtc_config *pipe_config)
6126 {
6127         struct drm_device *dev = crtc->base.dev;
6128         struct drm_i915_private *dev_priv = dev->dev_private;
6129         uint32_t tmp;
6130
6131         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6132                 return;
6133
6134         tmp = I915_READ(PFIT_CONTROL);
6135         if (!(tmp & PFIT_ENABLE))
6136                 return;
6137
6138         /* Check whether the pfit is attached to our pipe. */
6139         if (INTEL_INFO(dev)->gen < 4) {
6140                 if (crtc->pipe != PIPE_B)
6141                         return;
6142         } else {
6143                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6144                         return;
6145         }
6146
6147         pipe_config->gmch_pfit.control = tmp;
6148         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6149         if (INTEL_INFO(dev)->gen < 5)
6150                 pipe_config->gmch_pfit.lvds_border_bits =
6151                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6152 }
6153
6154 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6155                                struct intel_crtc_config *pipe_config)
6156 {
6157         struct drm_device *dev = crtc->base.dev;
6158         struct drm_i915_private *dev_priv = dev->dev_private;
6159         int pipe = pipe_config->cpu_transcoder;
6160         intel_clock_t clock;
6161         u32 mdiv;
6162         int refclk = 100000;
6163
6164         /* In case of MIPI DPLL will not even be used */
6165         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6166                 return;
6167
6168         mutex_lock(&dev_priv->dpio_lock);
6169         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6170         mutex_unlock(&dev_priv->dpio_lock);
6171
6172         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6173         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6174         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6175         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6176         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6177
6178         vlv_clock(refclk, &clock);
6179
6180         /* clock.dot is the fast clock */
6181         pipe_config->port_clock = clock.dot / 5;
6182 }
6183
6184 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6185                                   struct intel_plane_config *plane_config)
6186 {
6187         struct drm_device *dev = crtc->base.dev;
6188         struct drm_i915_private *dev_priv = dev->dev_private;
6189         u32 val, base, offset;
6190         int pipe = crtc->pipe, plane = crtc->plane;
6191         int fourcc, pixel_format;
6192         int aligned_height;
6193
6194         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6195         if (!crtc->base.primary->fb) {
6196                 DRM_DEBUG_KMS("failed to alloc fb\n");
6197                 return;
6198         }
6199
6200         val = I915_READ(DSPCNTR(plane));
6201
6202         if (INTEL_INFO(dev)->gen >= 4)
6203                 if (val & DISPPLANE_TILED)
6204                         plane_config->tiled = true;
6205
6206         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6207         fourcc = intel_format_to_fourcc(pixel_format);
6208         crtc->base.primary->fb->pixel_format = fourcc;
6209         crtc->base.primary->fb->bits_per_pixel =
6210                 drm_format_plane_cpp(fourcc, 0) * 8;
6211
6212         if (INTEL_INFO(dev)->gen >= 4) {
6213                 if (plane_config->tiled)
6214                         offset = I915_READ(DSPTILEOFF(plane));
6215                 else
6216                         offset = I915_READ(DSPLINOFF(plane));
6217                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6218         } else {
6219                 base = I915_READ(DSPADDR(plane));
6220         }
6221         plane_config->base = base;
6222
6223         val = I915_READ(PIPESRC(pipe));
6224         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6225         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6226
6227         val = I915_READ(DSPSTRIDE(pipe));
6228         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6229
6230         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6231                                             plane_config->tiled);
6232
6233         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6234                                         aligned_height);
6235
6236         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6237                       pipe, plane, crtc->base.primary->fb->width,
6238                       crtc->base.primary->fb->height,
6239                       crtc->base.primary->fb->bits_per_pixel, base,
6240                       crtc->base.primary->fb->pitches[0],
6241                       plane_config->size);
6242
6243 }
6244
6245 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6246                                struct intel_crtc_config *pipe_config)
6247 {
6248         struct drm_device *dev = crtc->base.dev;
6249         struct drm_i915_private *dev_priv = dev->dev_private;
6250         int pipe = pipe_config->cpu_transcoder;
6251         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6252         intel_clock_t clock;
6253         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6254         int refclk = 100000;
6255
6256         mutex_lock(&dev_priv->dpio_lock);
6257         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6258         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6259         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6260         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6261         mutex_unlock(&dev_priv->dpio_lock);
6262
6263         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6264         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6265         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6266         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6267         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6268
6269         chv_clock(refclk, &clock);
6270
6271         /* clock.dot is the fast clock */
6272         pipe_config->port_clock = clock.dot / 5;
6273 }
6274
6275 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6276                                  struct intel_crtc_config *pipe_config)
6277 {
6278         struct drm_device *dev = crtc->base.dev;
6279         struct drm_i915_private *dev_priv = dev->dev_private;
6280         uint32_t tmp;
6281
6282         if (!intel_display_power_enabled(dev_priv,
6283                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6284                 return false;
6285
6286         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6287         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6288
6289         tmp = I915_READ(PIPECONF(crtc->pipe));
6290         if (!(tmp & PIPECONF_ENABLE))
6291                 return false;
6292
6293         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6294                 switch (tmp & PIPECONF_BPC_MASK) {
6295                 case PIPECONF_6BPC:
6296                         pipe_config->pipe_bpp = 18;
6297                         break;
6298                 case PIPECONF_8BPC:
6299                         pipe_config->pipe_bpp = 24;
6300                         break;
6301                 case PIPECONF_10BPC:
6302                         pipe_config->pipe_bpp = 30;
6303                         break;
6304                 default:
6305                         break;
6306                 }
6307         }
6308
6309         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6310                 pipe_config->limited_color_range = true;
6311
6312         if (INTEL_INFO(dev)->gen < 4)
6313                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6314
6315         intel_get_pipe_timings(crtc, pipe_config);
6316
6317         i9xx_get_pfit_config(crtc, pipe_config);
6318
6319         if (INTEL_INFO(dev)->gen >= 4) {
6320                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6321                 pipe_config->pixel_multiplier =
6322                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6323                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6324                 pipe_config->dpll_hw_state.dpll_md = tmp;
6325         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6326                 tmp = I915_READ(DPLL(crtc->pipe));
6327                 pipe_config->pixel_multiplier =
6328                         ((tmp & SDVO_MULTIPLIER_MASK)
6329                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6330         } else {
6331                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6332                  * port and will be fixed up in the encoder->get_config
6333                  * function. */
6334                 pipe_config->pixel_multiplier = 1;
6335         }
6336         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6337         if (!IS_VALLEYVIEW(dev)) {
6338                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6339                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6340         } else {
6341                 /* Mask out read-only status bits. */
6342                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6343                                                      DPLL_PORTC_READY_MASK |
6344                                                      DPLL_PORTB_READY_MASK);
6345         }
6346
6347         if (IS_CHERRYVIEW(dev))
6348                 chv_crtc_clock_get(crtc, pipe_config);
6349         else if (IS_VALLEYVIEW(dev))
6350                 vlv_crtc_clock_get(crtc, pipe_config);
6351         else
6352                 i9xx_crtc_clock_get(crtc, pipe_config);
6353
6354         return true;
6355 }
6356
6357 static void ironlake_init_pch_refclk(struct drm_device *dev)
6358 {
6359         struct drm_i915_private *dev_priv = dev->dev_private;
6360         struct drm_mode_config *mode_config = &dev->mode_config;
6361         struct intel_encoder *encoder;
6362         u32 val, final;
6363         bool has_lvds = false;
6364         bool has_cpu_edp = false;
6365         bool has_panel = false;
6366         bool has_ck505 = false;
6367         bool can_ssc = false;
6368
6369         /* We need to take the global config into account */
6370         list_for_each_entry(encoder, &mode_config->encoder_list,
6371                             base.head) {
6372                 switch (encoder->type) {
6373                 case INTEL_OUTPUT_LVDS:
6374                         has_panel = true;
6375                         has_lvds = true;
6376                         break;
6377                 case INTEL_OUTPUT_EDP:
6378                         has_panel = true;
6379                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6380                                 has_cpu_edp = true;
6381                         break;
6382                 }
6383         }
6384
6385         if (HAS_PCH_IBX(dev)) {
6386                 has_ck505 = dev_priv->vbt.display_clock_mode;
6387                 can_ssc = has_ck505;
6388         } else {
6389                 has_ck505 = false;
6390                 can_ssc = true;
6391         }
6392
6393         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6394                       has_panel, has_lvds, has_ck505);
6395
6396         /* Ironlake: try to setup display ref clock before DPLL
6397          * enabling. This is only under driver's control after
6398          * PCH B stepping, previous chipset stepping should be
6399          * ignoring this setting.
6400          */
6401         val = I915_READ(PCH_DREF_CONTROL);
6402
6403         /* As we must carefully and slowly disable/enable each source in turn,
6404          * compute the final state we want first and check if we need to
6405          * make any changes at all.
6406          */
6407         final = val;
6408         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6409         if (has_ck505)
6410                 final |= DREF_NONSPREAD_CK505_ENABLE;
6411         else
6412                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6413
6414         final &= ~DREF_SSC_SOURCE_MASK;
6415         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6416         final &= ~DREF_SSC1_ENABLE;
6417
6418         if (has_panel) {
6419                 final |= DREF_SSC_SOURCE_ENABLE;
6420
6421                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6422                         final |= DREF_SSC1_ENABLE;
6423
6424                 if (has_cpu_edp) {
6425                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6426                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6427                         else
6428                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6429                 } else
6430                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6431         } else {
6432                 final |= DREF_SSC_SOURCE_DISABLE;
6433                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6434         }
6435
6436         if (final == val)
6437                 return;
6438
6439         /* Always enable nonspread source */
6440         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6441
6442         if (has_ck505)
6443                 val |= DREF_NONSPREAD_CK505_ENABLE;
6444         else
6445                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6446
6447         if (has_panel) {
6448                 val &= ~DREF_SSC_SOURCE_MASK;
6449                 val |= DREF_SSC_SOURCE_ENABLE;
6450
6451                 /* SSC must be turned on before enabling the CPU output  */
6452                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6453                         DRM_DEBUG_KMS("Using SSC on panel\n");
6454                         val |= DREF_SSC1_ENABLE;
6455                 } else
6456                         val &= ~DREF_SSC1_ENABLE;
6457
6458                 /* Get SSC going before enabling the outputs */
6459                 I915_WRITE(PCH_DREF_CONTROL, val);
6460                 POSTING_READ(PCH_DREF_CONTROL);
6461                 udelay(200);
6462
6463                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6464
6465                 /* Enable CPU source on CPU attached eDP */
6466                 if (has_cpu_edp) {
6467                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6468                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6469                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6470                         } else
6471                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6472                 } else
6473                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6474
6475                 I915_WRITE(PCH_DREF_CONTROL, val);
6476                 POSTING_READ(PCH_DREF_CONTROL);
6477                 udelay(200);
6478         } else {
6479                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6480
6481                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6482
6483                 /* Turn off CPU output */
6484                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6485
6486                 I915_WRITE(PCH_DREF_CONTROL, val);
6487                 POSTING_READ(PCH_DREF_CONTROL);
6488                 udelay(200);
6489
6490                 /* Turn off the SSC source */
6491                 val &= ~DREF_SSC_SOURCE_MASK;
6492                 val |= DREF_SSC_SOURCE_DISABLE;
6493
6494                 /* Turn off SSC1 */
6495                 val &= ~DREF_SSC1_ENABLE;
6496
6497                 I915_WRITE(PCH_DREF_CONTROL, val);
6498                 POSTING_READ(PCH_DREF_CONTROL);
6499                 udelay(200);
6500         }
6501
6502         BUG_ON(val != final);
6503 }
6504
6505 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6506 {
6507         uint32_t tmp;
6508
6509         tmp = I915_READ(SOUTH_CHICKEN2);
6510         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6511         I915_WRITE(SOUTH_CHICKEN2, tmp);
6512
6513         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6514                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6515                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6516
6517         tmp = I915_READ(SOUTH_CHICKEN2);
6518         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6519         I915_WRITE(SOUTH_CHICKEN2, tmp);
6520
6521         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6522                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6523                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6524 }
6525
6526 /* WaMPhyProgramming:hsw */
6527 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6528 {
6529         uint32_t tmp;
6530
6531         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6532         tmp &= ~(0xFF << 24);
6533         tmp |= (0x12 << 24);
6534         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6535
6536         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6537         tmp |= (1 << 11);
6538         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6539
6540         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6541         tmp |= (1 << 11);
6542         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6543
6544         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6545         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6546         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6547
6548         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6549         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6550         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6551
6552         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6553         tmp &= ~(7 << 13);
6554         tmp |= (5 << 13);
6555         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6556
6557         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6558         tmp &= ~(7 << 13);
6559         tmp |= (5 << 13);
6560         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6561
6562         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6563         tmp &= ~0xFF;
6564         tmp |= 0x1C;
6565         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6566
6567         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6568         tmp &= ~0xFF;
6569         tmp |= 0x1C;
6570         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6571
6572         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6573         tmp &= ~(0xFF << 16);
6574         tmp |= (0x1C << 16);
6575         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6576
6577         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6578         tmp &= ~(0xFF << 16);
6579         tmp |= (0x1C << 16);
6580         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6581
6582         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6583         tmp |= (1 << 27);
6584         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6585
6586         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6587         tmp |= (1 << 27);
6588         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6589
6590         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6591         tmp &= ~(0xF << 28);
6592         tmp |= (4 << 28);
6593         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6594
6595         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6596         tmp &= ~(0xF << 28);
6597         tmp |= (4 << 28);
6598         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6599 }
6600
6601 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6602  * Programming" based on the parameters passed:
6603  * - Sequence to enable CLKOUT_DP
6604  * - Sequence to enable CLKOUT_DP without spread
6605  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6606  */
6607 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6608                                  bool with_fdi)
6609 {
6610         struct drm_i915_private *dev_priv = dev->dev_private;
6611         uint32_t reg, tmp;
6612
6613         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6614                 with_spread = true;
6615         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6616                  with_fdi, "LP PCH doesn't have FDI\n"))
6617                 with_fdi = false;
6618
6619         mutex_lock(&dev_priv->dpio_lock);
6620
6621         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6622         tmp &= ~SBI_SSCCTL_DISABLE;
6623         tmp |= SBI_SSCCTL_PATHALT;
6624         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6625
6626         udelay(24);
6627
6628         if (with_spread) {
6629                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6630                 tmp &= ~SBI_SSCCTL_PATHALT;
6631                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6632
6633                 if (with_fdi) {
6634                         lpt_reset_fdi_mphy(dev_priv);
6635                         lpt_program_fdi_mphy(dev_priv);
6636                 }
6637         }
6638
6639         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6640                SBI_GEN0 : SBI_DBUFF0;
6641         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6642         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6643         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6644
6645         mutex_unlock(&dev_priv->dpio_lock);
6646 }
6647
6648 /* Sequence to disable CLKOUT_DP */
6649 static void lpt_disable_clkout_dp(struct drm_device *dev)
6650 {
6651         struct drm_i915_private *dev_priv = dev->dev_private;
6652         uint32_t reg, tmp;
6653
6654         mutex_lock(&dev_priv->dpio_lock);
6655
6656         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6657                SBI_GEN0 : SBI_DBUFF0;
6658         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6659         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6660         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6661
6662         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6663         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6664                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6665                         tmp |= SBI_SSCCTL_PATHALT;
6666                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6667                         udelay(32);
6668                 }
6669                 tmp |= SBI_SSCCTL_DISABLE;
6670                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6671         }
6672
6673         mutex_unlock(&dev_priv->dpio_lock);
6674 }
6675
6676 static void lpt_init_pch_refclk(struct drm_device *dev)
6677 {
6678         struct drm_mode_config *mode_config = &dev->mode_config;
6679         struct intel_encoder *encoder;
6680         bool has_vga = false;
6681
6682         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6683                 switch (encoder->type) {
6684                 case INTEL_OUTPUT_ANALOG:
6685                         has_vga = true;
6686                         break;
6687                 }
6688         }
6689
6690         if (has_vga)
6691                 lpt_enable_clkout_dp(dev, true, true);
6692         else
6693                 lpt_disable_clkout_dp(dev);
6694 }
6695
6696 /*
6697  * Initialize reference clocks when the driver loads
6698  */
6699 void intel_init_pch_refclk(struct drm_device *dev)
6700 {
6701         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6702                 ironlake_init_pch_refclk(dev);
6703         else if (HAS_PCH_LPT(dev))
6704                 lpt_init_pch_refclk(dev);
6705 }
6706
6707 static int ironlake_get_refclk(struct drm_crtc *crtc)
6708 {
6709         struct drm_device *dev = crtc->dev;
6710         struct drm_i915_private *dev_priv = dev->dev_private;
6711         struct intel_encoder *encoder;
6712         int num_connectors = 0;
6713         bool is_lvds = false;
6714
6715         for_each_encoder_on_crtc(dev, crtc, encoder) {
6716                 switch (encoder->type) {
6717                 case INTEL_OUTPUT_LVDS:
6718                         is_lvds = true;
6719                         break;
6720                 }
6721                 num_connectors++;
6722         }
6723
6724         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6725                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6726                               dev_priv->vbt.lvds_ssc_freq);
6727                 return dev_priv->vbt.lvds_ssc_freq;
6728         }
6729
6730         return 120000;
6731 }
6732
6733 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6734 {
6735         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6737         int pipe = intel_crtc->pipe;
6738         uint32_t val;
6739
6740         val = 0;
6741
6742         switch (intel_crtc->config.pipe_bpp) {
6743         case 18:
6744                 val |= PIPECONF_6BPC;
6745                 break;
6746         case 24:
6747                 val |= PIPECONF_8BPC;
6748                 break;
6749         case 30:
6750                 val |= PIPECONF_10BPC;
6751                 break;
6752         case 36:
6753                 val |= PIPECONF_12BPC;
6754                 break;
6755         default:
6756                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6757                 BUG();
6758         }
6759
6760         if (intel_crtc->config.dither)
6761                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6762
6763         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6764                 val |= PIPECONF_INTERLACED_ILK;
6765         else
6766                 val |= PIPECONF_PROGRESSIVE;
6767
6768         if (intel_crtc->config.limited_color_range)
6769                 val |= PIPECONF_COLOR_RANGE_SELECT;
6770
6771         I915_WRITE(PIPECONF(pipe), val);
6772         POSTING_READ(PIPECONF(pipe));
6773 }
6774
6775 /*
6776  * Set up the pipe CSC unit.
6777  *
6778  * Currently only full range RGB to limited range RGB conversion
6779  * is supported, but eventually this should handle various
6780  * RGB<->YCbCr scenarios as well.
6781  */
6782 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6783 {
6784         struct drm_device *dev = crtc->dev;
6785         struct drm_i915_private *dev_priv = dev->dev_private;
6786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6787         int pipe = intel_crtc->pipe;
6788         uint16_t coeff = 0x7800; /* 1.0 */
6789
6790         /*
6791          * TODO: Check what kind of values actually come out of the pipe
6792          * with these coeff/postoff values and adjust to get the best
6793          * accuracy. Perhaps we even need to take the bpc value into
6794          * consideration.
6795          */
6796
6797         if (intel_crtc->config.limited_color_range)
6798                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6799
6800         /*
6801          * GY/GU and RY/RU should be the other way around according
6802          * to BSpec, but reality doesn't agree. Just set them up in
6803          * a way that results in the correct picture.
6804          */
6805         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6806         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6807
6808         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6809         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6810
6811         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6812         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6813
6814         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6815         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6816         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6817
6818         if (INTEL_INFO(dev)->gen > 6) {
6819                 uint16_t postoff = 0;
6820
6821                 if (intel_crtc->config.limited_color_range)
6822                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6823
6824                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6825                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6826                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6827
6828                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6829         } else {
6830                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6831
6832                 if (intel_crtc->config.limited_color_range)
6833                         mode |= CSC_BLACK_SCREEN_OFFSET;
6834
6835                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6836         }
6837 }
6838
6839 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6840 {
6841         struct drm_device *dev = crtc->dev;
6842         struct drm_i915_private *dev_priv = dev->dev_private;
6843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6844         enum pipe pipe = intel_crtc->pipe;
6845         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6846         uint32_t val;
6847
6848         val = 0;
6849
6850         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6851                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6852
6853         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6854                 val |= PIPECONF_INTERLACED_ILK;
6855         else
6856                 val |= PIPECONF_PROGRESSIVE;
6857
6858         I915_WRITE(PIPECONF(cpu_transcoder), val);
6859         POSTING_READ(PIPECONF(cpu_transcoder));
6860
6861         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6862         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6863
6864         if (IS_BROADWELL(dev)) {
6865                 val = 0;
6866
6867                 switch (intel_crtc->config.pipe_bpp) {
6868                 case 18:
6869                         val |= PIPEMISC_DITHER_6_BPC;
6870                         break;
6871                 case 24:
6872                         val |= PIPEMISC_DITHER_8_BPC;
6873                         break;
6874                 case 30:
6875                         val |= PIPEMISC_DITHER_10_BPC;
6876                         break;
6877                 case 36:
6878                         val |= PIPEMISC_DITHER_12_BPC;
6879                         break;
6880                 default:
6881                         /* Case prevented by pipe_config_set_bpp. */
6882                         BUG();
6883                 }
6884
6885                 if (intel_crtc->config.dither)
6886                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6887
6888                 I915_WRITE(PIPEMISC(pipe), val);
6889         }
6890 }
6891
6892 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6893                                     intel_clock_t *clock,
6894                                     bool *has_reduced_clock,
6895                                     intel_clock_t *reduced_clock)
6896 {
6897         struct drm_device *dev = crtc->dev;
6898         struct drm_i915_private *dev_priv = dev->dev_private;
6899         struct intel_encoder *intel_encoder;
6900         int refclk;
6901         const intel_limit_t *limit;
6902         bool ret, is_lvds = false;
6903
6904         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6905                 switch (intel_encoder->type) {
6906                 case INTEL_OUTPUT_LVDS:
6907                         is_lvds = true;
6908                         break;
6909                 }
6910         }
6911
6912         refclk = ironlake_get_refclk(crtc);
6913
6914         /*
6915          * Returns a set of divisors for the desired target clock with the given
6916          * refclk, or FALSE.  The returned values represent the clock equation:
6917          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6918          */
6919         limit = intel_limit(crtc, refclk);
6920         ret = dev_priv->display.find_dpll(limit, crtc,
6921                                           to_intel_crtc(crtc)->config.port_clock,
6922                                           refclk, NULL, clock);
6923         if (!ret)
6924                 return false;
6925
6926         if (is_lvds && dev_priv->lvds_downclock_avail) {
6927                 /*
6928                  * Ensure we match the reduced clock's P to the target clock.
6929                  * If the clocks don't match, we can't switch the display clock
6930                  * by using the FP0/FP1. In such case we will disable the LVDS
6931                  * downclock feature.
6932                 */
6933                 *has_reduced_clock =
6934                         dev_priv->display.find_dpll(limit, crtc,
6935                                                     dev_priv->lvds_downclock,
6936                                                     refclk, clock,
6937                                                     reduced_clock);
6938         }
6939
6940         return true;
6941 }
6942
6943 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6944 {
6945         /*
6946          * Account for spread spectrum to avoid
6947          * oversubscribing the link. Max center spread
6948          * is 2.5%; use 5% for safety's sake.
6949          */
6950         u32 bps = target_clock * bpp * 21 / 20;
6951         return DIV_ROUND_UP(bps, link_bw * 8);
6952 }
6953
6954 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6955 {
6956         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6957 }
6958
6959 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6960                                       u32 *fp,
6961                                       intel_clock_t *reduced_clock, u32 *fp2)
6962 {
6963         struct drm_crtc *crtc = &intel_crtc->base;
6964         struct drm_device *dev = crtc->dev;
6965         struct drm_i915_private *dev_priv = dev->dev_private;
6966         struct intel_encoder *intel_encoder;
6967         uint32_t dpll;
6968         int factor, num_connectors = 0;
6969         bool is_lvds = false, is_sdvo = false;
6970
6971         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6972                 switch (intel_encoder->type) {
6973                 case INTEL_OUTPUT_LVDS:
6974                         is_lvds = true;
6975                         break;
6976                 case INTEL_OUTPUT_SDVO:
6977                 case INTEL_OUTPUT_HDMI:
6978                         is_sdvo = true;
6979                         break;
6980                 }
6981
6982                 num_connectors++;
6983         }
6984
6985         /* Enable autotuning of the PLL clock (if permissible) */
6986         factor = 21;
6987         if (is_lvds) {
6988                 if ((intel_panel_use_ssc(dev_priv) &&
6989                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6990                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6991                         factor = 25;
6992         } else if (intel_crtc->config.sdvo_tv_clock)
6993                 factor = 20;
6994
6995         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6996                 *fp |= FP_CB_TUNE;
6997
6998         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6999                 *fp2 |= FP_CB_TUNE;
7000
7001         dpll = 0;
7002
7003         if (is_lvds)
7004                 dpll |= DPLLB_MODE_LVDS;
7005         else
7006                 dpll |= DPLLB_MODE_DAC_SERIAL;
7007
7008         dpll |= (intel_crtc->config.pixel_multiplier - 1)
7009                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7010
7011         if (is_sdvo)
7012                 dpll |= DPLL_SDVO_HIGH_SPEED;
7013         if (intel_crtc->config.has_dp_encoder)
7014                 dpll |= DPLL_SDVO_HIGH_SPEED;
7015
7016         /* compute bitmask from p1 value */
7017         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7018         /* also FPA1 */
7019         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7020
7021         switch (intel_crtc->config.dpll.p2) {
7022         case 5:
7023                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7024                 break;
7025         case 7:
7026                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7027                 break;
7028         case 10:
7029                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7030                 break;
7031         case 14:
7032                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7033                 break;
7034         }
7035
7036         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7037                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7038         else
7039                 dpll |= PLL_REF_INPUT_DREFCLK;
7040
7041         return dpll | DPLL_VCO_ENABLE;
7042 }
7043
7044 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7045                                   int x, int y,
7046                                   struct drm_framebuffer *fb)
7047 {
7048         struct drm_device *dev = crtc->dev;
7049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7050         int num_connectors = 0;
7051         intel_clock_t clock, reduced_clock;
7052         u32 dpll = 0, fp = 0, fp2 = 0;
7053         bool ok, has_reduced_clock = false;
7054         bool is_lvds = false;
7055         struct intel_encoder *encoder;
7056         struct intel_shared_dpll *pll;
7057
7058         for_each_encoder_on_crtc(dev, crtc, encoder) {
7059                 switch (encoder->type) {
7060                 case INTEL_OUTPUT_LVDS:
7061                         is_lvds = true;
7062                         break;
7063                 }
7064
7065                 num_connectors++;
7066         }
7067
7068         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7069              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7070
7071         ok = ironlake_compute_clocks(crtc, &clock,
7072                                      &has_reduced_clock, &reduced_clock);
7073         if (!ok && !intel_crtc->config.clock_set) {
7074                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7075                 return -EINVAL;
7076         }
7077         /* Compat-code for transition, will disappear. */
7078         if (!intel_crtc->config.clock_set) {
7079                 intel_crtc->config.dpll.n = clock.n;
7080                 intel_crtc->config.dpll.m1 = clock.m1;
7081                 intel_crtc->config.dpll.m2 = clock.m2;
7082                 intel_crtc->config.dpll.p1 = clock.p1;
7083                 intel_crtc->config.dpll.p2 = clock.p2;
7084         }
7085
7086         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7087         if (intel_crtc->config.has_pch_encoder) {
7088                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7089                 if (has_reduced_clock)
7090                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7091
7092                 dpll = ironlake_compute_dpll(intel_crtc,
7093                                              &fp, &reduced_clock,
7094                                              has_reduced_clock ? &fp2 : NULL);
7095
7096                 intel_crtc->config.dpll_hw_state.dpll = dpll;
7097                 intel_crtc->config.dpll_hw_state.fp0 = fp;
7098                 if (has_reduced_clock)
7099                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
7100                 else
7101                         intel_crtc->config.dpll_hw_state.fp1 = fp;
7102
7103                 pll = intel_get_shared_dpll(intel_crtc);
7104                 if (pll == NULL) {
7105                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7106                                          pipe_name(intel_crtc->pipe));
7107                         return -EINVAL;
7108                 }
7109         } else
7110                 intel_put_shared_dpll(intel_crtc);
7111
7112         if (is_lvds && has_reduced_clock && i915.powersave)
7113                 intel_crtc->lowfreq_avail = true;
7114         else
7115                 intel_crtc->lowfreq_avail = false;
7116
7117         return 0;
7118 }
7119
7120 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7121                                          struct intel_link_m_n *m_n)
7122 {
7123         struct drm_device *dev = crtc->base.dev;
7124         struct drm_i915_private *dev_priv = dev->dev_private;
7125         enum pipe pipe = crtc->pipe;
7126
7127         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7128         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7129         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7130                 & ~TU_SIZE_MASK;
7131         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7132         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7133                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7134 }
7135
7136 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7137                                          enum transcoder transcoder,
7138                                          struct intel_link_m_n *m_n)
7139 {
7140         struct drm_device *dev = crtc->base.dev;
7141         struct drm_i915_private *dev_priv = dev->dev_private;
7142         enum pipe pipe = crtc->pipe;
7143
7144         if (INTEL_INFO(dev)->gen >= 5) {
7145                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7146                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7147                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7148                         & ~TU_SIZE_MASK;
7149                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7150                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7151                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7152         } else {
7153                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7154                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7155                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7156                         & ~TU_SIZE_MASK;
7157                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7158                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7159                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7160         }
7161 }
7162
7163 void intel_dp_get_m_n(struct intel_crtc *crtc,
7164                       struct intel_crtc_config *pipe_config)
7165 {
7166         if (crtc->config.has_pch_encoder)
7167                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7168         else
7169                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7170                                              &pipe_config->dp_m_n);
7171 }
7172
7173 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7174                                         struct intel_crtc_config *pipe_config)
7175 {
7176         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7177                                      &pipe_config->fdi_m_n);
7178 }
7179
7180 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7181                                      struct intel_crtc_config *pipe_config)
7182 {
7183         struct drm_device *dev = crtc->base.dev;
7184         struct drm_i915_private *dev_priv = dev->dev_private;
7185         uint32_t tmp;
7186
7187         tmp = I915_READ(PF_CTL(crtc->pipe));
7188
7189         if (tmp & PF_ENABLE) {
7190                 pipe_config->pch_pfit.enabled = true;
7191                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7192                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7193
7194                 /* We currently do not free assignements of panel fitters on
7195                  * ivb/hsw (since we don't use the higher upscaling modes which
7196                  * differentiates them) so just WARN about this case for now. */
7197                 if (IS_GEN7(dev)) {
7198                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7199                                 PF_PIPE_SEL_IVB(crtc->pipe));
7200                 }
7201         }
7202 }
7203
7204 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7205                                       struct intel_plane_config *plane_config)
7206 {
7207         struct drm_device *dev = crtc->base.dev;
7208         struct drm_i915_private *dev_priv = dev->dev_private;
7209         u32 val, base, offset;
7210         int pipe = crtc->pipe, plane = crtc->plane;
7211         int fourcc, pixel_format;
7212         int aligned_height;
7213
7214         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7215         if (!crtc->base.primary->fb) {
7216                 DRM_DEBUG_KMS("failed to alloc fb\n");
7217                 return;
7218         }
7219
7220         val = I915_READ(DSPCNTR(plane));
7221
7222         if (INTEL_INFO(dev)->gen >= 4)
7223                 if (val & DISPPLANE_TILED)
7224                         plane_config->tiled = true;
7225
7226         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7227         fourcc = intel_format_to_fourcc(pixel_format);
7228         crtc->base.primary->fb->pixel_format = fourcc;
7229         crtc->base.primary->fb->bits_per_pixel =
7230                 drm_format_plane_cpp(fourcc, 0) * 8;
7231
7232         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7233         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7234                 offset = I915_READ(DSPOFFSET(plane));
7235         } else {
7236                 if (plane_config->tiled)
7237                         offset = I915_READ(DSPTILEOFF(plane));
7238                 else
7239                         offset = I915_READ(DSPLINOFF(plane));
7240         }
7241         plane_config->base = base;
7242
7243         val = I915_READ(PIPESRC(pipe));
7244         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7245         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7246
7247         val = I915_READ(DSPSTRIDE(pipe));
7248         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7249
7250         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7251                                             plane_config->tiled);
7252
7253         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7254                                         aligned_height);
7255
7256         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7257                       pipe, plane, crtc->base.primary->fb->width,
7258                       crtc->base.primary->fb->height,
7259                       crtc->base.primary->fb->bits_per_pixel, base,
7260                       crtc->base.primary->fb->pitches[0],
7261                       plane_config->size);
7262 }
7263
7264 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7265                                      struct intel_crtc_config *pipe_config)
7266 {
7267         struct drm_device *dev = crtc->base.dev;
7268         struct drm_i915_private *dev_priv = dev->dev_private;
7269         uint32_t tmp;
7270
7271         if (!intel_display_power_enabled(dev_priv,
7272                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7273                 return false;
7274
7275         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7276         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7277
7278         tmp = I915_READ(PIPECONF(crtc->pipe));
7279         if (!(tmp & PIPECONF_ENABLE))
7280                 return false;
7281
7282         switch (tmp & PIPECONF_BPC_MASK) {
7283         case PIPECONF_6BPC:
7284                 pipe_config->pipe_bpp = 18;
7285                 break;
7286         case PIPECONF_8BPC:
7287                 pipe_config->pipe_bpp = 24;
7288                 break;
7289         case PIPECONF_10BPC:
7290                 pipe_config->pipe_bpp = 30;
7291                 break;
7292         case PIPECONF_12BPC:
7293                 pipe_config->pipe_bpp = 36;
7294                 break;
7295         default:
7296                 break;
7297         }
7298
7299         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7300                 pipe_config->limited_color_range = true;
7301
7302         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7303                 struct intel_shared_dpll *pll;
7304
7305                 pipe_config->has_pch_encoder = true;
7306
7307                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7308                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7309                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7310
7311                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7312
7313                 if (HAS_PCH_IBX(dev_priv->dev)) {
7314                         pipe_config->shared_dpll =
7315                                 (enum intel_dpll_id) crtc->pipe;
7316                 } else {
7317                         tmp = I915_READ(PCH_DPLL_SEL);
7318                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7319                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7320                         else
7321                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7322                 }
7323
7324                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7325
7326                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7327                                            &pipe_config->dpll_hw_state));
7328
7329                 tmp = pipe_config->dpll_hw_state.dpll;
7330                 pipe_config->pixel_multiplier =
7331                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7332                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7333
7334                 ironlake_pch_clock_get(crtc, pipe_config);
7335         } else {
7336                 pipe_config->pixel_multiplier = 1;
7337         }
7338
7339         intel_get_pipe_timings(crtc, pipe_config);
7340
7341         ironlake_get_pfit_config(crtc, pipe_config);
7342
7343         return true;
7344 }
7345
7346 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7347 {
7348         struct drm_device *dev = dev_priv->dev;
7349         struct intel_crtc *crtc;
7350
7351         for_each_intel_crtc(dev, crtc)
7352                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7353                      pipe_name(crtc->pipe));
7354
7355         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7356         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7357         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7358         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7359         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7360         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7361              "CPU PWM1 enabled\n");
7362         if (IS_HASWELL(dev))
7363                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7364                      "CPU PWM2 enabled\n");
7365         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7366              "PCH PWM1 enabled\n");
7367         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7368              "Utility pin enabled\n");
7369         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7370
7371         /*
7372          * In theory we can still leave IRQs enabled, as long as only the HPD
7373          * interrupts remain enabled. We used to check for that, but since it's
7374          * gen-specific and since we only disable LCPLL after we fully disable
7375          * the interrupts, the check below should be enough.
7376          */
7377         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7378 }
7379
7380 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7381 {
7382         struct drm_device *dev = dev_priv->dev;
7383
7384         if (IS_HASWELL(dev))
7385                 return I915_READ(D_COMP_HSW);
7386         else
7387                 return I915_READ(D_COMP_BDW);
7388 }
7389
7390 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7391 {
7392         struct drm_device *dev = dev_priv->dev;
7393
7394         if (IS_HASWELL(dev)) {
7395                 mutex_lock(&dev_priv->rps.hw_lock);
7396                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7397                                             val))
7398                         DRM_ERROR("Failed to write to D_COMP\n");
7399                 mutex_unlock(&dev_priv->rps.hw_lock);
7400         } else {
7401                 I915_WRITE(D_COMP_BDW, val);
7402                 POSTING_READ(D_COMP_BDW);
7403         }
7404 }
7405
7406 /*
7407  * This function implements pieces of two sequences from BSpec:
7408  * - Sequence for display software to disable LCPLL
7409  * - Sequence for display software to allow package C8+
7410  * The steps implemented here are just the steps that actually touch the LCPLL
7411  * register. Callers should take care of disabling all the display engine
7412  * functions, doing the mode unset, fixing interrupts, etc.
7413  */
7414 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7415                               bool switch_to_fclk, bool allow_power_down)
7416 {
7417         uint32_t val;
7418
7419         assert_can_disable_lcpll(dev_priv);
7420
7421         val = I915_READ(LCPLL_CTL);
7422
7423         if (switch_to_fclk) {
7424                 val |= LCPLL_CD_SOURCE_FCLK;
7425                 I915_WRITE(LCPLL_CTL, val);
7426
7427                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7428                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7429                         DRM_ERROR("Switching to FCLK failed\n");
7430
7431                 val = I915_READ(LCPLL_CTL);
7432         }
7433
7434         val |= LCPLL_PLL_DISABLE;
7435         I915_WRITE(LCPLL_CTL, val);
7436         POSTING_READ(LCPLL_CTL);
7437
7438         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7439                 DRM_ERROR("LCPLL still locked\n");
7440
7441         val = hsw_read_dcomp(dev_priv);
7442         val |= D_COMP_COMP_DISABLE;
7443         hsw_write_dcomp(dev_priv, val);
7444         ndelay(100);
7445
7446         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7447                      1))
7448                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7449
7450         if (allow_power_down) {
7451                 val = I915_READ(LCPLL_CTL);
7452                 val |= LCPLL_POWER_DOWN_ALLOW;
7453                 I915_WRITE(LCPLL_CTL, val);
7454                 POSTING_READ(LCPLL_CTL);
7455         }
7456 }
7457
7458 /*
7459  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7460  * source.
7461  */
7462 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7463 {
7464         uint32_t val;
7465         unsigned long irqflags;
7466
7467         val = I915_READ(LCPLL_CTL);
7468
7469         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7470                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7471                 return;
7472
7473         /*
7474          * Make sure we're not on PC8 state before disabling PC8, otherwise
7475          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7476          *
7477          * The other problem is that hsw_restore_lcpll() is called as part of
7478          * the runtime PM resume sequence, so we can't just call
7479          * gen6_gt_force_wake_get() because that function calls
7480          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7481          * while we are on the resume sequence. So to solve this problem we have
7482          * to call special forcewake code that doesn't touch runtime PM and
7483          * doesn't enable the forcewake delayed work.
7484          */
7485         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7486         if (dev_priv->uncore.forcewake_count++ == 0)
7487                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7488         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7489
7490         if (val & LCPLL_POWER_DOWN_ALLOW) {
7491                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7492                 I915_WRITE(LCPLL_CTL, val);
7493                 POSTING_READ(LCPLL_CTL);
7494         }
7495
7496         val = hsw_read_dcomp(dev_priv);
7497         val |= D_COMP_COMP_FORCE;
7498         val &= ~D_COMP_COMP_DISABLE;
7499         hsw_write_dcomp(dev_priv, val);
7500
7501         val = I915_READ(LCPLL_CTL);
7502         val &= ~LCPLL_PLL_DISABLE;
7503         I915_WRITE(LCPLL_CTL, val);
7504
7505         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7506                 DRM_ERROR("LCPLL not locked yet\n");
7507
7508         if (val & LCPLL_CD_SOURCE_FCLK) {
7509                 val = I915_READ(LCPLL_CTL);
7510                 val &= ~LCPLL_CD_SOURCE_FCLK;
7511                 I915_WRITE(LCPLL_CTL, val);
7512
7513                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7514                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7515                         DRM_ERROR("Switching back to LCPLL failed\n");
7516         }
7517
7518         /* See the big comment above. */
7519         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7520         if (--dev_priv->uncore.forcewake_count == 0)
7521                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7522         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7523 }
7524
7525 /*
7526  * Package states C8 and deeper are really deep PC states that can only be
7527  * reached when all the devices on the system allow it, so even if the graphics
7528  * device allows PC8+, it doesn't mean the system will actually get to these
7529  * states. Our driver only allows PC8+ when going into runtime PM.
7530  *
7531  * The requirements for PC8+ are that all the outputs are disabled, the power
7532  * well is disabled and most interrupts are disabled, and these are also
7533  * requirements for runtime PM. When these conditions are met, we manually do
7534  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7535  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7536  * hang the machine.
7537  *
7538  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7539  * the state of some registers, so when we come back from PC8+ we need to
7540  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7541  * need to take care of the registers kept by RC6. Notice that this happens even
7542  * if we don't put the device in PCI D3 state (which is what currently happens
7543  * because of the runtime PM support).
7544  *
7545  * For more, read "Display Sequences for Package C8" on the hardware
7546  * documentation.
7547  */
7548 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7549 {
7550         struct drm_device *dev = dev_priv->dev;
7551         uint32_t val;
7552
7553         DRM_DEBUG_KMS("Enabling package C8+\n");
7554
7555         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7556                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7557                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7558                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7559         }
7560
7561         lpt_disable_clkout_dp(dev);
7562         hsw_disable_lcpll(dev_priv, true, true);
7563 }
7564
7565 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7566 {
7567         struct drm_device *dev = dev_priv->dev;
7568         uint32_t val;
7569
7570         DRM_DEBUG_KMS("Disabling package C8+\n");
7571
7572         hsw_restore_lcpll(dev_priv);
7573         lpt_init_pch_refclk(dev);
7574
7575         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7576                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7577                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7578                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7579         }
7580
7581         intel_prepare_ddi(dev);
7582 }
7583
7584 static void snb_modeset_global_resources(struct drm_device *dev)
7585 {
7586         modeset_update_crtc_power_domains(dev);
7587 }
7588
7589 static void haswell_modeset_global_resources(struct drm_device *dev)
7590 {
7591         modeset_update_crtc_power_domains(dev);
7592 }
7593
7594 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7595                                  int x, int y,
7596                                  struct drm_framebuffer *fb)
7597 {
7598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7599
7600         if (!intel_ddi_pll_select(intel_crtc))
7601                 return -EINVAL;
7602
7603         intel_crtc->lowfreq_avail = false;
7604
7605         return 0;
7606 }
7607
7608 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7609                                        struct intel_crtc_config *pipe_config)
7610 {
7611         struct drm_device *dev = crtc->base.dev;
7612         struct drm_i915_private *dev_priv = dev->dev_private;
7613         struct intel_shared_dpll *pll;
7614         enum port port;
7615         uint32_t tmp;
7616
7617         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7618
7619         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7620
7621         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7622
7623         switch (pipe_config->ddi_pll_sel) {
7624         case PORT_CLK_SEL_WRPLL1:
7625                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7626                 break;
7627         case PORT_CLK_SEL_WRPLL2:
7628                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7629                 break;
7630         }
7631
7632         if (pipe_config->shared_dpll >= 0) {
7633                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7634
7635                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7636                                            &pipe_config->dpll_hw_state));
7637         }
7638
7639         /*
7640          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7641          * DDI E. So just check whether this pipe is wired to DDI E and whether
7642          * the PCH transcoder is on.
7643          */
7644         if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7645                 pipe_config->has_pch_encoder = true;
7646
7647                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7648                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7649                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7650
7651                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7652         }
7653 }
7654
7655 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7656                                     struct intel_crtc_config *pipe_config)
7657 {
7658         struct drm_device *dev = crtc->base.dev;
7659         struct drm_i915_private *dev_priv = dev->dev_private;
7660         enum intel_display_power_domain pfit_domain;
7661         uint32_t tmp;
7662
7663         if (!intel_display_power_enabled(dev_priv,
7664                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7665                 return false;
7666
7667         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7668         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7669
7670         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7671         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7672                 enum pipe trans_edp_pipe;
7673                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7674                 default:
7675                         WARN(1, "unknown pipe linked to edp transcoder\n");
7676                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7677                 case TRANS_DDI_EDP_INPUT_A_ON:
7678                         trans_edp_pipe = PIPE_A;
7679                         break;
7680                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7681                         trans_edp_pipe = PIPE_B;
7682                         break;
7683                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7684                         trans_edp_pipe = PIPE_C;
7685                         break;
7686                 }
7687
7688                 if (trans_edp_pipe == crtc->pipe)
7689                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7690         }
7691
7692         if (!intel_display_power_enabled(dev_priv,
7693                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7694                 return false;
7695
7696         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7697         if (!(tmp & PIPECONF_ENABLE))
7698                 return false;
7699
7700         haswell_get_ddi_port_state(crtc, pipe_config);
7701
7702         intel_get_pipe_timings(crtc, pipe_config);
7703
7704         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7705         if (intel_display_power_enabled(dev_priv, pfit_domain))
7706                 ironlake_get_pfit_config(crtc, pipe_config);
7707
7708         if (IS_HASWELL(dev))
7709                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7710                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7711
7712         pipe_config->pixel_multiplier = 1;
7713
7714         return true;
7715 }
7716
7717 static struct {
7718         int clock;
7719         u32 config;
7720 } hdmi_audio_clock[] = {
7721         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7722         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7723         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7724         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7725         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7726         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7727         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7728         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7729         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7730         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7731 };
7732
7733 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7734 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7735 {
7736         int i;
7737
7738         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7739                 if (mode->clock == hdmi_audio_clock[i].clock)
7740                         break;
7741         }
7742
7743         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7744                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7745                 i = 1;
7746         }
7747
7748         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7749                       hdmi_audio_clock[i].clock,
7750                       hdmi_audio_clock[i].config);
7751
7752         return hdmi_audio_clock[i].config;
7753 }
7754
7755 static bool intel_eld_uptodate(struct drm_connector *connector,
7756                                int reg_eldv, uint32_t bits_eldv,
7757                                int reg_elda, uint32_t bits_elda,
7758                                int reg_edid)
7759 {
7760         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7761         uint8_t *eld = connector->eld;
7762         uint32_t i;
7763
7764         i = I915_READ(reg_eldv);
7765         i &= bits_eldv;
7766
7767         if (!eld[0])
7768                 return !i;
7769
7770         if (!i)
7771                 return false;
7772
7773         i = I915_READ(reg_elda);
7774         i &= ~bits_elda;
7775         I915_WRITE(reg_elda, i);
7776
7777         for (i = 0; i < eld[2]; i++)
7778                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7779                         return false;
7780
7781         return true;
7782 }
7783
7784 static void g4x_write_eld(struct drm_connector *connector,
7785                           struct drm_crtc *crtc,
7786                           struct drm_display_mode *mode)
7787 {
7788         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7789         uint8_t *eld = connector->eld;
7790         uint32_t eldv;
7791         uint32_t len;
7792         uint32_t i;
7793
7794         i = I915_READ(G4X_AUD_VID_DID);
7795
7796         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7797                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7798         else
7799                 eldv = G4X_ELDV_DEVCTG;
7800
7801         if (intel_eld_uptodate(connector,
7802                                G4X_AUD_CNTL_ST, eldv,
7803                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7804                                G4X_HDMIW_HDMIEDID))
7805                 return;
7806
7807         i = I915_READ(G4X_AUD_CNTL_ST);
7808         i &= ~(eldv | G4X_ELD_ADDR);
7809         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7810         I915_WRITE(G4X_AUD_CNTL_ST, i);
7811
7812         if (!eld[0])
7813                 return;
7814
7815         len = min_t(uint8_t, eld[2], len);
7816         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7817         for (i = 0; i < len; i++)
7818                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7819
7820         i = I915_READ(G4X_AUD_CNTL_ST);
7821         i |= eldv;
7822         I915_WRITE(G4X_AUD_CNTL_ST, i);
7823 }
7824
7825 static void haswell_write_eld(struct drm_connector *connector,
7826                               struct drm_crtc *crtc,
7827                               struct drm_display_mode *mode)
7828 {
7829         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7830         uint8_t *eld = connector->eld;
7831         uint32_t eldv;
7832         uint32_t i;
7833         int len;
7834         int pipe = to_intel_crtc(crtc)->pipe;
7835         int tmp;
7836
7837         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7838         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7839         int aud_config = HSW_AUD_CFG(pipe);
7840         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7841
7842         /* Audio output enable */
7843         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7844         tmp = I915_READ(aud_cntrl_st2);
7845         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7846         I915_WRITE(aud_cntrl_st2, tmp);
7847         POSTING_READ(aud_cntrl_st2);
7848
7849         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7850
7851         /* Set ELD valid state */
7852         tmp = I915_READ(aud_cntrl_st2);
7853         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7854         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7855         I915_WRITE(aud_cntrl_st2, tmp);
7856         tmp = I915_READ(aud_cntrl_st2);
7857         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7858
7859         /* Enable HDMI mode */
7860         tmp = I915_READ(aud_config);
7861         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7862         /* clear N_programing_enable and N_value_index */
7863         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7864         I915_WRITE(aud_config, tmp);
7865
7866         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7867
7868         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7869
7870         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7871                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7872                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7873                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7874         } else {
7875                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7876         }
7877
7878         if (intel_eld_uptodate(connector,
7879                                aud_cntrl_st2, eldv,
7880                                aud_cntl_st, IBX_ELD_ADDRESS,
7881                                hdmiw_hdmiedid))
7882                 return;
7883
7884         i = I915_READ(aud_cntrl_st2);
7885         i &= ~eldv;
7886         I915_WRITE(aud_cntrl_st2, i);
7887
7888         if (!eld[0])
7889                 return;
7890
7891         i = I915_READ(aud_cntl_st);
7892         i &= ~IBX_ELD_ADDRESS;
7893         I915_WRITE(aud_cntl_st, i);
7894         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7895         DRM_DEBUG_DRIVER("port num:%d\n", i);
7896
7897         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7898         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7899         for (i = 0; i < len; i++)
7900                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7901
7902         i = I915_READ(aud_cntrl_st2);
7903         i |= eldv;
7904         I915_WRITE(aud_cntrl_st2, i);
7905
7906 }
7907
7908 static void ironlake_write_eld(struct drm_connector *connector,
7909                                struct drm_crtc *crtc,
7910                                struct drm_display_mode *mode)
7911 {
7912         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7913         uint8_t *eld = connector->eld;
7914         uint32_t eldv;
7915         uint32_t i;
7916         int len;
7917         int hdmiw_hdmiedid;
7918         int aud_config;
7919         int aud_cntl_st;
7920         int aud_cntrl_st2;
7921         int pipe = to_intel_crtc(crtc)->pipe;
7922
7923         if (HAS_PCH_IBX(connector->dev)) {
7924                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7925                 aud_config = IBX_AUD_CFG(pipe);
7926                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7927                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7928         } else if (IS_VALLEYVIEW(connector->dev)) {
7929                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7930                 aud_config = VLV_AUD_CFG(pipe);
7931                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7932                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7933         } else {
7934                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7935                 aud_config = CPT_AUD_CFG(pipe);
7936                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7937                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7938         }
7939
7940         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7941
7942         if (IS_VALLEYVIEW(connector->dev))  {
7943                 struct intel_encoder *intel_encoder;
7944                 struct intel_digital_port *intel_dig_port;
7945
7946                 intel_encoder = intel_attached_encoder(connector);
7947                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7948                 i = intel_dig_port->port;
7949         } else {
7950                 i = I915_READ(aud_cntl_st);
7951                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7952                 /* DIP_Port_Select, 0x1 = PortB */
7953         }
7954
7955         if (!i) {
7956                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7957                 /* operate blindly on all ports */
7958                 eldv = IBX_ELD_VALIDB;
7959                 eldv |= IBX_ELD_VALIDB << 4;
7960                 eldv |= IBX_ELD_VALIDB << 8;
7961         } else {
7962                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7963                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7964         }
7965
7966         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7967                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7968                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7969                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7970         } else {
7971                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7972         }
7973
7974         if (intel_eld_uptodate(connector,
7975                                aud_cntrl_st2, eldv,
7976                                aud_cntl_st, IBX_ELD_ADDRESS,
7977                                hdmiw_hdmiedid))
7978                 return;
7979
7980         i = I915_READ(aud_cntrl_st2);
7981         i &= ~eldv;
7982         I915_WRITE(aud_cntrl_st2, i);
7983
7984         if (!eld[0])
7985                 return;
7986
7987         i = I915_READ(aud_cntl_st);
7988         i &= ~IBX_ELD_ADDRESS;
7989         I915_WRITE(aud_cntl_st, i);
7990
7991         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7992         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7993         for (i = 0; i < len; i++)
7994                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7995
7996         i = I915_READ(aud_cntrl_st2);
7997         i |= eldv;
7998         I915_WRITE(aud_cntrl_st2, i);
7999 }
8000
8001 void intel_write_eld(struct drm_encoder *encoder,
8002                      struct drm_display_mode *mode)
8003 {
8004         struct drm_crtc *crtc = encoder->crtc;
8005         struct drm_connector *connector;
8006         struct drm_device *dev = encoder->dev;
8007         struct drm_i915_private *dev_priv = dev->dev_private;
8008
8009         connector = drm_select_eld(encoder, mode);
8010         if (!connector)
8011                 return;
8012
8013         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8014                          connector->base.id,
8015                          connector->name,
8016                          connector->encoder->base.id,
8017                          connector->encoder->name);
8018
8019         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8020
8021         if (dev_priv->display.write_eld)
8022                 dev_priv->display.write_eld(connector, crtc, mode);
8023 }
8024
8025 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8026 {
8027         struct drm_device *dev = crtc->dev;
8028         struct drm_i915_private *dev_priv = dev->dev_private;
8029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8030         uint32_t cntl;
8031
8032         if (base != intel_crtc->cursor_base) {
8033                 /* On these chipsets we can only modify the base whilst
8034                  * the cursor is disabled.
8035                  */
8036                 if (intel_crtc->cursor_cntl) {
8037                         I915_WRITE(_CURACNTR, 0);
8038                         POSTING_READ(_CURACNTR);
8039                         intel_crtc->cursor_cntl = 0;
8040                 }
8041
8042                 I915_WRITE(_CURABASE, base);
8043                 POSTING_READ(_CURABASE);
8044         }
8045
8046         /* XXX width must be 64, stride 256 => 0x00 << 28 */
8047         cntl = 0;
8048         if (base)
8049                 cntl = (CURSOR_ENABLE |
8050                         CURSOR_GAMMA_ENABLE |
8051                         CURSOR_FORMAT_ARGB);
8052         if (intel_crtc->cursor_cntl != cntl) {
8053                 I915_WRITE(_CURACNTR, cntl);
8054                 POSTING_READ(_CURACNTR);
8055                 intel_crtc->cursor_cntl = cntl;
8056         }
8057 }
8058
8059 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8060 {
8061         struct drm_device *dev = crtc->dev;
8062         struct drm_i915_private *dev_priv = dev->dev_private;
8063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8064         int pipe = intel_crtc->pipe;
8065         uint32_t cntl;
8066
8067         cntl = 0;
8068         if (base) {
8069                 cntl = MCURSOR_GAMMA_ENABLE;
8070                 switch (intel_crtc->cursor_width) {
8071                         case 64:
8072                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8073                                 break;
8074                         case 128:
8075                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8076                                 break;
8077                         case 256:
8078                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8079                                 break;
8080                         default:
8081                                 WARN_ON(1);
8082                                 return;
8083                 }
8084                 cntl |= pipe << 28; /* Connect to correct pipe */
8085         }
8086         if (intel_crtc->cursor_cntl != cntl) {
8087                 I915_WRITE(CURCNTR(pipe), cntl);
8088                 POSTING_READ(CURCNTR(pipe));
8089                 intel_crtc->cursor_cntl = cntl;
8090         }
8091
8092         /* and commit changes on next vblank */
8093         I915_WRITE(CURBASE(pipe), base);
8094         POSTING_READ(CURBASE(pipe));
8095 }
8096
8097 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8098 {
8099         struct drm_device *dev = crtc->dev;
8100         struct drm_i915_private *dev_priv = dev->dev_private;
8101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8102         int pipe = intel_crtc->pipe;
8103         uint32_t cntl;
8104
8105         cntl = 0;
8106         if (base) {
8107                 cntl = MCURSOR_GAMMA_ENABLE;
8108                 switch (intel_crtc->cursor_width) {
8109                         case 64:
8110                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8111                                 break;
8112                         case 128:
8113                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8114                                 break;
8115                         case 256:
8116                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8117                                 break;
8118                         default:
8119                                 WARN_ON(1);
8120                                 return;
8121                 }
8122         }
8123         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8124                 cntl |= CURSOR_PIPE_CSC_ENABLE;
8125
8126         if (intel_crtc->cursor_cntl != cntl) {
8127                 I915_WRITE(CURCNTR(pipe), cntl);
8128                 POSTING_READ(CURCNTR(pipe));
8129                 intel_crtc->cursor_cntl = cntl;
8130         }
8131
8132         /* and commit changes on next vblank */
8133         I915_WRITE(CURBASE(pipe), base);
8134         POSTING_READ(CURBASE(pipe));
8135 }
8136
8137 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8138 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8139                                      bool on)
8140 {
8141         struct drm_device *dev = crtc->dev;
8142         struct drm_i915_private *dev_priv = dev->dev_private;
8143         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8144         int pipe = intel_crtc->pipe;
8145         int x = crtc->cursor_x;
8146         int y = crtc->cursor_y;
8147         u32 base = 0, pos = 0;
8148
8149         if (on)
8150                 base = intel_crtc->cursor_addr;
8151
8152         if (x >= intel_crtc->config.pipe_src_w)
8153                 base = 0;
8154
8155         if (y >= intel_crtc->config.pipe_src_h)
8156                 base = 0;
8157
8158         if (x < 0) {
8159                 if (x + intel_crtc->cursor_width <= 0)
8160                         base = 0;
8161
8162                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8163                 x = -x;
8164         }
8165         pos |= x << CURSOR_X_SHIFT;
8166
8167         if (y < 0) {
8168                 if (y + intel_crtc->cursor_height <= 0)
8169                         base = 0;
8170
8171                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8172                 y = -y;
8173         }
8174         pos |= y << CURSOR_Y_SHIFT;
8175
8176         if (base == 0 && intel_crtc->cursor_base == 0)
8177                 return;
8178
8179         I915_WRITE(CURPOS(pipe), pos);
8180
8181         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8182                 ivb_update_cursor(crtc, base);
8183         else if (IS_845G(dev) || IS_I865G(dev))
8184                 i845_update_cursor(crtc, base);
8185         else
8186                 i9xx_update_cursor(crtc, base);
8187         intel_crtc->cursor_base = base;
8188 }
8189
8190 /*
8191  * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8192  *
8193  * Note that the object's reference will be consumed if the update fails.  If
8194  * the update succeeds, the reference of the old object (if any) will be
8195  * consumed.
8196  */
8197 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8198                                      struct drm_i915_gem_object *obj,
8199                                      uint32_t width, uint32_t height)
8200 {
8201         struct drm_device *dev = crtc->dev;
8202         struct drm_i915_private *dev_priv = dev->dev_private;
8203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8204         enum pipe pipe = intel_crtc->pipe;
8205         unsigned old_width;
8206         uint32_t addr;
8207         int ret;
8208
8209         /* if we want to turn off the cursor ignore width and height */
8210         if (!obj) {
8211                 DRM_DEBUG_KMS("cursor off\n");
8212                 addr = 0;
8213                 obj = NULL;
8214                 mutex_lock(&dev->struct_mutex);
8215                 goto finish;
8216         }
8217
8218         /* Check for which cursor types we support */
8219         if (!((width == 64 && height == 64) ||
8220                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8221                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8222                 DRM_DEBUG("Cursor dimension not supported\n");
8223                 return -EINVAL;
8224         }
8225
8226         if (obj->base.size < width * height * 4) {
8227                 DRM_DEBUG_KMS("buffer is too small\n");
8228                 ret = -ENOMEM;
8229                 goto fail;
8230         }
8231
8232         /* we only need to pin inside GTT if cursor is non-phy */
8233         mutex_lock(&dev->struct_mutex);
8234         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8235                 unsigned alignment;
8236
8237                 if (obj->tiling_mode) {
8238                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8239                         ret = -EINVAL;
8240                         goto fail_locked;
8241                 }
8242
8243                 /* Note that the w/a also requires 2 PTE of padding following
8244                  * the bo. We currently fill all unused PTE with the shadow
8245                  * page and so we should always have valid PTE following the
8246                  * cursor preventing the VT-d warning.
8247                  */
8248                 alignment = 0;
8249                 if (need_vtd_wa(dev))
8250                         alignment = 64*1024;
8251
8252                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8253                 if (ret) {
8254                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8255                         goto fail_locked;
8256                 }
8257
8258                 ret = i915_gem_object_put_fence(obj);
8259                 if (ret) {
8260                         DRM_DEBUG_KMS("failed to release fence for cursor");
8261                         goto fail_unpin;
8262                 }
8263
8264                 addr = i915_gem_obj_ggtt_offset(obj);
8265         } else {
8266                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8267                 ret = i915_gem_object_attach_phys(obj, align);
8268                 if (ret) {
8269                         DRM_DEBUG_KMS("failed to attach phys object\n");
8270                         goto fail_locked;
8271                 }
8272                 addr = obj->phys_handle->busaddr;
8273         }
8274
8275         if (IS_GEN2(dev))
8276                 I915_WRITE(CURSIZE, (height << 12) | width);
8277
8278  finish:
8279         if (intel_crtc->cursor_bo) {
8280                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8281                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8282         }
8283
8284         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8285                           INTEL_FRONTBUFFER_CURSOR(pipe));
8286         mutex_unlock(&dev->struct_mutex);
8287
8288         old_width = intel_crtc->cursor_width;
8289
8290         intel_crtc->cursor_addr = addr;
8291         intel_crtc->cursor_bo = obj;
8292         intel_crtc->cursor_width = width;
8293         intel_crtc->cursor_height = height;
8294
8295         if (intel_crtc->active) {
8296                 if (old_width != width)
8297                         intel_update_watermarks(crtc);
8298                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8299         }
8300
8301         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8302
8303         return 0;
8304 fail_unpin:
8305         i915_gem_object_unpin_from_display_plane(obj);
8306 fail_locked:
8307         mutex_unlock(&dev->struct_mutex);
8308 fail:
8309         drm_gem_object_unreference_unlocked(&obj->base);
8310         return ret;
8311 }
8312
8313 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8314                                  u16 *blue, uint32_t start, uint32_t size)
8315 {
8316         int end = (start + size > 256) ? 256 : start + size, i;
8317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8318
8319         for (i = start; i < end; i++) {
8320                 intel_crtc->lut_r[i] = red[i] >> 8;
8321                 intel_crtc->lut_g[i] = green[i] >> 8;
8322                 intel_crtc->lut_b[i] = blue[i] >> 8;
8323         }
8324
8325         intel_crtc_load_lut(crtc);
8326 }
8327
8328 /* VESA 640x480x72Hz mode to set on the pipe */
8329 static struct drm_display_mode load_detect_mode = {
8330         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8331                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8332 };
8333
8334 struct drm_framebuffer *
8335 __intel_framebuffer_create(struct drm_device *dev,
8336                            struct drm_mode_fb_cmd2 *mode_cmd,
8337                            struct drm_i915_gem_object *obj)
8338 {
8339         struct intel_framebuffer *intel_fb;
8340         int ret;
8341
8342         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8343         if (!intel_fb) {
8344                 drm_gem_object_unreference_unlocked(&obj->base);
8345                 return ERR_PTR(-ENOMEM);
8346         }
8347
8348         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8349         if (ret)
8350                 goto err;
8351
8352         return &intel_fb->base;
8353 err:
8354         drm_gem_object_unreference_unlocked(&obj->base);
8355         kfree(intel_fb);
8356
8357         return ERR_PTR(ret);
8358 }
8359
8360 static struct drm_framebuffer *
8361 intel_framebuffer_create(struct drm_device *dev,
8362                          struct drm_mode_fb_cmd2 *mode_cmd,
8363                          struct drm_i915_gem_object *obj)
8364 {
8365         struct drm_framebuffer *fb;
8366         int ret;
8367
8368         ret = i915_mutex_lock_interruptible(dev);
8369         if (ret)
8370                 return ERR_PTR(ret);
8371         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8372         mutex_unlock(&dev->struct_mutex);
8373
8374         return fb;
8375 }
8376
8377 static u32
8378 intel_framebuffer_pitch_for_width(int width, int bpp)
8379 {
8380         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8381         return ALIGN(pitch, 64);
8382 }
8383
8384 static u32
8385 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8386 {
8387         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8388         return PAGE_ALIGN(pitch * mode->vdisplay);
8389 }
8390
8391 static struct drm_framebuffer *
8392 intel_framebuffer_create_for_mode(struct drm_device *dev,
8393                                   struct drm_display_mode *mode,
8394                                   int depth, int bpp)
8395 {
8396         struct drm_i915_gem_object *obj;
8397         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8398
8399         obj = i915_gem_alloc_object(dev,
8400                                     intel_framebuffer_size_for_mode(mode, bpp));
8401         if (obj == NULL)
8402                 return ERR_PTR(-ENOMEM);
8403
8404         mode_cmd.width = mode->hdisplay;
8405         mode_cmd.height = mode->vdisplay;
8406         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8407                                                                 bpp);
8408         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8409
8410         return intel_framebuffer_create(dev, &mode_cmd, obj);
8411 }
8412
8413 static struct drm_framebuffer *
8414 mode_fits_in_fbdev(struct drm_device *dev,
8415                    struct drm_display_mode *mode)
8416 {
8417 #ifdef CONFIG_DRM_I915_FBDEV
8418         struct drm_i915_private *dev_priv = dev->dev_private;
8419         struct drm_i915_gem_object *obj;
8420         struct drm_framebuffer *fb;
8421
8422         if (!dev_priv->fbdev)
8423                 return NULL;
8424
8425         if (!dev_priv->fbdev->fb)
8426                 return NULL;
8427
8428         obj = dev_priv->fbdev->fb->obj;
8429         BUG_ON(!obj);
8430
8431         fb = &dev_priv->fbdev->fb->base;
8432         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8433                                                                fb->bits_per_pixel))
8434                 return NULL;
8435
8436         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8437                 return NULL;
8438
8439         return fb;
8440 #else
8441         return NULL;
8442 #endif
8443 }
8444
8445 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8446                                 struct drm_display_mode *mode,
8447                                 struct intel_load_detect_pipe *old,
8448                                 struct drm_modeset_acquire_ctx *ctx)
8449 {
8450         struct intel_crtc *intel_crtc;
8451         struct intel_encoder *intel_encoder =
8452                 intel_attached_encoder(connector);
8453         struct drm_crtc *possible_crtc;
8454         struct drm_encoder *encoder = &intel_encoder->base;
8455         struct drm_crtc *crtc = NULL;
8456         struct drm_device *dev = encoder->dev;
8457         struct drm_framebuffer *fb;
8458         struct drm_mode_config *config = &dev->mode_config;
8459         int ret, i = -1;
8460
8461         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8462                       connector->base.id, connector->name,
8463                       encoder->base.id, encoder->name);
8464
8465         drm_modeset_acquire_init(ctx, 0);
8466
8467 retry:
8468         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8469         if (ret)
8470                 goto fail_unlock;
8471
8472         /*
8473          * Algorithm gets a little messy:
8474          *
8475          *   - if the connector already has an assigned crtc, use it (but make
8476          *     sure it's on first)
8477          *
8478          *   - try to find the first unused crtc that can drive this connector,
8479          *     and use that if we find one
8480          */
8481
8482         /* See if we already have a CRTC for this connector */
8483         if (encoder->crtc) {
8484                 crtc = encoder->crtc;
8485
8486                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8487                 if (ret)
8488                         goto fail_unlock;
8489
8490                 old->dpms_mode = connector->dpms;
8491                 old->load_detect_temp = false;
8492
8493                 /* Make sure the crtc and connector are running */
8494                 if (connector->dpms != DRM_MODE_DPMS_ON)
8495                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8496
8497                 return true;
8498         }
8499
8500         /* Find an unused one (if possible) */
8501         for_each_crtc(dev, possible_crtc) {
8502                 i++;
8503                 if (!(encoder->possible_crtcs & (1 << i)))
8504                         continue;
8505                 if (!possible_crtc->enabled) {
8506                         crtc = possible_crtc;
8507                         break;
8508                 }
8509         }
8510
8511         /*
8512          * If we didn't find an unused CRTC, don't use any.
8513          */
8514         if (!crtc) {
8515                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8516                 goto fail_unlock;
8517         }
8518
8519         ret = drm_modeset_lock(&crtc->mutex, ctx);
8520         if (ret)
8521                 goto fail_unlock;
8522         intel_encoder->new_crtc = to_intel_crtc(crtc);
8523         to_intel_connector(connector)->new_encoder = intel_encoder;
8524
8525         intel_crtc = to_intel_crtc(crtc);
8526         intel_crtc->new_enabled = true;
8527         intel_crtc->new_config = &intel_crtc->config;
8528         old->dpms_mode = connector->dpms;
8529         old->load_detect_temp = true;
8530         old->release_fb = NULL;
8531
8532         if (!mode)
8533                 mode = &load_detect_mode;
8534
8535         /* We need a framebuffer large enough to accommodate all accesses
8536          * that the plane may generate whilst we perform load detection.
8537          * We can not rely on the fbcon either being present (we get called
8538          * during its initialisation to detect all boot displays, or it may
8539          * not even exist) or that it is large enough to satisfy the
8540          * requested mode.
8541          */
8542         fb = mode_fits_in_fbdev(dev, mode);
8543         if (fb == NULL) {
8544                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8545                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8546                 old->release_fb = fb;
8547         } else
8548                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8549         if (IS_ERR(fb)) {
8550                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8551                 goto fail;
8552         }
8553
8554         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8555                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8556                 if (old->release_fb)
8557                         old->release_fb->funcs->destroy(old->release_fb);
8558                 goto fail;
8559         }
8560
8561         /* let the connector get through one full cycle before testing */
8562         intel_wait_for_vblank(dev, intel_crtc->pipe);
8563         return true;
8564
8565  fail:
8566         intel_crtc->new_enabled = crtc->enabled;
8567         if (intel_crtc->new_enabled)
8568                 intel_crtc->new_config = &intel_crtc->config;
8569         else
8570                 intel_crtc->new_config = NULL;
8571 fail_unlock:
8572         if (ret == -EDEADLK) {
8573                 drm_modeset_backoff(ctx);
8574                 goto retry;
8575         }
8576
8577         drm_modeset_drop_locks(ctx);
8578         drm_modeset_acquire_fini(ctx);
8579
8580         return false;
8581 }
8582
8583 void intel_release_load_detect_pipe(struct drm_connector *connector,
8584                                     struct intel_load_detect_pipe *old,
8585                                     struct drm_modeset_acquire_ctx *ctx)
8586 {
8587         struct intel_encoder *intel_encoder =
8588                 intel_attached_encoder(connector);
8589         struct drm_encoder *encoder = &intel_encoder->base;
8590         struct drm_crtc *crtc = encoder->crtc;
8591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8592
8593         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8594                       connector->base.id, connector->name,
8595                       encoder->base.id, encoder->name);
8596
8597         if (old->load_detect_temp) {
8598                 to_intel_connector(connector)->new_encoder = NULL;
8599                 intel_encoder->new_crtc = NULL;
8600                 intel_crtc->new_enabled = false;
8601                 intel_crtc->new_config = NULL;
8602                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8603
8604                 if (old->release_fb) {
8605                         drm_framebuffer_unregister_private(old->release_fb);
8606                         drm_framebuffer_unreference(old->release_fb);
8607                 }
8608
8609                 goto unlock;
8610                 return;
8611         }
8612
8613         /* Switch crtc and encoder back off if necessary */
8614         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8615                 connector->funcs->dpms(connector, old->dpms_mode);
8616
8617 unlock:
8618         drm_modeset_drop_locks(ctx);
8619         drm_modeset_acquire_fini(ctx);
8620 }
8621
8622 static int i9xx_pll_refclk(struct drm_device *dev,
8623                            const struct intel_crtc_config *pipe_config)
8624 {
8625         struct drm_i915_private *dev_priv = dev->dev_private;
8626         u32 dpll = pipe_config->dpll_hw_state.dpll;
8627
8628         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8629                 return dev_priv->vbt.lvds_ssc_freq;
8630         else if (HAS_PCH_SPLIT(dev))
8631                 return 120000;
8632         else if (!IS_GEN2(dev))
8633                 return 96000;
8634         else
8635                 return 48000;
8636 }
8637
8638 /* Returns the clock of the currently programmed mode of the given pipe. */
8639 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8640                                 struct intel_crtc_config *pipe_config)
8641 {
8642         struct drm_device *dev = crtc->base.dev;
8643         struct drm_i915_private *dev_priv = dev->dev_private;
8644         int pipe = pipe_config->cpu_transcoder;
8645         u32 dpll = pipe_config->dpll_hw_state.dpll;
8646         u32 fp;
8647         intel_clock_t clock;
8648         int refclk = i9xx_pll_refclk(dev, pipe_config);
8649
8650         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8651                 fp = pipe_config->dpll_hw_state.fp0;
8652         else
8653                 fp = pipe_config->dpll_hw_state.fp1;
8654
8655         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8656         if (IS_PINEVIEW(dev)) {
8657                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8658                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8659         } else {
8660                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8661                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8662         }
8663
8664         if (!IS_GEN2(dev)) {
8665                 if (IS_PINEVIEW(dev))
8666                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8667                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8668                 else
8669                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8670                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8671
8672                 switch (dpll & DPLL_MODE_MASK) {
8673                 case DPLLB_MODE_DAC_SERIAL:
8674                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8675                                 5 : 10;
8676                         break;
8677                 case DPLLB_MODE_LVDS:
8678                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8679                                 7 : 14;
8680                         break;
8681                 default:
8682                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8683                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8684                         return;
8685                 }
8686
8687                 if (IS_PINEVIEW(dev))
8688                         pineview_clock(refclk, &clock);
8689                 else
8690                         i9xx_clock(refclk, &clock);
8691         } else {
8692                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8693                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8694
8695                 if (is_lvds) {
8696                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8697                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8698
8699                         if (lvds & LVDS_CLKB_POWER_UP)
8700                                 clock.p2 = 7;
8701                         else
8702                                 clock.p2 = 14;
8703                 } else {
8704                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8705                                 clock.p1 = 2;
8706                         else {
8707                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8708                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8709                         }
8710                         if (dpll & PLL_P2_DIVIDE_BY_4)
8711                                 clock.p2 = 4;
8712                         else
8713                                 clock.p2 = 2;
8714                 }
8715
8716                 i9xx_clock(refclk, &clock);
8717         }
8718
8719         /*
8720          * This value includes pixel_multiplier. We will use
8721          * port_clock to compute adjusted_mode.crtc_clock in the
8722          * encoder's get_config() function.
8723          */
8724         pipe_config->port_clock = clock.dot;
8725 }
8726
8727 int intel_dotclock_calculate(int link_freq,
8728                              const struct intel_link_m_n *m_n)
8729 {
8730         /*
8731          * The calculation for the data clock is:
8732          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8733          * But we want to avoid losing precison if possible, so:
8734          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8735          *
8736          * and the link clock is simpler:
8737          * link_clock = (m * link_clock) / n
8738          */
8739
8740         if (!m_n->link_n)
8741                 return 0;
8742
8743         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8744 }
8745
8746 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8747                                    struct intel_crtc_config *pipe_config)
8748 {
8749         struct drm_device *dev = crtc->base.dev;
8750
8751         /* read out port_clock from the DPLL */
8752         i9xx_crtc_clock_get(crtc, pipe_config);
8753
8754         /*
8755          * This value does not include pixel_multiplier.
8756          * We will check that port_clock and adjusted_mode.crtc_clock
8757          * agree once we know their relationship in the encoder's
8758          * get_config() function.
8759          */
8760         pipe_config->adjusted_mode.crtc_clock =
8761                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8762                                          &pipe_config->fdi_m_n);
8763 }
8764
8765 /** Returns the currently programmed mode of the given pipe. */
8766 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8767                                              struct drm_crtc *crtc)
8768 {
8769         struct drm_i915_private *dev_priv = dev->dev_private;
8770         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8771         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8772         struct drm_display_mode *mode;
8773         struct intel_crtc_config pipe_config;
8774         int htot = I915_READ(HTOTAL(cpu_transcoder));
8775         int hsync = I915_READ(HSYNC(cpu_transcoder));
8776         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8777         int vsync = I915_READ(VSYNC(cpu_transcoder));
8778         enum pipe pipe = intel_crtc->pipe;
8779
8780         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8781         if (!mode)
8782                 return NULL;
8783
8784         /*
8785          * Construct a pipe_config sufficient for getting the clock info
8786          * back out of crtc_clock_get.
8787          *
8788          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8789          * to use a real value here instead.
8790          */
8791         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8792         pipe_config.pixel_multiplier = 1;
8793         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8794         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8795         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8796         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8797
8798         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8799         mode->hdisplay = (htot & 0xffff) + 1;
8800         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8801         mode->hsync_start = (hsync & 0xffff) + 1;
8802         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8803         mode->vdisplay = (vtot & 0xffff) + 1;
8804         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8805         mode->vsync_start = (vsync & 0xffff) + 1;
8806         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8807
8808         drm_mode_set_name(mode);
8809
8810         return mode;
8811 }
8812
8813 static void intel_increase_pllclock(struct drm_device *dev,
8814                                     enum pipe pipe)
8815 {
8816         struct drm_i915_private *dev_priv = dev->dev_private;
8817         int dpll_reg = DPLL(pipe);
8818         int dpll;
8819
8820         if (!HAS_GMCH_DISPLAY(dev))
8821                 return;
8822
8823         if (!dev_priv->lvds_downclock_avail)
8824                 return;
8825
8826         dpll = I915_READ(dpll_reg);
8827         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8828                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8829
8830                 assert_panel_unlocked(dev_priv, pipe);
8831
8832                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8833                 I915_WRITE(dpll_reg, dpll);
8834                 intel_wait_for_vblank(dev, pipe);
8835
8836                 dpll = I915_READ(dpll_reg);
8837                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8838                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8839         }
8840 }
8841
8842 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8843 {
8844         struct drm_device *dev = crtc->dev;
8845         struct drm_i915_private *dev_priv = dev->dev_private;
8846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8847
8848         if (!HAS_GMCH_DISPLAY(dev))
8849                 return;
8850
8851         if (!dev_priv->lvds_downclock_avail)
8852                 return;
8853
8854         /*
8855          * Since this is called by a timer, we should never get here in
8856          * the manual case.
8857          */
8858         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8859                 int pipe = intel_crtc->pipe;
8860                 int dpll_reg = DPLL(pipe);
8861                 int dpll;
8862
8863                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8864
8865                 assert_panel_unlocked(dev_priv, pipe);
8866
8867                 dpll = I915_READ(dpll_reg);
8868                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8869                 I915_WRITE(dpll_reg, dpll);
8870                 intel_wait_for_vblank(dev, pipe);
8871                 dpll = I915_READ(dpll_reg);
8872                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8873                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8874         }
8875
8876 }
8877
8878 void intel_mark_busy(struct drm_device *dev)
8879 {
8880         struct drm_i915_private *dev_priv = dev->dev_private;
8881
8882         if (dev_priv->mm.busy)
8883                 return;
8884
8885         intel_runtime_pm_get(dev_priv);
8886         i915_update_gfx_val(dev_priv);
8887         dev_priv->mm.busy = true;
8888 }
8889
8890 void intel_mark_idle(struct drm_device *dev)
8891 {
8892         struct drm_i915_private *dev_priv = dev->dev_private;
8893         struct drm_crtc *crtc;
8894
8895         if (!dev_priv->mm.busy)
8896                 return;
8897
8898         dev_priv->mm.busy = false;
8899
8900         if (!i915.powersave)
8901                 goto out;
8902
8903         for_each_crtc(dev, crtc) {
8904                 if (!crtc->primary->fb)
8905                         continue;
8906
8907                 intel_decrease_pllclock(crtc);
8908         }
8909
8910         if (INTEL_INFO(dev)->gen >= 6)
8911                 gen6_rps_idle(dev->dev_private);
8912
8913 out:
8914         intel_runtime_pm_put(dev_priv);
8915 }
8916
8917
8918 /**
8919  * intel_mark_fb_busy - mark given planes as busy
8920  * @dev: DRM device
8921  * @frontbuffer_bits: bits for the affected planes
8922  * @ring: optional ring for asynchronous commands
8923  *
8924  * This function gets called every time the screen contents change. It can be
8925  * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8926  */
8927 static void intel_mark_fb_busy(struct drm_device *dev,
8928                                unsigned frontbuffer_bits,
8929                                struct intel_engine_cs *ring)
8930 {
8931         enum pipe pipe;
8932
8933         if (!i915.powersave)
8934                 return;
8935
8936         for_each_pipe(pipe) {
8937                 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
8938                         continue;
8939
8940                 intel_increase_pllclock(dev, pipe);
8941                 if (ring && intel_fbc_enabled(dev))
8942                         ring->fbc_dirty = true;
8943         }
8944 }
8945
8946 /**
8947  * intel_fb_obj_invalidate - invalidate frontbuffer object
8948  * @obj: GEM object to invalidate
8949  * @ring: set for asynchronous rendering
8950  *
8951  * This function gets called every time rendering on the given object starts and
8952  * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8953  * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8954  * until the rendering completes or a flip on this frontbuffer plane is
8955  * scheduled.
8956  */
8957 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8958                              struct intel_engine_cs *ring)
8959 {
8960         struct drm_device *dev = obj->base.dev;
8961         struct drm_i915_private *dev_priv = dev->dev_private;
8962
8963         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8964
8965         if (!obj->frontbuffer_bits)
8966                 return;
8967
8968         if (ring) {
8969                 mutex_lock(&dev_priv->fb_tracking.lock);
8970                 dev_priv->fb_tracking.busy_bits
8971                         |= obj->frontbuffer_bits;
8972                 dev_priv->fb_tracking.flip_bits
8973                         &= ~obj->frontbuffer_bits;
8974                 mutex_unlock(&dev_priv->fb_tracking.lock);
8975         }
8976
8977         intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8978
8979         intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
8980 }
8981
8982 /**
8983  * intel_frontbuffer_flush - flush frontbuffer
8984  * @dev: DRM device
8985  * @frontbuffer_bits: frontbuffer plane tracking bits
8986  *
8987  * This function gets called every time rendering on the given planes has
8988  * completed and frontbuffer caching can be started again. Flushes will get
8989  * delayed if they're blocked by some oustanding asynchronous rendering.
8990  *
8991  * Can be called without any locks held.
8992  */
8993 void intel_frontbuffer_flush(struct drm_device *dev,
8994                              unsigned frontbuffer_bits)
8995 {
8996         struct drm_i915_private *dev_priv = dev->dev_private;
8997
8998         /* Delay flushing when rings are still busy.*/
8999         mutex_lock(&dev_priv->fb_tracking.lock);
9000         frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9001         mutex_unlock(&dev_priv->fb_tracking.lock);
9002
9003         intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9004
9005         intel_edp_psr_flush(dev, frontbuffer_bits);
9006 }
9007
9008 /**
9009  * intel_fb_obj_flush - flush frontbuffer object
9010  * @obj: GEM object to flush
9011  * @retire: set when retiring asynchronous rendering
9012  *
9013  * This function gets called every time rendering on the given object has
9014  * completed and frontbuffer caching can be started again. If @retire is true
9015  * then any delayed flushes will be unblocked.
9016  */
9017 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9018                         bool retire)
9019 {
9020         struct drm_device *dev = obj->base.dev;
9021         struct drm_i915_private *dev_priv = dev->dev_private;
9022         unsigned frontbuffer_bits;
9023
9024         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9025
9026         if (!obj->frontbuffer_bits)
9027                 return;
9028
9029         frontbuffer_bits = obj->frontbuffer_bits;
9030
9031         if (retire) {
9032                 mutex_lock(&dev_priv->fb_tracking.lock);
9033                 /* Filter out new bits since rendering started. */
9034                 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9035
9036                 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9037                 mutex_unlock(&dev_priv->fb_tracking.lock);
9038         }
9039
9040         intel_frontbuffer_flush(dev, frontbuffer_bits);
9041 }
9042
9043 /**
9044  * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9045  * @dev: DRM device
9046  * @frontbuffer_bits: frontbuffer plane tracking bits
9047  *
9048  * This function gets called after scheduling a flip on @obj. The actual
9049  * frontbuffer flushing will be delayed until completion is signalled with
9050  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9051  * flush will be cancelled.
9052  *
9053  * Can be called without any locks held.
9054  */
9055 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9056                                     unsigned frontbuffer_bits)
9057 {
9058         struct drm_i915_private *dev_priv = dev->dev_private;
9059
9060         mutex_lock(&dev_priv->fb_tracking.lock);
9061         dev_priv->fb_tracking.flip_bits
9062                 |= frontbuffer_bits;
9063         mutex_unlock(&dev_priv->fb_tracking.lock);
9064 }
9065
9066 /**
9067  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9068  * @dev: DRM device
9069  * @frontbuffer_bits: frontbuffer plane tracking bits
9070  *
9071  * This function gets called after the flip has been latched and will complete
9072  * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9073  *
9074  * Can be called without any locks held.
9075  */
9076 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9077                                      unsigned frontbuffer_bits)
9078 {
9079         struct drm_i915_private *dev_priv = dev->dev_private;
9080
9081         mutex_lock(&dev_priv->fb_tracking.lock);
9082         /* Mask any cancelled flips. */
9083         frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9084         dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9085         mutex_unlock(&dev_priv->fb_tracking.lock);
9086
9087         intel_frontbuffer_flush(dev, frontbuffer_bits);
9088 }
9089
9090 static void intel_crtc_destroy(struct drm_crtc *crtc)
9091 {
9092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9093         struct drm_device *dev = crtc->dev;
9094         struct intel_unpin_work *work;
9095         unsigned long flags;
9096
9097         spin_lock_irqsave(&dev->event_lock, flags);
9098         work = intel_crtc->unpin_work;
9099         intel_crtc->unpin_work = NULL;
9100         spin_unlock_irqrestore(&dev->event_lock, flags);
9101
9102         if (work) {
9103                 cancel_work_sync(&work->work);
9104                 kfree(work);
9105         }
9106
9107         drm_crtc_cleanup(crtc);
9108
9109         kfree(intel_crtc);
9110 }
9111
9112 static void intel_unpin_work_fn(struct work_struct *__work)
9113 {
9114         struct intel_unpin_work *work =
9115                 container_of(__work, struct intel_unpin_work, work);
9116         struct drm_device *dev = work->crtc->dev;
9117         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9118
9119         mutex_lock(&dev->struct_mutex);
9120         intel_unpin_fb_obj(work->old_fb_obj);
9121         drm_gem_object_unreference(&work->pending_flip_obj->base);
9122         drm_gem_object_unreference(&work->old_fb_obj->base);
9123
9124         intel_update_fbc(dev);
9125         mutex_unlock(&dev->struct_mutex);
9126
9127         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9128
9129         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9130         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9131
9132         kfree(work);
9133 }
9134
9135 static void do_intel_finish_page_flip(struct drm_device *dev,
9136                                       struct drm_crtc *crtc)
9137 {
9138         struct drm_i915_private *dev_priv = dev->dev_private;
9139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9140         struct intel_unpin_work *work;
9141         unsigned long flags;
9142
9143         /* Ignore early vblank irqs */
9144         if (intel_crtc == NULL)
9145                 return;
9146
9147         spin_lock_irqsave(&dev->event_lock, flags);
9148         work = intel_crtc->unpin_work;
9149
9150         /* Ensure we don't miss a work->pending update ... */
9151         smp_rmb();
9152
9153         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9154                 spin_unlock_irqrestore(&dev->event_lock, flags);
9155                 return;
9156         }
9157
9158         /* and that the unpin work is consistent wrt ->pending. */
9159         smp_rmb();
9160
9161         intel_crtc->unpin_work = NULL;
9162
9163         if (work->event)
9164                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
9165
9166         drm_crtc_vblank_put(crtc);
9167
9168         spin_unlock_irqrestore(&dev->event_lock, flags);
9169
9170         wake_up_all(&dev_priv->pending_flip_queue);
9171
9172         queue_work(dev_priv->wq, &work->work);
9173
9174         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9175 }
9176
9177 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9178 {
9179         struct drm_i915_private *dev_priv = dev->dev_private;
9180         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9181
9182         do_intel_finish_page_flip(dev, crtc);
9183 }
9184
9185 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9186 {
9187         struct drm_i915_private *dev_priv = dev->dev_private;
9188         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9189
9190         do_intel_finish_page_flip(dev, crtc);
9191 }
9192
9193 /* Is 'a' after or equal to 'b'? */
9194 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9195 {
9196         return !((a - b) & 0x80000000);
9197 }
9198
9199 static bool page_flip_finished(struct intel_crtc *crtc)
9200 {
9201         struct drm_device *dev = crtc->base.dev;
9202         struct drm_i915_private *dev_priv = dev->dev_private;
9203
9204         /*
9205          * The relevant registers doen't exist on pre-ctg.
9206          * As the flip done interrupt doesn't trigger for mmio
9207          * flips on gmch platforms, a flip count check isn't
9208          * really needed there. But since ctg has the registers,
9209          * include it in the check anyway.
9210          */
9211         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9212                 return true;
9213
9214         /*
9215          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9216          * used the same base address. In that case the mmio flip might
9217          * have completed, but the CS hasn't even executed the flip yet.
9218          *
9219          * A flip count check isn't enough as the CS might have updated
9220          * the base address just after start of vblank, but before we
9221          * managed to process the interrupt. This means we'd complete the
9222          * CS flip too soon.
9223          *
9224          * Combining both checks should get us a good enough result. It may
9225          * still happen that the CS flip has been executed, but has not
9226          * yet actually completed. But in case the base address is the same
9227          * anyway, we don't really care.
9228          */
9229         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9230                 crtc->unpin_work->gtt_offset &&
9231                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9232                                     crtc->unpin_work->flip_count);
9233 }
9234
9235 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9236 {
9237         struct drm_i915_private *dev_priv = dev->dev_private;
9238         struct intel_crtc *intel_crtc =
9239                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9240         unsigned long flags;
9241
9242         /* NB: An MMIO update of the plane base pointer will also
9243          * generate a page-flip completion irq, i.e. every modeset
9244          * is also accompanied by a spurious intel_prepare_page_flip().
9245          */
9246         spin_lock_irqsave(&dev->event_lock, flags);
9247         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9248                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9249         spin_unlock_irqrestore(&dev->event_lock, flags);
9250 }
9251
9252 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9253 {
9254         /* Ensure that the work item is consistent when activating it ... */
9255         smp_wmb();
9256         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9257         /* and that it is marked active as soon as the irq could fire. */
9258         smp_wmb();
9259 }
9260
9261 static int intel_gen2_queue_flip(struct drm_device *dev,
9262                                  struct drm_crtc *crtc,
9263                                  struct drm_framebuffer *fb,
9264                                  struct drm_i915_gem_object *obj,
9265                                  struct intel_engine_cs *ring,
9266                                  uint32_t flags)
9267 {
9268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9269         u32 flip_mask;
9270         int ret;
9271
9272         ret = intel_ring_begin(ring, 6);
9273         if (ret)
9274                 return ret;
9275
9276         /* Can't queue multiple flips, so wait for the previous
9277          * one to finish before executing the next.
9278          */
9279         if (intel_crtc->plane)
9280                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9281         else
9282                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9283         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9284         intel_ring_emit(ring, MI_NOOP);
9285         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9286                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9287         intel_ring_emit(ring, fb->pitches[0]);
9288         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9289         intel_ring_emit(ring, 0); /* aux display base address, unused */
9290
9291         intel_mark_page_flip_active(intel_crtc);
9292         __intel_ring_advance(ring);
9293         return 0;
9294 }
9295
9296 static int intel_gen3_queue_flip(struct drm_device *dev,
9297                                  struct drm_crtc *crtc,
9298                                  struct drm_framebuffer *fb,
9299                                  struct drm_i915_gem_object *obj,
9300                                  struct intel_engine_cs *ring,
9301                                  uint32_t flags)
9302 {
9303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9304         u32 flip_mask;
9305         int ret;
9306
9307         ret = intel_ring_begin(ring, 6);
9308         if (ret)
9309                 return ret;
9310
9311         if (intel_crtc->plane)
9312                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9313         else
9314                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9315         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9316         intel_ring_emit(ring, MI_NOOP);
9317         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9318                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9319         intel_ring_emit(ring, fb->pitches[0]);
9320         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9321         intel_ring_emit(ring, MI_NOOP);
9322
9323         intel_mark_page_flip_active(intel_crtc);
9324         __intel_ring_advance(ring);
9325         return 0;
9326 }
9327
9328 static int intel_gen4_queue_flip(struct drm_device *dev,
9329                                  struct drm_crtc *crtc,
9330                                  struct drm_framebuffer *fb,
9331                                  struct drm_i915_gem_object *obj,
9332                                  struct intel_engine_cs *ring,
9333                                  uint32_t flags)
9334 {
9335         struct drm_i915_private *dev_priv = dev->dev_private;
9336         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9337         uint32_t pf, pipesrc;
9338         int ret;
9339
9340         ret = intel_ring_begin(ring, 4);
9341         if (ret)
9342                 return ret;
9343
9344         /* i965+ uses the linear or tiled offsets from the
9345          * Display Registers (which do not change across a page-flip)
9346          * so we need only reprogram the base address.
9347          */
9348         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9349                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9350         intel_ring_emit(ring, fb->pitches[0]);
9351         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9352                         obj->tiling_mode);
9353
9354         /* XXX Enabling the panel-fitter across page-flip is so far
9355          * untested on non-native modes, so ignore it for now.
9356          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9357          */
9358         pf = 0;
9359         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9360         intel_ring_emit(ring, pf | pipesrc);
9361
9362         intel_mark_page_flip_active(intel_crtc);
9363         __intel_ring_advance(ring);
9364         return 0;
9365 }
9366
9367 static int intel_gen6_queue_flip(struct drm_device *dev,
9368                                  struct drm_crtc *crtc,
9369                                  struct drm_framebuffer *fb,
9370                                  struct drm_i915_gem_object *obj,
9371                                  struct intel_engine_cs *ring,
9372                                  uint32_t flags)
9373 {
9374         struct drm_i915_private *dev_priv = dev->dev_private;
9375         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9376         uint32_t pf, pipesrc;
9377         int ret;
9378
9379         ret = intel_ring_begin(ring, 4);
9380         if (ret)
9381                 return ret;
9382
9383         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9384                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9385         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9386         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9387
9388         /* Contrary to the suggestions in the documentation,
9389          * "Enable Panel Fitter" does not seem to be required when page
9390          * flipping with a non-native mode, and worse causes a normal
9391          * modeset to fail.
9392          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9393          */
9394         pf = 0;
9395         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9396         intel_ring_emit(ring, pf | pipesrc);
9397
9398         intel_mark_page_flip_active(intel_crtc);
9399         __intel_ring_advance(ring);
9400         return 0;
9401 }
9402
9403 static int intel_gen7_queue_flip(struct drm_device *dev,
9404                                  struct drm_crtc *crtc,
9405                                  struct drm_framebuffer *fb,
9406                                  struct drm_i915_gem_object *obj,
9407                                  struct intel_engine_cs *ring,
9408                                  uint32_t flags)
9409 {
9410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9411         uint32_t plane_bit = 0;
9412         int len, ret;
9413
9414         switch (intel_crtc->plane) {
9415         case PLANE_A:
9416                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9417                 break;
9418         case PLANE_B:
9419                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9420                 break;
9421         case PLANE_C:
9422                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9423                 break;
9424         default:
9425                 WARN_ONCE(1, "unknown plane in flip command\n");
9426                 return -ENODEV;
9427         }
9428
9429         len = 4;
9430         if (ring->id == RCS) {
9431                 len += 6;
9432                 /*
9433                  * On Gen 8, SRM is now taking an extra dword to accommodate
9434                  * 48bits addresses, and we need a NOOP for the batch size to
9435                  * stay even.
9436                  */
9437                 if (IS_GEN8(dev))
9438                         len += 2;
9439         }
9440
9441         /*
9442          * BSpec MI_DISPLAY_FLIP for IVB:
9443          * "The full packet must be contained within the same cache line."
9444          *
9445          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9446          * cacheline, if we ever start emitting more commands before
9447          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9448          * then do the cacheline alignment, and finally emit the
9449          * MI_DISPLAY_FLIP.
9450          */
9451         ret = intel_ring_cacheline_align(ring);
9452         if (ret)
9453                 return ret;
9454
9455         ret = intel_ring_begin(ring, len);
9456         if (ret)
9457                 return ret;
9458
9459         /* Unmask the flip-done completion message. Note that the bspec says that
9460          * we should do this for both the BCS and RCS, and that we must not unmask
9461          * more than one flip event at any time (or ensure that one flip message
9462          * can be sent by waiting for flip-done prior to queueing new flips).
9463          * Experimentation says that BCS works despite DERRMR masking all
9464          * flip-done completion events and that unmasking all planes at once
9465          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9466          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9467          */
9468         if (ring->id == RCS) {
9469                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9470                 intel_ring_emit(ring, DERRMR);
9471                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9472                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9473                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9474                 if (IS_GEN8(dev))
9475                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9476                                               MI_SRM_LRM_GLOBAL_GTT);
9477                 else
9478                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9479                                               MI_SRM_LRM_GLOBAL_GTT);
9480                 intel_ring_emit(ring, DERRMR);
9481                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9482                 if (IS_GEN8(dev)) {
9483                         intel_ring_emit(ring, 0);
9484                         intel_ring_emit(ring, MI_NOOP);
9485                 }
9486         }
9487
9488         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9489         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9490         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9491         intel_ring_emit(ring, (MI_NOOP));
9492
9493         intel_mark_page_flip_active(intel_crtc);
9494         __intel_ring_advance(ring);
9495         return 0;
9496 }
9497
9498 static bool use_mmio_flip(struct intel_engine_cs *ring,
9499                           struct drm_i915_gem_object *obj)
9500 {
9501         /*
9502          * This is not being used for older platforms, because
9503          * non-availability of flip done interrupt forces us to use
9504          * CS flips. Older platforms derive flip done using some clever
9505          * tricks involving the flip_pending status bits and vblank irqs.
9506          * So using MMIO flips there would disrupt this mechanism.
9507          */
9508
9509         if (ring == NULL)
9510                 return true;
9511
9512         if (INTEL_INFO(ring->dev)->gen < 5)
9513                 return false;
9514
9515         if (i915.use_mmio_flip < 0)
9516                 return false;
9517         else if (i915.use_mmio_flip > 0)
9518                 return true;
9519         else
9520                 return ring != obj->ring;
9521 }
9522
9523 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9524 {
9525         struct drm_device *dev = intel_crtc->base.dev;
9526         struct drm_i915_private *dev_priv = dev->dev_private;
9527         struct intel_framebuffer *intel_fb =
9528                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9529         struct drm_i915_gem_object *obj = intel_fb->obj;
9530         u32 dspcntr;
9531         u32 reg;
9532
9533         intel_mark_page_flip_active(intel_crtc);
9534
9535         reg = DSPCNTR(intel_crtc->plane);
9536         dspcntr = I915_READ(reg);
9537
9538         if (INTEL_INFO(dev)->gen >= 4) {
9539                 if (obj->tiling_mode != I915_TILING_NONE)
9540                         dspcntr |= DISPPLANE_TILED;
9541                 else
9542                         dspcntr &= ~DISPPLANE_TILED;
9543         }
9544         I915_WRITE(reg, dspcntr);
9545
9546         I915_WRITE(DSPSURF(intel_crtc->plane),
9547                    intel_crtc->unpin_work->gtt_offset);
9548         POSTING_READ(DSPSURF(intel_crtc->plane));
9549 }
9550
9551 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9552 {
9553         struct intel_engine_cs *ring;
9554         int ret;
9555
9556         lockdep_assert_held(&obj->base.dev->struct_mutex);
9557
9558         if (!obj->last_write_seqno)
9559                 return 0;
9560
9561         ring = obj->ring;
9562
9563         if (i915_seqno_passed(ring->get_seqno(ring, true),
9564                               obj->last_write_seqno))
9565                 return 0;
9566
9567         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9568         if (ret)
9569                 return ret;
9570
9571         if (WARN_ON(!ring->irq_get(ring)))
9572                 return 0;
9573
9574         return 1;
9575 }
9576
9577 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9578 {
9579         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9580         struct intel_crtc *intel_crtc;
9581         unsigned long irq_flags;
9582         u32 seqno;
9583
9584         seqno = ring->get_seqno(ring, false);
9585
9586         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9587         for_each_intel_crtc(ring->dev, intel_crtc) {
9588                 struct intel_mmio_flip *mmio_flip;
9589
9590                 mmio_flip = &intel_crtc->mmio_flip;
9591                 if (mmio_flip->seqno == 0)
9592                         continue;
9593
9594                 if (ring->id != mmio_flip->ring_id)
9595                         continue;
9596
9597                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9598                         intel_do_mmio_flip(intel_crtc);
9599                         mmio_flip->seqno = 0;
9600                         ring->irq_put(ring);
9601                 }
9602         }
9603         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9604 }
9605
9606 static int intel_queue_mmio_flip(struct drm_device *dev,
9607                                  struct drm_crtc *crtc,
9608                                  struct drm_framebuffer *fb,
9609                                  struct drm_i915_gem_object *obj,
9610                                  struct intel_engine_cs *ring,
9611                                  uint32_t flags)
9612 {
9613         struct drm_i915_private *dev_priv = dev->dev_private;
9614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9615         unsigned long irq_flags;
9616         int ret;
9617
9618         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9619                 return -EBUSY;
9620
9621         ret = intel_postpone_flip(obj);
9622         if (ret < 0)
9623                 return ret;
9624         if (ret == 0) {
9625                 intel_do_mmio_flip(intel_crtc);
9626                 return 0;
9627         }
9628
9629         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9630         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9631         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9632         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9633
9634         /*
9635          * Double check to catch cases where irq fired before
9636          * mmio flip data was ready
9637          */
9638         intel_notify_mmio_flip(obj->ring);
9639         return 0;
9640 }
9641
9642 static int intel_default_queue_flip(struct drm_device *dev,
9643                                     struct drm_crtc *crtc,
9644                                     struct drm_framebuffer *fb,
9645                                     struct drm_i915_gem_object *obj,
9646                                     struct intel_engine_cs *ring,
9647                                     uint32_t flags)
9648 {
9649         return -ENODEV;
9650 }
9651
9652 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9653                                 struct drm_framebuffer *fb,
9654                                 struct drm_pending_vblank_event *event,
9655                                 uint32_t page_flip_flags)
9656 {
9657         struct drm_device *dev = crtc->dev;
9658         struct drm_i915_private *dev_priv = dev->dev_private;
9659         struct drm_framebuffer *old_fb = crtc->primary->fb;
9660         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9662         enum pipe pipe = intel_crtc->pipe;
9663         struct intel_unpin_work *work;
9664         struct intel_engine_cs *ring;
9665         unsigned long flags;
9666         int ret;
9667
9668         /*
9669          * drm_mode_page_flip_ioctl() should already catch this, but double
9670          * check to be safe.  In the future we may enable pageflipping from
9671          * a disabled primary plane.
9672          */
9673         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9674                 return -EBUSY;
9675
9676         /* Can't change pixel format via MI display flips. */
9677         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9678                 return -EINVAL;
9679
9680         /*
9681          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9682          * Note that pitch changes could also affect these register.
9683          */
9684         if (INTEL_INFO(dev)->gen > 3 &&
9685             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9686              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9687                 return -EINVAL;
9688
9689         if (i915_terminally_wedged(&dev_priv->gpu_error))
9690                 goto out_hang;
9691
9692         work = kzalloc(sizeof(*work), GFP_KERNEL);
9693         if (work == NULL)
9694                 return -ENOMEM;
9695
9696         work->event = event;
9697         work->crtc = crtc;
9698         work->old_fb_obj = intel_fb_obj(old_fb);
9699         INIT_WORK(&work->work, intel_unpin_work_fn);
9700
9701         ret = drm_crtc_vblank_get(crtc);
9702         if (ret)
9703                 goto free_work;
9704
9705         /* We borrow the event spin lock for protecting unpin_work */
9706         spin_lock_irqsave(&dev->event_lock, flags);
9707         if (intel_crtc->unpin_work) {
9708                 spin_unlock_irqrestore(&dev->event_lock, flags);
9709                 kfree(work);
9710                 drm_crtc_vblank_put(crtc);
9711
9712                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9713                 return -EBUSY;
9714         }
9715         intel_crtc->unpin_work = work;
9716         spin_unlock_irqrestore(&dev->event_lock, flags);
9717
9718         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9719                 flush_workqueue(dev_priv->wq);
9720
9721         ret = i915_mutex_lock_interruptible(dev);
9722         if (ret)
9723                 goto cleanup;
9724
9725         /* Reference the objects for the scheduled work. */
9726         drm_gem_object_reference(&work->old_fb_obj->base);
9727         drm_gem_object_reference(&obj->base);
9728
9729         crtc->primary->fb = fb;
9730
9731         work->pending_flip_obj = obj;
9732
9733         work->enable_stall_check = true;
9734
9735         atomic_inc(&intel_crtc->unpin_work_count);
9736         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9737
9738         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9739                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9740
9741         if (IS_VALLEYVIEW(dev)) {
9742                 ring = &dev_priv->ring[BCS];
9743                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9744                         /* vlv: DISPLAY_FLIP fails to change tiling */
9745                         ring = NULL;
9746         } else if (IS_IVYBRIDGE(dev)) {
9747                 ring = &dev_priv->ring[BCS];
9748         } else if (INTEL_INFO(dev)->gen >= 7) {
9749                 ring = obj->ring;
9750                 if (ring == NULL || ring->id != RCS)
9751                         ring = &dev_priv->ring[BCS];
9752         } else {
9753                 ring = &dev_priv->ring[RCS];
9754         }
9755
9756         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9757         if (ret)
9758                 goto cleanup_pending;
9759
9760         work->gtt_offset =
9761                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9762
9763         if (use_mmio_flip(ring, obj))
9764                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9765                                             page_flip_flags);
9766         else
9767                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9768                                 page_flip_flags);
9769         if (ret)
9770                 goto cleanup_unpin;
9771
9772         i915_gem_track_fb(work->old_fb_obj, obj,
9773                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9774
9775         intel_disable_fbc(dev);
9776         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9777         mutex_unlock(&dev->struct_mutex);
9778
9779         trace_i915_flip_request(intel_crtc->plane, obj);
9780
9781         return 0;
9782
9783 cleanup_unpin:
9784         intel_unpin_fb_obj(obj);
9785 cleanup_pending:
9786         atomic_dec(&intel_crtc->unpin_work_count);
9787         crtc->primary->fb = old_fb;
9788         drm_gem_object_unreference(&work->old_fb_obj->base);
9789         drm_gem_object_unreference(&obj->base);
9790         mutex_unlock(&dev->struct_mutex);
9791
9792 cleanup:
9793         spin_lock_irqsave(&dev->event_lock, flags);
9794         intel_crtc->unpin_work = NULL;
9795         spin_unlock_irqrestore(&dev->event_lock, flags);
9796
9797         drm_crtc_vblank_put(crtc);
9798 free_work:
9799         kfree(work);
9800
9801         if (ret == -EIO) {
9802 out_hang:
9803                 intel_crtc_wait_for_pending_flips(crtc);
9804                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9805                 if (ret == 0 && event)
9806                         drm_send_vblank_event(dev, pipe, event);
9807         }
9808         return ret;
9809 }
9810
9811 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9812         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9813         .load_lut = intel_crtc_load_lut,
9814 };
9815
9816 /**
9817  * intel_modeset_update_staged_output_state
9818  *
9819  * Updates the staged output configuration state, e.g. after we've read out the
9820  * current hw state.
9821  */
9822 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9823 {
9824         struct intel_crtc *crtc;
9825         struct intel_encoder *encoder;
9826         struct intel_connector *connector;
9827
9828         list_for_each_entry(connector, &dev->mode_config.connector_list,
9829                             base.head) {
9830                 connector->new_encoder =
9831                         to_intel_encoder(connector->base.encoder);
9832         }
9833
9834         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9835                             base.head) {
9836                 encoder->new_crtc =
9837                         to_intel_crtc(encoder->base.crtc);
9838         }
9839
9840         for_each_intel_crtc(dev, crtc) {
9841                 crtc->new_enabled = crtc->base.enabled;
9842
9843                 if (crtc->new_enabled)
9844                         crtc->new_config = &crtc->config;
9845                 else
9846                         crtc->new_config = NULL;
9847         }
9848 }
9849
9850 /**
9851  * intel_modeset_commit_output_state
9852  *
9853  * This function copies the stage display pipe configuration to the real one.
9854  */
9855 static void intel_modeset_commit_output_state(struct drm_device *dev)
9856 {
9857         struct intel_crtc *crtc;
9858         struct intel_encoder *encoder;
9859         struct intel_connector *connector;
9860
9861         list_for_each_entry(connector, &dev->mode_config.connector_list,
9862                             base.head) {
9863                 connector->base.encoder = &connector->new_encoder->base;
9864         }
9865
9866         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9867                             base.head) {
9868                 encoder->base.crtc = &encoder->new_crtc->base;
9869         }
9870
9871         for_each_intel_crtc(dev, crtc) {
9872                 crtc->base.enabled = crtc->new_enabled;
9873         }
9874 }
9875
9876 static void
9877 connected_sink_compute_bpp(struct intel_connector *connector,
9878                            struct intel_crtc_config *pipe_config)
9879 {
9880         int bpp = pipe_config->pipe_bpp;
9881
9882         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9883                 connector->base.base.id,
9884                 connector->base.name);
9885
9886         /* Don't use an invalid EDID bpc value */
9887         if (connector->base.display_info.bpc &&
9888             connector->base.display_info.bpc * 3 < bpp) {
9889                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9890                               bpp, connector->base.display_info.bpc*3);
9891                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9892         }
9893
9894         /* Clamp bpp to 8 on screens without EDID 1.4 */
9895         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9896                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9897                               bpp);
9898                 pipe_config->pipe_bpp = 24;
9899         }
9900 }
9901
9902 static int
9903 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9904                           struct drm_framebuffer *fb,
9905                           struct intel_crtc_config *pipe_config)
9906 {
9907         struct drm_device *dev = crtc->base.dev;
9908         struct intel_connector *connector;
9909         int bpp;
9910
9911         switch (fb->pixel_format) {
9912         case DRM_FORMAT_C8:
9913                 bpp = 8*3; /* since we go through a colormap */
9914                 break;
9915         case DRM_FORMAT_XRGB1555:
9916         case DRM_FORMAT_ARGB1555:
9917                 /* checked in intel_framebuffer_init already */
9918                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9919                         return -EINVAL;
9920         case DRM_FORMAT_RGB565:
9921                 bpp = 6*3; /* min is 18bpp */
9922                 break;
9923         case DRM_FORMAT_XBGR8888:
9924         case DRM_FORMAT_ABGR8888:
9925                 /* checked in intel_framebuffer_init already */
9926                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9927                         return -EINVAL;
9928         case DRM_FORMAT_XRGB8888:
9929         case DRM_FORMAT_ARGB8888:
9930                 bpp = 8*3;
9931                 break;
9932         case DRM_FORMAT_XRGB2101010:
9933         case DRM_FORMAT_ARGB2101010:
9934         case DRM_FORMAT_XBGR2101010:
9935         case DRM_FORMAT_ABGR2101010:
9936                 /* checked in intel_framebuffer_init already */
9937                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9938                         return -EINVAL;
9939                 bpp = 10*3;
9940                 break;
9941         /* TODO: gen4+ supports 16 bpc floating point, too. */
9942         default:
9943                 DRM_DEBUG_KMS("unsupported depth\n");
9944                 return -EINVAL;
9945         }
9946
9947         pipe_config->pipe_bpp = bpp;
9948
9949         /* Clamp display bpp to EDID value */
9950         list_for_each_entry(connector, &dev->mode_config.connector_list,
9951                             base.head) {
9952                 if (!connector->new_encoder ||
9953                     connector->new_encoder->new_crtc != crtc)
9954                         continue;
9955
9956                 connected_sink_compute_bpp(connector, pipe_config);
9957         }
9958
9959         return bpp;
9960 }
9961
9962 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9963 {
9964         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9965                         "type: 0x%x flags: 0x%x\n",
9966                 mode->crtc_clock,
9967                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9968                 mode->crtc_hsync_end, mode->crtc_htotal,
9969                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9970                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9971 }
9972
9973 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9974                                    struct intel_crtc_config *pipe_config,
9975                                    const char *context)
9976 {
9977         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9978                       context, pipe_name(crtc->pipe));
9979
9980         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9981         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9982                       pipe_config->pipe_bpp, pipe_config->dither);
9983         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9984                       pipe_config->has_pch_encoder,
9985                       pipe_config->fdi_lanes,
9986                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9987                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9988                       pipe_config->fdi_m_n.tu);
9989         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9990                       pipe_config->has_dp_encoder,
9991                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9992                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9993                       pipe_config->dp_m_n.tu);
9994         DRM_DEBUG_KMS("requested mode:\n");
9995         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9996         DRM_DEBUG_KMS("adjusted mode:\n");
9997         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9998         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9999         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10000         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10001                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10002         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10003                       pipe_config->gmch_pfit.control,
10004                       pipe_config->gmch_pfit.pgm_ratios,
10005                       pipe_config->gmch_pfit.lvds_border_bits);
10006         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10007                       pipe_config->pch_pfit.pos,
10008                       pipe_config->pch_pfit.size,
10009                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10010         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10011         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10012 }
10013
10014 static bool encoders_cloneable(const struct intel_encoder *a,
10015                                const struct intel_encoder *b)
10016 {
10017         /* masks could be asymmetric, so check both ways */
10018         return a == b || (a->cloneable & (1 << b->type) &&
10019                           b->cloneable & (1 << a->type));
10020 }
10021
10022 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10023                                          struct intel_encoder *encoder)
10024 {
10025         struct drm_device *dev = crtc->base.dev;
10026         struct intel_encoder *source_encoder;
10027
10028         list_for_each_entry(source_encoder,
10029                             &dev->mode_config.encoder_list, base.head) {
10030                 if (source_encoder->new_crtc != crtc)
10031                         continue;
10032
10033                 if (!encoders_cloneable(encoder, source_encoder))
10034                         return false;
10035         }
10036
10037         return true;
10038 }
10039
10040 static bool check_encoder_cloning(struct intel_crtc *crtc)
10041 {
10042         struct drm_device *dev = crtc->base.dev;
10043         struct intel_encoder *encoder;
10044
10045         list_for_each_entry(encoder,
10046                             &dev->mode_config.encoder_list, base.head) {
10047                 if (encoder->new_crtc != crtc)
10048                         continue;
10049
10050                 if (!check_single_encoder_cloning(crtc, encoder))
10051                         return false;
10052         }
10053
10054         return true;
10055 }
10056
10057 static struct intel_crtc_config *
10058 intel_modeset_pipe_config(struct drm_crtc *crtc,
10059                           struct drm_framebuffer *fb,
10060                           struct drm_display_mode *mode)
10061 {
10062         struct drm_device *dev = crtc->dev;
10063         struct intel_encoder *encoder;
10064         struct intel_crtc_config *pipe_config;
10065         int plane_bpp, ret = -EINVAL;
10066         bool retry = true;
10067
10068         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10069                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10070                 return ERR_PTR(-EINVAL);
10071         }
10072
10073         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10074         if (!pipe_config)
10075                 return ERR_PTR(-ENOMEM);
10076
10077         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10078         drm_mode_copy(&pipe_config->requested_mode, mode);
10079
10080         pipe_config->cpu_transcoder =
10081                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10082         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10083
10084         /*
10085          * Sanitize sync polarity flags based on requested ones. If neither
10086          * positive or negative polarity is requested, treat this as meaning
10087          * negative polarity.
10088          */
10089         if (!(pipe_config->adjusted_mode.flags &
10090               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10091                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10092
10093         if (!(pipe_config->adjusted_mode.flags &
10094               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10095                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10096
10097         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10098          * plane pixel format and any sink constraints into account. Returns the
10099          * source plane bpp so that dithering can be selected on mismatches
10100          * after encoders and crtc also have had their say. */
10101         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10102                                               fb, pipe_config);
10103         if (plane_bpp < 0)
10104                 goto fail;
10105
10106         /*
10107          * Determine the real pipe dimensions. Note that stereo modes can
10108          * increase the actual pipe size due to the frame doubling and
10109          * insertion of additional space for blanks between the frame. This
10110          * is stored in the crtc timings. We use the requested mode to do this
10111          * computation to clearly distinguish it from the adjusted mode, which
10112          * can be changed by the connectors in the below retry loop.
10113          */
10114         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10115         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10116         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10117
10118 encoder_retry:
10119         /* Ensure the port clock defaults are reset when retrying. */
10120         pipe_config->port_clock = 0;
10121         pipe_config->pixel_multiplier = 1;
10122
10123         /* Fill in default crtc timings, allow encoders to overwrite them. */
10124         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10125
10126         /* Pass our mode to the connectors and the CRTC to give them a chance to
10127          * adjust it according to limitations or connector properties, and also
10128          * a chance to reject the mode entirely.
10129          */
10130         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10131                             base.head) {
10132
10133                 if (&encoder->new_crtc->base != crtc)
10134                         continue;
10135
10136                 if (!(encoder->compute_config(encoder, pipe_config))) {
10137                         DRM_DEBUG_KMS("Encoder config failure\n");
10138                         goto fail;
10139                 }
10140         }
10141
10142         /* Set default port clock if not overwritten by the encoder. Needs to be
10143          * done afterwards in case the encoder adjusts the mode. */
10144         if (!pipe_config->port_clock)
10145                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10146                         * pipe_config->pixel_multiplier;
10147
10148         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10149         if (ret < 0) {
10150                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10151                 goto fail;
10152         }
10153
10154         if (ret == RETRY) {
10155                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10156                         ret = -EINVAL;
10157                         goto fail;
10158                 }
10159
10160                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10161                 retry = false;
10162                 goto encoder_retry;
10163         }
10164
10165         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10166         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10167                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10168
10169         return pipe_config;
10170 fail:
10171         kfree(pipe_config);
10172         return ERR_PTR(ret);
10173 }
10174
10175 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10176  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10177 static void
10178 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10179                              unsigned *prepare_pipes, unsigned *disable_pipes)
10180 {
10181         struct intel_crtc *intel_crtc;
10182         struct drm_device *dev = crtc->dev;
10183         struct intel_encoder *encoder;
10184         struct intel_connector *connector;
10185         struct drm_crtc *tmp_crtc;
10186
10187         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10188
10189         /* Check which crtcs have changed outputs connected to them, these need
10190          * to be part of the prepare_pipes mask. We don't (yet) support global
10191          * modeset across multiple crtcs, so modeset_pipes will only have one
10192          * bit set at most. */
10193         list_for_each_entry(connector, &dev->mode_config.connector_list,
10194                             base.head) {
10195                 if (connector->base.encoder == &connector->new_encoder->base)
10196                         continue;
10197
10198                 if (connector->base.encoder) {
10199                         tmp_crtc = connector->base.encoder->crtc;
10200
10201                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10202                 }
10203
10204                 if (connector->new_encoder)
10205                         *prepare_pipes |=
10206                                 1 << connector->new_encoder->new_crtc->pipe;
10207         }
10208
10209         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10210                             base.head) {
10211                 if (encoder->base.crtc == &encoder->new_crtc->base)
10212                         continue;
10213
10214                 if (encoder->base.crtc) {
10215                         tmp_crtc = encoder->base.crtc;
10216
10217                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10218                 }
10219
10220                 if (encoder->new_crtc)
10221                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10222         }
10223
10224         /* Check for pipes that will be enabled/disabled ... */
10225         for_each_intel_crtc(dev, intel_crtc) {
10226                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10227                         continue;
10228
10229                 if (!intel_crtc->new_enabled)
10230                         *disable_pipes |= 1 << intel_crtc->pipe;
10231                 else
10232                         *prepare_pipes |= 1 << intel_crtc->pipe;
10233         }
10234
10235
10236         /* set_mode is also used to update properties on life display pipes. */
10237         intel_crtc = to_intel_crtc(crtc);
10238         if (intel_crtc->new_enabled)
10239                 *prepare_pipes |= 1 << intel_crtc->pipe;
10240
10241         /*
10242          * For simplicity do a full modeset on any pipe where the output routing
10243          * changed. We could be more clever, but that would require us to be
10244          * more careful with calling the relevant encoder->mode_set functions.
10245          */
10246         if (*prepare_pipes)
10247                 *modeset_pipes = *prepare_pipes;
10248
10249         /* ... and mask these out. */
10250         *modeset_pipes &= ~(*disable_pipes);
10251         *prepare_pipes &= ~(*disable_pipes);
10252
10253         /*
10254          * HACK: We don't (yet) fully support global modesets. intel_set_config
10255          * obies this rule, but the modeset restore mode of
10256          * intel_modeset_setup_hw_state does not.
10257          */
10258         *modeset_pipes &= 1 << intel_crtc->pipe;
10259         *prepare_pipes &= 1 << intel_crtc->pipe;
10260
10261         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10262                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10263 }
10264
10265 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10266 {
10267         struct drm_encoder *encoder;
10268         struct drm_device *dev = crtc->dev;
10269
10270         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10271                 if (encoder->crtc == crtc)
10272                         return true;
10273
10274         return false;
10275 }
10276
10277 static void
10278 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10279 {
10280         struct intel_encoder *intel_encoder;
10281         struct intel_crtc *intel_crtc;
10282         struct drm_connector *connector;
10283
10284         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10285                             base.head) {
10286                 if (!intel_encoder->base.crtc)
10287                         continue;
10288
10289                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10290
10291                 if (prepare_pipes & (1 << intel_crtc->pipe))
10292                         intel_encoder->connectors_active = false;
10293         }
10294
10295         intel_modeset_commit_output_state(dev);
10296
10297         /* Double check state. */
10298         for_each_intel_crtc(dev, intel_crtc) {
10299                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10300                 WARN_ON(intel_crtc->new_config &&
10301                         intel_crtc->new_config != &intel_crtc->config);
10302                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10303         }
10304
10305         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10306                 if (!connector->encoder || !connector->encoder->crtc)
10307                         continue;
10308
10309                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10310
10311                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10312                         struct drm_property *dpms_property =
10313                                 dev->mode_config.dpms_property;
10314
10315                         connector->dpms = DRM_MODE_DPMS_ON;
10316                         drm_object_property_set_value(&connector->base,
10317                                                          dpms_property,
10318                                                          DRM_MODE_DPMS_ON);
10319
10320                         intel_encoder = to_intel_encoder(connector->encoder);
10321                         intel_encoder->connectors_active = true;
10322                 }
10323         }
10324
10325 }
10326
10327 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10328 {
10329         int diff;
10330
10331         if (clock1 == clock2)
10332                 return true;
10333
10334         if (!clock1 || !clock2)
10335                 return false;
10336
10337         diff = abs(clock1 - clock2);
10338
10339         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10340                 return true;
10341
10342         return false;
10343 }
10344
10345 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10346         list_for_each_entry((intel_crtc), \
10347                             &(dev)->mode_config.crtc_list, \
10348                             base.head) \
10349                 if (mask & (1 <<(intel_crtc)->pipe))
10350
10351 static bool
10352 intel_pipe_config_compare(struct drm_device *dev,
10353                           struct intel_crtc_config *current_config,
10354                           struct intel_crtc_config *pipe_config)
10355 {
10356 #define PIPE_CONF_CHECK_X(name) \
10357         if (current_config->name != pipe_config->name) { \
10358                 DRM_ERROR("mismatch in " #name " " \
10359                           "(expected 0x%08x, found 0x%08x)\n", \
10360                           current_config->name, \
10361                           pipe_config->name); \
10362                 return false; \
10363         }
10364
10365 #define PIPE_CONF_CHECK_I(name) \
10366         if (current_config->name != pipe_config->name) { \
10367                 DRM_ERROR("mismatch in " #name " " \
10368                           "(expected %i, found %i)\n", \
10369                           current_config->name, \
10370                           pipe_config->name); \
10371                 return false; \
10372         }
10373
10374 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10375         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10376                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10377                           "(expected %i, found %i)\n", \
10378                           current_config->name & (mask), \
10379                           pipe_config->name & (mask)); \
10380                 return false; \
10381         }
10382
10383 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10384         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10385                 DRM_ERROR("mismatch in " #name " " \
10386                           "(expected %i, found %i)\n", \
10387                           current_config->name, \
10388                           pipe_config->name); \
10389                 return false; \
10390         }
10391
10392 #define PIPE_CONF_QUIRK(quirk)  \
10393         ((current_config->quirks | pipe_config->quirks) & (quirk))
10394
10395         PIPE_CONF_CHECK_I(cpu_transcoder);
10396
10397         PIPE_CONF_CHECK_I(has_pch_encoder);
10398         PIPE_CONF_CHECK_I(fdi_lanes);
10399         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10400         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10401         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10402         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10403         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10404
10405         PIPE_CONF_CHECK_I(has_dp_encoder);
10406         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10407         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10408         PIPE_CONF_CHECK_I(dp_m_n.link_m);
10409         PIPE_CONF_CHECK_I(dp_m_n.link_n);
10410         PIPE_CONF_CHECK_I(dp_m_n.tu);
10411
10412         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10413         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10414         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10415         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10416         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10417         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10418
10419         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10420         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10421         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10422         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10423         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10424         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10425
10426         PIPE_CONF_CHECK_I(pixel_multiplier);
10427         PIPE_CONF_CHECK_I(has_hdmi_sink);
10428         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10429             IS_VALLEYVIEW(dev))
10430                 PIPE_CONF_CHECK_I(limited_color_range);
10431
10432         PIPE_CONF_CHECK_I(has_audio);
10433
10434         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10435                               DRM_MODE_FLAG_INTERLACE);
10436
10437         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10438                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10439                                       DRM_MODE_FLAG_PHSYNC);
10440                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10441                                       DRM_MODE_FLAG_NHSYNC);
10442                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10443                                       DRM_MODE_FLAG_PVSYNC);
10444                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10445                                       DRM_MODE_FLAG_NVSYNC);
10446         }
10447
10448         PIPE_CONF_CHECK_I(pipe_src_w);
10449         PIPE_CONF_CHECK_I(pipe_src_h);
10450
10451         /*
10452          * FIXME: BIOS likes to set up a cloned config with lvds+external
10453          * screen. Since we don't yet re-compute the pipe config when moving
10454          * just the lvds port away to another pipe the sw tracking won't match.
10455          *
10456          * Proper atomic modesets with recomputed global state will fix this.
10457          * Until then just don't check gmch state for inherited modes.
10458          */
10459         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10460                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10461                 /* pfit ratios are autocomputed by the hw on gen4+ */
10462                 if (INTEL_INFO(dev)->gen < 4)
10463                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10464                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10465         }
10466
10467         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10468         if (current_config->pch_pfit.enabled) {
10469                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10470                 PIPE_CONF_CHECK_I(pch_pfit.size);
10471         }
10472
10473         /* BDW+ don't expose a synchronous way to read the state */
10474         if (IS_HASWELL(dev))
10475                 PIPE_CONF_CHECK_I(ips_enabled);
10476
10477         PIPE_CONF_CHECK_I(double_wide);
10478
10479         PIPE_CONF_CHECK_X(ddi_pll_sel);
10480
10481         PIPE_CONF_CHECK_I(shared_dpll);
10482         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10483         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10484         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10485         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10486         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10487
10488         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10489                 PIPE_CONF_CHECK_I(pipe_bpp);
10490
10491         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10492         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10493
10494 #undef PIPE_CONF_CHECK_X
10495 #undef PIPE_CONF_CHECK_I
10496 #undef PIPE_CONF_CHECK_FLAGS
10497 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10498 #undef PIPE_CONF_QUIRK
10499
10500         return true;
10501 }
10502
10503 static void
10504 check_connector_state(struct drm_device *dev)
10505 {
10506         struct intel_connector *connector;
10507
10508         list_for_each_entry(connector, &dev->mode_config.connector_list,
10509                             base.head) {
10510                 /* This also checks the encoder/connector hw state with the
10511                  * ->get_hw_state callbacks. */
10512                 intel_connector_check_state(connector);
10513
10514                 WARN(&connector->new_encoder->base != connector->base.encoder,
10515                      "connector's staged encoder doesn't match current encoder\n");
10516         }
10517 }
10518
10519 static void
10520 check_encoder_state(struct drm_device *dev)
10521 {
10522         struct intel_encoder *encoder;
10523         struct intel_connector *connector;
10524
10525         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10526                             base.head) {
10527                 bool enabled = false;
10528                 bool active = false;
10529                 enum pipe pipe, tracked_pipe;
10530
10531                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10532                               encoder->base.base.id,
10533                               encoder->base.name);
10534
10535                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10536                      "encoder's stage crtc doesn't match current crtc\n");
10537                 WARN(encoder->connectors_active && !encoder->base.crtc,
10538                      "encoder's active_connectors set, but no crtc\n");
10539
10540                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10541                                     base.head) {
10542                         if (connector->base.encoder != &encoder->base)
10543                                 continue;
10544                         enabled = true;
10545                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10546                                 active = true;
10547                 }
10548                 /*
10549                  * for MST connectors if we unplug the connector is gone
10550                  * away but the encoder is still connected to a crtc
10551                  * until a modeset happens in response to the hotplug.
10552                  */
10553                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10554                         continue;
10555
10556                 WARN(!!encoder->base.crtc != enabled,
10557                      "encoder's enabled state mismatch "
10558                      "(expected %i, found %i)\n",
10559                      !!encoder->base.crtc, enabled);
10560                 WARN(active && !encoder->base.crtc,
10561                      "active encoder with no crtc\n");
10562
10563                 WARN(encoder->connectors_active != active,
10564                      "encoder's computed active state doesn't match tracked active state "
10565                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10566
10567                 active = encoder->get_hw_state(encoder, &pipe);
10568                 WARN(active != encoder->connectors_active,
10569                      "encoder's hw state doesn't match sw tracking "
10570                      "(expected %i, found %i)\n",
10571                      encoder->connectors_active, active);
10572
10573                 if (!encoder->base.crtc)
10574                         continue;
10575
10576                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10577                 WARN(active && pipe != tracked_pipe,
10578                      "active encoder's pipe doesn't match"
10579                      "(expected %i, found %i)\n",
10580                      tracked_pipe, pipe);
10581
10582         }
10583 }
10584
10585 static void
10586 check_crtc_state(struct drm_device *dev)
10587 {
10588         struct drm_i915_private *dev_priv = dev->dev_private;
10589         struct intel_crtc *crtc;
10590         struct intel_encoder *encoder;
10591         struct intel_crtc_config pipe_config;
10592
10593         for_each_intel_crtc(dev, crtc) {
10594                 bool enabled = false;
10595                 bool active = false;
10596
10597                 memset(&pipe_config, 0, sizeof(pipe_config));
10598
10599                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10600                               crtc->base.base.id);
10601
10602                 WARN(crtc->active && !crtc->base.enabled,
10603                      "active crtc, but not enabled in sw tracking\n");
10604
10605                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10606                                     base.head) {
10607                         if (encoder->base.crtc != &crtc->base)
10608                                 continue;
10609                         enabled = true;
10610                         if (encoder->connectors_active)
10611                                 active = true;
10612                 }
10613
10614                 WARN(active != crtc->active,
10615                      "crtc's computed active state doesn't match tracked active state "
10616                      "(expected %i, found %i)\n", active, crtc->active);
10617                 WARN(enabled != crtc->base.enabled,
10618                      "crtc's computed enabled state doesn't match tracked enabled state "
10619                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10620
10621                 active = dev_priv->display.get_pipe_config(crtc,
10622                                                            &pipe_config);
10623
10624                 /* hw state is inconsistent with the pipe A quirk */
10625                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10626                         active = crtc->active;
10627
10628                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10629                                     base.head) {
10630                         enum pipe pipe;
10631                         if (encoder->base.crtc != &crtc->base)
10632                                 continue;
10633                         if (encoder->get_hw_state(encoder, &pipe))
10634                                 encoder->get_config(encoder, &pipe_config);
10635                 }
10636
10637                 WARN(crtc->active != active,
10638                      "crtc active state doesn't match with hw state "
10639                      "(expected %i, found %i)\n", crtc->active, active);
10640
10641                 if (active &&
10642                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10643                         WARN(1, "pipe state doesn't match!\n");
10644                         intel_dump_pipe_config(crtc, &pipe_config,
10645                                                "[hw state]");
10646                         intel_dump_pipe_config(crtc, &crtc->config,
10647                                                "[sw state]");
10648                 }
10649         }
10650 }
10651
10652 static void
10653 check_shared_dpll_state(struct drm_device *dev)
10654 {
10655         struct drm_i915_private *dev_priv = dev->dev_private;
10656         struct intel_crtc *crtc;
10657         struct intel_dpll_hw_state dpll_hw_state;
10658         int i;
10659
10660         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10661                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10662                 int enabled_crtcs = 0, active_crtcs = 0;
10663                 bool active;
10664
10665                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10666
10667                 DRM_DEBUG_KMS("%s\n", pll->name);
10668
10669                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10670
10671                 WARN(pll->active > pll->refcount,
10672                      "more active pll users than references: %i vs %i\n",
10673                      pll->active, pll->refcount);
10674                 WARN(pll->active && !pll->on,
10675                      "pll in active use but not on in sw tracking\n");
10676                 WARN(pll->on && !pll->active,
10677                      "pll in on but not on in use in sw tracking\n");
10678                 WARN(pll->on != active,
10679                      "pll on state mismatch (expected %i, found %i)\n",
10680                      pll->on, active);
10681
10682                 for_each_intel_crtc(dev, crtc) {
10683                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10684                                 enabled_crtcs++;
10685                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10686                                 active_crtcs++;
10687                 }
10688                 WARN(pll->active != active_crtcs,
10689                      "pll active crtcs mismatch (expected %i, found %i)\n",
10690                      pll->active, active_crtcs);
10691                 WARN(pll->refcount != enabled_crtcs,
10692                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10693                      pll->refcount, enabled_crtcs);
10694
10695                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10696                                        sizeof(dpll_hw_state)),
10697                      "pll hw state mismatch\n");
10698         }
10699 }
10700
10701 void
10702 intel_modeset_check_state(struct drm_device *dev)
10703 {
10704         check_connector_state(dev);
10705         check_encoder_state(dev);
10706         check_crtc_state(dev);
10707         check_shared_dpll_state(dev);
10708 }
10709
10710 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10711                                      int dotclock)
10712 {
10713         /*
10714          * FDI already provided one idea for the dotclock.
10715          * Yell if the encoder disagrees.
10716          */
10717         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10718              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10719              pipe_config->adjusted_mode.crtc_clock, dotclock);
10720 }
10721
10722 static void update_scanline_offset(struct intel_crtc *crtc)
10723 {
10724         struct drm_device *dev = crtc->base.dev;
10725
10726         /*
10727          * The scanline counter increments at the leading edge of hsync.
10728          *
10729          * On most platforms it starts counting from vtotal-1 on the
10730          * first active line. That means the scanline counter value is
10731          * always one less than what we would expect. Ie. just after
10732          * start of vblank, which also occurs at start of hsync (on the
10733          * last active line), the scanline counter will read vblank_start-1.
10734          *
10735          * On gen2 the scanline counter starts counting from 1 instead
10736          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10737          * to keep the value positive), instead of adding one.
10738          *
10739          * On HSW+ the behaviour of the scanline counter depends on the output
10740          * type. For DP ports it behaves like most other platforms, but on HDMI
10741          * there's an extra 1 line difference. So we need to add two instead of
10742          * one to the value.
10743          */
10744         if (IS_GEN2(dev)) {
10745                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10746                 int vtotal;
10747
10748                 vtotal = mode->crtc_vtotal;
10749                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10750                         vtotal /= 2;
10751
10752                 crtc->scanline_offset = vtotal - 1;
10753         } else if (HAS_DDI(dev) &&
10754                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10755                 crtc->scanline_offset = 2;
10756         } else
10757                 crtc->scanline_offset = 1;
10758 }
10759
10760 static int __intel_set_mode(struct drm_crtc *crtc,
10761                             struct drm_display_mode *mode,
10762                             int x, int y, struct drm_framebuffer *fb)
10763 {
10764         struct drm_device *dev = crtc->dev;
10765         struct drm_i915_private *dev_priv = dev->dev_private;
10766         struct drm_display_mode *saved_mode;
10767         struct intel_crtc_config *pipe_config = NULL;
10768         struct intel_crtc *intel_crtc;
10769         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10770         int ret = 0;
10771
10772         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10773         if (!saved_mode)
10774                 return -ENOMEM;
10775
10776         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10777                                      &prepare_pipes, &disable_pipes);
10778
10779         *saved_mode = crtc->mode;
10780
10781         /* Hack: Because we don't (yet) support global modeset on multiple
10782          * crtcs, we don't keep track of the new mode for more than one crtc.
10783          * Hence simply check whether any bit is set in modeset_pipes in all the
10784          * pieces of code that are not yet converted to deal with mutliple crtcs
10785          * changing their mode at the same time. */
10786         if (modeset_pipes) {
10787                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10788                 if (IS_ERR(pipe_config)) {
10789                         ret = PTR_ERR(pipe_config);
10790                         pipe_config = NULL;
10791
10792                         goto out;
10793                 }
10794                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10795                                        "[modeset]");
10796                 to_intel_crtc(crtc)->new_config = pipe_config;
10797         }
10798
10799         /*
10800          * See if the config requires any additional preparation, e.g.
10801          * to adjust global state with pipes off.  We need to do this
10802          * here so we can get the modeset_pipe updated config for the new
10803          * mode set on this crtc.  For other crtcs we need to use the
10804          * adjusted_mode bits in the crtc directly.
10805          */
10806         if (IS_VALLEYVIEW(dev)) {
10807                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10808
10809                 /* may have added more to prepare_pipes than we should */
10810                 prepare_pipes &= ~disable_pipes;
10811         }
10812
10813         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10814                 intel_crtc_disable(&intel_crtc->base);
10815
10816         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10817                 if (intel_crtc->base.enabled)
10818                         dev_priv->display.crtc_disable(&intel_crtc->base);
10819         }
10820
10821         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10822          * to set it here already despite that we pass it down the callchain.
10823          */
10824         if (modeset_pipes) {
10825                 crtc->mode = *mode;
10826                 /* mode_set/enable/disable functions rely on a correct pipe
10827                  * config. */
10828                 to_intel_crtc(crtc)->config = *pipe_config;
10829                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10830
10831                 /*
10832                  * Calculate and store various constants which
10833                  * are later needed by vblank and swap-completion
10834                  * timestamping. They are derived from true hwmode.
10835                  */
10836                 drm_calc_timestamping_constants(crtc,
10837                                                 &pipe_config->adjusted_mode);
10838         }
10839
10840         /* Only after disabling all output pipelines that will be changed can we
10841          * update the the output configuration. */
10842         intel_modeset_update_state(dev, prepare_pipes);
10843
10844         if (dev_priv->display.modeset_global_resources)
10845                 dev_priv->display.modeset_global_resources(dev);
10846
10847         /* Set up the DPLL and any encoders state that needs to adjust or depend
10848          * on the DPLL.
10849          */
10850         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10851                 struct drm_framebuffer *old_fb = crtc->primary->fb;
10852                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10853                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10854
10855                 mutex_lock(&dev->struct_mutex);
10856                 ret = intel_pin_and_fence_fb_obj(dev,
10857                                                  obj,
10858                                                  NULL);
10859                 if (ret != 0) {
10860                         DRM_ERROR("pin & fence failed\n");
10861                         mutex_unlock(&dev->struct_mutex);
10862                         goto done;
10863                 }
10864                 if (old_fb)
10865                         intel_unpin_fb_obj(old_obj);
10866                 i915_gem_track_fb(old_obj, obj,
10867                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10868                 mutex_unlock(&dev->struct_mutex);
10869
10870                 crtc->primary->fb = fb;
10871                 crtc->x = x;
10872                 crtc->y = y;
10873
10874                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10875                                                       x, y, fb);
10876                 if (ret)
10877                         goto done;
10878         }
10879
10880         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10881         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10882                 update_scanline_offset(intel_crtc);
10883
10884                 dev_priv->display.crtc_enable(&intel_crtc->base);
10885         }
10886
10887         /* FIXME: add subpixel order */
10888 done:
10889         if (ret && crtc->enabled)
10890                 crtc->mode = *saved_mode;
10891
10892 out:
10893         kfree(pipe_config);
10894         kfree(saved_mode);
10895         return ret;
10896 }
10897
10898 static int intel_set_mode(struct drm_crtc *crtc,
10899                           struct drm_display_mode *mode,
10900                           int x, int y, struct drm_framebuffer *fb)
10901 {
10902         int ret;
10903
10904         ret = __intel_set_mode(crtc, mode, x, y, fb);
10905
10906         if (ret == 0)
10907                 intel_modeset_check_state(crtc->dev);
10908
10909         return ret;
10910 }
10911
10912 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10913 {
10914         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10915 }
10916
10917 #undef for_each_intel_crtc_masked
10918
10919 static void intel_set_config_free(struct intel_set_config *config)
10920 {
10921         if (!config)
10922                 return;
10923
10924         kfree(config->save_connector_encoders);
10925         kfree(config->save_encoder_crtcs);
10926         kfree(config->save_crtc_enabled);
10927         kfree(config);
10928 }
10929
10930 static int intel_set_config_save_state(struct drm_device *dev,
10931                                        struct intel_set_config *config)
10932 {
10933         struct drm_crtc *crtc;
10934         struct drm_encoder *encoder;
10935         struct drm_connector *connector;
10936         int count;
10937
10938         config->save_crtc_enabled =
10939                 kcalloc(dev->mode_config.num_crtc,
10940                         sizeof(bool), GFP_KERNEL);
10941         if (!config->save_crtc_enabled)
10942                 return -ENOMEM;
10943
10944         config->save_encoder_crtcs =
10945                 kcalloc(dev->mode_config.num_encoder,
10946                         sizeof(struct drm_crtc *), GFP_KERNEL);
10947         if (!config->save_encoder_crtcs)
10948                 return -ENOMEM;
10949
10950         config->save_connector_encoders =
10951                 kcalloc(dev->mode_config.num_connector,
10952                         sizeof(struct drm_encoder *), GFP_KERNEL);
10953         if (!config->save_connector_encoders)
10954                 return -ENOMEM;
10955
10956         /* Copy data. Note that driver private data is not affected.
10957          * Should anything bad happen only the expected state is
10958          * restored, not the drivers personal bookkeeping.
10959          */
10960         count = 0;
10961         for_each_crtc(dev, crtc) {
10962                 config->save_crtc_enabled[count++] = crtc->enabled;
10963         }
10964
10965         count = 0;
10966         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10967                 config->save_encoder_crtcs[count++] = encoder->crtc;
10968         }
10969
10970         count = 0;
10971         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10972                 config->save_connector_encoders[count++] = connector->encoder;
10973         }
10974
10975         return 0;
10976 }
10977
10978 static void intel_set_config_restore_state(struct drm_device *dev,
10979                                            struct intel_set_config *config)
10980 {
10981         struct intel_crtc *crtc;
10982         struct intel_encoder *encoder;
10983         struct intel_connector *connector;
10984         int count;
10985
10986         count = 0;
10987         for_each_intel_crtc(dev, crtc) {
10988                 crtc->new_enabled = config->save_crtc_enabled[count++];
10989
10990                 if (crtc->new_enabled)
10991                         crtc->new_config = &crtc->config;
10992                 else
10993                         crtc->new_config = NULL;
10994         }
10995
10996         count = 0;
10997         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10998                 encoder->new_crtc =
10999                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11000         }
11001
11002         count = 0;
11003         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11004                 connector->new_encoder =
11005                         to_intel_encoder(config->save_connector_encoders[count++]);
11006         }
11007 }
11008
11009 static bool
11010 is_crtc_connector_off(struct drm_mode_set *set)
11011 {
11012         int i;
11013
11014         if (set->num_connectors == 0)
11015                 return false;
11016
11017         if (WARN_ON(set->connectors == NULL))
11018                 return false;
11019
11020         for (i = 0; i < set->num_connectors; i++)
11021                 if (set->connectors[i]->encoder &&
11022                     set->connectors[i]->encoder->crtc == set->crtc &&
11023                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11024                         return true;
11025
11026         return false;
11027 }
11028
11029 static void
11030 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11031                                       struct intel_set_config *config)
11032 {
11033
11034         /* We should be able to check here if the fb has the same properties
11035          * and then just flip_or_move it */
11036         if (is_crtc_connector_off(set)) {
11037                 config->mode_changed = true;
11038         } else if (set->crtc->primary->fb != set->fb) {
11039                 /*
11040                  * If we have no fb, we can only flip as long as the crtc is
11041                  * active, otherwise we need a full mode set.  The crtc may
11042                  * be active if we've only disabled the primary plane, or
11043                  * in fastboot situations.
11044                  */
11045                 if (set->crtc->primary->fb == NULL) {
11046                         struct intel_crtc *intel_crtc =
11047                                 to_intel_crtc(set->crtc);
11048
11049                         if (intel_crtc->active) {
11050                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11051                                 config->fb_changed = true;
11052                         } else {
11053                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11054                                 config->mode_changed = true;
11055                         }
11056                 } else if (set->fb == NULL) {
11057                         config->mode_changed = true;
11058                 } else if (set->fb->pixel_format !=
11059                            set->crtc->primary->fb->pixel_format) {
11060                         config->mode_changed = true;
11061                 } else {
11062                         config->fb_changed = true;
11063                 }
11064         }
11065
11066         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11067                 config->fb_changed = true;
11068
11069         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11070                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11071                 drm_mode_debug_printmodeline(&set->crtc->mode);
11072                 drm_mode_debug_printmodeline(set->mode);
11073                 config->mode_changed = true;
11074         }
11075
11076         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11077                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11078 }
11079
11080 static int
11081 intel_modeset_stage_output_state(struct drm_device *dev,
11082                                  struct drm_mode_set *set,
11083                                  struct intel_set_config *config)
11084 {
11085         struct intel_connector *connector;
11086         struct intel_encoder *encoder;
11087         struct intel_crtc *crtc;
11088         int ro;
11089
11090         /* The upper layers ensure that we either disable a crtc or have a list
11091          * of connectors. For paranoia, double-check this. */
11092         WARN_ON(!set->fb && (set->num_connectors != 0));
11093         WARN_ON(set->fb && (set->num_connectors == 0));
11094
11095         list_for_each_entry(connector, &dev->mode_config.connector_list,
11096                             base.head) {
11097                 /* Otherwise traverse passed in connector list and get encoders
11098                  * for them. */
11099                 for (ro = 0; ro < set->num_connectors; ro++) {
11100                         if (set->connectors[ro] == &connector->base) {
11101                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11102                                 break;
11103                         }
11104                 }
11105
11106                 /* If we disable the crtc, disable all its connectors. Also, if
11107                  * the connector is on the changing crtc but not on the new
11108                  * connector list, disable it. */
11109                 if ((!set->fb || ro == set->num_connectors) &&
11110                     connector->base.encoder &&
11111                     connector->base.encoder->crtc == set->crtc) {
11112                         connector->new_encoder = NULL;
11113
11114                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11115                                 connector->base.base.id,
11116                                 connector->base.name);
11117                 }
11118
11119
11120                 if (&connector->new_encoder->base != connector->base.encoder) {
11121                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11122                         config->mode_changed = true;
11123                 }
11124         }
11125         /* connector->new_encoder is now updated for all connectors. */
11126
11127         /* Update crtc of enabled connectors. */
11128         list_for_each_entry(connector, &dev->mode_config.connector_list,
11129                             base.head) {
11130                 struct drm_crtc *new_crtc;
11131
11132                 if (!connector->new_encoder)
11133                         continue;
11134
11135                 new_crtc = connector->new_encoder->base.crtc;
11136
11137                 for (ro = 0; ro < set->num_connectors; ro++) {
11138                         if (set->connectors[ro] == &connector->base)
11139                                 new_crtc = set->crtc;
11140                 }
11141
11142                 /* Make sure the new CRTC will work with the encoder */
11143                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11144                                          new_crtc)) {
11145                         return -EINVAL;
11146                 }
11147                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11148
11149                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11150                         connector->base.base.id,
11151                         connector->base.name,
11152                         new_crtc->base.id);
11153         }
11154
11155         /* Check for any encoders that needs to be disabled. */
11156         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11157                             base.head) {
11158                 int num_connectors = 0;
11159                 list_for_each_entry(connector,
11160                                     &dev->mode_config.connector_list,
11161                                     base.head) {
11162                         if (connector->new_encoder == encoder) {
11163                                 WARN_ON(!connector->new_encoder->new_crtc);
11164                                 num_connectors++;
11165                         }
11166                 }
11167
11168                 if (num_connectors == 0)
11169                         encoder->new_crtc = NULL;
11170                 else if (num_connectors > 1)
11171                         return -EINVAL;
11172
11173                 /* Only now check for crtc changes so we don't miss encoders
11174                  * that will be disabled. */
11175                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11176                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11177                         config->mode_changed = true;
11178                 }
11179         }
11180         /* Now we've also updated encoder->new_crtc for all encoders. */
11181         list_for_each_entry(connector, &dev->mode_config.connector_list,
11182                             base.head) {
11183                 if (connector->new_encoder)
11184                         if (connector->new_encoder != connector->encoder)
11185                                 connector->encoder = connector->new_encoder;
11186         }
11187         for_each_intel_crtc(dev, crtc) {
11188                 crtc->new_enabled = false;
11189
11190                 list_for_each_entry(encoder,
11191                                     &dev->mode_config.encoder_list,
11192                                     base.head) {
11193                         if (encoder->new_crtc == crtc) {
11194                                 crtc->new_enabled = true;
11195                                 break;
11196                         }
11197                 }
11198
11199                 if (crtc->new_enabled != crtc->base.enabled) {
11200                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11201                                       crtc->new_enabled ? "en" : "dis");
11202                         config->mode_changed = true;
11203                 }
11204
11205                 if (crtc->new_enabled)
11206                         crtc->new_config = &crtc->config;
11207                 else
11208                         crtc->new_config = NULL;
11209         }
11210
11211         return 0;
11212 }
11213
11214 static void disable_crtc_nofb(struct intel_crtc *crtc)
11215 {
11216         struct drm_device *dev = crtc->base.dev;
11217         struct intel_encoder *encoder;
11218         struct intel_connector *connector;
11219
11220         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11221                       pipe_name(crtc->pipe));
11222
11223         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11224                 if (connector->new_encoder &&
11225                     connector->new_encoder->new_crtc == crtc)
11226                         connector->new_encoder = NULL;
11227         }
11228
11229         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11230                 if (encoder->new_crtc == crtc)
11231                         encoder->new_crtc = NULL;
11232         }
11233
11234         crtc->new_enabled = false;
11235         crtc->new_config = NULL;
11236 }
11237
11238 static int intel_crtc_set_config(struct drm_mode_set *set)
11239 {
11240         struct drm_device *dev;
11241         struct drm_mode_set save_set;
11242         struct intel_set_config *config;
11243         int ret;
11244
11245         BUG_ON(!set);
11246         BUG_ON(!set->crtc);
11247         BUG_ON(!set->crtc->helper_private);
11248
11249         /* Enforce sane interface api - has been abused by the fb helper. */
11250         BUG_ON(!set->mode && set->fb);
11251         BUG_ON(set->fb && set->num_connectors == 0);
11252
11253         if (set->fb) {
11254                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11255                                 set->crtc->base.id, set->fb->base.id,
11256                                 (int)set->num_connectors, set->x, set->y);
11257         } else {
11258                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11259         }
11260
11261         dev = set->crtc->dev;
11262
11263         ret = -ENOMEM;
11264         config = kzalloc(sizeof(*config), GFP_KERNEL);
11265         if (!config)
11266                 goto out_config;
11267
11268         ret = intel_set_config_save_state(dev, config);
11269         if (ret)
11270                 goto out_config;
11271
11272         save_set.crtc = set->crtc;
11273         save_set.mode = &set->crtc->mode;
11274         save_set.x = set->crtc->x;
11275         save_set.y = set->crtc->y;
11276         save_set.fb = set->crtc->primary->fb;
11277
11278         /* Compute whether we need a full modeset, only an fb base update or no
11279          * change at all. In the future we might also check whether only the
11280          * mode changed, e.g. for LVDS where we only change the panel fitter in
11281          * such cases. */
11282         intel_set_config_compute_mode_changes(set, config);
11283
11284         ret = intel_modeset_stage_output_state(dev, set, config);
11285         if (ret)
11286                 goto fail;
11287
11288         if (config->mode_changed) {
11289                 ret = intel_set_mode(set->crtc, set->mode,
11290                                      set->x, set->y, set->fb);
11291         } else if (config->fb_changed) {
11292                 struct drm_i915_private *dev_priv = dev->dev_private;
11293                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11294
11295                 intel_crtc_wait_for_pending_flips(set->crtc);
11296
11297                 ret = intel_pipe_set_base(set->crtc,
11298                                           set->x, set->y, set->fb);
11299
11300                 /*
11301                  * We need to make sure the primary plane is re-enabled if it
11302                  * has previously been turned off.
11303                  */
11304                 if (!intel_crtc->primary_enabled && ret == 0) {
11305                         WARN_ON(!intel_crtc->active);
11306                         intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11307                                                       intel_crtc->pipe);
11308                 }
11309
11310                 /*
11311                  * In the fastboot case this may be our only check of the
11312                  * state after boot.  It would be better to only do it on
11313                  * the first update, but we don't have a nice way of doing that
11314                  * (and really, set_config isn't used much for high freq page
11315                  * flipping, so increasing its cost here shouldn't be a big
11316                  * deal).
11317                  */
11318                 if (i915.fastboot && ret == 0)
11319                         intel_modeset_check_state(set->crtc->dev);
11320         }
11321
11322         if (ret) {
11323                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11324                               set->crtc->base.id, ret);
11325 fail:
11326                 intel_set_config_restore_state(dev, config);
11327
11328                 /*
11329                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11330                  * force the pipe off to avoid oopsing in the modeset code
11331                  * due to fb==NULL. This should only happen during boot since
11332                  * we don't yet reconstruct the FB from the hardware state.
11333                  */
11334                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11335                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11336
11337                 /* Try to restore the config */
11338                 if (config->mode_changed &&
11339                     intel_set_mode(save_set.crtc, save_set.mode,
11340                                    save_set.x, save_set.y, save_set.fb))
11341                         DRM_ERROR("failed to restore config after modeset failure\n");
11342         }
11343
11344 out_config:
11345         intel_set_config_free(config);
11346         return ret;
11347 }
11348
11349 static const struct drm_crtc_funcs intel_crtc_funcs = {
11350         .gamma_set = intel_crtc_gamma_set,
11351         .set_config = intel_crtc_set_config,
11352         .destroy = intel_crtc_destroy,
11353         .page_flip = intel_crtc_page_flip,
11354 };
11355
11356 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11357                                       struct intel_shared_dpll *pll,
11358                                       struct intel_dpll_hw_state *hw_state)
11359 {
11360         uint32_t val;
11361
11362         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11363                 return false;
11364
11365         val = I915_READ(PCH_DPLL(pll->id));
11366         hw_state->dpll = val;
11367         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11368         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11369
11370         return val & DPLL_VCO_ENABLE;
11371 }
11372
11373 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11374                                   struct intel_shared_dpll *pll)
11375 {
11376         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11377         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11378 }
11379
11380 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11381                                 struct intel_shared_dpll *pll)
11382 {
11383         /* PCH refclock must be enabled first */
11384         ibx_assert_pch_refclk_enabled(dev_priv);
11385
11386         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11387
11388         /* Wait for the clocks to stabilize. */
11389         POSTING_READ(PCH_DPLL(pll->id));
11390         udelay(150);
11391
11392         /* The pixel multiplier can only be updated once the
11393          * DPLL is enabled and the clocks are stable.
11394          *
11395          * So write it again.
11396          */
11397         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11398         POSTING_READ(PCH_DPLL(pll->id));
11399         udelay(200);
11400 }
11401
11402 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11403                                  struct intel_shared_dpll *pll)
11404 {
11405         struct drm_device *dev = dev_priv->dev;
11406         struct intel_crtc *crtc;
11407
11408         /* Make sure no transcoder isn't still depending on us. */
11409         for_each_intel_crtc(dev, crtc) {
11410                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11411                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11412         }
11413
11414         I915_WRITE(PCH_DPLL(pll->id), 0);
11415         POSTING_READ(PCH_DPLL(pll->id));
11416         udelay(200);
11417 }
11418
11419 static char *ibx_pch_dpll_names[] = {
11420         "PCH DPLL A",
11421         "PCH DPLL B",
11422 };
11423
11424 static void ibx_pch_dpll_init(struct drm_device *dev)
11425 {
11426         struct drm_i915_private *dev_priv = dev->dev_private;
11427         int i;
11428
11429         dev_priv->num_shared_dpll = 2;
11430
11431         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11432                 dev_priv->shared_dplls[i].id = i;
11433                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11434                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11435                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11436                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11437                 dev_priv->shared_dplls[i].get_hw_state =
11438                         ibx_pch_dpll_get_hw_state;
11439         }
11440 }
11441
11442 static void intel_shared_dpll_init(struct drm_device *dev)
11443 {
11444         struct drm_i915_private *dev_priv = dev->dev_private;
11445
11446         if (HAS_DDI(dev))
11447                 intel_ddi_pll_init(dev);
11448         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11449                 ibx_pch_dpll_init(dev);
11450         else
11451                 dev_priv->num_shared_dpll = 0;
11452
11453         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11454 }
11455
11456 static int
11457 intel_primary_plane_disable(struct drm_plane *plane)
11458 {
11459         struct drm_device *dev = plane->dev;
11460         struct drm_i915_private *dev_priv = dev->dev_private;
11461         struct intel_plane *intel_plane = to_intel_plane(plane);
11462         struct intel_crtc *intel_crtc;
11463
11464         if (!plane->fb)
11465                 return 0;
11466
11467         BUG_ON(!plane->crtc);
11468
11469         intel_crtc = to_intel_crtc(plane->crtc);
11470
11471         /*
11472          * Even though we checked plane->fb above, it's still possible that
11473          * the primary plane has been implicitly disabled because the crtc
11474          * coordinates given weren't visible, or because we detected
11475          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11476          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11477          * In either case, we need to unpin the FB and let the fb pointer get
11478          * updated, but otherwise we don't need to touch the hardware.
11479          */
11480         if (!intel_crtc->primary_enabled)
11481                 goto disable_unpin;
11482
11483         intel_crtc_wait_for_pending_flips(plane->crtc);
11484         intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11485                                        intel_plane->pipe);
11486 disable_unpin:
11487         mutex_lock(&dev->struct_mutex);
11488         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11489                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11490         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11491         mutex_unlock(&dev->struct_mutex);
11492         plane->fb = NULL;
11493
11494         return 0;
11495 }
11496
11497 static int
11498 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11499                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11500                              unsigned int crtc_w, unsigned int crtc_h,
11501                              uint32_t src_x, uint32_t src_y,
11502                              uint32_t src_w, uint32_t src_h)
11503 {
11504         struct drm_device *dev = crtc->dev;
11505         struct drm_i915_private *dev_priv = dev->dev_private;
11506         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11507         struct intel_plane *intel_plane = to_intel_plane(plane);
11508         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11509         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11510         struct drm_rect dest = {
11511                 /* integer pixels */
11512                 .x1 = crtc_x,
11513                 .y1 = crtc_y,
11514                 .x2 = crtc_x + crtc_w,
11515                 .y2 = crtc_y + crtc_h,
11516         };
11517         struct drm_rect src = {
11518                 /* 16.16 fixed point */
11519                 .x1 = src_x,
11520                 .y1 = src_y,
11521                 .x2 = src_x + src_w,
11522                 .y2 = src_y + src_h,
11523         };
11524         const struct drm_rect clip = {
11525                 /* integer pixels */
11526                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11527                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11528         };
11529         bool visible;
11530         int ret;
11531
11532         ret = drm_plane_helper_check_update(plane, crtc, fb,
11533                                             &src, &dest, &clip,
11534                                             DRM_PLANE_HELPER_NO_SCALING,
11535                                             DRM_PLANE_HELPER_NO_SCALING,
11536                                             false, true, &visible);
11537
11538         if (ret)
11539                 return ret;
11540
11541         /*
11542          * If the CRTC isn't enabled, we're just pinning the framebuffer,
11543          * updating the fb pointer, and returning without touching the
11544          * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to
11545          * turn on the display with all planes setup as desired.
11546          */
11547         if (!crtc->enabled) {
11548                 mutex_lock(&dev->struct_mutex);
11549
11550                 /*
11551                  * If we already called setplane while the crtc was disabled,
11552                  * we may have an fb pinned; unpin it.
11553                  */
11554                 if (plane->fb)
11555                         intel_unpin_fb_obj(old_obj);
11556
11557                 i915_gem_track_fb(old_obj, obj,
11558                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11559
11560                 /* Pin and return without programming hardware */
11561                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11562                 mutex_unlock(&dev->struct_mutex);
11563
11564                 return ret;
11565         }
11566
11567         intel_crtc_wait_for_pending_flips(crtc);
11568
11569         /*
11570          * If clipping results in a non-visible primary plane, we'll disable
11571          * the primary plane.  Note that this is a bit different than what
11572          * happens if userspace explicitly disables the plane by passing fb=0
11573          * because plane->fb still gets set and pinned.
11574          */
11575         if (!visible) {
11576                 mutex_lock(&dev->struct_mutex);
11577
11578                 /*
11579                  * Try to pin the new fb first so that we can bail out if we
11580                  * fail.
11581                  */
11582                 if (plane->fb != fb) {
11583                         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11584                         if (ret) {
11585                                 mutex_unlock(&dev->struct_mutex);
11586                                 return ret;
11587                         }
11588                 }
11589
11590                 i915_gem_track_fb(old_obj, obj,
11591                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11592
11593                 if (intel_crtc->primary_enabled)
11594                         intel_disable_primary_hw_plane(dev_priv,
11595                                                        intel_plane->plane,
11596                                                        intel_plane->pipe);
11597
11598
11599                 if (plane->fb != fb)
11600                         if (plane->fb)
11601                                 intel_unpin_fb_obj(old_obj);
11602
11603                 mutex_unlock(&dev->struct_mutex);
11604
11605                 return 0;
11606         }
11607
11608         ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11609         if (ret)
11610                 return ret;
11611
11612         if (!intel_crtc->primary_enabled)
11613                 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11614                                               intel_crtc->pipe);
11615
11616         return 0;
11617 }
11618
11619 /* Common destruction function for both primary and cursor planes */
11620 static void intel_plane_destroy(struct drm_plane *plane)
11621 {
11622         struct intel_plane *intel_plane = to_intel_plane(plane);
11623         drm_plane_cleanup(plane);
11624         kfree(intel_plane);
11625 }
11626
11627 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11628         .update_plane = intel_primary_plane_setplane,
11629         .disable_plane = intel_primary_plane_disable,
11630         .destroy = intel_plane_destroy,
11631 };
11632
11633 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11634                                                     int pipe)
11635 {
11636         struct intel_plane *primary;
11637         const uint32_t *intel_primary_formats;
11638         int num_formats;
11639
11640         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11641         if (primary == NULL)
11642                 return NULL;
11643
11644         primary->can_scale = false;
11645         primary->max_downscale = 1;
11646         primary->pipe = pipe;
11647         primary->plane = pipe;
11648         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11649                 primary->plane = !pipe;
11650
11651         if (INTEL_INFO(dev)->gen <= 3) {
11652                 intel_primary_formats = intel_primary_formats_gen2;
11653                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11654         } else {
11655                 intel_primary_formats = intel_primary_formats_gen4;
11656                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11657         }
11658
11659         drm_universal_plane_init(dev, &primary->base, 0,
11660                                  &intel_primary_plane_funcs,
11661                                  intel_primary_formats, num_formats,
11662                                  DRM_PLANE_TYPE_PRIMARY);
11663         return &primary->base;
11664 }
11665
11666 static int
11667 intel_cursor_plane_disable(struct drm_plane *plane)
11668 {
11669         if (!plane->fb)
11670                 return 0;
11671
11672         BUG_ON(!plane->crtc);
11673
11674         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11675 }
11676
11677 static int
11678 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11679                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11680                           unsigned int crtc_w, unsigned int crtc_h,
11681                           uint32_t src_x, uint32_t src_y,
11682                           uint32_t src_w, uint32_t src_h)
11683 {
11684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11685         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11686         struct drm_i915_gem_object *obj = intel_fb->obj;
11687         struct drm_rect dest = {
11688                 /* integer pixels */
11689                 .x1 = crtc_x,
11690                 .y1 = crtc_y,
11691                 .x2 = crtc_x + crtc_w,
11692                 .y2 = crtc_y + crtc_h,
11693         };
11694         struct drm_rect src = {
11695                 /* 16.16 fixed point */
11696                 .x1 = src_x,
11697                 .y1 = src_y,
11698                 .x2 = src_x + src_w,
11699                 .y2 = src_y + src_h,
11700         };
11701         const struct drm_rect clip = {
11702                 /* integer pixels */
11703                 .x2 = intel_crtc->config.pipe_src_w,
11704                 .y2 = intel_crtc->config.pipe_src_h,
11705         };
11706         bool visible;
11707         int ret;
11708
11709         ret = drm_plane_helper_check_update(plane, crtc, fb,
11710                                             &src, &dest, &clip,
11711                                             DRM_PLANE_HELPER_NO_SCALING,
11712                                             DRM_PLANE_HELPER_NO_SCALING,
11713                                             true, true, &visible);
11714         if (ret)
11715                 return ret;
11716
11717         crtc->cursor_x = crtc_x;
11718         crtc->cursor_y = crtc_y;
11719         if (fb != crtc->cursor->fb) {
11720                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11721         } else {
11722                 intel_crtc_update_cursor(crtc, visible);
11723                 return 0;
11724         }
11725 }
11726 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11727         .update_plane = intel_cursor_plane_update,
11728         .disable_plane = intel_cursor_plane_disable,
11729         .destroy = intel_plane_destroy,
11730 };
11731
11732 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11733                                                    int pipe)
11734 {
11735         struct intel_plane *cursor;
11736
11737         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11738         if (cursor == NULL)
11739                 return NULL;
11740
11741         cursor->can_scale = false;
11742         cursor->max_downscale = 1;
11743         cursor->pipe = pipe;
11744         cursor->plane = pipe;
11745
11746         drm_universal_plane_init(dev, &cursor->base, 0,
11747                                  &intel_cursor_plane_funcs,
11748                                  intel_cursor_formats,
11749                                  ARRAY_SIZE(intel_cursor_formats),
11750                                  DRM_PLANE_TYPE_CURSOR);
11751         return &cursor->base;
11752 }
11753
11754 static void intel_crtc_init(struct drm_device *dev, int pipe)
11755 {
11756         struct drm_i915_private *dev_priv = dev->dev_private;
11757         struct intel_crtc *intel_crtc;
11758         struct drm_plane *primary = NULL;
11759         struct drm_plane *cursor = NULL;
11760         int i, ret;
11761
11762         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11763         if (intel_crtc == NULL)
11764                 return;
11765
11766         primary = intel_primary_plane_create(dev, pipe);
11767         if (!primary)
11768                 goto fail;
11769
11770         cursor = intel_cursor_plane_create(dev, pipe);
11771         if (!cursor)
11772                 goto fail;
11773
11774         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11775                                         cursor, &intel_crtc_funcs);
11776         if (ret)
11777                 goto fail;
11778
11779         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11780         for (i = 0; i < 256; i++) {
11781                 intel_crtc->lut_r[i] = i;
11782                 intel_crtc->lut_g[i] = i;
11783                 intel_crtc->lut_b[i] = i;
11784         }
11785
11786         /*
11787          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11788          * is hooked to pipe B. Hence we want plane A feeding pipe B.
11789          */
11790         intel_crtc->pipe = pipe;
11791         intel_crtc->plane = pipe;
11792         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11793                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11794                 intel_crtc->plane = !pipe;
11795         }
11796
11797         intel_crtc->cursor_base = ~0;
11798         intel_crtc->cursor_cntl = ~0;
11799
11800         init_waitqueue_head(&intel_crtc->vbl_wait);
11801
11802         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11803                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11804         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11805         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11806
11807         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11808
11809         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11810         return;
11811
11812 fail:
11813         if (primary)
11814                 drm_plane_cleanup(primary);
11815         if (cursor)
11816                 drm_plane_cleanup(cursor);
11817         kfree(intel_crtc);
11818 }
11819
11820 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11821 {
11822         struct drm_encoder *encoder = connector->base.encoder;
11823         struct drm_device *dev = connector->base.dev;
11824
11825         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11826
11827         if (!encoder)
11828                 return INVALID_PIPE;
11829
11830         return to_intel_crtc(encoder->crtc)->pipe;
11831 }
11832
11833 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11834                                 struct drm_file *file)
11835 {
11836         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11837         struct drm_crtc *drmmode_crtc;
11838         struct intel_crtc *crtc;
11839
11840         if (!drm_core_check_feature(dev, DRIVER_MODESET))
11841                 return -ENODEV;
11842
11843         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
11844
11845         if (!drmmode_crtc) {
11846                 DRM_ERROR("no such CRTC id\n");
11847                 return -ENOENT;
11848         }
11849
11850         crtc = to_intel_crtc(drmmode_crtc);
11851         pipe_from_crtc_id->pipe = crtc->pipe;
11852
11853         return 0;
11854 }
11855
11856 static int intel_encoder_clones(struct intel_encoder *encoder)
11857 {
11858         struct drm_device *dev = encoder->base.dev;
11859         struct intel_encoder *source_encoder;
11860         int index_mask = 0;
11861         int entry = 0;
11862
11863         list_for_each_entry(source_encoder,
11864                             &dev->mode_config.encoder_list, base.head) {
11865                 if (encoders_cloneable(encoder, source_encoder))
11866                         index_mask |= (1 << entry);
11867
11868                 entry++;
11869         }
11870
11871         return index_mask;
11872 }
11873
11874 static bool has_edp_a(struct drm_device *dev)
11875 {
11876         struct drm_i915_private *dev_priv = dev->dev_private;
11877
11878         if (!IS_MOBILE(dev))
11879                 return false;
11880
11881         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11882                 return false;
11883
11884         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11885                 return false;
11886
11887         return true;
11888 }
11889
11890 const char *intel_output_name(int output)
11891 {
11892         static const char *names[] = {
11893                 [INTEL_OUTPUT_UNUSED] = "Unused",
11894                 [INTEL_OUTPUT_ANALOG] = "Analog",
11895                 [INTEL_OUTPUT_DVO] = "DVO",
11896                 [INTEL_OUTPUT_SDVO] = "SDVO",
11897                 [INTEL_OUTPUT_LVDS] = "LVDS",
11898                 [INTEL_OUTPUT_TVOUT] = "TV",
11899                 [INTEL_OUTPUT_HDMI] = "HDMI",
11900                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11901                 [INTEL_OUTPUT_EDP] = "eDP",
11902                 [INTEL_OUTPUT_DSI] = "DSI",
11903                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11904         };
11905
11906         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11907                 return "Invalid";
11908
11909         return names[output];
11910 }
11911
11912 static bool intel_crt_present(struct drm_device *dev)
11913 {
11914         struct drm_i915_private *dev_priv = dev->dev_private;
11915
11916         if (IS_ULT(dev))
11917                 return false;
11918
11919         if (IS_CHERRYVIEW(dev))
11920                 return false;
11921
11922         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11923                 return false;
11924
11925         return true;
11926 }
11927
11928 static void intel_setup_outputs(struct drm_device *dev)
11929 {
11930         struct drm_i915_private *dev_priv = dev->dev_private;
11931         struct intel_encoder *encoder;
11932         bool dpd_is_edp = false;
11933
11934         intel_lvds_init(dev);
11935
11936         if (intel_crt_present(dev))
11937                 intel_crt_init(dev);
11938
11939         if (HAS_DDI(dev)) {
11940                 int found;
11941
11942                 /* Haswell uses DDI functions to detect digital outputs */
11943                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11944                 /* DDI A only supports eDP */
11945                 if (found)
11946                         intel_ddi_init(dev, PORT_A);
11947
11948                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11949                  * register */
11950                 found = I915_READ(SFUSE_STRAP);
11951
11952                 if (found & SFUSE_STRAP_DDIB_DETECTED)
11953                         intel_ddi_init(dev, PORT_B);
11954                 if (found & SFUSE_STRAP_DDIC_DETECTED)
11955                         intel_ddi_init(dev, PORT_C);
11956                 if (found & SFUSE_STRAP_DDID_DETECTED)
11957                         intel_ddi_init(dev, PORT_D);
11958         } else if (HAS_PCH_SPLIT(dev)) {
11959                 int found;
11960                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11961
11962                 if (has_edp_a(dev))
11963                         intel_dp_init(dev, DP_A, PORT_A);
11964
11965                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11966                         /* PCH SDVOB multiplex with HDMIB */
11967                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
11968                         if (!found)
11969                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11970                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11971                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
11972                 }
11973
11974                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11975                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11976
11977                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11978                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11979
11980                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11981                         intel_dp_init(dev, PCH_DP_C, PORT_C);
11982
11983                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
11984                         intel_dp_init(dev, PCH_DP_D, PORT_D);
11985         } else if (IS_VALLEYVIEW(dev)) {
11986                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11987                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11988                                         PORT_B);
11989                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11990                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11991                 }
11992
11993                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11994                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11995                                         PORT_C);
11996                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11997                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11998                 }
11999
12000                 if (IS_CHERRYVIEW(dev)) {
12001                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12002                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12003                                                 PORT_D);
12004                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12005                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12006                         }
12007                 }
12008
12009                 intel_dsi_init(dev);
12010         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12011                 bool found = false;
12012
12013                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12014                         DRM_DEBUG_KMS("probing SDVOB\n");
12015                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12016                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12017                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12018                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12019                         }
12020
12021                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12022                                 intel_dp_init(dev, DP_B, PORT_B);
12023                 }
12024
12025                 /* Before G4X SDVOC doesn't have its own detect register */
12026
12027                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12028                         DRM_DEBUG_KMS("probing SDVOC\n");
12029                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12030                 }
12031
12032                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12033
12034                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12035                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12036                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12037                         }
12038                         if (SUPPORTS_INTEGRATED_DP(dev))
12039                                 intel_dp_init(dev, DP_C, PORT_C);
12040                 }
12041
12042                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12043                     (I915_READ(DP_D) & DP_DETECTED))
12044                         intel_dp_init(dev, DP_D, PORT_D);
12045         } else if (IS_GEN2(dev))
12046                 intel_dvo_init(dev);
12047
12048         if (SUPPORTS_TV(dev))
12049                 intel_tv_init(dev);
12050
12051         intel_edp_psr_init(dev);
12052
12053         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12054                 encoder->base.possible_crtcs = encoder->crtc_mask;
12055                 encoder->base.possible_clones =
12056                         intel_encoder_clones(encoder);
12057         }
12058
12059         intel_init_pch_refclk(dev);
12060
12061         drm_helper_move_panel_connectors_to_head(dev);
12062 }
12063
12064 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12065 {
12066         struct drm_device *dev = fb->dev;
12067         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12068
12069         drm_framebuffer_cleanup(fb);
12070         mutex_lock(&dev->struct_mutex);
12071         WARN_ON(!intel_fb->obj->framebuffer_references--);
12072         drm_gem_object_unreference(&intel_fb->obj->base);
12073         mutex_unlock(&dev->struct_mutex);
12074         kfree(intel_fb);
12075 }
12076
12077 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12078                                                 struct drm_file *file,
12079                                                 unsigned int *handle)
12080 {
12081         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12082         struct drm_i915_gem_object *obj = intel_fb->obj;
12083
12084         return drm_gem_handle_create(file, &obj->base, handle);
12085 }
12086
12087 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12088         .destroy = intel_user_framebuffer_destroy,
12089         .create_handle = intel_user_framebuffer_create_handle,
12090 };
12091
12092 static int intel_framebuffer_init(struct drm_device *dev,
12093                                   struct intel_framebuffer *intel_fb,
12094                                   struct drm_mode_fb_cmd2 *mode_cmd,
12095                                   struct drm_i915_gem_object *obj)
12096 {
12097         int aligned_height;
12098         int pitch_limit;
12099         int ret;
12100
12101         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12102
12103         if (obj->tiling_mode == I915_TILING_Y) {
12104                 DRM_DEBUG("hardware does not support tiling Y\n");
12105                 return -EINVAL;
12106         }
12107
12108         if (mode_cmd->pitches[0] & 63) {
12109                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12110                           mode_cmd->pitches[0]);
12111                 return -EINVAL;
12112         }
12113
12114         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12115                 pitch_limit = 32*1024;
12116         } else if (INTEL_INFO(dev)->gen >= 4) {
12117                 if (obj->tiling_mode)
12118                         pitch_limit = 16*1024;
12119                 else
12120                         pitch_limit = 32*1024;
12121         } else if (INTEL_INFO(dev)->gen >= 3) {
12122                 if (obj->tiling_mode)
12123                         pitch_limit = 8*1024;
12124                 else
12125                         pitch_limit = 16*1024;
12126         } else
12127                 /* XXX DSPC is limited to 4k tiled */
12128                 pitch_limit = 8*1024;
12129
12130         if (mode_cmd->pitches[0] > pitch_limit) {
12131                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12132                           obj->tiling_mode ? "tiled" : "linear",
12133                           mode_cmd->pitches[0], pitch_limit);
12134                 return -EINVAL;
12135         }
12136
12137         if (obj->tiling_mode != I915_TILING_NONE &&
12138             mode_cmd->pitches[0] != obj->stride) {
12139                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12140                           mode_cmd->pitches[0], obj->stride);
12141                 return -EINVAL;
12142         }
12143
12144         /* Reject formats not supported by any plane early. */
12145         switch (mode_cmd->pixel_format) {
12146         case DRM_FORMAT_C8:
12147         case DRM_FORMAT_RGB565:
12148         case DRM_FORMAT_XRGB8888:
12149         case DRM_FORMAT_ARGB8888:
12150                 break;
12151         case DRM_FORMAT_XRGB1555:
12152         case DRM_FORMAT_ARGB1555:
12153                 if (INTEL_INFO(dev)->gen > 3) {
12154                         DRM_DEBUG("unsupported pixel format: %s\n",
12155                                   drm_get_format_name(mode_cmd->pixel_format));
12156                         return -EINVAL;
12157                 }
12158                 break;
12159         case DRM_FORMAT_XBGR8888:
12160         case DRM_FORMAT_ABGR8888:
12161         case DRM_FORMAT_XRGB2101010:
12162         case DRM_FORMAT_ARGB2101010:
12163         case DRM_FORMAT_XBGR2101010:
12164         case DRM_FORMAT_ABGR2101010:
12165                 if (INTEL_INFO(dev)->gen < 4) {
12166                         DRM_DEBUG("unsupported pixel format: %s\n",
12167                                   drm_get_format_name(mode_cmd->pixel_format));
12168                         return -EINVAL;
12169                 }
12170                 break;
12171         case DRM_FORMAT_YUYV:
12172         case DRM_FORMAT_UYVY:
12173         case DRM_FORMAT_YVYU:
12174         case DRM_FORMAT_VYUY:
12175                 if (INTEL_INFO(dev)->gen < 5) {
12176                         DRM_DEBUG("unsupported pixel format: %s\n",
12177                                   drm_get_format_name(mode_cmd->pixel_format));
12178                         return -EINVAL;
12179                 }
12180                 break;
12181         default:
12182                 DRM_DEBUG("unsupported pixel format: %s\n",
12183                           drm_get_format_name(mode_cmd->pixel_format));
12184                 return -EINVAL;
12185         }
12186
12187         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12188         if (mode_cmd->offsets[0] != 0)
12189                 return -EINVAL;
12190
12191         aligned_height = intel_align_height(dev, mode_cmd->height,
12192                                             obj->tiling_mode);
12193         /* FIXME drm helper for size checks (especially planar formats)? */
12194         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12195                 return -EINVAL;
12196
12197         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12198         intel_fb->obj = obj;
12199         intel_fb->obj->framebuffer_references++;
12200
12201         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12202         if (ret) {
12203                 DRM_ERROR("framebuffer init failed %d\n", ret);
12204                 return ret;
12205         }
12206
12207         return 0;
12208 }
12209
12210 static struct drm_framebuffer *
12211 intel_user_framebuffer_create(struct drm_device *dev,
12212                               struct drm_file *filp,
12213                               struct drm_mode_fb_cmd2 *mode_cmd)
12214 {
12215         struct drm_i915_gem_object *obj;
12216
12217         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12218                                                 mode_cmd->handles[0]));
12219         if (&obj->base == NULL)
12220                 return ERR_PTR(-ENOENT);
12221
12222         return intel_framebuffer_create(dev, mode_cmd, obj);
12223 }
12224
12225 #ifndef CONFIG_DRM_I915_FBDEV
12226 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12227 {
12228 }
12229 #endif
12230
12231 static const struct drm_mode_config_funcs intel_mode_funcs = {
12232         .fb_create = intel_user_framebuffer_create,
12233         .output_poll_changed = intel_fbdev_output_poll_changed,
12234 };
12235
12236 /* Set up chip specific display functions */
12237 static void intel_init_display(struct drm_device *dev)
12238 {
12239         struct drm_i915_private *dev_priv = dev->dev_private;
12240
12241         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12242                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12243         else if (IS_CHERRYVIEW(dev))
12244                 dev_priv->display.find_dpll = chv_find_best_dpll;
12245         else if (IS_VALLEYVIEW(dev))
12246                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12247         else if (IS_PINEVIEW(dev))
12248                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12249         else
12250                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12251
12252         if (HAS_DDI(dev)) {
12253                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12254                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12255                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12256                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12257                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12258                 dev_priv->display.off = ironlake_crtc_off;
12259                 dev_priv->display.update_primary_plane =
12260                         ironlake_update_primary_plane;
12261         } else if (HAS_PCH_SPLIT(dev)) {
12262                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12263                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12264                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12265                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12266                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12267                 dev_priv->display.off = ironlake_crtc_off;
12268                 dev_priv->display.update_primary_plane =
12269                         ironlake_update_primary_plane;
12270         } else if (IS_VALLEYVIEW(dev)) {
12271                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12272                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12273                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12274                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12275                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12276                 dev_priv->display.off = i9xx_crtc_off;
12277                 dev_priv->display.update_primary_plane =
12278                         i9xx_update_primary_plane;
12279         } else {
12280                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12281                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12282                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12283                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12284                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12285                 dev_priv->display.off = i9xx_crtc_off;
12286                 dev_priv->display.update_primary_plane =
12287                         i9xx_update_primary_plane;
12288         }
12289
12290         /* Returns the core display clock speed */
12291         if (IS_VALLEYVIEW(dev))
12292                 dev_priv->display.get_display_clock_speed =
12293                         valleyview_get_display_clock_speed;
12294         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12295                 dev_priv->display.get_display_clock_speed =
12296                         i945_get_display_clock_speed;
12297         else if (IS_I915G(dev))
12298                 dev_priv->display.get_display_clock_speed =
12299                         i915_get_display_clock_speed;
12300         else if (IS_I945GM(dev) || IS_845G(dev))
12301                 dev_priv->display.get_display_clock_speed =
12302                         i9xx_misc_get_display_clock_speed;
12303         else if (IS_PINEVIEW(dev))
12304                 dev_priv->display.get_display_clock_speed =
12305                         pnv_get_display_clock_speed;
12306         else if (IS_I915GM(dev))
12307                 dev_priv->display.get_display_clock_speed =
12308                         i915gm_get_display_clock_speed;
12309         else if (IS_I865G(dev))
12310                 dev_priv->display.get_display_clock_speed =
12311                         i865_get_display_clock_speed;
12312         else if (IS_I85X(dev))
12313                 dev_priv->display.get_display_clock_speed =
12314                         i855_get_display_clock_speed;
12315         else /* 852, 830 */
12316                 dev_priv->display.get_display_clock_speed =
12317                         i830_get_display_clock_speed;
12318
12319         if (HAS_PCH_SPLIT(dev)) {
12320                 if (IS_GEN5(dev)) {
12321                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12322                         dev_priv->display.write_eld = ironlake_write_eld;
12323                 } else if (IS_GEN6(dev)) {
12324                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12325                         dev_priv->display.write_eld = ironlake_write_eld;
12326                         dev_priv->display.modeset_global_resources =
12327                                 snb_modeset_global_resources;
12328                 } else if (IS_IVYBRIDGE(dev)) {
12329                         /* FIXME: detect B0+ stepping and use auto training */
12330                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12331                         dev_priv->display.write_eld = ironlake_write_eld;
12332                         dev_priv->display.modeset_global_resources =
12333                                 ivb_modeset_global_resources;
12334                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12335                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12336                         dev_priv->display.write_eld = haswell_write_eld;
12337                         dev_priv->display.modeset_global_resources =
12338                                 haswell_modeset_global_resources;
12339                 }
12340         } else if (IS_G4X(dev)) {
12341                 dev_priv->display.write_eld = g4x_write_eld;
12342         } else if (IS_VALLEYVIEW(dev)) {
12343                 dev_priv->display.modeset_global_resources =
12344                         valleyview_modeset_global_resources;
12345                 dev_priv->display.write_eld = ironlake_write_eld;
12346         }
12347
12348         /* Default just returns -ENODEV to indicate unsupported */
12349         dev_priv->display.queue_flip = intel_default_queue_flip;
12350
12351         switch (INTEL_INFO(dev)->gen) {
12352         case 2:
12353                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12354                 break;
12355
12356         case 3:
12357                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12358                 break;
12359
12360         case 4:
12361         case 5:
12362                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12363                 break;
12364
12365         case 6:
12366                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12367                 break;
12368         case 7:
12369         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12370                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12371                 break;
12372         }
12373
12374         intel_panel_init_backlight_funcs(dev);
12375 }
12376
12377 /*
12378  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12379  * resume, or other times.  This quirk makes sure that's the case for
12380  * affected systems.
12381  */
12382 static void quirk_pipea_force(struct drm_device *dev)
12383 {
12384         struct drm_i915_private *dev_priv = dev->dev_private;
12385
12386         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12387         DRM_INFO("applying pipe a force quirk\n");
12388 }
12389
12390 /*
12391  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12392  */
12393 static void quirk_ssc_force_disable(struct drm_device *dev)
12394 {
12395         struct drm_i915_private *dev_priv = dev->dev_private;
12396         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12397         DRM_INFO("applying lvds SSC disable quirk\n");
12398 }
12399
12400 /*
12401  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12402  * brightness value
12403  */
12404 static void quirk_invert_brightness(struct drm_device *dev)
12405 {
12406         struct drm_i915_private *dev_priv = dev->dev_private;
12407         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12408         DRM_INFO("applying inverted panel brightness quirk\n");
12409 }
12410
12411 /* Some VBT's incorrectly indicate no backlight is present */
12412 static void quirk_backlight_present(struct drm_device *dev)
12413 {
12414         struct drm_i915_private *dev_priv = dev->dev_private;
12415         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12416         DRM_INFO("applying backlight present quirk\n");
12417 }
12418
12419 struct intel_quirk {
12420         int device;
12421         int subsystem_vendor;
12422         int subsystem_device;
12423         void (*hook)(struct drm_device *dev);
12424 };
12425
12426 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12427 struct intel_dmi_quirk {
12428         void (*hook)(struct drm_device *dev);
12429         const struct dmi_system_id (*dmi_id_list)[];
12430 };
12431
12432 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12433 {
12434         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12435         return 1;
12436 }
12437
12438 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12439         {
12440                 .dmi_id_list = &(const struct dmi_system_id[]) {
12441                         {
12442                                 .callback = intel_dmi_reverse_brightness,
12443                                 .ident = "NCR Corporation",
12444                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12445                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12446                                 },
12447                         },
12448                         { }  /* terminating entry */
12449                 },
12450                 .hook = quirk_invert_brightness,
12451         },
12452 };
12453
12454 static struct intel_quirk intel_quirks[] = {
12455         /* HP Mini needs pipe A force quirk (LP: #322104) */
12456         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12457
12458         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12459         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12460
12461         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12462         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12463
12464         /* Lenovo U160 cannot use SSC on LVDS */
12465         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12466
12467         /* Sony Vaio Y cannot use SSC on LVDS */
12468         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12469
12470         /* Acer Aspire 5734Z must invert backlight brightness */
12471         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12472
12473         /* Acer/eMachines G725 */
12474         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12475
12476         /* Acer/eMachines e725 */
12477         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12478
12479         /* Acer/Packard Bell NCL20 */
12480         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12481
12482         /* Acer Aspire 4736Z */
12483         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12484
12485         /* Acer Aspire 5336 */
12486         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12487
12488         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12489         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12490
12491         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12492         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12493
12494         /* HP Chromebook 14 (Celeron 2955U) */
12495         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12496 };
12497
12498 static void intel_init_quirks(struct drm_device *dev)
12499 {
12500         struct pci_dev *d = dev->pdev;
12501         int i;
12502
12503         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12504                 struct intel_quirk *q = &intel_quirks[i];
12505
12506                 if (d->device == q->device &&
12507                     (d->subsystem_vendor == q->subsystem_vendor ||
12508                      q->subsystem_vendor == PCI_ANY_ID) &&
12509                     (d->subsystem_device == q->subsystem_device ||
12510                      q->subsystem_device == PCI_ANY_ID))
12511                         q->hook(dev);
12512         }
12513         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12514                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12515                         intel_dmi_quirks[i].hook(dev);
12516         }
12517 }
12518
12519 /* Disable the VGA plane that we never use */
12520 static void i915_disable_vga(struct drm_device *dev)
12521 {
12522         struct drm_i915_private *dev_priv = dev->dev_private;
12523         u8 sr1;
12524         u32 vga_reg = i915_vgacntrl_reg(dev);
12525
12526         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12527         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12528         outb(SR01, VGA_SR_INDEX);
12529         sr1 = inb(VGA_SR_DATA);
12530         outb(sr1 | 1<<5, VGA_SR_DATA);
12531         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12532         udelay(300);
12533
12534         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12535         POSTING_READ(vga_reg);
12536 }
12537
12538 void intel_modeset_init_hw(struct drm_device *dev)
12539 {
12540         intel_prepare_ddi(dev);
12541
12542         if (IS_VALLEYVIEW(dev))
12543                 vlv_update_cdclk(dev);
12544
12545         intel_init_clock_gating(dev);
12546
12547         intel_reset_dpio(dev);
12548
12549         intel_enable_gt_powersave(dev);
12550 }
12551
12552 void intel_modeset_suspend_hw(struct drm_device *dev)
12553 {
12554         intel_suspend_hw(dev);
12555 }
12556
12557 void intel_modeset_init(struct drm_device *dev)
12558 {
12559         struct drm_i915_private *dev_priv = dev->dev_private;
12560         int sprite, ret;
12561         enum pipe pipe;
12562         struct intel_crtc *crtc;
12563
12564         drm_mode_config_init(dev);
12565
12566         dev->mode_config.min_width = 0;
12567         dev->mode_config.min_height = 0;
12568
12569         dev->mode_config.preferred_depth = 24;
12570         dev->mode_config.prefer_shadow = 1;
12571
12572         dev->mode_config.funcs = &intel_mode_funcs;
12573
12574         intel_init_quirks(dev);
12575
12576         intel_init_pm(dev);
12577
12578         if (INTEL_INFO(dev)->num_pipes == 0)
12579                 return;
12580
12581         intel_init_display(dev);
12582
12583         if (IS_GEN2(dev)) {
12584                 dev->mode_config.max_width = 2048;
12585                 dev->mode_config.max_height = 2048;
12586         } else if (IS_GEN3(dev)) {
12587                 dev->mode_config.max_width = 4096;
12588                 dev->mode_config.max_height = 4096;
12589         } else {
12590                 dev->mode_config.max_width = 8192;
12591                 dev->mode_config.max_height = 8192;
12592         }
12593
12594         if (IS_GEN2(dev)) {
12595                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12596                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12597         } else {
12598                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12599                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12600         }
12601
12602         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12603
12604         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12605                       INTEL_INFO(dev)->num_pipes,
12606                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12607
12608         for_each_pipe(pipe) {
12609                 intel_crtc_init(dev, pipe);
12610                 for_each_sprite(pipe, sprite) {
12611                         ret = intel_plane_init(dev, pipe, sprite);
12612                         if (ret)
12613                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12614                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
12615                 }
12616         }
12617
12618         intel_init_dpio(dev);
12619         intel_reset_dpio(dev);
12620
12621         intel_shared_dpll_init(dev);
12622
12623         /* Just disable it once at startup */
12624         i915_disable_vga(dev);
12625         intel_setup_outputs(dev);
12626
12627         /* Just in case the BIOS is doing something questionable. */
12628         intel_disable_fbc(dev);
12629
12630         drm_modeset_lock_all(dev);
12631         intel_modeset_setup_hw_state(dev, false);
12632         drm_modeset_unlock_all(dev);
12633
12634         for_each_intel_crtc(dev, crtc) {
12635                 if (!crtc->active)
12636                         continue;
12637
12638                 /*
12639                  * Note that reserving the BIOS fb up front prevents us
12640                  * from stuffing other stolen allocations like the ring
12641                  * on top.  This prevents some ugliness at boot time, and
12642                  * can even allow for smooth boot transitions if the BIOS
12643                  * fb is large enough for the active pipe configuration.
12644                  */
12645                 if (dev_priv->display.get_plane_config) {
12646                         dev_priv->display.get_plane_config(crtc,
12647                                                            &crtc->plane_config);
12648                         /*
12649                          * If the fb is shared between multiple heads, we'll
12650                          * just get the first one.
12651                          */
12652                         intel_find_plane_obj(crtc, &crtc->plane_config);
12653                 }
12654         }
12655 }
12656
12657 static void intel_enable_pipe_a(struct drm_device *dev)
12658 {
12659         struct intel_connector *connector;
12660         struct drm_connector *crt = NULL;
12661         struct intel_load_detect_pipe load_detect_temp;
12662         struct drm_modeset_acquire_ctx ctx;
12663
12664         /* We can't just switch on the pipe A, we need to set things up with a
12665          * proper mode and output configuration. As a gross hack, enable pipe A
12666          * by enabling the load detect pipe once. */
12667         list_for_each_entry(connector,
12668                             &dev->mode_config.connector_list,
12669                             base.head) {
12670                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12671                         crt = &connector->base;
12672                         break;
12673                 }
12674         }
12675
12676         if (!crt)
12677                 return;
12678
12679         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12680                 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
12681
12682
12683 }
12684
12685 static bool
12686 intel_check_plane_mapping(struct intel_crtc *crtc)
12687 {
12688         struct drm_device *dev = crtc->base.dev;
12689         struct drm_i915_private *dev_priv = dev->dev_private;
12690         u32 reg, val;
12691
12692         if (INTEL_INFO(dev)->num_pipes == 1)
12693                 return true;
12694
12695         reg = DSPCNTR(!crtc->plane);
12696         val = I915_READ(reg);
12697
12698         if ((val & DISPLAY_PLANE_ENABLE) &&
12699             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12700                 return false;
12701
12702         return true;
12703 }
12704
12705 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12706 {
12707         struct drm_device *dev = crtc->base.dev;
12708         struct drm_i915_private *dev_priv = dev->dev_private;
12709         u32 reg;
12710
12711         /* Clear any frame start delays used for debugging left by the BIOS */
12712         reg = PIPECONF(crtc->config.cpu_transcoder);
12713         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12714
12715         /* restore vblank interrupts to correct state */
12716         if (crtc->active)
12717                 drm_vblank_on(dev, crtc->pipe);
12718         else
12719                 drm_vblank_off(dev, crtc->pipe);
12720
12721         /* We need to sanitize the plane -> pipe mapping first because this will
12722          * disable the crtc (and hence change the state) if it is wrong. Note
12723          * that gen4+ has a fixed plane -> pipe mapping.  */
12724         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12725                 struct intel_connector *connector;
12726                 bool plane;
12727
12728                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12729                               crtc->base.base.id);
12730
12731                 /* Pipe has the wrong plane attached and the plane is active.
12732                  * Temporarily change the plane mapping and disable everything
12733                  * ...  */
12734                 plane = crtc->plane;
12735                 crtc->plane = !plane;
12736                 crtc->primary_enabled = true;
12737                 dev_priv->display.crtc_disable(&crtc->base);
12738                 crtc->plane = plane;
12739
12740                 /* ... and break all links. */
12741                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12742                                     base.head) {
12743                         if (connector->encoder->base.crtc != &crtc->base)
12744                                 continue;
12745
12746                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12747                         connector->base.encoder = NULL;
12748                 }
12749                 /* multiple connectors may have the same encoder:
12750                  *  handle them and break crtc link separately */
12751                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12752                                     base.head)
12753                         if (connector->encoder->base.crtc == &crtc->base) {
12754                                 connector->encoder->base.crtc = NULL;
12755                                 connector->encoder->connectors_active = false;
12756                         }
12757
12758                 WARN_ON(crtc->active);
12759                 crtc->base.enabled = false;
12760         }
12761
12762         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12763             crtc->pipe == PIPE_A && !crtc->active) {
12764                 /* BIOS forgot to enable pipe A, this mostly happens after
12765                  * resume. Force-enable the pipe to fix this, the update_dpms
12766                  * call below we restore the pipe to the right state, but leave
12767                  * the required bits on. */
12768                 intel_enable_pipe_a(dev);
12769         }
12770
12771         /* Adjust the state of the output pipe according to whether we
12772          * have active connectors/encoders. */
12773         intel_crtc_update_dpms(&crtc->base);
12774
12775         if (crtc->active != crtc->base.enabled) {
12776                 struct intel_encoder *encoder;
12777
12778                 /* This can happen either due to bugs in the get_hw_state
12779                  * functions or because the pipe is force-enabled due to the
12780                  * pipe A quirk. */
12781                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12782                               crtc->base.base.id,
12783                               crtc->base.enabled ? "enabled" : "disabled",
12784                               crtc->active ? "enabled" : "disabled");
12785
12786                 crtc->base.enabled = crtc->active;
12787
12788                 /* Because we only establish the connector -> encoder ->
12789                  * crtc links if something is active, this means the
12790                  * crtc is now deactivated. Break the links. connector
12791                  * -> encoder links are only establish when things are
12792                  *  actually up, hence no need to break them. */
12793                 WARN_ON(crtc->active);
12794
12795                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12796                         WARN_ON(encoder->connectors_active);
12797                         encoder->base.crtc = NULL;
12798                 }
12799         }
12800
12801         if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12802                 /*
12803                  * We start out with underrun reporting disabled to avoid races.
12804                  * For correct bookkeeping mark this on active crtcs.
12805                  *
12806                  * Also on gmch platforms we dont have any hardware bits to
12807                  * disable the underrun reporting. Which means we need to start
12808                  * out with underrun reporting disabled also on inactive pipes,
12809                  * since otherwise we'll complain about the garbage we read when
12810                  * e.g. coming up after runtime pm.
12811                  *
12812                  * No protection against concurrent access is required - at
12813                  * worst a fifo underrun happens which also sets this to false.
12814                  */
12815                 crtc->cpu_fifo_underrun_disabled = true;
12816                 crtc->pch_fifo_underrun_disabled = true;
12817
12818                 update_scanline_offset(crtc);
12819         }
12820 }
12821
12822 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12823 {
12824         struct intel_connector *connector;
12825         struct drm_device *dev = encoder->base.dev;
12826
12827         /* We need to check both for a crtc link (meaning that the
12828          * encoder is active and trying to read from a pipe) and the
12829          * pipe itself being active. */
12830         bool has_active_crtc = encoder->base.crtc &&
12831                 to_intel_crtc(encoder->base.crtc)->active;
12832
12833         if (encoder->connectors_active && !has_active_crtc) {
12834                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12835                               encoder->base.base.id,
12836                               encoder->base.name);
12837
12838                 /* Connector is active, but has no active pipe. This is
12839                  * fallout from our resume register restoring. Disable
12840                  * the encoder manually again. */
12841                 if (encoder->base.crtc) {
12842                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12843                                       encoder->base.base.id,
12844                                       encoder->base.name);
12845                         encoder->disable(encoder);
12846                         if (encoder->post_disable)
12847                                 encoder->post_disable(encoder);
12848                 }
12849                 encoder->base.crtc = NULL;
12850                 encoder->connectors_active = false;
12851
12852                 /* Inconsistent output/port/pipe state happens presumably due to
12853                  * a bug in one of the get_hw_state functions. Or someplace else
12854                  * in our code, like the register restore mess on resume. Clamp
12855                  * things to off as a safer default. */
12856                 list_for_each_entry(connector,
12857                                     &dev->mode_config.connector_list,
12858                                     base.head) {
12859                         if (connector->encoder != encoder)
12860                                 continue;
12861                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12862                         connector->base.encoder = NULL;
12863                 }
12864         }
12865         /* Enabled encoders without active connectors will be fixed in
12866          * the crtc fixup. */
12867 }
12868
12869 void i915_redisable_vga_power_on(struct drm_device *dev)
12870 {
12871         struct drm_i915_private *dev_priv = dev->dev_private;
12872         u32 vga_reg = i915_vgacntrl_reg(dev);
12873
12874         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12875                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12876                 i915_disable_vga(dev);
12877         }
12878 }
12879
12880 void i915_redisable_vga(struct drm_device *dev)
12881 {
12882         struct drm_i915_private *dev_priv = dev->dev_private;
12883
12884         /* This function can be called both from intel_modeset_setup_hw_state or
12885          * at a very early point in our resume sequence, where the power well
12886          * structures are not yet restored. Since this function is at a very
12887          * paranoid "someone might have enabled VGA while we were not looking"
12888          * level, just check if the power well is enabled instead of trying to
12889          * follow the "don't touch the power well if we don't need it" policy
12890          * the rest of the driver uses. */
12891         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12892                 return;
12893
12894         i915_redisable_vga_power_on(dev);
12895 }
12896
12897 static bool primary_get_hw_state(struct intel_crtc *crtc)
12898 {
12899         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12900
12901         if (!crtc->active)
12902                 return false;
12903
12904         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12905 }
12906
12907 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12908 {
12909         struct drm_i915_private *dev_priv = dev->dev_private;
12910         enum pipe pipe;
12911         struct intel_crtc *crtc;
12912         struct intel_encoder *encoder;
12913         struct intel_connector *connector;
12914         int i;
12915
12916         for_each_intel_crtc(dev, crtc) {
12917                 memset(&crtc->config, 0, sizeof(crtc->config));
12918
12919                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12920
12921                 crtc->active = dev_priv->display.get_pipe_config(crtc,
12922                                                                  &crtc->config);
12923
12924                 crtc->base.enabled = crtc->active;
12925                 crtc->primary_enabled = primary_get_hw_state(crtc);
12926
12927                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12928                               crtc->base.base.id,
12929                               crtc->active ? "enabled" : "disabled");
12930         }
12931
12932         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12933                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12934
12935                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12936                 pll->active = 0;
12937                 for_each_intel_crtc(dev, crtc) {
12938                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12939                                 pll->active++;
12940                 }
12941                 pll->refcount = pll->active;
12942
12943                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12944                               pll->name, pll->refcount, pll->on);
12945
12946                 if (pll->refcount)
12947                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
12948         }
12949
12950         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12951                             base.head) {
12952                 pipe = 0;
12953
12954                 if (encoder->get_hw_state(encoder, &pipe)) {
12955                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12956                         encoder->base.crtc = &crtc->base;
12957                         encoder->get_config(encoder, &crtc->config);
12958                 } else {
12959                         encoder->base.crtc = NULL;
12960                 }
12961
12962                 encoder->connectors_active = false;
12963                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12964                               encoder->base.base.id,
12965                               encoder->base.name,
12966                               encoder->base.crtc ? "enabled" : "disabled",
12967                               pipe_name(pipe));
12968         }
12969
12970         list_for_each_entry(connector, &dev->mode_config.connector_list,
12971                             base.head) {
12972                 if (connector->get_hw_state(connector)) {
12973                         connector->base.dpms = DRM_MODE_DPMS_ON;
12974                         connector->encoder->connectors_active = true;
12975                         connector->base.encoder = &connector->encoder->base;
12976                 } else {
12977                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12978                         connector->base.encoder = NULL;
12979                 }
12980                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12981                               connector->base.base.id,
12982                               connector->base.name,
12983                               connector->base.encoder ? "enabled" : "disabled");
12984         }
12985 }
12986
12987 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12988  * and i915 state tracking structures. */
12989 void intel_modeset_setup_hw_state(struct drm_device *dev,
12990                                   bool force_restore)
12991 {
12992         struct drm_i915_private *dev_priv = dev->dev_private;
12993         enum pipe pipe;
12994         struct intel_crtc *crtc;
12995         struct intel_encoder *encoder;
12996         int i;
12997
12998         intel_modeset_readout_hw_state(dev);
12999
13000         /*
13001          * Now that we have the config, copy it to each CRTC struct
13002          * Note that this could go away if we move to using crtc_config
13003          * checking everywhere.
13004          */
13005         for_each_intel_crtc(dev, crtc) {
13006                 if (crtc->active && i915.fastboot) {
13007                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13008                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13009                                       crtc->base.base.id);
13010                         drm_mode_debug_printmodeline(&crtc->base.mode);
13011                 }
13012         }
13013
13014         /* HW state is read out, now we need to sanitize this mess. */
13015         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13016                             base.head) {
13017                 intel_sanitize_encoder(encoder);
13018         }
13019
13020         for_each_pipe(pipe) {
13021                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13022                 intel_sanitize_crtc(crtc);
13023                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13024         }
13025
13026         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13027                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13028
13029                 if (!pll->on || pll->active)
13030                         continue;
13031
13032                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13033
13034                 pll->disable(dev_priv, pll);
13035                 pll->on = false;
13036         }
13037
13038         if (HAS_PCH_SPLIT(dev))
13039                 ilk_wm_get_hw_state(dev);
13040
13041         if (force_restore) {
13042                 i915_redisable_vga(dev);
13043
13044                 /*
13045                  * We need to use raw interfaces for restoring state to avoid
13046                  * checking (bogus) intermediate states.
13047                  */
13048                 for_each_pipe(pipe) {
13049                         struct drm_crtc *crtc =
13050                                 dev_priv->pipe_to_crtc_mapping[pipe];
13051
13052                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13053                                          crtc->primary->fb);
13054                 }
13055         } else {
13056                 intel_modeset_update_staged_output_state(dev);
13057         }
13058
13059         intel_modeset_check_state(dev);
13060 }
13061
13062 void intel_modeset_gem_init(struct drm_device *dev)
13063 {
13064         struct drm_crtc *c;
13065         struct drm_i915_gem_object *obj;
13066
13067         mutex_lock(&dev->struct_mutex);
13068         intel_init_gt_powersave(dev);
13069         mutex_unlock(&dev->struct_mutex);
13070
13071         intel_modeset_init_hw(dev);
13072
13073         intel_setup_overlay(dev);
13074
13075         /*
13076          * Make sure any fbs we allocated at startup are properly
13077          * pinned & fenced.  When we do the allocation it's too early
13078          * for this.
13079          */
13080         mutex_lock(&dev->struct_mutex);
13081         for_each_crtc(dev, c) {
13082                 obj = intel_fb_obj(c->primary->fb);
13083                 if (obj == NULL)
13084                         continue;
13085
13086                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13087                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13088                                   to_intel_crtc(c)->pipe);
13089                         drm_framebuffer_unreference(c->primary->fb);
13090                         c->primary->fb = NULL;
13091                 }
13092         }
13093         mutex_unlock(&dev->struct_mutex);
13094 }
13095
13096 void intel_connector_unregister(struct intel_connector *intel_connector)
13097 {
13098         struct drm_connector *connector = &intel_connector->base;
13099
13100         intel_panel_destroy_backlight(connector);
13101         drm_connector_unregister(connector);
13102 }
13103
13104 void intel_modeset_cleanup(struct drm_device *dev)
13105 {
13106         struct drm_i915_private *dev_priv = dev->dev_private;
13107         struct drm_connector *connector;
13108
13109         /*
13110          * Interrupts and polling as the first thing to avoid creating havoc.
13111          * Too much stuff here (turning of rps, connectors, ...) would
13112          * experience fancy races otherwise.
13113          */
13114         drm_irq_uninstall(dev);
13115         cancel_work_sync(&dev_priv->hotplug_work);
13116         dev_priv->pm._irqs_disabled = true;
13117
13118         /*
13119          * Due to the hpd irq storm handling the hotplug work can re-arm the
13120          * poll handlers. Hence disable polling after hpd handling is shut down.
13121          */
13122         drm_kms_helper_poll_fini(dev);
13123
13124         mutex_lock(&dev->struct_mutex);
13125
13126         intel_unregister_dsm_handler();
13127
13128         intel_disable_fbc(dev);
13129
13130         intel_disable_gt_powersave(dev);
13131
13132         ironlake_teardown_rc6(dev);
13133
13134         mutex_unlock(&dev->struct_mutex);
13135
13136         /* flush any delayed tasks or pending work */
13137         flush_scheduled_work();
13138
13139         /* destroy the backlight and sysfs files before encoders/connectors */
13140         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13141                 struct intel_connector *intel_connector;
13142
13143                 intel_connector = to_intel_connector(connector);
13144                 intel_connector->unregister(intel_connector);
13145         }
13146
13147         drm_mode_config_cleanup(dev);
13148
13149         intel_cleanup_overlay(dev);
13150
13151         mutex_lock(&dev->struct_mutex);
13152         intel_cleanup_gt_powersave(dev);
13153         mutex_unlock(&dev->struct_mutex);
13154 }
13155
13156 /*
13157  * Return which encoder is currently attached for connector.
13158  */
13159 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13160 {
13161         return &intel_attached_encoder(connector)->base;
13162 }
13163
13164 void intel_connector_attach_encoder(struct intel_connector *connector,
13165                                     struct intel_encoder *encoder)
13166 {
13167         connector->encoder = encoder;
13168         drm_mode_connector_attach_encoder(&connector->base,
13169                                           &encoder->base);
13170 }
13171
13172 /*
13173  * set vga decode state - true == enable VGA decode
13174  */
13175 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13176 {
13177         struct drm_i915_private *dev_priv = dev->dev_private;
13178         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13179         u16 gmch_ctrl;
13180
13181         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13182                 DRM_ERROR("failed to read control word\n");
13183                 return -EIO;
13184         }
13185
13186         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13187                 return 0;
13188
13189         if (state)
13190                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13191         else
13192                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13193
13194         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13195                 DRM_ERROR("failed to write control word\n");
13196                 return -EIO;
13197         }
13198
13199         return 0;
13200 }
13201
13202 struct intel_display_error_state {
13203
13204         u32 power_well_driver;
13205
13206         int num_transcoders;
13207
13208         struct intel_cursor_error_state {
13209                 u32 control;
13210                 u32 position;
13211                 u32 base;
13212                 u32 size;
13213         } cursor[I915_MAX_PIPES];
13214
13215         struct intel_pipe_error_state {
13216                 bool power_domain_on;
13217                 u32 source;
13218                 u32 stat;
13219         } pipe[I915_MAX_PIPES];
13220
13221         struct intel_plane_error_state {
13222                 u32 control;
13223                 u32 stride;
13224                 u32 size;
13225                 u32 pos;
13226                 u32 addr;
13227                 u32 surface;
13228                 u32 tile_offset;
13229         } plane[I915_MAX_PIPES];
13230
13231         struct intel_transcoder_error_state {
13232                 bool power_domain_on;
13233                 enum transcoder cpu_transcoder;
13234
13235                 u32 conf;
13236
13237                 u32 htotal;
13238                 u32 hblank;
13239                 u32 hsync;
13240                 u32 vtotal;
13241                 u32 vblank;
13242                 u32 vsync;
13243         } transcoder[4];
13244 };
13245
13246 struct intel_display_error_state *
13247 intel_display_capture_error_state(struct drm_device *dev)
13248 {
13249         struct drm_i915_private *dev_priv = dev->dev_private;
13250         struct intel_display_error_state *error;
13251         int transcoders[] = {
13252                 TRANSCODER_A,
13253                 TRANSCODER_B,
13254                 TRANSCODER_C,
13255                 TRANSCODER_EDP,
13256         };
13257         int i;
13258
13259         if (INTEL_INFO(dev)->num_pipes == 0)
13260                 return NULL;
13261
13262         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13263         if (error == NULL)
13264                 return NULL;
13265
13266         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13267                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13268
13269         for_each_pipe(i) {
13270                 error->pipe[i].power_domain_on =
13271                         intel_display_power_enabled_unlocked(dev_priv,
13272                                                            POWER_DOMAIN_PIPE(i));
13273                 if (!error->pipe[i].power_domain_on)
13274                         continue;
13275
13276                 error->cursor[i].control = I915_READ(CURCNTR(i));
13277                 error->cursor[i].position = I915_READ(CURPOS(i));
13278                 error->cursor[i].base = I915_READ(CURBASE(i));
13279
13280                 error->plane[i].control = I915_READ(DSPCNTR(i));
13281                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13282                 if (INTEL_INFO(dev)->gen <= 3) {
13283                         error->plane[i].size = I915_READ(DSPSIZE(i));
13284                         error->plane[i].pos = I915_READ(DSPPOS(i));
13285                 }
13286                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13287                         error->plane[i].addr = I915_READ(DSPADDR(i));
13288                 if (INTEL_INFO(dev)->gen >= 4) {
13289                         error->plane[i].surface = I915_READ(DSPSURF(i));
13290                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13291                 }
13292
13293                 error->pipe[i].source = I915_READ(PIPESRC(i));
13294
13295                 if (HAS_GMCH_DISPLAY(dev))
13296                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13297         }
13298
13299         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13300         if (HAS_DDI(dev_priv->dev))
13301                 error->num_transcoders++; /* Account for eDP. */
13302
13303         for (i = 0; i < error->num_transcoders; i++) {
13304                 enum transcoder cpu_transcoder = transcoders[i];
13305
13306                 error->transcoder[i].power_domain_on =
13307                         intel_display_power_enabled_unlocked(dev_priv,
13308                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13309                 if (!error->transcoder[i].power_domain_on)
13310                         continue;
13311
13312                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13313
13314                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13315                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13316                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13317                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13318                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13319                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13320                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13321         }
13322
13323         return error;
13324 }
13325
13326 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13327
13328 void
13329 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13330                                 struct drm_device *dev,
13331                                 struct intel_display_error_state *error)
13332 {
13333         int i;
13334
13335         if (!error)
13336                 return;
13337
13338         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13339         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13340                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13341                            error->power_well_driver);
13342         for_each_pipe(i) {
13343                 err_printf(m, "Pipe [%d]:\n", i);
13344                 err_printf(m, "  Power: %s\n",
13345                            error->pipe[i].power_domain_on ? "on" : "off");
13346                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13347                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13348
13349                 err_printf(m, "Plane [%d]:\n", i);
13350                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13351                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13352                 if (INTEL_INFO(dev)->gen <= 3) {
13353                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13354                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13355                 }
13356                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13357                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13358                 if (INTEL_INFO(dev)->gen >= 4) {
13359                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13360                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13361                 }
13362
13363                 err_printf(m, "Cursor [%d]:\n", i);
13364                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13365                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13366                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13367         }
13368
13369         for (i = 0; i < error->num_transcoders; i++) {
13370                 err_printf(m, "CPU transcoder: %c\n",
13371                            transcoder_name(error->transcoder[i].cpu_transcoder));
13372                 err_printf(m, "  Power: %s\n",
13373                            error->transcoder[i].power_domain_on ? "on" : "off");
13374                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13375                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13376                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13377                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13378                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13379                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13380                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13381         }
13382 }