drivers/gpu/drm/i915/intel_display: coding style fixes
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
45         ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
46
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
51                                 struct intel_crtc_config *pipe_config);
52 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
53                                    struct intel_crtc_config *pipe_config);
54
55 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
56                           int x, int y, struct drm_framebuffer *old_fb);
57 static int intel_framebuffer_init(struct drm_device *dev,
58                                   struct intel_framebuffer *ifb,
59                                   struct drm_mode_fb_cmd2 *mode_cmd,
60                                   struct drm_i915_gem_object *obj);
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74         intel_p2_t          p2;
75 };
76
77 int
78 intel_pch_rawclk(struct drm_device *dev)
79 {
80         struct drm_i915_private *dev_priv = dev->dev_private;
81
82         WARN_ON(!HAS_PCH_SPLIT(dev));
83
84         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
85 }
86
87 static inline u32 /* units of 100MHz */
88 intel_fdi_link_freq(struct drm_device *dev)
89 {
90         if (IS_GEN5(dev)) {
91                 struct drm_i915_private *dev_priv = dev->dev_private;
92                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
93         } else
94                 return 27;
95 }
96
97 static const intel_limit_t intel_limits_i8xx_dac = {
98         .dot = { .min = 25000, .max = 350000 },
99         .vco = { .min = 908000, .max = 1512000 },
100         .n = { .min = 2, .max = 16 },
101         .m = { .min = 96, .max = 140 },
102         .m1 = { .min = 18, .max = 26 },
103         .m2 = { .min = 6, .max = 16 },
104         .p = { .min = 4, .max = 128 },
105         .p1 = { .min = 2, .max = 33 },
106         .p2 = { .dot_limit = 165000,
107                 .p2_slow = 4, .p2_fast = 2 },
108 };
109
110 static const intel_limit_t intel_limits_i8xx_dvo = {
111         .dot = { .min = 25000, .max = 350000 },
112         .vco = { .min = 908000, .max = 1512000 },
113         .n = { .min = 2, .max = 16 },
114         .m = { .min = 96, .max = 140 },
115         .m1 = { .min = 18, .max = 26 },
116         .m2 = { .min = 6, .max = 16 },
117         .p = { .min = 4, .max = 128 },
118         .p1 = { .min = 2, .max = 33 },
119         .p2 = { .dot_limit = 165000,
120                 .p2_slow = 4, .p2_fast = 4 },
121 };
122
123 static const intel_limit_t intel_limits_i8xx_lvds = {
124         .dot = { .min = 25000, .max = 350000 },
125         .vco = { .min = 908000, .max = 1512000 },
126         .n = { .min = 2, .max = 16 },
127         .m = { .min = 96, .max = 140 },
128         .m1 = { .min = 18, .max = 26 },
129         .m2 = { .min = 6, .max = 16 },
130         .p = { .min = 4, .max = 128 },
131         .p1 = { .min = 1, .max = 6 },
132         .p2 = { .dot_limit = 165000,
133                 .p2_slow = 14, .p2_fast = 7 },
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137         .dot = { .min = 20000, .max = 400000 },
138         .vco = { .min = 1400000, .max = 2800000 },
139         .n = { .min = 1, .max = 6 },
140         .m = { .min = 70, .max = 120 },
141         .m1 = { .min = 8, .max = 18 },
142         .m2 = { .min = 3, .max = 7 },
143         .p = { .min = 5, .max = 80 },
144         .p1 = { .min = 1, .max = 8 },
145         .p2 = { .dot_limit = 200000,
146                 .p2_slow = 10, .p2_fast = 5 },
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150         .dot = { .min = 20000, .max = 400000 },
151         .vco = { .min = 1400000, .max = 2800000 },
152         .n = { .min = 1, .max = 6 },
153         .m = { .min = 70, .max = 120 },
154         .m1 = { .min = 8, .max = 18 },
155         .m2 = { .min = 3, .max = 7 },
156         .p = { .min = 7, .max = 98 },
157         .p1 = { .min = 1, .max = 8 },
158         .p2 = { .dot_limit = 112000,
159                 .p2_slow = 14, .p2_fast = 7 },
160 };
161
162
163 static const intel_limit_t intel_limits_g4x_sdvo = {
164         .dot = { .min = 25000, .max = 270000 },
165         .vco = { .min = 1750000, .max = 3500000},
166         .n = { .min = 1, .max = 4 },
167         .m = { .min = 104, .max = 138 },
168         .m1 = { .min = 17, .max = 23 },
169         .m2 = { .min = 5, .max = 11 },
170         .p = { .min = 10, .max = 30 },
171         .p1 = { .min = 1, .max = 3},
172         .p2 = { .dot_limit = 270000,
173                 .p2_slow = 10,
174                 .p2_fast = 10
175         },
176 };
177
178 static const intel_limit_t intel_limits_g4x_hdmi = {
179         .dot = { .min = 22000, .max = 400000 },
180         .vco = { .min = 1750000, .max = 3500000},
181         .n = { .min = 1, .max = 4 },
182         .m = { .min = 104, .max = 138 },
183         .m1 = { .min = 16, .max = 23 },
184         .m2 = { .min = 5, .max = 11 },
185         .p = { .min = 5, .max = 80 },
186         .p1 = { .min = 1, .max = 8},
187         .p2 = { .dot_limit = 165000,
188                 .p2_slow = 10, .p2_fast = 5 },
189 };
190
191 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
192         .dot = { .min = 20000, .max = 115000 },
193         .vco = { .min = 1750000, .max = 3500000 },
194         .n = { .min = 1, .max = 3 },
195         .m = { .min = 104, .max = 138 },
196         .m1 = { .min = 17, .max = 23 },
197         .m2 = { .min = 5, .max = 11 },
198         .p = { .min = 28, .max = 112 },
199         .p1 = { .min = 2, .max = 8 },
200         .p2 = { .dot_limit = 0,
201                 .p2_slow = 14, .p2_fast = 14
202         },
203 };
204
205 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
206         .dot = { .min = 80000, .max = 224000 },
207         .vco = { .min = 1750000, .max = 3500000 },
208         .n = { .min = 1, .max = 3 },
209         .m = { .min = 104, .max = 138 },
210         .m1 = { .min = 17, .max = 23 },
211         .m2 = { .min = 5, .max = 11 },
212         .p = { .min = 14, .max = 42 },
213         .p1 = { .min = 2, .max = 6 },
214         .p2 = { .dot_limit = 0,
215                 .p2_slow = 7, .p2_fast = 7
216         },
217 };
218
219 static const intel_limit_t intel_limits_pineview_sdvo = {
220         .dot = { .min = 20000, .max = 400000},
221         .vco = { .min = 1700000, .max = 3500000 },
222         /* Pineview's Ncounter is a ring counter */
223         .n = { .min = 3, .max = 6 },
224         .m = { .min = 2, .max = 256 },
225         /* Pineview only has one combined m divider, which we treat as m2. */
226         .m1 = { .min = 0, .max = 0 },
227         .m2 = { .min = 0, .max = 254 },
228         .p = { .min = 5, .max = 80 },
229         .p1 = { .min = 1, .max = 8 },
230         .p2 = { .dot_limit = 200000,
231                 .p2_slow = 10, .p2_fast = 5 },
232 };
233
234 static const intel_limit_t intel_limits_pineview_lvds = {
235         .dot = { .min = 20000, .max = 400000 },
236         .vco = { .min = 1700000, .max = 3500000 },
237         .n = { .min = 3, .max = 6 },
238         .m = { .min = 2, .max = 256 },
239         .m1 = { .min = 0, .max = 0 },
240         .m2 = { .min = 0, .max = 254 },
241         .p = { .min = 7, .max = 112 },
242         .p1 = { .min = 1, .max = 8 },
243         .p2 = { .dot_limit = 112000,
244                 .p2_slow = 14, .p2_fast = 14 },
245 };
246
247 /* Ironlake / Sandybridge
248  *
249  * We calculate clock using (register_value + 2) for N/M1/M2, so here
250  * the range value for them is (actual_value - 2).
251  */
252 static const intel_limit_t intel_limits_ironlake_dac = {
253         .dot = { .min = 25000, .max = 350000 },
254         .vco = { .min = 1760000, .max = 3510000 },
255         .n = { .min = 1, .max = 5 },
256         .m = { .min = 79, .max = 127 },
257         .m1 = { .min = 12, .max = 22 },
258         .m2 = { .min = 5, .max = 9 },
259         .p = { .min = 5, .max = 80 },
260         .p1 = { .min = 1, .max = 8 },
261         .p2 = { .dot_limit = 225000,
262                 .p2_slow = 10, .p2_fast = 5 },
263 };
264
265 static const intel_limit_t intel_limits_ironlake_single_lvds = {
266         .dot = { .min = 25000, .max = 350000 },
267         .vco = { .min = 1760000, .max = 3510000 },
268         .n = { .min = 1, .max = 3 },
269         .m = { .min = 79, .max = 118 },
270         .m1 = { .min = 12, .max = 22 },
271         .m2 = { .min = 5, .max = 9 },
272         .p = { .min = 28, .max = 112 },
273         .p1 = { .min = 2, .max = 8 },
274         .p2 = { .dot_limit = 225000,
275                 .p2_slow = 14, .p2_fast = 14 },
276 };
277
278 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
279         .dot = { .min = 25000, .max = 350000 },
280         .vco = { .min = 1760000, .max = 3510000 },
281         .n = { .min = 1, .max = 3 },
282         .m = { .min = 79, .max = 127 },
283         .m1 = { .min = 12, .max = 22 },
284         .m2 = { .min = 5, .max = 9 },
285         .p = { .min = 14, .max = 56 },
286         .p1 = { .min = 2, .max = 8 },
287         .p2 = { .dot_limit = 225000,
288                 .p2_slow = 7, .p2_fast = 7 },
289 };
290
291 /* LVDS 100mhz refclk limits. */
292 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 2 },
296         .m = { .min = 79, .max = 126 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 28, .max = 112 },
300         .p1 = { .min = 2, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 14, .p2_fast = 14 },
303 };
304
305 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
306         .dot = { .min = 25000, .max = 350000 },
307         .vco = { .min = 1760000, .max = 3510000 },
308         .n = { .min = 1, .max = 3 },
309         .m = { .min = 79, .max = 126 },
310         .m1 = { .min = 12, .max = 22 },
311         .m2 = { .min = 5, .max = 9 },
312         .p = { .min = 14, .max = 42 },
313         .p1 = { .min = 2, .max = 6 },
314         .p2 = { .dot_limit = 225000,
315                 .p2_slow = 7, .p2_fast = 7 },
316 };
317
318 static const intel_limit_t intel_limits_vlv = {
319          /*
320           * These are the data rate limits (measured in fast clocks)
321           * since those are the strictest limits we have. The fast
322           * clock and actual rate limits are more relaxed, so checking
323           * them would make no difference.
324           */
325         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
326         .vco = { .min = 4000000, .max = 6000000 },
327         .n = { .min = 1, .max = 7 },
328         .m1 = { .min = 2, .max = 3 },
329         .m2 = { .min = 11, .max = 156 },
330         .p1 = { .min = 2, .max = 3 },
331         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
332 };
333
334 static const intel_limit_t intel_limits_chv = {
335         /*
336          * These are the data rate limits (measured in fast clocks)
337          * since those are the strictest limits we have.  The fast
338          * clock and actual rate limits are more relaxed, so checking
339          * them would make no difference.
340          */
341         .dot = { .min = 25000 * 5, .max = 540000 * 5},
342         .vco = { .min = 4860000, .max = 6700000 },
343         .n = { .min = 1, .max = 1 },
344         .m1 = { .min = 2, .max = 2 },
345         .m2 = { .min = 24 << 22, .max = 175 << 22 },
346         .p1 = { .min = 2, .max = 4 },
347         .p2 = { .p2_slow = 1, .p2_fast = 14 },
348 };
349
350 static void vlv_clock(int refclk, intel_clock_t *clock)
351 {
352         clock->m = clock->m1 * clock->m2;
353         clock->p = clock->p1 * clock->p2;
354         if (WARN_ON(clock->n == 0 || clock->p == 0))
355                 return;
356         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
357         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
358 }
359
360 /**
361  * Returns whether any output on the specified pipe is of the specified type
362  */
363 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
364 {
365         struct drm_device *dev = crtc->dev;
366         struct intel_encoder *encoder;
367
368         for_each_encoder_on_crtc(dev, crtc, encoder)
369                 if (encoder->type == type)
370                         return true;
371
372         return false;
373 }
374
375 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
376                                                 int refclk)
377 {
378         struct drm_device *dev = crtc->dev;
379         const intel_limit_t *limit;
380
381         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
382                 if (intel_is_dual_link_lvds(dev)) {
383                         if (refclk == 100000)
384                                 limit = &intel_limits_ironlake_dual_lvds_100m;
385                         else
386                                 limit = &intel_limits_ironlake_dual_lvds;
387                 } else {
388                         if (refclk == 100000)
389                                 limit = &intel_limits_ironlake_single_lvds_100m;
390                         else
391                                 limit = &intel_limits_ironlake_single_lvds;
392                 }
393         } else
394                 limit = &intel_limits_ironlake_dac;
395
396         return limit;
397 }
398
399 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
400 {
401         struct drm_device *dev = crtc->dev;
402         const intel_limit_t *limit;
403
404         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
405                 if (intel_is_dual_link_lvds(dev))
406                         limit = &intel_limits_g4x_dual_channel_lvds;
407                 else
408                         limit = &intel_limits_g4x_single_channel_lvds;
409         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
410                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
411                 limit = &intel_limits_g4x_hdmi;
412         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
413                 limit = &intel_limits_g4x_sdvo;
414         } else /* The option is for other outputs */
415                 limit = &intel_limits_i9xx_sdvo;
416
417         return limit;
418 }
419
420 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
421 {
422         struct drm_device *dev = crtc->dev;
423         const intel_limit_t *limit;
424
425         if (HAS_PCH_SPLIT(dev))
426                 limit = intel_ironlake_limit(crtc, refclk);
427         else if (IS_G4X(dev)) {
428                 limit = intel_g4x_limit(crtc);
429         } else if (IS_PINEVIEW(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_pineview_lvds;
432                 else
433                         limit = &intel_limits_pineview_sdvo;
434         } else if (IS_CHERRYVIEW(dev)) {
435                 limit = &intel_limits_chv;
436         } else if (IS_VALLEYVIEW(dev)) {
437                 limit = &intel_limits_vlv;
438         } else if (!IS_GEN2(dev)) {
439                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
440                         limit = &intel_limits_i9xx_lvds;
441                 else
442                         limit = &intel_limits_i9xx_sdvo;
443         } else {
444                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
445                         limit = &intel_limits_i8xx_lvds;
446                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
447                         limit = &intel_limits_i8xx_dvo;
448                 else
449                         limit = &intel_limits_i8xx_dac;
450         }
451         return limit;
452 }
453
454 /* m1 is reserved as 0 in Pineview, n is a ring counter */
455 static void pineview_clock(int refclk, intel_clock_t *clock)
456 {
457         clock->m = clock->m2 + 2;
458         clock->p = clock->p1 * clock->p2;
459         if (WARN_ON(clock->n == 0 || clock->p == 0))
460                 return;
461         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
462         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
463 }
464
465 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
466 {
467         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
468 }
469
470 static void i9xx_clock(int refclk, intel_clock_t *clock)
471 {
472         clock->m = i9xx_dpll_compute_m(clock);
473         clock->p = clock->p1 * clock->p2;
474         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
475                 return;
476         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
477         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
478 }
479
480 static void chv_clock(int refclk, intel_clock_t *clock)
481 {
482         clock->m = clock->m1 * clock->m2;
483         clock->p = clock->p1 * clock->p2;
484         if (WARN_ON(clock->n == 0 || clock->p == 0))
485                 return;
486         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
487                         clock->n << 22);
488         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
489 }
490
491 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
492 /**
493  * Returns whether the given set of divisors are valid for a given refclk with
494  * the given connectors.
495  */
496
497 static bool intel_PLL_is_valid(struct drm_device *dev,
498                                const intel_limit_t *limit,
499                                const intel_clock_t *clock)
500 {
501         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
502                 INTELPllInvalid("n out of range\n");
503         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
504                 INTELPllInvalid("p1 out of range\n");
505         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
506                 INTELPllInvalid("m2 out of range\n");
507         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
508                 INTELPllInvalid("m1 out of range\n");
509
510         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
511                 if (clock->m1 <= clock->m2)
512                         INTELPllInvalid("m1 <= m2\n");
513
514         if (!IS_VALLEYVIEW(dev)) {
515                 if (clock->p < limit->p.min || limit->p.max < clock->p)
516                         INTELPllInvalid("p out of range\n");
517                 if (clock->m < limit->m.min || limit->m.max < clock->m)
518                         INTELPllInvalid("m out of range\n");
519         }
520
521         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
522                 INTELPllInvalid("vco out of range\n");
523         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
524          * connector, etc., rather than just a single range.
525          */
526         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
527                 INTELPllInvalid("dot out of range\n");
528
529         return true;
530 }
531
532 static bool
533 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
534                     int target, int refclk, intel_clock_t *match_clock,
535                     intel_clock_t *best_clock)
536 {
537         struct drm_device *dev = crtc->dev;
538         intel_clock_t clock;
539         int err = target;
540
541         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
542                 /*
543                  * For LVDS just rely on its current settings for dual-channel.
544                  * We haven't figured out how to reliably set up different
545                  * single/dual channel state, if we even can.
546                  */
547                 if (intel_is_dual_link_lvds(dev))
548                         clock.p2 = limit->p2.p2_fast;
549                 else
550                         clock.p2 = limit->p2.p2_slow;
551         } else {
552                 if (target < limit->p2.dot_limit)
553                         clock.p2 = limit->p2.p2_slow;
554                 else
555                         clock.p2 = limit->p2.p2_fast;
556         }
557
558         memset(best_clock, 0, sizeof(*best_clock));
559
560         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
561              clock.m1++) {
562                 for (clock.m2 = limit->m2.min;
563                      clock.m2 <= limit->m2.max; clock.m2++) {
564                         if (clock.m2 >= clock.m1)
565                                 break;
566                         for (clock.n = limit->n.min;
567                              clock.n <= limit->n.max; clock.n++) {
568                                 for (clock.p1 = limit->p1.min;
569                                         clock.p1 <= limit->p1.max; clock.p1++) {
570                                         int this_err;
571
572                                         i9xx_clock(refclk, &clock);
573                                         if (!intel_PLL_is_valid(dev, limit,
574                                                                 &clock))
575                                                 continue;
576                                         if (match_clock &&
577                                             clock.p != match_clock->p)
578                                                 continue;
579
580                                         this_err = abs(clock.dot - target);
581                                         if (this_err < err) {
582                                                 *best_clock = clock;
583                                                 err = this_err;
584                                         }
585                                 }
586                         }
587                 }
588         }
589
590         return (err != target);
591 }
592
593 static bool
594 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
595                    int target, int refclk, intel_clock_t *match_clock,
596                    intel_clock_t *best_clock)
597 {
598         struct drm_device *dev = crtc->dev;
599         intel_clock_t clock;
600         int err = target;
601
602         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
603                 /*
604                  * For LVDS just rely on its current settings for dual-channel.
605                  * We haven't figured out how to reliably set up different
606                  * single/dual channel state, if we even can.
607                  */
608                 if (intel_is_dual_link_lvds(dev))
609                         clock.p2 = limit->p2.p2_fast;
610                 else
611                         clock.p2 = limit->p2.p2_slow;
612         } else {
613                 if (target < limit->p2.dot_limit)
614                         clock.p2 = limit->p2.p2_slow;
615                 else
616                         clock.p2 = limit->p2.p2_fast;
617         }
618
619         memset(best_clock, 0, sizeof(*best_clock));
620
621         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
622              clock.m1++) {
623                 for (clock.m2 = limit->m2.min;
624                      clock.m2 <= limit->m2.max; clock.m2++) {
625                         for (clock.n = limit->n.min;
626                              clock.n <= limit->n.max; clock.n++) {
627                                 for (clock.p1 = limit->p1.min;
628                                         clock.p1 <= limit->p1.max; clock.p1++) {
629                                         int this_err;
630
631                                         pineview_clock(refclk, &clock);
632                                         if (!intel_PLL_is_valid(dev, limit,
633                                                                 &clock))
634                                                 continue;
635                                         if (match_clock &&
636                                             clock.p != match_clock->p)
637                                                 continue;
638
639                                         this_err = abs(clock.dot - target);
640                                         if (this_err < err) {
641                                                 *best_clock = clock;
642                                                 err = this_err;
643                                         }
644                                 }
645                         }
646                 }
647         }
648
649         return (err != target);
650 }
651
652 static bool
653 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
654                    int target, int refclk, intel_clock_t *match_clock,
655                    intel_clock_t *best_clock)
656 {
657         struct drm_device *dev = crtc->dev;
658         intel_clock_t clock;
659         int max_n;
660         bool found;
661         /* approximately equals target * 0.00585 */
662         int err_most = (target >> 8) + (target >> 9);
663         found = false;
664
665         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
666                 if (intel_is_dual_link_lvds(dev))
667                         clock.p2 = limit->p2.p2_fast;
668                 else
669                         clock.p2 = limit->p2.p2_slow;
670         } else {
671                 if (target < limit->p2.dot_limit)
672                         clock.p2 = limit->p2.p2_slow;
673                 else
674                         clock.p2 = limit->p2.p2_fast;
675         }
676
677         memset(best_clock, 0, sizeof(*best_clock));
678         max_n = limit->n.max;
679         /* based on hardware requirement, prefer smaller n to precision */
680         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
681                 /* based on hardware requirement, prefere larger m1,m2 */
682                 for (clock.m1 = limit->m1.max;
683                      clock.m1 >= limit->m1.min; clock.m1--) {
684                         for (clock.m2 = limit->m2.max;
685                              clock.m2 >= limit->m2.min; clock.m2--) {
686                                 for (clock.p1 = limit->p1.max;
687                                      clock.p1 >= limit->p1.min; clock.p1--) {
688                                         int this_err;
689
690                                         i9xx_clock(refclk, &clock);
691                                         if (!intel_PLL_is_valid(dev, limit,
692                                                                 &clock))
693                                                 continue;
694
695                                         this_err = abs(clock.dot - target);
696                                         if (this_err < err_most) {
697                                                 *best_clock = clock;
698                                                 err_most = this_err;
699                                                 max_n = clock.n;
700                                                 found = true;
701                                         }
702                                 }
703                         }
704                 }
705         }
706         return found;
707 }
708
709 static bool
710 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
711                    int target, int refclk, intel_clock_t *match_clock,
712                    intel_clock_t *best_clock)
713 {
714         struct drm_device *dev = crtc->dev;
715         intel_clock_t clock;
716         unsigned int bestppm = 1000000;
717         /* min update 19.2 MHz */
718         int max_n = min(limit->n.max, refclk / 19200);
719         bool found = false;
720
721         target *= 5; /* fast clock */
722
723         memset(best_clock, 0, sizeof(*best_clock));
724
725         /* based on hardware requirement, prefer smaller n to precision */
726         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
727                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
728                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
729                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
730                                 clock.p = clock.p1 * clock.p2;
731                                 /* based on hardware requirement, prefer bigger m1,m2 values */
732                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
733                                         unsigned int ppm, diff;
734
735                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
736                                                                      refclk * clock.m1);
737
738                                         vlv_clock(refclk, &clock);
739
740                                         if (!intel_PLL_is_valid(dev, limit,
741                                                                 &clock))
742                                                 continue;
743
744                                         diff = abs(clock.dot - target);
745                                         ppm = div_u64(1000000ULL * diff, target);
746
747                                         if (ppm < 100 && clock.p > best_clock->p) {
748                                                 bestppm = 0;
749                                                 *best_clock = clock;
750                                                 found = true;
751                                         }
752
753                                         if (bestppm >= 10 && ppm < bestppm - 10) {
754                                                 bestppm = ppm;
755                                                 *best_clock = clock;
756                                                 found = true;
757                                         }
758                                 }
759                         }
760                 }
761         }
762
763         return found;
764 }
765
766 static bool
767 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
768                    int target, int refclk, intel_clock_t *match_clock,
769                    intel_clock_t *best_clock)
770 {
771         struct drm_device *dev = crtc->dev;
772         intel_clock_t clock;
773         uint64_t m2;
774         int found = false;
775
776         memset(best_clock, 0, sizeof(*best_clock));
777
778         /*
779          * Based on hardware doc, the n always set to 1, and m1 always
780          * set to 2.  If requires to support 200Mhz refclk, we need to
781          * revisit this because n may not 1 anymore.
782          */
783         clock.n = 1, clock.m1 = 2;
784         target *= 5;    /* fast clock */
785
786         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
787                 for (clock.p2 = limit->p2.p2_fast;
788                                 clock.p2 >= limit->p2.p2_slow;
789                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
790
791                         clock.p = clock.p1 * clock.p2;
792
793                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
794                                         clock.n) << 22, refclk * clock.m1);
795
796                         if (m2 > INT_MAX/clock.m1)
797                                 continue;
798
799                         clock.m2 = m2;
800
801                         chv_clock(refclk, &clock);
802
803                         if (!intel_PLL_is_valid(dev, limit, &clock))
804                                 continue;
805
806                         /* based on hardware requirement, prefer bigger p
807                          */
808                         if (clock.p > best_clock->p) {
809                                 *best_clock = clock;
810                                 found = true;
811                         }
812                 }
813         }
814
815         return found;
816 }
817
818 bool intel_crtc_active(struct drm_crtc *crtc)
819 {
820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
821
822         /* Be paranoid as we can arrive here with only partial
823          * state retrieved from the hardware during setup.
824          *
825          * We can ditch the adjusted_mode.crtc_clock check as soon
826          * as Haswell has gained clock readout/fastboot support.
827          *
828          * We can ditch the crtc->primary->fb check as soon as we can
829          * properly reconstruct framebuffers.
830          */
831         return intel_crtc->active && crtc->primary->fb &&
832                 intel_crtc->config.adjusted_mode.crtc_clock;
833 }
834
835 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
836                                              enum pipe pipe)
837 {
838         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
840
841         return intel_crtc->config.cpu_transcoder;
842 }
843
844 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
845 {
846         struct drm_i915_private *dev_priv = dev->dev_private;
847         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
848
849         frame = I915_READ(frame_reg);
850
851         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
852                 WARN(1, "vblank wait timed out\n");
853 }
854
855 /**
856  * intel_wait_for_vblank - wait for vblank on a given pipe
857  * @dev: drm device
858  * @pipe: pipe to wait for
859  *
860  * Wait for vblank to occur on a given pipe.  Needed for various bits of
861  * mode setting code.
862  */
863 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int pipestat_reg = PIPESTAT(pipe);
867
868         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
869                 g4x_wait_for_vblank(dev, pipe);
870                 return;
871         }
872
873         /* Clear existing vblank status. Note this will clear any other
874          * sticky status fields as well.
875          *
876          * This races with i915_driver_irq_handler() with the result
877          * that either function could miss a vblank event.  Here it is not
878          * fatal, as we will either wait upon the next vblank interrupt or
879          * timeout.  Generally speaking intel_wait_for_vblank() is only
880          * called during modeset at which time the GPU should be idle and
881          * should *not* be performing page flips and thus not waiting on
882          * vblanks...
883          * Currently, the result of us stealing a vblank from the irq
884          * handler is that a single frame will be skipped during swapbuffers.
885          */
886         I915_WRITE(pipestat_reg,
887                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
888
889         /* Wait for vblank interrupt bit to set */
890         if (wait_for(I915_READ(pipestat_reg) &
891                      PIPE_VBLANK_INTERRUPT_STATUS,
892                      50))
893                 DRM_DEBUG_KMS("vblank wait timed out\n");
894 }
895
896 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
897 {
898         struct drm_i915_private *dev_priv = dev->dev_private;
899         u32 reg = PIPEDSL(pipe);
900         u32 line1, line2;
901         u32 line_mask;
902
903         if (IS_GEN2(dev))
904                 line_mask = DSL_LINEMASK_GEN2;
905         else
906                 line_mask = DSL_LINEMASK_GEN3;
907
908         line1 = I915_READ(reg) & line_mask;
909         mdelay(5);
910         line2 = I915_READ(reg) & line_mask;
911
912         return line1 == line2;
913 }
914
915 /*
916  * intel_wait_for_pipe_off - wait for pipe to turn off
917  * @dev: drm device
918  * @pipe: pipe to wait for
919  *
920  * After disabling a pipe, we can't wait for vblank in the usual way,
921  * spinning on the vblank interrupt status bit, since we won't actually
922  * see an interrupt when the pipe is disabled.
923  *
924  * On Gen4 and above:
925  *   wait for the pipe register state bit to turn off
926  *
927  * Otherwise:
928  *   wait for the display line value to settle (it usually
929  *   ends up stopping at the start of the next frame).
930  *
931  */
932 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
933 {
934         struct drm_i915_private *dev_priv = dev->dev_private;
935         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
936                                                                       pipe);
937
938         if (INTEL_INFO(dev)->gen >= 4) {
939                 int reg = PIPECONF(cpu_transcoder);
940
941                 /* Wait for the Pipe State to go off */
942                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
943                              100))
944                         WARN(1, "pipe_off wait timed out\n");
945         } else {
946                 /* Wait for the display line to settle */
947                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
948                         WARN(1, "pipe_off wait timed out\n");
949         }
950 }
951
952 /*
953  * ibx_digital_port_connected - is the specified port connected?
954  * @dev_priv: i915 private structure
955  * @port: the port to test
956  *
957  * Returns true if @port is connected, false otherwise.
958  */
959 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
960                                 struct intel_digital_port *port)
961 {
962         u32 bit;
963
964         if (HAS_PCH_IBX(dev_priv->dev)) {
965                 switch (port->port) {
966                 case PORT_B:
967                         bit = SDE_PORTB_HOTPLUG;
968                         break;
969                 case PORT_C:
970                         bit = SDE_PORTC_HOTPLUG;
971                         break;
972                 case PORT_D:
973                         bit = SDE_PORTD_HOTPLUG;
974                         break;
975                 default:
976                         return true;
977                 }
978         } else {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG_CPT;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG_CPT;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG_CPT;
988                         break;
989                 default:
990                         return true;
991                 }
992         }
993
994         return I915_READ(SDEISR) & bit;
995 }
996
997 static const char *state_string(bool enabled)
998 {
999         return enabled ? "on" : "off";
1000 }
1001
1002 /* Only for pre-ILK configs */
1003 void assert_pll(struct drm_i915_private *dev_priv,
1004                 enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = DPLL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & DPLL_VCO_ENABLE);
1013         WARN(cur_state != state,
1014              "PLL state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017
1018 /* XXX: the dsi pll is shared between MIPI DSI ports */
1019 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1020 {
1021         u32 val;
1022         bool cur_state;
1023
1024         mutex_lock(&dev_priv->dpio_lock);
1025         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1026         mutex_unlock(&dev_priv->dpio_lock);
1027
1028         cur_state = val & DSI_PLL_VCO_EN;
1029         WARN(cur_state != state,
1030              "DSI PLL state assertion failure (expected %s, current %s)\n",
1031              state_string(state), state_string(cur_state));
1032 }
1033 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1034 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1035
1036 struct intel_shared_dpll *
1037 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1038 {
1039         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1040
1041         if (crtc->config.shared_dpll < 0)
1042                 return NULL;
1043
1044         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1045 }
1046
1047 /* For ILK+ */
1048 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1049                         struct intel_shared_dpll *pll,
1050                         bool state)
1051 {
1052         bool cur_state;
1053         struct intel_dpll_hw_state hw_state;
1054
1055         if (HAS_PCH_LPT(dev_priv->dev)) {
1056                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1057                 return;
1058         }
1059
1060         if (WARN (!pll,
1061                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1062                 return;
1063
1064         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1065         WARN(cur_state != state,
1066              "%s assertion failure (expected %s, current %s)\n",
1067              pll->name, state_string(state), state_string(cur_state));
1068 }
1069
1070 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1071                           enum pipe pipe, bool state)
1072 {
1073         int reg;
1074         u32 val;
1075         bool cur_state;
1076         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1077                                                                       pipe);
1078
1079         if (HAS_DDI(dev_priv->dev)) {
1080                 /* DDI does not have a specific FDI_TX register */
1081                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1082                 val = I915_READ(reg);
1083                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1084         } else {
1085                 reg = FDI_TX_CTL(pipe);
1086                 val = I915_READ(reg);
1087                 cur_state = !!(val & FDI_TX_ENABLE);
1088         }
1089         WARN(cur_state != state,
1090              "FDI TX state assertion failure (expected %s, current %s)\n",
1091              state_string(state), state_string(cur_state));
1092 }
1093 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1094 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1095
1096 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1097                           enum pipe pipe, bool state)
1098 {
1099         int reg;
1100         u32 val;
1101         bool cur_state;
1102
1103         reg = FDI_RX_CTL(pipe);
1104         val = I915_READ(reg);
1105         cur_state = !!(val & FDI_RX_ENABLE);
1106         WARN(cur_state != state,
1107              "FDI RX state assertion failure (expected %s, current %s)\n",
1108              state_string(state), state_string(cur_state));
1109 }
1110 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1111 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1112
1113 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1114                                       enum pipe pipe)
1115 {
1116         int reg;
1117         u32 val;
1118
1119         /* ILK FDI PLL is always enabled */
1120         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1121                 return;
1122
1123         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1124         if (HAS_DDI(dev_priv->dev))
1125                 return;
1126
1127         reg = FDI_TX_CTL(pipe);
1128         val = I915_READ(reg);
1129         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1130 }
1131
1132 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1133                        enum pipe pipe, bool state)
1134 {
1135         int reg;
1136         u32 val;
1137         bool cur_state;
1138
1139         reg = FDI_RX_CTL(pipe);
1140         val = I915_READ(reg);
1141         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1142         WARN(cur_state != state,
1143              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1144              state_string(state), state_string(cur_state));
1145 }
1146
1147 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1148                                   enum pipe pipe)
1149 {
1150         int pp_reg, lvds_reg;
1151         u32 val;
1152         enum pipe panel_pipe = PIPE_A;
1153         bool locked = true;
1154
1155         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1156                 pp_reg = PCH_PP_CONTROL;
1157                 lvds_reg = PCH_LVDS;
1158         } else {
1159                 pp_reg = PP_CONTROL;
1160                 lvds_reg = LVDS;
1161         }
1162
1163         val = I915_READ(pp_reg);
1164         if (!(val & PANEL_POWER_ON) ||
1165             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1166                 locked = false;
1167
1168         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1169                 panel_pipe = PIPE_B;
1170
1171         WARN(panel_pipe == pipe && locked,
1172              "panel assertion failure, pipe %c regs locked\n",
1173              pipe_name(pipe));
1174 }
1175
1176 static void assert_cursor(struct drm_i915_private *dev_priv,
1177                           enum pipe pipe, bool state)
1178 {
1179         struct drm_device *dev = dev_priv->dev;
1180         bool cur_state;
1181
1182         if (IS_845G(dev) || IS_I865G(dev))
1183                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1184         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1185                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1186         else
1187                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1188
1189         WARN(cur_state != state,
1190              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1191              pipe_name(pipe), state_string(state), state_string(cur_state));
1192 }
1193 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1194 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1195
1196 void assert_pipe(struct drm_i915_private *dev_priv,
1197                  enum pipe pipe, bool state)
1198 {
1199         int reg;
1200         u32 val;
1201         bool cur_state;
1202         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1203                                                                       pipe);
1204
1205         /* if we need the pipe A quirk it must be always on */
1206         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1207                 state = true;
1208
1209         if (!intel_display_power_enabled(dev_priv,
1210                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1211                 cur_state = false;
1212         } else {
1213                 reg = PIPECONF(cpu_transcoder);
1214                 val = I915_READ(reg);
1215                 cur_state = !!(val & PIPECONF_ENABLE);
1216         }
1217
1218         WARN(cur_state != state,
1219              "pipe %c assertion failure (expected %s, current %s)\n",
1220              pipe_name(pipe), state_string(state), state_string(cur_state));
1221 }
1222
1223 static void assert_plane(struct drm_i915_private *dev_priv,
1224                          enum plane plane, bool state)
1225 {
1226         int reg;
1227         u32 val;
1228         bool cur_state;
1229
1230         reg = DSPCNTR(plane);
1231         val = I915_READ(reg);
1232         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1233         WARN(cur_state != state,
1234              "plane %c assertion failure (expected %s, current %s)\n",
1235              plane_name(plane), state_string(state), state_string(cur_state));
1236 }
1237
1238 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1239 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1240
1241 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1242                                    enum pipe pipe)
1243 {
1244         struct drm_device *dev = dev_priv->dev;
1245         int reg, i;
1246         u32 val;
1247         int cur_pipe;
1248
1249         /* Primary planes are fixed to pipes on gen4+ */
1250         if (INTEL_INFO(dev)->gen >= 4) {
1251                 reg = DSPCNTR(pipe);
1252                 val = I915_READ(reg);
1253                 WARN(val & DISPLAY_PLANE_ENABLE,
1254                      "plane %c assertion failure, should be disabled but not\n",
1255                      plane_name(pipe));
1256                 return;
1257         }
1258
1259         /* Need to check both planes against the pipe */
1260         for_each_pipe(i) {
1261                 reg = DSPCNTR(i);
1262                 val = I915_READ(reg);
1263                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1264                         DISPPLANE_SEL_PIPE_SHIFT;
1265                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1266                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1267                      plane_name(i), pipe_name(pipe));
1268         }
1269 }
1270
1271 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1272                                     enum pipe pipe)
1273 {
1274         struct drm_device *dev = dev_priv->dev;
1275         int reg, sprite;
1276         u32 val;
1277
1278         if (IS_VALLEYVIEW(dev)) {
1279                 for_each_sprite(pipe, sprite) {
1280                         reg = SPCNTR(pipe, sprite);
1281                         val = I915_READ(reg);
1282                         WARN(val & SP_ENABLE,
1283                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284                              sprite_name(pipe, sprite), pipe_name(pipe));
1285                 }
1286         } else if (INTEL_INFO(dev)->gen >= 7) {
1287                 reg = SPRCTL(pipe);
1288                 val = I915_READ(reg);
1289                 WARN(val & SPRITE_ENABLE,
1290                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1291                      plane_name(pipe), pipe_name(pipe));
1292         } else if (INTEL_INFO(dev)->gen >= 5) {
1293                 reg = DVSCNTR(pipe);
1294                 val = I915_READ(reg);
1295                 WARN(val & DVS_ENABLE,
1296                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1297                      plane_name(pipe), pipe_name(pipe));
1298         }
1299 }
1300
1301 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1302 {
1303         u32 val;
1304         bool enabled;
1305
1306         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1307
1308         val = I915_READ(PCH_DREF_CONTROL);
1309         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1310                             DREF_SUPERSPREAD_SOURCE_MASK));
1311         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1312 }
1313
1314 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1315                                            enum pipe pipe)
1316 {
1317         int reg;
1318         u32 val;
1319         bool enabled;
1320
1321         reg = PCH_TRANSCONF(pipe);
1322         val = I915_READ(reg);
1323         enabled = !!(val & TRANS_ENABLE);
1324         WARN(enabled,
1325              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1326              pipe_name(pipe));
1327 }
1328
1329 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1330                             enum pipe pipe, u32 port_sel, u32 val)
1331 {
1332         if ((val & DP_PORT_EN) == 0)
1333                 return false;
1334
1335         if (HAS_PCH_CPT(dev_priv->dev)) {
1336                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1337                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1338                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1339                         return false;
1340         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1341                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1342                         return false;
1343         } else {
1344                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1345                         return false;
1346         }
1347         return true;
1348 }
1349
1350 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1351                               enum pipe pipe, u32 val)
1352 {
1353         if ((val & SDVO_ENABLE) == 0)
1354                 return false;
1355
1356         if (HAS_PCH_CPT(dev_priv->dev)) {
1357                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1358                         return false;
1359         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1360                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1361                         return false;
1362         } else {
1363                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1364                         return false;
1365         }
1366         return true;
1367 }
1368
1369 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1370                               enum pipe pipe, u32 val)
1371 {
1372         if ((val & LVDS_PORT_EN) == 0)
1373                 return false;
1374
1375         if (HAS_PCH_CPT(dev_priv->dev)) {
1376                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1377                         return false;
1378         } else {
1379                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1380                         return false;
1381         }
1382         return true;
1383 }
1384
1385 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1386                               enum pipe pipe, u32 val)
1387 {
1388         if ((val & ADPA_DAC_ENABLE) == 0)
1389                 return false;
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1392                         return false;
1393         } else {
1394                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1395                         return false;
1396         }
1397         return true;
1398 }
1399
1400 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1401                                    enum pipe pipe, int reg, u32 port_sel)
1402 {
1403         u32 val = I915_READ(reg);
1404         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1405              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1406              reg, pipe_name(pipe));
1407
1408         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1409              && (val & DP_PIPEB_SELECT),
1410              "IBX PCH dp port still using transcoder B\n");
1411 }
1412
1413 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1414                                      enum pipe pipe, int reg)
1415 {
1416         u32 val = I915_READ(reg);
1417         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1418              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1419              reg, pipe_name(pipe));
1420
1421         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1422              && (val & SDVO_PIPE_B_SELECT),
1423              "IBX PCH hdmi port still using transcoder B\n");
1424 }
1425
1426 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1427                                       enum pipe pipe)
1428 {
1429         int reg;
1430         u32 val;
1431
1432         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1433         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1434         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1435
1436         reg = PCH_ADPA;
1437         val = I915_READ(reg);
1438         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1439              "PCH VGA enabled on transcoder %c, should be disabled\n",
1440              pipe_name(pipe));
1441
1442         reg = PCH_LVDS;
1443         val = I915_READ(reg);
1444         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1445              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1449         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1450         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1451 }
1452
1453 static void intel_init_dpio(struct drm_device *dev)
1454 {
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456
1457         if (!IS_VALLEYVIEW(dev))
1458                 return;
1459
1460         /*
1461          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1462          * CHV x1 PHY (DP/HDMI D)
1463          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1464          */
1465         if (IS_CHERRYVIEW(dev)) {
1466                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1467                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1468         } else {
1469                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1470         }
1471 }
1472
1473 static void intel_reset_dpio(struct drm_device *dev)
1474 {
1475         struct drm_i915_private *dev_priv = dev->dev_private;
1476
1477         if (!IS_VALLEYVIEW(dev))
1478                 return;
1479
1480         /*
1481          * Enable the CRI clock source so we can get at the display and the
1482          * reference clock for VGA hotplug / manual detection.
1483          */
1484         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1485                    DPLL_REFA_CLK_ENABLE_VLV |
1486                    DPLL_INTEGRATED_CRI_CLK_VLV);
1487
1488         if (IS_CHERRYVIEW(dev)) {
1489                 enum dpio_phy phy;
1490                 u32 val;
1491
1492                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1493                         /* Poll for phypwrgood signal */
1494                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1495                                                 PHY_POWERGOOD(phy), 1))
1496                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1497
1498                         /*
1499                          * Deassert common lane reset for PHY.
1500                          *
1501                          * This should only be done on init and resume from S3
1502                          * with both PLLs disabled, or we risk losing DPIO and
1503                          * PLL synchronization.
1504                          */
1505                         val = I915_READ(DISPLAY_PHY_CONTROL);
1506                         I915_WRITE(DISPLAY_PHY_CONTROL,
1507                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1508                 }
1509
1510         } else {
1511                 /*
1512                  * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1513                  *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1514                  *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1515                  *   b. The other bits such as sfr settings / modesel may all
1516                  *      be set to 0.
1517                  *
1518                  * This should only be done on init and resume from S3 with
1519                  * both PLLs disabled, or we risk losing DPIO and PLL
1520                  * synchronization.
1521                  */
1522                 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1523         }
1524 }
1525
1526 static void vlv_enable_pll(struct intel_crtc *crtc)
1527 {
1528         struct drm_device *dev = crtc->base.dev;
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530         int reg = DPLL(crtc->pipe);
1531         u32 dpll = crtc->config.dpll_hw_state.dpll;
1532
1533         assert_pipe_disabled(dev_priv, crtc->pipe);
1534
1535         /* No really, not for ILK+ */
1536         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1537
1538         /* PLL is protected by panel, make sure we can write it */
1539         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1540                 assert_panel_unlocked(dev_priv, crtc->pipe);
1541
1542         I915_WRITE(reg, dpll);
1543         POSTING_READ(reg);
1544         udelay(150);
1545
1546         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1547                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1548
1549         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1550         POSTING_READ(DPLL_MD(crtc->pipe));
1551
1552         /* We do this three times for luck */
1553         I915_WRITE(reg, dpll);
1554         POSTING_READ(reg);
1555         udelay(150); /* wait for warmup */
1556         I915_WRITE(reg, dpll);
1557         POSTING_READ(reg);
1558         udelay(150); /* wait for warmup */
1559         I915_WRITE(reg, dpll);
1560         POSTING_READ(reg);
1561         udelay(150); /* wait for warmup */
1562 }
1563
1564 static void chv_enable_pll(struct intel_crtc *crtc)
1565 {
1566         struct drm_device *dev = crtc->base.dev;
1567         struct drm_i915_private *dev_priv = dev->dev_private;
1568         int pipe = crtc->pipe;
1569         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1570         int dpll = DPLL(crtc->pipe);
1571         u32 tmp;
1572
1573         assert_pipe_disabled(dev_priv, crtc->pipe);
1574
1575         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1576
1577         mutex_lock(&dev_priv->dpio_lock);
1578
1579         /* Enable back the 10bit clock to display controller */
1580         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1581         tmp |= DPIO_DCLKP_EN;
1582         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1583
1584         /*
1585          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1586          */
1587         udelay(1);
1588
1589         /* Enable PLL */
1590         tmp = I915_READ(dpll);
1591         tmp |= DPLL_VCO_ENABLE;
1592         I915_WRITE(dpll, tmp);
1593
1594         /* Check PLL is locked */
1595         if (wait_for(((I915_READ(dpll) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1596                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1597
1598         /* Deassert soft data lane reset*/
1599         tmp = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(port));
1600         tmp |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1601         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), tmp);
1602
1603
1604         mutex_unlock(&dev_priv->dpio_lock);
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609         struct drm_device *dev = crtc->base.dev;
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611         int reg = DPLL(crtc->pipe);
1612         u32 dpll = crtc->config.dpll_hw_state.dpll;
1613
1614         assert_pipe_disabled(dev_priv, crtc->pipe);
1615
1616         /* No really, not for ILK+ */
1617         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1618
1619         /* PLL is protected by panel, make sure we can write it */
1620         if (IS_MOBILE(dev) && !IS_I830(dev))
1621                 assert_panel_unlocked(dev_priv, crtc->pipe);
1622
1623         I915_WRITE(reg, dpll);
1624
1625         /* Wait for the clocks to stabilize. */
1626         POSTING_READ(reg);
1627         udelay(150);
1628
1629         if (INTEL_INFO(dev)->gen >= 4) {
1630                 I915_WRITE(DPLL_MD(crtc->pipe),
1631                            crtc->config.dpll_hw_state.dpll_md);
1632         } else {
1633                 /* The pixel multiplier can only be updated once the
1634                  * DPLL is enabled and the clocks are stable.
1635                  *
1636                  * So write it again.
1637                  */
1638                 I915_WRITE(reg, dpll);
1639         }
1640
1641         /* We do this three times for luck */
1642         I915_WRITE(reg, dpll);
1643         POSTING_READ(reg);
1644         udelay(150); /* wait for warmup */
1645         I915_WRITE(reg, dpll);
1646         POSTING_READ(reg);
1647         udelay(150); /* wait for warmup */
1648         I915_WRITE(reg, dpll);
1649         POSTING_READ(reg);
1650         udelay(150); /* wait for warmup */
1651 }
1652
1653 /**
1654  * i9xx_disable_pll - disable a PLL
1655  * @dev_priv: i915 private structure
1656  * @pipe: pipe PLL to disable
1657  *
1658  * Disable the PLL for @pipe, making sure the pipe is off first.
1659  *
1660  * Note!  This is for pre-ILK only.
1661  */
1662 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1663 {
1664         /* Don't disable pipe A or pipe A PLLs if needed */
1665         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1666                 return;
1667
1668         /* Make sure the pipe isn't still relying on us */
1669         assert_pipe_disabled(dev_priv, pipe);
1670
1671         I915_WRITE(DPLL(pipe), 0);
1672         POSTING_READ(DPLL(pipe));
1673 }
1674
1675 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677         u32 val = 0;
1678
1679         /* Make sure the pipe isn't still relying on us */
1680         assert_pipe_disabled(dev_priv, pipe);
1681
1682         /*
1683          * Leave integrated clock source and reference clock enabled for pipe B.
1684          * The latter is needed for VGA hotplug / manual detection.
1685          */
1686         if (pipe == PIPE_B)
1687                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1688         I915_WRITE(DPLL(pipe), val);
1689         POSTING_READ(DPLL(pipe));
1690
1691 }
1692
1693 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694 {
1695         int dpll = DPLL(pipe);
1696         u32 val;
1697
1698         /* Set PLL en = 0 */
1699         val = I915_READ(dpll);
1700         val &= ~DPLL_VCO_ENABLE;
1701         I915_WRITE(dpll, val);
1702
1703 }
1704
1705 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1706                 struct intel_digital_port *dport)
1707 {
1708         u32 port_mask;
1709         int dpll_reg;
1710
1711         switch (dport->port) {
1712         case PORT_B:
1713                 port_mask = DPLL_PORTB_READY_MASK;
1714                 dpll_reg = DPLL(0);
1715                 break;
1716         case PORT_C:
1717                 port_mask = DPLL_PORTC_READY_MASK;
1718                 dpll_reg = DPLL(0);
1719                 break;
1720         case PORT_D:
1721                 port_mask = DPLL_PORTD_READY_MASK;
1722                 dpll_reg = DPIO_PHY_STATUS;
1723                 break;
1724         default:
1725                 BUG();
1726         }
1727
1728         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1729                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1730                      port_name(dport->port), I915_READ(dpll_reg));
1731 }
1732
1733 /**
1734  * ironlake_enable_shared_dpll - enable PCH PLL
1735  * @dev_priv: i915 private structure
1736  * @pipe: pipe PLL to enable
1737  *
1738  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1739  * drives the transcoder clock.
1740  */
1741 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1742 {
1743         struct drm_device *dev = crtc->base.dev;
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1746
1747         /* PCH PLLs only available on ILK, SNB and IVB */
1748         BUG_ON(INTEL_INFO(dev)->gen < 5);
1749         if (WARN_ON(pll == NULL))
1750                 return;
1751
1752         if (WARN_ON(pll->refcount == 0))
1753                 return;
1754
1755         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1756                       pll->name, pll->active, pll->on,
1757                       crtc->base.base.id);
1758
1759         if (pll->active++) {
1760                 WARN_ON(!pll->on);
1761                 assert_shared_dpll_enabled(dev_priv, pll);
1762                 return;
1763         }
1764         WARN_ON(pll->on);
1765
1766         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1767         pll->enable(dev_priv, pll);
1768         pll->on = true;
1769 }
1770
1771 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1772 {
1773         struct drm_device *dev = crtc->base.dev;
1774         struct drm_i915_private *dev_priv = dev->dev_private;
1775         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1776
1777         /* PCH only available on ILK+ */
1778         BUG_ON(INTEL_INFO(dev)->gen < 5);
1779         if (WARN_ON(pll == NULL))
1780                return;
1781
1782         if (WARN_ON(pll->refcount == 0))
1783                 return;
1784
1785         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1786                       pll->name, pll->active, pll->on,
1787                       crtc->base.base.id);
1788
1789         if (WARN_ON(pll->active == 0)) {
1790                 assert_shared_dpll_disabled(dev_priv, pll);
1791                 return;
1792         }
1793
1794         assert_shared_dpll_enabled(dev_priv, pll);
1795         WARN_ON(!pll->on);
1796         if (--pll->active)
1797                 return;
1798
1799         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1800         pll->disable(dev_priv, pll);
1801         pll->on = false;
1802 }
1803
1804 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1805                                            enum pipe pipe)
1806 {
1807         struct drm_device *dev = dev_priv->dev;
1808         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1810         uint32_t reg, val, pipeconf_val;
1811
1812         /* PCH only available on ILK+ */
1813         BUG_ON(INTEL_INFO(dev)->gen < 5);
1814
1815         /* Make sure PCH DPLL is enabled */
1816         assert_shared_dpll_enabled(dev_priv,
1817                                    intel_crtc_to_shared_dpll(intel_crtc));
1818
1819         /* FDI must be feeding us bits for PCH ports */
1820         assert_fdi_tx_enabled(dev_priv, pipe);
1821         assert_fdi_rx_enabled(dev_priv, pipe);
1822
1823         if (HAS_PCH_CPT(dev)) {
1824                 /* Workaround: Set the timing override bit before enabling the
1825                  * pch transcoder. */
1826                 reg = TRANS_CHICKEN2(pipe);
1827                 val = I915_READ(reg);
1828                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1829                 I915_WRITE(reg, val);
1830         }
1831
1832         reg = PCH_TRANSCONF(pipe);
1833         val = I915_READ(reg);
1834         pipeconf_val = I915_READ(PIPECONF(pipe));
1835
1836         if (HAS_PCH_IBX(dev_priv->dev)) {
1837                 /*
1838                  * make the BPC in transcoder be consistent with
1839                  * that in pipeconf reg.
1840                  */
1841                 val &= ~PIPECONF_BPC_MASK;
1842                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1843         }
1844
1845         val &= ~TRANS_INTERLACE_MASK;
1846         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1847                 if (HAS_PCH_IBX(dev_priv->dev) &&
1848                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1849                         val |= TRANS_LEGACY_INTERLACED_ILK;
1850                 else
1851                         val |= TRANS_INTERLACED;
1852         else
1853                 val |= TRANS_PROGRESSIVE;
1854
1855         I915_WRITE(reg, val | TRANS_ENABLE);
1856         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1857                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1858 }
1859
1860 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1861                                       enum transcoder cpu_transcoder)
1862 {
1863         u32 val, pipeconf_val;
1864
1865         /* PCH only available on ILK+ */
1866         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1867
1868         /* FDI must be feeding us bits for PCH ports */
1869         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1870         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1871
1872         /* Workaround: set timing override bit. */
1873         val = I915_READ(_TRANSA_CHICKEN2);
1874         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1875         I915_WRITE(_TRANSA_CHICKEN2, val);
1876
1877         val = TRANS_ENABLE;
1878         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1879
1880         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1881             PIPECONF_INTERLACED_ILK)
1882                 val |= TRANS_INTERLACED;
1883         else
1884                 val |= TRANS_PROGRESSIVE;
1885
1886         I915_WRITE(LPT_TRANSCONF, val);
1887         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1888                 DRM_ERROR("Failed to enable PCH transcoder\n");
1889 }
1890
1891 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1892                                             enum pipe pipe)
1893 {
1894         struct drm_device *dev = dev_priv->dev;
1895         uint32_t reg, val;
1896
1897         /* FDI relies on the transcoder */
1898         assert_fdi_tx_disabled(dev_priv, pipe);
1899         assert_fdi_rx_disabled(dev_priv, pipe);
1900
1901         /* Ports must be off as well */
1902         assert_pch_ports_disabled(dev_priv, pipe);
1903
1904         reg = PCH_TRANSCONF(pipe);
1905         val = I915_READ(reg);
1906         val &= ~TRANS_ENABLE;
1907         I915_WRITE(reg, val);
1908         /* wait for PCH transcoder off, transcoder state */
1909         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1910                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1911
1912         if (!HAS_PCH_IBX(dev)) {
1913                 /* Workaround: Clear the timing override chicken bit again. */
1914                 reg = TRANS_CHICKEN2(pipe);
1915                 val = I915_READ(reg);
1916                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917                 I915_WRITE(reg, val);
1918         }
1919 }
1920
1921 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1922 {
1923         u32 val;
1924
1925         val = I915_READ(LPT_TRANSCONF);
1926         val &= ~TRANS_ENABLE;
1927         I915_WRITE(LPT_TRANSCONF, val);
1928         /* wait for PCH transcoder off, transcoder state */
1929         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1930                 DRM_ERROR("Failed to disable PCH transcoder\n");
1931
1932         /* Workaround: clear timing override bit. */
1933         val = I915_READ(_TRANSA_CHICKEN2);
1934         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1935         I915_WRITE(_TRANSA_CHICKEN2, val);
1936 }
1937
1938 /**
1939  * intel_enable_pipe - enable a pipe, asserting requirements
1940  * @crtc: crtc responsible for the pipe
1941  *
1942  * Enable @crtc's pipe, making sure that various hardware specific requirements
1943  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1944  */
1945 static void intel_enable_pipe(struct intel_crtc *crtc)
1946 {
1947         struct drm_device *dev = crtc->base.dev;
1948         struct drm_i915_private *dev_priv = dev->dev_private;
1949         enum pipe pipe = crtc->pipe;
1950         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1951                                                                       pipe);
1952         enum pipe pch_transcoder;
1953         int reg;
1954         u32 val;
1955
1956         assert_planes_disabled(dev_priv, pipe);
1957         assert_cursor_disabled(dev_priv, pipe);
1958         assert_sprites_disabled(dev_priv, pipe);
1959
1960         if (HAS_PCH_LPT(dev_priv->dev))
1961                 pch_transcoder = TRANSCODER_A;
1962         else
1963                 pch_transcoder = pipe;
1964
1965         /*
1966          * A pipe without a PLL won't actually be able to drive bits from
1967          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1968          * need the check.
1969          */
1970         if (!HAS_PCH_SPLIT(dev_priv->dev))
1971                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1972                         assert_dsi_pll_enabled(dev_priv);
1973                 else
1974                         assert_pll_enabled(dev_priv, pipe);
1975         else {
1976                 if (crtc->config.has_pch_encoder) {
1977                         /* if driving the PCH, we need FDI enabled */
1978                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1979                         assert_fdi_tx_pll_enabled(dev_priv,
1980                                                   (enum pipe) cpu_transcoder);
1981                 }
1982                 /* FIXME: assert CPU port conditions for SNB+ */
1983         }
1984
1985         reg = PIPECONF(cpu_transcoder);
1986         val = I915_READ(reg);
1987         if (val & PIPECONF_ENABLE) {
1988                 WARN_ON(!(pipe == PIPE_A &&
1989                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
1990                 return;
1991         }
1992
1993         I915_WRITE(reg, val | PIPECONF_ENABLE);
1994         POSTING_READ(reg);
1995 }
1996
1997 /**
1998  * intel_disable_pipe - disable a pipe, asserting requirements
1999  * @dev_priv: i915 private structure
2000  * @pipe: pipe to disable
2001  *
2002  * Disable @pipe, making sure that various hardware specific requirements
2003  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2004  *
2005  * @pipe should be %PIPE_A or %PIPE_B.
2006  *
2007  * Will wait until the pipe has shut down before returning.
2008  */
2009 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2010                                enum pipe pipe)
2011 {
2012         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2013                                                                       pipe);
2014         int reg;
2015         u32 val;
2016
2017         /*
2018          * Make sure planes won't keep trying to pump pixels to us,
2019          * or we might hang the display.
2020          */
2021         assert_planes_disabled(dev_priv, pipe);
2022         assert_cursor_disabled(dev_priv, pipe);
2023         assert_sprites_disabled(dev_priv, pipe);
2024
2025         /* Don't disable pipe A or pipe A PLLs if needed */
2026         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2027                 return;
2028
2029         reg = PIPECONF(cpu_transcoder);
2030         val = I915_READ(reg);
2031         if ((val & PIPECONF_ENABLE) == 0)
2032                 return;
2033
2034         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2035         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2036 }
2037
2038 /*
2039  * Plane regs are double buffered, going from enabled->disabled needs a
2040  * trigger in order to latch.  The display address reg provides this.
2041  */
2042 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2043                                enum plane plane)
2044 {
2045         struct drm_device *dev = dev_priv->dev;
2046         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2047
2048         I915_WRITE(reg, I915_READ(reg));
2049         POSTING_READ(reg);
2050 }
2051
2052 /**
2053  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2054  * @dev_priv: i915 private structure
2055  * @plane: plane to enable
2056  * @pipe: pipe being fed
2057  *
2058  * Enable @plane on @pipe, making sure that @pipe is running first.
2059  */
2060 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2061                                           enum plane plane, enum pipe pipe)
2062 {
2063         struct intel_crtc *intel_crtc =
2064                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2065         int reg;
2066         u32 val;
2067
2068         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2069         assert_pipe_enabled(dev_priv, pipe);
2070
2071         if (intel_crtc->primary_enabled)
2072                 return;
2073
2074         intel_crtc->primary_enabled = true;
2075
2076         reg = DSPCNTR(plane);
2077         val = I915_READ(reg);
2078         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2079
2080         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2081         intel_flush_primary_plane(dev_priv, plane);
2082         intel_wait_for_vblank(dev_priv->dev, pipe);
2083 }
2084
2085 /**
2086  * intel_disable_primary_hw_plane - disable the primary hardware plane
2087  * @dev_priv: i915 private structure
2088  * @plane: plane to disable
2089  * @pipe: pipe consuming the data
2090  *
2091  * Disable @plane; should be an independent operation.
2092  */
2093 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2094                                            enum plane plane, enum pipe pipe)
2095 {
2096         struct intel_crtc *intel_crtc =
2097                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2098         int reg;
2099         u32 val;
2100
2101         if (!intel_crtc->primary_enabled)
2102                 return;
2103
2104         intel_crtc->primary_enabled = false;
2105
2106         reg = DSPCNTR(plane);
2107         val = I915_READ(reg);
2108         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2109
2110         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2111         intel_flush_primary_plane(dev_priv, plane);
2112         intel_wait_for_vblank(dev_priv->dev, pipe);
2113 }
2114
2115 static bool need_vtd_wa(struct drm_device *dev)
2116 {
2117 #ifdef CONFIG_INTEL_IOMMU
2118         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2119                 return true;
2120 #endif
2121         return false;
2122 }
2123
2124 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2125 {
2126         int tile_height;
2127
2128         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2129         return ALIGN(height, tile_height);
2130 }
2131
2132 int
2133 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2134                            struct drm_i915_gem_object *obj,
2135                            struct intel_ring_buffer *pipelined)
2136 {
2137         struct drm_i915_private *dev_priv = dev->dev_private;
2138         u32 alignment;
2139         int ret;
2140
2141         switch (obj->tiling_mode) {
2142         case I915_TILING_NONE:
2143                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2144                         alignment = 128 * 1024;
2145                 else if (INTEL_INFO(dev)->gen >= 4)
2146                         alignment = 4 * 1024;
2147                 else
2148                         alignment = 64 * 1024;
2149                 break;
2150         case I915_TILING_X:
2151                 /* pin() will align the object as required by fence */
2152                 alignment = 0;
2153                 break;
2154         case I915_TILING_Y:
2155                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2156                 return -EINVAL;
2157         default:
2158                 BUG();
2159         }
2160
2161         /* Note that the w/a also requires 64 PTE of padding following the
2162          * bo. We currently fill all unused PTE with the shadow page and so
2163          * we should always have valid PTE following the scanout preventing
2164          * the VT-d warning.
2165          */
2166         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2167                 alignment = 256 * 1024;
2168
2169         dev_priv->mm.interruptible = false;
2170         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2171         if (ret)
2172                 goto err_interruptible;
2173
2174         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2175          * fence, whereas 965+ only requires a fence if using
2176          * framebuffer compression.  For simplicity, we always install
2177          * a fence as the cost is not that onerous.
2178          */
2179         ret = i915_gem_object_get_fence(obj);
2180         if (ret)
2181                 goto err_unpin;
2182
2183         i915_gem_object_pin_fence(obj);
2184
2185         dev_priv->mm.interruptible = true;
2186         return 0;
2187
2188 err_unpin:
2189         i915_gem_object_unpin_from_display_plane(obj);
2190 err_interruptible:
2191         dev_priv->mm.interruptible = true;
2192         return ret;
2193 }
2194
2195 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2196 {
2197         i915_gem_object_unpin_fence(obj);
2198         i915_gem_object_unpin_from_display_plane(obj);
2199 }
2200
2201 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2202  * is assumed to be a power-of-two. */
2203 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2204                                              unsigned int tiling_mode,
2205                                              unsigned int cpp,
2206                                              unsigned int pitch)
2207 {
2208         if (tiling_mode != I915_TILING_NONE) {
2209                 unsigned int tile_rows, tiles;
2210
2211                 tile_rows = *y / 8;
2212                 *y %= 8;
2213
2214                 tiles = *x / (512/cpp);
2215                 *x %= 512/cpp;
2216
2217                 return tile_rows * pitch * 8 + tiles * 4096;
2218         } else {
2219                 unsigned int offset;
2220
2221                 offset = *y * pitch + *x * cpp;
2222                 *y = 0;
2223                 *x = (offset & 4095) / cpp;
2224                 return offset & -4096;
2225         }
2226 }
2227
2228 int intel_format_to_fourcc(int format)
2229 {
2230         switch (format) {
2231         case DISPPLANE_8BPP:
2232                 return DRM_FORMAT_C8;
2233         case DISPPLANE_BGRX555:
2234                 return DRM_FORMAT_XRGB1555;
2235         case DISPPLANE_BGRX565:
2236                 return DRM_FORMAT_RGB565;
2237         default:
2238         case DISPPLANE_BGRX888:
2239                 return DRM_FORMAT_XRGB8888;
2240         case DISPPLANE_RGBX888:
2241                 return DRM_FORMAT_XBGR8888;
2242         case DISPPLANE_BGRX101010:
2243                 return DRM_FORMAT_XRGB2101010;
2244         case DISPPLANE_RGBX101010:
2245                 return DRM_FORMAT_XBGR2101010;
2246         }
2247 }
2248
2249 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2250                                   struct intel_plane_config *plane_config)
2251 {
2252         struct drm_device *dev = crtc->base.dev;
2253         struct drm_i915_gem_object *obj = NULL;
2254         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2255         u32 base = plane_config->base;
2256
2257         if (plane_config->size == 0)
2258                 return false;
2259
2260         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2261                                                              plane_config->size);
2262         if (!obj)
2263                 return false;
2264
2265         if (plane_config->tiled) {
2266                 obj->tiling_mode = I915_TILING_X;
2267                 obj->stride = crtc->base.primary->fb->pitches[0];
2268         }
2269
2270         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2271         mode_cmd.width = crtc->base.primary->fb->width;
2272         mode_cmd.height = crtc->base.primary->fb->height;
2273         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2274
2275         mutex_lock(&dev->struct_mutex);
2276
2277         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2278                                    &mode_cmd, obj)) {
2279                 DRM_DEBUG_KMS("intel fb init failed\n");
2280                 goto out_unref_obj;
2281         }
2282
2283         mutex_unlock(&dev->struct_mutex);
2284
2285         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2286         return true;
2287
2288 out_unref_obj:
2289         drm_gem_object_unreference(&obj->base);
2290         mutex_unlock(&dev->struct_mutex);
2291         return false;
2292 }
2293
2294 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2295                                  struct intel_plane_config *plane_config)
2296 {
2297         struct drm_device *dev = intel_crtc->base.dev;
2298         struct drm_crtc *c;
2299         struct intel_crtc *i;
2300         struct intel_framebuffer *fb;
2301
2302         if (!intel_crtc->base.primary->fb)
2303                 return;
2304
2305         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2306                 return;
2307
2308         kfree(intel_crtc->base.primary->fb);
2309         intel_crtc->base.primary->fb = NULL;
2310
2311         /*
2312          * Failed to alloc the obj, check to see if we should share
2313          * an fb with another CRTC instead
2314          */
2315         for_each_crtc(dev, c) {
2316                 i = to_intel_crtc(c);
2317
2318                 if (c == &intel_crtc->base)
2319                         continue;
2320
2321                 if (!i->active || !c->primary->fb)
2322                         continue;
2323
2324                 fb = to_intel_framebuffer(c->primary->fb);
2325                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2326                         drm_framebuffer_reference(c->primary->fb);
2327                         intel_crtc->base.primary->fb = c->primary->fb;
2328                         break;
2329                 }
2330         }
2331 }
2332
2333 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2334                                       struct drm_framebuffer *fb,
2335                                       int x, int y)
2336 {
2337         struct drm_device *dev = crtc->dev;
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2340         struct intel_framebuffer *intel_fb;
2341         struct drm_i915_gem_object *obj;
2342         int plane = intel_crtc->plane;
2343         unsigned long linear_offset;
2344         u32 dspcntr;
2345         u32 reg;
2346
2347         intel_fb = to_intel_framebuffer(fb);
2348         obj = intel_fb->obj;
2349
2350         reg = DSPCNTR(plane);
2351         dspcntr = I915_READ(reg);
2352         /* Mask out pixel format bits in case we change it */
2353         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2354         switch (fb->pixel_format) {
2355         case DRM_FORMAT_C8:
2356                 dspcntr |= DISPPLANE_8BPP;
2357                 break;
2358         case DRM_FORMAT_XRGB1555:
2359         case DRM_FORMAT_ARGB1555:
2360                 dspcntr |= DISPPLANE_BGRX555;
2361                 break;
2362         case DRM_FORMAT_RGB565:
2363                 dspcntr |= DISPPLANE_BGRX565;
2364                 break;
2365         case DRM_FORMAT_XRGB8888:
2366         case DRM_FORMAT_ARGB8888:
2367                 dspcntr |= DISPPLANE_BGRX888;
2368                 break;
2369         case DRM_FORMAT_XBGR8888:
2370         case DRM_FORMAT_ABGR8888:
2371                 dspcntr |= DISPPLANE_RGBX888;
2372                 break;
2373         case DRM_FORMAT_XRGB2101010:
2374         case DRM_FORMAT_ARGB2101010:
2375                 dspcntr |= DISPPLANE_BGRX101010;
2376                 break;
2377         case DRM_FORMAT_XBGR2101010:
2378         case DRM_FORMAT_ABGR2101010:
2379                 dspcntr |= DISPPLANE_RGBX101010;
2380                 break;
2381         default:
2382                 BUG();
2383         }
2384
2385         if (INTEL_INFO(dev)->gen >= 4) {
2386                 if (obj->tiling_mode != I915_TILING_NONE)
2387                         dspcntr |= DISPPLANE_TILED;
2388                 else
2389                         dspcntr &= ~DISPPLANE_TILED;
2390         }
2391
2392         if (IS_G4X(dev))
2393                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2394
2395         I915_WRITE(reg, dspcntr);
2396
2397         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2398
2399         if (INTEL_INFO(dev)->gen >= 4) {
2400                 intel_crtc->dspaddr_offset =
2401                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2402                                                        fb->bits_per_pixel / 8,
2403                                                        fb->pitches[0]);
2404                 linear_offset -= intel_crtc->dspaddr_offset;
2405         } else {
2406                 intel_crtc->dspaddr_offset = linear_offset;
2407         }
2408
2409         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2410                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2411                       fb->pitches[0]);
2412         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2413         if (INTEL_INFO(dev)->gen >= 4) {
2414                 I915_WRITE(DSPSURF(plane),
2415                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2416                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2417                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2418         } else
2419                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2420         POSTING_READ(reg);
2421 }
2422
2423 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2424                                           struct drm_framebuffer *fb,
2425                                           int x, int y)
2426 {
2427         struct drm_device *dev = crtc->dev;
2428         struct drm_i915_private *dev_priv = dev->dev_private;
2429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2430         struct intel_framebuffer *intel_fb;
2431         struct drm_i915_gem_object *obj;
2432         int plane = intel_crtc->plane;
2433         unsigned long linear_offset;
2434         u32 dspcntr;
2435         u32 reg;
2436
2437         intel_fb = to_intel_framebuffer(fb);
2438         obj = intel_fb->obj;
2439
2440         reg = DSPCNTR(plane);
2441         dspcntr = I915_READ(reg);
2442         /* Mask out pixel format bits in case we change it */
2443         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2444         switch (fb->pixel_format) {
2445         case DRM_FORMAT_C8:
2446                 dspcntr |= DISPPLANE_8BPP;
2447                 break;
2448         case DRM_FORMAT_RGB565:
2449                 dspcntr |= DISPPLANE_BGRX565;
2450                 break;
2451         case DRM_FORMAT_XRGB8888:
2452         case DRM_FORMAT_ARGB8888:
2453                 dspcntr |= DISPPLANE_BGRX888;
2454                 break;
2455         case DRM_FORMAT_XBGR8888:
2456         case DRM_FORMAT_ABGR8888:
2457                 dspcntr |= DISPPLANE_RGBX888;
2458                 break;
2459         case DRM_FORMAT_XRGB2101010:
2460         case DRM_FORMAT_ARGB2101010:
2461                 dspcntr |= DISPPLANE_BGRX101010;
2462                 break;
2463         case DRM_FORMAT_XBGR2101010:
2464         case DRM_FORMAT_ABGR2101010:
2465                 dspcntr |= DISPPLANE_RGBX101010;
2466                 break;
2467         default:
2468                 BUG();
2469         }
2470
2471         if (obj->tiling_mode != I915_TILING_NONE)
2472                 dspcntr |= DISPPLANE_TILED;
2473         else
2474                 dspcntr &= ~DISPPLANE_TILED;
2475
2476         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2477                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2478         else
2479                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2480
2481         I915_WRITE(reg, dspcntr);
2482
2483         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2484         intel_crtc->dspaddr_offset =
2485                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2486                                                fb->bits_per_pixel / 8,
2487                                                fb->pitches[0]);
2488         linear_offset -= intel_crtc->dspaddr_offset;
2489
2490         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2491                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2492                       fb->pitches[0]);
2493         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2494         I915_WRITE(DSPSURF(plane),
2495                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2496         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2497                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2498         } else {
2499                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2500                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2501         }
2502         POSTING_READ(reg);
2503 }
2504
2505 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2506 static int
2507 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2508                            int x, int y, enum mode_set_atomic state)
2509 {
2510         struct drm_device *dev = crtc->dev;
2511         struct drm_i915_private *dev_priv = dev->dev_private;
2512
2513         if (dev_priv->display.disable_fbc)
2514                 dev_priv->display.disable_fbc(dev);
2515         intel_increase_pllclock(crtc);
2516
2517         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2518
2519         return 0;
2520 }
2521
2522 void intel_display_handle_reset(struct drm_device *dev)
2523 {
2524         struct drm_i915_private *dev_priv = dev->dev_private;
2525         struct drm_crtc *crtc;
2526
2527         /*
2528          * Flips in the rings have been nuked by the reset,
2529          * so complete all pending flips so that user space
2530          * will get its events and not get stuck.
2531          *
2532          * Also update the base address of all primary
2533          * planes to the the last fb to make sure we're
2534          * showing the correct fb after a reset.
2535          *
2536          * Need to make two loops over the crtcs so that we
2537          * don't try to grab a crtc mutex before the
2538          * pending_flip_queue really got woken up.
2539          */
2540
2541         for_each_crtc(dev, crtc) {
2542                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2543                 enum plane plane = intel_crtc->plane;
2544
2545                 intel_prepare_page_flip(dev, plane);
2546                 intel_finish_page_flip_plane(dev, plane);
2547         }
2548
2549         for_each_crtc(dev, crtc) {
2550                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2551
2552                 mutex_lock(&crtc->mutex);
2553                 /*
2554                  * FIXME: Once we have proper support for primary planes (and
2555                  * disabling them without disabling the entire crtc) allow again
2556                  * a NULL crtc->primary->fb.
2557                  */
2558                 if (intel_crtc->active && crtc->primary->fb)
2559                         dev_priv->display.update_primary_plane(crtc,
2560                                                                crtc->primary->fb,
2561                                                                crtc->x,
2562                                                                crtc->y);
2563                 mutex_unlock(&crtc->mutex);
2564         }
2565 }
2566
2567 static int
2568 intel_finish_fb(struct drm_framebuffer *old_fb)
2569 {
2570         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2571         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2572         bool was_interruptible = dev_priv->mm.interruptible;
2573         int ret;
2574
2575         /* Big Hammer, we also need to ensure that any pending
2576          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2577          * current scanout is retired before unpinning the old
2578          * framebuffer.
2579          *
2580          * This should only fail upon a hung GPU, in which case we
2581          * can safely continue.
2582          */
2583         dev_priv->mm.interruptible = false;
2584         ret = i915_gem_object_finish_gpu(obj);
2585         dev_priv->mm.interruptible = was_interruptible;
2586
2587         return ret;
2588 }
2589
2590 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2591 {
2592         struct drm_device *dev = crtc->dev;
2593         struct drm_i915_private *dev_priv = dev->dev_private;
2594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2595         unsigned long flags;
2596         bool pending;
2597
2598         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2599             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2600                 return false;
2601
2602         spin_lock_irqsave(&dev->event_lock, flags);
2603         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2604         spin_unlock_irqrestore(&dev->event_lock, flags);
2605
2606         return pending;
2607 }
2608
2609 static int
2610 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2611                     struct drm_framebuffer *fb)
2612 {
2613         struct drm_device *dev = crtc->dev;
2614         struct drm_i915_private *dev_priv = dev->dev_private;
2615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2616         struct drm_framebuffer *old_fb;
2617         int ret;
2618
2619         if (intel_crtc_has_pending_flip(crtc)) {
2620                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2621                 return -EBUSY;
2622         }
2623
2624         /* no fb bound */
2625         if (!fb) {
2626                 DRM_ERROR("No FB bound\n");
2627                 return 0;
2628         }
2629
2630         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2631                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2632                           plane_name(intel_crtc->plane),
2633                           INTEL_INFO(dev)->num_pipes);
2634                 return -EINVAL;
2635         }
2636
2637         mutex_lock(&dev->struct_mutex);
2638         ret = intel_pin_and_fence_fb_obj(dev,
2639                                          to_intel_framebuffer(fb)->obj,
2640                                          NULL);
2641         mutex_unlock(&dev->struct_mutex);
2642         if (ret != 0) {
2643                 DRM_ERROR("pin & fence failed\n");
2644                 return ret;
2645         }
2646
2647         /*
2648          * Update pipe size and adjust fitter if needed: the reason for this is
2649          * that in compute_mode_changes we check the native mode (not the pfit
2650          * mode) to see if we can flip rather than do a full mode set. In the
2651          * fastboot case, we'll flip, but if we don't update the pipesrc and
2652          * pfit state, we'll end up with a big fb scanned out into the wrong
2653          * sized surface.
2654          *
2655          * To fix this properly, we need to hoist the checks up into
2656          * compute_mode_changes (or above), check the actual pfit state and
2657          * whether the platform allows pfit disable with pipe active, and only
2658          * then update the pipesrc and pfit state, even on the flip path.
2659          */
2660         if (i915.fastboot) {
2661                 const struct drm_display_mode *adjusted_mode =
2662                         &intel_crtc->config.adjusted_mode;
2663
2664                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2665                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2666                            (adjusted_mode->crtc_vdisplay - 1));
2667                 if (!intel_crtc->config.pch_pfit.enabled &&
2668                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2669                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2670                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2671                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2672                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2673                 }
2674                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2675                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2676         }
2677
2678         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2679
2680         old_fb = crtc->primary->fb;
2681         crtc->primary->fb = fb;
2682         crtc->x = x;
2683         crtc->y = y;
2684
2685         if (old_fb) {
2686                 if (intel_crtc->active && old_fb != fb)
2687                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2688                 mutex_lock(&dev->struct_mutex);
2689                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2690                 mutex_unlock(&dev->struct_mutex);
2691         }
2692
2693         mutex_lock(&dev->struct_mutex);
2694         intel_update_fbc(dev);
2695         intel_edp_psr_update(dev);
2696         mutex_unlock(&dev->struct_mutex);
2697
2698         return 0;
2699 }
2700
2701 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2702 {
2703         struct drm_device *dev = crtc->dev;
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2706         int pipe = intel_crtc->pipe;
2707         u32 reg, temp;
2708
2709         /* enable normal train */
2710         reg = FDI_TX_CTL(pipe);
2711         temp = I915_READ(reg);
2712         if (IS_IVYBRIDGE(dev)) {
2713                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2714                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2715         } else {
2716                 temp &= ~FDI_LINK_TRAIN_NONE;
2717                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2718         }
2719         I915_WRITE(reg, temp);
2720
2721         reg = FDI_RX_CTL(pipe);
2722         temp = I915_READ(reg);
2723         if (HAS_PCH_CPT(dev)) {
2724                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2725                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2726         } else {
2727                 temp &= ~FDI_LINK_TRAIN_NONE;
2728                 temp |= FDI_LINK_TRAIN_NONE;
2729         }
2730         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2731
2732         /* wait one idle pattern time */
2733         POSTING_READ(reg);
2734         udelay(1000);
2735
2736         /* IVB wants error correction enabled */
2737         if (IS_IVYBRIDGE(dev))
2738                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2739                            FDI_FE_ERRC_ENABLE);
2740 }
2741
2742 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2743 {
2744         return crtc->base.enabled && crtc->active &&
2745                 crtc->config.has_pch_encoder;
2746 }
2747
2748 static void ivb_modeset_global_resources(struct drm_device *dev)
2749 {
2750         struct drm_i915_private *dev_priv = dev->dev_private;
2751         struct intel_crtc *pipe_B_crtc =
2752                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2753         struct intel_crtc *pipe_C_crtc =
2754                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2755         uint32_t temp;
2756
2757         /*
2758          * When everything is off disable fdi C so that we could enable fdi B
2759          * with all lanes. Note that we don't care about enabled pipes without
2760          * an enabled pch encoder.
2761          */
2762         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2763             !pipe_has_enabled_pch(pipe_C_crtc)) {
2764                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2765                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2766
2767                 temp = I915_READ(SOUTH_CHICKEN1);
2768                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2769                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2770                 I915_WRITE(SOUTH_CHICKEN1, temp);
2771         }
2772 }
2773
2774 /* The FDI link training functions for ILK/Ibexpeak. */
2775 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2776 {
2777         struct drm_device *dev = crtc->dev;
2778         struct drm_i915_private *dev_priv = dev->dev_private;
2779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2780         int pipe = intel_crtc->pipe;
2781         u32 reg, temp, tries;
2782
2783         /* FDI needs bits from pipe first */
2784         assert_pipe_enabled(dev_priv, pipe);
2785
2786         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2787            for train result */
2788         reg = FDI_RX_IMR(pipe);
2789         temp = I915_READ(reg);
2790         temp &= ~FDI_RX_SYMBOL_LOCK;
2791         temp &= ~FDI_RX_BIT_LOCK;
2792         I915_WRITE(reg, temp);
2793         I915_READ(reg);
2794         udelay(150);
2795
2796         /* enable CPU FDI TX and PCH FDI RX */
2797         reg = FDI_TX_CTL(pipe);
2798         temp = I915_READ(reg);
2799         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2800         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2801         temp &= ~FDI_LINK_TRAIN_NONE;
2802         temp |= FDI_LINK_TRAIN_PATTERN_1;
2803         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2804
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         temp &= ~FDI_LINK_TRAIN_NONE;
2808         temp |= FDI_LINK_TRAIN_PATTERN_1;
2809         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2810
2811         POSTING_READ(reg);
2812         udelay(150);
2813
2814         /* Ironlake workaround, enable clock pointer after FDI enable*/
2815         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2816         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2817                    FDI_RX_PHASE_SYNC_POINTER_EN);
2818
2819         reg = FDI_RX_IIR(pipe);
2820         for (tries = 0; tries < 5; tries++) {
2821                 temp = I915_READ(reg);
2822                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2823
2824                 if ((temp & FDI_RX_BIT_LOCK)) {
2825                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2826                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2827                         break;
2828                 }
2829         }
2830         if (tries == 5)
2831                 DRM_ERROR("FDI train 1 fail!\n");
2832
2833         /* Train 2 */
2834         reg = FDI_TX_CTL(pipe);
2835         temp = I915_READ(reg);
2836         temp &= ~FDI_LINK_TRAIN_NONE;
2837         temp |= FDI_LINK_TRAIN_PATTERN_2;
2838         I915_WRITE(reg, temp);
2839
2840         reg = FDI_RX_CTL(pipe);
2841         temp = I915_READ(reg);
2842         temp &= ~FDI_LINK_TRAIN_NONE;
2843         temp |= FDI_LINK_TRAIN_PATTERN_2;
2844         I915_WRITE(reg, temp);
2845
2846         POSTING_READ(reg);
2847         udelay(150);
2848
2849         reg = FDI_RX_IIR(pipe);
2850         for (tries = 0; tries < 5; tries++) {
2851                 temp = I915_READ(reg);
2852                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2853
2854                 if (temp & FDI_RX_SYMBOL_LOCK) {
2855                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2856                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2857                         break;
2858                 }
2859         }
2860         if (tries == 5)
2861                 DRM_ERROR("FDI train 2 fail!\n");
2862
2863         DRM_DEBUG_KMS("FDI train done\n");
2864
2865 }
2866
2867 static const int snb_b_fdi_train_param[] = {
2868         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2869         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2870         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2871         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2872 };
2873
2874 /* The FDI link training functions for SNB/Cougarpoint. */
2875 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         int pipe = intel_crtc->pipe;
2881         u32 reg, temp, i, retry;
2882
2883         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2884            for train result */
2885         reg = FDI_RX_IMR(pipe);
2886         temp = I915_READ(reg);
2887         temp &= ~FDI_RX_SYMBOL_LOCK;
2888         temp &= ~FDI_RX_BIT_LOCK;
2889         I915_WRITE(reg, temp);
2890
2891         POSTING_READ(reg);
2892         udelay(150);
2893
2894         /* enable CPU FDI TX and PCH FDI RX */
2895         reg = FDI_TX_CTL(pipe);
2896         temp = I915_READ(reg);
2897         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2898         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2899         temp &= ~FDI_LINK_TRAIN_NONE;
2900         temp |= FDI_LINK_TRAIN_PATTERN_1;
2901         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2902         /* SNB-B */
2903         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2904         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2905
2906         I915_WRITE(FDI_RX_MISC(pipe),
2907                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2908
2909         reg = FDI_RX_CTL(pipe);
2910         temp = I915_READ(reg);
2911         if (HAS_PCH_CPT(dev)) {
2912                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2913                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914         } else {
2915                 temp &= ~FDI_LINK_TRAIN_NONE;
2916                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2917         }
2918         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2919
2920         POSTING_READ(reg);
2921         udelay(150);
2922
2923         for (i = 0; i < 4; i++) {
2924                 reg = FDI_TX_CTL(pipe);
2925                 temp = I915_READ(reg);
2926                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2927                 temp |= snb_b_fdi_train_param[i];
2928                 I915_WRITE(reg, temp);
2929
2930                 POSTING_READ(reg);
2931                 udelay(500);
2932
2933                 for (retry = 0; retry < 5; retry++) {
2934                         reg = FDI_RX_IIR(pipe);
2935                         temp = I915_READ(reg);
2936                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2937                         if (temp & FDI_RX_BIT_LOCK) {
2938                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2939                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2940                                 break;
2941                         }
2942                         udelay(50);
2943                 }
2944                 if (retry < 5)
2945                         break;
2946         }
2947         if (i == 4)
2948                 DRM_ERROR("FDI train 1 fail!\n");
2949
2950         /* Train 2 */
2951         reg = FDI_TX_CTL(pipe);
2952         temp = I915_READ(reg);
2953         temp &= ~FDI_LINK_TRAIN_NONE;
2954         temp |= FDI_LINK_TRAIN_PATTERN_2;
2955         if (IS_GEN6(dev)) {
2956                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2957                 /* SNB-B */
2958                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2959         }
2960         I915_WRITE(reg, temp);
2961
2962         reg = FDI_RX_CTL(pipe);
2963         temp = I915_READ(reg);
2964         if (HAS_PCH_CPT(dev)) {
2965                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2966                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2967         } else {
2968                 temp &= ~FDI_LINK_TRAIN_NONE;
2969                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2970         }
2971         I915_WRITE(reg, temp);
2972
2973         POSTING_READ(reg);
2974         udelay(150);
2975
2976         for (i = 0; i < 4; i++) {
2977                 reg = FDI_TX_CTL(pipe);
2978                 temp = I915_READ(reg);
2979                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2980                 temp |= snb_b_fdi_train_param[i];
2981                 I915_WRITE(reg, temp);
2982
2983                 POSTING_READ(reg);
2984                 udelay(500);
2985
2986                 for (retry = 0; retry < 5; retry++) {
2987                         reg = FDI_RX_IIR(pipe);
2988                         temp = I915_READ(reg);
2989                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2990                         if (temp & FDI_RX_SYMBOL_LOCK) {
2991                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2992                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2993                                 break;
2994                         }
2995                         udelay(50);
2996                 }
2997                 if (retry < 5)
2998                         break;
2999         }
3000         if (i == 4)
3001                 DRM_ERROR("FDI train 2 fail!\n");
3002
3003         DRM_DEBUG_KMS("FDI train done.\n");
3004 }
3005
3006 /* Manual link training for Ivy Bridge A0 parts */
3007 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3008 {
3009         struct drm_device *dev = crtc->dev;
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3012         int pipe = intel_crtc->pipe;
3013         u32 reg, temp, i, j;
3014
3015         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3016            for train result */
3017         reg = FDI_RX_IMR(pipe);
3018         temp = I915_READ(reg);
3019         temp &= ~FDI_RX_SYMBOL_LOCK;
3020         temp &= ~FDI_RX_BIT_LOCK;
3021         I915_WRITE(reg, temp);
3022
3023         POSTING_READ(reg);
3024         udelay(150);
3025
3026         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3027                       I915_READ(FDI_RX_IIR(pipe)));
3028
3029         /* Try each vswing and preemphasis setting twice before moving on */
3030         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3031                 /* disable first in case we need to retry */
3032                 reg = FDI_TX_CTL(pipe);
3033                 temp = I915_READ(reg);
3034                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3035                 temp &= ~FDI_TX_ENABLE;
3036                 I915_WRITE(reg, temp);
3037
3038                 reg = FDI_RX_CTL(pipe);
3039                 temp = I915_READ(reg);
3040                 temp &= ~FDI_LINK_TRAIN_AUTO;
3041                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3042                 temp &= ~FDI_RX_ENABLE;
3043                 I915_WRITE(reg, temp);
3044
3045                 /* enable CPU FDI TX and PCH FDI RX */
3046                 reg = FDI_TX_CTL(pipe);
3047                 temp = I915_READ(reg);
3048                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3049                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3050                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3051                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3052                 temp |= snb_b_fdi_train_param[j/2];
3053                 temp |= FDI_COMPOSITE_SYNC;
3054                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3055
3056                 I915_WRITE(FDI_RX_MISC(pipe),
3057                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3058
3059                 reg = FDI_RX_CTL(pipe);
3060                 temp = I915_READ(reg);
3061                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3062                 temp |= FDI_COMPOSITE_SYNC;
3063                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3064
3065                 POSTING_READ(reg);
3066                 udelay(1); /* should be 0.5us */
3067
3068                 for (i = 0; i < 4; i++) {
3069                         reg = FDI_RX_IIR(pipe);
3070                         temp = I915_READ(reg);
3071                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3072
3073                         if (temp & FDI_RX_BIT_LOCK ||
3074                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3075                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3076                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3077                                               i);
3078                                 break;
3079                         }
3080                         udelay(1); /* should be 0.5us */
3081                 }
3082                 if (i == 4) {
3083                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3084                         continue;
3085                 }
3086
3087                 /* Train 2 */
3088                 reg = FDI_TX_CTL(pipe);
3089                 temp = I915_READ(reg);
3090                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3091                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3092                 I915_WRITE(reg, temp);
3093
3094                 reg = FDI_RX_CTL(pipe);
3095                 temp = I915_READ(reg);
3096                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3097                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3098                 I915_WRITE(reg, temp);
3099
3100                 POSTING_READ(reg);
3101                 udelay(2); /* should be 1.5us */
3102
3103                 for (i = 0; i < 4; i++) {
3104                         reg = FDI_RX_IIR(pipe);
3105                         temp = I915_READ(reg);
3106                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3107
3108                         if (temp & FDI_RX_SYMBOL_LOCK ||
3109                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3110                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3111                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3112                                               i);
3113                                 goto train_done;
3114                         }
3115                         udelay(2); /* should be 1.5us */
3116                 }
3117                 if (i == 4)
3118                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3119         }
3120
3121 train_done:
3122         DRM_DEBUG_KMS("FDI train done.\n");
3123 }
3124
3125 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3126 {
3127         struct drm_device *dev = intel_crtc->base.dev;
3128         struct drm_i915_private *dev_priv = dev->dev_private;
3129         int pipe = intel_crtc->pipe;
3130         u32 reg, temp;
3131
3132
3133         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3134         reg = FDI_RX_CTL(pipe);
3135         temp = I915_READ(reg);
3136         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3137         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3138         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3139         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3140
3141         POSTING_READ(reg);
3142         udelay(200);
3143
3144         /* Switch from Rawclk to PCDclk */
3145         temp = I915_READ(reg);
3146         I915_WRITE(reg, temp | FDI_PCDCLK);
3147
3148         POSTING_READ(reg);
3149         udelay(200);
3150
3151         /* Enable CPU FDI TX PLL, always on for Ironlake */
3152         reg = FDI_TX_CTL(pipe);
3153         temp = I915_READ(reg);
3154         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3155                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3156
3157                 POSTING_READ(reg);
3158                 udelay(100);
3159         }
3160 }
3161
3162 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3163 {
3164         struct drm_device *dev = intel_crtc->base.dev;
3165         struct drm_i915_private *dev_priv = dev->dev_private;
3166         int pipe = intel_crtc->pipe;
3167         u32 reg, temp;
3168
3169         /* Switch from PCDclk to Rawclk */
3170         reg = FDI_RX_CTL(pipe);
3171         temp = I915_READ(reg);
3172         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3173
3174         /* Disable CPU FDI TX PLL */
3175         reg = FDI_TX_CTL(pipe);
3176         temp = I915_READ(reg);
3177         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3178
3179         POSTING_READ(reg);
3180         udelay(100);
3181
3182         reg = FDI_RX_CTL(pipe);
3183         temp = I915_READ(reg);
3184         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3185
3186         /* Wait for the clocks to turn off. */
3187         POSTING_READ(reg);
3188         udelay(100);
3189 }
3190
3191 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3192 {
3193         struct drm_device *dev = crtc->dev;
3194         struct drm_i915_private *dev_priv = dev->dev_private;
3195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3196         int pipe = intel_crtc->pipe;
3197         u32 reg, temp;
3198
3199         /* disable CPU FDI tx and PCH FDI rx */
3200         reg = FDI_TX_CTL(pipe);
3201         temp = I915_READ(reg);
3202         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3203         POSTING_READ(reg);
3204
3205         reg = FDI_RX_CTL(pipe);
3206         temp = I915_READ(reg);
3207         temp &= ~(0x7 << 16);
3208         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3209         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3210
3211         POSTING_READ(reg);
3212         udelay(100);
3213
3214         /* Ironlake workaround, disable clock pointer after downing FDI */
3215         if (HAS_PCH_IBX(dev))
3216                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3217
3218         /* still set train pattern 1 */
3219         reg = FDI_TX_CTL(pipe);
3220         temp = I915_READ(reg);
3221         temp &= ~FDI_LINK_TRAIN_NONE;
3222         temp |= FDI_LINK_TRAIN_PATTERN_1;
3223         I915_WRITE(reg, temp);
3224
3225         reg = FDI_RX_CTL(pipe);
3226         temp = I915_READ(reg);
3227         if (HAS_PCH_CPT(dev)) {
3228                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3229                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3230         } else {
3231                 temp &= ~FDI_LINK_TRAIN_NONE;
3232                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3233         }
3234         /* BPC in FDI rx is consistent with that in PIPECONF */
3235         temp &= ~(0x07 << 16);
3236         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3237         I915_WRITE(reg, temp);
3238
3239         POSTING_READ(reg);
3240         udelay(100);
3241 }
3242
3243 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3244 {
3245         struct intel_crtc *crtc;
3246
3247         /* Note that we don't need to be called with mode_config.lock here
3248          * as our list of CRTC objects is static for the lifetime of the
3249          * device and so cannot disappear as we iterate. Similarly, we can
3250          * happily treat the predicates as racy, atomic checks as userspace
3251          * cannot claim and pin a new fb without at least acquring the
3252          * struct_mutex and so serialising with us.
3253          */
3254         for_each_intel_crtc(dev, crtc) {
3255                 if (atomic_read(&crtc->unpin_work_count) == 0)
3256                         continue;
3257
3258                 if (crtc->unpin_work)
3259                         intel_wait_for_vblank(dev, crtc->pipe);
3260
3261                 return true;
3262         }
3263
3264         return false;
3265 }
3266
3267 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3268 {
3269         struct drm_device *dev = crtc->dev;
3270         struct drm_i915_private *dev_priv = dev->dev_private;
3271
3272         if (crtc->primary->fb == NULL)
3273                 return;
3274
3275         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3276
3277         wait_event(dev_priv->pending_flip_queue,
3278                    !intel_crtc_has_pending_flip(crtc));
3279
3280         mutex_lock(&dev->struct_mutex);
3281         intel_finish_fb(crtc->primary->fb);
3282         mutex_unlock(&dev->struct_mutex);
3283 }
3284
3285 /* Program iCLKIP clock to the desired frequency */
3286 static void lpt_program_iclkip(struct drm_crtc *crtc)
3287 {
3288         struct drm_device *dev = crtc->dev;
3289         struct drm_i915_private *dev_priv = dev->dev_private;
3290         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3291         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3292         u32 temp;
3293
3294         mutex_lock(&dev_priv->dpio_lock);
3295
3296         /* It is necessary to ungate the pixclk gate prior to programming
3297          * the divisors, and gate it back when it is done.
3298          */
3299         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3300
3301         /* Disable SSCCTL */
3302         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3303                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3304                                 SBI_SSCCTL_DISABLE,
3305                         SBI_ICLK);
3306
3307         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3308         if (clock == 20000) {
3309                 auxdiv = 1;
3310                 divsel = 0x41;
3311                 phaseinc = 0x20;
3312         } else {
3313                 /* The iCLK virtual clock root frequency is in MHz,
3314                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3315                  * divisors, it is necessary to divide one by another, so we
3316                  * convert the virtual clock precision to KHz here for higher
3317                  * precision.
3318                  */
3319                 u32 iclk_virtual_root_freq = 172800 * 1000;
3320                 u32 iclk_pi_range = 64;
3321                 u32 desired_divisor, msb_divisor_value, pi_value;
3322
3323                 desired_divisor = (iclk_virtual_root_freq / clock);
3324                 msb_divisor_value = desired_divisor / iclk_pi_range;
3325                 pi_value = desired_divisor % iclk_pi_range;
3326
3327                 auxdiv = 0;
3328                 divsel = msb_divisor_value - 2;
3329                 phaseinc = pi_value;
3330         }
3331
3332         /* This should not happen with any sane values */
3333         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3334                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3335         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3336                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3337
3338         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3339                         clock,
3340                         auxdiv,
3341                         divsel,
3342                         phasedir,
3343                         phaseinc);
3344
3345         /* Program SSCDIVINTPHASE6 */
3346         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3347         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3348         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3349         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3350         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3351         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3352         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3353         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3354
3355         /* Program SSCAUXDIV */
3356         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3357         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3358         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3359         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3360
3361         /* Enable modulator and associated divider */
3362         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3363         temp &= ~SBI_SSCCTL_DISABLE;
3364         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3365
3366         /* Wait for initialization time */
3367         udelay(24);
3368
3369         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3370
3371         mutex_unlock(&dev_priv->dpio_lock);
3372 }
3373
3374 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3375                                                 enum pipe pch_transcoder)
3376 {
3377         struct drm_device *dev = crtc->base.dev;
3378         struct drm_i915_private *dev_priv = dev->dev_private;
3379         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3380
3381         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3382                    I915_READ(HTOTAL(cpu_transcoder)));
3383         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3384                    I915_READ(HBLANK(cpu_transcoder)));
3385         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3386                    I915_READ(HSYNC(cpu_transcoder)));
3387
3388         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3389                    I915_READ(VTOTAL(cpu_transcoder)));
3390         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3391                    I915_READ(VBLANK(cpu_transcoder)));
3392         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3393                    I915_READ(VSYNC(cpu_transcoder)));
3394         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3395                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3396 }
3397
3398 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3399 {
3400         struct drm_i915_private *dev_priv = dev->dev_private;
3401         uint32_t temp;
3402
3403         temp = I915_READ(SOUTH_CHICKEN1);
3404         if (temp & FDI_BC_BIFURCATION_SELECT)
3405                 return;
3406
3407         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3408         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3409
3410         temp |= FDI_BC_BIFURCATION_SELECT;
3411         DRM_DEBUG_KMS("enabling fdi C rx\n");
3412         I915_WRITE(SOUTH_CHICKEN1, temp);
3413         POSTING_READ(SOUTH_CHICKEN1);
3414 }
3415
3416 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3417 {
3418         struct drm_device *dev = intel_crtc->base.dev;
3419         struct drm_i915_private *dev_priv = dev->dev_private;
3420
3421         switch (intel_crtc->pipe) {
3422         case PIPE_A:
3423                 break;
3424         case PIPE_B:
3425                 if (intel_crtc->config.fdi_lanes > 2)
3426                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3427                 else
3428                         cpt_enable_fdi_bc_bifurcation(dev);
3429
3430                 break;
3431         case PIPE_C:
3432                 cpt_enable_fdi_bc_bifurcation(dev);
3433
3434                 break;
3435         default:
3436                 BUG();
3437         }
3438 }
3439
3440 /*
3441  * Enable PCH resources required for PCH ports:
3442  *   - PCH PLLs
3443  *   - FDI training & RX/TX
3444  *   - update transcoder timings
3445  *   - DP transcoding bits
3446  *   - transcoder
3447  */
3448 static void ironlake_pch_enable(struct drm_crtc *crtc)
3449 {
3450         struct drm_device *dev = crtc->dev;
3451         struct drm_i915_private *dev_priv = dev->dev_private;
3452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3453         int pipe = intel_crtc->pipe;
3454         u32 reg, temp;
3455
3456         assert_pch_transcoder_disabled(dev_priv, pipe);
3457
3458         if (IS_IVYBRIDGE(dev))
3459                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3460
3461         /* Write the TU size bits before fdi link training, so that error
3462          * detection works. */
3463         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3464                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3465
3466         /* For PCH output, training FDI link */
3467         dev_priv->display.fdi_link_train(crtc);
3468
3469         /* We need to program the right clock selection before writing the pixel
3470          * mutliplier into the DPLL. */
3471         if (HAS_PCH_CPT(dev)) {
3472                 u32 sel;
3473
3474                 temp = I915_READ(PCH_DPLL_SEL);
3475                 temp |= TRANS_DPLL_ENABLE(pipe);
3476                 sel = TRANS_DPLLB_SEL(pipe);
3477                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3478                         temp |= sel;
3479                 else
3480                         temp &= ~sel;
3481                 I915_WRITE(PCH_DPLL_SEL, temp);
3482         }
3483
3484         /* XXX: pch pll's can be enabled any time before we enable the PCH
3485          * transcoder, and we actually should do this to not upset any PCH
3486          * transcoder that already use the clock when we share it.
3487          *
3488          * Note that enable_shared_dpll tries to do the right thing, but
3489          * get_shared_dpll unconditionally resets the pll - we need that to have
3490          * the right LVDS enable sequence. */
3491         ironlake_enable_shared_dpll(intel_crtc);
3492
3493         /* set transcoder timing, panel must allow it */
3494         assert_panel_unlocked(dev_priv, pipe);
3495         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3496
3497         intel_fdi_normal_train(crtc);
3498
3499         /* For PCH DP, enable TRANS_DP_CTL */
3500         if (HAS_PCH_CPT(dev) &&
3501             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3502              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3503                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3504                 reg = TRANS_DP_CTL(pipe);
3505                 temp = I915_READ(reg);
3506                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3507                           TRANS_DP_SYNC_MASK |
3508                           TRANS_DP_BPC_MASK);
3509                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3510                          TRANS_DP_ENH_FRAMING);
3511                 temp |= bpc << 9; /* same format but at 11:9 */
3512
3513                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3514                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3515                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3516                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3517
3518                 switch (intel_trans_dp_port_sel(crtc)) {
3519                 case PCH_DP_B:
3520                         temp |= TRANS_DP_PORT_SEL_B;
3521                         break;
3522                 case PCH_DP_C:
3523                         temp |= TRANS_DP_PORT_SEL_C;
3524                         break;
3525                 case PCH_DP_D:
3526                         temp |= TRANS_DP_PORT_SEL_D;
3527                         break;
3528                 default:
3529                         BUG();
3530                 }
3531
3532                 I915_WRITE(reg, temp);
3533         }
3534
3535         ironlake_enable_pch_transcoder(dev_priv, pipe);
3536 }
3537
3538 static void lpt_pch_enable(struct drm_crtc *crtc)
3539 {
3540         struct drm_device *dev = crtc->dev;
3541         struct drm_i915_private *dev_priv = dev->dev_private;
3542         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3543         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3544
3545         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3546
3547         lpt_program_iclkip(crtc);
3548
3549         /* Set transcoder timing. */
3550         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3551
3552         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3553 }
3554
3555 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3556 {
3557         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3558
3559         if (pll == NULL)
3560                 return;
3561
3562         if (pll->refcount == 0) {
3563                 WARN(1, "bad %s refcount\n", pll->name);
3564                 return;
3565         }
3566
3567         if (--pll->refcount == 0) {
3568                 WARN_ON(pll->on);
3569                 WARN_ON(pll->active);
3570         }
3571
3572         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3573 }
3574
3575 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3576 {
3577         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3578         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3579         enum intel_dpll_id i;
3580
3581         if (pll) {
3582                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3583                               crtc->base.base.id, pll->name);
3584                 intel_put_shared_dpll(crtc);
3585         }
3586
3587         if (HAS_PCH_IBX(dev_priv->dev)) {
3588                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3589                 i = (enum intel_dpll_id) crtc->pipe;
3590                 pll = &dev_priv->shared_dplls[i];
3591
3592                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3593                               crtc->base.base.id, pll->name);
3594
3595                 goto found;
3596         }
3597
3598         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3599                 pll = &dev_priv->shared_dplls[i];
3600
3601                 /* Only want to check enabled timings first */
3602                 if (pll->refcount == 0)
3603                         continue;
3604
3605                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3606                            sizeof(pll->hw_state)) == 0) {
3607                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3608                                       crtc->base.base.id,
3609                                       pll->name, pll->refcount, pll->active);
3610
3611                         goto found;
3612                 }
3613         }
3614
3615         /* Ok no matching timings, maybe there's a free one? */
3616         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3617                 pll = &dev_priv->shared_dplls[i];
3618                 if (pll->refcount == 0) {
3619                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3620                                       crtc->base.base.id, pll->name);
3621                         goto found;
3622                 }
3623         }
3624
3625         return NULL;
3626
3627 found:
3628         crtc->config.shared_dpll = i;
3629         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3630                          pipe_name(crtc->pipe));
3631
3632         if (pll->active == 0) {
3633                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3634                        sizeof(pll->hw_state));
3635
3636                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3637                 WARN_ON(pll->on);
3638                 assert_shared_dpll_disabled(dev_priv, pll);
3639
3640                 pll->mode_set(dev_priv, pll);
3641         }
3642         pll->refcount++;
3643
3644         return pll;
3645 }
3646
3647 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3648 {
3649         struct drm_i915_private *dev_priv = dev->dev_private;
3650         int dslreg = PIPEDSL(pipe);
3651         u32 temp;
3652
3653         temp = I915_READ(dslreg);
3654         udelay(500);
3655         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3656                 if (wait_for(I915_READ(dslreg) != temp, 5))
3657                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3658         }
3659 }
3660
3661 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3662 {
3663         struct drm_device *dev = crtc->base.dev;
3664         struct drm_i915_private *dev_priv = dev->dev_private;
3665         int pipe = crtc->pipe;
3666
3667         if (crtc->config.pch_pfit.enabled) {
3668                 /* Force use of hard-coded filter coefficients
3669                  * as some pre-programmed values are broken,
3670                  * e.g. x201.
3671                  */
3672                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3673                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3674                                                  PF_PIPE_SEL_IVB(pipe));
3675                 else
3676                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3677                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3678                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3679         }
3680 }
3681
3682 static void intel_enable_planes(struct drm_crtc *crtc)
3683 {
3684         struct drm_device *dev = crtc->dev;
3685         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3686         struct drm_plane *plane;
3687         struct intel_plane *intel_plane;
3688
3689         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3690                 intel_plane = to_intel_plane(plane);
3691                 if (intel_plane->pipe == pipe)
3692                         intel_plane_restore(&intel_plane->base);
3693         }
3694 }
3695
3696 static void intel_disable_planes(struct drm_crtc *crtc)
3697 {
3698         struct drm_device *dev = crtc->dev;
3699         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3700         struct drm_plane *plane;
3701         struct intel_plane *intel_plane;
3702
3703         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3704                 intel_plane = to_intel_plane(plane);
3705                 if (intel_plane->pipe == pipe)
3706                         intel_plane_disable(&intel_plane->base);
3707         }
3708 }
3709
3710 void hsw_enable_ips(struct intel_crtc *crtc)
3711 {
3712         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3713
3714         if (!crtc->config.ips_enabled)
3715                 return;
3716
3717         /* We can only enable IPS after we enable a plane and wait for a vblank.
3718          * We guarantee that the plane is enabled by calling intel_enable_ips
3719          * only after intel_enable_plane. And intel_enable_plane already waits
3720          * for a vblank, so all we need to do here is to enable the IPS bit. */
3721         assert_plane_enabled(dev_priv, crtc->plane);
3722         if (IS_BROADWELL(crtc->base.dev)) {
3723                 mutex_lock(&dev_priv->rps.hw_lock);
3724                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3725                 mutex_unlock(&dev_priv->rps.hw_lock);
3726                 /* Quoting Art Runyan: "its not safe to expect any particular
3727                  * value in IPS_CTL bit 31 after enabling IPS through the
3728                  * mailbox." Moreover, the mailbox may return a bogus state,
3729                  * so we need to just enable it and continue on.
3730                  */
3731         } else {
3732                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3733                 /* The bit only becomes 1 in the next vblank, so this wait here
3734                  * is essentially intel_wait_for_vblank. If we don't have this
3735                  * and don't wait for vblanks until the end of crtc_enable, then
3736                  * the HW state readout code will complain that the expected
3737                  * IPS_CTL value is not the one we read. */
3738                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3739                         DRM_ERROR("Timed out waiting for IPS enable\n");
3740         }
3741 }
3742
3743 void hsw_disable_ips(struct intel_crtc *crtc)
3744 {
3745         struct drm_device *dev = crtc->base.dev;
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747
3748         if (!crtc->config.ips_enabled)
3749                 return;
3750
3751         assert_plane_enabled(dev_priv, crtc->plane);
3752         if (IS_BROADWELL(dev)) {
3753                 mutex_lock(&dev_priv->rps.hw_lock);
3754                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3755                 mutex_unlock(&dev_priv->rps.hw_lock);
3756                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3757                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3758                         DRM_ERROR("Timed out waiting for IPS disable\n");
3759         } else {
3760                 I915_WRITE(IPS_CTL, 0);
3761                 POSTING_READ(IPS_CTL);
3762         }
3763
3764         /* We need to wait for a vblank before we can disable the plane. */
3765         intel_wait_for_vblank(dev, crtc->pipe);
3766 }
3767
3768 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3769 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3770 {
3771         struct drm_device *dev = crtc->dev;
3772         struct drm_i915_private *dev_priv = dev->dev_private;
3773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3774         enum pipe pipe = intel_crtc->pipe;
3775         int palreg = PALETTE(pipe);
3776         int i;
3777         bool reenable_ips = false;
3778
3779         /* The clocks have to be on to load the palette. */
3780         if (!crtc->enabled || !intel_crtc->active)
3781                 return;
3782
3783         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3784                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3785                         assert_dsi_pll_enabled(dev_priv);
3786                 else
3787                         assert_pll_enabled(dev_priv, pipe);
3788         }
3789
3790         /* use legacy palette for Ironlake */
3791         if (HAS_PCH_SPLIT(dev))
3792                 palreg = LGC_PALETTE(pipe);
3793
3794         /* Workaround : Do not read or write the pipe palette/gamma data while
3795          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3796          */
3797         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3798             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3799              GAMMA_MODE_MODE_SPLIT)) {
3800                 hsw_disable_ips(intel_crtc);
3801                 reenable_ips = true;
3802         }
3803
3804         for (i = 0; i < 256; i++) {
3805                 I915_WRITE(palreg + 4 * i,
3806                            (intel_crtc->lut_r[i] << 16) |
3807                            (intel_crtc->lut_g[i] << 8) |
3808                            intel_crtc->lut_b[i]);
3809         }
3810
3811         if (reenable_ips)
3812                 hsw_enable_ips(intel_crtc);
3813 }
3814
3815 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3816 {
3817         if (!enable && intel_crtc->overlay) {
3818                 struct drm_device *dev = intel_crtc->base.dev;
3819                 struct drm_i915_private *dev_priv = dev->dev_private;
3820
3821                 mutex_lock(&dev->struct_mutex);
3822                 dev_priv->mm.interruptible = false;
3823                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3824                 dev_priv->mm.interruptible = true;
3825                 mutex_unlock(&dev->struct_mutex);
3826         }
3827
3828         /* Let userspace switch the overlay on again. In most cases userspace
3829          * has to recompute where to put it anyway.
3830          */
3831 }
3832
3833 /**
3834  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3835  * cursor plane briefly if not already running after enabling the display
3836  * plane.
3837  * This workaround avoids occasional blank screens when self refresh is
3838  * enabled.
3839  */
3840 static void
3841 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3842 {
3843         u32 cntl = I915_READ(CURCNTR(pipe));
3844
3845         if ((cntl & CURSOR_MODE) == 0) {
3846                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3847
3848                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3849                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3850                 intel_wait_for_vblank(dev_priv->dev, pipe);
3851                 I915_WRITE(CURCNTR(pipe), cntl);
3852                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3853                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3854         }
3855 }
3856
3857 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3858 {
3859         struct drm_device *dev = crtc->dev;
3860         struct drm_i915_private *dev_priv = dev->dev_private;
3861         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3862         int pipe = intel_crtc->pipe;
3863         int plane = intel_crtc->plane;
3864
3865         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3866         intel_enable_planes(crtc);
3867         /* The fixup needs to happen before cursor is enabled */
3868         if (IS_G4X(dev))
3869                 g4x_fixup_plane(dev_priv, pipe);
3870         intel_crtc_update_cursor(crtc, true);
3871         intel_crtc_dpms_overlay(intel_crtc, true);
3872
3873         hsw_enable_ips(intel_crtc);
3874
3875         mutex_lock(&dev->struct_mutex);
3876         intel_update_fbc(dev);
3877         intel_edp_psr_update(dev);
3878         mutex_unlock(&dev->struct_mutex);
3879 }
3880
3881 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3882 {
3883         struct drm_device *dev = crtc->dev;
3884         struct drm_i915_private *dev_priv = dev->dev_private;
3885         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3886         int pipe = intel_crtc->pipe;
3887         int plane = intel_crtc->plane;
3888
3889         intel_crtc_wait_for_pending_flips(crtc);
3890         drm_vblank_off(dev, pipe);
3891
3892         if (dev_priv->fbc.plane == plane)
3893                 intel_disable_fbc(dev);
3894
3895         hsw_disable_ips(intel_crtc);
3896
3897         intel_crtc_dpms_overlay(intel_crtc, false);
3898         intel_crtc_update_cursor(crtc, false);
3899         intel_disable_planes(crtc);
3900         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3901 }
3902
3903 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3904 {
3905         struct drm_device *dev = crtc->dev;
3906         struct drm_i915_private *dev_priv = dev->dev_private;
3907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3908         struct intel_encoder *encoder;
3909         int pipe = intel_crtc->pipe;
3910
3911         WARN_ON(!crtc->enabled);
3912
3913         if (intel_crtc->active)
3914                 return;
3915
3916         intel_crtc->active = true;
3917
3918         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3919         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3920
3921         for_each_encoder_on_crtc(dev, crtc, encoder)
3922                 if (encoder->pre_enable)
3923                         encoder->pre_enable(encoder);
3924
3925         if (intel_crtc->config.has_pch_encoder) {
3926                 /* Note: FDI PLL enabling _must_ be done before we enable the
3927                  * cpu pipes, hence this is separate from all the other fdi/pch
3928                  * enabling. */
3929                 ironlake_fdi_pll_enable(intel_crtc);
3930         } else {
3931                 assert_fdi_tx_disabled(dev_priv, pipe);
3932                 assert_fdi_rx_disabled(dev_priv, pipe);
3933         }
3934
3935         ironlake_pfit_enable(intel_crtc);
3936
3937         /*
3938          * On ILK+ LUT must be loaded before the pipe is running but with
3939          * clocks enabled
3940          */
3941         intel_crtc_load_lut(crtc);
3942
3943         intel_update_watermarks(crtc);
3944         intel_enable_pipe(intel_crtc);
3945
3946         if (intel_crtc->config.has_pch_encoder)
3947                 ironlake_pch_enable(crtc);
3948
3949         for_each_encoder_on_crtc(dev, crtc, encoder)
3950                 encoder->enable(encoder);
3951
3952         if (HAS_PCH_CPT(dev))
3953                 cpt_verify_modeset(dev, intel_crtc->pipe);
3954
3955         intel_crtc_enable_planes(crtc);
3956
3957         /*
3958          * There seems to be a race in PCH platform hw (at least on some
3959          * outputs) where an enabled pipe still completes any pageflip right
3960          * away (as if the pipe is off) instead of waiting for vblank. As soon
3961          * as the first vblank happend, everything works as expected. Hence just
3962          * wait for one vblank before returning to avoid strange things
3963          * happening.
3964          */
3965         intel_wait_for_vblank(dev, intel_crtc->pipe);
3966 }
3967
3968 /* IPS only exists on ULT machines and is tied to pipe A. */
3969 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3970 {
3971         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3972 }
3973
3974 /*
3975  * This implements the workaround described in the "notes" section of the mode
3976  * set sequence documentation. When going from no pipes or single pipe to
3977  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3978  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3979  */
3980 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3981 {
3982         struct drm_device *dev = crtc->base.dev;
3983         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3984
3985         /* We want to get the other_active_crtc only if there's only 1 other
3986          * active crtc. */
3987         for_each_intel_crtc(dev, crtc_it) {
3988                 if (!crtc_it->active || crtc_it == crtc)
3989                         continue;
3990
3991                 if (other_active_crtc)
3992                         return;
3993
3994                 other_active_crtc = crtc_it;
3995         }
3996         if (!other_active_crtc)
3997                 return;
3998
3999         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4000         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4001 }
4002
4003 static void haswell_crtc_enable(struct drm_crtc *crtc)
4004 {
4005         struct drm_device *dev = crtc->dev;
4006         struct drm_i915_private *dev_priv = dev->dev_private;
4007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4008         struct intel_encoder *encoder;
4009         int pipe = intel_crtc->pipe;
4010
4011         WARN_ON(!crtc->enabled);
4012
4013         if (intel_crtc->active)
4014                 return;
4015
4016         intel_crtc->active = true;
4017
4018         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4019         if (intel_crtc->config.has_pch_encoder)
4020                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4021
4022         if (intel_crtc->config.has_pch_encoder)
4023                 dev_priv->display.fdi_link_train(crtc);
4024
4025         for_each_encoder_on_crtc(dev, crtc, encoder)
4026                 if (encoder->pre_enable)
4027                         encoder->pre_enable(encoder);
4028
4029         intel_ddi_enable_pipe_clock(intel_crtc);
4030
4031         ironlake_pfit_enable(intel_crtc);
4032
4033         /*
4034          * On ILK+ LUT must be loaded before the pipe is running but with
4035          * clocks enabled
4036          */
4037         intel_crtc_load_lut(crtc);
4038
4039         intel_ddi_set_pipe_settings(crtc);
4040         intel_ddi_enable_transcoder_func(crtc);
4041
4042         intel_update_watermarks(crtc);
4043         intel_enable_pipe(intel_crtc);
4044
4045         if (intel_crtc->config.has_pch_encoder)
4046                 lpt_pch_enable(crtc);
4047
4048         for_each_encoder_on_crtc(dev, crtc, encoder) {
4049                 encoder->enable(encoder);
4050                 intel_opregion_notify_encoder(encoder, true);
4051         }
4052
4053         /* If we change the relative order between pipe/planes enabling, we need
4054          * to change the workaround. */
4055         haswell_mode_set_planes_workaround(intel_crtc);
4056         intel_crtc_enable_planes(crtc);
4057 }
4058
4059 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4060 {
4061         struct drm_device *dev = crtc->base.dev;
4062         struct drm_i915_private *dev_priv = dev->dev_private;
4063         int pipe = crtc->pipe;
4064
4065         /* To avoid upsetting the power well on haswell only disable the pfit if
4066          * it's in use. The hw state code will make sure we get this right. */
4067         if (crtc->config.pch_pfit.enabled) {
4068                 I915_WRITE(PF_CTL(pipe), 0);
4069                 I915_WRITE(PF_WIN_POS(pipe), 0);
4070                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4071         }
4072 }
4073
4074 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4075 {
4076         struct drm_device *dev = crtc->dev;
4077         struct drm_i915_private *dev_priv = dev->dev_private;
4078         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4079         struct intel_encoder *encoder;
4080         int pipe = intel_crtc->pipe;
4081         u32 reg, temp;
4082
4083         if (!intel_crtc->active)
4084                 return;
4085
4086         intel_crtc_disable_planes(crtc);
4087
4088         for_each_encoder_on_crtc(dev, crtc, encoder)
4089                 encoder->disable(encoder);
4090
4091         if (intel_crtc->config.has_pch_encoder)
4092                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4093
4094         intel_disable_pipe(dev_priv, pipe);
4095
4096         ironlake_pfit_disable(intel_crtc);
4097
4098         for_each_encoder_on_crtc(dev, crtc, encoder)
4099                 if (encoder->post_disable)
4100                         encoder->post_disable(encoder);
4101
4102         if (intel_crtc->config.has_pch_encoder) {
4103                 ironlake_fdi_disable(crtc);
4104
4105                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4106                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4107
4108                 if (HAS_PCH_CPT(dev)) {
4109                         /* disable TRANS_DP_CTL */
4110                         reg = TRANS_DP_CTL(pipe);
4111                         temp = I915_READ(reg);
4112                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4113                                   TRANS_DP_PORT_SEL_MASK);
4114                         temp |= TRANS_DP_PORT_SEL_NONE;
4115                         I915_WRITE(reg, temp);
4116
4117                         /* disable DPLL_SEL */
4118                         temp = I915_READ(PCH_DPLL_SEL);
4119                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4120                         I915_WRITE(PCH_DPLL_SEL, temp);
4121                 }
4122
4123                 /* disable PCH DPLL */
4124                 intel_disable_shared_dpll(intel_crtc);
4125
4126                 ironlake_fdi_pll_disable(intel_crtc);
4127         }
4128
4129         intel_crtc->active = false;
4130         intel_update_watermarks(crtc);
4131
4132         mutex_lock(&dev->struct_mutex);
4133         intel_update_fbc(dev);
4134         intel_edp_psr_update(dev);
4135         mutex_unlock(&dev->struct_mutex);
4136 }
4137
4138 static void haswell_crtc_disable(struct drm_crtc *crtc)
4139 {
4140         struct drm_device *dev = crtc->dev;
4141         struct drm_i915_private *dev_priv = dev->dev_private;
4142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4143         struct intel_encoder *encoder;
4144         int pipe = intel_crtc->pipe;
4145         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4146
4147         if (!intel_crtc->active)
4148                 return;
4149
4150         intel_crtc_disable_planes(crtc);
4151
4152         for_each_encoder_on_crtc(dev, crtc, encoder) {
4153                 intel_opregion_notify_encoder(encoder, false);
4154                 encoder->disable(encoder);
4155         }
4156
4157         if (intel_crtc->config.has_pch_encoder)
4158                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4159         intel_disable_pipe(dev_priv, pipe);
4160
4161         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4162
4163         ironlake_pfit_disable(intel_crtc);
4164
4165         intel_ddi_disable_pipe_clock(intel_crtc);
4166
4167         for_each_encoder_on_crtc(dev, crtc, encoder)
4168                 if (encoder->post_disable)
4169                         encoder->post_disable(encoder);
4170
4171         if (intel_crtc->config.has_pch_encoder) {
4172                 lpt_disable_pch_transcoder(dev_priv);
4173                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4174                 intel_ddi_fdi_disable(crtc);
4175         }
4176
4177         intel_crtc->active = false;
4178         intel_update_watermarks(crtc);
4179
4180         mutex_lock(&dev->struct_mutex);
4181         intel_update_fbc(dev);
4182         intel_edp_psr_update(dev);
4183         mutex_unlock(&dev->struct_mutex);
4184 }
4185
4186 static void ironlake_crtc_off(struct drm_crtc *crtc)
4187 {
4188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4189         intel_put_shared_dpll(intel_crtc);
4190 }
4191
4192 static void haswell_crtc_off(struct drm_crtc *crtc)
4193 {
4194         intel_ddi_put_crtc_pll(crtc);
4195 }
4196
4197 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4198 {
4199         struct drm_device *dev = crtc->base.dev;
4200         struct drm_i915_private *dev_priv = dev->dev_private;
4201         struct intel_crtc_config *pipe_config = &crtc->config;
4202
4203         if (!crtc->config.gmch_pfit.control)
4204                 return;
4205
4206         /*
4207          * The panel fitter should only be adjusted whilst the pipe is disabled,
4208          * according to register description and PRM.
4209          */
4210         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4211         assert_pipe_disabled(dev_priv, crtc->pipe);
4212
4213         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4214         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4215
4216         /* Border color in case we don't scale up to the full screen. Black by
4217          * default, change to something else for debugging. */
4218         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4219 }
4220
4221 #define for_each_power_domain(domain, mask)                             \
4222         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4223                 if ((1 << (domain)) & (mask))
4224
4225 enum intel_display_power_domain
4226 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4227 {
4228         struct drm_device *dev = intel_encoder->base.dev;
4229         struct intel_digital_port *intel_dig_port;
4230
4231         switch (intel_encoder->type) {
4232         case INTEL_OUTPUT_UNKNOWN:
4233                 /* Only DDI platforms should ever use this output type */
4234                 WARN_ON_ONCE(!HAS_DDI(dev));
4235         case INTEL_OUTPUT_DISPLAYPORT:
4236         case INTEL_OUTPUT_HDMI:
4237         case INTEL_OUTPUT_EDP:
4238                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4239                 switch (intel_dig_port->port) {
4240                 case PORT_A:
4241                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4242                 case PORT_B:
4243                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4244                 case PORT_C:
4245                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4246                 case PORT_D:
4247                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4248                 default:
4249                         WARN_ON_ONCE(1);
4250                         return POWER_DOMAIN_PORT_OTHER;
4251                 }
4252         case INTEL_OUTPUT_ANALOG:
4253                 return POWER_DOMAIN_PORT_CRT;
4254         case INTEL_OUTPUT_DSI:
4255                 return POWER_DOMAIN_PORT_DSI;
4256         default:
4257                 return POWER_DOMAIN_PORT_OTHER;
4258         }
4259 }
4260
4261 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4262 {
4263         struct drm_device *dev = crtc->dev;
4264         struct intel_encoder *intel_encoder;
4265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4266         enum pipe pipe = intel_crtc->pipe;
4267         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4268         unsigned long mask;
4269         enum transcoder transcoder;
4270
4271         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4272
4273         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4274         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4275         if (pfit_enabled)
4276                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4277
4278         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4279                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4280
4281         return mask;
4282 }
4283
4284 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4285                                   bool enable)
4286 {
4287         if (dev_priv->power_domains.init_power_on == enable)
4288                 return;
4289
4290         if (enable)
4291                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4292         else
4293                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4294
4295         dev_priv->power_domains.init_power_on = enable;
4296 }
4297
4298 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4299 {
4300         struct drm_i915_private *dev_priv = dev->dev_private;
4301         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4302         struct intel_crtc *crtc;
4303
4304         /*
4305          * First get all needed power domains, then put all unneeded, to avoid
4306          * any unnecessary toggling of the power wells.
4307          */
4308         for_each_intel_crtc(dev, crtc) {
4309                 enum intel_display_power_domain domain;
4310
4311                 if (!crtc->base.enabled)
4312                         continue;
4313
4314                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4315
4316                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4317                         intel_display_power_get(dev_priv, domain);
4318         }
4319
4320         for_each_intel_crtc(dev, crtc) {
4321                 enum intel_display_power_domain domain;
4322
4323                 for_each_power_domain(domain, crtc->enabled_power_domains)
4324                         intel_display_power_put(dev_priv, domain);
4325
4326                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4327         }
4328
4329         intel_display_set_init_power(dev_priv, false);
4330 }
4331
4332 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4333 {
4334         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4335
4336         /* Obtain SKU information */
4337         mutex_lock(&dev_priv->dpio_lock);
4338         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4339                 CCK_FUSE_HPLL_FREQ_MASK;
4340         mutex_unlock(&dev_priv->dpio_lock);
4341
4342         return vco_freq[hpll_freq];
4343 }
4344
4345 /* Adjust CDclk dividers to allow high res or save power if possible */
4346 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4347 {
4348         struct drm_i915_private *dev_priv = dev->dev_private;
4349         u32 val, cmd;
4350
4351         WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4352         dev_priv->vlv_cdclk_freq = cdclk;
4353
4354         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4355                 cmd = 2;
4356         else if (cdclk == 266)
4357                 cmd = 1;
4358         else
4359                 cmd = 0;
4360
4361         mutex_lock(&dev_priv->rps.hw_lock);
4362         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4363         val &= ~DSPFREQGUAR_MASK;
4364         val |= (cmd << DSPFREQGUAR_SHIFT);
4365         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4366         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4367                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4368                      50)) {
4369                 DRM_ERROR("timed out waiting for CDclk change\n");
4370         }
4371         mutex_unlock(&dev_priv->rps.hw_lock);
4372
4373         if (cdclk == 400) {
4374                 u32 divider, vco;
4375
4376                 vco = valleyview_get_vco(dev_priv);
4377                 divider = ((vco << 1) / cdclk) - 1;
4378
4379                 mutex_lock(&dev_priv->dpio_lock);
4380                 /* adjust cdclk divider */
4381                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4382                 val &= ~0xf;
4383                 val |= divider;
4384                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4385                 mutex_unlock(&dev_priv->dpio_lock);
4386         }
4387
4388         mutex_lock(&dev_priv->dpio_lock);
4389         /* adjust self-refresh exit latency value */
4390         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4391         val &= ~0x7f;
4392
4393         /*
4394          * For high bandwidth configs, we set a higher latency in the bunit
4395          * so that the core display fetch happens in time to avoid underruns.
4396          */
4397         if (cdclk == 400)
4398                 val |= 4500 / 250; /* 4.5 usec */
4399         else
4400                 val |= 3000 / 250; /* 3.0 usec */
4401         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4402         mutex_unlock(&dev_priv->dpio_lock);
4403
4404         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4405         intel_i2c_reset(dev);
4406 }
4407
4408 int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4409 {
4410         int cur_cdclk, vco;
4411         int divider;
4412
4413         vco = valleyview_get_vco(dev_priv);
4414
4415         mutex_lock(&dev_priv->dpio_lock);
4416         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4417         mutex_unlock(&dev_priv->dpio_lock);
4418
4419         divider &= 0xf;
4420
4421         cur_cdclk = (vco << 1) / (divider + 1);
4422
4423         return cur_cdclk;
4424 }
4425
4426 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4427                                  int max_pixclk)
4428 {
4429         /*
4430          * Really only a few cases to deal with, as only 4 CDclks are supported:
4431          *   200MHz
4432          *   267MHz
4433          *   320MHz
4434          *   400MHz
4435          * So we check to see whether we're above 90% of the lower bin and
4436          * adjust if needed.
4437          */
4438         if (max_pixclk > 288000) {
4439                 return 400;
4440         } else if (max_pixclk > 240000) {
4441                 return 320;
4442         } else
4443                 return 266;
4444         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4445 }
4446
4447 /* compute the max pixel clock for new configuration */
4448 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4449 {
4450         struct drm_device *dev = dev_priv->dev;
4451         struct intel_crtc *intel_crtc;
4452         int max_pixclk = 0;
4453
4454         for_each_intel_crtc(dev, intel_crtc) {
4455                 if (intel_crtc->new_enabled)
4456                         max_pixclk = max(max_pixclk,
4457                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4458         }
4459
4460         return max_pixclk;
4461 }
4462
4463 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4464                                             unsigned *prepare_pipes)
4465 {
4466         struct drm_i915_private *dev_priv = dev->dev_private;
4467         struct intel_crtc *intel_crtc;
4468         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4469
4470         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4471             dev_priv->vlv_cdclk_freq)
4472                 return;
4473
4474         /* disable/enable all currently active pipes while we change cdclk */
4475         for_each_intel_crtc(dev, intel_crtc)
4476                 if (intel_crtc->base.enabled)
4477                         *prepare_pipes |= (1 << intel_crtc->pipe);
4478 }
4479
4480 static void valleyview_modeset_global_resources(struct drm_device *dev)
4481 {
4482         struct drm_i915_private *dev_priv = dev->dev_private;
4483         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4484         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4485
4486         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4487                 valleyview_set_cdclk(dev, req_cdclk);
4488         modeset_update_crtc_power_domains(dev);
4489 }
4490
4491 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4492 {
4493         struct drm_device *dev = crtc->dev;
4494         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4495         struct intel_encoder *encoder;
4496         int pipe = intel_crtc->pipe;
4497         bool is_dsi;
4498
4499         WARN_ON(!crtc->enabled);
4500
4501         if (intel_crtc->active)
4502                 return;
4503
4504         intel_crtc->active = true;
4505
4506         for_each_encoder_on_crtc(dev, crtc, encoder)
4507                 if (encoder->pre_pll_enable)
4508                         encoder->pre_pll_enable(encoder);
4509
4510         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4511
4512         if (!is_dsi) {
4513                 if (IS_CHERRYVIEW(dev))
4514                         chv_enable_pll(intel_crtc);
4515                 else
4516                         vlv_enable_pll(intel_crtc);
4517         }
4518
4519         for_each_encoder_on_crtc(dev, crtc, encoder)
4520                 if (encoder->pre_enable)
4521                         encoder->pre_enable(encoder);
4522
4523         i9xx_pfit_enable(intel_crtc);
4524
4525         intel_crtc_load_lut(crtc);
4526
4527         intel_update_watermarks(crtc);
4528         intel_enable_pipe(intel_crtc);
4529         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4530
4531         for_each_encoder_on_crtc(dev, crtc, encoder)
4532                 encoder->enable(encoder);
4533
4534         intel_crtc_enable_planes(crtc);
4535 }
4536
4537 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4538 {
4539         struct drm_device *dev = crtc->dev;
4540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4541         struct intel_encoder *encoder;
4542         int pipe = intel_crtc->pipe;
4543
4544         WARN_ON(!crtc->enabled);
4545
4546         if (intel_crtc->active)
4547                 return;
4548
4549         intel_crtc->active = true;
4550
4551         for_each_encoder_on_crtc(dev, crtc, encoder)
4552                 if (encoder->pre_enable)
4553                         encoder->pre_enable(encoder);
4554
4555         i9xx_enable_pll(intel_crtc);
4556
4557         i9xx_pfit_enable(intel_crtc);
4558
4559         intel_crtc_load_lut(crtc);
4560
4561         intel_update_watermarks(crtc);
4562         intel_enable_pipe(intel_crtc);
4563         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4564
4565         for_each_encoder_on_crtc(dev, crtc, encoder)
4566                 encoder->enable(encoder);
4567
4568         intel_crtc_enable_planes(crtc);
4569 }
4570
4571 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4572 {
4573         struct drm_device *dev = crtc->base.dev;
4574         struct drm_i915_private *dev_priv = dev->dev_private;
4575
4576         if (!crtc->config.gmch_pfit.control)
4577                 return;
4578
4579         assert_pipe_disabled(dev_priv, crtc->pipe);
4580
4581         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4582                          I915_READ(PFIT_CONTROL));
4583         I915_WRITE(PFIT_CONTROL, 0);
4584 }
4585
4586 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4587 {
4588         struct drm_device *dev = crtc->dev;
4589         struct drm_i915_private *dev_priv = dev->dev_private;
4590         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4591         struct intel_encoder *encoder;
4592         int pipe = intel_crtc->pipe;
4593
4594         if (!intel_crtc->active)
4595                 return;
4596
4597         intel_crtc_disable_planes(crtc);
4598
4599         for_each_encoder_on_crtc(dev, crtc, encoder)
4600                 encoder->disable(encoder);
4601
4602         intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4603         intel_disable_pipe(dev_priv, pipe);
4604
4605         i9xx_pfit_disable(intel_crtc);
4606
4607         for_each_encoder_on_crtc(dev, crtc, encoder)
4608                 if (encoder->post_disable)
4609                         encoder->post_disable(encoder);
4610
4611         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4612                 if (IS_CHERRYVIEW(dev))
4613                         chv_disable_pll(dev_priv, pipe);
4614                 else if (IS_VALLEYVIEW(dev))
4615                         vlv_disable_pll(dev_priv, pipe);
4616                 else
4617                         i9xx_disable_pll(dev_priv, pipe);
4618         }
4619
4620         intel_crtc->active = false;
4621         intel_update_watermarks(crtc);
4622
4623         mutex_lock(&dev->struct_mutex);
4624         intel_update_fbc(dev);
4625         intel_edp_psr_update(dev);
4626         mutex_unlock(&dev->struct_mutex);
4627 }
4628
4629 static void i9xx_crtc_off(struct drm_crtc *crtc)
4630 {
4631 }
4632
4633 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4634                                     bool enabled)
4635 {
4636         struct drm_device *dev = crtc->dev;
4637         struct drm_i915_master_private *master_priv;
4638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4639         int pipe = intel_crtc->pipe;
4640
4641         if (!dev->primary->master)
4642                 return;
4643
4644         master_priv = dev->primary->master->driver_priv;
4645         if (!master_priv->sarea_priv)
4646                 return;
4647
4648         switch (pipe) {
4649         case 0:
4650                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4651                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4652                 break;
4653         case 1:
4654                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4655                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4656                 break;
4657         default:
4658                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4659                 break;
4660         }
4661 }
4662
4663 /**
4664  * Sets the power management mode of the pipe and plane.
4665  */
4666 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4667 {
4668         struct drm_device *dev = crtc->dev;
4669         struct drm_i915_private *dev_priv = dev->dev_private;
4670         struct intel_encoder *intel_encoder;
4671         bool enable = false;
4672
4673         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4674                 enable |= intel_encoder->connectors_active;
4675
4676         if (enable)
4677                 dev_priv->display.crtc_enable(crtc);
4678         else
4679                 dev_priv->display.crtc_disable(crtc);
4680
4681         intel_crtc_update_sarea(crtc, enable);
4682 }
4683
4684 static void intel_crtc_disable(struct drm_crtc *crtc)
4685 {
4686         struct drm_device *dev = crtc->dev;
4687         struct drm_connector *connector;
4688         struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690         /* crtc should still be enabled when we disable it. */
4691         WARN_ON(!crtc->enabled);
4692
4693         dev_priv->display.crtc_disable(crtc);
4694         intel_crtc_update_sarea(crtc, false);
4695         dev_priv->display.off(crtc);
4696
4697         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4698         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4699         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4700
4701         if (crtc->primary->fb) {
4702                 mutex_lock(&dev->struct_mutex);
4703                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4704                 mutex_unlock(&dev->struct_mutex);
4705                 crtc->primary->fb = NULL;
4706         }
4707
4708         /* Update computed state. */
4709         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4710                 if (!connector->encoder || !connector->encoder->crtc)
4711                         continue;
4712
4713                 if (connector->encoder->crtc != crtc)
4714                         continue;
4715
4716                 connector->dpms = DRM_MODE_DPMS_OFF;
4717                 to_intel_encoder(connector->encoder)->connectors_active = false;
4718         }
4719 }
4720
4721 void intel_encoder_destroy(struct drm_encoder *encoder)
4722 {
4723         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4724
4725         drm_encoder_cleanup(encoder);
4726         kfree(intel_encoder);
4727 }
4728
4729 /* Simple dpms helper for encoders with just one connector, no cloning and only
4730  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4731  * state of the entire output pipe. */
4732 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4733 {
4734         if (mode == DRM_MODE_DPMS_ON) {
4735                 encoder->connectors_active = true;
4736
4737                 intel_crtc_update_dpms(encoder->base.crtc);
4738         } else {
4739                 encoder->connectors_active = false;
4740
4741                 intel_crtc_update_dpms(encoder->base.crtc);
4742         }
4743 }
4744
4745 /* Cross check the actual hw state with our own modeset state tracking (and it's
4746  * internal consistency). */
4747 static void intel_connector_check_state(struct intel_connector *connector)
4748 {
4749         if (connector->get_hw_state(connector)) {
4750                 struct intel_encoder *encoder = connector->encoder;
4751                 struct drm_crtc *crtc;
4752                 bool encoder_enabled;
4753                 enum pipe pipe;
4754
4755                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4756                               connector->base.base.id,
4757                               drm_get_connector_name(&connector->base));
4758
4759                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4760                      "wrong connector dpms state\n");
4761                 WARN(connector->base.encoder != &encoder->base,
4762                      "active connector not linked to encoder\n");
4763                 WARN(!encoder->connectors_active,
4764                      "encoder->connectors_active not set\n");
4765
4766                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4767                 WARN(!encoder_enabled, "encoder not enabled\n");
4768                 if (WARN_ON(!encoder->base.crtc))
4769                         return;
4770
4771                 crtc = encoder->base.crtc;
4772
4773                 WARN(!crtc->enabled, "crtc not enabled\n");
4774                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4775                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4776                      "encoder active on the wrong pipe\n");
4777         }
4778 }
4779
4780 /* Even simpler default implementation, if there's really no special case to
4781  * consider. */
4782 void intel_connector_dpms(struct drm_connector *connector, int mode)
4783 {
4784         /* All the simple cases only support two dpms states. */
4785         if (mode != DRM_MODE_DPMS_ON)
4786                 mode = DRM_MODE_DPMS_OFF;
4787
4788         if (mode == connector->dpms)
4789                 return;
4790
4791         connector->dpms = mode;
4792
4793         /* Only need to change hw state when actually enabled */
4794         if (connector->encoder)
4795                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4796
4797         intel_modeset_check_state(connector->dev);
4798 }
4799
4800 /* Simple connector->get_hw_state implementation for encoders that support only
4801  * one connector and no cloning and hence the encoder state determines the state
4802  * of the connector. */
4803 bool intel_connector_get_hw_state(struct intel_connector *connector)
4804 {
4805         enum pipe pipe = 0;
4806         struct intel_encoder *encoder = connector->encoder;
4807
4808         return encoder->get_hw_state(encoder, &pipe);
4809 }
4810
4811 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4812                                      struct intel_crtc_config *pipe_config)
4813 {
4814         struct drm_i915_private *dev_priv = dev->dev_private;
4815         struct intel_crtc *pipe_B_crtc =
4816                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4817
4818         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4819                       pipe_name(pipe), pipe_config->fdi_lanes);
4820         if (pipe_config->fdi_lanes > 4) {
4821                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4822                               pipe_name(pipe), pipe_config->fdi_lanes);
4823                 return false;
4824         }
4825
4826         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4827                 if (pipe_config->fdi_lanes > 2) {
4828                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4829                                       pipe_config->fdi_lanes);
4830                         return false;
4831                 } else {
4832                         return true;
4833                 }
4834         }
4835
4836         if (INTEL_INFO(dev)->num_pipes == 2)
4837                 return true;
4838
4839         /* Ivybridge 3 pipe is really complicated */
4840         switch (pipe) {
4841         case PIPE_A:
4842                 return true;
4843         case PIPE_B:
4844                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4845                     pipe_config->fdi_lanes > 2) {
4846                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4847                                       pipe_name(pipe), pipe_config->fdi_lanes);
4848                         return false;
4849                 }
4850                 return true;
4851         case PIPE_C:
4852                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4853                     pipe_B_crtc->config.fdi_lanes <= 2) {
4854                         if (pipe_config->fdi_lanes > 2) {
4855                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4856                                               pipe_name(pipe), pipe_config->fdi_lanes);
4857                                 return false;
4858                         }
4859                 } else {
4860                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4861                         return false;
4862                 }
4863                 return true;
4864         default:
4865                 BUG();
4866         }
4867 }
4868
4869 #define RETRY 1
4870 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4871                                        struct intel_crtc_config *pipe_config)
4872 {
4873         struct drm_device *dev = intel_crtc->base.dev;
4874         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4875         int lane, link_bw, fdi_dotclock;
4876         bool setup_ok, needs_recompute = false;
4877
4878 retry:
4879         /* FDI is a binary signal running at ~2.7GHz, encoding
4880          * each output octet as 10 bits. The actual frequency
4881          * is stored as a divider into a 100MHz clock, and the
4882          * mode pixel clock is stored in units of 1KHz.
4883          * Hence the bw of each lane in terms of the mode signal
4884          * is:
4885          */
4886         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4887
4888         fdi_dotclock = adjusted_mode->crtc_clock;
4889
4890         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4891                                            pipe_config->pipe_bpp);
4892
4893         pipe_config->fdi_lanes = lane;
4894
4895         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4896                                link_bw, &pipe_config->fdi_m_n);
4897
4898         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4899                                             intel_crtc->pipe, pipe_config);
4900         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4901                 pipe_config->pipe_bpp -= 2*3;
4902                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4903                               pipe_config->pipe_bpp);
4904                 needs_recompute = true;
4905                 pipe_config->bw_constrained = true;
4906
4907                 goto retry;
4908         }
4909
4910         if (needs_recompute)
4911                 return RETRY;
4912
4913         return setup_ok ? 0 : -EINVAL;
4914 }
4915
4916 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4917                                    struct intel_crtc_config *pipe_config)
4918 {
4919         pipe_config->ips_enabled = i915.enable_ips &&
4920                                    hsw_crtc_supports_ips(crtc) &&
4921                                    pipe_config->pipe_bpp <= 24;
4922 }
4923
4924 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4925                                      struct intel_crtc_config *pipe_config)
4926 {
4927         struct drm_device *dev = crtc->base.dev;
4928         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4929
4930         /* FIXME should check pixel clock limits on all platforms */
4931         if (INTEL_INFO(dev)->gen < 4) {
4932                 struct drm_i915_private *dev_priv = dev->dev_private;
4933                 int clock_limit =
4934                         dev_priv->display.get_display_clock_speed(dev);
4935
4936                 /*
4937                  * Enable pixel doubling when the dot clock
4938                  * is > 90% of the (display) core speed.
4939                  *
4940                  * GDG double wide on either pipe,
4941                  * otherwise pipe A only.
4942                  */
4943                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4944                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4945                         clock_limit *= 2;
4946                         pipe_config->double_wide = true;
4947                 }
4948
4949                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4950                         return -EINVAL;
4951         }
4952
4953         /*
4954          * Pipe horizontal size must be even in:
4955          * - DVO ganged mode
4956          * - LVDS dual channel mode
4957          * - Double wide pipe
4958          */
4959         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4960              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4961                 pipe_config->pipe_src_w &= ~1;
4962
4963         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4964          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4965          */
4966         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4967                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4968                 return -EINVAL;
4969
4970         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4971                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4972         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4973                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4974                  * for lvds. */
4975                 pipe_config->pipe_bpp = 8*3;
4976         }
4977
4978         if (HAS_IPS(dev))
4979                 hsw_compute_ips_config(crtc, pipe_config);
4980
4981         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4982          * clock survives for now. */
4983         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4984                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4985
4986         if (pipe_config->has_pch_encoder)
4987                 return ironlake_fdi_compute_config(crtc, pipe_config);
4988
4989         return 0;
4990 }
4991
4992 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4993 {
4994         return 400000; /* FIXME */
4995 }
4996
4997 static int i945_get_display_clock_speed(struct drm_device *dev)
4998 {
4999         return 400000;
5000 }
5001
5002 static int i915_get_display_clock_speed(struct drm_device *dev)
5003 {
5004         return 333000;
5005 }
5006
5007 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5008 {
5009         return 200000;
5010 }
5011
5012 static int pnv_get_display_clock_speed(struct drm_device *dev)
5013 {
5014         u16 gcfgc = 0;
5015
5016         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5017
5018         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5019         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5020                 return 267000;
5021         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5022                 return 333000;
5023         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5024                 return 444000;
5025         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5026                 return 200000;
5027         default:
5028                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5029         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5030                 return 133000;
5031         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5032                 return 167000;
5033         }
5034 }
5035
5036 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5037 {
5038         u16 gcfgc = 0;
5039
5040         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5041
5042         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5043                 return 133000;
5044         else {
5045                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5046                 case GC_DISPLAY_CLOCK_333_MHZ:
5047                         return 333000;
5048                 default:
5049                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5050                         return 190000;
5051                 }
5052         }
5053 }
5054
5055 static int i865_get_display_clock_speed(struct drm_device *dev)
5056 {
5057         return 266000;
5058 }
5059
5060 static int i855_get_display_clock_speed(struct drm_device *dev)
5061 {
5062         u16 hpllcc = 0;
5063         /* Assume that the hardware is in the high speed state.  This
5064          * should be the default.
5065          */
5066         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5067         case GC_CLOCK_133_200:
5068         case GC_CLOCK_100_200:
5069                 return 200000;
5070         case GC_CLOCK_166_250:
5071                 return 250000;
5072         case GC_CLOCK_100_133:
5073                 return 133000;
5074         }
5075
5076         /* Shouldn't happen */
5077         return 0;
5078 }
5079
5080 static int i830_get_display_clock_speed(struct drm_device *dev)
5081 {
5082         return 133000;
5083 }
5084
5085 static void
5086 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5087 {
5088         while (*num > DATA_LINK_M_N_MASK ||
5089                *den > DATA_LINK_M_N_MASK) {
5090                 *num >>= 1;
5091                 *den >>= 1;
5092         }
5093 }
5094
5095 static void compute_m_n(unsigned int m, unsigned int n,
5096                         uint32_t *ret_m, uint32_t *ret_n)
5097 {
5098         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5099         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5100         intel_reduce_m_n_ratio(ret_m, ret_n);
5101 }
5102
5103 void
5104 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5105                        int pixel_clock, int link_clock,
5106                        struct intel_link_m_n *m_n)
5107 {
5108         m_n->tu = 64;
5109
5110         compute_m_n(bits_per_pixel * pixel_clock,
5111                     link_clock * nlanes * 8,
5112                     &m_n->gmch_m, &m_n->gmch_n);
5113
5114         compute_m_n(pixel_clock, link_clock,
5115                     &m_n->link_m, &m_n->link_n);
5116 }
5117
5118 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5119 {
5120         if (i915.panel_use_ssc >= 0)
5121                 return i915.panel_use_ssc != 0;
5122         return dev_priv->vbt.lvds_use_ssc
5123                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5124 }
5125
5126 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5127 {
5128         struct drm_device *dev = crtc->dev;
5129         struct drm_i915_private *dev_priv = dev->dev_private;
5130         int refclk;
5131
5132         if (IS_VALLEYVIEW(dev)) {
5133                 refclk = 100000;
5134         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5135             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5136                 refclk = dev_priv->vbt.lvds_ssc_freq;
5137                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5138         } else if (!IS_GEN2(dev)) {
5139                 refclk = 96000;
5140         } else {
5141                 refclk = 48000;
5142         }
5143
5144         return refclk;
5145 }
5146
5147 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5148 {
5149         return (1 << dpll->n) << 16 | dpll->m2;
5150 }
5151
5152 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5153 {
5154         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5155 }
5156
5157 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5158                                      intel_clock_t *reduced_clock)
5159 {
5160         struct drm_device *dev = crtc->base.dev;
5161         struct drm_i915_private *dev_priv = dev->dev_private;
5162         int pipe = crtc->pipe;
5163         u32 fp, fp2 = 0;
5164
5165         if (IS_PINEVIEW(dev)) {
5166                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5167                 if (reduced_clock)
5168                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5169         } else {
5170                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5171                 if (reduced_clock)
5172                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5173         }
5174
5175         I915_WRITE(FP0(pipe), fp);
5176         crtc->config.dpll_hw_state.fp0 = fp;
5177
5178         crtc->lowfreq_avail = false;
5179         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5180             reduced_clock && i915.powersave) {
5181                 I915_WRITE(FP1(pipe), fp2);
5182                 crtc->config.dpll_hw_state.fp1 = fp2;
5183                 crtc->lowfreq_avail = true;
5184         } else {
5185                 I915_WRITE(FP1(pipe), fp);
5186                 crtc->config.dpll_hw_state.fp1 = fp;
5187         }
5188 }
5189
5190 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5191                 pipe)
5192 {
5193         u32 reg_val;
5194
5195         /*
5196          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5197          * and set it to a reasonable value instead.
5198          */
5199         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5200         reg_val &= 0xffffff00;
5201         reg_val |= 0x00000030;
5202         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5203
5204         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5205         reg_val &= 0x8cffffff;
5206         reg_val = 0x8c000000;
5207         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5208
5209         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5210         reg_val &= 0xffffff00;
5211         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5212
5213         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5214         reg_val &= 0x00ffffff;
5215         reg_val |= 0xb0000000;
5216         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5217 }
5218
5219 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5220                                          struct intel_link_m_n *m_n)
5221 {
5222         struct drm_device *dev = crtc->base.dev;
5223         struct drm_i915_private *dev_priv = dev->dev_private;
5224         int pipe = crtc->pipe;
5225
5226         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5227         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5228         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5229         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5230 }
5231
5232 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5233                                          struct intel_link_m_n *m_n)
5234 {
5235         struct drm_device *dev = crtc->base.dev;
5236         struct drm_i915_private *dev_priv = dev->dev_private;
5237         int pipe = crtc->pipe;
5238         enum transcoder transcoder = crtc->config.cpu_transcoder;
5239
5240         if (INTEL_INFO(dev)->gen >= 5) {
5241                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5242                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5243                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5244                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5245         } else {
5246                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5247                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5248                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5249                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5250         }
5251 }
5252
5253 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5254 {
5255         if (crtc->config.has_pch_encoder)
5256                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5257         else
5258                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5259 }
5260
5261 static void vlv_update_pll(struct intel_crtc *crtc)
5262 {
5263         struct drm_device *dev = crtc->base.dev;
5264         struct drm_i915_private *dev_priv = dev->dev_private;
5265         int pipe = crtc->pipe;
5266         u32 dpll, mdiv;
5267         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5268         u32 coreclk, reg_val, dpll_md;
5269
5270         mutex_lock(&dev_priv->dpio_lock);
5271
5272         bestn = crtc->config.dpll.n;
5273         bestm1 = crtc->config.dpll.m1;
5274         bestm2 = crtc->config.dpll.m2;
5275         bestp1 = crtc->config.dpll.p1;
5276         bestp2 = crtc->config.dpll.p2;
5277
5278         /* See eDP HDMI DPIO driver vbios notes doc */
5279
5280         /* PLL B needs special handling */
5281         if (pipe)
5282                 vlv_pllb_recal_opamp(dev_priv, pipe);
5283
5284         /* Set up Tx target for periodic Rcomp update */
5285         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5286
5287         /* Disable target IRef on PLL */
5288         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5289         reg_val &= 0x00ffffff;
5290         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5291
5292         /* Disable fast lock */
5293         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5294
5295         /* Set idtafcrecal before PLL is enabled */
5296         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5297         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5298         mdiv |= ((bestn << DPIO_N_SHIFT));
5299         mdiv |= (1 << DPIO_K_SHIFT);
5300
5301         /*
5302          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5303          * but we don't support that).
5304          * Note: don't use the DAC post divider as it seems unstable.
5305          */
5306         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5307         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5308
5309         mdiv |= DPIO_ENABLE_CALIBRATION;
5310         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5311
5312         /* Set HBR and RBR LPF coefficients */
5313         if (crtc->config.port_clock == 162000 ||
5314             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5315             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5316                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5317                                  0x009f0003);
5318         else
5319                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5320                                  0x00d0000f);
5321
5322         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5323             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5324                 /* Use SSC source */
5325                 if (!pipe)
5326                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5327                                          0x0df40000);
5328                 else
5329                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5330                                          0x0df70000);
5331         } else { /* HDMI or VGA */
5332                 /* Use bend source */
5333                 if (!pipe)
5334                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5335                                          0x0df70000);
5336                 else
5337                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5338                                          0x0df40000);
5339         }
5340
5341         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5342         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5343         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5344             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5345                 coreclk |= 0x01000000;
5346         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5347
5348         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5349
5350         /*
5351          * Enable DPIO clock input. We should never disable the reference
5352          * clock for pipe B, since VGA hotplug / manual detection depends
5353          * on it.
5354          */
5355         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5356                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5357         /* We should never disable this, set it here for state tracking */
5358         if (pipe == PIPE_B)
5359                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5360         dpll |= DPLL_VCO_ENABLE;
5361         crtc->config.dpll_hw_state.dpll = dpll;
5362
5363         dpll_md = (crtc->config.pixel_multiplier - 1)
5364                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5365         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5366
5367         mutex_unlock(&dev_priv->dpio_lock);
5368 }
5369
5370 static void chv_update_pll(struct intel_crtc *crtc)
5371 {
5372         struct drm_device *dev = crtc->base.dev;
5373         struct drm_i915_private *dev_priv = dev->dev_private;
5374         int pipe = crtc->pipe;
5375         int dpll_reg = DPLL(crtc->pipe);
5376         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5377         u32 val, loopfilter, intcoeff;
5378         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5379         int refclk;
5380
5381         mutex_lock(&dev_priv->dpio_lock);
5382
5383         bestn = crtc->config.dpll.n;
5384         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5385         bestm1 = crtc->config.dpll.m1;
5386         bestm2 = crtc->config.dpll.m2 >> 22;
5387         bestp1 = crtc->config.dpll.p1;
5388         bestp2 = crtc->config.dpll.p2;
5389
5390         /*
5391          * Enable Refclk and SSC
5392          */
5393         val = I915_READ(dpll_reg);
5394         val |= (DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV);
5395         I915_WRITE(dpll_reg, val);
5396
5397         /* Propagate soft reset to data lane reset */
5398         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(port));
5399         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
5400         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), val);
5401
5402         /* Disable 10bit clock to display controller */
5403         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
5404         val &= ~DPIO_DCLKP_EN;
5405         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
5406
5407         /* p1 and p2 divider */
5408         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5409                         5 << DPIO_CHV_S1_DIV_SHIFT |
5410                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5411                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5412                         1 << DPIO_CHV_K_DIV_SHIFT);
5413
5414         /* Feedback post-divider - m2 */
5415         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5416
5417         /* Feedback refclk divider - n and m1 */
5418         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5419                         DPIO_CHV_M1_DIV_BY_2 |
5420                         1 << DPIO_CHV_N_DIV_SHIFT);
5421
5422         /* M2 fraction division */
5423         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5424
5425         /* M2 fraction division enable */
5426         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5427                        DPIO_CHV_FRAC_DIV_EN |
5428                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5429
5430         /* Loop filter */
5431         refclk = i9xx_get_refclk(&crtc->base, 0);
5432         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5433                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5434         if (refclk == 100000)
5435                 intcoeff = 11;
5436         else if (refclk == 38400)
5437                 intcoeff = 10;
5438         else
5439                 intcoeff = 9;
5440         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5441         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5442
5443         /* AFC Recal */
5444         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5445                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5446                         DPIO_AFC_RECAL);
5447
5448         mutex_unlock(&dev_priv->dpio_lock);
5449 }
5450
5451 static void i9xx_update_pll(struct intel_crtc *crtc,
5452                             intel_clock_t *reduced_clock,
5453                             int num_connectors)
5454 {
5455         struct drm_device *dev = crtc->base.dev;
5456         struct drm_i915_private *dev_priv = dev->dev_private;
5457         u32 dpll;
5458         bool is_sdvo;
5459         struct dpll *clock = &crtc->config.dpll;
5460
5461         i9xx_update_pll_dividers(crtc, reduced_clock);
5462
5463         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5464                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5465
5466         dpll = DPLL_VGA_MODE_DIS;
5467
5468         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5469                 dpll |= DPLLB_MODE_LVDS;
5470         else
5471                 dpll |= DPLLB_MODE_DAC_SERIAL;
5472
5473         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5474                 dpll |= (crtc->config.pixel_multiplier - 1)
5475                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5476         }
5477
5478         if (is_sdvo)
5479                 dpll |= DPLL_SDVO_HIGH_SPEED;
5480
5481         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5482                 dpll |= DPLL_SDVO_HIGH_SPEED;
5483
5484         /* compute bitmask from p1 value */
5485         if (IS_PINEVIEW(dev))
5486                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5487         else {
5488                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5489                 if (IS_G4X(dev) && reduced_clock)
5490                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5491         }
5492         switch (clock->p2) {
5493         case 5:
5494                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5495                 break;
5496         case 7:
5497                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5498                 break;
5499         case 10:
5500                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5501                 break;
5502         case 14:
5503                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5504                 break;
5505         }
5506         if (INTEL_INFO(dev)->gen >= 4)
5507                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5508
5509         if (crtc->config.sdvo_tv_clock)
5510                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5511         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5512                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5513                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5514         else
5515                 dpll |= PLL_REF_INPUT_DREFCLK;
5516
5517         dpll |= DPLL_VCO_ENABLE;
5518         crtc->config.dpll_hw_state.dpll = dpll;
5519
5520         if (INTEL_INFO(dev)->gen >= 4) {
5521                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5522                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5523                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5524         }
5525 }
5526
5527 static void i8xx_update_pll(struct intel_crtc *crtc,
5528                             intel_clock_t *reduced_clock,
5529                             int num_connectors)
5530 {
5531         struct drm_device *dev = crtc->base.dev;
5532         struct drm_i915_private *dev_priv = dev->dev_private;
5533         u32 dpll;
5534         struct dpll *clock = &crtc->config.dpll;
5535
5536         i9xx_update_pll_dividers(crtc, reduced_clock);
5537
5538         dpll = DPLL_VGA_MODE_DIS;
5539
5540         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5541                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5542         } else {
5543                 if (clock->p1 == 2)
5544                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5545                 else
5546                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5547                 if (clock->p2 == 4)
5548                         dpll |= PLL_P2_DIVIDE_BY_4;
5549         }
5550
5551         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5552                 dpll |= DPLL_DVO_2X_MODE;
5553
5554         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5555                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5556                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5557         else
5558                 dpll |= PLL_REF_INPUT_DREFCLK;
5559
5560         dpll |= DPLL_VCO_ENABLE;
5561         crtc->config.dpll_hw_state.dpll = dpll;
5562 }
5563
5564 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5565 {
5566         struct drm_device *dev = intel_crtc->base.dev;
5567         struct drm_i915_private *dev_priv = dev->dev_private;
5568         enum pipe pipe = intel_crtc->pipe;
5569         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5570         struct drm_display_mode *adjusted_mode =
5571                 &intel_crtc->config.adjusted_mode;
5572         uint32_t crtc_vtotal, crtc_vblank_end;
5573         int vsyncshift = 0;
5574
5575         /* We need to be careful not to changed the adjusted mode, for otherwise
5576          * the hw state checker will get angry at the mismatch. */
5577         crtc_vtotal = adjusted_mode->crtc_vtotal;
5578         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5579
5580         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5581                 /* the chip adds 2 halflines automatically */
5582                 crtc_vtotal -= 1;
5583                 crtc_vblank_end -= 1;
5584
5585                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5586                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5587                 else
5588                         vsyncshift = adjusted_mode->crtc_hsync_start -
5589                                 adjusted_mode->crtc_htotal / 2;
5590                 if (vsyncshift < 0)
5591                         vsyncshift += adjusted_mode->crtc_htotal;
5592         }
5593
5594         if (INTEL_INFO(dev)->gen > 3)
5595                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5596
5597         I915_WRITE(HTOTAL(cpu_transcoder),
5598                    (adjusted_mode->crtc_hdisplay - 1) |
5599                    ((adjusted_mode->crtc_htotal - 1) << 16));
5600         I915_WRITE(HBLANK(cpu_transcoder),
5601                    (adjusted_mode->crtc_hblank_start - 1) |
5602                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5603         I915_WRITE(HSYNC(cpu_transcoder),
5604                    (adjusted_mode->crtc_hsync_start - 1) |
5605                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5606
5607         I915_WRITE(VTOTAL(cpu_transcoder),
5608                    (adjusted_mode->crtc_vdisplay - 1) |
5609                    ((crtc_vtotal - 1) << 16));
5610         I915_WRITE(VBLANK(cpu_transcoder),
5611                    (adjusted_mode->crtc_vblank_start - 1) |
5612                    ((crtc_vblank_end - 1) << 16));
5613         I915_WRITE(VSYNC(cpu_transcoder),
5614                    (adjusted_mode->crtc_vsync_start - 1) |
5615                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5616
5617         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5618          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5619          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5620          * bits. */
5621         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5622             (pipe == PIPE_B || pipe == PIPE_C))
5623                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5624
5625         /* pipesrc controls the size that is scaled from, which should
5626          * always be the user's requested size.
5627          */
5628         I915_WRITE(PIPESRC(pipe),
5629                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5630                    (intel_crtc->config.pipe_src_h - 1));
5631 }
5632
5633 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5634                                    struct intel_crtc_config *pipe_config)
5635 {
5636         struct drm_device *dev = crtc->base.dev;
5637         struct drm_i915_private *dev_priv = dev->dev_private;
5638         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5639         uint32_t tmp;
5640
5641         tmp = I915_READ(HTOTAL(cpu_transcoder));
5642         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5643         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5644         tmp = I915_READ(HBLANK(cpu_transcoder));
5645         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5646         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5647         tmp = I915_READ(HSYNC(cpu_transcoder));
5648         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5649         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5650
5651         tmp = I915_READ(VTOTAL(cpu_transcoder));
5652         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5653         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5654         tmp = I915_READ(VBLANK(cpu_transcoder));
5655         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5656         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5657         tmp = I915_READ(VSYNC(cpu_transcoder));
5658         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5659         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5660
5661         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5662                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5663                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5664                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5665         }
5666
5667         tmp = I915_READ(PIPESRC(crtc->pipe));
5668         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5669         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5670
5671         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5672         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5673 }
5674
5675 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5676                                  struct intel_crtc_config *pipe_config)
5677 {
5678         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5679         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5680         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5681         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5682
5683         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5684         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5685         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5686         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5687
5688         mode->flags = pipe_config->adjusted_mode.flags;
5689
5690         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5691         mode->flags |= pipe_config->adjusted_mode.flags;
5692 }
5693
5694 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5695 {
5696         struct drm_device *dev = intel_crtc->base.dev;
5697         struct drm_i915_private *dev_priv = dev->dev_private;
5698         uint32_t pipeconf;
5699
5700         pipeconf = 0;
5701
5702         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5703             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5704                 pipeconf |= PIPECONF_ENABLE;
5705
5706         if (intel_crtc->config.double_wide)
5707                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5708
5709         /* only g4x and later have fancy bpc/dither controls */
5710         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5711                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5712                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5713                         pipeconf |= PIPECONF_DITHER_EN |
5714                                     PIPECONF_DITHER_TYPE_SP;
5715
5716                 switch (intel_crtc->config.pipe_bpp) {
5717                 case 18:
5718                         pipeconf |= PIPECONF_6BPC;
5719                         break;
5720                 case 24:
5721                         pipeconf |= PIPECONF_8BPC;
5722                         break;
5723                 case 30:
5724                         pipeconf |= PIPECONF_10BPC;
5725                         break;
5726                 default:
5727                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5728                         BUG();
5729                 }
5730         }
5731
5732         if (HAS_PIPE_CXSR(dev)) {
5733                 if (intel_crtc->lowfreq_avail) {
5734                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5735                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5736                 } else {
5737                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5738                 }
5739         }
5740
5741         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5742                 if (INTEL_INFO(dev)->gen < 4 ||
5743                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5744                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5745                 else
5746                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5747         } else
5748                 pipeconf |= PIPECONF_PROGRESSIVE;
5749
5750         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5751                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5752
5753         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5754         POSTING_READ(PIPECONF(intel_crtc->pipe));
5755 }
5756
5757 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5758                               int x, int y,
5759                               struct drm_framebuffer *fb)
5760 {
5761         struct drm_device *dev = crtc->dev;
5762         struct drm_i915_private *dev_priv = dev->dev_private;
5763         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5764         int pipe = intel_crtc->pipe;
5765         int plane = intel_crtc->plane;
5766         int refclk, num_connectors = 0;
5767         intel_clock_t clock, reduced_clock;
5768         u32 dspcntr;
5769         bool ok, has_reduced_clock = false;
5770         bool is_lvds = false, is_dsi = false;
5771         struct intel_encoder *encoder;
5772         const intel_limit_t *limit;
5773
5774         for_each_encoder_on_crtc(dev, crtc, encoder) {
5775                 switch (encoder->type) {
5776                 case INTEL_OUTPUT_LVDS:
5777                         is_lvds = true;
5778                         break;
5779                 case INTEL_OUTPUT_DSI:
5780                         is_dsi = true;
5781                         break;
5782                 }
5783
5784                 num_connectors++;
5785         }
5786
5787         if (is_dsi)
5788                 goto skip_dpll;
5789
5790         if (!intel_crtc->config.clock_set) {
5791                 refclk = i9xx_get_refclk(crtc, num_connectors);
5792
5793                 /*
5794                  * Returns a set of divisors for the desired target clock with
5795                  * the given refclk, or FALSE.  The returned values represent
5796                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5797                  * 2) / p1 / p2.
5798                  */
5799                 limit = intel_limit(crtc, refclk);
5800                 ok = dev_priv->display.find_dpll(limit, crtc,
5801                                                  intel_crtc->config.port_clock,
5802                                                  refclk, NULL, &clock);
5803                 if (!ok) {
5804                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5805                         return -EINVAL;
5806                 }
5807
5808                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5809                         /*
5810                          * Ensure we match the reduced clock's P to the target
5811                          * clock.  If the clocks don't match, we can't switch
5812                          * the display clock by using the FP0/FP1. In such case
5813                          * we will disable the LVDS downclock feature.
5814                          */
5815                         has_reduced_clock =
5816                                 dev_priv->display.find_dpll(limit, crtc,
5817                                                             dev_priv->lvds_downclock,
5818                                                             refclk, &clock,
5819                                                             &reduced_clock);
5820                 }
5821                 /* Compat-code for transition, will disappear. */
5822                 intel_crtc->config.dpll.n = clock.n;
5823                 intel_crtc->config.dpll.m1 = clock.m1;
5824                 intel_crtc->config.dpll.m2 = clock.m2;
5825                 intel_crtc->config.dpll.p1 = clock.p1;
5826                 intel_crtc->config.dpll.p2 = clock.p2;
5827         }
5828
5829         if (IS_GEN2(dev)) {
5830                 i8xx_update_pll(intel_crtc,
5831                                 has_reduced_clock ? &reduced_clock : NULL,
5832                                 num_connectors);
5833         } else if (IS_CHERRYVIEW(dev)) {
5834                 chv_update_pll(intel_crtc);
5835         } else if (IS_VALLEYVIEW(dev)) {
5836                 vlv_update_pll(intel_crtc);
5837         } else {
5838                 i9xx_update_pll(intel_crtc,
5839                                 has_reduced_clock ? &reduced_clock : NULL,
5840                                 num_connectors);
5841         }
5842
5843 skip_dpll:
5844         /* Set up the display plane register */
5845         dspcntr = DISPPLANE_GAMMA_ENABLE;
5846
5847         if (!IS_VALLEYVIEW(dev)) {
5848                 if (pipe == 0)
5849                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5850                 else
5851                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5852         }
5853
5854         if (intel_crtc->config.has_dp_encoder)
5855                 intel_dp_set_m_n(intel_crtc);
5856
5857         intel_set_pipe_timings(intel_crtc);
5858
5859         /* pipesrc and dspsize control the size that is scaled from,
5860          * which should always be the user's requested size.
5861          */
5862         I915_WRITE(DSPSIZE(plane),
5863                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5864                    (intel_crtc->config.pipe_src_w - 1));
5865         I915_WRITE(DSPPOS(plane), 0);
5866
5867         i9xx_set_pipeconf(intel_crtc);
5868
5869         I915_WRITE(DSPCNTR(plane), dspcntr);
5870         POSTING_READ(DSPCNTR(plane));
5871
5872         dev_priv->display.update_primary_plane(crtc, fb, x, y);
5873
5874         return 0;
5875 }
5876
5877 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5878                                  struct intel_crtc_config *pipe_config)
5879 {
5880         struct drm_device *dev = crtc->base.dev;
5881         struct drm_i915_private *dev_priv = dev->dev_private;
5882         uint32_t tmp;
5883
5884         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5885                 return;
5886
5887         tmp = I915_READ(PFIT_CONTROL);
5888         if (!(tmp & PFIT_ENABLE))
5889                 return;
5890
5891         /* Check whether the pfit is attached to our pipe. */
5892         if (INTEL_INFO(dev)->gen < 4) {
5893                 if (crtc->pipe != PIPE_B)
5894                         return;
5895         } else {
5896                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5897                         return;
5898         }
5899
5900         pipe_config->gmch_pfit.control = tmp;
5901         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5902         if (INTEL_INFO(dev)->gen < 5)
5903                 pipe_config->gmch_pfit.lvds_border_bits =
5904                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5905 }
5906
5907 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5908                                struct intel_crtc_config *pipe_config)
5909 {
5910         struct drm_device *dev = crtc->base.dev;
5911         struct drm_i915_private *dev_priv = dev->dev_private;
5912         int pipe = pipe_config->cpu_transcoder;
5913         intel_clock_t clock;
5914         u32 mdiv;
5915         int refclk = 100000;
5916
5917         mutex_lock(&dev_priv->dpio_lock);
5918         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5919         mutex_unlock(&dev_priv->dpio_lock);
5920
5921         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5922         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5923         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5924         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5925         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5926
5927         vlv_clock(refclk, &clock);
5928
5929         /* clock.dot is the fast clock */
5930         pipe_config->port_clock = clock.dot / 5;
5931 }
5932
5933 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5934                                   struct intel_plane_config *plane_config)
5935 {
5936         struct drm_device *dev = crtc->base.dev;
5937         struct drm_i915_private *dev_priv = dev->dev_private;
5938         u32 val, base, offset;
5939         int pipe = crtc->pipe, plane = crtc->plane;
5940         int fourcc, pixel_format;
5941         int aligned_height;
5942
5943         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5944         if (!crtc->base.primary->fb) {
5945                 DRM_DEBUG_KMS("failed to alloc fb\n");
5946                 return;
5947         }
5948
5949         val = I915_READ(DSPCNTR(plane));
5950
5951         if (INTEL_INFO(dev)->gen >= 4)
5952                 if (val & DISPPLANE_TILED)
5953                         plane_config->tiled = true;
5954
5955         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5956         fourcc = intel_format_to_fourcc(pixel_format);
5957         crtc->base.primary->fb->pixel_format = fourcc;
5958         crtc->base.primary->fb->bits_per_pixel =
5959                 drm_format_plane_cpp(fourcc, 0) * 8;
5960
5961         if (INTEL_INFO(dev)->gen >= 4) {
5962                 if (plane_config->tiled)
5963                         offset = I915_READ(DSPTILEOFF(plane));
5964                 else
5965                         offset = I915_READ(DSPLINOFF(plane));
5966                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5967         } else {
5968                 base = I915_READ(DSPADDR(plane));
5969         }
5970         plane_config->base = base;
5971
5972         val = I915_READ(PIPESRC(pipe));
5973         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
5974         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
5975
5976         val = I915_READ(DSPSTRIDE(pipe));
5977         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
5978
5979         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
5980                                             plane_config->tiled);
5981
5982         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
5983                                    aligned_height, PAGE_SIZE);
5984
5985         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5986                       pipe, plane, crtc->base.primary->fb->width,
5987                       crtc->base.primary->fb->height,
5988                       crtc->base.primary->fb->bits_per_pixel, base,
5989                       crtc->base.primary->fb->pitches[0],
5990                       plane_config->size);
5991
5992 }
5993
5994 static void chv_crtc_clock_get(struct intel_crtc *crtc,
5995                                struct intel_crtc_config *pipe_config)
5996 {
5997         struct drm_device *dev = crtc->base.dev;
5998         struct drm_i915_private *dev_priv = dev->dev_private;
5999         int pipe = pipe_config->cpu_transcoder;
6000         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6001         intel_clock_t clock;
6002         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6003         int refclk = 100000;
6004
6005         mutex_lock(&dev_priv->dpio_lock);
6006         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6007         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6008         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6009         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6010         mutex_unlock(&dev_priv->dpio_lock);
6011
6012         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6013         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6014         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6015         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6016         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6017
6018         chv_clock(refclk, &clock);
6019
6020         /* clock.dot is the fast clock */
6021         pipe_config->port_clock = clock.dot / 5;
6022 }
6023
6024 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6025                                  struct intel_crtc_config *pipe_config)
6026 {
6027         struct drm_device *dev = crtc->base.dev;
6028         struct drm_i915_private *dev_priv = dev->dev_private;
6029         uint32_t tmp;
6030
6031         if (!intel_display_power_enabled(dev_priv,
6032                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6033                 return false;
6034
6035         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6036         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6037
6038         tmp = I915_READ(PIPECONF(crtc->pipe));
6039         if (!(tmp & PIPECONF_ENABLE))
6040                 return false;
6041
6042         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6043                 switch (tmp & PIPECONF_BPC_MASK) {
6044                 case PIPECONF_6BPC:
6045                         pipe_config->pipe_bpp = 18;
6046                         break;
6047                 case PIPECONF_8BPC:
6048                         pipe_config->pipe_bpp = 24;
6049                         break;
6050                 case PIPECONF_10BPC:
6051                         pipe_config->pipe_bpp = 30;
6052                         break;
6053                 default:
6054                         break;
6055                 }
6056         }
6057
6058         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6059                 pipe_config->limited_color_range = true;
6060
6061         if (INTEL_INFO(dev)->gen < 4)
6062                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6063
6064         intel_get_pipe_timings(crtc, pipe_config);
6065
6066         i9xx_get_pfit_config(crtc, pipe_config);
6067
6068         if (INTEL_INFO(dev)->gen >= 4) {
6069                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6070                 pipe_config->pixel_multiplier =
6071                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6072                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6073                 pipe_config->dpll_hw_state.dpll_md = tmp;
6074         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6075                 tmp = I915_READ(DPLL(crtc->pipe));
6076                 pipe_config->pixel_multiplier =
6077                         ((tmp & SDVO_MULTIPLIER_MASK)
6078                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6079         } else {
6080                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6081                  * port and will be fixed up in the encoder->get_config
6082                  * function. */
6083                 pipe_config->pixel_multiplier = 1;
6084         }
6085         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6086         if (!IS_VALLEYVIEW(dev)) {
6087                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6088                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6089         } else {
6090                 /* Mask out read-only status bits. */
6091                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6092                                                      DPLL_PORTC_READY_MASK |
6093                                                      DPLL_PORTB_READY_MASK);
6094         }
6095
6096         if (IS_CHERRYVIEW(dev))
6097                 chv_crtc_clock_get(crtc, pipe_config);
6098         else if (IS_VALLEYVIEW(dev))
6099                 vlv_crtc_clock_get(crtc, pipe_config);
6100         else
6101                 i9xx_crtc_clock_get(crtc, pipe_config);
6102
6103         return true;
6104 }
6105
6106 static void ironlake_init_pch_refclk(struct drm_device *dev)
6107 {
6108         struct drm_i915_private *dev_priv = dev->dev_private;
6109         struct drm_mode_config *mode_config = &dev->mode_config;
6110         struct intel_encoder *encoder;
6111         u32 val, final;
6112         bool has_lvds = false;
6113         bool has_cpu_edp = false;
6114         bool has_panel = false;
6115         bool has_ck505 = false;
6116         bool can_ssc = false;
6117
6118         /* We need to take the global config into account */
6119         list_for_each_entry(encoder, &mode_config->encoder_list,
6120                             base.head) {
6121                 switch (encoder->type) {
6122                 case INTEL_OUTPUT_LVDS:
6123                         has_panel = true;
6124                         has_lvds = true;
6125                         break;
6126                 case INTEL_OUTPUT_EDP:
6127                         has_panel = true;
6128                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6129                                 has_cpu_edp = true;
6130                         break;
6131                 }
6132         }
6133
6134         if (HAS_PCH_IBX(dev)) {
6135                 has_ck505 = dev_priv->vbt.display_clock_mode;
6136                 can_ssc = has_ck505;
6137         } else {
6138                 has_ck505 = false;
6139                 can_ssc = true;
6140         }
6141
6142         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6143                       has_panel, has_lvds, has_ck505);
6144
6145         /* Ironlake: try to setup display ref clock before DPLL
6146          * enabling. This is only under driver's control after
6147          * PCH B stepping, previous chipset stepping should be
6148          * ignoring this setting.
6149          */
6150         val = I915_READ(PCH_DREF_CONTROL);
6151
6152         /* As we must carefully and slowly disable/enable each source in turn,
6153          * compute the final state we want first and check if we need to
6154          * make any changes at all.
6155          */
6156         final = val;
6157         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6158         if (has_ck505)
6159                 final |= DREF_NONSPREAD_CK505_ENABLE;
6160         else
6161                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6162
6163         final &= ~DREF_SSC_SOURCE_MASK;
6164         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6165         final &= ~DREF_SSC1_ENABLE;
6166
6167         if (has_panel) {
6168                 final |= DREF_SSC_SOURCE_ENABLE;
6169
6170                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6171                         final |= DREF_SSC1_ENABLE;
6172
6173                 if (has_cpu_edp) {
6174                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6175                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6176                         else
6177                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6178                 } else
6179                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6180         } else {
6181                 final |= DREF_SSC_SOURCE_DISABLE;
6182                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6183         }
6184
6185         if (final == val)
6186                 return;
6187
6188         /* Always enable nonspread source */
6189         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6190
6191         if (has_ck505)
6192                 val |= DREF_NONSPREAD_CK505_ENABLE;
6193         else
6194                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6195
6196         if (has_panel) {
6197                 val &= ~DREF_SSC_SOURCE_MASK;
6198                 val |= DREF_SSC_SOURCE_ENABLE;
6199
6200                 /* SSC must be turned on before enabling the CPU output  */
6201                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6202                         DRM_DEBUG_KMS("Using SSC on panel\n");
6203                         val |= DREF_SSC1_ENABLE;
6204                 } else
6205                         val &= ~DREF_SSC1_ENABLE;
6206
6207                 /* Get SSC going before enabling the outputs */
6208                 I915_WRITE(PCH_DREF_CONTROL, val);
6209                 POSTING_READ(PCH_DREF_CONTROL);
6210                 udelay(200);
6211
6212                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6213
6214                 /* Enable CPU source on CPU attached eDP */
6215                 if (has_cpu_edp) {
6216                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6217                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6218                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6219                         } else
6220                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6221                 } else
6222                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6223
6224                 I915_WRITE(PCH_DREF_CONTROL, val);
6225                 POSTING_READ(PCH_DREF_CONTROL);
6226                 udelay(200);
6227         } else {
6228                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6229
6230                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6231
6232                 /* Turn off CPU output */
6233                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6234
6235                 I915_WRITE(PCH_DREF_CONTROL, val);
6236                 POSTING_READ(PCH_DREF_CONTROL);
6237                 udelay(200);
6238
6239                 /* Turn off the SSC source */
6240                 val &= ~DREF_SSC_SOURCE_MASK;
6241                 val |= DREF_SSC_SOURCE_DISABLE;
6242
6243                 /* Turn off SSC1 */
6244                 val &= ~DREF_SSC1_ENABLE;
6245
6246                 I915_WRITE(PCH_DREF_CONTROL, val);
6247                 POSTING_READ(PCH_DREF_CONTROL);
6248                 udelay(200);
6249         }
6250
6251         BUG_ON(val != final);
6252 }
6253
6254 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6255 {
6256         uint32_t tmp;
6257
6258         tmp = I915_READ(SOUTH_CHICKEN2);
6259         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6260         I915_WRITE(SOUTH_CHICKEN2, tmp);
6261
6262         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6263                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6264                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6265
6266         tmp = I915_READ(SOUTH_CHICKEN2);
6267         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6268         I915_WRITE(SOUTH_CHICKEN2, tmp);
6269
6270         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6271                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6272                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6273 }
6274
6275 /* WaMPhyProgramming:hsw */
6276 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6277 {
6278         uint32_t tmp;
6279
6280         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6281         tmp &= ~(0xFF << 24);
6282         tmp |= (0x12 << 24);
6283         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6284
6285         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6286         tmp |= (1 << 11);
6287         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6288
6289         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6290         tmp |= (1 << 11);
6291         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6292
6293         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6294         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6295         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6296
6297         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6298         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6299         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6300
6301         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6302         tmp &= ~(7 << 13);
6303         tmp |= (5 << 13);
6304         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6305
6306         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6307         tmp &= ~(7 << 13);
6308         tmp |= (5 << 13);
6309         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6310
6311         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6312         tmp &= ~0xFF;
6313         tmp |= 0x1C;
6314         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6315
6316         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6317         tmp &= ~0xFF;
6318         tmp |= 0x1C;
6319         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6320
6321         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6322         tmp &= ~(0xFF << 16);
6323         tmp |= (0x1C << 16);
6324         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6325
6326         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6327         tmp &= ~(0xFF << 16);
6328         tmp |= (0x1C << 16);
6329         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6330
6331         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6332         tmp |= (1 << 27);
6333         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6334
6335         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6336         tmp |= (1 << 27);
6337         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6338
6339         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6340         tmp &= ~(0xF << 28);
6341         tmp |= (4 << 28);
6342         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6343
6344         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6345         tmp &= ~(0xF << 28);
6346         tmp |= (4 << 28);
6347         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6348 }
6349
6350 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6351  * Programming" based on the parameters passed:
6352  * - Sequence to enable CLKOUT_DP
6353  * - Sequence to enable CLKOUT_DP without spread
6354  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6355  */
6356 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6357                                  bool with_fdi)
6358 {
6359         struct drm_i915_private *dev_priv = dev->dev_private;
6360         uint32_t reg, tmp;
6361
6362         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6363                 with_spread = true;
6364         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6365                  with_fdi, "LP PCH doesn't have FDI\n"))
6366                 with_fdi = false;
6367
6368         mutex_lock(&dev_priv->dpio_lock);
6369
6370         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6371         tmp &= ~SBI_SSCCTL_DISABLE;
6372         tmp |= SBI_SSCCTL_PATHALT;
6373         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6374
6375         udelay(24);
6376
6377         if (with_spread) {
6378                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6379                 tmp &= ~SBI_SSCCTL_PATHALT;
6380                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6381
6382                 if (with_fdi) {
6383                         lpt_reset_fdi_mphy(dev_priv);
6384                         lpt_program_fdi_mphy(dev_priv);
6385                 }
6386         }
6387
6388         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6389                SBI_GEN0 : SBI_DBUFF0;
6390         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6391         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6392         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6393
6394         mutex_unlock(&dev_priv->dpio_lock);
6395 }
6396
6397 /* Sequence to disable CLKOUT_DP */
6398 static void lpt_disable_clkout_dp(struct drm_device *dev)
6399 {
6400         struct drm_i915_private *dev_priv = dev->dev_private;
6401         uint32_t reg, tmp;
6402
6403         mutex_lock(&dev_priv->dpio_lock);
6404
6405         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6406                SBI_GEN0 : SBI_DBUFF0;
6407         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6408         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6409         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6410
6411         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6412         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6413                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6414                         tmp |= SBI_SSCCTL_PATHALT;
6415                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6416                         udelay(32);
6417                 }
6418                 tmp |= SBI_SSCCTL_DISABLE;
6419                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6420         }
6421
6422         mutex_unlock(&dev_priv->dpio_lock);
6423 }
6424
6425 static void lpt_init_pch_refclk(struct drm_device *dev)
6426 {
6427         struct drm_mode_config *mode_config = &dev->mode_config;
6428         struct intel_encoder *encoder;
6429         bool has_vga = false;
6430
6431         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6432                 switch (encoder->type) {
6433                 case INTEL_OUTPUT_ANALOG:
6434                         has_vga = true;
6435                         break;
6436                 }
6437         }
6438
6439         if (has_vga)
6440                 lpt_enable_clkout_dp(dev, true, true);
6441         else
6442                 lpt_disable_clkout_dp(dev);
6443 }
6444
6445 /*
6446  * Initialize reference clocks when the driver loads
6447  */
6448 void intel_init_pch_refclk(struct drm_device *dev)
6449 {
6450         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6451                 ironlake_init_pch_refclk(dev);
6452         else if (HAS_PCH_LPT(dev))
6453                 lpt_init_pch_refclk(dev);
6454 }
6455
6456 static int ironlake_get_refclk(struct drm_crtc *crtc)
6457 {
6458         struct drm_device *dev = crtc->dev;
6459         struct drm_i915_private *dev_priv = dev->dev_private;
6460         struct intel_encoder *encoder;
6461         int num_connectors = 0;
6462         bool is_lvds = false;
6463
6464         for_each_encoder_on_crtc(dev, crtc, encoder) {
6465                 switch (encoder->type) {
6466                 case INTEL_OUTPUT_LVDS:
6467                         is_lvds = true;
6468                         break;
6469                 }
6470                 num_connectors++;
6471         }
6472
6473         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6474                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6475                               dev_priv->vbt.lvds_ssc_freq);
6476                 return dev_priv->vbt.lvds_ssc_freq;
6477         }
6478
6479         return 120000;
6480 }
6481
6482 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6483 {
6484         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6485         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6486         int pipe = intel_crtc->pipe;
6487         uint32_t val;
6488
6489         val = 0;
6490
6491         switch (intel_crtc->config.pipe_bpp) {
6492         case 18:
6493                 val |= PIPECONF_6BPC;
6494                 break;
6495         case 24:
6496                 val |= PIPECONF_8BPC;
6497                 break;
6498         case 30:
6499                 val |= PIPECONF_10BPC;
6500                 break;
6501         case 36:
6502                 val |= PIPECONF_12BPC;
6503                 break;
6504         default:
6505                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6506                 BUG();
6507         }
6508
6509         if (intel_crtc->config.dither)
6510                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6511
6512         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6513                 val |= PIPECONF_INTERLACED_ILK;
6514         else
6515                 val |= PIPECONF_PROGRESSIVE;
6516
6517         if (intel_crtc->config.limited_color_range)
6518                 val |= PIPECONF_COLOR_RANGE_SELECT;
6519
6520         I915_WRITE(PIPECONF(pipe), val);
6521         POSTING_READ(PIPECONF(pipe));
6522 }
6523
6524 /*
6525  * Set up the pipe CSC unit.
6526  *
6527  * Currently only full range RGB to limited range RGB conversion
6528  * is supported, but eventually this should handle various
6529  * RGB<->YCbCr scenarios as well.
6530  */
6531 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6532 {
6533         struct drm_device *dev = crtc->dev;
6534         struct drm_i915_private *dev_priv = dev->dev_private;
6535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6536         int pipe = intel_crtc->pipe;
6537         uint16_t coeff = 0x7800; /* 1.0 */
6538
6539         /*
6540          * TODO: Check what kind of values actually come out of the pipe
6541          * with these coeff/postoff values and adjust to get the best
6542          * accuracy. Perhaps we even need to take the bpc value into
6543          * consideration.
6544          */
6545
6546         if (intel_crtc->config.limited_color_range)
6547                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6548
6549         /*
6550          * GY/GU and RY/RU should be the other way around according
6551          * to BSpec, but reality doesn't agree. Just set them up in
6552          * a way that results in the correct picture.
6553          */
6554         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6555         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6556
6557         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6558         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6559
6560         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6561         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6562
6563         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6564         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6565         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6566
6567         if (INTEL_INFO(dev)->gen > 6) {
6568                 uint16_t postoff = 0;
6569
6570                 if (intel_crtc->config.limited_color_range)
6571                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6572
6573                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6574                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6575                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6576
6577                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6578         } else {
6579                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6580
6581                 if (intel_crtc->config.limited_color_range)
6582                         mode |= CSC_BLACK_SCREEN_OFFSET;
6583
6584                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6585         }
6586 }
6587
6588 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6589 {
6590         struct drm_device *dev = crtc->dev;
6591         struct drm_i915_private *dev_priv = dev->dev_private;
6592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6593         enum pipe pipe = intel_crtc->pipe;
6594         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6595         uint32_t val;
6596
6597         val = 0;
6598
6599         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6600                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6601
6602         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6603                 val |= PIPECONF_INTERLACED_ILK;
6604         else
6605                 val |= PIPECONF_PROGRESSIVE;
6606
6607         I915_WRITE(PIPECONF(cpu_transcoder), val);
6608         POSTING_READ(PIPECONF(cpu_transcoder));
6609
6610         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6611         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6612
6613         if (IS_BROADWELL(dev)) {
6614                 val = 0;
6615
6616                 switch (intel_crtc->config.pipe_bpp) {
6617                 case 18:
6618                         val |= PIPEMISC_DITHER_6_BPC;
6619                         break;
6620                 case 24:
6621                         val |= PIPEMISC_DITHER_8_BPC;
6622                         break;
6623                 case 30:
6624                         val |= PIPEMISC_DITHER_10_BPC;
6625                         break;
6626                 case 36:
6627                         val |= PIPEMISC_DITHER_12_BPC;
6628                         break;
6629                 default:
6630                         /* Case prevented by pipe_config_set_bpp. */
6631                         BUG();
6632                 }
6633
6634                 if (intel_crtc->config.dither)
6635                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6636
6637                 I915_WRITE(PIPEMISC(pipe), val);
6638         }
6639 }
6640
6641 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6642                                     intel_clock_t *clock,
6643                                     bool *has_reduced_clock,
6644                                     intel_clock_t *reduced_clock)
6645 {
6646         struct drm_device *dev = crtc->dev;
6647         struct drm_i915_private *dev_priv = dev->dev_private;
6648         struct intel_encoder *intel_encoder;
6649         int refclk;
6650         const intel_limit_t *limit;
6651         bool ret, is_lvds = false;
6652
6653         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6654                 switch (intel_encoder->type) {
6655                 case INTEL_OUTPUT_LVDS:
6656                         is_lvds = true;
6657                         break;
6658                 }
6659         }
6660
6661         refclk = ironlake_get_refclk(crtc);
6662
6663         /*
6664          * Returns a set of divisors for the desired target clock with the given
6665          * refclk, or FALSE.  The returned values represent the clock equation:
6666          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6667          */
6668         limit = intel_limit(crtc, refclk);
6669         ret = dev_priv->display.find_dpll(limit, crtc,
6670                                           to_intel_crtc(crtc)->config.port_clock,
6671                                           refclk, NULL, clock);
6672         if (!ret)
6673                 return false;
6674
6675         if (is_lvds && dev_priv->lvds_downclock_avail) {
6676                 /*
6677                  * Ensure we match the reduced clock's P to the target clock.
6678                  * If the clocks don't match, we can't switch the display clock
6679                  * by using the FP0/FP1. In such case we will disable the LVDS
6680                  * downclock feature.
6681                 */
6682                 *has_reduced_clock =
6683                         dev_priv->display.find_dpll(limit, crtc,
6684                                                     dev_priv->lvds_downclock,
6685                                                     refclk, clock,
6686                                                     reduced_clock);
6687         }
6688
6689         return true;
6690 }
6691
6692 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6693 {
6694         /*
6695          * Account for spread spectrum to avoid
6696          * oversubscribing the link. Max center spread
6697          * is 2.5%; use 5% for safety's sake.
6698          */
6699         u32 bps = target_clock * bpp * 21 / 20;
6700         return DIV_ROUND_UP(bps, link_bw * 8);
6701 }
6702
6703 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6704 {
6705         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6706 }
6707
6708 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6709                                       u32 *fp,
6710                                       intel_clock_t *reduced_clock, u32 *fp2)
6711 {
6712         struct drm_crtc *crtc = &intel_crtc->base;
6713         struct drm_device *dev = crtc->dev;
6714         struct drm_i915_private *dev_priv = dev->dev_private;
6715         struct intel_encoder *intel_encoder;
6716         uint32_t dpll;
6717         int factor, num_connectors = 0;
6718         bool is_lvds = false, is_sdvo = false;
6719
6720         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6721                 switch (intel_encoder->type) {
6722                 case INTEL_OUTPUT_LVDS:
6723                         is_lvds = true;
6724                         break;
6725                 case INTEL_OUTPUT_SDVO:
6726                 case INTEL_OUTPUT_HDMI:
6727                         is_sdvo = true;
6728                         break;
6729                 }
6730
6731                 num_connectors++;
6732         }
6733
6734         /* Enable autotuning of the PLL clock (if permissible) */
6735         factor = 21;
6736         if (is_lvds) {
6737                 if ((intel_panel_use_ssc(dev_priv) &&
6738                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6739                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6740                         factor = 25;
6741         } else if (intel_crtc->config.sdvo_tv_clock)
6742                 factor = 20;
6743
6744         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6745                 *fp |= FP_CB_TUNE;
6746
6747         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6748                 *fp2 |= FP_CB_TUNE;
6749
6750         dpll = 0;
6751
6752         if (is_lvds)
6753                 dpll |= DPLLB_MODE_LVDS;
6754         else
6755                 dpll |= DPLLB_MODE_DAC_SERIAL;
6756
6757         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6758                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6759
6760         if (is_sdvo)
6761                 dpll |= DPLL_SDVO_HIGH_SPEED;
6762         if (intel_crtc->config.has_dp_encoder)
6763                 dpll |= DPLL_SDVO_HIGH_SPEED;
6764
6765         /* compute bitmask from p1 value */
6766         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6767         /* also FPA1 */
6768         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6769
6770         switch (intel_crtc->config.dpll.p2) {
6771         case 5:
6772                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6773                 break;
6774         case 7:
6775                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6776                 break;
6777         case 10:
6778                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6779                 break;
6780         case 14:
6781                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6782                 break;
6783         }
6784
6785         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6786                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6787         else
6788                 dpll |= PLL_REF_INPUT_DREFCLK;
6789
6790         return dpll | DPLL_VCO_ENABLE;
6791 }
6792
6793 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6794                                   int x, int y,
6795                                   struct drm_framebuffer *fb)
6796 {
6797         struct drm_device *dev = crtc->dev;
6798         struct drm_i915_private *dev_priv = dev->dev_private;
6799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6800         int pipe = intel_crtc->pipe;
6801         int plane = intel_crtc->plane;
6802         int num_connectors = 0;
6803         intel_clock_t clock, reduced_clock;
6804         u32 dpll = 0, fp = 0, fp2 = 0;
6805         bool ok, has_reduced_clock = false;
6806         bool is_lvds = false;
6807         struct intel_encoder *encoder;
6808         struct intel_shared_dpll *pll;
6809
6810         for_each_encoder_on_crtc(dev, crtc, encoder) {
6811                 switch (encoder->type) {
6812                 case INTEL_OUTPUT_LVDS:
6813                         is_lvds = true;
6814                         break;
6815                 }
6816
6817                 num_connectors++;
6818         }
6819
6820         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6821              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6822
6823         ok = ironlake_compute_clocks(crtc, &clock,
6824                                      &has_reduced_clock, &reduced_clock);
6825         if (!ok && !intel_crtc->config.clock_set) {
6826                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6827                 return -EINVAL;
6828         }
6829         /* Compat-code for transition, will disappear. */
6830         if (!intel_crtc->config.clock_set) {
6831                 intel_crtc->config.dpll.n = clock.n;
6832                 intel_crtc->config.dpll.m1 = clock.m1;
6833                 intel_crtc->config.dpll.m2 = clock.m2;
6834                 intel_crtc->config.dpll.p1 = clock.p1;
6835                 intel_crtc->config.dpll.p2 = clock.p2;
6836         }
6837
6838         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6839         if (intel_crtc->config.has_pch_encoder) {
6840                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6841                 if (has_reduced_clock)
6842                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6843
6844                 dpll = ironlake_compute_dpll(intel_crtc,
6845                                              &fp, &reduced_clock,
6846                                              has_reduced_clock ? &fp2 : NULL);
6847
6848                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6849                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6850                 if (has_reduced_clock)
6851                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6852                 else
6853                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6854
6855                 pll = intel_get_shared_dpll(intel_crtc);
6856                 if (pll == NULL) {
6857                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6858                                          pipe_name(pipe));
6859                         return -EINVAL;
6860                 }
6861         } else
6862                 intel_put_shared_dpll(intel_crtc);
6863
6864         if (intel_crtc->config.has_dp_encoder)
6865                 intel_dp_set_m_n(intel_crtc);
6866
6867         if (is_lvds && has_reduced_clock && i915.powersave)
6868                 intel_crtc->lowfreq_avail = true;
6869         else
6870                 intel_crtc->lowfreq_avail = false;
6871
6872         intel_set_pipe_timings(intel_crtc);
6873
6874         if (intel_crtc->config.has_pch_encoder) {
6875                 intel_cpu_transcoder_set_m_n(intel_crtc,
6876                                              &intel_crtc->config.fdi_m_n);
6877         }
6878
6879         ironlake_set_pipeconf(crtc);
6880
6881         /* Set up the display plane register */
6882         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6883         POSTING_READ(DSPCNTR(plane));
6884
6885         dev_priv->display.update_primary_plane(crtc, fb, x, y);
6886
6887         return 0;
6888 }
6889
6890 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6891                                          struct intel_link_m_n *m_n)
6892 {
6893         struct drm_device *dev = crtc->base.dev;
6894         struct drm_i915_private *dev_priv = dev->dev_private;
6895         enum pipe pipe = crtc->pipe;
6896
6897         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6898         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6899         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6900                 & ~TU_SIZE_MASK;
6901         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6902         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6903                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6904 }
6905
6906 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6907                                          enum transcoder transcoder,
6908                                          struct intel_link_m_n *m_n)
6909 {
6910         struct drm_device *dev = crtc->base.dev;
6911         struct drm_i915_private *dev_priv = dev->dev_private;
6912         enum pipe pipe = crtc->pipe;
6913
6914         if (INTEL_INFO(dev)->gen >= 5) {
6915                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6916                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6917                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6918                         & ~TU_SIZE_MASK;
6919                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6920                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6921                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6922         } else {
6923                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6924                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6925                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6926                         & ~TU_SIZE_MASK;
6927                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6928                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6929                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6930         }
6931 }
6932
6933 void intel_dp_get_m_n(struct intel_crtc *crtc,
6934                       struct intel_crtc_config *pipe_config)
6935 {
6936         if (crtc->config.has_pch_encoder)
6937                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6938         else
6939                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6940                                              &pipe_config->dp_m_n);
6941 }
6942
6943 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6944                                         struct intel_crtc_config *pipe_config)
6945 {
6946         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6947                                      &pipe_config->fdi_m_n);
6948 }
6949
6950 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6951                                      struct intel_crtc_config *pipe_config)
6952 {
6953         struct drm_device *dev = crtc->base.dev;
6954         struct drm_i915_private *dev_priv = dev->dev_private;
6955         uint32_t tmp;
6956
6957         tmp = I915_READ(PF_CTL(crtc->pipe));
6958
6959         if (tmp & PF_ENABLE) {
6960                 pipe_config->pch_pfit.enabled = true;
6961                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6962                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6963
6964                 /* We currently do not free assignements of panel fitters on
6965                  * ivb/hsw (since we don't use the higher upscaling modes which
6966                  * differentiates them) so just WARN about this case for now. */
6967                 if (IS_GEN7(dev)) {
6968                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6969                                 PF_PIPE_SEL_IVB(crtc->pipe));
6970                 }
6971         }
6972 }
6973
6974 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6975                                       struct intel_plane_config *plane_config)
6976 {
6977         struct drm_device *dev = crtc->base.dev;
6978         struct drm_i915_private *dev_priv = dev->dev_private;
6979         u32 val, base, offset;
6980         int pipe = crtc->pipe, plane = crtc->plane;
6981         int fourcc, pixel_format;
6982         int aligned_height;
6983
6984         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6985         if (!crtc->base.primary->fb) {
6986                 DRM_DEBUG_KMS("failed to alloc fb\n");
6987                 return;
6988         }
6989
6990         val = I915_READ(DSPCNTR(plane));
6991
6992         if (INTEL_INFO(dev)->gen >= 4)
6993                 if (val & DISPPLANE_TILED)
6994                         plane_config->tiled = true;
6995
6996         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6997         fourcc = intel_format_to_fourcc(pixel_format);
6998         crtc->base.primary->fb->pixel_format = fourcc;
6999         crtc->base.primary->fb->bits_per_pixel =
7000                 drm_format_plane_cpp(fourcc, 0) * 8;
7001
7002         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7003         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7004                 offset = I915_READ(DSPOFFSET(plane));
7005         } else {
7006                 if (plane_config->tiled)
7007                         offset = I915_READ(DSPTILEOFF(plane));
7008                 else
7009                         offset = I915_READ(DSPLINOFF(plane));
7010         }
7011         plane_config->base = base;
7012
7013         val = I915_READ(PIPESRC(pipe));
7014         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7015         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7016
7017         val = I915_READ(DSPSTRIDE(pipe));
7018         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7019
7020         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7021                                             plane_config->tiled);
7022
7023         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
7024                                    aligned_height, PAGE_SIZE);
7025
7026         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7027                       pipe, plane, crtc->base.primary->fb->width,
7028                       crtc->base.primary->fb->height,
7029                       crtc->base.primary->fb->bits_per_pixel, base,
7030                       crtc->base.primary->fb->pitches[0],
7031                       plane_config->size);
7032 }
7033
7034 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7035                                      struct intel_crtc_config *pipe_config)
7036 {
7037         struct drm_device *dev = crtc->base.dev;
7038         struct drm_i915_private *dev_priv = dev->dev_private;
7039         uint32_t tmp;
7040
7041         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7042         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7043
7044         tmp = I915_READ(PIPECONF(crtc->pipe));
7045         if (!(tmp & PIPECONF_ENABLE))
7046                 return false;
7047
7048         switch (tmp & PIPECONF_BPC_MASK) {
7049         case PIPECONF_6BPC:
7050                 pipe_config->pipe_bpp = 18;
7051                 break;
7052         case PIPECONF_8BPC:
7053                 pipe_config->pipe_bpp = 24;
7054                 break;
7055         case PIPECONF_10BPC:
7056                 pipe_config->pipe_bpp = 30;
7057                 break;
7058         case PIPECONF_12BPC:
7059                 pipe_config->pipe_bpp = 36;
7060                 break;
7061         default:
7062                 break;
7063         }
7064
7065         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7066                 pipe_config->limited_color_range = true;
7067
7068         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7069                 struct intel_shared_dpll *pll;
7070
7071                 pipe_config->has_pch_encoder = true;
7072
7073                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7074                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7075                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7076
7077                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7078
7079                 if (HAS_PCH_IBX(dev_priv->dev)) {
7080                         pipe_config->shared_dpll =
7081                                 (enum intel_dpll_id) crtc->pipe;
7082                 } else {
7083                         tmp = I915_READ(PCH_DPLL_SEL);
7084                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7085                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7086                         else
7087                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7088                 }
7089
7090                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7091
7092                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7093                                            &pipe_config->dpll_hw_state));
7094
7095                 tmp = pipe_config->dpll_hw_state.dpll;
7096                 pipe_config->pixel_multiplier =
7097                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7098                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7099
7100                 ironlake_pch_clock_get(crtc, pipe_config);
7101         } else {
7102                 pipe_config->pixel_multiplier = 1;
7103         }
7104
7105         intel_get_pipe_timings(crtc, pipe_config);
7106
7107         ironlake_get_pfit_config(crtc, pipe_config);
7108
7109         return true;
7110 }
7111
7112 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7113 {
7114         struct drm_device *dev = dev_priv->dev;
7115         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7116         struct intel_crtc *crtc;
7117
7118         for_each_intel_crtc(dev, crtc)
7119                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7120                      pipe_name(crtc->pipe));
7121
7122         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7123         WARN(plls->spll_refcount, "SPLL enabled\n");
7124         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7125         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7126         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7127         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7128              "CPU PWM1 enabled\n");
7129         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7130              "CPU PWM2 enabled\n");
7131         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7132              "PCH PWM1 enabled\n");
7133         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7134              "Utility pin enabled\n");
7135         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7136
7137         /*
7138          * In theory we can still leave IRQs enabled, as long as only the HPD
7139          * interrupts remain enabled. We used to check for that, but since it's
7140          * gen-specific and since we only disable LCPLL after we fully disable
7141          * the interrupts, the check below should be enough.
7142          */
7143         WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7144 }
7145
7146 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7147 {
7148         struct drm_device *dev = dev_priv->dev;
7149
7150         if (IS_HASWELL(dev)) {
7151                 mutex_lock(&dev_priv->rps.hw_lock);
7152                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7153                                             val))
7154                         DRM_ERROR("Failed to disable D_COMP\n");
7155                 mutex_unlock(&dev_priv->rps.hw_lock);
7156         } else {
7157                 I915_WRITE(D_COMP, val);
7158         }
7159         POSTING_READ(D_COMP);
7160 }
7161
7162 /*
7163  * This function implements pieces of two sequences from BSpec:
7164  * - Sequence for display software to disable LCPLL
7165  * - Sequence for display software to allow package C8+
7166  * The steps implemented here are just the steps that actually touch the LCPLL
7167  * register. Callers should take care of disabling all the display engine
7168  * functions, doing the mode unset, fixing interrupts, etc.
7169  */
7170 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7171                               bool switch_to_fclk, bool allow_power_down)
7172 {
7173         uint32_t val;
7174
7175         assert_can_disable_lcpll(dev_priv);
7176
7177         val = I915_READ(LCPLL_CTL);
7178
7179         if (switch_to_fclk) {
7180                 val |= LCPLL_CD_SOURCE_FCLK;
7181                 I915_WRITE(LCPLL_CTL, val);
7182
7183                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7184                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7185                         DRM_ERROR("Switching to FCLK failed\n");
7186
7187                 val = I915_READ(LCPLL_CTL);
7188         }
7189
7190         val |= LCPLL_PLL_DISABLE;
7191         I915_WRITE(LCPLL_CTL, val);
7192         POSTING_READ(LCPLL_CTL);
7193
7194         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7195                 DRM_ERROR("LCPLL still locked\n");
7196
7197         val = I915_READ(D_COMP);
7198         val |= D_COMP_COMP_DISABLE;
7199         hsw_write_dcomp(dev_priv, val);
7200         ndelay(100);
7201
7202         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7203                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7204
7205         if (allow_power_down) {
7206                 val = I915_READ(LCPLL_CTL);
7207                 val |= LCPLL_POWER_DOWN_ALLOW;
7208                 I915_WRITE(LCPLL_CTL, val);
7209                 POSTING_READ(LCPLL_CTL);
7210         }
7211 }
7212
7213 /*
7214  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7215  * source.
7216  */
7217 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7218 {
7219         uint32_t val;
7220         unsigned long irqflags;
7221
7222         val = I915_READ(LCPLL_CTL);
7223
7224         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7225                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7226                 return;
7227
7228         /*
7229          * Make sure we're not on PC8 state before disabling PC8, otherwise
7230          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7231          *
7232          * The other problem is that hsw_restore_lcpll() is called as part of
7233          * the runtime PM resume sequence, so we can't just call
7234          * gen6_gt_force_wake_get() because that function calls
7235          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7236          * while we are on the resume sequence. So to solve this problem we have
7237          * to call special forcewake code that doesn't touch runtime PM and
7238          * doesn't enable the forcewake delayed work.
7239          */
7240         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7241         if (dev_priv->uncore.forcewake_count++ == 0)
7242                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7243         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7244
7245         if (val & LCPLL_POWER_DOWN_ALLOW) {
7246                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7247                 I915_WRITE(LCPLL_CTL, val);
7248                 POSTING_READ(LCPLL_CTL);
7249         }
7250
7251         val = I915_READ(D_COMP);
7252         val |= D_COMP_COMP_FORCE;
7253         val &= ~D_COMP_COMP_DISABLE;
7254         hsw_write_dcomp(dev_priv, val);
7255
7256         val = I915_READ(LCPLL_CTL);
7257         val &= ~LCPLL_PLL_DISABLE;
7258         I915_WRITE(LCPLL_CTL, val);
7259
7260         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7261                 DRM_ERROR("LCPLL not locked yet\n");
7262
7263         if (val & LCPLL_CD_SOURCE_FCLK) {
7264                 val = I915_READ(LCPLL_CTL);
7265                 val &= ~LCPLL_CD_SOURCE_FCLK;
7266                 I915_WRITE(LCPLL_CTL, val);
7267
7268                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7269                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7270                         DRM_ERROR("Switching back to LCPLL failed\n");
7271         }
7272
7273         /* See the big comment above. */
7274         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7275         if (--dev_priv->uncore.forcewake_count == 0)
7276                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7277         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7278 }
7279
7280 /*
7281  * Package states C8 and deeper are really deep PC states that can only be
7282  * reached when all the devices on the system allow it, so even if the graphics
7283  * device allows PC8+, it doesn't mean the system will actually get to these
7284  * states. Our driver only allows PC8+ when going into runtime PM.
7285  *
7286  * The requirements for PC8+ are that all the outputs are disabled, the power
7287  * well is disabled and most interrupts are disabled, and these are also
7288  * requirements for runtime PM. When these conditions are met, we manually do
7289  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7290  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7291  * hang the machine.
7292  *
7293  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7294  * the state of some registers, so when we come back from PC8+ we need to
7295  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7296  * need to take care of the registers kept by RC6. Notice that this happens even
7297  * if we don't put the device in PCI D3 state (which is what currently happens
7298  * because of the runtime PM support).
7299  *
7300  * For more, read "Display Sequences for Package C8" on the hardware
7301  * documentation.
7302  */
7303 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7304 {
7305         struct drm_device *dev = dev_priv->dev;
7306         uint32_t val;
7307
7308         DRM_DEBUG_KMS("Enabling package C8+\n");
7309
7310         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7311                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7312                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7313                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7314         }
7315
7316         lpt_disable_clkout_dp(dev);
7317         hsw_disable_lcpll(dev_priv, true, true);
7318 }
7319
7320 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7321 {
7322         struct drm_device *dev = dev_priv->dev;
7323         uint32_t val;
7324
7325         DRM_DEBUG_KMS("Disabling package C8+\n");
7326
7327         hsw_restore_lcpll(dev_priv);
7328         lpt_init_pch_refclk(dev);
7329
7330         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7331                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7332                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7333                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7334         }
7335
7336         intel_prepare_ddi(dev);
7337 }
7338
7339 static void snb_modeset_global_resources(struct drm_device *dev)
7340 {
7341         modeset_update_crtc_power_domains(dev);
7342 }
7343
7344 static void haswell_modeset_global_resources(struct drm_device *dev)
7345 {
7346         modeset_update_crtc_power_domains(dev);
7347 }
7348
7349 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7350                                  int x, int y,
7351                                  struct drm_framebuffer *fb)
7352 {
7353         struct drm_device *dev = crtc->dev;
7354         struct drm_i915_private *dev_priv = dev->dev_private;
7355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7356         int plane = intel_crtc->plane;
7357
7358         if (!intel_ddi_pll_select(intel_crtc))
7359                 return -EINVAL;
7360         intel_ddi_pll_enable(intel_crtc);
7361
7362         if (intel_crtc->config.has_dp_encoder)
7363                 intel_dp_set_m_n(intel_crtc);
7364
7365         intel_crtc->lowfreq_avail = false;
7366
7367         intel_set_pipe_timings(intel_crtc);
7368
7369         if (intel_crtc->config.has_pch_encoder) {
7370                 intel_cpu_transcoder_set_m_n(intel_crtc,
7371                                              &intel_crtc->config.fdi_m_n);
7372         }
7373
7374         haswell_set_pipeconf(crtc);
7375
7376         intel_set_pipe_csc(crtc);
7377
7378         /* Set up the display plane register */
7379         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7380         POSTING_READ(DSPCNTR(plane));
7381
7382         dev_priv->display.update_primary_plane(crtc, fb, x, y);
7383
7384         return 0;
7385 }
7386
7387 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7388                                     struct intel_crtc_config *pipe_config)
7389 {
7390         struct drm_device *dev = crtc->base.dev;
7391         struct drm_i915_private *dev_priv = dev->dev_private;
7392         enum intel_display_power_domain pfit_domain;
7393         uint32_t tmp;
7394
7395         if (!intel_display_power_enabled(dev_priv,
7396                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7397                 return false;
7398
7399         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7400         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7401
7402         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7403         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7404                 enum pipe trans_edp_pipe;
7405                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7406                 default:
7407                         WARN(1, "unknown pipe linked to edp transcoder\n");
7408                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7409                 case TRANS_DDI_EDP_INPUT_A_ON:
7410                         trans_edp_pipe = PIPE_A;
7411                         break;
7412                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7413                         trans_edp_pipe = PIPE_B;
7414                         break;
7415                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7416                         trans_edp_pipe = PIPE_C;
7417                         break;
7418                 }
7419
7420                 if (trans_edp_pipe == crtc->pipe)
7421                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7422         }
7423
7424         if (!intel_display_power_enabled(dev_priv,
7425                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7426                 return false;
7427
7428         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7429         if (!(tmp & PIPECONF_ENABLE))
7430                 return false;
7431
7432         /*
7433          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7434          * DDI E. So just check whether this pipe is wired to DDI E and whether
7435          * the PCH transcoder is on.
7436          */
7437         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7438         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7439             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7440                 pipe_config->has_pch_encoder = true;
7441
7442                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7443                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7444                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7445
7446                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7447         }
7448
7449         intel_get_pipe_timings(crtc, pipe_config);
7450
7451         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7452         if (intel_display_power_enabled(dev_priv, pfit_domain))
7453                 ironlake_get_pfit_config(crtc, pipe_config);
7454
7455         if (IS_HASWELL(dev))
7456                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7457                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7458
7459         pipe_config->pixel_multiplier = 1;
7460
7461         return true;
7462 }
7463
7464 static struct {
7465         int clock;
7466         u32 config;
7467 } hdmi_audio_clock[] = {
7468         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7469         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7470         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7471         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7472         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7473         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7474         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7475         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7476         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7477         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7478 };
7479
7480 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7481 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7482 {
7483         int i;
7484
7485         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7486                 if (mode->clock == hdmi_audio_clock[i].clock)
7487                         break;
7488         }
7489
7490         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7491                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7492                 i = 1;
7493         }
7494
7495         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7496                       hdmi_audio_clock[i].clock,
7497                       hdmi_audio_clock[i].config);
7498
7499         return hdmi_audio_clock[i].config;
7500 }
7501
7502 static bool intel_eld_uptodate(struct drm_connector *connector,
7503                                int reg_eldv, uint32_t bits_eldv,
7504                                int reg_elda, uint32_t bits_elda,
7505                                int reg_edid)
7506 {
7507         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7508         uint8_t *eld = connector->eld;
7509         uint32_t i;
7510
7511         i = I915_READ(reg_eldv);
7512         i &= bits_eldv;
7513
7514         if (!eld[0])
7515                 return !i;
7516
7517         if (!i)
7518                 return false;
7519
7520         i = I915_READ(reg_elda);
7521         i &= ~bits_elda;
7522         I915_WRITE(reg_elda, i);
7523
7524         for (i = 0; i < eld[2]; i++)
7525                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7526                         return false;
7527
7528         return true;
7529 }
7530
7531 static void g4x_write_eld(struct drm_connector *connector,
7532                           struct drm_crtc *crtc,
7533                           struct drm_display_mode *mode)
7534 {
7535         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7536         uint8_t *eld = connector->eld;
7537         uint32_t eldv;
7538         uint32_t len;
7539         uint32_t i;
7540
7541         i = I915_READ(G4X_AUD_VID_DID);
7542
7543         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7544                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7545         else
7546                 eldv = G4X_ELDV_DEVCTG;
7547
7548         if (intel_eld_uptodate(connector,
7549                                G4X_AUD_CNTL_ST, eldv,
7550                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7551                                G4X_HDMIW_HDMIEDID))
7552                 return;
7553
7554         i = I915_READ(G4X_AUD_CNTL_ST);
7555         i &= ~(eldv | G4X_ELD_ADDR);
7556         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7557         I915_WRITE(G4X_AUD_CNTL_ST, i);
7558
7559         if (!eld[0])
7560                 return;
7561
7562         len = min_t(uint8_t, eld[2], len);
7563         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7564         for (i = 0; i < len; i++)
7565                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7566
7567         i = I915_READ(G4X_AUD_CNTL_ST);
7568         i |= eldv;
7569         I915_WRITE(G4X_AUD_CNTL_ST, i);
7570 }
7571
7572 static void haswell_write_eld(struct drm_connector *connector,
7573                               struct drm_crtc *crtc,
7574                               struct drm_display_mode *mode)
7575 {
7576         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7577         uint8_t *eld = connector->eld;
7578         uint32_t eldv;
7579         uint32_t i;
7580         int len;
7581         int pipe = to_intel_crtc(crtc)->pipe;
7582         int tmp;
7583
7584         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7585         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7586         int aud_config = HSW_AUD_CFG(pipe);
7587         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7588
7589         /* Audio output enable */
7590         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7591         tmp = I915_READ(aud_cntrl_st2);
7592         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7593         I915_WRITE(aud_cntrl_st2, tmp);
7594         POSTING_READ(aud_cntrl_st2);
7595
7596         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7597
7598         /* Set ELD valid state */
7599         tmp = I915_READ(aud_cntrl_st2);
7600         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7601         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7602         I915_WRITE(aud_cntrl_st2, tmp);
7603         tmp = I915_READ(aud_cntrl_st2);
7604         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7605
7606         /* Enable HDMI mode */
7607         tmp = I915_READ(aud_config);
7608         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7609         /* clear N_programing_enable and N_value_index */
7610         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7611         I915_WRITE(aud_config, tmp);
7612
7613         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7614
7615         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7616
7617         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7618                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7619                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7620                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7621         } else {
7622                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7623         }
7624
7625         if (intel_eld_uptodate(connector,
7626                                aud_cntrl_st2, eldv,
7627                                aud_cntl_st, IBX_ELD_ADDRESS,
7628                                hdmiw_hdmiedid))
7629                 return;
7630
7631         i = I915_READ(aud_cntrl_st2);
7632         i &= ~eldv;
7633         I915_WRITE(aud_cntrl_st2, i);
7634
7635         if (!eld[0])
7636                 return;
7637
7638         i = I915_READ(aud_cntl_st);
7639         i &= ~IBX_ELD_ADDRESS;
7640         I915_WRITE(aud_cntl_st, i);
7641         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7642         DRM_DEBUG_DRIVER("port num:%d\n", i);
7643
7644         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7645         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7646         for (i = 0; i < len; i++)
7647                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7648
7649         i = I915_READ(aud_cntrl_st2);
7650         i |= eldv;
7651         I915_WRITE(aud_cntrl_st2, i);
7652
7653 }
7654
7655 static void ironlake_write_eld(struct drm_connector *connector,
7656                                struct drm_crtc *crtc,
7657                                struct drm_display_mode *mode)
7658 {
7659         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7660         uint8_t *eld = connector->eld;
7661         uint32_t eldv;
7662         uint32_t i;
7663         int len;
7664         int hdmiw_hdmiedid;
7665         int aud_config;
7666         int aud_cntl_st;
7667         int aud_cntrl_st2;
7668         int pipe = to_intel_crtc(crtc)->pipe;
7669
7670         if (HAS_PCH_IBX(connector->dev)) {
7671                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7672                 aud_config = IBX_AUD_CFG(pipe);
7673                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7674                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7675         } else if (IS_VALLEYVIEW(connector->dev)) {
7676                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7677                 aud_config = VLV_AUD_CFG(pipe);
7678                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7679                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7680         } else {
7681                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7682                 aud_config = CPT_AUD_CFG(pipe);
7683                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7684                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7685         }
7686
7687         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7688
7689         if (IS_VALLEYVIEW(connector->dev))  {
7690                 struct intel_encoder *intel_encoder;
7691                 struct intel_digital_port *intel_dig_port;
7692
7693                 intel_encoder = intel_attached_encoder(connector);
7694                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7695                 i = intel_dig_port->port;
7696         } else {
7697                 i = I915_READ(aud_cntl_st);
7698                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7699                 /* DIP_Port_Select, 0x1 = PortB */
7700         }
7701
7702         if (!i) {
7703                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7704                 /* operate blindly on all ports */
7705                 eldv = IBX_ELD_VALIDB;
7706                 eldv |= IBX_ELD_VALIDB << 4;
7707                 eldv |= IBX_ELD_VALIDB << 8;
7708         } else {
7709                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7710                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7711         }
7712
7713         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7714                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7715                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7716                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7717         } else {
7718                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7719         }
7720
7721         if (intel_eld_uptodate(connector,
7722                                aud_cntrl_st2, eldv,
7723                                aud_cntl_st, IBX_ELD_ADDRESS,
7724                                hdmiw_hdmiedid))
7725                 return;
7726
7727         i = I915_READ(aud_cntrl_st2);
7728         i &= ~eldv;
7729         I915_WRITE(aud_cntrl_st2, i);
7730
7731         if (!eld[0])
7732                 return;
7733
7734         i = I915_READ(aud_cntl_st);
7735         i &= ~IBX_ELD_ADDRESS;
7736         I915_WRITE(aud_cntl_st, i);
7737
7738         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7739         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7740         for (i = 0; i < len; i++)
7741                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7742
7743         i = I915_READ(aud_cntrl_st2);
7744         i |= eldv;
7745         I915_WRITE(aud_cntrl_st2, i);
7746 }
7747
7748 void intel_write_eld(struct drm_encoder *encoder,
7749                      struct drm_display_mode *mode)
7750 {
7751         struct drm_crtc *crtc = encoder->crtc;
7752         struct drm_connector *connector;
7753         struct drm_device *dev = encoder->dev;
7754         struct drm_i915_private *dev_priv = dev->dev_private;
7755
7756         connector = drm_select_eld(encoder, mode);
7757         if (!connector)
7758                 return;
7759
7760         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7761                          connector->base.id,
7762                          drm_get_connector_name(connector),
7763                          connector->encoder->base.id,
7764                          drm_get_encoder_name(connector->encoder));
7765
7766         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7767
7768         if (dev_priv->display.write_eld)
7769                 dev_priv->display.write_eld(connector, crtc, mode);
7770 }
7771
7772 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7773 {
7774         struct drm_device *dev = crtc->dev;
7775         struct drm_i915_private *dev_priv = dev->dev_private;
7776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7777         bool visible = base != 0;
7778         u32 cntl;
7779
7780         if (intel_crtc->cursor_visible == visible)
7781                 return;
7782
7783         cntl = I915_READ(_CURACNTR);
7784         if (visible) {
7785                 /* On these chipsets we can only modify the base whilst
7786                  * the cursor is disabled.
7787                  */
7788                 I915_WRITE(_CURABASE, base);
7789
7790                 cntl &= ~(CURSOR_FORMAT_MASK);
7791                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7792                 cntl |= CURSOR_ENABLE |
7793                         CURSOR_GAMMA_ENABLE |
7794                         CURSOR_FORMAT_ARGB;
7795         } else
7796                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7797         I915_WRITE(_CURACNTR, cntl);
7798
7799         intel_crtc->cursor_visible = visible;
7800 }
7801
7802 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7803 {
7804         struct drm_device *dev = crtc->dev;
7805         struct drm_i915_private *dev_priv = dev->dev_private;
7806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7807         int pipe = intel_crtc->pipe;
7808         bool visible = base != 0;
7809
7810         if (intel_crtc->cursor_visible != visible) {
7811                 int16_t width = intel_crtc->cursor_width;
7812                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7813                 if (base) {
7814                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7815                         cntl |= MCURSOR_GAMMA_ENABLE;
7816
7817                         switch (width) {
7818                         case 64:
7819                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7820                                 break;
7821                         case 128:
7822                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7823                                 break;
7824                         case 256:
7825                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7826                                 break;
7827                         default:
7828                                 WARN_ON(1);
7829                                 return;
7830                         }
7831                         cntl |= pipe << 28; /* Connect to correct pipe */
7832                 } else {
7833                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7834                         cntl |= CURSOR_MODE_DISABLE;
7835                 }
7836                 I915_WRITE(CURCNTR(pipe), cntl);
7837
7838                 intel_crtc->cursor_visible = visible;
7839         }
7840         /* and commit changes on next vblank */
7841         POSTING_READ(CURCNTR(pipe));
7842         I915_WRITE(CURBASE(pipe), base);
7843         POSTING_READ(CURBASE(pipe));
7844 }
7845
7846 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7847 {
7848         struct drm_device *dev = crtc->dev;
7849         struct drm_i915_private *dev_priv = dev->dev_private;
7850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7851         int pipe = intel_crtc->pipe;
7852         bool visible = base != 0;
7853
7854         if (intel_crtc->cursor_visible != visible) {
7855                 int16_t width = intel_crtc->cursor_width;
7856                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7857                 if (base) {
7858                         cntl &= ~CURSOR_MODE;
7859                         cntl |= MCURSOR_GAMMA_ENABLE;
7860                         switch (width) {
7861                         case 64:
7862                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7863                                 break;
7864                         case 128:
7865                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7866                                 break;
7867                         case 256:
7868                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7869                                 break;
7870                         default:
7871                                 WARN_ON(1);
7872                                 return;
7873                         }
7874                 } else {
7875                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7876                         cntl |= CURSOR_MODE_DISABLE;
7877                 }
7878                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7879                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7880                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7881                 }
7882                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7883
7884                 intel_crtc->cursor_visible = visible;
7885         }
7886         /* and commit changes on next vblank */
7887         POSTING_READ(CURCNTR_IVB(pipe));
7888         I915_WRITE(CURBASE_IVB(pipe), base);
7889         POSTING_READ(CURBASE_IVB(pipe));
7890 }
7891
7892 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7893 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7894                                      bool on)
7895 {
7896         struct drm_device *dev = crtc->dev;
7897         struct drm_i915_private *dev_priv = dev->dev_private;
7898         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7899         int pipe = intel_crtc->pipe;
7900         int x = intel_crtc->cursor_x;
7901         int y = intel_crtc->cursor_y;
7902         u32 base = 0, pos = 0;
7903         bool visible;
7904
7905         if (on)
7906                 base = intel_crtc->cursor_addr;
7907
7908         if (x >= intel_crtc->config.pipe_src_w)
7909                 base = 0;
7910
7911         if (y >= intel_crtc->config.pipe_src_h)
7912                 base = 0;
7913
7914         if (x < 0) {
7915                 if (x + intel_crtc->cursor_width <= 0)
7916                         base = 0;
7917
7918                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7919                 x = -x;
7920         }
7921         pos |= x << CURSOR_X_SHIFT;
7922
7923         if (y < 0) {
7924                 if (y + intel_crtc->cursor_height <= 0)
7925                         base = 0;
7926
7927                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7928                 y = -y;
7929         }
7930         pos |= y << CURSOR_Y_SHIFT;
7931
7932         visible = base != 0;
7933         if (!visible && !intel_crtc->cursor_visible)
7934                 return;
7935
7936         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7937                 I915_WRITE(CURPOS_IVB(pipe), pos);
7938                 ivb_update_cursor(crtc, base);
7939         } else {
7940                 I915_WRITE(CURPOS(pipe), pos);
7941                 if (IS_845G(dev) || IS_I865G(dev))
7942                         i845_update_cursor(crtc, base);
7943                 else
7944                         i9xx_update_cursor(crtc, base);
7945         }
7946 }
7947
7948 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7949                                  struct drm_file *file,
7950                                  uint32_t handle,
7951                                  uint32_t width, uint32_t height)
7952 {
7953         struct drm_device *dev = crtc->dev;
7954         struct drm_i915_private *dev_priv = dev->dev_private;
7955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7956         struct drm_i915_gem_object *obj;
7957         unsigned old_width;
7958         uint32_t addr;
7959         int ret;
7960
7961         /* if we want to turn off the cursor ignore width and height */
7962         if (!handle) {
7963                 DRM_DEBUG_KMS("cursor off\n");
7964                 addr = 0;
7965                 obj = NULL;
7966                 mutex_lock(&dev->struct_mutex);
7967                 goto finish;
7968         }
7969
7970         /* Check for which cursor types we support */
7971         if (!((width == 64 && height == 64) ||
7972                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
7973                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
7974                 DRM_DEBUG("Cursor dimension not supported\n");
7975                 return -EINVAL;
7976         }
7977
7978         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7979         if (&obj->base == NULL)
7980                 return -ENOENT;
7981
7982         if (obj->base.size < width * height * 4) {
7983                 DRM_DEBUG_KMS("buffer is to small\n");
7984                 ret = -ENOMEM;
7985                 goto fail;
7986         }
7987
7988         /* we only need to pin inside GTT if cursor is non-phy */
7989         mutex_lock(&dev->struct_mutex);
7990         if (!INTEL_INFO(dev)->cursor_needs_physical) {
7991                 unsigned alignment;
7992
7993                 if (obj->tiling_mode) {
7994                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
7995                         ret = -EINVAL;
7996                         goto fail_locked;
7997                 }
7998
7999                 /* Note that the w/a also requires 2 PTE of padding following
8000                  * the bo. We currently fill all unused PTE with the shadow
8001                  * page and so we should always have valid PTE following the
8002                  * cursor preventing the VT-d warning.
8003                  */
8004                 alignment = 0;
8005                 if (need_vtd_wa(dev))
8006                         alignment = 64*1024;
8007
8008                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8009                 if (ret) {
8010                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8011                         goto fail_locked;
8012                 }
8013
8014                 ret = i915_gem_object_put_fence(obj);
8015                 if (ret) {
8016                         DRM_DEBUG_KMS("failed to release fence for cursor");
8017                         goto fail_unpin;
8018                 }
8019
8020                 addr = i915_gem_obj_ggtt_offset(obj);
8021         } else {
8022                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8023                 ret = i915_gem_attach_phys_object(dev, obj,
8024                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
8025                                                   align);
8026                 if (ret) {
8027                         DRM_DEBUG_KMS("failed to attach phys object\n");
8028                         goto fail_locked;
8029                 }
8030                 addr = obj->phys_obj->handle->busaddr;
8031         }
8032
8033         if (IS_GEN2(dev))
8034                 I915_WRITE(CURSIZE, (height << 12) | width);
8035
8036  finish:
8037         if (intel_crtc->cursor_bo) {
8038                 if (INTEL_INFO(dev)->cursor_needs_physical) {
8039                         if (intel_crtc->cursor_bo != obj)
8040                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
8041                 } else
8042                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8043                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
8044         }
8045
8046         mutex_unlock(&dev->struct_mutex);
8047
8048         old_width = intel_crtc->cursor_width;
8049
8050         intel_crtc->cursor_addr = addr;
8051         intel_crtc->cursor_bo = obj;
8052         intel_crtc->cursor_width = width;
8053         intel_crtc->cursor_height = height;
8054
8055         if (intel_crtc->active) {
8056                 if (old_width != width)
8057                         intel_update_watermarks(crtc);
8058                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8059         }
8060
8061         return 0;
8062 fail_unpin:
8063         i915_gem_object_unpin_from_display_plane(obj);
8064 fail_locked:
8065         mutex_unlock(&dev->struct_mutex);
8066 fail:
8067         drm_gem_object_unreference_unlocked(&obj->base);
8068         return ret;
8069 }
8070
8071 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
8072 {
8073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8074
8075         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
8076         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
8077
8078         if (intel_crtc->active)
8079                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8080
8081         return 0;
8082 }
8083
8084 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8085                                  u16 *blue, uint32_t start, uint32_t size)
8086 {
8087         int end = (start + size > 256) ? 256 : start + size, i;
8088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8089
8090         for (i = start; i < end; i++) {
8091                 intel_crtc->lut_r[i] = red[i] >> 8;
8092                 intel_crtc->lut_g[i] = green[i] >> 8;
8093                 intel_crtc->lut_b[i] = blue[i] >> 8;
8094         }
8095
8096         intel_crtc_load_lut(crtc);
8097 }
8098
8099 /* VESA 640x480x72Hz mode to set on the pipe */
8100 static struct drm_display_mode load_detect_mode = {
8101         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8102                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8103 };
8104
8105 struct drm_framebuffer *
8106 __intel_framebuffer_create(struct drm_device *dev,
8107                            struct drm_mode_fb_cmd2 *mode_cmd,
8108                            struct drm_i915_gem_object *obj)
8109 {
8110         struct intel_framebuffer *intel_fb;
8111         int ret;
8112
8113         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8114         if (!intel_fb) {
8115                 drm_gem_object_unreference_unlocked(&obj->base);
8116                 return ERR_PTR(-ENOMEM);
8117         }
8118
8119         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8120         if (ret)
8121                 goto err;
8122
8123         return &intel_fb->base;
8124 err:
8125         drm_gem_object_unreference_unlocked(&obj->base);
8126         kfree(intel_fb);
8127
8128         return ERR_PTR(ret);
8129 }
8130
8131 static struct drm_framebuffer *
8132 intel_framebuffer_create(struct drm_device *dev,
8133                          struct drm_mode_fb_cmd2 *mode_cmd,
8134                          struct drm_i915_gem_object *obj)
8135 {
8136         struct drm_framebuffer *fb;
8137         int ret;
8138
8139         ret = i915_mutex_lock_interruptible(dev);
8140         if (ret)
8141                 return ERR_PTR(ret);
8142         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8143         mutex_unlock(&dev->struct_mutex);
8144
8145         return fb;
8146 }
8147
8148 static u32
8149 intel_framebuffer_pitch_for_width(int width, int bpp)
8150 {
8151         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8152         return ALIGN(pitch, 64);
8153 }
8154
8155 static u32
8156 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8157 {
8158         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8159         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
8160 }
8161
8162 static struct drm_framebuffer *
8163 intel_framebuffer_create_for_mode(struct drm_device *dev,
8164                                   struct drm_display_mode *mode,
8165                                   int depth, int bpp)
8166 {
8167         struct drm_i915_gem_object *obj;
8168         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8169
8170         obj = i915_gem_alloc_object(dev,
8171                                     intel_framebuffer_size_for_mode(mode, bpp));
8172         if (obj == NULL)
8173                 return ERR_PTR(-ENOMEM);
8174
8175         mode_cmd.width = mode->hdisplay;
8176         mode_cmd.height = mode->vdisplay;
8177         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8178                                                                 bpp);
8179         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8180
8181         return intel_framebuffer_create(dev, &mode_cmd, obj);
8182 }
8183
8184 static struct drm_framebuffer *
8185 mode_fits_in_fbdev(struct drm_device *dev,
8186                    struct drm_display_mode *mode)
8187 {
8188 #ifdef CONFIG_DRM_I915_FBDEV
8189         struct drm_i915_private *dev_priv = dev->dev_private;
8190         struct drm_i915_gem_object *obj;
8191         struct drm_framebuffer *fb;
8192
8193         if (!dev_priv->fbdev)
8194                 return NULL;
8195
8196         if (!dev_priv->fbdev->fb)
8197                 return NULL;
8198
8199         obj = dev_priv->fbdev->fb->obj;
8200         BUG_ON(!obj);
8201
8202         fb = &dev_priv->fbdev->fb->base;
8203         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8204                                                                fb->bits_per_pixel))
8205                 return NULL;
8206
8207         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8208                 return NULL;
8209
8210         return fb;
8211 #else
8212         return NULL;
8213 #endif
8214 }
8215
8216 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8217                                 struct drm_display_mode *mode,
8218                                 struct intel_load_detect_pipe *old)
8219 {
8220         struct intel_crtc *intel_crtc;
8221         struct intel_encoder *intel_encoder =
8222                 intel_attached_encoder(connector);
8223         struct drm_crtc *possible_crtc;
8224         struct drm_encoder *encoder = &intel_encoder->base;
8225         struct drm_crtc *crtc = NULL;
8226         struct drm_device *dev = encoder->dev;
8227         struct drm_framebuffer *fb;
8228         int i = -1;
8229
8230         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8231                       connector->base.id, drm_get_connector_name(connector),
8232                       encoder->base.id, drm_get_encoder_name(encoder));
8233
8234         /*
8235          * Algorithm gets a little messy:
8236          *
8237          *   - if the connector already has an assigned crtc, use it (but make
8238          *     sure it's on first)
8239          *
8240          *   - try to find the first unused crtc that can drive this connector,
8241          *     and use that if we find one
8242          */
8243
8244         /* See if we already have a CRTC for this connector */
8245         if (encoder->crtc) {
8246                 crtc = encoder->crtc;
8247
8248                 mutex_lock(&crtc->mutex);
8249
8250                 old->dpms_mode = connector->dpms;
8251                 old->load_detect_temp = false;
8252
8253                 /* Make sure the crtc and connector are running */
8254                 if (connector->dpms != DRM_MODE_DPMS_ON)
8255                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8256
8257                 return true;
8258         }
8259
8260         /* Find an unused one (if possible) */
8261         for_each_crtc(dev, possible_crtc) {
8262                 i++;
8263                 if (!(encoder->possible_crtcs & (1 << i)))
8264                         continue;
8265                 if (!possible_crtc->enabled) {
8266                         crtc = possible_crtc;
8267                         break;
8268                 }
8269         }
8270
8271         /*
8272          * If we didn't find an unused CRTC, don't use any.
8273          */
8274         if (!crtc) {
8275                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8276                 return false;
8277         }
8278
8279         mutex_lock(&crtc->mutex);
8280         intel_encoder->new_crtc = to_intel_crtc(crtc);
8281         to_intel_connector(connector)->new_encoder = intel_encoder;
8282
8283         intel_crtc = to_intel_crtc(crtc);
8284         intel_crtc->new_enabled = true;
8285         intel_crtc->new_config = &intel_crtc->config;
8286         old->dpms_mode = connector->dpms;
8287         old->load_detect_temp = true;
8288         old->release_fb = NULL;
8289
8290         if (!mode)
8291                 mode = &load_detect_mode;
8292
8293         /* We need a framebuffer large enough to accommodate all accesses
8294          * that the plane may generate whilst we perform load detection.
8295          * We can not rely on the fbcon either being present (we get called
8296          * during its initialisation to detect all boot displays, or it may
8297          * not even exist) or that it is large enough to satisfy the
8298          * requested mode.
8299          */
8300         fb = mode_fits_in_fbdev(dev, mode);
8301         if (fb == NULL) {
8302                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8303                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8304                 old->release_fb = fb;
8305         } else
8306                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8307         if (IS_ERR(fb)) {
8308                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8309                 goto fail;
8310         }
8311
8312         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8313                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8314                 if (old->release_fb)
8315                         old->release_fb->funcs->destroy(old->release_fb);
8316                 goto fail;
8317         }
8318
8319         /* let the connector get through one full cycle before testing */
8320         intel_wait_for_vblank(dev, intel_crtc->pipe);
8321         return true;
8322
8323  fail:
8324         intel_crtc->new_enabled = crtc->enabled;
8325         if (intel_crtc->new_enabled)
8326                 intel_crtc->new_config = &intel_crtc->config;
8327         else
8328                 intel_crtc->new_config = NULL;
8329         mutex_unlock(&crtc->mutex);
8330         return false;
8331 }
8332
8333 void intel_release_load_detect_pipe(struct drm_connector *connector,
8334                                     struct intel_load_detect_pipe *old)
8335 {
8336         struct intel_encoder *intel_encoder =
8337                 intel_attached_encoder(connector);
8338         struct drm_encoder *encoder = &intel_encoder->base;
8339         struct drm_crtc *crtc = encoder->crtc;
8340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8341
8342         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8343                       connector->base.id, drm_get_connector_name(connector),
8344                       encoder->base.id, drm_get_encoder_name(encoder));
8345
8346         if (old->load_detect_temp) {
8347                 to_intel_connector(connector)->new_encoder = NULL;
8348                 intel_encoder->new_crtc = NULL;
8349                 intel_crtc->new_enabled = false;
8350                 intel_crtc->new_config = NULL;
8351                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8352
8353                 if (old->release_fb) {
8354                         drm_framebuffer_unregister_private(old->release_fb);
8355                         drm_framebuffer_unreference(old->release_fb);
8356                 }
8357
8358                 mutex_unlock(&crtc->mutex);
8359                 return;
8360         }
8361
8362         /* Switch crtc and encoder back off if necessary */
8363         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8364                 connector->funcs->dpms(connector, old->dpms_mode);
8365
8366         mutex_unlock(&crtc->mutex);
8367 }
8368
8369 static int i9xx_pll_refclk(struct drm_device *dev,
8370                            const struct intel_crtc_config *pipe_config)
8371 {
8372         struct drm_i915_private *dev_priv = dev->dev_private;
8373         u32 dpll = pipe_config->dpll_hw_state.dpll;
8374
8375         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8376                 return dev_priv->vbt.lvds_ssc_freq;
8377         else if (HAS_PCH_SPLIT(dev))
8378                 return 120000;
8379         else if (!IS_GEN2(dev))
8380                 return 96000;
8381         else
8382                 return 48000;
8383 }
8384
8385 /* Returns the clock of the currently programmed mode of the given pipe. */
8386 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8387                                 struct intel_crtc_config *pipe_config)
8388 {
8389         struct drm_device *dev = crtc->base.dev;
8390         struct drm_i915_private *dev_priv = dev->dev_private;
8391         int pipe = pipe_config->cpu_transcoder;
8392         u32 dpll = pipe_config->dpll_hw_state.dpll;
8393         u32 fp;
8394         intel_clock_t clock;
8395         int refclk = i9xx_pll_refclk(dev, pipe_config);
8396
8397         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8398                 fp = pipe_config->dpll_hw_state.fp0;
8399         else
8400                 fp = pipe_config->dpll_hw_state.fp1;
8401
8402         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8403         if (IS_PINEVIEW(dev)) {
8404                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8405                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8406         } else {
8407                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8408                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8409         }
8410
8411         if (!IS_GEN2(dev)) {
8412                 if (IS_PINEVIEW(dev))
8413                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8414                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8415                 else
8416                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8417                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8418
8419                 switch (dpll & DPLL_MODE_MASK) {
8420                 case DPLLB_MODE_DAC_SERIAL:
8421                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8422                                 5 : 10;
8423                         break;
8424                 case DPLLB_MODE_LVDS:
8425                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8426                                 7 : 14;
8427                         break;
8428                 default:
8429                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8430                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8431                         return;
8432                 }
8433
8434                 if (IS_PINEVIEW(dev))
8435                         pineview_clock(refclk, &clock);
8436                 else
8437                         i9xx_clock(refclk, &clock);
8438         } else {
8439                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8440                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8441
8442                 if (is_lvds) {
8443                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8444                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8445
8446                         if (lvds & LVDS_CLKB_POWER_UP)
8447                                 clock.p2 = 7;
8448                         else
8449                                 clock.p2 = 14;
8450                 } else {
8451                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8452                                 clock.p1 = 2;
8453                         else {
8454                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8455                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8456                         }
8457                         if (dpll & PLL_P2_DIVIDE_BY_4)
8458                                 clock.p2 = 4;
8459                         else
8460                                 clock.p2 = 2;
8461                 }
8462
8463                 i9xx_clock(refclk, &clock);
8464         }
8465
8466         /*
8467          * This value includes pixel_multiplier. We will use
8468          * port_clock to compute adjusted_mode.crtc_clock in the
8469          * encoder's get_config() function.
8470          */
8471         pipe_config->port_clock = clock.dot;
8472 }
8473
8474 int intel_dotclock_calculate(int link_freq,
8475                              const struct intel_link_m_n *m_n)
8476 {
8477         /*
8478          * The calculation for the data clock is:
8479          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8480          * But we want to avoid losing precison if possible, so:
8481          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8482          *
8483          * and the link clock is simpler:
8484          * link_clock = (m * link_clock) / n
8485          */
8486
8487         if (!m_n->link_n)
8488                 return 0;
8489
8490         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8491 }
8492
8493 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8494                                    struct intel_crtc_config *pipe_config)
8495 {
8496         struct drm_device *dev = crtc->base.dev;
8497
8498         /* read out port_clock from the DPLL */
8499         i9xx_crtc_clock_get(crtc, pipe_config);
8500
8501         /*
8502          * This value does not include pixel_multiplier.
8503          * We will check that port_clock and adjusted_mode.crtc_clock
8504          * agree once we know their relationship in the encoder's
8505          * get_config() function.
8506          */
8507         pipe_config->adjusted_mode.crtc_clock =
8508                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8509                                          &pipe_config->fdi_m_n);
8510 }
8511
8512 /** Returns the currently programmed mode of the given pipe. */
8513 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8514                                              struct drm_crtc *crtc)
8515 {
8516         struct drm_i915_private *dev_priv = dev->dev_private;
8517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8518         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8519         struct drm_display_mode *mode;
8520         struct intel_crtc_config pipe_config;
8521         int htot = I915_READ(HTOTAL(cpu_transcoder));
8522         int hsync = I915_READ(HSYNC(cpu_transcoder));
8523         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8524         int vsync = I915_READ(VSYNC(cpu_transcoder));
8525         enum pipe pipe = intel_crtc->pipe;
8526
8527         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8528         if (!mode)
8529                 return NULL;
8530
8531         /*
8532          * Construct a pipe_config sufficient for getting the clock info
8533          * back out of crtc_clock_get.
8534          *
8535          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8536          * to use a real value here instead.
8537          */
8538         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8539         pipe_config.pixel_multiplier = 1;
8540         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8541         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8542         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8543         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8544
8545         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8546         mode->hdisplay = (htot & 0xffff) + 1;
8547         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8548         mode->hsync_start = (hsync & 0xffff) + 1;
8549         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8550         mode->vdisplay = (vtot & 0xffff) + 1;
8551         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8552         mode->vsync_start = (vsync & 0xffff) + 1;
8553         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8554
8555         drm_mode_set_name(mode);
8556
8557         return mode;
8558 }
8559
8560 static void intel_increase_pllclock(struct drm_crtc *crtc)
8561 {
8562         struct drm_device *dev = crtc->dev;
8563         struct drm_i915_private *dev_priv = dev->dev_private;
8564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8565         int pipe = intel_crtc->pipe;
8566         int dpll_reg = DPLL(pipe);
8567         int dpll;
8568
8569         if (HAS_PCH_SPLIT(dev))
8570                 return;
8571
8572         if (!dev_priv->lvds_downclock_avail)
8573                 return;
8574
8575         dpll = I915_READ(dpll_reg);
8576         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8577                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8578
8579                 assert_panel_unlocked(dev_priv, pipe);
8580
8581                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8582                 I915_WRITE(dpll_reg, dpll);
8583                 intel_wait_for_vblank(dev, pipe);
8584
8585                 dpll = I915_READ(dpll_reg);
8586                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8587                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8588         }
8589 }
8590
8591 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8592 {
8593         struct drm_device *dev = crtc->dev;
8594         struct drm_i915_private *dev_priv = dev->dev_private;
8595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8596
8597         if (HAS_PCH_SPLIT(dev))
8598                 return;
8599
8600         if (!dev_priv->lvds_downclock_avail)
8601                 return;
8602
8603         /*
8604          * Since this is called by a timer, we should never get here in
8605          * the manual case.
8606          */
8607         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8608                 int pipe = intel_crtc->pipe;
8609                 int dpll_reg = DPLL(pipe);
8610                 int dpll;
8611
8612                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8613
8614                 assert_panel_unlocked(dev_priv, pipe);
8615
8616                 dpll = I915_READ(dpll_reg);
8617                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8618                 I915_WRITE(dpll_reg, dpll);
8619                 intel_wait_for_vblank(dev, pipe);
8620                 dpll = I915_READ(dpll_reg);
8621                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8622                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8623         }
8624
8625 }
8626
8627 void intel_mark_busy(struct drm_device *dev)
8628 {
8629         struct drm_i915_private *dev_priv = dev->dev_private;
8630
8631         if (dev_priv->mm.busy)
8632                 return;
8633
8634         intel_runtime_pm_get(dev_priv);
8635         i915_update_gfx_val(dev_priv);
8636         dev_priv->mm.busy = true;
8637 }
8638
8639 void intel_mark_idle(struct drm_device *dev)
8640 {
8641         struct drm_i915_private *dev_priv = dev->dev_private;
8642         struct drm_crtc *crtc;
8643
8644         if (!dev_priv->mm.busy)
8645                 return;
8646
8647         dev_priv->mm.busy = false;
8648
8649         if (!i915.powersave)
8650                 goto out;
8651
8652         for_each_crtc(dev, crtc) {
8653                 if (!crtc->primary->fb)
8654                         continue;
8655
8656                 intel_decrease_pllclock(crtc);
8657         }
8658
8659         if (INTEL_INFO(dev)->gen >= 6)
8660                 gen6_rps_idle(dev->dev_private);
8661
8662 out:
8663         intel_runtime_pm_put(dev_priv);
8664 }
8665
8666 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8667                         struct intel_ring_buffer *ring)
8668 {
8669         struct drm_device *dev = obj->base.dev;
8670         struct drm_crtc *crtc;
8671
8672         if (!i915.powersave)
8673                 return;
8674
8675         for_each_crtc(dev, crtc) {
8676                 if (!crtc->primary->fb)
8677                         continue;
8678
8679                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8680                         continue;
8681
8682                 intel_increase_pllclock(crtc);
8683                 if (ring && intel_fbc_enabled(dev))
8684                         ring->fbc_dirty = true;
8685         }
8686 }
8687
8688 static void intel_crtc_destroy(struct drm_crtc *crtc)
8689 {
8690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8691         struct drm_device *dev = crtc->dev;
8692         struct intel_unpin_work *work;
8693         unsigned long flags;
8694
8695         spin_lock_irqsave(&dev->event_lock, flags);
8696         work = intel_crtc->unpin_work;
8697         intel_crtc->unpin_work = NULL;
8698         spin_unlock_irqrestore(&dev->event_lock, flags);
8699
8700         if (work) {
8701                 cancel_work_sync(&work->work);
8702                 kfree(work);
8703         }
8704
8705         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8706
8707         drm_crtc_cleanup(crtc);
8708
8709         kfree(intel_crtc);
8710 }
8711
8712 static void intel_unpin_work_fn(struct work_struct *__work)
8713 {
8714         struct intel_unpin_work *work =
8715                 container_of(__work, struct intel_unpin_work, work);
8716         struct drm_device *dev = work->crtc->dev;
8717
8718         mutex_lock(&dev->struct_mutex);
8719         intel_unpin_fb_obj(work->old_fb_obj);
8720         drm_gem_object_unreference(&work->pending_flip_obj->base);
8721         drm_gem_object_unreference(&work->old_fb_obj->base);
8722
8723         intel_update_fbc(dev);
8724         mutex_unlock(&dev->struct_mutex);
8725
8726         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8727         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8728
8729         kfree(work);
8730 }
8731
8732 static void do_intel_finish_page_flip(struct drm_device *dev,
8733                                       struct drm_crtc *crtc)
8734 {
8735         struct drm_i915_private *dev_priv = dev->dev_private;
8736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8737         struct intel_unpin_work *work;
8738         unsigned long flags;
8739
8740         /* Ignore early vblank irqs */
8741         if (intel_crtc == NULL)
8742                 return;
8743
8744         spin_lock_irqsave(&dev->event_lock, flags);
8745         work = intel_crtc->unpin_work;
8746
8747         /* Ensure we don't miss a work->pending update ... */
8748         smp_rmb();
8749
8750         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8751                 spin_unlock_irqrestore(&dev->event_lock, flags);
8752                 return;
8753         }
8754
8755         /* and that the unpin work is consistent wrt ->pending. */
8756         smp_rmb();
8757
8758         intel_crtc->unpin_work = NULL;
8759
8760         if (work->event)
8761                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8762
8763         drm_vblank_put(dev, intel_crtc->pipe);
8764
8765         spin_unlock_irqrestore(&dev->event_lock, flags);
8766
8767         wake_up_all(&dev_priv->pending_flip_queue);
8768
8769         queue_work(dev_priv->wq, &work->work);
8770
8771         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8772 }
8773
8774 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8775 {
8776         struct drm_i915_private *dev_priv = dev->dev_private;
8777         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8778
8779         do_intel_finish_page_flip(dev, crtc);
8780 }
8781
8782 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8783 {
8784         struct drm_i915_private *dev_priv = dev->dev_private;
8785         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8786
8787         do_intel_finish_page_flip(dev, crtc);
8788 }
8789
8790 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8791 {
8792         struct drm_i915_private *dev_priv = dev->dev_private;
8793         struct intel_crtc *intel_crtc =
8794                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8795         unsigned long flags;
8796
8797         /* NB: An MMIO update of the plane base pointer will also
8798          * generate a page-flip completion irq, i.e. every modeset
8799          * is also accompanied by a spurious intel_prepare_page_flip().
8800          */
8801         spin_lock_irqsave(&dev->event_lock, flags);
8802         if (intel_crtc->unpin_work)
8803                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8804         spin_unlock_irqrestore(&dev->event_lock, flags);
8805 }
8806
8807 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8808 {
8809         /* Ensure that the work item is consistent when activating it ... */
8810         smp_wmb();
8811         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8812         /* and that it is marked active as soon as the irq could fire. */
8813         smp_wmb();
8814 }
8815
8816 static int intel_gen2_queue_flip(struct drm_device *dev,
8817                                  struct drm_crtc *crtc,
8818                                  struct drm_framebuffer *fb,
8819                                  struct drm_i915_gem_object *obj,
8820                                  uint32_t flags)
8821 {
8822         struct drm_i915_private *dev_priv = dev->dev_private;
8823         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8824         u32 flip_mask;
8825         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8826         int ret;
8827
8828         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8829         if (ret)
8830                 goto err;
8831
8832         ret = intel_ring_begin(ring, 6);
8833         if (ret)
8834                 goto err_unpin;
8835
8836         /* Can't queue multiple flips, so wait for the previous
8837          * one to finish before executing the next.
8838          */
8839         if (intel_crtc->plane)
8840                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8841         else
8842                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8843         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8844         intel_ring_emit(ring, MI_NOOP);
8845         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8846                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8847         intel_ring_emit(ring, fb->pitches[0]);
8848         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8849         intel_ring_emit(ring, 0); /* aux display base address, unused */
8850
8851         intel_mark_page_flip_active(intel_crtc);
8852         __intel_ring_advance(ring);
8853         return 0;
8854
8855 err_unpin:
8856         intel_unpin_fb_obj(obj);
8857 err:
8858         return ret;
8859 }
8860
8861 static int intel_gen3_queue_flip(struct drm_device *dev,
8862                                  struct drm_crtc *crtc,
8863                                  struct drm_framebuffer *fb,
8864                                  struct drm_i915_gem_object *obj,
8865                                  uint32_t flags)
8866 {
8867         struct drm_i915_private *dev_priv = dev->dev_private;
8868         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8869         u32 flip_mask;
8870         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8871         int ret;
8872
8873         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8874         if (ret)
8875                 goto err;
8876
8877         ret = intel_ring_begin(ring, 6);
8878         if (ret)
8879                 goto err_unpin;
8880
8881         if (intel_crtc->plane)
8882                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8883         else
8884                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8885         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8886         intel_ring_emit(ring, MI_NOOP);
8887         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8888                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8889         intel_ring_emit(ring, fb->pitches[0]);
8890         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8891         intel_ring_emit(ring, MI_NOOP);
8892
8893         intel_mark_page_flip_active(intel_crtc);
8894         __intel_ring_advance(ring);
8895         return 0;
8896
8897 err_unpin:
8898         intel_unpin_fb_obj(obj);
8899 err:
8900         return ret;
8901 }
8902
8903 static int intel_gen4_queue_flip(struct drm_device *dev,
8904                                  struct drm_crtc *crtc,
8905                                  struct drm_framebuffer *fb,
8906                                  struct drm_i915_gem_object *obj,
8907                                  uint32_t flags)
8908 {
8909         struct drm_i915_private *dev_priv = dev->dev_private;
8910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8911         uint32_t pf, pipesrc;
8912         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8913         int ret;
8914
8915         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8916         if (ret)
8917                 goto err;
8918
8919         ret = intel_ring_begin(ring, 4);
8920         if (ret)
8921                 goto err_unpin;
8922
8923         /* i965+ uses the linear or tiled offsets from the
8924          * Display Registers (which do not change across a page-flip)
8925          * so we need only reprogram the base address.
8926          */
8927         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8928                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8929         intel_ring_emit(ring, fb->pitches[0]);
8930         intel_ring_emit(ring,
8931                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8932                         obj->tiling_mode);
8933
8934         /* XXX Enabling the panel-fitter across page-flip is so far
8935          * untested on non-native modes, so ignore it for now.
8936          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8937          */
8938         pf = 0;
8939         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8940         intel_ring_emit(ring, pf | pipesrc);
8941
8942         intel_mark_page_flip_active(intel_crtc);
8943         __intel_ring_advance(ring);
8944         return 0;
8945
8946 err_unpin:
8947         intel_unpin_fb_obj(obj);
8948 err:
8949         return ret;
8950 }
8951
8952 static int intel_gen6_queue_flip(struct drm_device *dev,
8953                                  struct drm_crtc *crtc,
8954                                  struct drm_framebuffer *fb,
8955                                  struct drm_i915_gem_object *obj,
8956                                  uint32_t flags)
8957 {
8958         struct drm_i915_private *dev_priv = dev->dev_private;
8959         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8960         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8961         uint32_t pf, pipesrc;
8962         int ret;
8963
8964         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8965         if (ret)
8966                 goto err;
8967
8968         ret = intel_ring_begin(ring, 4);
8969         if (ret)
8970                 goto err_unpin;
8971
8972         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8973                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8974         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8975         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8976
8977         /* Contrary to the suggestions in the documentation,
8978          * "Enable Panel Fitter" does not seem to be required when page
8979          * flipping with a non-native mode, and worse causes a normal
8980          * modeset to fail.
8981          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8982          */
8983         pf = 0;
8984         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8985         intel_ring_emit(ring, pf | pipesrc);
8986
8987         intel_mark_page_flip_active(intel_crtc);
8988         __intel_ring_advance(ring);
8989         return 0;
8990
8991 err_unpin:
8992         intel_unpin_fb_obj(obj);
8993 err:
8994         return ret;
8995 }
8996
8997 static int intel_gen7_queue_flip(struct drm_device *dev,
8998                                  struct drm_crtc *crtc,
8999                                  struct drm_framebuffer *fb,
9000                                  struct drm_i915_gem_object *obj,
9001                                  uint32_t flags)
9002 {
9003         struct drm_i915_private *dev_priv = dev->dev_private;
9004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9005         struct intel_ring_buffer *ring;
9006         uint32_t plane_bit = 0;
9007         int len, ret;
9008
9009         ring = obj->ring;
9010         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
9011                 ring = &dev_priv->ring[BCS];
9012
9013         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9014         if (ret)
9015                 goto err;
9016
9017         switch (intel_crtc->plane) {
9018         case PLANE_A:
9019                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9020                 break;
9021         case PLANE_B:
9022                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9023                 break;
9024         case PLANE_C:
9025                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9026                 break;
9027         default:
9028                 WARN_ONCE(1, "unknown plane in flip command\n");
9029                 ret = -ENODEV;
9030                 goto err_unpin;
9031         }
9032
9033         len = 4;
9034         if (ring->id == RCS) {
9035                 len += 6;
9036                 /*
9037                  * On Gen 8, SRM is now taking an extra dword to accommodate
9038                  * 48bits addresses, and we need a NOOP for the batch size to
9039                  * stay even.
9040                  */
9041                 if (IS_GEN8(dev))
9042                         len += 2;
9043         }
9044
9045         /*
9046          * BSpec MI_DISPLAY_FLIP for IVB:
9047          * "The full packet must be contained within the same cache line."
9048          *
9049          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9050          * cacheline, if we ever start emitting more commands before
9051          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9052          * then do the cacheline alignment, and finally emit the
9053          * MI_DISPLAY_FLIP.
9054          */
9055         ret = intel_ring_cacheline_align(ring);
9056         if (ret)
9057                 goto err_unpin;
9058
9059         ret = intel_ring_begin(ring, len);
9060         if (ret)
9061                 goto err_unpin;
9062
9063         /* Unmask the flip-done completion message. Note that the bspec says that
9064          * we should do this for both the BCS and RCS, and that we must not unmask
9065          * more than one flip event at any time (or ensure that one flip message
9066          * can be sent by waiting for flip-done prior to queueing new flips).
9067          * Experimentation says that BCS works despite DERRMR masking all
9068          * flip-done completion events and that unmasking all planes at once
9069          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9070          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9071          */
9072         if (ring->id == RCS) {
9073                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9074                 intel_ring_emit(ring, DERRMR);
9075                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9076                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9077                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9078                 if (IS_GEN8(dev))
9079                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9080                                               MI_SRM_LRM_GLOBAL_GTT);
9081                 else
9082                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9083                                               MI_SRM_LRM_GLOBAL_GTT);
9084                 intel_ring_emit(ring, DERRMR);
9085                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9086                 if (IS_GEN8(dev)) {
9087                         intel_ring_emit(ring, 0);
9088                         intel_ring_emit(ring, MI_NOOP);
9089                 }
9090         }
9091
9092         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9093         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9094         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
9095         intel_ring_emit(ring, (MI_NOOP));
9096
9097         intel_mark_page_flip_active(intel_crtc);
9098         __intel_ring_advance(ring);
9099         return 0;
9100
9101 err_unpin:
9102         intel_unpin_fb_obj(obj);
9103 err:
9104         return ret;
9105 }
9106
9107 static int intel_default_queue_flip(struct drm_device *dev,
9108                                     struct drm_crtc *crtc,
9109                                     struct drm_framebuffer *fb,
9110                                     struct drm_i915_gem_object *obj,
9111                                     uint32_t flags)
9112 {
9113         return -ENODEV;
9114 }
9115
9116 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9117                                 struct drm_framebuffer *fb,
9118                                 struct drm_pending_vblank_event *event,
9119                                 uint32_t page_flip_flags)
9120 {
9121         struct drm_device *dev = crtc->dev;
9122         struct drm_i915_private *dev_priv = dev->dev_private;
9123         struct drm_framebuffer *old_fb = crtc->primary->fb;
9124         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
9125         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9126         struct intel_unpin_work *work;
9127         unsigned long flags;
9128         int ret;
9129
9130         /* Can't change pixel format via MI display flips. */
9131         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9132                 return -EINVAL;
9133
9134         /*
9135          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9136          * Note that pitch changes could also affect these register.
9137          */
9138         if (INTEL_INFO(dev)->gen > 3 &&
9139             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9140              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9141                 return -EINVAL;
9142
9143         if (i915_terminally_wedged(&dev_priv->gpu_error))
9144                 goto out_hang;
9145
9146         work = kzalloc(sizeof(*work), GFP_KERNEL);
9147         if (work == NULL)
9148                 return -ENOMEM;
9149
9150         work->event = event;
9151         work->crtc = crtc;
9152         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
9153         INIT_WORK(&work->work, intel_unpin_work_fn);
9154
9155         ret = drm_vblank_get(dev, intel_crtc->pipe);
9156         if (ret)
9157                 goto free_work;
9158
9159         /* We borrow the event spin lock for protecting unpin_work */
9160         spin_lock_irqsave(&dev->event_lock, flags);
9161         if (intel_crtc->unpin_work) {
9162                 spin_unlock_irqrestore(&dev->event_lock, flags);
9163                 kfree(work);
9164                 drm_vblank_put(dev, intel_crtc->pipe);
9165
9166                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9167                 return -EBUSY;
9168         }
9169         intel_crtc->unpin_work = work;
9170         spin_unlock_irqrestore(&dev->event_lock, flags);
9171
9172         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9173                 flush_workqueue(dev_priv->wq);
9174
9175         ret = i915_mutex_lock_interruptible(dev);
9176         if (ret)
9177                 goto cleanup;
9178
9179         /* Reference the objects for the scheduled work. */
9180         drm_gem_object_reference(&work->old_fb_obj->base);
9181         drm_gem_object_reference(&obj->base);
9182
9183         crtc->primary->fb = fb;
9184
9185         work->pending_flip_obj = obj;
9186
9187         work->enable_stall_check = true;
9188
9189         atomic_inc(&intel_crtc->unpin_work_count);
9190         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9191
9192         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
9193         if (ret)
9194                 goto cleanup_pending;
9195
9196         intel_disable_fbc(dev);
9197         intel_mark_fb_busy(obj, NULL);
9198         mutex_unlock(&dev->struct_mutex);
9199
9200         trace_i915_flip_request(intel_crtc->plane, obj);
9201
9202         return 0;
9203
9204 cleanup_pending:
9205         atomic_dec(&intel_crtc->unpin_work_count);
9206         crtc->primary->fb = old_fb;
9207         drm_gem_object_unreference(&work->old_fb_obj->base);
9208         drm_gem_object_unreference(&obj->base);
9209         mutex_unlock(&dev->struct_mutex);
9210
9211 cleanup:
9212         spin_lock_irqsave(&dev->event_lock, flags);
9213         intel_crtc->unpin_work = NULL;
9214         spin_unlock_irqrestore(&dev->event_lock, flags);
9215
9216         drm_vblank_put(dev, intel_crtc->pipe);
9217 free_work:
9218         kfree(work);
9219
9220         if (ret == -EIO) {
9221 out_hang:
9222                 intel_crtc_wait_for_pending_flips(crtc);
9223                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9224                 if (ret == 0 && event)
9225                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
9226         }
9227         return ret;
9228 }
9229
9230 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9231         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9232         .load_lut = intel_crtc_load_lut,
9233 };
9234
9235 /**
9236  * intel_modeset_update_staged_output_state
9237  *
9238  * Updates the staged output configuration state, e.g. after we've read out the
9239  * current hw state.
9240  */
9241 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9242 {
9243         struct intel_crtc *crtc;
9244         struct intel_encoder *encoder;
9245         struct intel_connector *connector;
9246
9247         list_for_each_entry(connector, &dev->mode_config.connector_list,
9248                             base.head) {
9249                 connector->new_encoder =
9250                         to_intel_encoder(connector->base.encoder);
9251         }
9252
9253         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9254                             base.head) {
9255                 encoder->new_crtc =
9256                         to_intel_crtc(encoder->base.crtc);
9257         }
9258
9259         for_each_intel_crtc(dev, crtc) {
9260                 crtc->new_enabled = crtc->base.enabled;
9261
9262                 if (crtc->new_enabled)
9263                         crtc->new_config = &crtc->config;
9264                 else
9265                         crtc->new_config = NULL;
9266         }
9267 }
9268
9269 /**
9270  * intel_modeset_commit_output_state
9271  *
9272  * This function copies the stage display pipe configuration to the real one.
9273  */
9274 static void intel_modeset_commit_output_state(struct drm_device *dev)
9275 {
9276         struct intel_crtc *crtc;
9277         struct intel_encoder *encoder;
9278         struct intel_connector *connector;
9279
9280         list_for_each_entry(connector, &dev->mode_config.connector_list,
9281                             base.head) {
9282                 connector->base.encoder = &connector->new_encoder->base;
9283         }
9284
9285         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9286                             base.head) {
9287                 encoder->base.crtc = &encoder->new_crtc->base;
9288         }
9289
9290         for_each_intel_crtc(dev, crtc) {
9291                 crtc->base.enabled = crtc->new_enabled;
9292         }
9293 }
9294
9295 static void
9296 connected_sink_compute_bpp(struct intel_connector *connector,
9297                            struct intel_crtc_config *pipe_config)
9298 {
9299         int bpp = pipe_config->pipe_bpp;
9300
9301         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9302                 connector->base.base.id,
9303                 drm_get_connector_name(&connector->base));
9304
9305         /* Don't use an invalid EDID bpc value */
9306         if (connector->base.display_info.bpc &&
9307             connector->base.display_info.bpc * 3 < bpp) {
9308                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9309                               bpp, connector->base.display_info.bpc*3);
9310                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9311         }
9312
9313         /* Clamp bpp to 8 on screens without EDID 1.4 */
9314         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9315                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9316                               bpp);
9317                 pipe_config->pipe_bpp = 24;
9318         }
9319 }
9320
9321 static int
9322 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9323                           struct drm_framebuffer *fb,
9324                           struct intel_crtc_config *pipe_config)
9325 {
9326         struct drm_device *dev = crtc->base.dev;
9327         struct intel_connector *connector;
9328         int bpp;
9329
9330         switch (fb->pixel_format) {
9331         case DRM_FORMAT_C8:
9332                 bpp = 8*3; /* since we go through a colormap */
9333                 break;
9334         case DRM_FORMAT_XRGB1555:
9335         case DRM_FORMAT_ARGB1555:
9336                 /* checked in intel_framebuffer_init already */
9337                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9338                         return -EINVAL;
9339         case DRM_FORMAT_RGB565:
9340                 bpp = 6*3; /* min is 18bpp */
9341                 break;
9342         case DRM_FORMAT_XBGR8888:
9343         case DRM_FORMAT_ABGR8888:
9344                 /* checked in intel_framebuffer_init already */
9345                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9346                         return -EINVAL;
9347         case DRM_FORMAT_XRGB8888:
9348         case DRM_FORMAT_ARGB8888:
9349                 bpp = 8*3;
9350                 break;
9351         case DRM_FORMAT_XRGB2101010:
9352         case DRM_FORMAT_ARGB2101010:
9353         case DRM_FORMAT_XBGR2101010:
9354         case DRM_FORMAT_ABGR2101010:
9355                 /* checked in intel_framebuffer_init already */
9356                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9357                         return -EINVAL;
9358                 bpp = 10*3;
9359                 break;
9360         /* TODO: gen4+ supports 16 bpc floating point, too. */
9361         default:
9362                 DRM_DEBUG_KMS("unsupported depth\n");
9363                 return -EINVAL;
9364         }
9365
9366         pipe_config->pipe_bpp = bpp;
9367
9368         /* Clamp display bpp to EDID value */
9369         list_for_each_entry(connector, &dev->mode_config.connector_list,
9370                             base.head) {
9371                 if (!connector->new_encoder ||
9372                     connector->new_encoder->new_crtc != crtc)
9373                         continue;
9374
9375                 connected_sink_compute_bpp(connector, pipe_config);
9376         }
9377
9378         return bpp;
9379 }
9380
9381 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9382 {
9383         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9384                         "type: 0x%x flags: 0x%x\n",
9385                 mode->crtc_clock,
9386                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9387                 mode->crtc_hsync_end, mode->crtc_htotal,
9388                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9389                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9390 }
9391
9392 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9393                                    struct intel_crtc_config *pipe_config,
9394                                    const char *context)
9395 {
9396         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9397                       context, pipe_name(crtc->pipe));
9398
9399         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9400         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9401                       pipe_config->pipe_bpp, pipe_config->dither);
9402         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9403                       pipe_config->has_pch_encoder,
9404                       pipe_config->fdi_lanes,
9405                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9406                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9407                       pipe_config->fdi_m_n.tu);
9408         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9409                       pipe_config->has_dp_encoder,
9410                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9411                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9412                       pipe_config->dp_m_n.tu);
9413         DRM_DEBUG_KMS("requested mode:\n");
9414         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9415         DRM_DEBUG_KMS("adjusted mode:\n");
9416         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9417         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9418         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9419         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9420                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9421         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9422                       pipe_config->gmch_pfit.control,
9423                       pipe_config->gmch_pfit.pgm_ratios,
9424                       pipe_config->gmch_pfit.lvds_border_bits);
9425         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9426                       pipe_config->pch_pfit.pos,
9427                       pipe_config->pch_pfit.size,
9428                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9429         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9430         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9431 }
9432
9433 static bool encoders_cloneable(const struct intel_encoder *a,
9434                                const struct intel_encoder *b)
9435 {
9436         /* masks could be asymmetric, so check both ways */
9437         return a == b || (a->cloneable & (1 << b->type) &&
9438                           b->cloneable & (1 << a->type));
9439 }
9440
9441 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9442                                          struct intel_encoder *encoder)
9443 {
9444         struct drm_device *dev = crtc->base.dev;
9445         struct intel_encoder *source_encoder;
9446
9447         list_for_each_entry(source_encoder,
9448                             &dev->mode_config.encoder_list, base.head) {
9449                 if (source_encoder->new_crtc != crtc)
9450                         continue;
9451
9452                 if (!encoders_cloneable(encoder, source_encoder))
9453                         return false;
9454         }
9455
9456         return true;
9457 }
9458
9459 static bool check_encoder_cloning(struct intel_crtc *crtc)
9460 {
9461         struct drm_device *dev = crtc->base.dev;
9462         struct intel_encoder *encoder;
9463
9464         list_for_each_entry(encoder,
9465                             &dev->mode_config.encoder_list, base.head) {
9466                 if (encoder->new_crtc != crtc)
9467                         continue;
9468
9469                 if (!check_single_encoder_cloning(crtc, encoder))
9470                         return false;
9471         }
9472
9473         return true;
9474 }
9475
9476 static struct intel_crtc_config *
9477 intel_modeset_pipe_config(struct drm_crtc *crtc,
9478                           struct drm_framebuffer *fb,
9479                           struct drm_display_mode *mode)
9480 {
9481         struct drm_device *dev = crtc->dev;
9482         struct intel_encoder *encoder;
9483         struct intel_crtc_config *pipe_config;
9484         int plane_bpp, ret = -EINVAL;
9485         bool retry = true;
9486
9487         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9488                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9489                 return ERR_PTR(-EINVAL);
9490         }
9491
9492         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9493         if (!pipe_config)
9494                 return ERR_PTR(-ENOMEM);
9495
9496         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9497         drm_mode_copy(&pipe_config->requested_mode, mode);
9498
9499         pipe_config->cpu_transcoder =
9500                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9501         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9502
9503         /*
9504          * Sanitize sync polarity flags based on requested ones. If neither
9505          * positive or negative polarity is requested, treat this as meaning
9506          * negative polarity.
9507          */
9508         if (!(pipe_config->adjusted_mode.flags &
9509               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9510                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9511
9512         if (!(pipe_config->adjusted_mode.flags &
9513               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9514                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9515
9516         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9517          * plane pixel format and any sink constraints into account. Returns the
9518          * source plane bpp so that dithering can be selected on mismatches
9519          * after encoders and crtc also have had their say. */
9520         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9521                                               fb, pipe_config);
9522         if (plane_bpp < 0)
9523                 goto fail;
9524
9525         /*
9526          * Determine the real pipe dimensions. Note that stereo modes can
9527          * increase the actual pipe size due to the frame doubling and
9528          * insertion of additional space for blanks between the frame. This
9529          * is stored in the crtc timings. We use the requested mode to do this
9530          * computation to clearly distinguish it from the adjusted mode, which
9531          * can be changed by the connectors in the below retry loop.
9532          */
9533         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9534         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9535         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9536
9537 encoder_retry:
9538         /* Ensure the port clock defaults are reset when retrying. */
9539         pipe_config->port_clock = 0;
9540         pipe_config->pixel_multiplier = 1;
9541
9542         /* Fill in default crtc timings, allow encoders to overwrite them. */
9543         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9544
9545         /* Pass our mode to the connectors and the CRTC to give them a chance to
9546          * adjust it according to limitations or connector properties, and also
9547          * a chance to reject the mode entirely.
9548          */
9549         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9550                             base.head) {
9551
9552                 if (&encoder->new_crtc->base != crtc)
9553                         continue;
9554
9555                 if (!(encoder->compute_config(encoder, pipe_config))) {
9556                         DRM_DEBUG_KMS("Encoder config failure\n");
9557                         goto fail;
9558                 }
9559         }
9560
9561         /* Set default port clock if not overwritten by the encoder. Needs to be
9562          * done afterwards in case the encoder adjusts the mode. */
9563         if (!pipe_config->port_clock)
9564                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9565                         * pipe_config->pixel_multiplier;
9566
9567         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9568         if (ret < 0) {
9569                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9570                 goto fail;
9571         }
9572
9573         if (ret == RETRY) {
9574                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9575                         ret = -EINVAL;
9576                         goto fail;
9577                 }
9578
9579                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9580                 retry = false;
9581                 goto encoder_retry;
9582         }
9583
9584         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9585         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9586                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9587
9588         return pipe_config;
9589 fail:
9590         kfree(pipe_config);
9591         return ERR_PTR(ret);
9592 }
9593
9594 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9595  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9596 static void
9597 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9598                              unsigned *prepare_pipes, unsigned *disable_pipes)
9599 {
9600         struct intel_crtc *intel_crtc;
9601         struct drm_device *dev = crtc->dev;
9602         struct intel_encoder *encoder;
9603         struct intel_connector *connector;
9604         struct drm_crtc *tmp_crtc;
9605
9606         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9607
9608         /* Check which crtcs have changed outputs connected to them, these need
9609          * to be part of the prepare_pipes mask. We don't (yet) support global
9610          * modeset across multiple crtcs, so modeset_pipes will only have one
9611          * bit set at most. */
9612         list_for_each_entry(connector, &dev->mode_config.connector_list,
9613                             base.head) {
9614                 if (connector->base.encoder == &connector->new_encoder->base)
9615                         continue;
9616
9617                 if (connector->base.encoder) {
9618                         tmp_crtc = connector->base.encoder->crtc;
9619
9620                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9621                 }
9622
9623                 if (connector->new_encoder)
9624                         *prepare_pipes |=
9625                                 1 << connector->new_encoder->new_crtc->pipe;
9626         }
9627
9628         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9629                             base.head) {
9630                 if (encoder->base.crtc == &encoder->new_crtc->base)
9631                         continue;
9632
9633                 if (encoder->base.crtc) {
9634                         tmp_crtc = encoder->base.crtc;
9635
9636                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9637                 }
9638
9639                 if (encoder->new_crtc)
9640                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9641         }
9642
9643         /* Check for pipes that will be enabled/disabled ... */
9644         for_each_intel_crtc(dev, intel_crtc) {
9645                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9646                         continue;
9647
9648                 if (!intel_crtc->new_enabled)
9649                         *disable_pipes |= 1 << intel_crtc->pipe;
9650                 else
9651                         *prepare_pipes |= 1 << intel_crtc->pipe;
9652         }
9653
9654
9655         /* set_mode is also used to update properties on life display pipes. */
9656         intel_crtc = to_intel_crtc(crtc);
9657         if (intel_crtc->new_enabled)
9658                 *prepare_pipes |= 1 << intel_crtc->pipe;
9659
9660         /*
9661          * For simplicity do a full modeset on any pipe where the output routing
9662          * changed. We could be more clever, but that would require us to be
9663          * more careful with calling the relevant encoder->mode_set functions.
9664          */
9665         if (*prepare_pipes)
9666                 *modeset_pipes = *prepare_pipes;
9667
9668         /* ... and mask these out. */
9669         *modeset_pipes &= ~(*disable_pipes);
9670         *prepare_pipes &= ~(*disable_pipes);
9671
9672         /*
9673          * HACK: We don't (yet) fully support global modesets. intel_set_config
9674          * obies this rule, but the modeset restore mode of
9675          * intel_modeset_setup_hw_state does not.
9676          */
9677         *modeset_pipes &= 1 << intel_crtc->pipe;
9678         *prepare_pipes &= 1 << intel_crtc->pipe;
9679
9680         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9681                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9682 }
9683
9684 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9685 {
9686         struct drm_encoder *encoder;
9687         struct drm_device *dev = crtc->dev;
9688
9689         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9690                 if (encoder->crtc == crtc)
9691                         return true;
9692
9693         return false;
9694 }
9695
9696 static void
9697 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9698 {
9699         struct intel_encoder *intel_encoder;
9700         struct intel_crtc *intel_crtc;
9701         struct drm_connector *connector;
9702
9703         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9704                             base.head) {
9705                 if (!intel_encoder->base.crtc)
9706                         continue;
9707
9708                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9709
9710                 if (prepare_pipes & (1 << intel_crtc->pipe))
9711                         intel_encoder->connectors_active = false;
9712         }
9713
9714         intel_modeset_commit_output_state(dev);
9715
9716         /* Double check state. */
9717         for_each_intel_crtc(dev, intel_crtc) {
9718                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9719                 WARN_ON(intel_crtc->new_config &&
9720                         intel_crtc->new_config != &intel_crtc->config);
9721                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9722         }
9723
9724         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9725                 if (!connector->encoder || !connector->encoder->crtc)
9726                         continue;
9727
9728                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9729
9730                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9731                         struct drm_property *dpms_property =
9732                                 dev->mode_config.dpms_property;
9733
9734                         connector->dpms = DRM_MODE_DPMS_ON;
9735                         drm_object_property_set_value(&connector->base,
9736                                                          dpms_property,
9737                                                          DRM_MODE_DPMS_ON);
9738
9739                         intel_encoder = to_intel_encoder(connector->encoder);
9740                         intel_encoder->connectors_active = true;
9741                 }
9742         }
9743
9744 }
9745
9746 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9747 {
9748         int diff;
9749
9750         if (clock1 == clock2)
9751                 return true;
9752
9753         if (!clock1 || !clock2)
9754                 return false;
9755
9756         diff = abs(clock1 - clock2);
9757
9758         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9759                 return true;
9760
9761         return false;
9762 }
9763
9764 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9765         list_for_each_entry((intel_crtc), \
9766                             &(dev)->mode_config.crtc_list, \
9767                             base.head) \
9768                 if (mask & (1 <<(intel_crtc)->pipe))
9769
9770 static bool
9771 intel_pipe_config_compare(struct drm_device *dev,
9772                           struct intel_crtc_config *current_config,
9773                           struct intel_crtc_config *pipe_config)
9774 {
9775 #define PIPE_CONF_CHECK_X(name) \
9776         if (current_config->name != pipe_config->name) { \
9777                 DRM_ERROR("mismatch in " #name " " \
9778                           "(expected 0x%08x, found 0x%08x)\n", \
9779                           current_config->name, \
9780                           pipe_config->name); \
9781                 return false; \
9782         }
9783
9784 #define PIPE_CONF_CHECK_I(name) \
9785         if (current_config->name != pipe_config->name) { \
9786                 DRM_ERROR("mismatch in " #name " " \
9787                           "(expected %i, found %i)\n", \
9788                           current_config->name, \
9789                           pipe_config->name); \
9790                 return false; \
9791         }
9792
9793 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9794         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9795                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9796                           "(expected %i, found %i)\n", \
9797                           current_config->name & (mask), \
9798                           pipe_config->name & (mask)); \
9799                 return false; \
9800         }
9801
9802 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9803         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9804                 DRM_ERROR("mismatch in " #name " " \
9805                           "(expected %i, found %i)\n", \
9806                           current_config->name, \
9807                           pipe_config->name); \
9808                 return false; \
9809         }
9810
9811 #define PIPE_CONF_QUIRK(quirk)  \
9812         ((current_config->quirks | pipe_config->quirks) & (quirk))
9813
9814         PIPE_CONF_CHECK_I(cpu_transcoder);
9815
9816         PIPE_CONF_CHECK_I(has_pch_encoder);
9817         PIPE_CONF_CHECK_I(fdi_lanes);
9818         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9819         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9820         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9821         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9822         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9823
9824         PIPE_CONF_CHECK_I(has_dp_encoder);
9825         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9826         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9827         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9828         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9829         PIPE_CONF_CHECK_I(dp_m_n.tu);
9830
9831         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9832         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9833         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9834         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9835         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9836         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9837
9838         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9839         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9840         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9841         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9842         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9843         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9844
9845         PIPE_CONF_CHECK_I(pixel_multiplier);
9846         PIPE_CONF_CHECK_I(has_hdmi_sink);
9847         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
9848             IS_VALLEYVIEW(dev))
9849                 PIPE_CONF_CHECK_I(limited_color_range);
9850
9851         PIPE_CONF_CHECK_I(has_audio);
9852
9853         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9854                               DRM_MODE_FLAG_INTERLACE);
9855
9856         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9857                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9858                                       DRM_MODE_FLAG_PHSYNC);
9859                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9860                                       DRM_MODE_FLAG_NHSYNC);
9861                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9862                                       DRM_MODE_FLAG_PVSYNC);
9863                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9864                                       DRM_MODE_FLAG_NVSYNC);
9865         }
9866
9867         PIPE_CONF_CHECK_I(pipe_src_w);
9868         PIPE_CONF_CHECK_I(pipe_src_h);
9869
9870         /*
9871          * FIXME: BIOS likes to set up a cloned config with lvds+external
9872          * screen. Since we don't yet re-compute the pipe config when moving
9873          * just the lvds port away to another pipe the sw tracking won't match.
9874          *
9875          * Proper atomic modesets with recomputed global state will fix this.
9876          * Until then just don't check gmch state for inherited modes.
9877          */
9878         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9879                 PIPE_CONF_CHECK_I(gmch_pfit.control);
9880                 /* pfit ratios are autocomputed by the hw on gen4+ */
9881                 if (INTEL_INFO(dev)->gen < 4)
9882                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9883                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9884         }
9885
9886         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9887         if (current_config->pch_pfit.enabled) {
9888                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9889                 PIPE_CONF_CHECK_I(pch_pfit.size);
9890         }
9891
9892         /* BDW+ don't expose a synchronous way to read the state */
9893         if (IS_HASWELL(dev))
9894                 PIPE_CONF_CHECK_I(ips_enabled);
9895
9896         PIPE_CONF_CHECK_I(double_wide);
9897
9898         PIPE_CONF_CHECK_I(shared_dpll);
9899         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9900         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9901         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9902         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9903
9904         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9905                 PIPE_CONF_CHECK_I(pipe_bpp);
9906
9907         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9908         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9909
9910 #undef PIPE_CONF_CHECK_X
9911 #undef PIPE_CONF_CHECK_I
9912 #undef PIPE_CONF_CHECK_FLAGS
9913 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9914 #undef PIPE_CONF_QUIRK
9915
9916         return true;
9917 }
9918
9919 static void
9920 check_connector_state(struct drm_device *dev)
9921 {
9922         struct intel_connector *connector;
9923
9924         list_for_each_entry(connector, &dev->mode_config.connector_list,
9925                             base.head) {
9926                 /* This also checks the encoder/connector hw state with the
9927                  * ->get_hw_state callbacks. */
9928                 intel_connector_check_state(connector);
9929
9930                 WARN(&connector->new_encoder->base != connector->base.encoder,
9931                      "connector's staged encoder doesn't match current encoder\n");
9932         }
9933 }
9934
9935 static void
9936 check_encoder_state(struct drm_device *dev)
9937 {
9938         struct intel_encoder *encoder;
9939         struct intel_connector *connector;
9940
9941         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9942                             base.head) {
9943                 bool enabled = false;
9944                 bool active = false;
9945                 enum pipe pipe, tracked_pipe;
9946
9947                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9948                               encoder->base.base.id,
9949                               drm_get_encoder_name(&encoder->base));
9950
9951                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9952                      "encoder's stage crtc doesn't match current crtc\n");
9953                 WARN(encoder->connectors_active && !encoder->base.crtc,
9954                      "encoder's active_connectors set, but no crtc\n");
9955
9956                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9957                                     base.head) {
9958                         if (connector->base.encoder != &encoder->base)
9959                                 continue;
9960                         enabled = true;
9961                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9962                                 active = true;
9963                 }
9964                 WARN(!!encoder->base.crtc != enabled,
9965                      "encoder's enabled state mismatch "
9966                      "(expected %i, found %i)\n",
9967                      !!encoder->base.crtc, enabled);
9968                 WARN(active && !encoder->base.crtc,
9969                      "active encoder with no crtc\n");
9970
9971                 WARN(encoder->connectors_active != active,
9972                      "encoder's computed active state doesn't match tracked active state "
9973                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9974
9975                 active = encoder->get_hw_state(encoder, &pipe);
9976                 WARN(active != encoder->connectors_active,
9977                      "encoder's hw state doesn't match sw tracking "
9978                      "(expected %i, found %i)\n",
9979                      encoder->connectors_active, active);
9980
9981                 if (!encoder->base.crtc)
9982                         continue;
9983
9984                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9985                 WARN(active && pipe != tracked_pipe,
9986                      "active encoder's pipe doesn't match"
9987                      "(expected %i, found %i)\n",
9988                      tracked_pipe, pipe);
9989
9990         }
9991 }
9992
9993 static void
9994 check_crtc_state(struct drm_device *dev)
9995 {
9996         struct drm_i915_private *dev_priv = dev->dev_private;
9997         struct intel_crtc *crtc;
9998         struct intel_encoder *encoder;
9999         struct intel_crtc_config pipe_config;
10000
10001         for_each_intel_crtc(dev, crtc) {
10002                 bool enabled = false;
10003                 bool active = false;
10004
10005                 memset(&pipe_config, 0, sizeof(pipe_config));
10006
10007                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10008                               crtc->base.base.id);
10009
10010                 WARN(crtc->active && !crtc->base.enabled,
10011                      "active crtc, but not enabled in sw tracking\n");
10012
10013                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10014                                     base.head) {
10015                         if (encoder->base.crtc != &crtc->base)
10016                                 continue;
10017                         enabled = true;
10018                         if (encoder->connectors_active)
10019                                 active = true;
10020                 }
10021
10022                 WARN(active != crtc->active,
10023                      "crtc's computed active state doesn't match tracked active state "
10024                      "(expected %i, found %i)\n", active, crtc->active);
10025                 WARN(enabled != crtc->base.enabled,
10026                      "crtc's computed enabled state doesn't match tracked enabled state "
10027                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10028
10029                 active = dev_priv->display.get_pipe_config(crtc,
10030                                                            &pipe_config);
10031
10032                 /* hw state is inconsistent with the pipe A quirk */
10033                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10034                         active = crtc->active;
10035
10036                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10037                                     base.head) {
10038                         enum pipe pipe;
10039                         if (encoder->base.crtc != &crtc->base)
10040                                 continue;
10041                         if (encoder->get_hw_state(encoder, &pipe))
10042                                 encoder->get_config(encoder, &pipe_config);
10043                 }
10044
10045                 WARN(crtc->active != active,
10046                      "crtc active state doesn't match with hw state "
10047                      "(expected %i, found %i)\n", crtc->active, active);
10048
10049                 if (active &&
10050                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10051                         WARN(1, "pipe state doesn't match!\n");
10052                         intel_dump_pipe_config(crtc, &pipe_config,
10053                                                "[hw state]");
10054                         intel_dump_pipe_config(crtc, &crtc->config,
10055                                                "[sw state]");
10056                 }
10057         }
10058 }
10059
10060 static void
10061 check_shared_dpll_state(struct drm_device *dev)
10062 {
10063         struct drm_i915_private *dev_priv = dev->dev_private;
10064         struct intel_crtc *crtc;
10065         struct intel_dpll_hw_state dpll_hw_state;
10066         int i;
10067
10068         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10069                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10070                 int enabled_crtcs = 0, active_crtcs = 0;
10071                 bool active;
10072
10073                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10074
10075                 DRM_DEBUG_KMS("%s\n", pll->name);
10076
10077                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10078
10079                 WARN(pll->active > pll->refcount,
10080                      "more active pll users than references: %i vs %i\n",
10081                      pll->active, pll->refcount);
10082                 WARN(pll->active && !pll->on,
10083                      "pll in active use but not on in sw tracking\n");
10084                 WARN(pll->on && !pll->active,
10085                      "pll in on but not on in use in sw tracking\n");
10086                 WARN(pll->on != active,
10087                      "pll on state mismatch (expected %i, found %i)\n",
10088                      pll->on, active);
10089
10090                 for_each_intel_crtc(dev, crtc) {
10091                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10092                                 enabled_crtcs++;
10093                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10094                                 active_crtcs++;
10095                 }
10096                 WARN(pll->active != active_crtcs,
10097                      "pll active crtcs mismatch (expected %i, found %i)\n",
10098                      pll->active, active_crtcs);
10099                 WARN(pll->refcount != enabled_crtcs,
10100                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10101                      pll->refcount, enabled_crtcs);
10102
10103                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10104                                        sizeof(dpll_hw_state)),
10105                      "pll hw state mismatch\n");
10106         }
10107 }
10108
10109 void
10110 intel_modeset_check_state(struct drm_device *dev)
10111 {
10112         check_connector_state(dev);
10113         check_encoder_state(dev);
10114         check_crtc_state(dev);
10115         check_shared_dpll_state(dev);
10116 }
10117
10118 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10119                                      int dotclock)
10120 {
10121         /*
10122          * FDI already provided one idea for the dotclock.
10123          * Yell if the encoder disagrees.
10124          */
10125         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10126              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10127              pipe_config->adjusted_mode.crtc_clock, dotclock);
10128 }
10129
10130 static int __intel_set_mode(struct drm_crtc *crtc,
10131                             struct drm_display_mode *mode,
10132                             int x, int y, struct drm_framebuffer *fb)
10133 {
10134         struct drm_device *dev = crtc->dev;
10135         struct drm_i915_private *dev_priv = dev->dev_private;
10136         struct drm_display_mode *saved_mode;
10137         struct intel_crtc_config *pipe_config = NULL;
10138         struct intel_crtc *intel_crtc;
10139         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10140         int ret = 0;
10141
10142         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10143         if (!saved_mode)
10144                 return -ENOMEM;
10145
10146         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10147                                      &prepare_pipes, &disable_pipes);
10148
10149         *saved_mode = crtc->mode;
10150
10151         /* Hack: Because we don't (yet) support global modeset on multiple
10152          * crtcs, we don't keep track of the new mode for more than one crtc.
10153          * Hence simply check whether any bit is set in modeset_pipes in all the
10154          * pieces of code that are not yet converted to deal with mutliple crtcs
10155          * changing their mode at the same time. */
10156         if (modeset_pipes) {
10157                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10158                 if (IS_ERR(pipe_config)) {
10159                         ret = PTR_ERR(pipe_config);
10160                         pipe_config = NULL;
10161
10162                         goto out;
10163                 }
10164                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10165                                        "[modeset]");
10166                 to_intel_crtc(crtc)->new_config = pipe_config;
10167         }
10168
10169         /*
10170          * See if the config requires any additional preparation, e.g.
10171          * to adjust global state with pipes off.  We need to do this
10172          * here so we can get the modeset_pipe updated config for the new
10173          * mode set on this crtc.  For other crtcs we need to use the
10174          * adjusted_mode bits in the crtc directly.
10175          */
10176         if (IS_VALLEYVIEW(dev)) {
10177                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10178
10179                 /* may have added more to prepare_pipes than we should */
10180                 prepare_pipes &= ~disable_pipes;
10181         }
10182
10183         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10184                 intel_crtc_disable(&intel_crtc->base);
10185
10186         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10187                 if (intel_crtc->base.enabled)
10188                         dev_priv->display.crtc_disable(&intel_crtc->base);
10189         }
10190
10191         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10192          * to set it here already despite that we pass it down the callchain.
10193          */
10194         if (modeset_pipes) {
10195                 crtc->mode = *mode;
10196                 /* mode_set/enable/disable functions rely on a correct pipe
10197                  * config. */
10198                 to_intel_crtc(crtc)->config = *pipe_config;
10199                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10200
10201                 /*
10202                  * Calculate and store various constants which
10203                  * are later needed by vblank and swap-completion
10204                  * timestamping. They are derived from true hwmode.
10205                  */
10206                 drm_calc_timestamping_constants(crtc,
10207                                                 &pipe_config->adjusted_mode);
10208         }
10209
10210         /* Only after disabling all output pipelines that will be changed can we
10211          * update the the output configuration. */
10212         intel_modeset_update_state(dev, prepare_pipes);
10213
10214         if (dev_priv->display.modeset_global_resources)
10215                 dev_priv->display.modeset_global_resources(dev);
10216
10217         /* Set up the DPLL and any encoders state that needs to adjust or depend
10218          * on the DPLL.
10219          */
10220         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10221                 struct drm_framebuffer *old_fb;
10222
10223                 mutex_lock(&dev->struct_mutex);
10224                 ret = intel_pin_and_fence_fb_obj(dev,
10225                                                  to_intel_framebuffer(fb)->obj,
10226                                                  NULL);
10227                 if (ret != 0) {
10228                         DRM_ERROR("pin & fence failed\n");
10229                         mutex_unlock(&dev->struct_mutex);
10230                         goto done;
10231                 }
10232                 old_fb = crtc->primary->fb;
10233                 if (old_fb)
10234                         intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
10235                 mutex_unlock(&dev->struct_mutex);
10236
10237                 crtc->primary->fb = fb;
10238                 crtc->x = x;
10239                 crtc->y = y;
10240
10241                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10242                                                       x, y, fb);
10243                 if (ret)
10244                         goto done;
10245         }
10246
10247         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10248         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
10249                 dev_priv->display.crtc_enable(&intel_crtc->base);
10250
10251         /* FIXME: add subpixel order */
10252 done:
10253         if (ret && crtc->enabled)
10254                 crtc->mode = *saved_mode;
10255
10256 out:
10257         kfree(pipe_config);
10258         kfree(saved_mode);
10259         return ret;
10260 }
10261
10262 static int intel_set_mode(struct drm_crtc *crtc,
10263                           struct drm_display_mode *mode,
10264                           int x, int y, struct drm_framebuffer *fb)
10265 {
10266         int ret;
10267
10268         ret = __intel_set_mode(crtc, mode, x, y, fb);
10269
10270         if (ret == 0)
10271                 intel_modeset_check_state(crtc->dev);
10272
10273         return ret;
10274 }
10275
10276 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10277 {
10278         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10279 }
10280
10281 #undef for_each_intel_crtc_masked
10282
10283 static void intel_set_config_free(struct intel_set_config *config)
10284 {
10285         if (!config)
10286                 return;
10287
10288         kfree(config->save_connector_encoders);
10289         kfree(config->save_encoder_crtcs);
10290         kfree(config->save_crtc_enabled);
10291         kfree(config);
10292 }
10293
10294 static int intel_set_config_save_state(struct drm_device *dev,
10295                                        struct intel_set_config *config)
10296 {
10297         struct drm_crtc *crtc;
10298         struct drm_encoder *encoder;
10299         struct drm_connector *connector;
10300         int count;
10301
10302         config->save_crtc_enabled =
10303                 kcalloc(dev->mode_config.num_crtc,
10304                         sizeof(bool), GFP_KERNEL);
10305         if (!config->save_crtc_enabled)
10306                 return -ENOMEM;
10307
10308         config->save_encoder_crtcs =
10309                 kcalloc(dev->mode_config.num_encoder,
10310                         sizeof(struct drm_crtc *), GFP_KERNEL);
10311         if (!config->save_encoder_crtcs)
10312                 return -ENOMEM;
10313
10314         config->save_connector_encoders =
10315                 kcalloc(dev->mode_config.num_connector,
10316                         sizeof(struct drm_encoder *), GFP_KERNEL);
10317         if (!config->save_connector_encoders)
10318                 return -ENOMEM;
10319
10320         /* Copy data. Note that driver private data is not affected.
10321          * Should anything bad happen only the expected state is
10322          * restored, not the drivers personal bookkeeping.
10323          */
10324         count = 0;
10325         for_each_crtc(dev, crtc) {
10326                 config->save_crtc_enabled[count++] = crtc->enabled;
10327         }
10328
10329         count = 0;
10330         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10331                 config->save_encoder_crtcs[count++] = encoder->crtc;
10332         }
10333
10334         count = 0;
10335         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10336                 config->save_connector_encoders[count++] = connector->encoder;
10337         }
10338
10339         return 0;
10340 }
10341
10342 static void intel_set_config_restore_state(struct drm_device *dev,
10343                                            struct intel_set_config *config)
10344 {
10345         struct intel_crtc *crtc;
10346         struct intel_encoder *encoder;
10347         struct intel_connector *connector;
10348         int count;
10349
10350         count = 0;
10351         for_each_intel_crtc(dev, crtc) {
10352                 crtc->new_enabled = config->save_crtc_enabled[count++];
10353
10354                 if (crtc->new_enabled)
10355                         crtc->new_config = &crtc->config;
10356                 else
10357                         crtc->new_config = NULL;
10358         }
10359
10360         count = 0;
10361         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10362                 encoder->new_crtc =
10363                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10364         }
10365
10366         count = 0;
10367         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10368                 connector->new_encoder =
10369                         to_intel_encoder(config->save_connector_encoders[count++]);
10370         }
10371 }
10372
10373 static bool
10374 is_crtc_connector_off(struct drm_mode_set *set)
10375 {
10376         int i;
10377
10378         if (set->num_connectors == 0)
10379                 return false;
10380
10381         if (WARN_ON(set->connectors == NULL))
10382                 return false;
10383
10384         for (i = 0; i < set->num_connectors; i++)
10385                 if (set->connectors[i]->encoder &&
10386                     set->connectors[i]->encoder->crtc == set->crtc &&
10387                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10388                         return true;
10389
10390         return false;
10391 }
10392
10393 static void
10394 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10395                                       struct intel_set_config *config)
10396 {
10397
10398         /* We should be able to check here if the fb has the same properties
10399          * and then just flip_or_move it */
10400         if (is_crtc_connector_off(set)) {
10401                 config->mode_changed = true;
10402         } else if (set->crtc->primary->fb != set->fb) {
10403                 /* If we have no fb then treat it as a full mode set */
10404                 if (set->crtc->primary->fb == NULL) {
10405                         struct intel_crtc *intel_crtc =
10406                                 to_intel_crtc(set->crtc);
10407
10408                         if (intel_crtc->active && i915.fastboot) {
10409                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10410                                 config->fb_changed = true;
10411                         } else {
10412                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10413                                 config->mode_changed = true;
10414                         }
10415                 } else if (set->fb == NULL) {
10416                         config->mode_changed = true;
10417                 } else if (set->fb->pixel_format !=
10418                            set->crtc->primary->fb->pixel_format) {
10419                         config->mode_changed = true;
10420                 } else {
10421                         config->fb_changed = true;
10422                 }
10423         }
10424
10425         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10426                 config->fb_changed = true;
10427
10428         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10429                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10430                 drm_mode_debug_printmodeline(&set->crtc->mode);
10431                 drm_mode_debug_printmodeline(set->mode);
10432                 config->mode_changed = true;
10433         }
10434
10435         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10436                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10437 }
10438
10439 static int
10440 intel_modeset_stage_output_state(struct drm_device *dev,
10441                                  struct drm_mode_set *set,
10442                                  struct intel_set_config *config)
10443 {
10444         struct intel_connector *connector;
10445         struct intel_encoder *encoder;
10446         struct intel_crtc *crtc;
10447         int ro;
10448
10449         /* The upper layers ensure that we either disable a crtc or have a list
10450          * of connectors. For paranoia, double-check this. */
10451         WARN_ON(!set->fb && (set->num_connectors != 0));
10452         WARN_ON(set->fb && (set->num_connectors == 0));
10453
10454         list_for_each_entry(connector, &dev->mode_config.connector_list,
10455                             base.head) {
10456                 /* Otherwise traverse passed in connector list and get encoders
10457                  * for them. */
10458                 for (ro = 0; ro < set->num_connectors; ro++) {
10459                         if (set->connectors[ro] == &connector->base) {
10460                                 connector->new_encoder = connector->encoder;
10461                                 break;
10462                         }
10463                 }
10464
10465                 /* If we disable the crtc, disable all its connectors. Also, if
10466                  * the connector is on the changing crtc but not on the new
10467                  * connector list, disable it. */
10468                 if ((!set->fb || ro == set->num_connectors) &&
10469                     connector->base.encoder &&
10470                     connector->base.encoder->crtc == set->crtc) {
10471                         connector->new_encoder = NULL;
10472
10473                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10474                                 connector->base.base.id,
10475                                 drm_get_connector_name(&connector->base));
10476                 }
10477
10478
10479                 if (&connector->new_encoder->base != connector->base.encoder) {
10480                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10481                         config->mode_changed = true;
10482                 }
10483         }
10484         /* connector->new_encoder is now updated for all connectors. */
10485
10486         /* Update crtc of enabled connectors. */
10487         list_for_each_entry(connector, &dev->mode_config.connector_list,
10488                             base.head) {
10489                 struct drm_crtc *new_crtc;
10490
10491                 if (!connector->new_encoder)
10492                         continue;
10493
10494                 new_crtc = connector->new_encoder->base.crtc;
10495
10496                 for (ro = 0; ro < set->num_connectors; ro++) {
10497                         if (set->connectors[ro] == &connector->base)
10498                                 new_crtc = set->crtc;
10499                 }
10500
10501                 /* Make sure the new CRTC will work with the encoder */
10502                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10503                                          new_crtc)) {
10504                         return -EINVAL;
10505                 }
10506                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10507
10508                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10509                         connector->base.base.id,
10510                         drm_get_connector_name(&connector->base),
10511                         new_crtc->base.id);
10512         }
10513
10514         /* Check for any encoders that needs to be disabled. */
10515         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10516                             base.head) {
10517                 int num_connectors = 0;
10518                 list_for_each_entry(connector,
10519                                     &dev->mode_config.connector_list,
10520                                     base.head) {
10521                         if (connector->new_encoder == encoder) {
10522                                 WARN_ON(!connector->new_encoder->new_crtc);
10523                                 num_connectors++;
10524                         }
10525                 }
10526
10527                 if (num_connectors == 0)
10528                         encoder->new_crtc = NULL;
10529                 else if (num_connectors > 1)
10530                         return -EINVAL;
10531
10532                 /* Only now check for crtc changes so we don't miss encoders
10533                  * that will be disabled. */
10534                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10535                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10536                         config->mode_changed = true;
10537                 }
10538         }
10539         /* Now we've also updated encoder->new_crtc for all encoders. */
10540
10541         for_each_intel_crtc(dev, crtc) {
10542                 crtc->new_enabled = false;
10543
10544                 list_for_each_entry(encoder,
10545                                     &dev->mode_config.encoder_list,
10546                                     base.head) {
10547                         if (encoder->new_crtc == crtc) {
10548                                 crtc->new_enabled = true;
10549                                 break;
10550                         }
10551                 }
10552
10553                 if (crtc->new_enabled != crtc->base.enabled) {
10554                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10555                                       crtc->new_enabled ? "en" : "dis");
10556                         config->mode_changed = true;
10557                 }
10558
10559                 if (crtc->new_enabled)
10560                         crtc->new_config = &crtc->config;
10561                 else
10562                         crtc->new_config = NULL;
10563         }
10564
10565         return 0;
10566 }
10567
10568 static void disable_crtc_nofb(struct intel_crtc *crtc)
10569 {
10570         struct drm_device *dev = crtc->base.dev;
10571         struct intel_encoder *encoder;
10572         struct intel_connector *connector;
10573
10574         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10575                       pipe_name(crtc->pipe));
10576
10577         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10578                 if (connector->new_encoder &&
10579                     connector->new_encoder->new_crtc == crtc)
10580                         connector->new_encoder = NULL;
10581         }
10582
10583         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10584                 if (encoder->new_crtc == crtc)
10585                         encoder->new_crtc = NULL;
10586         }
10587
10588         crtc->new_enabled = false;
10589         crtc->new_config = NULL;
10590 }
10591
10592 static int intel_crtc_set_config(struct drm_mode_set *set)
10593 {
10594         struct drm_device *dev;
10595         struct drm_mode_set save_set;
10596         struct intel_set_config *config;
10597         int ret;
10598
10599         BUG_ON(!set);
10600         BUG_ON(!set->crtc);
10601         BUG_ON(!set->crtc->helper_private);
10602
10603         /* Enforce sane interface api - has been abused by the fb helper. */
10604         BUG_ON(!set->mode && set->fb);
10605         BUG_ON(set->fb && set->num_connectors == 0);
10606
10607         if (set->fb) {
10608                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10609                                 set->crtc->base.id, set->fb->base.id,
10610                                 (int)set->num_connectors, set->x, set->y);
10611         } else {
10612                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10613         }
10614
10615         dev = set->crtc->dev;
10616
10617         ret = -ENOMEM;
10618         config = kzalloc(sizeof(*config), GFP_KERNEL);
10619         if (!config)
10620                 goto out_config;
10621
10622         ret = intel_set_config_save_state(dev, config);
10623         if (ret)
10624                 goto out_config;
10625
10626         save_set.crtc = set->crtc;
10627         save_set.mode = &set->crtc->mode;
10628         save_set.x = set->crtc->x;
10629         save_set.y = set->crtc->y;
10630         save_set.fb = set->crtc->primary->fb;
10631
10632         /* Compute whether we need a full modeset, only an fb base update or no
10633          * change at all. In the future we might also check whether only the
10634          * mode changed, e.g. for LVDS where we only change the panel fitter in
10635          * such cases. */
10636         intel_set_config_compute_mode_changes(set, config);
10637
10638         ret = intel_modeset_stage_output_state(dev, set, config);
10639         if (ret)
10640                 goto fail;
10641
10642         if (config->mode_changed) {
10643                 ret = intel_set_mode(set->crtc, set->mode,
10644                                      set->x, set->y, set->fb);
10645         } else if (config->fb_changed) {
10646                 intel_crtc_wait_for_pending_flips(set->crtc);
10647
10648                 ret = intel_pipe_set_base(set->crtc,
10649                                           set->x, set->y, set->fb);
10650                 /*
10651                  * In the fastboot case this may be our only check of the
10652                  * state after boot.  It would be better to only do it on
10653                  * the first update, but we don't have a nice way of doing that
10654                  * (and really, set_config isn't used much for high freq page
10655                  * flipping, so increasing its cost here shouldn't be a big
10656                  * deal).
10657                  */
10658                 if (i915.fastboot && ret == 0)
10659                         intel_modeset_check_state(set->crtc->dev);
10660         }
10661
10662         if (ret) {
10663                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10664                               set->crtc->base.id, ret);
10665 fail:
10666                 intel_set_config_restore_state(dev, config);
10667
10668                 /*
10669                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10670                  * force the pipe off to avoid oopsing in the modeset code
10671                  * due to fb==NULL. This should only happen during boot since
10672                  * we don't yet reconstruct the FB from the hardware state.
10673                  */
10674                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10675                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10676
10677                 /* Try to restore the config */
10678                 if (config->mode_changed &&
10679                     intel_set_mode(save_set.crtc, save_set.mode,
10680                                    save_set.x, save_set.y, save_set.fb))
10681                         DRM_ERROR("failed to restore config after modeset failure\n");
10682         }
10683
10684 out_config:
10685         intel_set_config_free(config);
10686         return ret;
10687 }
10688
10689 static const struct drm_crtc_funcs intel_crtc_funcs = {
10690         .cursor_set = intel_crtc_cursor_set,
10691         .cursor_move = intel_crtc_cursor_move,
10692         .gamma_set = intel_crtc_gamma_set,
10693         .set_config = intel_crtc_set_config,
10694         .destroy = intel_crtc_destroy,
10695         .page_flip = intel_crtc_page_flip,
10696 };
10697
10698 static void intel_cpu_pll_init(struct drm_device *dev)
10699 {
10700         if (HAS_DDI(dev))
10701                 intel_ddi_pll_init(dev);
10702 }
10703
10704 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10705                                       struct intel_shared_dpll *pll,
10706                                       struct intel_dpll_hw_state *hw_state)
10707 {
10708         uint32_t val;
10709
10710         val = I915_READ(PCH_DPLL(pll->id));
10711         hw_state->dpll = val;
10712         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10713         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10714
10715         return val & DPLL_VCO_ENABLE;
10716 }
10717
10718 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10719                                   struct intel_shared_dpll *pll)
10720 {
10721         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10722         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10723 }
10724
10725 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10726                                 struct intel_shared_dpll *pll)
10727 {
10728         /* PCH refclock must be enabled first */
10729         ibx_assert_pch_refclk_enabled(dev_priv);
10730
10731         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10732
10733         /* Wait for the clocks to stabilize. */
10734         POSTING_READ(PCH_DPLL(pll->id));
10735         udelay(150);
10736
10737         /* The pixel multiplier can only be updated once the
10738          * DPLL is enabled and the clocks are stable.
10739          *
10740          * So write it again.
10741          */
10742         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10743         POSTING_READ(PCH_DPLL(pll->id));
10744         udelay(200);
10745 }
10746
10747 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10748                                  struct intel_shared_dpll *pll)
10749 {
10750         struct drm_device *dev = dev_priv->dev;
10751         struct intel_crtc *crtc;
10752
10753         /* Make sure no transcoder isn't still depending on us. */
10754         for_each_intel_crtc(dev, crtc) {
10755                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10756                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10757         }
10758
10759         I915_WRITE(PCH_DPLL(pll->id), 0);
10760         POSTING_READ(PCH_DPLL(pll->id));
10761         udelay(200);
10762 }
10763
10764 static char *ibx_pch_dpll_names[] = {
10765         "PCH DPLL A",
10766         "PCH DPLL B",
10767 };
10768
10769 static void ibx_pch_dpll_init(struct drm_device *dev)
10770 {
10771         struct drm_i915_private *dev_priv = dev->dev_private;
10772         int i;
10773
10774         dev_priv->num_shared_dpll = 2;
10775
10776         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10777                 dev_priv->shared_dplls[i].id = i;
10778                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10779                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10780                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10781                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10782                 dev_priv->shared_dplls[i].get_hw_state =
10783                         ibx_pch_dpll_get_hw_state;
10784         }
10785 }
10786
10787 static void intel_shared_dpll_init(struct drm_device *dev)
10788 {
10789         struct drm_i915_private *dev_priv = dev->dev_private;
10790
10791         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10792                 ibx_pch_dpll_init(dev);
10793         else
10794                 dev_priv->num_shared_dpll = 0;
10795
10796         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10797 }
10798
10799 static void intel_crtc_init(struct drm_device *dev, int pipe)
10800 {
10801         struct drm_i915_private *dev_priv = dev->dev_private;
10802         struct intel_crtc *intel_crtc;
10803         int i;
10804
10805         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10806         if (intel_crtc == NULL)
10807                 return;
10808
10809         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10810
10811         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10812         for (i = 0; i < 256; i++) {
10813                 intel_crtc->lut_r[i] = i;
10814                 intel_crtc->lut_g[i] = i;
10815                 intel_crtc->lut_b[i] = i;
10816         }
10817
10818         /*
10819          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10820          * is hooked to plane B. Hence we want plane A feeding pipe B.
10821          */
10822         intel_crtc->pipe = pipe;
10823         intel_crtc->plane = pipe;
10824         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10825                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10826                 intel_crtc->plane = !pipe;
10827         }
10828
10829         init_waitqueue_head(&intel_crtc->vbl_wait);
10830
10831         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10832                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10833         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10834         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10835
10836         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10837 }
10838
10839 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10840 {
10841         struct drm_encoder *encoder = connector->base.encoder;
10842
10843         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10844
10845         if (!encoder)
10846                 return INVALID_PIPE;
10847
10848         return to_intel_crtc(encoder->crtc)->pipe;
10849 }
10850
10851 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10852                                 struct drm_file *file)
10853 {
10854         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10855         struct drm_mode_object *drmmode_obj;
10856         struct intel_crtc *crtc;
10857
10858         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10859                 return -ENODEV;
10860
10861         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10862                         DRM_MODE_OBJECT_CRTC);
10863
10864         if (!drmmode_obj) {
10865                 DRM_ERROR("no such CRTC id\n");
10866                 return -ENOENT;
10867         }
10868
10869         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10870         pipe_from_crtc_id->pipe = crtc->pipe;
10871
10872         return 0;
10873 }
10874
10875 static int intel_encoder_clones(struct intel_encoder *encoder)
10876 {
10877         struct drm_device *dev = encoder->base.dev;
10878         struct intel_encoder *source_encoder;
10879         int index_mask = 0;
10880         int entry = 0;
10881
10882         list_for_each_entry(source_encoder,
10883                             &dev->mode_config.encoder_list, base.head) {
10884                 if (encoders_cloneable(encoder, source_encoder))
10885                         index_mask |= (1 << entry);
10886
10887                 entry++;
10888         }
10889
10890         return index_mask;
10891 }
10892
10893 static bool has_edp_a(struct drm_device *dev)
10894 {
10895         struct drm_i915_private *dev_priv = dev->dev_private;
10896
10897         if (!IS_MOBILE(dev))
10898                 return false;
10899
10900         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10901                 return false;
10902
10903         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10904                 return false;
10905
10906         return true;
10907 }
10908
10909 const char *intel_output_name(int output)
10910 {
10911         static const char *names[] = {
10912                 [INTEL_OUTPUT_UNUSED] = "Unused",
10913                 [INTEL_OUTPUT_ANALOG] = "Analog",
10914                 [INTEL_OUTPUT_DVO] = "DVO",
10915                 [INTEL_OUTPUT_SDVO] = "SDVO",
10916                 [INTEL_OUTPUT_LVDS] = "LVDS",
10917                 [INTEL_OUTPUT_TVOUT] = "TV",
10918                 [INTEL_OUTPUT_HDMI] = "HDMI",
10919                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10920                 [INTEL_OUTPUT_EDP] = "eDP",
10921                 [INTEL_OUTPUT_DSI] = "DSI",
10922                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10923         };
10924
10925         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10926                 return "Invalid";
10927
10928         return names[output];
10929 }
10930
10931 static void intel_setup_outputs(struct drm_device *dev)
10932 {
10933         struct drm_i915_private *dev_priv = dev->dev_private;
10934         struct intel_encoder *encoder;
10935         bool dpd_is_edp = false;
10936
10937         intel_lvds_init(dev);
10938
10939         if (!IS_ULT(dev) && !IS_CHERRYVIEW(dev))
10940                 intel_crt_init(dev);
10941
10942         if (HAS_DDI(dev)) {
10943                 int found;
10944
10945                 /* Haswell uses DDI functions to detect digital outputs */
10946                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10947                 /* DDI A only supports eDP */
10948                 if (found)
10949                         intel_ddi_init(dev, PORT_A);
10950
10951                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10952                  * register */
10953                 found = I915_READ(SFUSE_STRAP);
10954
10955                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10956                         intel_ddi_init(dev, PORT_B);
10957                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10958                         intel_ddi_init(dev, PORT_C);
10959                 if (found & SFUSE_STRAP_DDID_DETECTED)
10960                         intel_ddi_init(dev, PORT_D);
10961         } else if (HAS_PCH_SPLIT(dev)) {
10962                 int found;
10963                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10964
10965                 if (has_edp_a(dev))
10966                         intel_dp_init(dev, DP_A, PORT_A);
10967
10968                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10969                         /* PCH SDVOB multiplex with HDMIB */
10970                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10971                         if (!found)
10972                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10973                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10974                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10975                 }
10976
10977                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10978                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10979
10980                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10981                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10982
10983                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10984                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10985
10986                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10987                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10988         } else if (IS_VALLEYVIEW(dev)) {
10989                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10990                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10991                                         PORT_B);
10992                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10993                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10994                 }
10995
10996                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10997                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10998                                         PORT_C);
10999                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11000                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11001                 }
11002
11003                 intel_dsi_init(dev);
11004         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11005                 bool found = false;
11006
11007                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11008                         DRM_DEBUG_KMS("probing SDVOB\n");
11009                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
11010                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11011                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
11012                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
11013                         }
11014
11015                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
11016                                 intel_dp_init(dev, DP_B, PORT_B);
11017                 }
11018
11019                 /* Before G4X SDVOC doesn't have its own detect register */
11020
11021                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11022                         DRM_DEBUG_KMS("probing SDVOC\n");
11023                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11024                 }
11025
11026                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11027
11028                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11029                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11030                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11031                         }
11032                         if (SUPPORTS_INTEGRATED_DP(dev))
11033                                 intel_dp_init(dev, DP_C, PORT_C);
11034                 }
11035
11036                 if (SUPPORTS_INTEGRATED_DP(dev) &&
11037                     (I915_READ(DP_D) & DP_DETECTED))
11038                         intel_dp_init(dev, DP_D, PORT_D);
11039         } else if (IS_GEN2(dev))
11040                 intel_dvo_init(dev);
11041
11042         if (SUPPORTS_TV(dev))
11043                 intel_tv_init(dev);
11044
11045         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11046                 encoder->base.possible_crtcs = encoder->crtc_mask;
11047                 encoder->base.possible_clones =
11048                         intel_encoder_clones(encoder);
11049         }
11050
11051         intel_init_pch_refclk(dev);
11052
11053         drm_helper_move_panel_connectors_to_head(dev);
11054 }
11055
11056 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11057 {
11058         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11059
11060         drm_framebuffer_cleanup(fb);
11061         WARN_ON(!intel_fb->obj->framebuffer_references--);
11062         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
11063         kfree(intel_fb);
11064 }
11065
11066 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
11067                                                 struct drm_file *file,
11068                                                 unsigned int *handle)
11069 {
11070         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11071         struct drm_i915_gem_object *obj = intel_fb->obj;
11072
11073         return drm_gem_handle_create(file, &obj->base, handle);
11074 }
11075
11076 static const struct drm_framebuffer_funcs intel_fb_funcs = {
11077         .destroy = intel_user_framebuffer_destroy,
11078         .create_handle = intel_user_framebuffer_create_handle,
11079 };
11080
11081 static int intel_framebuffer_init(struct drm_device *dev,
11082                                   struct intel_framebuffer *intel_fb,
11083                                   struct drm_mode_fb_cmd2 *mode_cmd,
11084                                   struct drm_i915_gem_object *obj)
11085 {
11086         int aligned_height;
11087         int pitch_limit;
11088         int ret;
11089
11090         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11091
11092         if (obj->tiling_mode == I915_TILING_Y) {
11093                 DRM_DEBUG("hardware does not support tiling Y\n");
11094                 return -EINVAL;
11095         }
11096
11097         if (mode_cmd->pitches[0] & 63) {
11098                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11099                           mode_cmd->pitches[0]);
11100                 return -EINVAL;
11101         }
11102
11103         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11104                 pitch_limit = 32*1024;
11105         } else if (INTEL_INFO(dev)->gen >= 4) {
11106                 if (obj->tiling_mode)
11107                         pitch_limit = 16*1024;
11108                 else
11109                         pitch_limit = 32*1024;
11110         } else if (INTEL_INFO(dev)->gen >= 3) {
11111                 if (obj->tiling_mode)
11112                         pitch_limit = 8*1024;
11113                 else
11114                         pitch_limit = 16*1024;
11115         } else
11116                 /* XXX DSPC is limited to 4k tiled */
11117                 pitch_limit = 8*1024;
11118
11119         if (mode_cmd->pitches[0] > pitch_limit) {
11120                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
11121                           obj->tiling_mode ? "tiled" : "linear",
11122                           mode_cmd->pitches[0], pitch_limit);
11123                 return -EINVAL;
11124         }
11125
11126         if (obj->tiling_mode != I915_TILING_NONE &&
11127             mode_cmd->pitches[0] != obj->stride) {
11128                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
11129                           mode_cmd->pitches[0], obj->stride);
11130                 return -EINVAL;
11131         }
11132
11133         /* Reject formats not supported by any plane early. */
11134         switch (mode_cmd->pixel_format) {
11135         case DRM_FORMAT_C8:
11136         case DRM_FORMAT_RGB565:
11137         case DRM_FORMAT_XRGB8888:
11138         case DRM_FORMAT_ARGB8888:
11139                 break;
11140         case DRM_FORMAT_XRGB1555:
11141         case DRM_FORMAT_ARGB1555:
11142                 if (INTEL_INFO(dev)->gen > 3) {
11143                         DRM_DEBUG("unsupported pixel format: %s\n",
11144                                   drm_get_format_name(mode_cmd->pixel_format));
11145                         return -EINVAL;
11146                 }
11147                 break;
11148         case DRM_FORMAT_XBGR8888:
11149         case DRM_FORMAT_ABGR8888:
11150         case DRM_FORMAT_XRGB2101010:
11151         case DRM_FORMAT_ARGB2101010:
11152         case DRM_FORMAT_XBGR2101010:
11153         case DRM_FORMAT_ABGR2101010:
11154                 if (INTEL_INFO(dev)->gen < 4) {
11155                         DRM_DEBUG("unsupported pixel format: %s\n",
11156                                   drm_get_format_name(mode_cmd->pixel_format));
11157                         return -EINVAL;
11158                 }
11159                 break;
11160         case DRM_FORMAT_YUYV:
11161         case DRM_FORMAT_UYVY:
11162         case DRM_FORMAT_YVYU:
11163         case DRM_FORMAT_VYUY:
11164                 if (INTEL_INFO(dev)->gen < 5) {
11165                         DRM_DEBUG("unsupported pixel format: %s\n",
11166                                   drm_get_format_name(mode_cmd->pixel_format));
11167                         return -EINVAL;
11168                 }
11169                 break;
11170         default:
11171                 DRM_DEBUG("unsupported pixel format: %s\n",
11172                           drm_get_format_name(mode_cmd->pixel_format));
11173                 return -EINVAL;
11174         }
11175
11176         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
11177         if (mode_cmd->offsets[0] != 0)
11178                 return -EINVAL;
11179
11180         aligned_height = intel_align_height(dev, mode_cmd->height,
11181                                             obj->tiling_mode);
11182         /* FIXME drm helper for size checks (especially planar formats)? */
11183         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
11184                 return -EINVAL;
11185
11186         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
11187         intel_fb->obj = obj;
11188         intel_fb->obj->framebuffer_references++;
11189
11190         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
11191         if (ret) {
11192                 DRM_ERROR("framebuffer init failed %d\n", ret);
11193                 return ret;
11194         }
11195
11196         return 0;
11197 }
11198
11199 static struct drm_framebuffer *
11200 intel_user_framebuffer_create(struct drm_device *dev,
11201                               struct drm_file *filp,
11202                               struct drm_mode_fb_cmd2 *mode_cmd)
11203 {
11204         struct drm_i915_gem_object *obj;
11205
11206         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
11207                                                 mode_cmd->handles[0]));
11208         if (&obj->base == NULL)
11209                 return ERR_PTR(-ENOENT);
11210
11211         return intel_framebuffer_create(dev, mode_cmd, obj);
11212 }
11213
11214 #ifndef CONFIG_DRM_I915_FBDEV
11215 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
11216 {
11217 }
11218 #endif
11219
11220 static const struct drm_mode_config_funcs intel_mode_funcs = {
11221         .fb_create = intel_user_framebuffer_create,
11222         .output_poll_changed = intel_fbdev_output_poll_changed,
11223 };
11224
11225 /* Set up chip specific display functions */
11226 static void intel_init_display(struct drm_device *dev)
11227 {
11228         struct drm_i915_private *dev_priv = dev->dev_private;
11229
11230         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11231                 dev_priv->display.find_dpll = g4x_find_best_dpll;
11232         else if (IS_CHERRYVIEW(dev))
11233                 dev_priv->display.find_dpll = chv_find_best_dpll;
11234         else if (IS_VALLEYVIEW(dev))
11235                 dev_priv->display.find_dpll = vlv_find_best_dpll;
11236         else if (IS_PINEVIEW(dev))
11237                 dev_priv->display.find_dpll = pnv_find_best_dpll;
11238         else
11239                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11240
11241         if (HAS_DDI(dev)) {
11242                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11243                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11244                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11245                 dev_priv->display.crtc_enable = haswell_crtc_enable;
11246                 dev_priv->display.crtc_disable = haswell_crtc_disable;
11247                 dev_priv->display.off = haswell_crtc_off;
11248                 dev_priv->display.update_primary_plane =
11249                         ironlake_update_primary_plane;
11250         } else if (HAS_PCH_SPLIT(dev)) {
11251                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11252                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11253                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11254                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11255                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11256                 dev_priv->display.off = ironlake_crtc_off;
11257                 dev_priv->display.update_primary_plane =
11258                         ironlake_update_primary_plane;
11259         } else if (IS_VALLEYVIEW(dev)) {
11260                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11261                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11262                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11263                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11264                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11265                 dev_priv->display.off = i9xx_crtc_off;
11266                 dev_priv->display.update_primary_plane =
11267                         i9xx_update_primary_plane;
11268         } else {
11269                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11270                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11271                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11272                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11273                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11274                 dev_priv->display.off = i9xx_crtc_off;
11275                 dev_priv->display.update_primary_plane =
11276                         i9xx_update_primary_plane;
11277         }
11278
11279         /* Returns the core display clock speed */
11280         if (IS_VALLEYVIEW(dev))
11281                 dev_priv->display.get_display_clock_speed =
11282                         valleyview_get_display_clock_speed;
11283         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11284                 dev_priv->display.get_display_clock_speed =
11285                         i945_get_display_clock_speed;
11286         else if (IS_I915G(dev))
11287                 dev_priv->display.get_display_clock_speed =
11288                         i915_get_display_clock_speed;
11289         else if (IS_I945GM(dev) || IS_845G(dev))
11290                 dev_priv->display.get_display_clock_speed =
11291                         i9xx_misc_get_display_clock_speed;
11292         else if (IS_PINEVIEW(dev))
11293                 dev_priv->display.get_display_clock_speed =
11294                         pnv_get_display_clock_speed;
11295         else if (IS_I915GM(dev))
11296                 dev_priv->display.get_display_clock_speed =
11297                         i915gm_get_display_clock_speed;
11298         else if (IS_I865G(dev))
11299                 dev_priv->display.get_display_clock_speed =
11300                         i865_get_display_clock_speed;
11301         else if (IS_I85X(dev))
11302                 dev_priv->display.get_display_clock_speed =
11303                         i855_get_display_clock_speed;
11304         else /* 852, 830 */
11305                 dev_priv->display.get_display_clock_speed =
11306                         i830_get_display_clock_speed;
11307
11308         if (HAS_PCH_SPLIT(dev)) {
11309                 if (IS_GEN5(dev)) {
11310                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11311                         dev_priv->display.write_eld = ironlake_write_eld;
11312                 } else if (IS_GEN6(dev)) {
11313                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11314                         dev_priv->display.write_eld = ironlake_write_eld;
11315                         dev_priv->display.modeset_global_resources =
11316                                 snb_modeset_global_resources;
11317                 } else if (IS_IVYBRIDGE(dev)) {
11318                         /* FIXME: detect B0+ stepping and use auto training */
11319                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11320                         dev_priv->display.write_eld = ironlake_write_eld;
11321                         dev_priv->display.modeset_global_resources =
11322                                 ivb_modeset_global_resources;
11323                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11324                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11325                         dev_priv->display.write_eld = haswell_write_eld;
11326                         dev_priv->display.modeset_global_resources =
11327                                 haswell_modeset_global_resources;
11328                 }
11329         } else if (IS_G4X(dev)) {
11330                 dev_priv->display.write_eld = g4x_write_eld;
11331         } else if (IS_VALLEYVIEW(dev)) {
11332                 dev_priv->display.modeset_global_resources =
11333                         valleyview_modeset_global_resources;
11334                 dev_priv->display.write_eld = ironlake_write_eld;
11335         }
11336
11337         /* Default just returns -ENODEV to indicate unsupported */
11338         dev_priv->display.queue_flip = intel_default_queue_flip;
11339
11340         switch (INTEL_INFO(dev)->gen) {
11341         case 2:
11342                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11343                 break;
11344
11345         case 3:
11346                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11347                 break;
11348
11349         case 4:
11350         case 5:
11351                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11352                 break;
11353
11354         case 6:
11355                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11356                 break;
11357         case 7:
11358         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11359                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11360                 break;
11361         }
11362
11363         intel_panel_init_backlight_funcs(dev);
11364 }
11365
11366 /*
11367  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11368  * resume, or other times.  This quirk makes sure that's the case for
11369  * affected systems.
11370  */
11371 static void quirk_pipea_force(struct drm_device *dev)
11372 {
11373         struct drm_i915_private *dev_priv = dev->dev_private;
11374
11375         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11376         DRM_INFO("applying pipe a force quirk\n");
11377 }
11378
11379 /*
11380  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11381  */
11382 static void quirk_ssc_force_disable(struct drm_device *dev)
11383 {
11384         struct drm_i915_private *dev_priv = dev->dev_private;
11385         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11386         DRM_INFO("applying lvds SSC disable quirk\n");
11387 }
11388
11389 /*
11390  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11391  * brightness value
11392  */
11393 static void quirk_invert_brightness(struct drm_device *dev)
11394 {
11395         struct drm_i915_private *dev_priv = dev->dev_private;
11396         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11397         DRM_INFO("applying inverted panel brightness quirk\n");
11398 }
11399
11400 struct intel_quirk {
11401         int device;
11402         int subsystem_vendor;
11403         int subsystem_device;
11404         void (*hook)(struct drm_device *dev);
11405 };
11406
11407 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11408 struct intel_dmi_quirk {
11409         void (*hook)(struct drm_device *dev);
11410         const struct dmi_system_id (*dmi_id_list)[];
11411 };
11412
11413 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11414 {
11415         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11416         return 1;
11417 }
11418
11419 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11420         {
11421                 .dmi_id_list = &(const struct dmi_system_id[]) {
11422                         {
11423                                 .callback = intel_dmi_reverse_brightness,
11424                                 .ident = "NCR Corporation",
11425                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11426                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11427                                 },
11428                         },
11429                         { }  /* terminating entry */
11430                 },
11431                 .hook = quirk_invert_brightness,
11432         },
11433 };
11434
11435 static struct intel_quirk intel_quirks[] = {
11436         /* HP Mini needs pipe A force quirk (LP: #322104) */
11437         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11438
11439         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11440         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11441
11442         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11443         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11444
11445         /* 830 needs to leave pipe A & dpll A up */
11446         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11447
11448         /* Lenovo U160 cannot use SSC on LVDS */
11449         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11450
11451         /* Sony Vaio Y cannot use SSC on LVDS */
11452         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11453
11454         /* Acer Aspire 5734Z must invert backlight brightness */
11455         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11456
11457         /* Acer/eMachines G725 */
11458         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11459
11460         /* Acer/eMachines e725 */
11461         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11462
11463         /* Acer/Packard Bell NCL20 */
11464         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11465
11466         /* Acer Aspire 4736Z */
11467         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11468
11469         /* Acer Aspire 5336 */
11470         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11471 };
11472
11473 static void intel_init_quirks(struct drm_device *dev)
11474 {
11475         struct pci_dev *d = dev->pdev;
11476         int i;
11477
11478         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11479                 struct intel_quirk *q = &intel_quirks[i];
11480
11481                 if (d->device == q->device &&
11482                     (d->subsystem_vendor == q->subsystem_vendor ||
11483                      q->subsystem_vendor == PCI_ANY_ID) &&
11484                     (d->subsystem_device == q->subsystem_device ||
11485                      q->subsystem_device == PCI_ANY_ID))
11486                         q->hook(dev);
11487         }
11488         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11489                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11490                         intel_dmi_quirks[i].hook(dev);
11491         }
11492 }
11493
11494 /* Disable the VGA plane that we never use */
11495 static void i915_disable_vga(struct drm_device *dev)
11496 {
11497         struct drm_i915_private *dev_priv = dev->dev_private;
11498         u8 sr1;
11499         u32 vga_reg = i915_vgacntrl_reg(dev);
11500
11501         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11502         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11503         outb(SR01, VGA_SR_INDEX);
11504         sr1 = inb(VGA_SR_DATA);
11505         outb(sr1 | 1<<5, VGA_SR_DATA);
11506         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11507         udelay(300);
11508
11509         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11510         POSTING_READ(vga_reg);
11511 }
11512
11513 void intel_modeset_init_hw(struct drm_device *dev)
11514 {
11515         intel_prepare_ddi(dev);
11516
11517         intel_init_clock_gating(dev);
11518
11519         intel_reset_dpio(dev);
11520
11521         intel_enable_gt_powersave(dev);
11522 }
11523
11524 void intel_modeset_suspend_hw(struct drm_device *dev)
11525 {
11526         intel_suspend_hw(dev);
11527 }
11528
11529 void intel_modeset_init(struct drm_device *dev)
11530 {
11531         struct drm_i915_private *dev_priv = dev->dev_private;
11532         int sprite, ret;
11533         enum pipe pipe;
11534         struct intel_crtc *crtc;
11535
11536         drm_mode_config_init(dev);
11537
11538         dev->mode_config.min_width = 0;
11539         dev->mode_config.min_height = 0;
11540
11541         dev->mode_config.preferred_depth = 24;
11542         dev->mode_config.prefer_shadow = 1;
11543
11544         dev->mode_config.funcs = &intel_mode_funcs;
11545
11546         intel_init_quirks(dev);
11547
11548         intel_init_pm(dev);
11549
11550         if (INTEL_INFO(dev)->num_pipes == 0)
11551                 return;
11552
11553         intel_init_display(dev);
11554
11555         if (IS_GEN2(dev)) {
11556                 dev->mode_config.max_width = 2048;
11557                 dev->mode_config.max_height = 2048;
11558         } else if (IS_GEN3(dev)) {
11559                 dev->mode_config.max_width = 4096;
11560                 dev->mode_config.max_height = 4096;
11561         } else {
11562                 dev->mode_config.max_width = 8192;
11563                 dev->mode_config.max_height = 8192;
11564         }
11565
11566         if (IS_GEN2(dev)) {
11567                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
11568                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
11569         } else {
11570                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
11571                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
11572         }
11573
11574         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11575
11576         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11577                       INTEL_INFO(dev)->num_pipes,
11578                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11579
11580         for_each_pipe(pipe) {
11581                 intel_crtc_init(dev, pipe);
11582                 for_each_sprite(pipe, sprite) {
11583                         ret = intel_plane_init(dev, pipe, sprite);
11584                         if (ret)
11585                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11586                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11587                 }
11588         }
11589
11590         intel_init_dpio(dev);
11591         intel_reset_dpio(dev);
11592
11593         intel_cpu_pll_init(dev);
11594         intel_shared_dpll_init(dev);
11595
11596         /* Just disable it once at startup */
11597         i915_disable_vga(dev);
11598         intel_setup_outputs(dev);
11599
11600         /* Just in case the BIOS is doing something questionable. */
11601         intel_disable_fbc(dev);
11602
11603         mutex_lock(&dev->mode_config.mutex);
11604         intel_modeset_setup_hw_state(dev, false);
11605         mutex_unlock(&dev->mode_config.mutex);
11606
11607         for_each_intel_crtc(dev, crtc) {
11608                 if (!crtc->active)
11609                         continue;
11610
11611                 /*
11612                  * Note that reserving the BIOS fb up front prevents us
11613                  * from stuffing other stolen allocations like the ring
11614                  * on top.  This prevents some ugliness at boot time, and
11615                  * can even allow for smooth boot transitions if the BIOS
11616                  * fb is large enough for the active pipe configuration.
11617                  */
11618                 if (dev_priv->display.get_plane_config) {
11619                         dev_priv->display.get_plane_config(crtc,
11620                                                            &crtc->plane_config);
11621                         /*
11622                          * If the fb is shared between multiple heads, we'll
11623                          * just get the first one.
11624                          */
11625                         intel_find_plane_obj(crtc, &crtc->plane_config);
11626                 }
11627         }
11628 }
11629
11630 static void
11631 intel_connector_break_all_links(struct intel_connector *connector)
11632 {
11633         connector->base.dpms = DRM_MODE_DPMS_OFF;
11634         connector->base.encoder = NULL;
11635         connector->encoder->connectors_active = false;
11636         connector->encoder->base.crtc = NULL;
11637 }
11638
11639 static void intel_enable_pipe_a(struct drm_device *dev)
11640 {
11641         struct intel_connector *connector;
11642         struct drm_connector *crt = NULL;
11643         struct intel_load_detect_pipe load_detect_temp;
11644
11645         /* We can't just switch on the pipe A, we need to set things up with a
11646          * proper mode and output configuration. As a gross hack, enable pipe A
11647          * by enabling the load detect pipe once. */
11648         list_for_each_entry(connector,
11649                             &dev->mode_config.connector_list,
11650                             base.head) {
11651                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11652                         crt = &connector->base;
11653                         break;
11654                 }
11655         }
11656
11657         if (!crt)
11658                 return;
11659
11660         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11661                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11662
11663
11664 }
11665
11666 static bool
11667 intel_check_plane_mapping(struct intel_crtc *crtc)
11668 {
11669         struct drm_device *dev = crtc->base.dev;
11670         struct drm_i915_private *dev_priv = dev->dev_private;
11671         u32 reg, val;
11672
11673         if (INTEL_INFO(dev)->num_pipes == 1)
11674                 return true;
11675
11676         reg = DSPCNTR(!crtc->plane);
11677         val = I915_READ(reg);
11678
11679         if ((val & DISPLAY_PLANE_ENABLE) &&
11680             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11681                 return false;
11682
11683         return true;
11684 }
11685
11686 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11687 {
11688         struct drm_device *dev = crtc->base.dev;
11689         struct drm_i915_private *dev_priv = dev->dev_private;
11690         u32 reg;
11691
11692         /* Clear any frame start delays used for debugging left by the BIOS */
11693         reg = PIPECONF(crtc->config.cpu_transcoder);
11694         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11695
11696         /* We need to sanitize the plane -> pipe mapping first because this will
11697          * disable the crtc (and hence change the state) if it is wrong. Note
11698          * that gen4+ has a fixed plane -> pipe mapping.  */
11699         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11700                 struct intel_connector *connector;
11701                 bool plane;
11702
11703                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11704                               crtc->base.base.id);
11705
11706                 /* Pipe has the wrong plane attached and the plane is active.
11707                  * Temporarily change the plane mapping and disable everything
11708                  * ...  */
11709                 plane = crtc->plane;
11710                 crtc->plane = !plane;
11711                 dev_priv->display.crtc_disable(&crtc->base);
11712                 crtc->plane = plane;
11713
11714                 /* ... and break all links. */
11715                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11716                                     base.head) {
11717                         if (connector->encoder->base.crtc != &crtc->base)
11718                                 continue;
11719
11720                         intel_connector_break_all_links(connector);
11721                 }
11722
11723                 WARN_ON(crtc->active);
11724                 crtc->base.enabled = false;
11725         }
11726
11727         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11728             crtc->pipe == PIPE_A && !crtc->active) {
11729                 /* BIOS forgot to enable pipe A, this mostly happens after
11730                  * resume. Force-enable the pipe to fix this, the update_dpms
11731                  * call below we restore the pipe to the right state, but leave
11732                  * the required bits on. */
11733                 intel_enable_pipe_a(dev);
11734         }
11735
11736         /* Adjust the state of the output pipe according to whether we
11737          * have active connectors/encoders. */
11738         intel_crtc_update_dpms(&crtc->base);
11739
11740         if (crtc->active != crtc->base.enabled) {
11741                 struct intel_encoder *encoder;
11742
11743                 /* This can happen either due to bugs in the get_hw_state
11744                  * functions or because the pipe is force-enabled due to the
11745                  * pipe A quirk. */
11746                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11747                               crtc->base.base.id,
11748                               crtc->base.enabled ? "enabled" : "disabled",
11749                               crtc->active ? "enabled" : "disabled");
11750
11751                 crtc->base.enabled = crtc->active;
11752
11753                 /* Because we only establish the connector -> encoder ->
11754                  * crtc links if something is active, this means the
11755                  * crtc is now deactivated. Break the links. connector
11756                  * -> encoder links are only establish when things are
11757                  *  actually up, hence no need to break them. */
11758                 WARN_ON(crtc->active);
11759
11760                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11761                         WARN_ON(encoder->connectors_active);
11762                         encoder->base.crtc = NULL;
11763                 }
11764         }
11765         if (crtc->active) {
11766                 /*
11767                  * We start out with underrun reporting disabled to avoid races.
11768                  * For correct bookkeeping mark this on active crtcs.
11769                  *
11770                  * No protection against concurrent access is required - at
11771                  * worst a fifo underrun happens which also sets this to false.
11772                  */
11773                 crtc->cpu_fifo_underrun_disabled = true;
11774                 crtc->pch_fifo_underrun_disabled = true;
11775         }
11776 }
11777
11778 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11779 {
11780         struct intel_connector *connector;
11781         struct drm_device *dev = encoder->base.dev;
11782
11783         /* We need to check both for a crtc link (meaning that the
11784          * encoder is active and trying to read from a pipe) and the
11785          * pipe itself being active. */
11786         bool has_active_crtc = encoder->base.crtc &&
11787                 to_intel_crtc(encoder->base.crtc)->active;
11788
11789         if (encoder->connectors_active && !has_active_crtc) {
11790                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11791                               encoder->base.base.id,
11792                               drm_get_encoder_name(&encoder->base));
11793
11794                 /* Connector is active, but has no active pipe. This is
11795                  * fallout from our resume register restoring. Disable
11796                  * the encoder manually again. */
11797                 if (encoder->base.crtc) {
11798                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11799                                       encoder->base.base.id,
11800                                       drm_get_encoder_name(&encoder->base));
11801                         encoder->disable(encoder);
11802                 }
11803
11804                 /* Inconsistent output/port/pipe state happens presumably due to
11805                  * a bug in one of the get_hw_state functions. Or someplace else
11806                  * in our code, like the register restore mess on resume. Clamp
11807                  * things to off as a safer default. */
11808                 list_for_each_entry(connector,
11809                                     &dev->mode_config.connector_list,
11810                                     base.head) {
11811                         if (connector->encoder != encoder)
11812                                 continue;
11813
11814                         intel_connector_break_all_links(connector);
11815                 }
11816         }
11817         /* Enabled encoders without active connectors will be fixed in
11818          * the crtc fixup. */
11819 }
11820
11821 void i915_redisable_vga_power_on(struct drm_device *dev)
11822 {
11823         struct drm_i915_private *dev_priv = dev->dev_private;
11824         u32 vga_reg = i915_vgacntrl_reg(dev);
11825
11826         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11827                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11828                 i915_disable_vga(dev);
11829         }
11830 }
11831
11832 void i915_redisable_vga(struct drm_device *dev)
11833 {
11834         struct drm_i915_private *dev_priv = dev->dev_private;
11835
11836         /* This function can be called both from intel_modeset_setup_hw_state or
11837          * at a very early point in our resume sequence, where the power well
11838          * structures are not yet restored. Since this function is at a very
11839          * paranoid "someone might have enabled VGA while we were not looking"
11840          * level, just check if the power well is enabled instead of trying to
11841          * follow the "don't touch the power well if we don't need it" policy
11842          * the rest of the driver uses. */
11843         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11844                 return;
11845
11846         i915_redisable_vga_power_on(dev);
11847 }
11848
11849 static bool primary_get_hw_state(struct intel_crtc *crtc)
11850 {
11851         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
11852
11853         if (!crtc->active)
11854                 return false;
11855
11856         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
11857 }
11858
11859 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11860 {
11861         struct drm_i915_private *dev_priv = dev->dev_private;
11862         enum pipe pipe;
11863         struct intel_crtc *crtc;
11864         struct intel_encoder *encoder;
11865         struct intel_connector *connector;
11866         int i;
11867
11868         for_each_intel_crtc(dev, crtc) {
11869                 memset(&crtc->config, 0, sizeof(crtc->config));
11870
11871                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
11872
11873                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11874                                                                  &crtc->config);
11875
11876                 crtc->base.enabled = crtc->active;
11877                 crtc->primary_enabled = primary_get_hw_state(crtc);
11878
11879                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11880                               crtc->base.base.id,
11881                               crtc->active ? "enabled" : "disabled");
11882         }
11883
11884         /* FIXME: Smash this into the new shared dpll infrastructure. */
11885         if (HAS_DDI(dev))
11886                 intel_ddi_setup_hw_pll_state(dev);
11887
11888         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11889                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11890
11891                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11892                 pll->active = 0;
11893                 for_each_intel_crtc(dev, crtc) {
11894                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11895                                 pll->active++;
11896                 }
11897                 pll->refcount = pll->active;
11898
11899                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11900                               pll->name, pll->refcount, pll->on);
11901         }
11902
11903         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11904                             base.head) {
11905                 pipe = 0;
11906
11907                 if (encoder->get_hw_state(encoder, &pipe)) {
11908                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11909                         encoder->base.crtc = &crtc->base;
11910                         encoder->get_config(encoder, &crtc->config);
11911                 } else {
11912                         encoder->base.crtc = NULL;
11913                 }
11914
11915                 encoder->connectors_active = false;
11916                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11917                               encoder->base.base.id,
11918                               drm_get_encoder_name(&encoder->base),
11919                               encoder->base.crtc ? "enabled" : "disabled",
11920                               pipe_name(pipe));
11921         }
11922
11923         list_for_each_entry(connector, &dev->mode_config.connector_list,
11924                             base.head) {
11925                 if (connector->get_hw_state(connector)) {
11926                         connector->base.dpms = DRM_MODE_DPMS_ON;
11927                         connector->encoder->connectors_active = true;
11928                         connector->base.encoder = &connector->encoder->base;
11929                 } else {
11930                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11931                         connector->base.encoder = NULL;
11932                 }
11933                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11934                               connector->base.base.id,
11935                               drm_get_connector_name(&connector->base),
11936                               connector->base.encoder ? "enabled" : "disabled");
11937         }
11938 }
11939
11940 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11941  * and i915 state tracking structures. */
11942 void intel_modeset_setup_hw_state(struct drm_device *dev,
11943                                   bool force_restore)
11944 {
11945         struct drm_i915_private *dev_priv = dev->dev_private;
11946         enum pipe pipe;
11947         struct intel_crtc *crtc;
11948         struct intel_encoder *encoder;
11949         int i;
11950
11951         intel_modeset_readout_hw_state(dev);
11952
11953         /*
11954          * Now that we have the config, copy it to each CRTC struct
11955          * Note that this could go away if we move to using crtc_config
11956          * checking everywhere.
11957          */
11958         for_each_intel_crtc(dev, crtc) {
11959                 if (crtc->active && i915.fastboot) {
11960                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11961                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11962                                       crtc->base.base.id);
11963                         drm_mode_debug_printmodeline(&crtc->base.mode);
11964                 }
11965         }
11966
11967         /* HW state is read out, now we need to sanitize this mess. */
11968         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11969                             base.head) {
11970                 intel_sanitize_encoder(encoder);
11971         }
11972
11973         for_each_pipe(pipe) {
11974                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11975                 intel_sanitize_crtc(crtc);
11976                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11977         }
11978
11979         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11980                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11981
11982                 if (!pll->on || pll->active)
11983                         continue;
11984
11985                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11986
11987                 pll->disable(dev_priv, pll);
11988                 pll->on = false;
11989         }
11990
11991         if (HAS_PCH_SPLIT(dev))
11992                 ilk_wm_get_hw_state(dev);
11993
11994         if (force_restore) {
11995                 i915_redisable_vga(dev);
11996
11997                 /*
11998                  * We need to use raw interfaces for restoring state to avoid
11999                  * checking (bogus) intermediate states.
12000                  */
12001                 for_each_pipe(pipe) {
12002                         struct drm_crtc *crtc =
12003                                 dev_priv->pipe_to_crtc_mapping[pipe];
12004
12005                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
12006                                          crtc->primary->fb);
12007                 }
12008         } else {
12009                 intel_modeset_update_staged_output_state(dev);
12010         }
12011
12012         intel_modeset_check_state(dev);
12013 }
12014
12015 void intel_modeset_gem_init(struct drm_device *dev)
12016 {
12017         struct drm_crtc *c;
12018         struct intel_framebuffer *fb;
12019
12020         mutex_lock(&dev->struct_mutex);
12021         intel_init_gt_powersave(dev);
12022         mutex_unlock(&dev->struct_mutex);
12023
12024         intel_modeset_init_hw(dev);
12025
12026         intel_setup_overlay(dev);
12027
12028         /*
12029          * Make sure any fbs we allocated at startup are properly
12030          * pinned & fenced.  When we do the allocation it's too early
12031          * for this.
12032          */
12033         mutex_lock(&dev->struct_mutex);
12034         for_each_crtc(dev, c) {
12035                 if (!c->primary->fb)
12036                         continue;
12037
12038                 fb = to_intel_framebuffer(c->primary->fb);
12039                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12040                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
12041                                   to_intel_crtc(c)->pipe);
12042                         drm_framebuffer_unreference(c->primary->fb);
12043                         c->primary->fb = NULL;
12044                 }
12045         }
12046         mutex_unlock(&dev->struct_mutex);
12047 }
12048
12049 void intel_connector_unregister(struct intel_connector *intel_connector)
12050 {
12051         struct drm_connector *connector = &intel_connector->base;
12052
12053         intel_panel_destroy_backlight(connector);
12054         drm_sysfs_connector_remove(connector);
12055 }
12056
12057 void intel_modeset_cleanup(struct drm_device *dev)
12058 {
12059         struct drm_i915_private *dev_priv = dev->dev_private;
12060         struct drm_crtc *crtc;
12061         struct drm_connector *connector;
12062
12063         /*
12064          * Interrupts and polling as the first thing to avoid creating havoc.
12065          * Too much stuff here (turning of rps, connectors, ...) would
12066          * experience fancy races otherwise.
12067          */
12068         drm_irq_uninstall(dev);
12069         cancel_work_sync(&dev_priv->hotplug_work);
12070         /*
12071          * Due to the hpd irq storm handling the hotplug work can re-arm the
12072          * poll handlers. Hence disable polling after hpd handling is shut down.
12073          */
12074         drm_kms_helper_poll_fini(dev);
12075
12076         mutex_lock(&dev->struct_mutex);
12077
12078         intel_unregister_dsm_handler();
12079
12080         for_each_crtc(dev, crtc) {
12081                 /* Skip inactive CRTCs */
12082                 if (!crtc->primary->fb)
12083                         continue;
12084
12085                 intel_increase_pllclock(crtc);
12086         }
12087
12088         intel_disable_fbc(dev);
12089
12090         intel_disable_gt_powersave(dev);
12091
12092         ironlake_teardown_rc6(dev);
12093
12094         mutex_unlock(&dev->struct_mutex);
12095
12096         /* flush any delayed tasks or pending work */
12097         flush_scheduled_work();
12098
12099         /* destroy the backlight and sysfs files before encoders/connectors */
12100         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12101                 struct intel_connector *intel_connector;
12102
12103                 intel_connector = to_intel_connector(connector);
12104                 intel_connector->unregister(intel_connector);
12105         }
12106
12107         drm_mode_config_cleanup(dev);
12108
12109         intel_cleanup_overlay(dev);
12110
12111         mutex_lock(&dev->struct_mutex);
12112         intel_cleanup_gt_powersave(dev);
12113         mutex_unlock(&dev->struct_mutex);
12114 }
12115
12116 /*
12117  * Return which encoder is currently attached for connector.
12118  */
12119 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
12120 {
12121         return &intel_attached_encoder(connector)->base;
12122 }
12123
12124 void intel_connector_attach_encoder(struct intel_connector *connector,
12125                                     struct intel_encoder *encoder)
12126 {
12127         connector->encoder = encoder;
12128         drm_mode_connector_attach_encoder(&connector->base,
12129                                           &encoder->base);
12130 }
12131
12132 /*
12133  * set vga decode state - true == enable VGA decode
12134  */
12135 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
12136 {
12137         struct drm_i915_private *dev_priv = dev->dev_private;
12138         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
12139         u16 gmch_ctrl;
12140
12141         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
12142                 DRM_ERROR("failed to read control word\n");
12143                 return -EIO;
12144         }
12145
12146         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
12147                 return 0;
12148
12149         if (state)
12150                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
12151         else
12152                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
12153
12154         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
12155                 DRM_ERROR("failed to write control word\n");
12156                 return -EIO;
12157         }
12158
12159         return 0;
12160 }
12161
12162 struct intel_display_error_state {
12163
12164         u32 power_well_driver;
12165
12166         int num_transcoders;
12167
12168         struct intel_cursor_error_state {
12169                 u32 control;
12170                 u32 position;
12171                 u32 base;
12172                 u32 size;
12173         } cursor[I915_MAX_PIPES];
12174
12175         struct intel_pipe_error_state {
12176                 bool power_domain_on;
12177                 u32 source;
12178                 u32 stat;
12179         } pipe[I915_MAX_PIPES];
12180
12181         struct intel_plane_error_state {
12182                 u32 control;
12183                 u32 stride;
12184                 u32 size;
12185                 u32 pos;
12186                 u32 addr;
12187                 u32 surface;
12188                 u32 tile_offset;
12189         } plane[I915_MAX_PIPES];
12190
12191         struct intel_transcoder_error_state {
12192                 bool power_domain_on;
12193                 enum transcoder cpu_transcoder;
12194
12195                 u32 conf;
12196
12197                 u32 htotal;
12198                 u32 hblank;
12199                 u32 hsync;
12200                 u32 vtotal;
12201                 u32 vblank;
12202                 u32 vsync;
12203         } transcoder[4];
12204 };
12205
12206 struct intel_display_error_state *
12207 intel_display_capture_error_state(struct drm_device *dev)
12208 {
12209         struct drm_i915_private *dev_priv = dev->dev_private;
12210         struct intel_display_error_state *error;
12211         int transcoders[] = {
12212                 TRANSCODER_A,
12213                 TRANSCODER_B,
12214                 TRANSCODER_C,
12215                 TRANSCODER_EDP,
12216         };
12217         int i;
12218
12219         if (INTEL_INFO(dev)->num_pipes == 0)
12220                 return NULL;
12221
12222         error = kzalloc(sizeof(*error), GFP_ATOMIC);
12223         if (error == NULL)
12224                 return NULL;
12225
12226         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12227                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
12228
12229         for_each_pipe(i) {
12230                 error->pipe[i].power_domain_on =
12231                         intel_display_power_enabled_sw(dev_priv,
12232                                                        POWER_DOMAIN_PIPE(i));
12233                 if (!error->pipe[i].power_domain_on)
12234                         continue;
12235
12236                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
12237                         error->cursor[i].control = I915_READ(CURCNTR(i));
12238                         error->cursor[i].position = I915_READ(CURPOS(i));
12239                         error->cursor[i].base = I915_READ(CURBASE(i));
12240                 } else {
12241                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
12242                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
12243                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
12244                 }
12245
12246                 error->plane[i].control = I915_READ(DSPCNTR(i));
12247                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12248                 if (INTEL_INFO(dev)->gen <= 3) {
12249                         error->plane[i].size = I915_READ(DSPSIZE(i));
12250                         error->plane[i].pos = I915_READ(DSPPOS(i));
12251                 }
12252                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12253                         error->plane[i].addr = I915_READ(DSPADDR(i));
12254                 if (INTEL_INFO(dev)->gen >= 4) {
12255                         error->plane[i].surface = I915_READ(DSPSURF(i));
12256                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12257                 }
12258
12259                 error->pipe[i].source = I915_READ(PIPESRC(i));
12260
12261                 if (!HAS_PCH_SPLIT(dev))
12262                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
12263         }
12264
12265         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12266         if (HAS_DDI(dev_priv->dev))
12267                 error->num_transcoders++; /* Account for eDP. */
12268
12269         for (i = 0; i < error->num_transcoders; i++) {
12270                 enum transcoder cpu_transcoder = transcoders[i];
12271
12272                 error->transcoder[i].power_domain_on =
12273                         intel_display_power_enabled_sw(dev_priv,
12274                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12275                 if (!error->transcoder[i].power_domain_on)
12276                         continue;
12277
12278                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12279
12280                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12281                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12282                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12283                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12284                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12285                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12286                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12287         }
12288
12289         return error;
12290 }
12291
12292 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12293
12294 void
12295 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12296                                 struct drm_device *dev,
12297                                 struct intel_display_error_state *error)
12298 {
12299         int i;
12300
12301         if (!error)
12302                 return;
12303
12304         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12305         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12306                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12307                            error->power_well_driver);
12308         for_each_pipe(i) {
12309                 err_printf(m, "Pipe [%d]:\n", i);
12310                 err_printf(m, "  Power: %s\n",
12311                            error->pipe[i].power_domain_on ? "on" : "off");
12312                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12313                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
12314
12315                 err_printf(m, "Plane [%d]:\n", i);
12316                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12317                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12318                 if (INTEL_INFO(dev)->gen <= 3) {
12319                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12320                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12321                 }
12322                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12323                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12324                 if (INTEL_INFO(dev)->gen >= 4) {
12325                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12326                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12327                 }
12328
12329                 err_printf(m, "Cursor [%d]:\n", i);
12330                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12331                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12332                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12333         }
12334
12335         for (i = 0; i < error->num_transcoders; i++) {
12336                 err_printf(m, "CPU transcoder: %c\n",
12337                            transcoder_name(error->transcoder[i].cpu_transcoder));
12338                 err_printf(m, "  Power: %s\n",
12339                            error->transcoder[i].power_domain_on ? "on" : "off");
12340                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12341                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12342                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12343                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12344                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12345                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12346                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12347         }
12348 }