drm/i915/vlv: split CCK and DDR freq usage
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
68         intel_p2_t          p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74         struct drm_i915_private *dev_priv = dev->dev_private;
75
76         WARN_ON(!HAS_PCH_SPLIT(dev));
77
78         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84         if (IS_GEN5(dev)) {
85                 struct drm_i915_private *dev_priv = dev->dev_private;
86                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87         } else
88                 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92         .dot = { .min = 25000, .max = 350000 },
93         .vco = { .min = 930000, .max = 1400000 },
94         .n = { .min = 3, .max = 16 },
95         .m = { .min = 96, .max = 140 },
96         .m1 = { .min = 18, .max = 26 },
97         .m2 = { .min = 6, .max = 16 },
98         .p = { .min = 4, .max = 128 },
99         .p1 = { .min = 2, .max = 33 },
100         .p2 = { .dot_limit = 165000,
101                 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105         .dot = { .min = 25000, .max = 350000 },
106         .vco = { .min = 930000, .max = 1400000 },
107         .n = { .min = 3, .max = 16 },
108         .m = { .min = 96, .max = 140 },
109         .m1 = { .min = 18, .max = 26 },
110         .m2 = { .min = 6, .max = 16 },
111         .p = { .min = 4, .max = 128 },
112         .p1 = { .min = 2, .max = 33 },
113         .p2 = { .dot_limit = 165000,
114                 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118         .dot = { .min = 25000, .max = 350000 },
119         .vco = { .min = 930000, .max = 1400000 },
120         .n = { .min = 3, .max = 16 },
121         .m = { .min = 96, .max = 140 },
122         .m1 = { .min = 18, .max = 26 },
123         .m2 = { .min = 6, .max = 16 },
124         .p = { .min = 4, .max = 128 },
125         .p1 = { .min = 1, .max = 6 },
126         .p2 = { .dot_limit = 165000,
127                 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131         .dot = { .min = 20000, .max = 400000 },
132         .vco = { .min = 1400000, .max = 2800000 },
133         .n = { .min = 1, .max = 6 },
134         .m = { .min = 70, .max = 120 },
135         .m1 = { .min = 8, .max = 18 },
136         .m2 = { .min = 3, .max = 7 },
137         .p = { .min = 5, .max = 80 },
138         .p1 = { .min = 1, .max = 8 },
139         .p2 = { .dot_limit = 200000,
140                 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144         .dot = { .min = 20000, .max = 400000 },
145         .vco = { .min = 1400000, .max = 2800000 },
146         .n = { .min = 1, .max = 6 },
147         .m = { .min = 70, .max = 120 },
148         .m1 = { .min = 8, .max = 18 },
149         .m2 = { .min = 3, .max = 7 },
150         .p = { .min = 7, .max = 98 },
151         .p1 = { .min = 1, .max = 8 },
152         .p2 = { .dot_limit = 112000,
153                 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158         .dot = { .min = 25000, .max = 270000 },
159         .vco = { .min = 1750000, .max = 3500000},
160         .n = { .min = 1, .max = 4 },
161         .m = { .min = 104, .max = 138 },
162         .m1 = { .min = 17, .max = 23 },
163         .m2 = { .min = 5, .max = 11 },
164         .p = { .min = 10, .max = 30 },
165         .p1 = { .min = 1, .max = 3},
166         .p2 = { .dot_limit = 270000,
167                 .p2_slow = 10,
168                 .p2_fast = 10
169         },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173         .dot = { .min = 22000, .max = 400000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 16, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 5, .max = 80 },
180         .p1 = { .min = 1, .max = 8},
181         .p2 = { .dot_limit = 165000,
182                 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186         .dot = { .min = 20000, .max = 115000 },
187         .vco = { .min = 1750000, .max = 3500000 },
188         .n = { .min = 1, .max = 3 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 17, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 28, .max = 112 },
193         .p1 = { .min = 2, .max = 8 },
194         .p2 = { .dot_limit = 0,
195                 .p2_slow = 14, .p2_fast = 14
196         },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200         .dot = { .min = 80000, .max = 224000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 14, .max = 42 },
207         .p1 = { .min = 2, .max = 6 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 7, .p2_fast = 7
210         },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214         .dot = { .min = 20000, .max = 400000},
215         .vco = { .min = 1700000, .max = 3500000 },
216         /* Pineview's Ncounter is a ring counter */
217         .n = { .min = 3, .max = 6 },
218         .m = { .min = 2, .max = 256 },
219         /* Pineview only has one combined m divider, which we treat as m2. */
220         .m1 = { .min = 0, .max = 0 },
221         .m2 = { .min = 0, .max = 254 },
222         .p = { .min = 5, .max = 80 },
223         .p1 = { .min = 1, .max = 8 },
224         .p2 = { .dot_limit = 200000,
225                 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229         .dot = { .min = 20000, .max = 400000 },
230         .vco = { .min = 1700000, .max = 3500000 },
231         .n = { .min = 3, .max = 6 },
232         .m = { .min = 2, .max = 256 },
233         .m1 = { .min = 0, .max = 0 },
234         .m2 = { .min = 0, .max = 254 },
235         .p = { .min = 7, .max = 112 },
236         .p1 = { .min = 1, .max = 8 },
237         .p2 = { .dot_limit = 112000,
238                 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242  *
243  * We calculate clock using (register_value + 2) for N/M1/M2, so here
244  * the range value for them is (actual_value - 2).
245  */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247         .dot = { .min = 25000, .max = 350000 },
248         .vco = { .min = 1760000, .max = 3510000 },
249         .n = { .min = 1, .max = 5 },
250         .m = { .min = 79, .max = 127 },
251         .m1 = { .min = 12, .max = 22 },
252         .m2 = { .min = 5, .max = 9 },
253         .p = { .min = 5, .max = 80 },
254         .p1 = { .min = 1, .max = 8 },
255         .p2 = { .dot_limit = 225000,
256                 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 1760000, .max = 3510000 },
262         .n = { .min = 1, .max = 3 },
263         .m = { .min = 79, .max = 118 },
264         .m1 = { .min = 12, .max = 22 },
265         .m2 = { .min = 5, .max = 9 },
266         .p = { .min = 28, .max = 112 },
267         .p1 = { .min = 2, .max = 8 },
268         .p2 = { .dot_limit = 225000,
269                 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 3 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 14, .max = 56 },
280         .p1 = { .min = 2, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 2 },
290         .m = { .min = 79, .max = 126 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 126 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 42 },
307         .p1 = { .min = 2, .max = 6 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313          /*
314           * These are the data rate limits (measured in fast clocks)
315           * since those are the strictest limits we have. The fast
316           * clock and actual rate limits are more relaxed, so checking
317           * them would make no difference.
318           */
319         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320         .vco = { .min = 4000000, .max = 6000000 },
321         .n = { .min = 1, .max = 7 },
322         .m1 = { .min = 2, .max = 3 },
323         .m2 = { .min = 11, .max = 156 },
324         .p1 = { .min = 2, .max = 3 },
325         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330         clock->m = clock->m1 * clock->m2;
331         clock->p = clock->p1 * clock->p2;
332         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
333         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
334 }
335
336 /**
337  * Returns whether any output on the specified pipe is of the specified type
338  */
339 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
340 {
341         struct drm_device *dev = crtc->dev;
342         struct intel_encoder *encoder;
343
344         for_each_encoder_on_crtc(dev, crtc, encoder)
345                 if (encoder->type == type)
346                         return true;
347
348         return false;
349 }
350
351 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
352                                                 int refclk)
353 {
354         struct drm_device *dev = crtc->dev;
355         const intel_limit_t *limit;
356
357         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
358                 if (intel_is_dual_link_lvds(dev)) {
359                         if (refclk == 100000)
360                                 limit = &intel_limits_ironlake_dual_lvds_100m;
361                         else
362                                 limit = &intel_limits_ironlake_dual_lvds;
363                 } else {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_single_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_single_lvds;
368                 }
369         } else
370                 limit = &intel_limits_ironlake_dac;
371
372         return limit;
373 }
374
375 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
376 {
377         struct drm_device *dev = crtc->dev;
378         const intel_limit_t *limit;
379
380         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
381                 if (intel_is_dual_link_lvds(dev))
382                         limit = &intel_limits_g4x_dual_channel_lvds;
383                 else
384                         limit = &intel_limits_g4x_single_channel_lvds;
385         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
386                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
387                 limit = &intel_limits_g4x_hdmi;
388         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
389                 limit = &intel_limits_g4x_sdvo;
390         } else /* The option is for other outputs */
391                 limit = &intel_limits_i9xx_sdvo;
392
393         return limit;
394 }
395
396 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
397 {
398         struct drm_device *dev = crtc->dev;
399         const intel_limit_t *limit;
400
401         if (HAS_PCH_SPLIT(dev))
402                 limit = intel_ironlake_limit(crtc, refclk);
403         else if (IS_G4X(dev)) {
404                 limit = intel_g4x_limit(crtc);
405         } else if (IS_PINEVIEW(dev)) {
406                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407                         limit = &intel_limits_pineview_lvds;
408                 else
409                         limit = &intel_limits_pineview_sdvo;
410         } else if (IS_VALLEYVIEW(dev)) {
411                 limit = &intel_limits_vlv;
412         } else if (!IS_GEN2(dev)) {
413                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414                         limit = &intel_limits_i9xx_lvds;
415                 else
416                         limit = &intel_limits_i9xx_sdvo;
417         } else {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i8xx_lvds;
420                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
421                         limit = &intel_limits_i8xx_dvo;
422                 else
423                         limit = &intel_limits_i8xx_dac;
424         }
425         return limit;
426 }
427
428 /* m1 is reserved as 0 in Pineview, n is a ring counter */
429 static void pineview_clock(int refclk, intel_clock_t *clock)
430 {
431         clock->m = clock->m2 + 2;
432         clock->p = clock->p1 * clock->p2;
433         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
434         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
435 }
436
437 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
438 {
439         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
440 }
441
442 static void i9xx_clock(int refclk, intel_clock_t *clock)
443 {
444         clock->m = i9xx_dpll_compute_m(clock);
445         clock->p = clock->p1 * clock->p2;
446         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
447         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
448 }
449
450 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
451 /**
452  * Returns whether the given set of divisors are valid for a given refclk with
453  * the given connectors.
454  */
455
456 static bool intel_PLL_is_valid(struct drm_device *dev,
457                                const intel_limit_t *limit,
458                                const intel_clock_t *clock)
459 {
460         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
461                 INTELPllInvalid("n out of range\n");
462         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
463                 INTELPllInvalid("p1 out of range\n");
464         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
465                 INTELPllInvalid("m2 out of range\n");
466         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
467                 INTELPllInvalid("m1 out of range\n");
468
469         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
470                 if (clock->m1 <= clock->m2)
471                         INTELPllInvalid("m1 <= m2\n");
472
473         if (!IS_VALLEYVIEW(dev)) {
474                 if (clock->p < limit->p.min || limit->p.max < clock->p)
475                         INTELPllInvalid("p out of range\n");
476                 if (clock->m < limit->m.min || limit->m.max < clock->m)
477                         INTELPllInvalid("m out of range\n");
478         }
479
480         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481                 INTELPllInvalid("vco out of range\n");
482         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483          * connector, etc., rather than just a single range.
484          */
485         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486                 INTELPllInvalid("dot out of range\n");
487
488         return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493                     int target, int refclk, intel_clock_t *match_clock,
494                     intel_clock_t *best_clock)
495 {
496         struct drm_device *dev = crtc->dev;
497         intel_clock_t clock;
498         int err = target;
499
500         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501                 /*
502                  * For LVDS just rely on its current settings for dual-channel.
503                  * We haven't figured out how to reliably set up different
504                  * single/dual channel state, if we even can.
505                  */
506                 if (intel_is_dual_link_lvds(dev))
507                         clock.p2 = limit->p2.p2_fast;
508                 else
509                         clock.p2 = limit->p2.p2_slow;
510         } else {
511                 if (target < limit->p2.dot_limit)
512                         clock.p2 = limit->p2.p2_slow;
513                 else
514                         clock.p2 = limit->p2.p2_fast;
515         }
516
517         memset(best_clock, 0, sizeof(*best_clock));
518
519         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520              clock.m1++) {
521                 for (clock.m2 = limit->m2.min;
522                      clock.m2 <= limit->m2.max; clock.m2++) {
523                         if (clock.m2 >= clock.m1)
524                                 break;
525                         for (clock.n = limit->n.min;
526                              clock.n <= limit->n.max; clock.n++) {
527                                 for (clock.p1 = limit->p1.min;
528                                         clock.p1 <= limit->p1.max; clock.p1++) {
529                                         int this_err;
530
531                                         i9xx_clock(refclk, &clock);
532                                         if (!intel_PLL_is_valid(dev, limit,
533                                                                 &clock))
534                                                 continue;
535                                         if (match_clock &&
536                                             clock.p != match_clock->p)
537                                                 continue;
538
539                                         this_err = abs(clock.dot - target);
540                                         if (this_err < err) {
541                                                 *best_clock = clock;
542                                                 err = this_err;
543                                         }
544                                 }
545                         }
546                 }
547         }
548
549         return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554                    int target, int refclk, intel_clock_t *match_clock,
555                    intel_clock_t *best_clock)
556 {
557         struct drm_device *dev = crtc->dev;
558         intel_clock_t clock;
559         int err = target;
560
561         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562                 /*
563                  * For LVDS just rely on its current settings for dual-channel.
564                  * We haven't figured out how to reliably set up different
565                  * single/dual channel state, if we even can.
566                  */
567                 if (intel_is_dual_link_lvds(dev))
568                         clock.p2 = limit->p2.p2_fast;
569                 else
570                         clock.p2 = limit->p2.p2_slow;
571         } else {
572                 if (target < limit->p2.dot_limit)
573                         clock.p2 = limit->p2.p2_slow;
574                 else
575                         clock.p2 = limit->p2.p2_fast;
576         }
577
578         memset(best_clock, 0, sizeof(*best_clock));
579
580         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581              clock.m1++) {
582                 for (clock.m2 = limit->m2.min;
583                      clock.m2 <= limit->m2.max; clock.m2++) {
584                         for (clock.n = limit->n.min;
585                              clock.n <= limit->n.max; clock.n++) {
586                                 for (clock.p1 = limit->p1.min;
587                                         clock.p1 <= limit->p1.max; clock.p1++) {
588                                         int this_err;
589
590                                         pineview_clock(refclk, &clock);
591                                         if (!intel_PLL_is_valid(dev, limit,
592                                                                 &clock))
593                                                 continue;
594                                         if (match_clock &&
595                                             clock.p != match_clock->p)
596                                                 continue;
597
598                                         this_err = abs(clock.dot - target);
599                                         if (this_err < err) {
600                                                 *best_clock = clock;
601                                                 err = this_err;
602                                         }
603                                 }
604                         }
605                 }
606         }
607
608         return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613                    int target, int refclk, intel_clock_t *match_clock,
614                    intel_clock_t *best_clock)
615 {
616         struct drm_device *dev = crtc->dev;
617         intel_clock_t clock;
618         int max_n;
619         bool found;
620         /* approximately equals target * 0.00585 */
621         int err_most = (target >> 8) + (target >> 9);
622         found = false;
623
624         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625                 if (intel_is_dual_link_lvds(dev))
626                         clock.p2 = limit->p2.p2_fast;
627                 else
628                         clock.p2 = limit->p2.p2_slow;
629         } else {
630                 if (target < limit->p2.dot_limit)
631                         clock.p2 = limit->p2.p2_slow;
632                 else
633                         clock.p2 = limit->p2.p2_fast;
634         }
635
636         memset(best_clock, 0, sizeof(*best_clock));
637         max_n = limit->n.max;
638         /* based on hardware requirement, prefer smaller n to precision */
639         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640                 /* based on hardware requirement, prefere larger m1,m2 */
641                 for (clock.m1 = limit->m1.max;
642                      clock.m1 >= limit->m1.min; clock.m1--) {
643                         for (clock.m2 = limit->m2.max;
644                              clock.m2 >= limit->m2.min; clock.m2--) {
645                                 for (clock.p1 = limit->p1.max;
646                                      clock.p1 >= limit->p1.min; clock.p1--) {
647                                         int this_err;
648
649                                         i9xx_clock(refclk, &clock);
650                                         if (!intel_PLL_is_valid(dev, limit,
651                                                                 &clock))
652                                                 continue;
653
654                                         this_err = abs(clock.dot - target);
655                                         if (this_err < err_most) {
656                                                 *best_clock = clock;
657                                                 err_most = this_err;
658                                                 max_n = clock.n;
659                                                 found = true;
660                                         }
661                                 }
662                         }
663                 }
664         }
665         return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670                    int target, int refclk, intel_clock_t *match_clock,
671                    intel_clock_t *best_clock)
672 {
673         struct drm_device *dev = crtc->dev;
674         intel_clock_t clock;
675         unsigned int bestppm = 1000000;
676         /* min update 19.2 MHz */
677         int max_n = min(limit->n.max, refclk / 19200);
678         bool found = false;
679
680         target *= 5; /* fast clock */
681
682         memset(best_clock, 0, sizeof(*best_clock));
683
684         /* based on hardware requirement, prefer smaller n to precision */
685         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
686                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
687                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
688                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
689                                 clock.p = clock.p1 * clock.p2;
690                                 /* based on hardware requirement, prefer bigger m1,m2 values */
691                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692                                         unsigned int ppm, diff;
693
694                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
695                                                                      refclk * clock.m1);
696
697                                         vlv_clock(refclk, &clock);
698
699                                         if (!intel_PLL_is_valid(dev, limit,
700                                                                 &clock))
701                                                 continue;
702
703                                         diff = abs(clock.dot - target);
704                                         ppm = div_u64(1000000ULL * diff, target);
705
706                                         if (ppm < 100 && clock.p > best_clock->p) {
707                                                 bestppm = 0;
708                                                 *best_clock = clock;
709                                                 found = true;
710                                         }
711
712                                         if (bestppm >= 10 && ppm < bestppm - 10) {
713                                                 bestppm = ppm;
714                                                 *best_clock = clock;
715                                                 found = true;
716                                         }
717                                 }
718                         }
719                 }
720         }
721
722         return found;
723 }
724
725 bool intel_crtc_active(struct drm_crtc *crtc)
726 {
727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
728
729         /* Be paranoid as we can arrive here with only partial
730          * state retrieved from the hardware during setup.
731          *
732          * We can ditch the adjusted_mode.crtc_clock check as soon
733          * as Haswell has gained clock readout/fastboot support.
734          *
735          * We can ditch the crtc->fb check as soon as we can
736          * properly reconstruct framebuffers.
737          */
738         return intel_crtc->active && crtc->fb &&
739                 intel_crtc->config.adjusted_mode.crtc_clock;
740 }
741
742 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
743                                              enum pipe pipe)
744 {
745         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
747
748         return intel_crtc->config.cpu_transcoder;
749 }
750
751 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
752 {
753         struct drm_i915_private *dev_priv = dev->dev_private;
754         u32 frame, frame_reg = PIPEFRAME(pipe);
755
756         frame = I915_READ(frame_reg);
757
758         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
759                 DRM_DEBUG_KMS("vblank wait timed out\n");
760 }
761
762 /**
763  * intel_wait_for_vblank - wait for vblank on a given pipe
764  * @dev: drm device
765  * @pipe: pipe to wait for
766  *
767  * Wait for vblank to occur on a given pipe.  Needed for various bits of
768  * mode setting code.
769  */
770 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
771 {
772         struct drm_i915_private *dev_priv = dev->dev_private;
773         int pipestat_reg = PIPESTAT(pipe);
774
775         if (INTEL_INFO(dev)->gen >= 5) {
776                 ironlake_wait_for_vblank(dev, pipe);
777                 return;
778         }
779
780         /* Clear existing vblank status. Note this will clear any other
781          * sticky status fields as well.
782          *
783          * This races with i915_driver_irq_handler() with the result
784          * that either function could miss a vblank event.  Here it is not
785          * fatal, as we will either wait upon the next vblank interrupt or
786          * timeout.  Generally speaking intel_wait_for_vblank() is only
787          * called during modeset at which time the GPU should be idle and
788          * should *not* be performing page flips and thus not waiting on
789          * vblanks...
790          * Currently, the result of us stealing a vblank from the irq
791          * handler is that a single frame will be skipped during swapbuffers.
792          */
793         I915_WRITE(pipestat_reg,
794                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
795
796         /* Wait for vblank interrupt bit to set */
797         if (wait_for(I915_READ(pipestat_reg) &
798                      PIPE_VBLANK_INTERRUPT_STATUS,
799                      50))
800                 DRM_DEBUG_KMS("vblank wait timed out\n");
801 }
802
803 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
804 {
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         u32 reg = PIPEDSL(pipe);
807         u32 line1, line2;
808         u32 line_mask;
809
810         if (IS_GEN2(dev))
811                 line_mask = DSL_LINEMASK_GEN2;
812         else
813                 line_mask = DSL_LINEMASK_GEN3;
814
815         line1 = I915_READ(reg) & line_mask;
816         mdelay(5);
817         line2 = I915_READ(reg) & line_mask;
818
819         return line1 == line2;
820 }
821
822 /*
823  * intel_wait_for_pipe_off - wait for pipe to turn off
824  * @dev: drm device
825  * @pipe: pipe to wait for
826  *
827  * After disabling a pipe, we can't wait for vblank in the usual way,
828  * spinning on the vblank interrupt status bit, since we won't actually
829  * see an interrupt when the pipe is disabled.
830  *
831  * On Gen4 and above:
832  *   wait for the pipe register state bit to turn off
833  *
834  * Otherwise:
835  *   wait for the display line value to settle (it usually
836  *   ends up stopping at the start of the next frame).
837  *
838  */
839 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
840 {
841         struct drm_i915_private *dev_priv = dev->dev_private;
842         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
843                                                                       pipe);
844
845         if (INTEL_INFO(dev)->gen >= 4) {
846                 int reg = PIPECONF(cpu_transcoder);
847
848                 /* Wait for the Pipe State to go off */
849                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
850                              100))
851                         WARN(1, "pipe_off wait timed out\n");
852         } else {
853                 /* Wait for the display line to settle */
854                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
855                         WARN(1, "pipe_off wait timed out\n");
856         }
857 }
858
859 /*
860  * ibx_digital_port_connected - is the specified port connected?
861  * @dev_priv: i915 private structure
862  * @port: the port to test
863  *
864  * Returns true if @port is connected, false otherwise.
865  */
866 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
867                                 struct intel_digital_port *port)
868 {
869         u32 bit;
870
871         if (HAS_PCH_IBX(dev_priv->dev)) {
872                 switch(port->port) {
873                 case PORT_B:
874                         bit = SDE_PORTB_HOTPLUG;
875                         break;
876                 case PORT_C:
877                         bit = SDE_PORTC_HOTPLUG;
878                         break;
879                 case PORT_D:
880                         bit = SDE_PORTD_HOTPLUG;
881                         break;
882                 default:
883                         return true;
884                 }
885         } else {
886                 switch(port->port) {
887                 case PORT_B:
888                         bit = SDE_PORTB_HOTPLUG_CPT;
889                         break;
890                 case PORT_C:
891                         bit = SDE_PORTC_HOTPLUG_CPT;
892                         break;
893                 case PORT_D:
894                         bit = SDE_PORTD_HOTPLUG_CPT;
895                         break;
896                 default:
897                         return true;
898                 }
899         }
900
901         return I915_READ(SDEISR) & bit;
902 }
903
904 static const char *state_string(bool enabled)
905 {
906         return enabled ? "on" : "off";
907 }
908
909 /* Only for pre-ILK configs */
910 void assert_pll(struct drm_i915_private *dev_priv,
911                 enum pipe pipe, bool state)
912 {
913         int reg;
914         u32 val;
915         bool cur_state;
916
917         reg = DPLL(pipe);
918         val = I915_READ(reg);
919         cur_state = !!(val & DPLL_VCO_ENABLE);
920         WARN(cur_state != state,
921              "PLL state assertion failure (expected %s, current %s)\n",
922              state_string(state), state_string(cur_state));
923 }
924
925 /* XXX: the dsi pll is shared between MIPI DSI ports */
926 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
927 {
928         u32 val;
929         bool cur_state;
930
931         mutex_lock(&dev_priv->dpio_lock);
932         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
933         mutex_unlock(&dev_priv->dpio_lock);
934
935         cur_state = val & DSI_PLL_VCO_EN;
936         WARN(cur_state != state,
937              "DSI PLL state assertion failure (expected %s, current %s)\n",
938              state_string(state), state_string(cur_state));
939 }
940 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
941 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
942
943 struct intel_shared_dpll *
944 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
945 {
946         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
947
948         if (crtc->config.shared_dpll < 0)
949                 return NULL;
950
951         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
952 }
953
954 /* For ILK+ */
955 void assert_shared_dpll(struct drm_i915_private *dev_priv,
956                         struct intel_shared_dpll *pll,
957                         bool state)
958 {
959         bool cur_state;
960         struct intel_dpll_hw_state hw_state;
961
962         if (HAS_PCH_LPT(dev_priv->dev)) {
963                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
964                 return;
965         }
966
967         if (WARN (!pll,
968                   "asserting DPLL %s with no DPLL\n", state_string(state)))
969                 return;
970
971         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
972         WARN(cur_state != state,
973              "%s assertion failure (expected %s, current %s)\n",
974              pll->name, state_string(state), state_string(cur_state));
975 }
976
977 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
978                           enum pipe pipe, bool state)
979 {
980         int reg;
981         u32 val;
982         bool cur_state;
983         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
984                                                                       pipe);
985
986         if (HAS_DDI(dev_priv->dev)) {
987                 /* DDI does not have a specific FDI_TX register */
988                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
989                 val = I915_READ(reg);
990                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
991         } else {
992                 reg = FDI_TX_CTL(pipe);
993                 val = I915_READ(reg);
994                 cur_state = !!(val & FDI_TX_ENABLE);
995         }
996         WARN(cur_state != state,
997              "FDI TX state assertion failure (expected %s, current %s)\n",
998              state_string(state), state_string(cur_state));
999 }
1000 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1001 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1002
1003 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1004                           enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = FDI_RX_CTL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & FDI_RX_ENABLE);
1013         WARN(cur_state != state,
1014              "FDI RX state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1018 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1019
1020 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1021                                       enum pipe pipe)
1022 {
1023         int reg;
1024         u32 val;
1025
1026         /* ILK FDI PLL is always enabled */
1027         if (dev_priv->info->gen == 5)
1028                 return;
1029
1030         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1031         if (HAS_DDI(dev_priv->dev))
1032                 return;
1033
1034         reg = FDI_TX_CTL(pipe);
1035         val = I915_READ(reg);
1036         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1037 }
1038
1039 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1040                        enum pipe pipe, bool state)
1041 {
1042         int reg;
1043         u32 val;
1044         bool cur_state;
1045
1046         reg = FDI_RX_CTL(pipe);
1047         val = I915_READ(reg);
1048         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1049         WARN(cur_state != state,
1050              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1051              state_string(state), state_string(cur_state));
1052 }
1053
1054 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1055                                   enum pipe pipe)
1056 {
1057         int pp_reg, lvds_reg;
1058         u32 val;
1059         enum pipe panel_pipe = PIPE_A;
1060         bool locked = true;
1061
1062         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1063                 pp_reg = PCH_PP_CONTROL;
1064                 lvds_reg = PCH_LVDS;
1065         } else {
1066                 pp_reg = PP_CONTROL;
1067                 lvds_reg = LVDS;
1068         }
1069
1070         val = I915_READ(pp_reg);
1071         if (!(val & PANEL_POWER_ON) ||
1072             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1073                 locked = false;
1074
1075         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1076                 panel_pipe = PIPE_B;
1077
1078         WARN(panel_pipe == pipe && locked,
1079              "panel assertion failure, pipe %c regs locked\n",
1080              pipe_name(pipe));
1081 }
1082
1083 static void assert_cursor(struct drm_i915_private *dev_priv,
1084                           enum pipe pipe, bool state)
1085 {
1086         struct drm_device *dev = dev_priv->dev;
1087         bool cur_state;
1088
1089         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1090                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1091         else if (IS_845G(dev) || IS_I865G(dev))
1092                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1093         else
1094                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1095
1096         WARN(cur_state != state,
1097              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1098              pipe_name(pipe), state_string(state), state_string(cur_state));
1099 }
1100 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1101 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1102
1103 void assert_pipe(struct drm_i915_private *dev_priv,
1104                  enum pipe pipe, bool state)
1105 {
1106         int reg;
1107         u32 val;
1108         bool cur_state;
1109         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1110                                                                       pipe);
1111
1112         /* if we need the pipe A quirk it must be always on */
1113         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1114                 state = true;
1115
1116         if (!intel_display_power_enabled(dev_priv->dev,
1117                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1118                 cur_state = false;
1119         } else {
1120                 reg = PIPECONF(cpu_transcoder);
1121                 val = I915_READ(reg);
1122                 cur_state = !!(val & PIPECONF_ENABLE);
1123         }
1124
1125         WARN(cur_state != state,
1126              "pipe %c assertion failure (expected %s, current %s)\n",
1127              pipe_name(pipe), state_string(state), state_string(cur_state));
1128 }
1129
1130 static void assert_plane(struct drm_i915_private *dev_priv,
1131                          enum plane plane, bool state)
1132 {
1133         int reg;
1134         u32 val;
1135         bool cur_state;
1136
1137         reg = DSPCNTR(plane);
1138         val = I915_READ(reg);
1139         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1140         WARN(cur_state != state,
1141              "plane %c assertion failure (expected %s, current %s)\n",
1142              plane_name(plane), state_string(state), state_string(cur_state));
1143 }
1144
1145 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1146 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1147
1148 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1149                                    enum pipe pipe)
1150 {
1151         struct drm_device *dev = dev_priv->dev;
1152         int reg, i;
1153         u32 val;
1154         int cur_pipe;
1155
1156         /* Primary planes are fixed to pipes on gen4+ */
1157         if (INTEL_INFO(dev)->gen >= 4) {
1158                 reg = DSPCNTR(pipe);
1159                 val = I915_READ(reg);
1160                 WARN((val & DISPLAY_PLANE_ENABLE),
1161                      "plane %c assertion failure, should be disabled but not\n",
1162                      plane_name(pipe));
1163                 return;
1164         }
1165
1166         /* Need to check both planes against the pipe */
1167         for_each_pipe(i) {
1168                 reg = DSPCNTR(i);
1169                 val = I915_READ(reg);
1170                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1171                         DISPPLANE_SEL_PIPE_SHIFT;
1172                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1173                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1174                      plane_name(i), pipe_name(pipe));
1175         }
1176 }
1177
1178 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1179                                     enum pipe pipe)
1180 {
1181         struct drm_device *dev = dev_priv->dev;
1182         int reg, i;
1183         u32 val;
1184
1185         if (IS_VALLEYVIEW(dev)) {
1186                 for (i = 0; i < dev_priv->num_plane; i++) {
1187                         reg = SPCNTR(pipe, i);
1188                         val = I915_READ(reg);
1189                         WARN((val & SP_ENABLE),
1190                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1191                              sprite_name(pipe, i), pipe_name(pipe));
1192                 }
1193         } else if (INTEL_INFO(dev)->gen >= 7) {
1194                 reg = SPRCTL(pipe);
1195                 val = I915_READ(reg);
1196                 WARN((val & SPRITE_ENABLE),
1197                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1198                      plane_name(pipe), pipe_name(pipe));
1199         } else if (INTEL_INFO(dev)->gen >= 5) {
1200                 reg = DVSCNTR(pipe);
1201                 val = I915_READ(reg);
1202                 WARN((val & DVS_ENABLE),
1203                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204                      plane_name(pipe), pipe_name(pipe));
1205         }
1206 }
1207
1208 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1209 {
1210         u32 val;
1211         bool enabled;
1212
1213         if (HAS_PCH_LPT(dev_priv->dev)) {
1214                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1215                 return;
1216         }
1217
1218         val = I915_READ(PCH_DREF_CONTROL);
1219         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1220                             DREF_SUPERSPREAD_SOURCE_MASK));
1221         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1222 }
1223
1224 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1225                                            enum pipe pipe)
1226 {
1227         int reg;
1228         u32 val;
1229         bool enabled;
1230
1231         reg = PCH_TRANSCONF(pipe);
1232         val = I915_READ(reg);
1233         enabled = !!(val & TRANS_ENABLE);
1234         WARN(enabled,
1235              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1236              pipe_name(pipe));
1237 }
1238
1239 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1240                             enum pipe pipe, u32 port_sel, u32 val)
1241 {
1242         if ((val & DP_PORT_EN) == 0)
1243                 return false;
1244
1245         if (HAS_PCH_CPT(dev_priv->dev)) {
1246                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1247                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1248                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1249                         return false;
1250         } else {
1251                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1252                         return false;
1253         }
1254         return true;
1255 }
1256
1257 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1258                               enum pipe pipe, u32 val)
1259 {
1260         if ((val & SDVO_ENABLE) == 0)
1261                 return false;
1262
1263         if (HAS_PCH_CPT(dev_priv->dev)) {
1264                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1265                         return false;
1266         } else {
1267                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1268                         return false;
1269         }
1270         return true;
1271 }
1272
1273 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1274                               enum pipe pipe, u32 val)
1275 {
1276         if ((val & LVDS_PORT_EN) == 0)
1277                 return false;
1278
1279         if (HAS_PCH_CPT(dev_priv->dev)) {
1280                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281                         return false;
1282         } else {
1283                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1284                         return false;
1285         }
1286         return true;
1287 }
1288
1289 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1290                               enum pipe pipe, u32 val)
1291 {
1292         if ((val & ADPA_DAC_ENABLE) == 0)
1293                 return false;
1294         if (HAS_PCH_CPT(dev_priv->dev)) {
1295                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1296                         return false;
1297         } else {
1298                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1299                         return false;
1300         }
1301         return true;
1302 }
1303
1304 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1305                                    enum pipe pipe, int reg, u32 port_sel)
1306 {
1307         u32 val = I915_READ(reg);
1308         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1309              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1310              reg, pipe_name(pipe));
1311
1312         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1313              && (val & DP_PIPEB_SELECT),
1314              "IBX PCH dp port still using transcoder B\n");
1315 }
1316
1317 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1318                                      enum pipe pipe, int reg)
1319 {
1320         u32 val = I915_READ(reg);
1321         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1322              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1323              reg, pipe_name(pipe));
1324
1325         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1326              && (val & SDVO_PIPE_B_SELECT),
1327              "IBX PCH hdmi port still using transcoder B\n");
1328 }
1329
1330 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1331                                       enum pipe pipe)
1332 {
1333         int reg;
1334         u32 val;
1335
1336         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1337         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1338         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1339
1340         reg = PCH_ADPA;
1341         val = I915_READ(reg);
1342         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1343              "PCH VGA enabled on transcoder %c, should be disabled\n",
1344              pipe_name(pipe));
1345
1346         reg = PCH_LVDS;
1347         val = I915_READ(reg);
1348         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1349              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1353         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1354         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1355 }
1356
1357 static void intel_init_dpio(struct drm_device *dev)
1358 {
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360
1361         if (!IS_VALLEYVIEW(dev))
1362                 return;
1363
1364         /*
1365          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1366          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1367          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1368          *   b. The other bits such as sfr settings / modesel may all be set
1369          *      to 0.
1370          *
1371          * This should only be done on init and resume from S3 with both
1372          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1373          */
1374         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1375 }
1376
1377 static void vlv_enable_pll(struct intel_crtc *crtc)
1378 {
1379         struct drm_device *dev = crtc->base.dev;
1380         struct drm_i915_private *dev_priv = dev->dev_private;
1381         int reg = DPLL(crtc->pipe);
1382         u32 dpll = crtc->config.dpll_hw_state.dpll;
1383
1384         assert_pipe_disabled(dev_priv, crtc->pipe);
1385
1386         /* No really, not for ILK+ */
1387         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1388
1389         /* PLL is protected by panel, make sure we can write it */
1390         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1391                 assert_panel_unlocked(dev_priv, crtc->pipe);
1392
1393         I915_WRITE(reg, dpll);
1394         POSTING_READ(reg);
1395         udelay(150);
1396
1397         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1398                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1399
1400         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1401         POSTING_READ(DPLL_MD(crtc->pipe));
1402
1403         /* We do this three times for luck */
1404         I915_WRITE(reg, dpll);
1405         POSTING_READ(reg);
1406         udelay(150); /* wait for warmup */
1407         I915_WRITE(reg, dpll);
1408         POSTING_READ(reg);
1409         udelay(150); /* wait for warmup */
1410         I915_WRITE(reg, dpll);
1411         POSTING_READ(reg);
1412         udelay(150); /* wait for warmup */
1413 }
1414
1415 static void i9xx_enable_pll(struct intel_crtc *crtc)
1416 {
1417         struct drm_device *dev = crtc->base.dev;
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419         int reg = DPLL(crtc->pipe);
1420         u32 dpll = crtc->config.dpll_hw_state.dpll;
1421
1422         assert_pipe_disabled(dev_priv, crtc->pipe);
1423
1424         /* No really, not for ILK+ */
1425         BUG_ON(dev_priv->info->gen >= 5);
1426
1427         /* PLL is protected by panel, make sure we can write it */
1428         if (IS_MOBILE(dev) && !IS_I830(dev))
1429                 assert_panel_unlocked(dev_priv, crtc->pipe);
1430
1431         I915_WRITE(reg, dpll);
1432
1433         /* Wait for the clocks to stabilize. */
1434         POSTING_READ(reg);
1435         udelay(150);
1436
1437         if (INTEL_INFO(dev)->gen >= 4) {
1438                 I915_WRITE(DPLL_MD(crtc->pipe),
1439                            crtc->config.dpll_hw_state.dpll_md);
1440         } else {
1441                 /* The pixel multiplier can only be updated once the
1442                  * DPLL is enabled and the clocks are stable.
1443                  *
1444                  * So write it again.
1445                  */
1446                 I915_WRITE(reg, dpll);
1447         }
1448
1449         /* We do this three times for luck */
1450         I915_WRITE(reg, dpll);
1451         POSTING_READ(reg);
1452         udelay(150); /* wait for warmup */
1453         I915_WRITE(reg, dpll);
1454         POSTING_READ(reg);
1455         udelay(150); /* wait for warmup */
1456         I915_WRITE(reg, dpll);
1457         POSTING_READ(reg);
1458         udelay(150); /* wait for warmup */
1459 }
1460
1461 /**
1462  * i9xx_disable_pll - disable a PLL
1463  * @dev_priv: i915 private structure
1464  * @pipe: pipe PLL to disable
1465  *
1466  * Disable the PLL for @pipe, making sure the pipe is off first.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  */
1470 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1471 {
1472         /* Don't disable pipe A or pipe A PLLs if needed */
1473         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1474                 return;
1475
1476         /* Make sure the pipe isn't still relying on us */
1477         assert_pipe_disabled(dev_priv, pipe);
1478
1479         I915_WRITE(DPLL(pipe), 0);
1480         POSTING_READ(DPLL(pipe));
1481 }
1482
1483 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1484 {
1485         u32 val = 0;
1486
1487         /* Make sure the pipe isn't still relying on us */
1488         assert_pipe_disabled(dev_priv, pipe);
1489
1490         /* Leave integrated clock source enabled */
1491         if (pipe == PIPE_B)
1492                 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1493         I915_WRITE(DPLL(pipe), val);
1494         POSTING_READ(DPLL(pipe));
1495 }
1496
1497 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1498 {
1499         u32 port_mask;
1500
1501         if (!port)
1502                 port_mask = DPLL_PORTB_READY_MASK;
1503         else
1504                 port_mask = DPLL_PORTC_READY_MASK;
1505
1506         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1507                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1508                      'B' + port, I915_READ(DPLL(0)));
1509 }
1510
1511 /**
1512  * ironlake_enable_shared_dpll - enable PCH PLL
1513  * @dev_priv: i915 private structure
1514  * @pipe: pipe PLL to enable
1515  *
1516  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1517  * drives the transcoder clock.
1518  */
1519 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1520 {
1521         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1522         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1523
1524         /* PCH PLLs only available on ILK, SNB and IVB */
1525         BUG_ON(dev_priv->info->gen < 5);
1526         if (WARN_ON(pll == NULL))
1527                 return;
1528
1529         if (WARN_ON(pll->refcount == 0))
1530                 return;
1531
1532         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1533                       pll->name, pll->active, pll->on,
1534                       crtc->base.base.id);
1535
1536         if (pll->active++) {
1537                 WARN_ON(!pll->on);
1538                 assert_shared_dpll_enabled(dev_priv, pll);
1539                 return;
1540         }
1541         WARN_ON(pll->on);
1542
1543         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1544         pll->enable(dev_priv, pll);
1545         pll->on = true;
1546 }
1547
1548 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1549 {
1550         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1551         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1552
1553         /* PCH only available on ILK+ */
1554         BUG_ON(dev_priv->info->gen < 5);
1555         if (WARN_ON(pll == NULL))
1556                return;
1557
1558         if (WARN_ON(pll->refcount == 0))
1559                 return;
1560
1561         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1562                       pll->name, pll->active, pll->on,
1563                       crtc->base.base.id);
1564
1565         if (WARN_ON(pll->active == 0)) {
1566                 assert_shared_dpll_disabled(dev_priv, pll);
1567                 return;
1568         }
1569
1570         assert_shared_dpll_enabled(dev_priv, pll);
1571         WARN_ON(!pll->on);
1572         if (--pll->active)
1573                 return;
1574
1575         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1576         pll->disable(dev_priv, pll);
1577         pll->on = false;
1578 }
1579
1580 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581                                            enum pipe pipe)
1582 {
1583         struct drm_device *dev = dev_priv->dev;
1584         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1586         uint32_t reg, val, pipeconf_val;
1587
1588         /* PCH only available on ILK+ */
1589         BUG_ON(dev_priv->info->gen < 5);
1590
1591         /* Make sure PCH DPLL is enabled */
1592         assert_shared_dpll_enabled(dev_priv,
1593                                    intel_crtc_to_shared_dpll(intel_crtc));
1594
1595         /* FDI must be feeding us bits for PCH ports */
1596         assert_fdi_tx_enabled(dev_priv, pipe);
1597         assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599         if (HAS_PCH_CPT(dev)) {
1600                 /* Workaround: Set the timing override bit before enabling the
1601                  * pch transcoder. */
1602                 reg = TRANS_CHICKEN2(pipe);
1603                 val = I915_READ(reg);
1604                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605                 I915_WRITE(reg, val);
1606         }
1607
1608         reg = PCH_TRANSCONF(pipe);
1609         val = I915_READ(reg);
1610         pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612         if (HAS_PCH_IBX(dev_priv->dev)) {
1613                 /*
1614                  * make the BPC in transcoder be consistent with
1615                  * that in pipeconf reg.
1616                  */
1617                 val &= ~PIPECONF_BPC_MASK;
1618                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619         }
1620
1621         val &= ~TRANS_INTERLACE_MASK;
1622         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623                 if (HAS_PCH_IBX(dev_priv->dev) &&
1624                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625                         val |= TRANS_LEGACY_INTERLACED_ILK;
1626                 else
1627                         val |= TRANS_INTERLACED;
1628         else
1629                 val |= TRANS_PROGRESSIVE;
1630
1631         I915_WRITE(reg, val | TRANS_ENABLE);
1632         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634 }
1635
1636 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637                                       enum transcoder cpu_transcoder)
1638 {
1639         u32 val, pipeconf_val;
1640
1641         /* PCH only available on ILK+ */
1642         BUG_ON(dev_priv->info->gen < 5);
1643
1644         /* FDI must be feeding us bits for PCH ports */
1645         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648         /* Workaround: set timing override bit. */
1649         val = I915_READ(_TRANSA_CHICKEN2);
1650         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651         I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653         val = TRANS_ENABLE;
1654         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657             PIPECONF_INTERLACED_ILK)
1658                 val |= TRANS_INTERLACED;
1659         else
1660                 val |= TRANS_PROGRESSIVE;
1661
1662         I915_WRITE(LPT_TRANSCONF, val);
1663         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1664                 DRM_ERROR("Failed to enable PCH transcoder\n");
1665 }
1666
1667 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668                                             enum pipe pipe)
1669 {
1670         struct drm_device *dev = dev_priv->dev;
1671         uint32_t reg, val;
1672
1673         /* FDI relies on the transcoder */
1674         assert_fdi_tx_disabled(dev_priv, pipe);
1675         assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677         /* Ports must be off as well */
1678         assert_pch_ports_disabled(dev_priv, pipe);
1679
1680         reg = PCH_TRANSCONF(pipe);
1681         val = I915_READ(reg);
1682         val &= ~TRANS_ENABLE;
1683         I915_WRITE(reg, val);
1684         /* wait for PCH transcoder off, transcoder state */
1685         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688         if (!HAS_PCH_IBX(dev)) {
1689                 /* Workaround: Clear the timing override chicken bit again. */
1690                 reg = TRANS_CHICKEN2(pipe);
1691                 val = I915_READ(reg);
1692                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693                 I915_WRITE(reg, val);
1694         }
1695 }
1696
1697 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698 {
1699         u32 val;
1700
1701         val = I915_READ(LPT_TRANSCONF);
1702         val &= ~TRANS_ENABLE;
1703         I915_WRITE(LPT_TRANSCONF, val);
1704         /* wait for PCH transcoder off, transcoder state */
1705         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1706                 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708         /* Workaround: clear timing override bit. */
1709         val = I915_READ(_TRANSA_CHICKEN2);
1710         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711         I915_WRITE(_TRANSA_CHICKEN2, val);
1712 }
1713
1714 /**
1715  * intel_enable_pipe - enable a pipe, asserting requirements
1716  * @dev_priv: i915 private structure
1717  * @pipe: pipe to enable
1718  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719  *
1720  * Enable @pipe, making sure that various hardware specific requirements
1721  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722  *
1723  * @pipe should be %PIPE_A or %PIPE_B.
1724  *
1725  * Will wait until the pipe is actually running (i.e. first vblank) before
1726  * returning.
1727  */
1728 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729                               bool pch_port, bool dsi)
1730 {
1731         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732                                                                       pipe);
1733         enum pipe pch_transcoder;
1734         int reg;
1735         u32 val;
1736
1737         assert_planes_disabled(dev_priv, pipe);
1738         assert_cursor_disabled(dev_priv, pipe);
1739         assert_sprites_disabled(dev_priv, pipe);
1740
1741         if (HAS_PCH_LPT(dev_priv->dev))
1742                 pch_transcoder = TRANSCODER_A;
1743         else
1744                 pch_transcoder = pipe;
1745
1746         /*
1747          * A pipe without a PLL won't actually be able to drive bits from
1748          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1749          * need the check.
1750          */
1751         if (!HAS_PCH_SPLIT(dev_priv->dev))
1752                 if (dsi)
1753                         assert_dsi_pll_enabled(dev_priv);
1754                 else
1755                         assert_pll_enabled(dev_priv, pipe);
1756         else {
1757                 if (pch_port) {
1758                         /* if driving the PCH, we need FDI enabled */
1759                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1760                         assert_fdi_tx_pll_enabled(dev_priv,
1761                                                   (enum pipe) cpu_transcoder);
1762                 }
1763                 /* FIXME: assert CPU port conditions for SNB+ */
1764         }
1765
1766         reg = PIPECONF(cpu_transcoder);
1767         val = I915_READ(reg);
1768         if (val & PIPECONF_ENABLE)
1769                 return;
1770
1771         I915_WRITE(reg, val | PIPECONF_ENABLE);
1772         intel_wait_for_vblank(dev_priv->dev, pipe);
1773 }
1774
1775 /**
1776  * intel_disable_pipe - disable a pipe, asserting requirements
1777  * @dev_priv: i915 private structure
1778  * @pipe: pipe to disable
1779  *
1780  * Disable @pipe, making sure that various hardware specific requirements
1781  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1782  *
1783  * @pipe should be %PIPE_A or %PIPE_B.
1784  *
1785  * Will wait until the pipe has shut down before returning.
1786  */
1787 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1788                                enum pipe pipe)
1789 {
1790         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1791                                                                       pipe);
1792         int reg;
1793         u32 val;
1794
1795         /*
1796          * Make sure planes won't keep trying to pump pixels to us,
1797          * or we might hang the display.
1798          */
1799         assert_planes_disabled(dev_priv, pipe);
1800         assert_cursor_disabled(dev_priv, pipe);
1801         assert_sprites_disabled(dev_priv, pipe);
1802
1803         /* Don't disable pipe A or pipe A PLLs if needed */
1804         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1805                 return;
1806
1807         reg = PIPECONF(cpu_transcoder);
1808         val = I915_READ(reg);
1809         if ((val & PIPECONF_ENABLE) == 0)
1810                 return;
1811
1812         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1813         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1814 }
1815
1816 /*
1817  * Plane regs are double buffered, going from enabled->disabled needs a
1818  * trigger in order to latch.  The display address reg provides this.
1819  */
1820 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1821                                enum plane plane)
1822 {
1823         u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1824
1825         I915_WRITE(reg, I915_READ(reg));
1826         POSTING_READ(reg);
1827 }
1828
1829 /**
1830  * intel_enable_primary_plane - enable the primary plane on a given pipe
1831  * @dev_priv: i915 private structure
1832  * @plane: plane to enable
1833  * @pipe: pipe being fed
1834  *
1835  * Enable @plane on @pipe, making sure that @pipe is running first.
1836  */
1837 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1838                                        enum plane plane, enum pipe pipe)
1839 {
1840         struct intel_crtc *intel_crtc =
1841                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1842         int reg;
1843         u32 val;
1844
1845         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1846         assert_pipe_enabled(dev_priv, pipe);
1847
1848         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1849
1850         intel_crtc->primary_enabled = true;
1851
1852         reg = DSPCNTR(plane);
1853         val = I915_READ(reg);
1854         if (val & DISPLAY_PLANE_ENABLE)
1855                 return;
1856
1857         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1858         intel_flush_primary_plane(dev_priv, plane);
1859         intel_wait_for_vblank(dev_priv->dev, pipe);
1860 }
1861
1862 /**
1863  * intel_disable_primary_plane - disable the primary plane
1864  * @dev_priv: i915 private structure
1865  * @plane: plane to disable
1866  * @pipe: pipe consuming the data
1867  *
1868  * Disable @plane; should be an independent operation.
1869  */
1870 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1871                                         enum plane plane, enum pipe pipe)
1872 {
1873         struct intel_crtc *intel_crtc =
1874                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1875         int reg;
1876         u32 val;
1877
1878         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1879
1880         intel_crtc->primary_enabled = false;
1881
1882         reg = DSPCNTR(plane);
1883         val = I915_READ(reg);
1884         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1885                 return;
1886
1887         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1888         intel_flush_primary_plane(dev_priv, plane);
1889         intel_wait_for_vblank(dev_priv->dev, pipe);
1890 }
1891
1892 static bool need_vtd_wa(struct drm_device *dev)
1893 {
1894 #ifdef CONFIG_INTEL_IOMMU
1895         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1896                 return true;
1897 #endif
1898         return false;
1899 }
1900
1901 int
1902 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1903                            struct drm_i915_gem_object *obj,
1904                            struct intel_ring_buffer *pipelined)
1905 {
1906         struct drm_i915_private *dev_priv = dev->dev_private;
1907         u32 alignment;
1908         int ret;
1909
1910         switch (obj->tiling_mode) {
1911         case I915_TILING_NONE:
1912                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1913                         alignment = 128 * 1024;
1914                 else if (INTEL_INFO(dev)->gen >= 4)
1915                         alignment = 4 * 1024;
1916                 else
1917                         alignment = 64 * 1024;
1918                 break;
1919         case I915_TILING_X:
1920                 /* pin() will align the object as required by fence */
1921                 alignment = 0;
1922                 break;
1923         case I915_TILING_Y:
1924                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1925                 return -EINVAL;
1926         default:
1927                 BUG();
1928         }
1929
1930         /* Note that the w/a also requires 64 PTE of padding following the
1931          * bo. We currently fill all unused PTE with the shadow page and so
1932          * we should always have valid PTE following the scanout preventing
1933          * the VT-d warning.
1934          */
1935         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1936                 alignment = 256 * 1024;
1937
1938         dev_priv->mm.interruptible = false;
1939         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1940         if (ret)
1941                 goto err_interruptible;
1942
1943         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1944          * fence, whereas 965+ only requires a fence if using
1945          * framebuffer compression.  For simplicity, we always install
1946          * a fence as the cost is not that onerous.
1947          */
1948         ret = i915_gem_object_get_fence(obj);
1949         if (ret)
1950                 goto err_unpin;
1951
1952         i915_gem_object_pin_fence(obj);
1953
1954         dev_priv->mm.interruptible = true;
1955         return 0;
1956
1957 err_unpin:
1958         i915_gem_object_unpin_from_display_plane(obj);
1959 err_interruptible:
1960         dev_priv->mm.interruptible = true;
1961         return ret;
1962 }
1963
1964 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1965 {
1966         i915_gem_object_unpin_fence(obj);
1967         i915_gem_object_unpin_from_display_plane(obj);
1968 }
1969
1970 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1971  * is assumed to be a power-of-two. */
1972 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1973                                              unsigned int tiling_mode,
1974                                              unsigned int cpp,
1975                                              unsigned int pitch)
1976 {
1977         if (tiling_mode != I915_TILING_NONE) {
1978                 unsigned int tile_rows, tiles;
1979
1980                 tile_rows = *y / 8;
1981                 *y %= 8;
1982
1983                 tiles = *x / (512/cpp);
1984                 *x %= 512/cpp;
1985
1986                 return tile_rows * pitch * 8 + tiles * 4096;
1987         } else {
1988                 unsigned int offset;
1989
1990                 offset = *y * pitch + *x * cpp;
1991                 *y = 0;
1992                 *x = (offset & 4095) / cpp;
1993                 return offset & -4096;
1994         }
1995 }
1996
1997 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1998                              int x, int y)
1999 {
2000         struct drm_device *dev = crtc->dev;
2001         struct drm_i915_private *dev_priv = dev->dev_private;
2002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2003         struct intel_framebuffer *intel_fb;
2004         struct drm_i915_gem_object *obj;
2005         int plane = intel_crtc->plane;
2006         unsigned long linear_offset;
2007         u32 dspcntr;
2008         u32 reg;
2009
2010         switch (plane) {
2011         case 0:
2012         case 1:
2013                 break;
2014         default:
2015                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2016                 return -EINVAL;
2017         }
2018
2019         intel_fb = to_intel_framebuffer(fb);
2020         obj = intel_fb->obj;
2021
2022         reg = DSPCNTR(plane);
2023         dspcntr = I915_READ(reg);
2024         /* Mask out pixel format bits in case we change it */
2025         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2026         switch (fb->pixel_format) {
2027         case DRM_FORMAT_C8:
2028                 dspcntr |= DISPPLANE_8BPP;
2029                 break;
2030         case DRM_FORMAT_XRGB1555:
2031         case DRM_FORMAT_ARGB1555:
2032                 dspcntr |= DISPPLANE_BGRX555;
2033                 break;
2034         case DRM_FORMAT_RGB565:
2035                 dspcntr |= DISPPLANE_BGRX565;
2036                 break;
2037         case DRM_FORMAT_XRGB8888:
2038         case DRM_FORMAT_ARGB8888:
2039                 dspcntr |= DISPPLANE_BGRX888;
2040                 break;
2041         case DRM_FORMAT_XBGR8888:
2042         case DRM_FORMAT_ABGR8888:
2043                 dspcntr |= DISPPLANE_RGBX888;
2044                 break;
2045         case DRM_FORMAT_XRGB2101010:
2046         case DRM_FORMAT_ARGB2101010:
2047                 dspcntr |= DISPPLANE_BGRX101010;
2048                 break;
2049         case DRM_FORMAT_XBGR2101010:
2050         case DRM_FORMAT_ABGR2101010:
2051                 dspcntr |= DISPPLANE_RGBX101010;
2052                 break;
2053         default:
2054                 BUG();
2055         }
2056
2057         if (INTEL_INFO(dev)->gen >= 4) {
2058                 if (obj->tiling_mode != I915_TILING_NONE)
2059                         dspcntr |= DISPPLANE_TILED;
2060                 else
2061                         dspcntr &= ~DISPPLANE_TILED;
2062         }
2063
2064         if (IS_G4X(dev))
2065                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2066
2067         I915_WRITE(reg, dspcntr);
2068
2069         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2070
2071         if (INTEL_INFO(dev)->gen >= 4) {
2072                 intel_crtc->dspaddr_offset =
2073                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2074                                                        fb->bits_per_pixel / 8,
2075                                                        fb->pitches[0]);
2076                 linear_offset -= intel_crtc->dspaddr_offset;
2077         } else {
2078                 intel_crtc->dspaddr_offset = linear_offset;
2079         }
2080
2081         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2082                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2083                       fb->pitches[0]);
2084         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2085         if (INTEL_INFO(dev)->gen >= 4) {
2086                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2087                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2088                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2089                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2090         } else
2091                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2092         POSTING_READ(reg);
2093
2094         return 0;
2095 }
2096
2097 static int ironlake_update_plane(struct drm_crtc *crtc,
2098                                  struct drm_framebuffer *fb, int x, int y)
2099 {
2100         struct drm_device *dev = crtc->dev;
2101         struct drm_i915_private *dev_priv = dev->dev_private;
2102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2103         struct intel_framebuffer *intel_fb;
2104         struct drm_i915_gem_object *obj;
2105         int plane = intel_crtc->plane;
2106         unsigned long linear_offset;
2107         u32 dspcntr;
2108         u32 reg;
2109
2110         switch (plane) {
2111         case 0:
2112         case 1:
2113         case 2:
2114                 break;
2115         default:
2116                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2117                 return -EINVAL;
2118         }
2119
2120         intel_fb = to_intel_framebuffer(fb);
2121         obj = intel_fb->obj;
2122
2123         reg = DSPCNTR(plane);
2124         dspcntr = I915_READ(reg);
2125         /* Mask out pixel format bits in case we change it */
2126         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2127         switch (fb->pixel_format) {
2128         case DRM_FORMAT_C8:
2129                 dspcntr |= DISPPLANE_8BPP;
2130                 break;
2131         case DRM_FORMAT_RGB565:
2132                 dspcntr |= DISPPLANE_BGRX565;
2133                 break;
2134         case DRM_FORMAT_XRGB8888:
2135         case DRM_FORMAT_ARGB8888:
2136                 dspcntr |= DISPPLANE_BGRX888;
2137                 break;
2138         case DRM_FORMAT_XBGR8888:
2139         case DRM_FORMAT_ABGR8888:
2140                 dspcntr |= DISPPLANE_RGBX888;
2141                 break;
2142         case DRM_FORMAT_XRGB2101010:
2143         case DRM_FORMAT_ARGB2101010:
2144                 dspcntr |= DISPPLANE_BGRX101010;
2145                 break;
2146         case DRM_FORMAT_XBGR2101010:
2147         case DRM_FORMAT_ABGR2101010:
2148                 dspcntr |= DISPPLANE_RGBX101010;
2149                 break;
2150         default:
2151                 BUG();
2152         }
2153
2154         if (obj->tiling_mode != I915_TILING_NONE)
2155                 dspcntr |= DISPPLANE_TILED;
2156         else
2157                 dspcntr &= ~DISPPLANE_TILED;
2158
2159         if (IS_HASWELL(dev))
2160                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2161         else
2162                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2163
2164         I915_WRITE(reg, dspcntr);
2165
2166         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2167         intel_crtc->dspaddr_offset =
2168                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2169                                                fb->bits_per_pixel / 8,
2170                                                fb->pitches[0]);
2171         linear_offset -= intel_crtc->dspaddr_offset;
2172
2173         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2174                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2175                       fb->pitches[0]);
2176         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2177         I915_MODIFY_DISPBASE(DSPSURF(plane),
2178                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2179         if (IS_HASWELL(dev)) {
2180                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2181         } else {
2182                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2183                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2184         }
2185         POSTING_READ(reg);
2186
2187         return 0;
2188 }
2189
2190 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2191 static int
2192 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2193                            int x, int y, enum mode_set_atomic state)
2194 {
2195         struct drm_device *dev = crtc->dev;
2196         struct drm_i915_private *dev_priv = dev->dev_private;
2197
2198         if (dev_priv->display.disable_fbc)
2199                 dev_priv->display.disable_fbc(dev);
2200         intel_increase_pllclock(crtc);
2201
2202         return dev_priv->display.update_plane(crtc, fb, x, y);
2203 }
2204
2205 void intel_display_handle_reset(struct drm_device *dev)
2206 {
2207         struct drm_i915_private *dev_priv = dev->dev_private;
2208         struct drm_crtc *crtc;
2209
2210         /*
2211          * Flips in the rings have been nuked by the reset,
2212          * so complete all pending flips so that user space
2213          * will get its events and not get stuck.
2214          *
2215          * Also update the base address of all primary
2216          * planes to the the last fb to make sure we're
2217          * showing the correct fb after a reset.
2218          *
2219          * Need to make two loops over the crtcs so that we
2220          * don't try to grab a crtc mutex before the
2221          * pending_flip_queue really got woken up.
2222          */
2223
2224         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2225                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2226                 enum plane plane = intel_crtc->plane;
2227
2228                 intel_prepare_page_flip(dev, plane);
2229                 intel_finish_page_flip_plane(dev, plane);
2230         }
2231
2232         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2233                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235                 mutex_lock(&crtc->mutex);
2236                 if (intel_crtc->active)
2237                         dev_priv->display.update_plane(crtc, crtc->fb,
2238                                                        crtc->x, crtc->y);
2239                 mutex_unlock(&crtc->mutex);
2240         }
2241 }
2242
2243 static int
2244 intel_finish_fb(struct drm_framebuffer *old_fb)
2245 {
2246         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2247         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2248         bool was_interruptible = dev_priv->mm.interruptible;
2249         int ret;
2250
2251         /* Big Hammer, we also need to ensure that any pending
2252          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2253          * current scanout is retired before unpinning the old
2254          * framebuffer.
2255          *
2256          * This should only fail upon a hung GPU, in which case we
2257          * can safely continue.
2258          */
2259         dev_priv->mm.interruptible = false;
2260         ret = i915_gem_object_finish_gpu(obj);
2261         dev_priv->mm.interruptible = was_interruptible;
2262
2263         return ret;
2264 }
2265
2266 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2267 {
2268         struct drm_device *dev = crtc->dev;
2269         struct drm_i915_master_private *master_priv;
2270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2271
2272         if (!dev->primary->master)
2273                 return;
2274
2275         master_priv = dev->primary->master->driver_priv;
2276         if (!master_priv->sarea_priv)
2277                 return;
2278
2279         switch (intel_crtc->pipe) {
2280         case 0:
2281                 master_priv->sarea_priv->pipeA_x = x;
2282                 master_priv->sarea_priv->pipeA_y = y;
2283                 break;
2284         case 1:
2285                 master_priv->sarea_priv->pipeB_x = x;
2286                 master_priv->sarea_priv->pipeB_y = y;
2287                 break;
2288         default:
2289                 break;
2290         }
2291 }
2292
2293 static int
2294 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2295                     struct drm_framebuffer *fb)
2296 {
2297         struct drm_device *dev = crtc->dev;
2298         struct drm_i915_private *dev_priv = dev->dev_private;
2299         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2300         struct drm_framebuffer *old_fb;
2301         int ret;
2302
2303         /* no fb bound */
2304         if (!fb) {
2305                 DRM_ERROR("No FB bound\n");
2306                 return 0;
2307         }
2308
2309         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2310                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2311                           plane_name(intel_crtc->plane),
2312                           INTEL_INFO(dev)->num_pipes);
2313                 return -EINVAL;
2314         }
2315
2316         mutex_lock(&dev->struct_mutex);
2317         ret = intel_pin_and_fence_fb_obj(dev,
2318                                          to_intel_framebuffer(fb)->obj,
2319                                          NULL);
2320         if (ret != 0) {
2321                 mutex_unlock(&dev->struct_mutex);
2322                 DRM_ERROR("pin & fence failed\n");
2323                 return ret;
2324         }
2325
2326         /*
2327          * Update pipe size and adjust fitter if needed: the reason for this is
2328          * that in compute_mode_changes we check the native mode (not the pfit
2329          * mode) to see if we can flip rather than do a full mode set. In the
2330          * fastboot case, we'll flip, but if we don't update the pipesrc and
2331          * pfit state, we'll end up with a big fb scanned out into the wrong
2332          * sized surface.
2333          *
2334          * To fix this properly, we need to hoist the checks up into
2335          * compute_mode_changes (or above), check the actual pfit state and
2336          * whether the platform allows pfit disable with pipe active, and only
2337          * then update the pipesrc and pfit state, even on the flip path.
2338          */
2339         if (i915_fastboot) {
2340                 const struct drm_display_mode *adjusted_mode =
2341                         &intel_crtc->config.adjusted_mode;
2342
2343                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2344                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2345                            (adjusted_mode->crtc_vdisplay - 1));
2346                 if (!intel_crtc->config.pch_pfit.enabled &&
2347                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2348                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2349                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2350                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2351                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2352                 }
2353         }
2354
2355         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2356         if (ret) {
2357                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2358                 mutex_unlock(&dev->struct_mutex);
2359                 DRM_ERROR("failed to update base address\n");
2360                 return ret;
2361         }
2362
2363         old_fb = crtc->fb;
2364         crtc->fb = fb;
2365         crtc->x = x;
2366         crtc->y = y;
2367
2368         if (old_fb) {
2369                 if (intel_crtc->active && old_fb != fb)
2370                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2371                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2372         }
2373
2374         intel_update_fbc(dev);
2375         intel_edp_psr_update(dev);
2376         mutex_unlock(&dev->struct_mutex);
2377
2378         intel_crtc_update_sarea_pos(crtc, x, y);
2379
2380         return 0;
2381 }
2382
2383 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2384 {
2385         struct drm_device *dev = crtc->dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2388         int pipe = intel_crtc->pipe;
2389         u32 reg, temp;
2390
2391         /* enable normal train */
2392         reg = FDI_TX_CTL(pipe);
2393         temp = I915_READ(reg);
2394         if (IS_IVYBRIDGE(dev)) {
2395                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2396                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2397         } else {
2398                 temp &= ~FDI_LINK_TRAIN_NONE;
2399                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2400         }
2401         I915_WRITE(reg, temp);
2402
2403         reg = FDI_RX_CTL(pipe);
2404         temp = I915_READ(reg);
2405         if (HAS_PCH_CPT(dev)) {
2406                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2407                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2408         } else {
2409                 temp &= ~FDI_LINK_TRAIN_NONE;
2410                 temp |= FDI_LINK_TRAIN_NONE;
2411         }
2412         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2413
2414         /* wait one idle pattern time */
2415         POSTING_READ(reg);
2416         udelay(1000);
2417
2418         /* IVB wants error correction enabled */
2419         if (IS_IVYBRIDGE(dev))
2420                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2421                            FDI_FE_ERRC_ENABLE);
2422 }
2423
2424 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2425 {
2426         return crtc->base.enabled && crtc->active &&
2427                 crtc->config.has_pch_encoder;
2428 }
2429
2430 static void ivb_modeset_global_resources(struct drm_device *dev)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         struct intel_crtc *pipe_B_crtc =
2434                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2435         struct intel_crtc *pipe_C_crtc =
2436                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2437         uint32_t temp;
2438
2439         /*
2440          * When everything is off disable fdi C so that we could enable fdi B
2441          * with all lanes. Note that we don't care about enabled pipes without
2442          * an enabled pch encoder.
2443          */
2444         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2445             !pipe_has_enabled_pch(pipe_C_crtc)) {
2446                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2447                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2448
2449                 temp = I915_READ(SOUTH_CHICKEN1);
2450                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2451                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2452                 I915_WRITE(SOUTH_CHICKEN1, temp);
2453         }
2454 }
2455
2456 /* The FDI link training functions for ILK/Ibexpeak. */
2457 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2458 {
2459         struct drm_device *dev = crtc->dev;
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2462         int pipe = intel_crtc->pipe;
2463         int plane = intel_crtc->plane;
2464         u32 reg, temp, tries;
2465
2466         /* FDI needs bits from pipe & plane first */
2467         assert_pipe_enabled(dev_priv, pipe);
2468         assert_plane_enabled(dev_priv, plane);
2469
2470         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2471            for train result */
2472         reg = FDI_RX_IMR(pipe);
2473         temp = I915_READ(reg);
2474         temp &= ~FDI_RX_SYMBOL_LOCK;
2475         temp &= ~FDI_RX_BIT_LOCK;
2476         I915_WRITE(reg, temp);
2477         I915_READ(reg);
2478         udelay(150);
2479
2480         /* enable CPU FDI TX and PCH FDI RX */
2481         reg = FDI_TX_CTL(pipe);
2482         temp = I915_READ(reg);
2483         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2484         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2485         temp &= ~FDI_LINK_TRAIN_NONE;
2486         temp |= FDI_LINK_TRAIN_PATTERN_1;
2487         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2488
2489         reg = FDI_RX_CTL(pipe);
2490         temp = I915_READ(reg);
2491         temp &= ~FDI_LINK_TRAIN_NONE;
2492         temp |= FDI_LINK_TRAIN_PATTERN_1;
2493         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2494
2495         POSTING_READ(reg);
2496         udelay(150);
2497
2498         /* Ironlake workaround, enable clock pointer after FDI enable*/
2499         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2500         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2501                    FDI_RX_PHASE_SYNC_POINTER_EN);
2502
2503         reg = FDI_RX_IIR(pipe);
2504         for (tries = 0; tries < 5; tries++) {
2505                 temp = I915_READ(reg);
2506                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2507
2508                 if ((temp & FDI_RX_BIT_LOCK)) {
2509                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2510                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2511                         break;
2512                 }
2513         }
2514         if (tries == 5)
2515                 DRM_ERROR("FDI train 1 fail!\n");
2516
2517         /* Train 2 */
2518         reg = FDI_TX_CTL(pipe);
2519         temp = I915_READ(reg);
2520         temp &= ~FDI_LINK_TRAIN_NONE;
2521         temp |= FDI_LINK_TRAIN_PATTERN_2;
2522         I915_WRITE(reg, temp);
2523
2524         reg = FDI_RX_CTL(pipe);
2525         temp = I915_READ(reg);
2526         temp &= ~FDI_LINK_TRAIN_NONE;
2527         temp |= FDI_LINK_TRAIN_PATTERN_2;
2528         I915_WRITE(reg, temp);
2529
2530         POSTING_READ(reg);
2531         udelay(150);
2532
2533         reg = FDI_RX_IIR(pipe);
2534         for (tries = 0; tries < 5; tries++) {
2535                 temp = I915_READ(reg);
2536                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538                 if (temp & FDI_RX_SYMBOL_LOCK) {
2539                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2540                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2541                         break;
2542                 }
2543         }
2544         if (tries == 5)
2545                 DRM_ERROR("FDI train 2 fail!\n");
2546
2547         DRM_DEBUG_KMS("FDI train done\n");
2548
2549 }
2550
2551 static const int snb_b_fdi_train_param[] = {
2552         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2553         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2554         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2555         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2556 };
2557
2558 /* The FDI link training functions for SNB/Cougarpoint. */
2559 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2560 {
2561         struct drm_device *dev = crtc->dev;
2562         struct drm_i915_private *dev_priv = dev->dev_private;
2563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2564         int pipe = intel_crtc->pipe;
2565         u32 reg, temp, i, retry;
2566
2567         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2568            for train result */
2569         reg = FDI_RX_IMR(pipe);
2570         temp = I915_READ(reg);
2571         temp &= ~FDI_RX_SYMBOL_LOCK;
2572         temp &= ~FDI_RX_BIT_LOCK;
2573         I915_WRITE(reg, temp);
2574
2575         POSTING_READ(reg);
2576         udelay(150);
2577
2578         /* enable CPU FDI TX and PCH FDI RX */
2579         reg = FDI_TX_CTL(pipe);
2580         temp = I915_READ(reg);
2581         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2582         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2583         temp &= ~FDI_LINK_TRAIN_NONE;
2584         temp |= FDI_LINK_TRAIN_PATTERN_1;
2585         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2586         /* SNB-B */
2587         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2588         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2589
2590         I915_WRITE(FDI_RX_MISC(pipe),
2591                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2592
2593         reg = FDI_RX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         if (HAS_PCH_CPT(dev)) {
2596                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2598         } else {
2599                 temp &= ~FDI_LINK_TRAIN_NONE;
2600                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2601         }
2602         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2603
2604         POSTING_READ(reg);
2605         udelay(150);
2606
2607         for (i = 0; i < 4; i++) {
2608                 reg = FDI_TX_CTL(pipe);
2609                 temp = I915_READ(reg);
2610                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611                 temp |= snb_b_fdi_train_param[i];
2612                 I915_WRITE(reg, temp);
2613
2614                 POSTING_READ(reg);
2615                 udelay(500);
2616
2617                 for (retry = 0; retry < 5; retry++) {
2618                         reg = FDI_RX_IIR(pipe);
2619                         temp = I915_READ(reg);
2620                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621                         if (temp & FDI_RX_BIT_LOCK) {
2622                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2623                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2624                                 break;
2625                         }
2626                         udelay(50);
2627                 }
2628                 if (retry < 5)
2629                         break;
2630         }
2631         if (i == 4)
2632                 DRM_ERROR("FDI train 1 fail!\n");
2633
2634         /* Train 2 */
2635         reg = FDI_TX_CTL(pipe);
2636         temp = I915_READ(reg);
2637         temp &= ~FDI_LINK_TRAIN_NONE;
2638         temp |= FDI_LINK_TRAIN_PATTERN_2;
2639         if (IS_GEN6(dev)) {
2640                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641                 /* SNB-B */
2642                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2643         }
2644         I915_WRITE(reg, temp);
2645
2646         reg = FDI_RX_CTL(pipe);
2647         temp = I915_READ(reg);
2648         if (HAS_PCH_CPT(dev)) {
2649                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2650                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2651         } else {
2652                 temp &= ~FDI_LINK_TRAIN_NONE;
2653                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2654         }
2655         I915_WRITE(reg, temp);
2656
2657         POSTING_READ(reg);
2658         udelay(150);
2659
2660         for (i = 0; i < 4; i++) {
2661                 reg = FDI_TX_CTL(pipe);
2662                 temp = I915_READ(reg);
2663                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664                 temp |= snb_b_fdi_train_param[i];
2665                 I915_WRITE(reg, temp);
2666
2667                 POSTING_READ(reg);
2668                 udelay(500);
2669
2670                 for (retry = 0; retry < 5; retry++) {
2671                         reg = FDI_RX_IIR(pipe);
2672                         temp = I915_READ(reg);
2673                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2674                         if (temp & FDI_RX_SYMBOL_LOCK) {
2675                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2676                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2677                                 break;
2678                         }
2679                         udelay(50);
2680                 }
2681                 if (retry < 5)
2682                         break;
2683         }
2684         if (i == 4)
2685                 DRM_ERROR("FDI train 2 fail!\n");
2686
2687         DRM_DEBUG_KMS("FDI train done.\n");
2688 }
2689
2690 /* Manual link training for Ivy Bridge A0 parts */
2691 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2692 {
2693         struct drm_device *dev = crtc->dev;
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2696         int pipe = intel_crtc->pipe;
2697         u32 reg, temp, i, j;
2698
2699         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2700            for train result */
2701         reg = FDI_RX_IMR(pipe);
2702         temp = I915_READ(reg);
2703         temp &= ~FDI_RX_SYMBOL_LOCK;
2704         temp &= ~FDI_RX_BIT_LOCK;
2705         I915_WRITE(reg, temp);
2706
2707         POSTING_READ(reg);
2708         udelay(150);
2709
2710         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2711                       I915_READ(FDI_RX_IIR(pipe)));
2712
2713         /* Try each vswing and preemphasis setting twice before moving on */
2714         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2715                 /* disable first in case we need to retry */
2716                 reg = FDI_TX_CTL(pipe);
2717                 temp = I915_READ(reg);
2718                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2719                 temp &= ~FDI_TX_ENABLE;
2720                 I915_WRITE(reg, temp);
2721
2722                 reg = FDI_RX_CTL(pipe);
2723                 temp = I915_READ(reg);
2724                 temp &= ~FDI_LINK_TRAIN_AUTO;
2725                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2726                 temp &= ~FDI_RX_ENABLE;
2727                 I915_WRITE(reg, temp);
2728
2729                 /* enable CPU FDI TX and PCH FDI RX */
2730                 reg = FDI_TX_CTL(pipe);
2731                 temp = I915_READ(reg);
2732                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2733                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2734                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2735                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2736                 temp |= snb_b_fdi_train_param[j/2];
2737                 temp |= FDI_COMPOSITE_SYNC;
2738                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2739
2740                 I915_WRITE(FDI_RX_MISC(pipe),
2741                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2742
2743                 reg = FDI_RX_CTL(pipe);
2744                 temp = I915_READ(reg);
2745                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2746                 temp |= FDI_COMPOSITE_SYNC;
2747                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2748
2749                 POSTING_READ(reg);
2750                 udelay(1); /* should be 0.5us */
2751
2752                 for (i = 0; i < 4; i++) {
2753                         reg = FDI_RX_IIR(pipe);
2754                         temp = I915_READ(reg);
2755                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2756
2757                         if (temp & FDI_RX_BIT_LOCK ||
2758                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2759                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2760                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2761                                               i);
2762                                 break;
2763                         }
2764                         udelay(1); /* should be 0.5us */
2765                 }
2766                 if (i == 4) {
2767                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2768                         continue;
2769                 }
2770
2771                 /* Train 2 */
2772                 reg = FDI_TX_CTL(pipe);
2773                 temp = I915_READ(reg);
2774                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2775                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2776                 I915_WRITE(reg, temp);
2777
2778                 reg = FDI_RX_CTL(pipe);
2779                 temp = I915_READ(reg);
2780                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2781                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2782                 I915_WRITE(reg, temp);
2783
2784                 POSTING_READ(reg);
2785                 udelay(2); /* should be 1.5us */
2786
2787                 for (i = 0; i < 4; i++) {
2788                         reg = FDI_RX_IIR(pipe);
2789                         temp = I915_READ(reg);
2790                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2791
2792                         if (temp & FDI_RX_SYMBOL_LOCK ||
2793                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2794                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2795                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2796                                               i);
2797                                 goto train_done;
2798                         }
2799                         udelay(2); /* should be 1.5us */
2800                 }
2801                 if (i == 4)
2802                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2803         }
2804
2805 train_done:
2806         DRM_DEBUG_KMS("FDI train done.\n");
2807 }
2808
2809 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2810 {
2811         struct drm_device *dev = intel_crtc->base.dev;
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         int pipe = intel_crtc->pipe;
2814         u32 reg, temp;
2815
2816
2817         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2818         reg = FDI_RX_CTL(pipe);
2819         temp = I915_READ(reg);
2820         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2821         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2822         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2823         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2824
2825         POSTING_READ(reg);
2826         udelay(200);
2827
2828         /* Switch from Rawclk to PCDclk */
2829         temp = I915_READ(reg);
2830         I915_WRITE(reg, temp | FDI_PCDCLK);
2831
2832         POSTING_READ(reg);
2833         udelay(200);
2834
2835         /* Enable CPU FDI TX PLL, always on for Ironlake */
2836         reg = FDI_TX_CTL(pipe);
2837         temp = I915_READ(reg);
2838         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2839                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2840
2841                 POSTING_READ(reg);
2842                 udelay(100);
2843         }
2844 }
2845
2846 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2847 {
2848         struct drm_device *dev = intel_crtc->base.dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         int pipe = intel_crtc->pipe;
2851         u32 reg, temp;
2852
2853         /* Switch from PCDclk to Rawclk */
2854         reg = FDI_RX_CTL(pipe);
2855         temp = I915_READ(reg);
2856         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2857
2858         /* Disable CPU FDI TX PLL */
2859         reg = FDI_TX_CTL(pipe);
2860         temp = I915_READ(reg);
2861         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2862
2863         POSTING_READ(reg);
2864         udelay(100);
2865
2866         reg = FDI_RX_CTL(pipe);
2867         temp = I915_READ(reg);
2868         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2869
2870         /* Wait for the clocks to turn off. */
2871         POSTING_READ(reg);
2872         udelay(100);
2873 }
2874
2875 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         int pipe = intel_crtc->pipe;
2881         u32 reg, temp;
2882
2883         /* disable CPU FDI tx and PCH FDI rx */
2884         reg = FDI_TX_CTL(pipe);
2885         temp = I915_READ(reg);
2886         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2887         POSTING_READ(reg);
2888
2889         reg = FDI_RX_CTL(pipe);
2890         temp = I915_READ(reg);
2891         temp &= ~(0x7 << 16);
2892         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2893         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2894
2895         POSTING_READ(reg);
2896         udelay(100);
2897
2898         /* Ironlake workaround, disable clock pointer after downing FDI */
2899         if (HAS_PCH_IBX(dev)) {
2900                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2901         }
2902
2903         /* still set train pattern 1 */
2904         reg = FDI_TX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         temp &= ~FDI_LINK_TRAIN_NONE;
2907         temp |= FDI_LINK_TRAIN_PATTERN_1;
2908         I915_WRITE(reg, temp);
2909
2910         reg = FDI_RX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         if (HAS_PCH_CPT(dev)) {
2913                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2914                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2915         } else {
2916                 temp &= ~FDI_LINK_TRAIN_NONE;
2917                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2918         }
2919         /* BPC in FDI rx is consistent with that in PIPECONF */
2920         temp &= ~(0x07 << 16);
2921         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2922         I915_WRITE(reg, temp);
2923
2924         POSTING_READ(reg);
2925         udelay(100);
2926 }
2927
2928 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2929 {
2930         struct drm_device *dev = crtc->dev;
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2933         unsigned long flags;
2934         bool pending;
2935
2936         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2937             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2938                 return false;
2939
2940         spin_lock_irqsave(&dev->event_lock, flags);
2941         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2942         spin_unlock_irqrestore(&dev->event_lock, flags);
2943
2944         return pending;
2945 }
2946
2947 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2948 {
2949         struct drm_device *dev = crtc->dev;
2950         struct drm_i915_private *dev_priv = dev->dev_private;
2951
2952         if (crtc->fb == NULL)
2953                 return;
2954
2955         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2956
2957         wait_event(dev_priv->pending_flip_queue,
2958                    !intel_crtc_has_pending_flip(crtc));
2959
2960         mutex_lock(&dev->struct_mutex);
2961         intel_finish_fb(crtc->fb);
2962         mutex_unlock(&dev->struct_mutex);
2963 }
2964
2965 /* Program iCLKIP clock to the desired frequency */
2966 static void lpt_program_iclkip(struct drm_crtc *crtc)
2967 {
2968         struct drm_device *dev = crtc->dev;
2969         struct drm_i915_private *dev_priv = dev->dev_private;
2970         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2971         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2972         u32 temp;
2973
2974         mutex_lock(&dev_priv->dpio_lock);
2975
2976         /* It is necessary to ungate the pixclk gate prior to programming
2977          * the divisors, and gate it back when it is done.
2978          */
2979         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2980
2981         /* Disable SSCCTL */
2982         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2983                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2984                                 SBI_SSCCTL_DISABLE,
2985                         SBI_ICLK);
2986
2987         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2988         if (clock == 20000) {
2989                 auxdiv = 1;
2990                 divsel = 0x41;
2991                 phaseinc = 0x20;
2992         } else {
2993                 /* The iCLK virtual clock root frequency is in MHz,
2994                  * but the adjusted_mode->crtc_clock in in KHz. To get the
2995                  * divisors, it is necessary to divide one by another, so we
2996                  * convert the virtual clock precision to KHz here for higher
2997                  * precision.
2998                  */
2999                 u32 iclk_virtual_root_freq = 172800 * 1000;
3000                 u32 iclk_pi_range = 64;
3001                 u32 desired_divisor, msb_divisor_value, pi_value;
3002
3003                 desired_divisor = (iclk_virtual_root_freq / clock);
3004                 msb_divisor_value = desired_divisor / iclk_pi_range;
3005                 pi_value = desired_divisor % iclk_pi_range;
3006
3007                 auxdiv = 0;
3008                 divsel = msb_divisor_value - 2;
3009                 phaseinc = pi_value;
3010         }
3011
3012         /* This should not happen with any sane values */
3013         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3014                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3015         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3016                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3017
3018         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3019                         clock,
3020                         auxdiv,
3021                         divsel,
3022                         phasedir,
3023                         phaseinc);
3024
3025         /* Program SSCDIVINTPHASE6 */
3026         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3027         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3028         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3029         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3030         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3031         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3032         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3033         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3034
3035         /* Program SSCAUXDIV */
3036         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3037         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3038         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3039         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3040
3041         /* Enable modulator and associated divider */
3042         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3043         temp &= ~SBI_SSCCTL_DISABLE;
3044         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3045
3046         /* Wait for initialization time */
3047         udelay(24);
3048
3049         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3050
3051         mutex_unlock(&dev_priv->dpio_lock);
3052 }
3053
3054 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3055                                                 enum pipe pch_transcoder)
3056 {
3057         struct drm_device *dev = crtc->base.dev;
3058         struct drm_i915_private *dev_priv = dev->dev_private;
3059         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3060
3061         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3062                    I915_READ(HTOTAL(cpu_transcoder)));
3063         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3064                    I915_READ(HBLANK(cpu_transcoder)));
3065         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3066                    I915_READ(HSYNC(cpu_transcoder)));
3067
3068         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3069                    I915_READ(VTOTAL(cpu_transcoder)));
3070         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3071                    I915_READ(VBLANK(cpu_transcoder)));
3072         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3073                    I915_READ(VSYNC(cpu_transcoder)));
3074         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3075                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3076 }
3077
3078 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3079 {
3080         struct drm_i915_private *dev_priv = dev->dev_private;
3081         uint32_t temp;
3082
3083         temp = I915_READ(SOUTH_CHICKEN1);
3084         if (temp & FDI_BC_BIFURCATION_SELECT)
3085                 return;
3086
3087         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3088         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3089
3090         temp |= FDI_BC_BIFURCATION_SELECT;
3091         DRM_DEBUG_KMS("enabling fdi C rx\n");
3092         I915_WRITE(SOUTH_CHICKEN1, temp);
3093         POSTING_READ(SOUTH_CHICKEN1);
3094 }
3095
3096 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3097 {
3098         struct drm_device *dev = intel_crtc->base.dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100
3101         switch (intel_crtc->pipe) {
3102         case PIPE_A:
3103                 break;
3104         case PIPE_B:
3105                 if (intel_crtc->config.fdi_lanes > 2)
3106                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3107                 else
3108                         cpt_enable_fdi_bc_bifurcation(dev);
3109
3110                 break;
3111         case PIPE_C:
3112                 cpt_enable_fdi_bc_bifurcation(dev);
3113
3114                 break;
3115         default:
3116                 BUG();
3117         }
3118 }
3119
3120 /*
3121  * Enable PCH resources required for PCH ports:
3122  *   - PCH PLLs
3123  *   - FDI training & RX/TX
3124  *   - update transcoder timings
3125  *   - DP transcoding bits
3126  *   - transcoder
3127  */
3128 static void ironlake_pch_enable(struct drm_crtc *crtc)
3129 {
3130         struct drm_device *dev = crtc->dev;
3131         struct drm_i915_private *dev_priv = dev->dev_private;
3132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3133         int pipe = intel_crtc->pipe;
3134         u32 reg, temp;
3135
3136         assert_pch_transcoder_disabled(dev_priv, pipe);
3137
3138         if (IS_IVYBRIDGE(dev))
3139                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3140
3141         /* Write the TU size bits before fdi link training, so that error
3142          * detection works. */
3143         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3144                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3145
3146         /* For PCH output, training FDI link */
3147         dev_priv->display.fdi_link_train(crtc);
3148
3149         /* We need to program the right clock selection before writing the pixel
3150          * mutliplier into the DPLL. */
3151         if (HAS_PCH_CPT(dev)) {
3152                 u32 sel;
3153
3154                 temp = I915_READ(PCH_DPLL_SEL);
3155                 temp |= TRANS_DPLL_ENABLE(pipe);
3156                 sel = TRANS_DPLLB_SEL(pipe);
3157                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3158                         temp |= sel;
3159                 else
3160                         temp &= ~sel;
3161                 I915_WRITE(PCH_DPLL_SEL, temp);
3162         }
3163
3164         /* XXX: pch pll's can be enabled any time before we enable the PCH
3165          * transcoder, and we actually should do this to not upset any PCH
3166          * transcoder that already use the clock when we share it.
3167          *
3168          * Note that enable_shared_dpll tries to do the right thing, but
3169          * get_shared_dpll unconditionally resets the pll - we need that to have
3170          * the right LVDS enable sequence. */
3171         ironlake_enable_shared_dpll(intel_crtc);
3172
3173         /* set transcoder timing, panel must allow it */
3174         assert_panel_unlocked(dev_priv, pipe);
3175         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3176
3177         intel_fdi_normal_train(crtc);
3178
3179         /* For PCH DP, enable TRANS_DP_CTL */
3180         if (HAS_PCH_CPT(dev) &&
3181             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3182              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3183                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3184                 reg = TRANS_DP_CTL(pipe);
3185                 temp = I915_READ(reg);
3186                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3187                           TRANS_DP_SYNC_MASK |
3188                           TRANS_DP_BPC_MASK);
3189                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3190                          TRANS_DP_ENH_FRAMING);
3191                 temp |= bpc << 9; /* same format but at 11:9 */
3192
3193                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3194                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3195                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3196                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3197
3198                 switch (intel_trans_dp_port_sel(crtc)) {
3199                 case PCH_DP_B:
3200                         temp |= TRANS_DP_PORT_SEL_B;
3201                         break;
3202                 case PCH_DP_C:
3203                         temp |= TRANS_DP_PORT_SEL_C;
3204                         break;
3205                 case PCH_DP_D:
3206                         temp |= TRANS_DP_PORT_SEL_D;
3207                         break;
3208                 default:
3209                         BUG();
3210                 }
3211
3212                 I915_WRITE(reg, temp);
3213         }
3214
3215         ironlake_enable_pch_transcoder(dev_priv, pipe);
3216 }
3217
3218 static void lpt_pch_enable(struct drm_crtc *crtc)
3219 {
3220         struct drm_device *dev = crtc->dev;
3221         struct drm_i915_private *dev_priv = dev->dev_private;
3222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3223         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3224
3225         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3226
3227         lpt_program_iclkip(crtc);
3228
3229         /* Set transcoder timing. */
3230         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3231
3232         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3233 }
3234
3235 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3236 {
3237         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3238
3239         if (pll == NULL)
3240                 return;
3241
3242         if (pll->refcount == 0) {
3243                 WARN(1, "bad %s refcount\n", pll->name);
3244                 return;
3245         }
3246
3247         if (--pll->refcount == 0) {
3248                 WARN_ON(pll->on);
3249                 WARN_ON(pll->active);
3250         }
3251
3252         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3253 }
3254
3255 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3256 {
3257         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3258         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3259         enum intel_dpll_id i;
3260
3261         if (pll) {
3262                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3263                               crtc->base.base.id, pll->name);
3264                 intel_put_shared_dpll(crtc);
3265         }
3266
3267         if (HAS_PCH_IBX(dev_priv->dev)) {
3268                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3269                 i = (enum intel_dpll_id) crtc->pipe;
3270                 pll = &dev_priv->shared_dplls[i];
3271
3272                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3273                               crtc->base.base.id, pll->name);
3274
3275                 goto found;
3276         }
3277
3278         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3279                 pll = &dev_priv->shared_dplls[i];
3280
3281                 /* Only want to check enabled timings first */
3282                 if (pll->refcount == 0)
3283                         continue;
3284
3285                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3286                            sizeof(pll->hw_state)) == 0) {
3287                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3288                                       crtc->base.base.id,
3289                                       pll->name, pll->refcount, pll->active);
3290
3291                         goto found;
3292                 }
3293         }
3294
3295         /* Ok no matching timings, maybe there's a free one? */
3296         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3297                 pll = &dev_priv->shared_dplls[i];
3298                 if (pll->refcount == 0) {
3299                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3300                                       crtc->base.base.id, pll->name);
3301                         goto found;
3302                 }
3303         }
3304
3305         return NULL;
3306
3307 found:
3308         crtc->config.shared_dpll = i;
3309         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3310                          pipe_name(crtc->pipe));
3311
3312         if (pll->active == 0) {
3313                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3314                        sizeof(pll->hw_state));
3315
3316                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3317                 WARN_ON(pll->on);
3318                 assert_shared_dpll_disabled(dev_priv, pll);
3319
3320                 pll->mode_set(dev_priv, pll);
3321         }
3322         pll->refcount++;
3323
3324         return pll;
3325 }
3326
3327 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3328 {
3329         struct drm_i915_private *dev_priv = dev->dev_private;
3330         int dslreg = PIPEDSL(pipe);
3331         u32 temp;
3332
3333         temp = I915_READ(dslreg);
3334         udelay(500);
3335         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3336                 if (wait_for(I915_READ(dslreg) != temp, 5))
3337                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3338         }
3339 }
3340
3341 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3342 {
3343         struct drm_device *dev = crtc->base.dev;
3344         struct drm_i915_private *dev_priv = dev->dev_private;
3345         int pipe = crtc->pipe;
3346
3347         if (crtc->config.pch_pfit.enabled) {
3348                 /* Force use of hard-coded filter coefficients
3349                  * as some pre-programmed values are broken,
3350                  * e.g. x201.
3351                  */
3352                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3353                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3354                                                  PF_PIPE_SEL_IVB(pipe));
3355                 else
3356                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3357                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3358                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3359         }
3360 }
3361
3362 static void intel_enable_planes(struct drm_crtc *crtc)
3363 {
3364         struct drm_device *dev = crtc->dev;
3365         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3366         struct intel_plane *intel_plane;
3367
3368         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3369                 if (intel_plane->pipe == pipe)
3370                         intel_plane_restore(&intel_plane->base);
3371 }
3372
3373 static void intel_disable_planes(struct drm_crtc *crtc)
3374 {
3375         struct drm_device *dev = crtc->dev;
3376         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3377         struct intel_plane *intel_plane;
3378
3379         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3380                 if (intel_plane->pipe == pipe)
3381                         intel_plane_disable(&intel_plane->base);
3382 }
3383
3384 void hsw_enable_ips(struct intel_crtc *crtc)
3385 {
3386         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3387
3388         if (!crtc->config.ips_enabled)
3389                 return;
3390
3391         /* We can only enable IPS after we enable a plane and wait for a vblank.
3392          * We guarantee that the plane is enabled by calling intel_enable_ips
3393          * only after intel_enable_plane. And intel_enable_plane already waits
3394          * for a vblank, so all we need to do here is to enable the IPS bit. */
3395         assert_plane_enabled(dev_priv, crtc->plane);
3396         I915_WRITE(IPS_CTL, IPS_ENABLE);
3397
3398         /* The bit only becomes 1 in the next vblank, so this wait here is
3399          * essentially intel_wait_for_vblank. If we don't have this and don't
3400          * wait for vblanks until the end of crtc_enable, then the HW state
3401          * readout code will complain that the expected IPS_CTL value is not the
3402          * one we read. */
3403         if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3404                 DRM_ERROR("Timed out waiting for IPS enable\n");
3405 }
3406
3407 void hsw_disable_ips(struct intel_crtc *crtc)
3408 {
3409         struct drm_device *dev = crtc->base.dev;
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411
3412         if (!crtc->config.ips_enabled)
3413                 return;
3414
3415         assert_plane_enabled(dev_priv, crtc->plane);
3416         I915_WRITE(IPS_CTL, 0);
3417         POSTING_READ(IPS_CTL);
3418
3419         /* We need to wait for a vblank before we can disable the plane. */
3420         intel_wait_for_vblank(dev, crtc->pipe);
3421 }
3422
3423 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3424 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3425 {
3426         struct drm_device *dev = crtc->dev;
3427         struct drm_i915_private *dev_priv = dev->dev_private;
3428         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3429         enum pipe pipe = intel_crtc->pipe;
3430         int palreg = PALETTE(pipe);
3431         int i;
3432         bool reenable_ips = false;
3433
3434         /* The clocks have to be on to load the palette. */
3435         if (!crtc->enabled || !intel_crtc->active)
3436                 return;
3437
3438         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3439                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3440                         assert_dsi_pll_enabled(dev_priv);
3441                 else
3442                         assert_pll_enabled(dev_priv, pipe);
3443         }
3444
3445         /* use legacy palette for Ironlake */
3446         if (HAS_PCH_SPLIT(dev))
3447                 palreg = LGC_PALETTE(pipe);
3448
3449         /* Workaround : Do not read or write the pipe palette/gamma data while
3450          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3451          */
3452         if (intel_crtc->config.ips_enabled &&
3453             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3454              GAMMA_MODE_MODE_SPLIT)) {
3455                 hsw_disable_ips(intel_crtc);
3456                 reenable_ips = true;
3457         }
3458
3459         for (i = 0; i < 256; i++) {
3460                 I915_WRITE(palreg + 4 * i,
3461                            (intel_crtc->lut_r[i] << 16) |
3462                            (intel_crtc->lut_g[i] << 8) |
3463                            intel_crtc->lut_b[i]);
3464         }
3465
3466         if (reenable_ips)
3467                 hsw_enable_ips(intel_crtc);
3468 }
3469
3470 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3471 {
3472         struct drm_device *dev = crtc->dev;
3473         struct drm_i915_private *dev_priv = dev->dev_private;
3474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3475         struct intel_encoder *encoder;
3476         int pipe = intel_crtc->pipe;
3477         int plane = intel_crtc->plane;
3478
3479         WARN_ON(!crtc->enabled);
3480
3481         if (intel_crtc->active)
3482                 return;
3483
3484         intel_crtc->active = true;
3485
3486         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3487         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3488
3489         for_each_encoder_on_crtc(dev, crtc, encoder)
3490                 if (encoder->pre_enable)
3491                         encoder->pre_enable(encoder);
3492
3493         if (intel_crtc->config.has_pch_encoder) {
3494                 /* Note: FDI PLL enabling _must_ be done before we enable the
3495                  * cpu pipes, hence this is separate from all the other fdi/pch
3496                  * enabling. */
3497                 ironlake_fdi_pll_enable(intel_crtc);
3498         } else {
3499                 assert_fdi_tx_disabled(dev_priv, pipe);
3500                 assert_fdi_rx_disabled(dev_priv, pipe);
3501         }
3502
3503         ironlake_pfit_enable(intel_crtc);
3504
3505         /*
3506          * On ILK+ LUT must be loaded before the pipe is running but with
3507          * clocks enabled
3508          */
3509         intel_crtc_load_lut(crtc);
3510
3511         intel_update_watermarks(crtc);
3512         intel_enable_pipe(dev_priv, pipe,
3513                           intel_crtc->config.has_pch_encoder, false);
3514         intel_enable_primary_plane(dev_priv, plane, pipe);
3515         intel_enable_planes(crtc);
3516         intel_crtc_update_cursor(crtc, true);
3517
3518         if (intel_crtc->config.has_pch_encoder)
3519                 ironlake_pch_enable(crtc);
3520
3521         mutex_lock(&dev->struct_mutex);
3522         intel_update_fbc(dev);
3523         mutex_unlock(&dev->struct_mutex);
3524
3525         for_each_encoder_on_crtc(dev, crtc, encoder)
3526                 encoder->enable(encoder);
3527
3528         if (HAS_PCH_CPT(dev))
3529                 cpt_verify_modeset(dev, intel_crtc->pipe);
3530
3531         /*
3532          * There seems to be a race in PCH platform hw (at least on some
3533          * outputs) where an enabled pipe still completes any pageflip right
3534          * away (as if the pipe is off) instead of waiting for vblank. As soon
3535          * as the first vblank happend, everything works as expected. Hence just
3536          * wait for one vblank before returning to avoid strange things
3537          * happening.
3538          */
3539         intel_wait_for_vblank(dev, intel_crtc->pipe);
3540 }
3541
3542 /* IPS only exists on ULT machines and is tied to pipe A. */
3543 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3544 {
3545         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3546 }
3547
3548 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553         int pipe = intel_crtc->pipe;
3554         int plane = intel_crtc->plane;
3555
3556         intel_enable_primary_plane(dev_priv, plane, pipe);
3557         intel_enable_planes(crtc);
3558         intel_crtc_update_cursor(crtc, true);
3559
3560         hsw_enable_ips(intel_crtc);
3561
3562         mutex_lock(&dev->struct_mutex);
3563         intel_update_fbc(dev);
3564         mutex_unlock(&dev->struct_mutex);
3565 }
3566
3567 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3568 {
3569         struct drm_device *dev = crtc->dev;
3570         struct drm_i915_private *dev_priv = dev->dev_private;
3571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3572         int pipe = intel_crtc->pipe;
3573         int plane = intel_crtc->plane;
3574
3575         intel_crtc_wait_for_pending_flips(crtc);
3576         drm_vblank_off(dev, pipe);
3577
3578         /* FBC must be disabled before disabling the plane on HSW. */
3579         if (dev_priv->fbc.plane == plane)
3580                 intel_disable_fbc(dev);
3581
3582         hsw_disable_ips(intel_crtc);
3583
3584         intel_crtc_update_cursor(crtc, false);
3585         intel_disable_planes(crtc);
3586         intel_disable_primary_plane(dev_priv, plane, pipe);
3587 }
3588
3589 /*
3590  * This implements the workaround described in the "notes" section of the mode
3591  * set sequence documentation. When going from no pipes or single pipe to
3592  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3593  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3594  */
3595 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3596 {
3597         struct drm_device *dev = crtc->base.dev;
3598         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3599
3600         /* We want to get the other_active_crtc only if there's only 1 other
3601          * active crtc. */
3602         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3603                 if (!crtc_it->active || crtc_it == crtc)
3604                         continue;
3605
3606                 if (other_active_crtc)
3607                         return;
3608
3609                 other_active_crtc = crtc_it;
3610         }
3611         if (!other_active_crtc)
3612                 return;
3613
3614         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3615         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3616 }
3617
3618 static void haswell_crtc_enable(struct drm_crtc *crtc)
3619 {
3620         struct drm_device *dev = crtc->dev;
3621         struct drm_i915_private *dev_priv = dev->dev_private;
3622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623         struct intel_encoder *encoder;
3624         int pipe = intel_crtc->pipe;
3625
3626         WARN_ON(!crtc->enabled);
3627
3628         if (intel_crtc->active)
3629                 return;
3630
3631         intel_crtc->active = true;
3632
3633         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3634         if (intel_crtc->config.has_pch_encoder)
3635                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3636
3637         if (intel_crtc->config.has_pch_encoder)
3638                 dev_priv->display.fdi_link_train(crtc);
3639
3640         for_each_encoder_on_crtc(dev, crtc, encoder)
3641                 if (encoder->pre_enable)
3642                         encoder->pre_enable(encoder);
3643
3644         intel_ddi_enable_pipe_clock(intel_crtc);
3645
3646         ironlake_pfit_enable(intel_crtc);
3647
3648         /*
3649          * On ILK+ LUT must be loaded before the pipe is running but with
3650          * clocks enabled
3651          */
3652         intel_crtc_load_lut(crtc);
3653
3654         intel_ddi_set_pipe_settings(crtc);
3655         intel_ddi_enable_transcoder_func(crtc);
3656
3657         intel_update_watermarks(crtc);
3658         intel_enable_pipe(dev_priv, pipe,
3659                           intel_crtc->config.has_pch_encoder, false);
3660
3661         if (intel_crtc->config.has_pch_encoder)
3662                 lpt_pch_enable(crtc);
3663
3664         for_each_encoder_on_crtc(dev, crtc, encoder) {
3665                 encoder->enable(encoder);
3666                 intel_opregion_notify_encoder(encoder, true);
3667         }
3668
3669         /* If we change the relative order between pipe/planes enabling, we need
3670          * to change the workaround. */
3671         haswell_mode_set_planes_workaround(intel_crtc);
3672         haswell_crtc_enable_planes(crtc);
3673
3674         /*
3675          * There seems to be a race in PCH platform hw (at least on some
3676          * outputs) where an enabled pipe still completes any pageflip right
3677          * away (as if the pipe is off) instead of waiting for vblank. As soon
3678          * as the first vblank happend, everything works as expected. Hence just
3679          * wait for one vblank before returning to avoid strange things
3680          * happening.
3681          */
3682         intel_wait_for_vblank(dev, intel_crtc->pipe);
3683 }
3684
3685 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3686 {
3687         struct drm_device *dev = crtc->base.dev;
3688         struct drm_i915_private *dev_priv = dev->dev_private;
3689         int pipe = crtc->pipe;
3690
3691         /* To avoid upsetting the power well on haswell only disable the pfit if
3692          * it's in use. The hw state code will make sure we get this right. */
3693         if (crtc->config.pch_pfit.enabled) {
3694                 I915_WRITE(PF_CTL(pipe), 0);
3695                 I915_WRITE(PF_WIN_POS(pipe), 0);
3696                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3697         }
3698 }
3699
3700 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3701 {
3702         struct drm_device *dev = crtc->dev;
3703         struct drm_i915_private *dev_priv = dev->dev_private;
3704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3705         struct intel_encoder *encoder;
3706         int pipe = intel_crtc->pipe;
3707         int plane = intel_crtc->plane;
3708         u32 reg, temp;
3709
3710
3711         if (!intel_crtc->active)
3712                 return;
3713
3714         for_each_encoder_on_crtc(dev, crtc, encoder)
3715                 encoder->disable(encoder);
3716
3717         intel_crtc_wait_for_pending_flips(crtc);
3718         drm_vblank_off(dev, pipe);
3719
3720         if (dev_priv->fbc.plane == plane)
3721                 intel_disable_fbc(dev);
3722
3723         intel_crtc_update_cursor(crtc, false);
3724         intel_disable_planes(crtc);
3725         intel_disable_primary_plane(dev_priv, plane, pipe);
3726
3727         if (intel_crtc->config.has_pch_encoder)
3728                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3729
3730         intel_disable_pipe(dev_priv, pipe);
3731
3732         ironlake_pfit_disable(intel_crtc);
3733
3734         for_each_encoder_on_crtc(dev, crtc, encoder)
3735                 if (encoder->post_disable)
3736                         encoder->post_disable(encoder);
3737
3738         if (intel_crtc->config.has_pch_encoder) {
3739                 ironlake_fdi_disable(crtc);
3740
3741                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3742                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3743
3744                 if (HAS_PCH_CPT(dev)) {
3745                         /* disable TRANS_DP_CTL */
3746                         reg = TRANS_DP_CTL(pipe);
3747                         temp = I915_READ(reg);
3748                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3749                                   TRANS_DP_PORT_SEL_MASK);
3750                         temp |= TRANS_DP_PORT_SEL_NONE;
3751                         I915_WRITE(reg, temp);
3752
3753                         /* disable DPLL_SEL */
3754                         temp = I915_READ(PCH_DPLL_SEL);
3755                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3756                         I915_WRITE(PCH_DPLL_SEL, temp);
3757                 }
3758
3759                 /* disable PCH DPLL */
3760                 intel_disable_shared_dpll(intel_crtc);
3761
3762                 ironlake_fdi_pll_disable(intel_crtc);
3763         }
3764
3765         intel_crtc->active = false;
3766         intel_update_watermarks(crtc);
3767
3768         mutex_lock(&dev->struct_mutex);
3769         intel_update_fbc(dev);
3770         mutex_unlock(&dev->struct_mutex);
3771 }
3772
3773 static void haswell_crtc_disable(struct drm_crtc *crtc)
3774 {
3775         struct drm_device *dev = crtc->dev;
3776         struct drm_i915_private *dev_priv = dev->dev_private;
3777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3778         struct intel_encoder *encoder;
3779         int pipe = intel_crtc->pipe;
3780         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3781
3782         if (!intel_crtc->active)
3783                 return;
3784
3785         haswell_crtc_disable_planes(crtc);
3786
3787         for_each_encoder_on_crtc(dev, crtc, encoder) {
3788                 intel_opregion_notify_encoder(encoder, false);
3789                 encoder->disable(encoder);
3790         }
3791
3792         if (intel_crtc->config.has_pch_encoder)
3793                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3794         intel_disable_pipe(dev_priv, pipe);
3795
3796         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3797
3798         ironlake_pfit_disable(intel_crtc);
3799
3800         intel_ddi_disable_pipe_clock(intel_crtc);
3801
3802         for_each_encoder_on_crtc(dev, crtc, encoder)
3803                 if (encoder->post_disable)
3804                         encoder->post_disable(encoder);
3805
3806         if (intel_crtc->config.has_pch_encoder) {
3807                 lpt_disable_pch_transcoder(dev_priv);
3808                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3809                 intel_ddi_fdi_disable(crtc);
3810         }
3811
3812         intel_crtc->active = false;
3813         intel_update_watermarks(crtc);
3814
3815         mutex_lock(&dev->struct_mutex);
3816         intel_update_fbc(dev);
3817         mutex_unlock(&dev->struct_mutex);
3818 }
3819
3820 static void ironlake_crtc_off(struct drm_crtc *crtc)
3821 {
3822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3823         intel_put_shared_dpll(intel_crtc);
3824 }
3825
3826 static void haswell_crtc_off(struct drm_crtc *crtc)
3827 {
3828         intel_ddi_put_crtc_pll(crtc);
3829 }
3830
3831 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3832 {
3833         if (!enable && intel_crtc->overlay) {
3834                 struct drm_device *dev = intel_crtc->base.dev;
3835                 struct drm_i915_private *dev_priv = dev->dev_private;
3836
3837                 mutex_lock(&dev->struct_mutex);
3838                 dev_priv->mm.interruptible = false;
3839                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3840                 dev_priv->mm.interruptible = true;
3841                 mutex_unlock(&dev->struct_mutex);
3842         }
3843
3844         /* Let userspace switch the overlay on again. In most cases userspace
3845          * has to recompute where to put it anyway.
3846          */
3847 }
3848
3849 /**
3850  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3851  * cursor plane briefly if not already running after enabling the display
3852  * plane.
3853  * This workaround avoids occasional blank screens when self refresh is
3854  * enabled.
3855  */
3856 static void
3857 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3858 {
3859         u32 cntl = I915_READ(CURCNTR(pipe));
3860
3861         if ((cntl & CURSOR_MODE) == 0) {
3862                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3863
3864                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3865                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3866                 intel_wait_for_vblank(dev_priv->dev, pipe);
3867                 I915_WRITE(CURCNTR(pipe), cntl);
3868                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3869                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3870         }
3871 }
3872
3873 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3874 {
3875         struct drm_device *dev = crtc->base.dev;
3876         struct drm_i915_private *dev_priv = dev->dev_private;
3877         struct intel_crtc_config *pipe_config = &crtc->config;
3878
3879         if (!crtc->config.gmch_pfit.control)
3880                 return;
3881
3882         /*
3883          * The panel fitter should only be adjusted whilst the pipe is disabled,
3884          * according to register description and PRM.
3885          */
3886         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3887         assert_pipe_disabled(dev_priv, crtc->pipe);
3888
3889         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3890         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3891
3892         /* Border color in case we don't scale up to the full screen. Black by
3893          * default, change to something else for debugging. */
3894         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3895 }
3896
3897 int valleyview_get_vco(struct drm_i915_private *dev_priv)
3898 {
3899         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
3900
3901         /* Obtain SKU information */
3902         mutex_lock(&dev_priv->dpio_lock);
3903         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
3904                 CCK_FUSE_HPLL_FREQ_MASK;
3905         mutex_unlock(&dev_priv->dpio_lock);
3906
3907         return vco_freq[hpll_freq];
3908 }
3909
3910 /* Adjust CDclk dividers to allow high res or save power if possible */
3911 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
3912 {
3913         struct drm_i915_private *dev_priv = dev->dev_private;
3914         u32 val, cmd;
3915
3916         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
3917                 cmd = 2;
3918         else if (cdclk == 266)
3919                 cmd = 1;
3920         else
3921                 cmd = 0;
3922
3923         mutex_lock(&dev_priv->rps.hw_lock);
3924         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3925         val &= ~DSPFREQGUAR_MASK;
3926         val |= (cmd << DSPFREQGUAR_SHIFT);
3927         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
3928         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
3929                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
3930                      50)) {
3931                 DRM_ERROR("timed out waiting for CDclk change\n");
3932         }
3933         mutex_unlock(&dev_priv->rps.hw_lock);
3934
3935         if (cdclk == 400) {
3936                 u32 divider, vco;
3937
3938                 vco = valleyview_get_vco(dev_priv);
3939                 divider = ((vco << 1) / cdclk) - 1;
3940
3941                 mutex_lock(&dev_priv->dpio_lock);
3942                 /* adjust cdclk divider */
3943                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
3944                 val &= ~0xf;
3945                 val |= divider;
3946                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
3947                 mutex_unlock(&dev_priv->dpio_lock);
3948         }
3949
3950         mutex_lock(&dev_priv->dpio_lock);
3951         /* adjust self-refresh exit latency value */
3952         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
3953         val &= ~0x7f;
3954
3955         /*
3956          * For high bandwidth configs, we set a higher latency in the bunit
3957          * so that the core display fetch happens in time to avoid underruns.
3958          */
3959         if (cdclk == 400)
3960                 val |= 4500 / 250; /* 4.5 usec */
3961         else
3962                 val |= 3000 / 250; /* 3.0 usec */
3963         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
3964         mutex_unlock(&dev_priv->dpio_lock);
3965
3966         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
3967         intel_i2c_reset(dev);
3968 }
3969
3970 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
3971 {
3972         int cur_cdclk, vco;
3973         int divider;
3974
3975         vco = valleyview_get_vco(dev_priv);
3976
3977         mutex_lock(&dev_priv->dpio_lock);
3978         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
3979         mutex_unlock(&dev_priv->dpio_lock);
3980
3981         divider &= 0xf;
3982
3983         cur_cdclk = (vco << 1) / (divider + 1);
3984
3985         return cur_cdclk;
3986 }
3987
3988 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
3989                                  int max_pixclk)
3990 {
3991         int cur_cdclk;
3992
3993         cur_cdclk = valleyview_cur_cdclk(dev_priv);
3994
3995         /*
3996          * Really only a few cases to deal with, as only 4 CDclks are supported:
3997          *   200MHz
3998          *   267MHz
3999          *   320MHz
4000          *   400MHz
4001          * So we check to see whether we're above 90% of the lower bin and
4002          * adjust if needed.
4003          */
4004         if (max_pixclk > 288000) {
4005                 return 400;
4006         } else if (max_pixclk > 240000) {
4007                 return 320;
4008         } else
4009                 return 266;
4010         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4011 }
4012
4013 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv,
4014                                  unsigned modeset_pipes,
4015                                  struct intel_crtc_config *pipe_config)
4016 {
4017         struct drm_device *dev = dev_priv->dev;
4018         struct intel_crtc *intel_crtc;
4019         int max_pixclk = 0;
4020
4021         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4022                             base.head) {
4023                 if (modeset_pipes & (1 << intel_crtc->pipe))
4024                         max_pixclk = max(max_pixclk,
4025                                          pipe_config->adjusted_mode.crtc_clock);
4026                 else if (intel_crtc->base.enabled)
4027                         max_pixclk = max(max_pixclk,
4028                                          intel_crtc->config.adjusted_mode.crtc_clock);
4029         }
4030
4031         return max_pixclk;
4032 }
4033
4034 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4035                                             unsigned *prepare_pipes,
4036                                             unsigned modeset_pipes,
4037                                             struct intel_crtc_config *pipe_config)
4038 {
4039         struct drm_i915_private *dev_priv = dev->dev_private;
4040         struct intel_crtc *intel_crtc;
4041         int max_pixclk = intel_mode_max_pixclk(dev_priv, modeset_pipes,
4042                                                pipe_config);
4043         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4044
4045         if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4046                 return;
4047
4048         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4049                             base.head)
4050                 if (intel_crtc->base.enabled)
4051                         *prepare_pipes |= (1 << intel_crtc->pipe);
4052 }
4053
4054 static void valleyview_modeset_global_resources(struct drm_device *dev)
4055 {
4056         struct drm_i915_private *dev_priv = dev->dev_private;
4057         int max_pixclk = intel_mode_max_pixclk(dev_priv, 0, NULL);
4058         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4059         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4060
4061         if (req_cdclk != cur_cdclk)
4062                 valleyview_set_cdclk(dev, req_cdclk);
4063 }
4064
4065 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4066 {
4067         struct drm_device *dev = crtc->dev;
4068         struct drm_i915_private *dev_priv = dev->dev_private;
4069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4070         struct intel_encoder *encoder;
4071         int pipe = intel_crtc->pipe;
4072         int plane = intel_crtc->plane;
4073         bool is_dsi;
4074
4075         WARN_ON(!crtc->enabled);
4076
4077         if (intel_crtc->active)
4078                 return;
4079
4080         intel_crtc->active = true;
4081
4082         for_each_encoder_on_crtc(dev, crtc, encoder)
4083                 if (encoder->pre_pll_enable)
4084                         encoder->pre_pll_enable(encoder);
4085
4086         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4087
4088         if (!is_dsi)
4089                 vlv_enable_pll(intel_crtc);
4090
4091         for_each_encoder_on_crtc(dev, crtc, encoder)
4092                 if (encoder->pre_enable)
4093                         encoder->pre_enable(encoder);
4094
4095         i9xx_pfit_enable(intel_crtc);
4096
4097         intel_crtc_load_lut(crtc);
4098
4099         intel_update_watermarks(crtc);
4100         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
4101         intel_enable_primary_plane(dev_priv, plane, pipe);
4102         intel_enable_planes(crtc);
4103         intel_crtc_update_cursor(crtc, true);
4104
4105         intel_update_fbc(dev);
4106
4107         for_each_encoder_on_crtc(dev, crtc, encoder)
4108                 encoder->enable(encoder);
4109 }
4110
4111 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4112 {
4113         struct drm_device *dev = crtc->dev;
4114         struct drm_i915_private *dev_priv = dev->dev_private;
4115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4116         struct intel_encoder *encoder;
4117         int pipe = intel_crtc->pipe;
4118         int plane = intel_crtc->plane;
4119
4120         WARN_ON(!crtc->enabled);
4121
4122         if (intel_crtc->active)
4123                 return;
4124
4125         intel_crtc->active = true;
4126
4127         for_each_encoder_on_crtc(dev, crtc, encoder)
4128                 if (encoder->pre_enable)
4129                         encoder->pre_enable(encoder);
4130
4131         i9xx_enable_pll(intel_crtc);
4132
4133         i9xx_pfit_enable(intel_crtc);
4134
4135         intel_crtc_load_lut(crtc);
4136
4137         intel_update_watermarks(crtc);
4138         intel_enable_pipe(dev_priv, pipe, false, false);
4139         intel_enable_primary_plane(dev_priv, plane, pipe);
4140         intel_enable_planes(crtc);
4141         /* The fixup needs to happen before cursor is enabled */
4142         if (IS_G4X(dev))
4143                 g4x_fixup_plane(dev_priv, pipe);
4144         intel_crtc_update_cursor(crtc, true);
4145
4146         /* Give the overlay scaler a chance to enable if it's on this pipe */
4147         intel_crtc_dpms_overlay(intel_crtc, true);
4148
4149         intel_update_fbc(dev);
4150
4151         for_each_encoder_on_crtc(dev, crtc, encoder)
4152                 encoder->enable(encoder);
4153 }
4154
4155 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4156 {
4157         struct drm_device *dev = crtc->base.dev;
4158         struct drm_i915_private *dev_priv = dev->dev_private;
4159
4160         if (!crtc->config.gmch_pfit.control)
4161                 return;
4162
4163         assert_pipe_disabled(dev_priv, crtc->pipe);
4164
4165         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4166                          I915_READ(PFIT_CONTROL));
4167         I915_WRITE(PFIT_CONTROL, 0);
4168 }
4169
4170 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4171 {
4172         struct drm_device *dev = crtc->dev;
4173         struct drm_i915_private *dev_priv = dev->dev_private;
4174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4175         struct intel_encoder *encoder;
4176         int pipe = intel_crtc->pipe;
4177         int plane = intel_crtc->plane;
4178
4179         if (!intel_crtc->active)
4180                 return;
4181
4182         for_each_encoder_on_crtc(dev, crtc, encoder)
4183                 encoder->disable(encoder);
4184
4185         /* Give the overlay scaler a chance to disable if it's on this pipe */
4186         intel_crtc_wait_for_pending_flips(crtc);
4187         drm_vblank_off(dev, pipe);
4188
4189         if (dev_priv->fbc.plane == plane)
4190                 intel_disable_fbc(dev);
4191
4192         intel_crtc_dpms_overlay(intel_crtc, false);
4193         intel_crtc_update_cursor(crtc, false);
4194         intel_disable_planes(crtc);
4195         intel_disable_primary_plane(dev_priv, plane, pipe);
4196
4197         intel_disable_pipe(dev_priv, pipe);
4198
4199         i9xx_pfit_disable(intel_crtc);
4200
4201         for_each_encoder_on_crtc(dev, crtc, encoder)
4202                 if (encoder->post_disable)
4203                         encoder->post_disable(encoder);
4204
4205         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4206                 vlv_disable_pll(dev_priv, pipe);
4207         else if (!IS_VALLEYVIEW(dev))
4208                 i9xx_disable_pll(dev_priv, pipe);
4209
4210         intel_crtc->active = false;
4211         intel_update_watermarks(crtc);
4212
4213         intel_update_fbc(dev);
4214 }
4215
4216 static void i9xx_crtc_off(struct drm_crtc *crtc)
4217 {
4218 }
4219
4220 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4221                                     bool enabled)
4222 {
4223         struct drm_device *dev = crtc->dev;
4224         struct drm_i915_master_private *master_priv;
4225         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4226         int pipe = intel_crtc->pipe;
4227
4228         if (!dev->primary->master)
4229                 return;
4230
4231         master_priv = dev->primary->master->driver_priv;
4232         if (!master_priv->sarea_priv)
4233                 return;
4234
4235         switch (pipe) {
4236         case 0:
4237                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4238                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4239                 break;
4240         case 1:
4241                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4242                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4243                 break;
4244         default:
4245                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4246                 break;
4247         }
4248 }
4249
4250 /**
4251  * Sets the power management mode of the pipe and plane.
4252  */
4253 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4254 {
4255         struct drm_device *dev = crtc->dev;
4256         struct drm_i915_private *dev_priv = dev->dev_private;
4257         struct intel_encoder *intel_encoder;
4258         bool enable = false;
4259
4260         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4261                 enable |= intel_encoder->connectors_active;
4262
4263         if (enable)
4264                 dev_priv->display.crtc_enable(crtc);
4265         else
4266                 dev_priv->display.crtc_disable(crtc);
4267
4268         intel_crtc_update_sarea(crtc, enable);
4269 }
4270
4271 static void intel_crtc_disable(struct drm_crtc *crtc)
4272 {
4273         struct drm_device *dev = crtc->dev;
4274         struct drm_connector *connector;
4275         struct drm_i915_private *dev_priv = dev->dev_private;
4276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4277
4278         /* crtc should still be enabled when we disable it. */
4279         WARN_ON(!crtc->enabled);
4280
4281         dev_priv->display.crtc_disable(crtc);
4282         intel_crtc->eld_vld = false;
4283         intel_crtc_update_sarea(crtc, false);
4284         dev_priv->display.off(crtc);
4285
4286         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4287         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4288         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4289
4290         if (crtc->fb) {
4291                 mutex_lock(&dev->struct_mutex);
4292                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4293                 mutex_unlock(&dev->struct_mutex);
4294                 crtc->fb = NULL;
4295         }
4296
4297         /* Update computed state. */
4298         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4299                 if (!connector->encoder || !connector->encoder->crtc)
4300                         continue;
4301
4302                 if (connector->encoder->crtc != crtc)
4303                         continue;
4304
4305                 connector->dpms = DRM_MODE_DPMS_OFF;
4306                 to_intel_encoder(connector->encoder)->connectors_active = false;
4307         }
4308 }
4309
4310 void intel_encoder_destroy(struct drm_encoder *encoder)
4311 {
4312         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4313
4314         drm_encoder_cleanup(encoder);
4315         kfree(intel_encoder);
4316 }
4317
4318 /* Simple dpms helper for encoders with just one connector, no cloning and only
4319  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4320  * state of the entire output pipe. */
4321 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4322 {
4323         if (mode == DRM_MODE_DPMS_ON) {
4324                 encoder->connectors_active = true;
4325
4326                 intel_crtc_update_dpms(encoder->base.crtc);
4327         } else {
4328                 encoder->connectors_active = false;
4329
4330                 intel_crtc_update_dpms(encoder->base.crtc);
4331         }
4332 }
4333
4334 /* Cross check the actual hw state with our own modeset state tracking (and it's
4335  * internal consistency). */
4336 static void intel_connector_check_state(struct intel_connector *connector)
4337 {
4338         if (connector->get_hw_state(connector)) {
4339                 struct intel_encoder *encoder = connector->encoder;
4340                 struct drm_crtc *crtc;
4341                 bool encoder_enabled;
4342                 enum pipe pipe;
4343
4344                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4345                               connector->base.base.id,
4346                               drm_get_connector_name(&connector->base));
4347
4348                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4349                      "wrong connector dpms state\n");
4350                 WARN(connector->base.encoder != &encoder->base,
4351                      "active connector not linked to encoder\n");
4352                 WARN(!encoder->connectors_active,
4353                      "encoder->connectors_active not set\n");
4354
4355                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4356                 WARN(!encoder_enabled, "encoder not enabled\n");
4357                 if (WARN_ON(!encoder->base.crtc))
4358                         return;
4359
4360                 crtc = encoder->base.crtc;
4361
4362                 WARN(!crtc->enabled, "crtc not enabled\n");
4363                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4364                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4365                      "encoder active on the wrong pipe\n");
4366         }
4367 }
4368
4369 /* Even simpler default implementation, if there's really no special case to
4370  * consider. */
4371 void intel_connector_dpms(struct drm_connector *connector, int mode)
4372 {
4373         /* All the simple cases only support two dpms states. */
4374         if (mode != DRM_MODE_DPMS_ON)
4375                 mode = DRM_MODE_DPMS_OFF;
4376
4377         if (mode == connector->dpms)
4378                 return;
4379
4380         connector->dpms = mode;
4381
4382         /* Only need to change hw state when actually enabled */
4383         if (connector->encoder)
4384                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4385
4386         intel_modeset_check_state(connector->dev);
4387 }
4388
4389 /* Simple connector->get_hw_state implementation for encoders that support only
4390  * one connector and no cloning and hence the encoder state determines the state
4391  * of the connector. */
4392 bool intel_connector_get_hw_state(struct intel_connector *connector)
4393 {
4394         enum pipe pipe = 0;
4395         struct intel_encoder *encoder = connector->encoder;
4396
4397         return encoder->get_hw_state(encoder, &pipe);
4398 }
4399
4400 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4401                                      struct intel_crtc_config *pipe_config)
4402 {
4403         struct drm_i915_private *dev_priv = dev->dev_private;
4404         struct intel_crtc *pipe_B_crtc =
4405                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4406
4407         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4408                       pipe_name(pipe), pipe_config->fdi_lanes);
4409         if (pipe_config->fdi_lanes > 4) {
4410                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4411                               pipe_name(pipe), pipe_config->fdi_lanes);
4412                 return false;
4413         }
4414
4415         if (IS_HASWELL(dev)) {
4416                 if (pipe_config->fdi_lanes > 2) {
4417                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4418                                       pipe_config->fdi_lanes);
4419                         return false;
4420                 } else {
4421                         return true;
4422                 }
4423         }
4424
4425         if (INTEL_INFO(dev)->num_pipes == 2)
4426                 return true;
4427
4428         /* Ivybridge 3 pipe is really complicated */
4429         switch (pipe) {
4430         case PIPE_A:
4431                 return true;
4432         case PIPE_B:
4433                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4434                     pipe_config->fdi_lanes > 2) {
4435                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4436                                       pipe_name(pipe), pipe_config->fdi_lanes);
4437                         return false;
4438                 }
4439                 return true;
4440         case PIPE_C:
4441                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4442                     pipe_B_crtc->config.fdi_lanes <= 2) {
4443                         if (pipe_config->fdi_lanes > 2) {
4444                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4445                                               pipe_name(pipe), pipe_config->fdi_lanes);
4446                                 return false;
4447                         }
4448                 } else {
4449                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4450                         return false;
4451                 }
4452                 return true;
4453         default:
4454                 BUG();
4455         }
4456 }
4457
4458 #define RETRY 1
4459 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4460                                        struct intel_crtc_config *pipe_config)
4461 {
4462         struct drm_device *dev = intel_crtc->base.dev;
4463         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4464         int lane, link_bw, fdi_dotclock;
4465         bool setup_ok, needs_recompute = false;
4466
4467 retry:
4468         /* FDI is a binary signal running at ~2.7GHz, encoding
4469          * each output octet as 10 bits. The actual frequency
4470          * is stored as a divider into a 100MHz clock, and the
4471          * mode pixel clock is stored in units of 1KHz.
4472          * Hence the bw of each lane in terms of the mode signal
4473          * is:
4474          */
4475         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4476
4477         fdi_dotclock = adjusted_mode->crtc_clock;
4478
4479         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4480                                            pipe_config->pipe_bpp);
4481
4482         pipe_config->fdi_lanes = lane;
4483
4484         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4485                                link_bw, &pipe_config->fdi_m_n);
4486
4487         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4488                                             intel_crtc->pipe, pipe_config);
4489         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4490                 pipe_config->pipe_bpp -= 2*3;
4491                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4492                               pipe_config->pipe_bpp);
4493                 needs_recompute = true;
4494                 pipe_config->bw_constrained = true;
4495
4496                 goto retry;
4497         }
4498
4499         if (needs_recompute)
4500                 return RETRY;
4501
4502         return setup_ok ? 0 : -EINVAL;
4503 }
4504
4505 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4506                                    struct intel_crtc_config *pipe_config)
4507 {
4508         pipe_config->ips_enabled = i915_enable_ips &&
4509                                    hsw_crtc_supports_ips(crtc) &&
4510                                    pipe_config->pipe_bpp <= 24;
4511 }
4512
4513 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4514                                      struct intel_crtc_config *pipe_config)
4515 {
4516         struct drm_device *dev = crtc->base.dev;
4517         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4518
4519         /* FIXME should check pixel clock limits on all platforms */
4520         if (INTEL_INFO(dev)->gen < 4) {
4521                 struct drm_i915_private *dev_priv = dev->dev_private;
4522                 int clock_limit =
4523                         dev_priv->display.get_display_clock_speed(dev);
4524
4525                 /*
4526                  * Enable pixel doubling when the dot clock
4527                  * is > 90% of the (display) core speed.
4528                  *
4529                  * GDG double wide on either pipe,
4530                  * otherwise pipe A only.
4531                  */
4532                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4533                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4534                         clock_limit *= 2;
4535                         pipe_config->double_wide = true;
4536                 }
4537
4538                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4539                         return -EINVAL;
4540         }
4541
4542         /*
4543          * Pipe horizontal size must be even in:
4544          * - DVO ganged mode
4545          * - LVDS dual channel mode
4546          * - Double wide pipe
4547          */
4548         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4549              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4550                 pipe_config->pipe_src_w &= ~1;
4551
4552         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4553          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4554          */
4555         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4556                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4557                 return -EINVAL;
4558
4559         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4560                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4561         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4562                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4563                  * for lvds. */
4564                 pipe_config->pipe_bpp = 8*3;
4565         }
4566
4567         if (HAS_IPS(dev))
4568                 hsw_compute_ips_config(crtc, pipe_config);
4569
4570         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4571          * clock survives for now. */
4572         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4573                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4574
4575         if (pipe_config->has_pch_encoder)
4576                 return ironlake_fdi_compute_config(crtc, pipe_config);
4577
4578         return 0;
4579 }
4580
4581 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4582 {
4583         return 400000; /* FIXME */
4584 }
4585
4586 static int i945_get_display_clock_speed(struct drm_device *dev)
4587 {
4588         return 400000;
4589 }
4590
4591 static int i915_get_display_clock_speed(struct drm_device *dev)
4592 {
4593         return 333000;
4594 }
4595
4596 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4597 {
4598         return 200000;
4599 }
4600
4601 static int pnv_get_display_clock_speed(struct drm_device *dev)
4602 {
4603         u16 gcfgc = 0;
4604
4605         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4606
4607         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4608         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4609                 return 267000;
4610         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4611                 return 333000;
4612         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4613                 return 444000;
4614         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4615                 return 200000;
4616         default:
4617                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4618         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4619                 return 133000;
4620         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4621                 return 167000;
4622         }
4623 }
4624
4625 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4626 {
4627         u16 gcfgc = 0;
4628
4629         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4630
4631         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4632                 return 133000;
4633         else {
4634                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4635                 case GC_DISPLAY_CLOCK_333_MHZ:
4636                         return 333000;
4637                 default:
4638                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4639                         return 190000;
4640                 }
4641         }
4642 }
4643
4644 static int i865_get_display_clock_speed(struct drm_device *dev)
4645 {
4646         return 266000;
4647 }
4648
4649 static int i855_get_display_clock_speed(struct drm_device *dev)
4650 {
4651         u16 hpllcc = 0;
4652         /* Assume that the hardware is in the high speed state.  This
4653          * should be the default.
4654          */
4655         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4656         case GC_CLOCK_133_200:
4657         case GC_CLOCK_100_200:
4658                 return 200000;
4659         case GC_CLOCK_166_250:
4660                 return 250000;
4661         case GC_CLOCK_100_133:
4662                 return 133000;
4663         }
4664
4665         /* Shouldn't happen */
4666         return 0;
4667 }
4668
4669 static int i830_get_display_clock_speed(struct drm_device *dev)
4670 {
4671         return 133000;
4672 }
4673
4674 static void
4675 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4676 {
4677         while (*num > DATA_LINK_M_N_MASK ||
4678                *den > DATA_LINK_M_N_MASK) {
4679                 *num >>= 1;
4680                 *den >>= 1;
4681         }
4682 }
4683
4684 static void compute_m_n(unsigned int m, unsigned int n,
4685                         uint32_t *ret_m, uint32_t *ret_n)
4686 {
4687         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4688         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4689         intel_reduce_m_n_ratio(ret_m, ret_n);
4690 }
4691
4692 void
4693 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4694                        int pixel_clock, int link_clock,
4695                        struct intel_link_m_n *m_n)
4696 {
4697         m_n->tu = 64;
4698
4699         compute_m_n(bits_per_pixel * pixel_clock,
4700                     link_clock * nlanes * 8,
4701                     &m_n->gmch_m, &m_n->gmch_n);
4702
4703         compute_m_n(pixel_clock, link_clock,
4704                     &m_n->link_m, &m_n->link_n);
4705 }
4706
4707 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4708 {
4709         if (i915_panel_use_ssc >= 0)
4710                 return i915_panel_use_ssc != 0;
4711         return dev_priv->vbt.lvds_use_ssc
4712                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4713 }
4714
4715 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4716 {
4717         struct drm_device *dev = crtc->dev;
4718         struct drm_i915_private *dev_priv = dev->dev_private;
4719         int refclk;
4720
4721         if (IS_VALLEYVIEW(dev)) {
4722                 refclk = 100000;
4723         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4724             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4725                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4726                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4727                               refclk / 1000);
4728         } else if (!IS_GEN2(dev)) {
4729                 refclk = 96000;
4730         } else {
4731                 refclk = 48000;
4732         }
4733
4734         return refclk;
4735 }
4736
4737 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4738 {
4739         return (1 << dpll->n) << 16 | dpll->m2;
4740 }
4741
4742 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4743 {
4744         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4745 }
4746
4747 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4748                                      intel_clock_t *reduced_clock)
4749 {
4750         struct drm_device *dev = crtc->base.dev;
4751         struct drm_i915_private *dev_priv = dev->dev_private;
4752         int pipe = crtc->pipe;
4753         u32 fp, fp2 = 0;
4754
4755         if (IS_PINEVIEW(dev)) {
4756                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4757                 if (reduced_clock)
4758                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4759         } else {
4760                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4761                 if (reduced_clock)
4762                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4763         }
4764
4765         I915_WRITE(FP0(pipe), fp);
4766         crtc->config.dpll_hw_state.fp0 = fp;
4767
4768         crtc->lowfreq_avail = false;
4769         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4770             reduced_clock && i915_powersave) {
4771                 I915_WRITE(FP1(pipe), fp2);
4772                 crtc->config.dpll_hw_state.fp1 = fp2;
4773                 crtc->lowfreq_avail = true;
4774         } else {
4775                 I915_WRITE(FP1(pipe), fp);
4776                 crtc->config.dpll_hw_state.fp1 = fp;
4777         }
4778 }
4779
4780 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4781                 pipe)
4782 {
4783         u32 reg_val;
4784
4785         /*
4786          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4787          * and set it to a reasonable value instead.
4788          */
4789         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4790         reg_val &= 0xffffff00;
4791         reg_val |= 0x00000030;
4792         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4793
4794         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4795         reg_val &= 0x8cffffff;
4796         reg_val = 0x8c000000;
4797         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4798
4799         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4800         reg_val &= 0xffffff00;
4801         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4802
4803         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4804         reg_val &= 0x00ffffff;
4805         reg_val |= 0xb0000000;
4806         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4807 }
4808
4809 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4810                                          struct intel_link_m_n *m_n)
4811 {
4812         struct drm_device *dev = crtc->base.dev;
4813         struct drm_i915_private *dev_priv = dev->dev_private;
4814         int pipe = crtc->pipe;
4815
4816         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4817         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4818         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4819         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4820 }
4821
4822 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4823                                          struct intel_link_m_n *m_n)
4824 {
4825         struct drm_device *dev = crtc->base.dev;
4826         struct drm_i915_private *dev_priv = dev->dev_private;
4827         int pipe = crtc->pipe;
4828         enum transcoder transcoder = crtc->config.cpu_transcoder;
4829
4830         if (INTEL_INFO(dev)->gen >= 5) {
4831                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4832                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4833                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4834                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4835         } else {
4836                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4837                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4838                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4839                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4840         }
4841 }
4842
4843 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4844 {
4845         if (crtc->config.has_pch_encoder)
4846                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4847         else
4848                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4849 }
4850
4851 static void vlv_update_pll(struct intel_crtc *crtc)
4852 {
4853         struct drm_device *dev = crtc->base.dev;
4854         struct drm_i915_private *dev_priv = dev->dev_private;
4855         int pipe = crtc->pipe;
4856         u32 dpll, mdiv;
4857         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4858         u32 coreclk, reg_val, dpll_md;
4859
4860         mutex_lock(&dev_priv->dpio_lock);
4861
4862         bestn = crtc->config.dpll.n;
4863         bestm1 = crtc->config.dpll.m1;
4864         bestm2 = crtc->config.dpll.m2;
4865         bestp1 = crtc->config.dpll.p1;
4866         bestp2 = crtc->config.dpll.p2;
4867
4868         /* See eDP HDMI DPIO driver vbios notes doc */
4869
4870         /* PLL B needs special handling */
4871         if (pipe)
4872                 vlv_pllb_recal_opamp(dev_priv, pipe);
4873
4874         /* Set up Tx target for periodic Rcomp update */
4875         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4876
4877         /* Disable target IRef on PLL */
4878         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4879         reg_val &= 0x00ffffff;
4880         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4881
4882         /* Disable fast lock */
4883         vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4884
4885         /* Set idtafcrecal before PLL is enabled */
4886         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4887         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4888         mdiv |= ((bestn << DPIO_N_SHIFT));
4889         mdiv |= (1 << DPIO_K_SHIFT);
4890
4891         /*
4892          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4893          * but we don't support that).
4894          * Note: don't use the DAC post divider as it seems unstable.
4895          */
4896         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4897         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4898
4899         mdiv |= DPIO_ENABLE_CALIBRATION;
4900         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4901
4902         /* Set HBR and RBR LPF coefficients */
4903         if (crtc->config.port_clock == 162000 ||
4904             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4905             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4906                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4907                                  0x009f0003);
4908         else
4909                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4910                                  0x00d0000f);
4911
4912         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4913             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4914                 /* Use SSC source */
4915                 if (!pipe)
4916                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4917                                          0x0df40000);
4918                 else
4919                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4920                                          0x0df70000);
4921         } else { /* HDMI or VGA */
4922                 /* Use bend source */
4923                 if (!pipe)
4924                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4925                                          0x0df70000);
4926                 else
4927                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4928                                          0x0df40000);
4929         }
4930
4931         coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4932         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4933         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4934             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4935                 coreclk |= 0x01000000;
4936         vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4937
4938         vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4939
4940         /* Enable DPIO clock input */
4941         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4942                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4943         /* We should never disable this, set it here for state tracking */
4944         if (pipe == PIPE_B)
4945                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4946         dpll |= DPLL_VCO_ENABLE;
4947         crtc->config.dpll_hw_state.dpll = dpll;
4948
4949         dpll_md = (crtc->config.pixel_multiplier - 1)
4950                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4951         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4952
4953         if (crtc->config.has_dp_encoder)
4954                 intel_dp_set_m_n(crtc);
4955
4956         mutex_unlock(&dev_priv->dpio_lock);
4957 }
4958
4959 static void i9xx_update_pll(struct intel_crtc *crtc,
4960                             intel_clock_t *reduced_clock,
4961                             int num_connectors)
4962 {
4963         struct drm_device *dev = crtc->base.dev;
4964         struct drm_i915_private *dev_priv = dev->dev_private;
4965         u32 dpll;
4966         bool is_sdvo;
4967         struct dpll *clock = &crtc->config.dpll;
4968
4969         i9xx_update_pll_dividers(crtc, reduced_clock);
4970
4971         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4972                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4973
4974         dpll = DPLL_VGA_MODE_DIS;
4975
4976         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4977                 dpll |= DPLLB_MODE_LVDS;
4978         else
4979                 dpll |= DPLLB_MODE_DAC_SERIAL;
4980
4981         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4982                 dpll |= (crtc->config.pixel_multiplier - 1)
4983                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4984         }
4985
4986         if (is_sdvo)
4987                 dpll |= DPLL_SDVO_HIGH_SPEED;
4988
4989         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4990                 dpll |= DPLL_SDVO_HIGH_SPEED;
4991
4992         /* compute bitmask from p1 value */
4993         if (IS_PINEVIEW(dev))
4994                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4995         else {
4996                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4997                 if (IS_G4X(dev) && reduced_clock)
4998                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4999         }
5000         switch (clock->p2) {
5001         case 5:
5002                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5003                 break;
5004         case 7:
5005                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5006                 break;
5007         case 10:
5008                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5009                 break;
5010         case 14:
5011                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5012                 break;
5013         }
5014         if (INTEL_INFO(dev)->gen >= 4)
5015                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5016
5017         if (crtc->config.sdvo_tv_clock)
5018                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5019         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5020                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5021                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5022         else
5023                 dpll |= PLL_REF_INPUT_DREFCLK;
5024
5025         dpll |= DPLL_VCO_ENABLE;
5026         crtc->config.dpll_hw_state.dpll = dpll;
5027
5028         if (INTEL_INFO(dev)->gen >= 4) {
5029                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5030                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5031                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5032         }
5033
5034         if (crtc->config.has_dp_encoder)
5035                 intel_dp_set_m_n(crtc);
5036 }
5037
5038 static void i8xx_update_pll(struct intel_crtc *crtc,
5039                             intel_clock_t *reduced_clock,
5040                             int num_connectors)
5041 {
5042         struct drm_device *dev = crtc->base.dev;
5043         struct drm_i915_private *dev_priv = dev->dev_private;
5044         u32 dpll;
5045         struct dpll *clock = &crtc->config.dpll;
5046
5047         i9xx_update_pll_dividers(crtc, reduced_clock);
5048
5049         dpll = DPLL_VGA_MODE_DIS;
5050
5051         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5052                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5053         } else {
5054                 if (clock->p1 == 2)
5055                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5056                 else
5057                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5058                 if (clock->p2 == 4)
5059                         dpll |= PLL_P2_DIVIDE_BY_4;
5060         }
5061
5062         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5063                 dpll |= DPLL_DVO_2X_MODE;
5064
5065         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5066                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5067                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5068         else
5069                 dpll |= PLL_REF_INPUT_DREFCLK;
5070
5071         dpll |= DPLL_VCO_ENABLE;
5072         crtc->config.dpll_hw_state.dpll = dpll;
5073 }
5074
5075 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5076 {
5077         struct drm_device *dev = intel_crtc->base.dev;
5078         struct drm_i915_private *dev_priv = dev->dev_private;
5079         enum pipe pipe = intel_crtc->pipe;
5080         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5081         struct drm_display_mode *adjusted_mode =
5082                 &intel_crtc->config.adjusted_mode;
5083         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5084
5085         /* We need to be careful not to changed the adjusted mode, for otherwise
5086          * the hw state checker will get angry at the mismatch. */
5087         crtc_vtotal = adjusted_mode->crtc_vtotal;
5088         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5089
5090         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5091                 /* the chip adds 2 halflines automatically */
5092                 crtc_vtotal -= 1;
5093                 crtc_vblank_end -= 1;
5094                 vsyncshift = adjusted_mode->crtc_hsync_start
5095                              - adjusted_mode->crtc_htotal / 2;
5096         } else {
5097                 vsyncshift = 0;
5098         }
5099
5100         if (INTEL_INFO(dev)->gen > 3)
5101                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5102
5103         I915_WRITE(HTOTAL(cpu_transcoder),
5104                    (adjusted_mode->crtc_hdisplay - 1) |
5105                    ((adjusted_mode->crtc_htotal - 1) << 16));
5106         I915_WRITE(HBLANK(cpu_transcoder),
5107                    (adjusted_mode->crtc_hblank_start - 1) |
5108                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5109         I915_WRITE(HSYNC(cpu_transcoder),
5110                    (adjusted_mode->crtc_hsync_start - 1) |
5111                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5112
5113         I915_WRITE(VTOTAL(cpu_transcoder),
5114                    (adjusted_mode->crtc_vdisplay - 1) |
5115                    ((crtc_vtotal - 1) << 16));
5116         I915_WRITE(VBLANK(cpu_transcoder),
5117                    (adjusted_mode->crtc_vblank_start - 1) |
5118                    ((crtc_vblank_end - 1) << 16));
5119         I915_WRITE(VSYNC(cpu_transcoder),
5120                    (adjusted_mode->crtc_vsync_start - 1) |
5121                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5122
5123         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5124          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5125          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5126          * bits. */
5127         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5128             (pipe == PIPE_B || pipe == PIPE_C))
5129                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5130
5131         /* pipesrc controls the size that is scaled from, which should
5132          * always be the user's requested size.
5133          */
5134         I915_WRITE(PIPESRC(pipe),
5135                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5136                    (intel_crtc->config.pipe_src_h - 1));
5137 }
5138
5139 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5140                                    struct intel_crtc_config *pipe_config)
5141 {
5142         struct drm_device *dev = crtc->base.dev;
5143         struct drm_i915_private *dev_priv = dev->dev_private;
5144         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5145         uint32_t tmp;
5146
5147         tmp = I915_READ(HTOTAL(cpu_transcoder));
5148         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5149         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5150         tmp = I915_READ(HBLANK(cpu_transcoder));
5151         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5152         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5153         tmp = I915_READ(HSYNC(cpu_transcoder));
5154         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5155         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5156
5157         tmp = I915_READ(VTOTAL(cpu_transcoder));
5158         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5159         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5160         tmp = I915_READ(VBLANK(cpu_transcoder));
5161         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5162         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5163         tmp = I915_READ(VSYNC(cpu_transcoder));
5164         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5165         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5166
5167         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5168                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5169                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5170                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5171         }
5172
5173         tmp = I915_READ(PIPESRC(crtc->pipe));
5174         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5175         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5176
5177         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5178         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5179 }
5180
5181 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5182                                              struct intel_crtc_config *pipe_config)
5183 {
5184         struct drm_crtc *crtc = &intel_crtc->base;
5185
5186         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5187         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5188         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5189         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5190
5191         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5192         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5193         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5194         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5195
5196         crtc->mode.flags = pipe_config->adjusted_mode.flags;
5197
5198         crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5199         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5200 }
5201
5202 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5203 {
5204         struct drm_device *dev = intel_crtc->base.dev;
5205         struct drm_i915_private *dev_priv = dev->dev_private;
5206         uint32_t pipeconf;
5207
5208         pipeconf = 0;
5209
5210         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5211             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5212                 pipeconf |= PIPECONF_ENABLE;
5213
5214         if (intel_crtc->config.double_wide)
5215                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5216
5217         /* only g4x and later have fancy bpc/dither controls */
5218         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5219                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5220                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5221                         pipeconf |= PIPECONF_DITHER_EN |
5222                                     PIPECONF_DITHER_TYPE_SP;
5223
5224                 switch (intel_crtc->config.pipe_bpp) {
5225                 case 18:
5226                         pipeconf |= PIPECONF_6BPC;
5227                         break;
5228                 case 24:
5229                         pipeconf |= PIPECONF_8BPC;
5230                         break;
5231                 case 30:
5232                         pipeconf |= PIPECONF_10BPC;
5233                         break;
5234                 default:
5235                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5236                         BUG();
5237                 }
5238         }
5239
5240         if (HAS_PIPE_CXSR(dev)) {
5241                 if (intel_crtc->lowfreq_avail) {
5242                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5243                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5244                 } else {
5245                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5246                 }
5247         }
5248
5249         if (!IS_GEN2(dev) &&
5250             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5251                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5252         else
5253                 pipeconf |= PIPECONF_PROGRESSIVE;
5254
5255         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5256                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5257
5258         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5259         POSTING_READ(PIPECONF(intel_crtc->pipe));
5260 }
5261
5262 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5263                               int x, int y,
5264                               struct drm_framebuffer *fb)
5265 {
5266         struct drm_device *dev = crtc->dev;
5267         struct drm_i915_private *dev_priv = dev->dev_private;
5268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5269         int pipe = intel_crtc->pipe;
5270         int plane = intel_crtc->plane;
5271         int refclk, num_connectors = 0;
5272         intel_clock_t clock, reduced_clock;
5273         u32 dspcntr;
5274         bool ok, has_reduced_clock = false;
5275         bool is_lvds = false, is_dsi = false;
5276         struct intel_encoder *encoder;
5277         const intel_limit_t *limit;
5278         int ret;
5279
5280         for_each_encoder_on_crtc(dev, crtc, encoder) {
5281                 switch (encoder->type) {
5282                 case INTEL_OUTPUT_LVDS:
5283                         is_lvds = true;
5284                         break;
5285                 case INTEL_OUTPUT_DSI:
5286                         is_dsi = true;
5287                         break;
5288                 }
5289
5290                 num_connectors++;
5291         }
5292
5293         if (is_dsi)
5294                 goto skip_dpll;
5295
5296         if (!intel_crtc->config.clock_set) {
5297                 refclk = i9xx_get_refclk(crtc, num_connectors);
5298
5299                 /*
5300                  * Returns a set of divisors for the desired target clock with
5301                  * the given refclk, or FALSE.  The returned values represent
5302                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5303                  * 2) / p1 / p2.
5304                  */
5305                 limit = intel_limit(crtc, refclk);
5306                 ok = dev_priv->display.find_dpll(limit, crtc,
5307                                                  intel_crtc->config.port_clock,
5308                                                  refclk, NULL, &clock);
5309                 if (!ok) {
5310                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5311                         return -EINVAL;
5312                 }
5313
5314                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5315                         /*
5316                          * Ensure we match the reduced clock's P to the target
5317                          * clock.  If the clocks don't match, we can't switch
5318                          * the display clock by using the FP0/FP1. In such case
5319                          * we will disable the LVDS downclock feature.
5320                          */
5321                         has_reduced_clock =
5322                                 dev_priv->display.find_dpll(limit, crtc,
5323                                                             dev_priv->lvds_downclock,
5324                                                             refclk, &clock,
5325                                                             &reduced_clock);
5326                 }
5327                 /* Compat-code for transition, will disappear. */
5328                 intel_crtc->config.dpll.n = clock.n;
5329                 intel_crtc->config.dpll.m1 = clock.m1;
5330                 intel_crtc->config.dpll.m2 = clock.m2;
5331                 intel_crtc->config.dpll.p1 = clock.p1;
5332                 intel_crtc->config.dpll.p2 = clock.p2;
5333         }
5334
5335         if (IS_GEN2(dev)) {
5336                 i8xx_update_pll(intel_crtc,
5337                                 has_reduced_clock ? &reduced_clock : NULL,
5338                                 num_connectors);
5339         } else if (IS_VALLEYVIEW(dev)) {
5340                 vlv_update_pll(intel_crtc);
5341         } else {
5342                 i9xx_update_pll(intel_crtc,
5343                                 has_reduced_clock ? &reduced_clock : NULL,
5344                                 num_connectors);
5345         }
5346
5347 skip_dpll:
5348         /* Set up the display plane register */
5349         dspcntr = DISPPLANE_GAMMA_ENABLE;
5350
5351         if (!IS_VALLEYVIEW(dev)) {
5352                 if (pipe == 0)
5353                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5354                 else
5355                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5356         }
5357
5358         intel_set_pipe_timings(intel_crtc);
5359
5360         /* pipesrc and dspsize control the size that is scaled from,
5361          * which should always be the user's requested size.
5362          */
5363         I915_WRITE(DSPSIZE(plane),
5364                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5365                    (intel_crtc->config.pipe_src_w - 1));
5366         I915_WRITE(DSPPOS(plane), 0);
5367
5368         i9xx_set_pipeconf(intel_crtc);
5369
5370         I915_WRITE(DSPCNTR(plane), dspcntr);
5371         POSTING_READ(DSPCNTR(plane));
5372
5373         ret = intel_pipe_set_base(crtc, x, y, fb);
5374
5375         return ret;
5376 }
5377
5378 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5379                                  struct intel_crtc_config *pipe_config)
5380 {
5381         struct drm_device *dev = crtc->base.dev;
5382         struct drm_i915_private *dev_priv = dev->dev_private;
5383         uint32_t tmp;
5384
5385         tmp = I915_READ(PFIT_CONTROL);
5386         if (!(tmp & PFIT_ENABLE))
5387                 return;
5388
5389         /* Check whether the pfit is attached to our pipe. */
5390         if (INTEL_INFO(dev)->gen < 4) {
5391                 if (crtc->pipe != PIPE_B)
5392                         return;
5393         } else {
5394                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5395                         return;
5396         }
5397
5398         pipe_config->gmch_pfit.control = tmp;
5399         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5400         if (INTEL_INFO(dev)->gen < 5)
5401                 pipe_config->gmch_pfit.lvds_border_bits =
5402                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5403 }
5404
5405 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5406                                struct intel_crtc_config *pipe_config)
5407 {
5408         struct drm_device *dev = crtc->base.dev;
5409         struct drm_i915_private *dev_priv = dev->dev_private;
5410         int pipe = pipe_config->cpu_transcoder;
5411         intel_clock_t clock;
5412         u32 mdiv;
5413         int refclk = 100000;
5414
5415         mutex_lock(&dev_priv->dpio_lock);
5416         mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
5417         mutex_unlock(&dev_priv->dpio_lock);
5418
5419         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5420         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5421         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5422         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5423         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5424
5425         vlv_clock(refclk, &clock);
5426
5427         /* clock.dot is the fast clock */
5428         pipe_config->port_clock = clock.dot / 5;
5429 }
5430
5431 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5432                                  struct intel_crtc_config *pipe_config)
5433 {
5434         struct drm_device *dev = crtc->base.dev;
5435         struct drm_i915_private *dev_priv = dev->dev_private;
5436         uint32_t tmp;
5437
5438         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5439         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5440
5441         tmp = I915_READ(PIPECONF(crtc->pipe));
5442         if (!(tmp & PIPECONF_ENABLE))
5443                 return false;
5444
5445         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5446                 switch (tmp & PIPECONF_BPC_MASK) {
5447                 case PIPECONF_6BPC:
5448                         pipe_config->pipe_bpp = 18;
5449                         break;
5450                 case PIPECONF_8BPC:
5451                         pipe_config->pipe_bpp = 24;
5452                         break;
5453                 case PIPECONF_10BPC:
5454                         pipe_config->pipe_bpp = 30;
5455                         break;
5456                 default:
5457                         break;
5458                 }
5459         }
5460
5461         if (INTEL_INFO(dev)->gen < 4)
5462                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5463
5464         intel_get_pipe_timings(crtc, pipe_config);
5465
5466         i9xx_get_pfit_config(crtc, pipe_config);
5467
5468         if (INTEL_INFO(dev)->gen >= 4) {
5469                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5470                 pipe_config->pixel_multiplier =
5471                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5472                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5473                 pipe_config->dpll_hw_state.dpll_md = tmp;
5474         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5475                 tmp = I915_READ(DPLL(crtc->pipe));
5476                 pipe_config->pixel_multiplier =
5477                         ((tmp & SDVO_MULTIPLIER_MASK)
5478                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5479         } else {
5480                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5481                  * port and will be fixed up in the encoder->get_config
5482                  * function. */
5483                 pipe_config->pixel_multiplier = 1;
5484         }
5485         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5486         if (!IS_VALLEYVIEW(dev)) {
5487                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5488                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5489         } else {
5490                 /* Mask out read-only status bits. */
5491                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5492                                                      DPLL_PORTC_READY_MASK |
5493                                                      DPLL_PORTB_READY_MASK);
5494         }
5495
5496         if (IS_VALLEYVIEW(dev))
5497                 vlv_crtc_clock_get(crtc, pipe_config);
5498         else
5499                 i9xx_crtc_clock_get(crtc, pipe_config);
5500
5501         return true;
5502 }
5503
5504 static void ironlake_init_pch_refclk(struct drm_device *dev)
5505 {
5506         struct drm_i915_private *dev_priv = dev->dev_private;
5507         struct drm_mode_config *mode_config = &dev->mode_config;
5508         struct intel_encoder *encoder;
5509         u32 val, final;
5510         bool has_lvds = false;
5511         bool has_cpu_edp = false;
5512         bool has_panel = false;
5513         bool has_ck505 = false;
5514         bool can_ssc = false;
5515
5516         /* We need to take the global config into account */
5517         list_for_each_entry(encoder, &mode_config->encoder_list,
5518                             base.head) {
5519                 switch (encoder->type) {
5520                 case INTEL_OUTPUT_LVDS:
5521                         has_panel = true;
5522                         has_lvds = true;
5523                         break;
5524                 case INTEL_OUTPUT_EDP:
5525                         has_panel = true;
5526                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5527                                 has_cpu_edp = true;
5528                         break;
5529                 }
5530         }
5531
5532         if (HAS_PCH_IBX(dev)) {
5533                 has_ck505 = dev_priv->vbt.display_clock_mode;
5534                 can_ssc = has_ck505;
5535         } else {
5536                 has_ck505 = false;
5537                 can_ssc = true;
5538         }
5539
5540         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5541                       has_panel, has_lvds, has_ck505);
5542
5543         /* Ironlake: try to setup display ref clock before DPLL
5544          * enabling. This is only under driver's control after
5545          * PCH B stepping, previous chipset stepping should be
5546          * ignoring this setting.
5547          */
5548         val = I915_READ(PCH_DREF_CONTROL);
5549
5550         /* As we must carefully and slowly disable/enable each source in turn,
5551          * compute the final state we want first and check if we need to
5552          * make any changes at all.
5553          */
5554         final = val;
5555         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5556         if (has_ck505)
5557                 final |= DREF_NONSPREAD_CK505_ENABLE;
5558         else
5559                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5560
5561         final &= ~DREF_SSC_SOURCE_MASK;
5562         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5563         final &= ~DREF_SSC1_ENABLE;
5564
5565         if (has_panel) {
5566                 final |= DREF_SSC_SOURCE_ENABLE;
5567
5568                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5569                         final |= DREF_SSC1_ENABLE;
5570
5571                 if (has_cpu_edp) {
5572                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5573                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5574                         else
5575                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5576                 } else
5577                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5578         } else {
5579                 final |= DREF_SSC_SOURCE_DISABLE;
5580                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5581         }
5582
5583         if (final == val)
5584                 return;
5585
5586         /* Always enable nonspread source */
5587         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5588
5589         if (has_ck505)
5590                 val |= DREF_NONSPREAD_CK505_ENABLE;
5591         else
5592                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5593
5594         if (has_panel) {
5595                 val &= ~DREF_SSC_SOURCE_MASK;
5596                 val |= DREF_SSC_SOURCE_ENABLE;
5597
5598                 /* SSC must be turned on before enabling the CPU output  */
5599                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5600                         DRM_DEBUG_KMS("Using SSC on panel\n");
5601                         val |= DREF_SSC1_ENABLE;
5602                 } else
5603                         val &= ~DREF_SSC1_ENABLE;
5604
5605                 /* Get SSC going before enabling the outputs */
5606                 I915_WRITE(PCH_DREF_CONTROL, val);
5607                 POSTING_READ(PCH_DREF_CONTROL);
5608                 udelay(200);
5609
5610                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5611
5612                 /* Enable CPU source on CPU attached eDP */
5613                 if (has_cpu_edp) {
5614                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5615                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5616                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5617                         }
5618                         else
5619                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5620                 } else
5621                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5622
5623                 I915_WRITE(PCH_DREF_CONTROL, val);
5624                 POSTING_READ(PCH_DREF_CONTROL);
5625                 udelay(200);
5626         } else {
5627                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5628
5629                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5630
5631                 /* Turn off CPU output */
5632                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5633
5634                 I915_WRITE(PCH_DREF_CONTROL, val);
5635                 POSTING_READ(PCH_DREF_CONTROL);
5636                 udelay(200);
5637
5638                 /* Turn off the SSC source */
5639                 val &= ~DREF_SSC_SOURCE_MASK;
5640                 val |= DREF_SSC_SOURCE_DISABLE;
5641
5642                 /* Turn off SSC1 */
5643                 val &= ~DREF_SSC1_ENABLE;
5644
5645                 I915_WRITE(PCH_DREF_CONTROL, val);
5646                 POSTING_READ(PCH_DREF_CONTROL);
5647                 udelay(200);
5648         }
5649
5650         BUG_ON(val != final);
5651 }
5652
5653 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5654 {
5655         uint32_t tmp;
5656
5657         tmp = I915_READ(SOUTH_CHICKEN2);
5658         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5659         I915_WRITE(SOUTH_CHICKEN2, tmp);
5660
5661         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5662                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5663                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5664
5665         tmp = I915_READ(SOUTH_CHICKEN2);
5666         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5667         I915_WRITE(SOUTH_CHICKEN2, tmp);
5668
5669         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5670                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5671                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5672 }
5673
5674 /* WaMPhyProgramming:hsw */
5675 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5676 {
5677         uint32_t tmp;
5678
5679         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5680         tmp &= ~(0xFF << 24);
5681         tmp |= (0x12 << 24);
5682         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5683
5684         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5685         tmp |= (1 << 11);
5686         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5687
5688         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5689         tmp |= (1 << 11);
5690         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5691
5692         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5693         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5694         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5695
5696         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5697         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5698         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5699
5700         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5701         tmp &= ~(7 << 13);
5702         tmp |= (5 << 13);
5703         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5704
5705         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5706         tmp &= ~(7 << 13);
5707         tmp |= (5 << 13);
5708         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5709
5710         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5711         tmp &= ~0xFF;
5712         tmp |= 0x1C;
5713         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5714
5715         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5716         tmp &= ~0xFF;
5717         tmp |= 0x1C;
5718         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5719
5720         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5721         tmp &= ~(0xFF << 16);
5722         tmp |= (0x1C << 16);
5723         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5724
5725         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5726         tmp &= ~(0xFF << 16);
5727         tmp |= (0x1C << 16);
5728         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5729
5730         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5731         tmp |= (1 << 27);
5732         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5733
5734         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5735         tmp |= (1 << 27);
5736         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5737
5738         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5739         tmp &= ~(0xF << 28);
5740         tmp |= (4 << 28);
5741         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5742
5743         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5744         tmp &= ~(0xF << 28);
5745         tmp |= (4 << 28);
5746         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5747 }
5748
5749 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5750  * Programming" based on the parameters passed:
5751  * - Sequence to enable CLKOUT_DP
5752  * - Sequence to enable CLKOUT_DP without spread
5753  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5754  */
5755 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5756                                  bool with_fdi)
5757 {
5758         struct drm_i915_private *dev_priv = dev->dev_private;
5759         uint32_t reg, tmp;
5760
5761         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5762                 with_spread = true;
5763         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5764                  with_fdi, "LP PCH doesn't have FDI\n"))
5765                 with_fdi = false;
5766
5767         mutex_lock(&dev_priv->dpio_lock);
5768
5769         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5770         tmp &= ~SBI_SSCCTL_DISABLE;
5771         tmp |= SBI_SSCCTL_PATHALT;
5772         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5773
5774         udelay(24);
5775
5776         if (with_spread) {
5777                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5778                 tmp &= ~SBI_SSCCTL_PATHALT;
5779                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5780
5781                 if (with_fdi) {
5782                         lpt_reset_fdi_mphy(dev_priv);
5783                         lpt_program_fdi_mphy(dev_priv);
5784                 }
5785         }
5786
5787         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5788                SBI_GEN0 : SBI_DBUFF0;
5789         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5790         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5791         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5792
5793         mutex_unlock(&dev_priv->dpio_lock);
5794 }
5795
5796 /* Sequence to disable CLKOUT_DP */
5797 static void lpt_disable_clkout_dp(struct drm_device *dev)
5798 {
5799         struct drm_i915_private *dev_priv = dev->dev_private;
5800         uint32_t reg, tmp;
5801
5802         mutex_lock(&dev_priv->dpio_lock);
5803
5804         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5805                SBI_GEN0 : SBI_DBUFF0;
5806         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5807         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5808         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5809
5810         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5811         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5812                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5813                         tmp |= SBI_SSCCTL_PATHALT;
5814                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5815                         udelay(32);
5816                 }
5817                 tmp |= SBI_SSCCTL_DISABLE;
5818                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5819         }
5820
5821         mutex_unlock(&dev_priv->dpio_lock);
5822 }
5823
5824 static void lpt_init_pch_refclk(struct drm_device *dev)
5825 {
5826         struct drm_mode_config *mode_config = &dev->mode_config;
5827         struct intel_encoder *encoder;
5828         bool has_vga = false;
5829
5830         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5831                 switch (encoder->type) {
5832                 case INTEL_OUTPUT_ANALOG:
5833                         has_vga = true;
5834                         break;
5835                 }
5836         }
5837
5838         if (has_vga)
5839                 lpt_enable_clkout_dp(dev, true, true);
5840         else
5841                 lpt_disable_clkout_dp(dev);
5842 }
5843
5844 /*
5845  * Initialize reference clocks when the driver loads
5846  */
5847 void intel_init_pch_refclk(struct drm_device *dev)
5848 {
5849         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5850                 ironlake_init_pch_refclk(dev);
5851         else if (HAS_PCH_LPT(dev))
5852                 lpt_init_pch_refclk(dev);
5853 }
5854
5855 static int ironlake_get_refclk(struct drm_crtc *crtc)
5856 {
5857         struct drm_device *dev = crtc->dev;
5858         struct drm_i915_private *dev_priv = dev->dev_private;
5859         struct intel_encoder *encoder;
5860         int num_connectors = 0;
5861         bool is_lvds = false;
5862
5863         for_each_encoder_on_crtc(dev, crtc, encoder) {
5864                 switch (encoder->type) {
5865                 case INTEL_OUTPUT_LVDS:
5866                         is_lvds = true;
5867                         break;
5868                 }
5869                 num_connectors++;
5870         }
5871
5872         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5873                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5874                               dev_priv->vbt.lvds_ssc_freq);
5875                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5876         }
5877
5878         return 120000;
5879 }
5880
5881 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5882 {
5883         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5885         int pipe = intel_crtc->pipe;
5886         uint32_t val;
5887
5888         val = 0;
5889
5890         switch (intel_crtc->config.pipe_bpp) {
5891         case 18:
5892                 val |= PIPECONF_6BPC;
5893                 break;
5894         case 24:
5895                 val |= PIPECONF_8BPC;
5896                 break;
5897         case 30:
5898                 val |= PIPECONF_10BPC;
5899                 break;
5900         case 36:
5901                 val |= PIPECONF_12BPC;
5902                 break;
5903         default:
5904                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5905                 BUG();
5906         }
5907
5908         if (intel_crtc->config.dither)
5909                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5910
5911         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5912                 val |= PIPECONF_INTERLACED_ILK;
5913         else
5914                 val |= PIPECONF_PROGRESSIVE;
5915
5916         if (intel_crtc->config.limited_color_range)
5917                 val |= PIPECONF_COLOR_RANGE_SELECT;
5918
5919         I915_WRITE(PIPECONF(pipe), val);
5920         POSTING_READ(PIPECONF(pipe));
5921 }
5922
5923 /*
5924  * Set up the pipe CSC unit.
5925  *
5926  * Currently only full range RGB to limited range RGB conversion
5927  * is supported, but eventually this should handle various
5928  * RGB<->YCbCr scenarios as well.
5929  */
5930 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5931 {
5932         struct drm_device *dev = crtc->dev;
5933         struct drm_i915_private *dev_priv = dev->dev_private;
5934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5935         int pipe = intel_crtc->pipe;
5936         uint16_t coeff = 0x7800; /* 1.0 */
5937
5938         /*
5939          * TODO: Check what kind of values actually come out of the pipe
5940          * with these coeff/postoff values and adjust to get the best
5941          * accuracy. Perhaps we even need to take the bpc value into
5942          * consideration.
5943          */
5944
5945         if (intel_crtc->config.limited_color_range)
5946                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5947
5948         /*
5949          * GY/GU and RY/RU should be the other way around according
5950          * to BSpec, but reality doesn't agree. Just set them up in
5951          * a way that results in the correct picture.
5952          */
5953         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5954         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5955
5956         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5957         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5958
5959         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5960         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5961
5962         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5963         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5964         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5965
5966         if (INTEL_INFO(dev)->gen > 6) {
5967                 uint16_t postoff = 0;
5968
5969                 if (intel_crtc->config.limited_color_range)
5970                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5971
5972                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5973                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5974                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5975
5976                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5977         } else {
5978                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5979
5980                 if (intel_crtc->config.limited_color_range)
5981                         mode |= CSC_BLACK_SCREEN_OFFSET;
5982
5983                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5984         }
5985 }
5986
5987 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5988 {
5989         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5991         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5992         uint32_t val;
5993
5994         val = 0;
5995
5996         if (intel_crtc->config.dither)
5997                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5998
5999         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6000                 val |= PIPECONF_INTERLACED_ILK;
6001         else
6002                 val |= PIPECONF_PROGRESSIVE;
6003
6004         I915_WRITE(PIPECONF(cpu_transcoder), val);
6005         POSTING_READ(PIPECONF(cpu_transcoder));
6006
6007         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6008         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6009 }
6010
6011 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6012                                     intel_clock_t *clock,
6013                                     bool *has_reduced_clock,
6014                                     intel_clock_t *reduced_clock)
6015 {
6016         struct drm_device *dev = crtc->dev;
6017         struct drm_i915_private *dev_priv = dev->dev_private;
6018         struct intel_encoder *intel_encoder;
6019         int refclk;
6020         const intel_limit_t *limit;
6021         bool ret, is_lvds = false;
6022
6023         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6024                 switch (intel_encoder->type) {
6025                 case INTEL_OUTPUT_LVDS:
6026                         is_lvds = true;
6027                         break;
6028                 }
6029         }
6030
6031         refclk = ironlake_get_refclk(crtc);
6032
6033         /*
6034          * Returns a set of divisors for the desired target clock with the given
6035          * refclk, or FALSE.  The returned values represent the clock equation:
6036          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6037          */
6038         limit = intel_limit(crtc, refclk);
6039         ret = dev_priv->display.find_dpll(limit, crtc,
6040                                           to_intel_crtc(crtc)->config.port_clock,
6041                                           refclk, NULL, clock);
6042         if (!ret)
6043                 return false;
6044
6045         if (is_lvds && dev_priv->lvds_downclock_avail) {
6046                 /*
6047                  * Ensure we match the reduced clock's P to the target clock.
6048                  * If the clocks don't match, we can't switch the display clock
6049                  * by using the FP0/FP1. In such case we will disable the LVDS
6050                  * downclock feature.
6051                 */
6052                 *has_reduced_clock =
6053                         dev_priv->display.find_dpll(limit, crtc,
6054                                                     dev_priv->lvds_downclock,
6055                                                     refclk, clock,
6056                                                     reduced_clock);
6057         }
6058
6059         return true;
6060 }
6061
6062 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6063 {
6064         /*
6065          * Account for spread spectrum to avoid
6066          * oversubscribing the link. Max center spread
6067          * is 2.5%; use 5% for safety's sake.
6068          */
6069         u32 bps = target_clock * bpp * 21 / 20;
6070         return bps / (link_bw * 8) + 1;
6071 }
6072
6073 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6074 {
6075         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6076 }
6077
6078 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6079                                       u32 *fp,
6080                                       intel_clock_t *reduced_clock, u32 *fp2)
6081 {
6082         struct drm_crtc *crtc = &intel_crtc->base;
6083         struct drm_device *dev = crtc->dev;
6084         struct drm_i915_private *dev_priv = dev->dev_private;
6085         struct intel_encoder *intel_encoder;
6086         uint32_t dpll;
6087         int factor, num_connectors = 0;
6088         bool is_lvds = false, is_sdvo = false;
6089
6090         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6091                 switch (intel_encoder->type) {
6092                 case INTEL_OUTPUT_LVDS:
6093                         is_lvds = true;
6094                         break;
6095                 case INTEL_OUTPUT_SDVO:
6096                 case INTEL_OUTPUT_HDMI:
6097                         is_sdvo = true;
6098                         break;
6099                 }
6100
6101                 num_connectors++;
6102         }
6103
6104         /* Enable autotuning of the PLL clock (if permissible) */
6105         factor = 21;
6106         if (is_lvds) {
6107                 if ((intel_panel_use_ssc(dev_priv) &&
6108                      dev_priv->vbt.lvds_ssc_freq == 100) ||
6109                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6110                         factor = 25;
6111         } else if (intel_crtc->config.sdvo_tv_clock)
6112                 factor = 20;
6113
6114         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6115                 *fp |= FP_CB_TUNE;
6116
6117         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6118                 *fp2 |= FP_CB_TUNE;
6119
6120         dpll = 0;
6121
6122         if (is_lvds)
6123                 dpll |= DPLLB_MODE_LVDS;
6124         else
6125                 dpll |= DPLLB_MODE_DAC_SERIAL;
6126
6127         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6128                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6129
6130         if (is_sdvo)
6131                 dpll |= DPLL_SDVO_HIGH_SPEED;
6132         if (intel_crtc->config.has_dp_encoder)
6133                 dpll |= DPLL_SDVO_HIGH_SPEED;
6134
6135         /* compute bitmask from p1 value */
6136         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6137         /* also FPA1 */
6138         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6139
6140         switch (intel_crtc->config.dpll.p2) {
6141         case 5:
6142                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6143                 break;
6144         case 7:
6145                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6146                 break;
6147         case 10:
6148                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6149                 break;
6150         case 14:
6151                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6152                 break;
6153         }
6154
6155         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6156                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6157         else
6158                 dpll |= PLL_REF_INPUT_DREFCLK;
6159
6160         return dpll | DPLL_VCO_ENABLE;
6161 }
6162
6163 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6164                                   int x, int y,
6165                                   struct drm_framebuffer *fb)
6166 {
6167         struct drm_device *dev = crtc->dev;
6168         struct drm_i915_private *dev_priv = dev->dev_private;
6169         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6170         int pipe = intel_crtc->pipe;
6171         int plane = intel_crtc->plane;
6172         int num_connectors = 0;
6173         intel_clock_t clock, reduced_clock;
6174         u32 dpll = 0, fp = 0, fp2 = 0;
6175         bool ok, has_reduced_clock = false;
6176         bool is_lvds = false;
6177         struct intel_encoder *encoder;
6178         struct intel_shared_dpll *pll;
6179         int ret;
6180
6181         for_each_encoder_on_crtc(dev, crtc, encoder) {
6182                 switch (encoder->type) {
6183                 case INTEL_OUTPUT_LVDS:
6184                         is_lvds = true;
6185                         break;
6186                 }
6187
6188                 num_connectors++;
6189         }
6190
6191         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6192              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6193
6194         ok = ironlake_compute_clocks(crtc, &clock,
6195                                      &has_reduced_clock, &reduced_clock);
6196         if (!ok && !intel_crtc->config.clock_set) {
6197                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6198                 return -EINVAL;
6199         }
6200         /* Compat-code for transition, will disappear. */
6201         if (!intel_crtc->config.clock_set) {
6202                 intel_crtc->config.dpll.n = clock.n;
6203                 intel_crtc->config.dpll.m1 = clock.m1;
6204                 intel_crtc->config.dpll.m2 = clock.m2;
6205                 intel_crtc->config.dpll.p1 = clock.p1;
6206                 intel_crtc->config.dpll.p2 = clock.p2;
6207         }
6208
6209         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6210         if (intel_crtc->config.has_pch_encoder) {
6211                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6212                 if (has_reduced_clock)
6213                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6214
6215                 dpll = ironlake_compute_dpll(intel_crtc,
6216                                              &fp, &reduced_clock,
6217                                              has_reduced_clock ? &fp2 : NULL);
6218
6219                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6220                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6221                 if (has_reduced_clock)
6222                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6223                 else
6224                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6225
6226                 pll = intel_get_shared_dpll(intel_crtc);
6227                 if (pll == NULL) {
6228                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6229                                          pipe_name(pipe));
6230                         return -EINVAL;
6231                 }
6232         } else
6233                 intel_put_shared_dpll(intel_crtc);
6234
6235         if (intel_crtc->config.has_dp_encoder)
6236                 intel_dp_set_m_n(intel_crtc);
6237
6238         if (is_lvds && has_reduced_clock && i915_powersave)
6239                 intel_crtc->lowfreq_avail = true;
6240         else
6241                 intel_crtc->lowfreq_avail = false;
6242
6243         intel_set_pipe_timings(intel_crtc);
6244
6245         if (intel_crtc->config.has_pch_encoder) {
6246                 intel_cpu_transcoder_set_m_n(intel_crtc,
6247                                              &intel_crtc->config.fdi_m_n);
6248         }
6249
6250         ironlake_set_pipeconf(crtc);
6251
6252         /* Set up the display plane register */
6253         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6254         POSTING_READ(DSPCNTR(plane));
6255
6256         ret = intel_pipe_set_base(crtc, x, y, fb);
6257
6258         return ret;
6259 }
6260
6261 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6262                                          struct intel_link_m_n *m_n)
6263 {
6264         struct drm_device *dev = crtc->base.dev;
6265         struct drm_i915_private *dev_priv = dev->dev_private;
6266         enum pipe pipe = crtc->pipe;
6267
6268         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6269         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6270         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6271                 & ~TU_SIZE_MASK;
6272         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6273         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6274                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6275 }
6276
6277 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6278                                          enum transcoder transcoder,
6279                                          struct intel_link_m_n *m_n)
6280 {
6281         struct drm_device *dev = crtc->base.dev;
6282         struct drm_i915_private *dev_priv = dev->dev_private;
6283         enum pipe pipe = crtc->pipe;
6284
6285         if (INTEL_INFO(dev)->gen >= 5) {
6286                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6287                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6288                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6289                         & ~TU_SIZE_MASK;
6290                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6291                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6292                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6293         } else {
6294                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6295                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6296                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6297                         & ~TU_SIZE_MASK;
6298                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6299                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6300                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6301         }
6302 }
6303
6304 void intel_dp_get_m_n(struct intel_crtc *crtc,
6305                       struct intel_crtc_config *pipe_config)
6306 {
6307         if (crtc->config.has_pch_encoder)
6308                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6309         else
6310                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6311                                              &pipe_config->dp_m_n);
6312 }
6313
6314 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6315                                         struct intel_crtc_config *pipe_config)
6316 {
6317         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6318                                      &pipe_config->fdi_m_n);
6319 }
6320
6321 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6322                                      struct intel_crtc_config *pipe_config)
6323 {
6324         struct drm_device *dev = crtc->base.dev;
6325         struct drm_i915_private *dev_priv = dev->dev_private;
6326         uint32_t tmp;
6327
6328         tmp = I915_READ(PF_CTL(crtc->pipe));
6329
6330         if (tmp & PF_ENABLE) {
6331                 pipe_config->pch_pfit.enabled = true;
6332                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6333                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6334
6335                 /* We currently do not free assignements of panel fitters on
6336                  * ivb/hsw (since we don't use the higher upscaling modes which
6337                  * differentiates them) so just WARN about this case for now. */
6338                 if (IS_GEN7(dev)) {
6339                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6340                                 PF_PIPE_SEL_IVB(crtc->pipe));
6341                 }
6342         }
6343 }
6344
6345 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6346                                      struct intel_crtc_config *pipe_config)
6347 {
6348         struct drm_device *dev = crtc->base.dev;
6349         struct drm_i915_private *dev_priv = dev->dev_private;
6350         uint32_t tmp;
6351
6352         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6353         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6354
6355         tmp = I915_READ(PIPECONF(crtc->pipe));
6356         if (!(tmp & PIPECONF_ENABLE))
6357                 return false;
6358
6359         switch (tmp & PIPECONF_BPC_MASK) {
6360         case PIPECONF_6BPC:
6361                 pipe_config->pipe_bpp = 18;
6362                 break;
6363         case PIPECONF_8BPC:
6364                 pipe_config->pipe_bpp = 24;
6365                 break;
6366         case PIPECONF_10BPC:
6367                 pipe_config->pipe_bpp = 30;
6368                 break;
6369         case PIPECONF_12BPC:
6370                 pipe_config->pipe_bpp = 36;
6371                 break;
6372         default:
6373                 break;
6374         }
6375
6376         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6377                 struct intel_shared_dpll *pll;
6378
6379                 pipe_config->has_pch_encoder = true;
6380
6381                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6382                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6383                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6384
6385                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6386
6387                 if (HAS_PCH_IBX(dev_priv->dev)) {
6388                         pipe_config->shared_dpll =
6389                                 (enum intel_dpll_id) crtc->pipe;
6390                 } else {
6391                         tmp = I915_READ(PCH_DPLL_SEL);
6392                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6393                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6394                         else
6395                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6396                 }
6397
6398                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6399
6400                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6401                                            &pipe_config->dpll_hw_state));
6402
6403                 tmp = pipe_config->dpll_hw_state.dpll;
6404                 pipe_config->pixel_multiplier =
6405                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6406                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6407
6408                 ironlake_pch_clock_get(crtc, pipe_config);
6409         } else {
6410                 pipe_config->pixel_multiplier = 1;
6411         }
6412
6413         intel_get_pipe_timings(crtc, pipe_config);
6414
6415         ironlake_get_pfit_config(crtc, pipe_config);
6416
6417         return true;
6418 }
6419
6420 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6421 {
6422         struct drm_device *dev = dev_priv->dev;
6423         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6424         struct intel_crtc *crtc;
6425         unsigned long irqflags;
6426         uint32_t val;
6427
6428         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6429                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6430                      pipe_name(crtc->pipe));
6431
6432         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6433         WARN(plls->spll_refcount, "SPLL enabled\n");
6434         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6435         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6436         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6437         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6438              "CPU PWM1 enabled\n");
6439         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6440              "CPU PWM2 enabled\n");
6441         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6442              "PCH PWM1 enabled\n");
6443         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6444              "Utility pin enabled\n");
6445         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6446
6447         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6448         val = I915_READ(DEIMR);
6449         WARN((val & ~DE_PCH_EVENT_IVB) != val,
6450              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6451         val = I915_READ(SDEIMR);
6452         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6453              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6454         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6455 }
6456
6457 /*
6458  * This function implements pieces of two sequences from BSpec:
6459  * - Sequence for display software to disable LCPLL
6460  * - Sequence for display software to allow package C8+
6461  * The steps implemented here are just the steps that actually touch the LCPLL
6462  * register. Callers should take care of disabling all the display engine
6463  * functions, doing the mode unset, fixing interrupts, etc.
6464  */
6465 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6466                               bool switch_to_fclk, bool allow_power_down)
6467 {
6468         uint32_t val;
6469
6470         assert_can_disable_lcpll(dev_priv);
6471
6472         val = I915_READ(LCPLL_CTL);
6473
6474         if (switch_to_fclk) {
6475                 val |= LCPLL_CD_SOURCE_FCLK;
6476                 I915_WRITE(LCPLL_CTL, val);
6477
6478                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6479                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6480                         DRM_ERROR("Switching to FCLK failed\n");
6481
6482                 val = I915_READ(LCPLL_CTL);
6483         }
6484
6485         val |= LCPLL_PLL_DISABLE;
6486         I915_WRITE(LCPLL_CTL, val);
6487         POSTING_READ(LCPLL_CTL);
6488
6489         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6490                 DRM_ERROR("LCPLL still locked\n");
6491
6492         val = I915_READ(D_COMP);
6493         val |= D_COMP_COMP_DISABLE;
6494         mutex_lock(&dev_priv->rps.hw_lock);
6495         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6496                 DRM_ERROR("Failed to disable D_COMP\n");
6497         mutex_unlock(&dev_priv->rps.hw_lock);
6498         POSTING_READ(D_COMP);
6499         ndelay(100);
6500
6501         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6502                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6503
6504         if (allow_power_down) {
6505                 val = I915_READ(LCPLL_CTL);
6506                 val |= LCPLL_POWER_DOWN_ALLOW;
6507                 I915_WRITE(LCPLL_CTL, val);
6508                 POSTING_READ(LCPLL_CTL);
6509         }
6510 }
6511
6512 /*
6513  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6514  * source.
6515  */
6516 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6517 {
6518         uint32_t val;
6519
6520         val = I915_READ(LCPLL_CTL);
6521
6522         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6523                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6524                 return;
6525
6526         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6527          * we'll hang the machine! */
6528         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6529
6530         if (val & LCPLL_POWER_DOWN_ALLOW) {
6531                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6532                 I915_WRITE(LCPLL_CTL, val);
6533                 POSTING_READ(LCPLL_CTL);
6534         }
6535
6536         val = I915_READ(D_COMP);
6537         val |= D_COMP_COMP_FORCE;
6538         val &= ~D_COMP_COMP_DISABLE;
6539         mutex_lock(&dev_priv->rps.hw_lock);
6540         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6541                 DRM_ERROR("Failed to enable D_COMP\n");
6542         mutex_unlock(&dev_priv->rps.hw_lock);
6543         POSTING_READ(D_COMP);
6544
6545         val = I915_READ(LCPLL_CTL);
6546         val &= ~LCPLL_PLL_DISABLE;
6547         I915_WRITE(LCPLL_CTL, val);
6548
6549         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6550                 DRM_ERROR("LCPLL not locked yet\n");
6551
6552         if (val & LCPLL_CD_SOURCE_FCLK) {
6553                 val = I915_READ(LCPLL_CTL);
6554                 val &= ~LCPLL_CD_SOURCE_FCLK;
6555                 I915_WRITE(LCPLL_CTL, val);
6556
6557                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6558                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6559                         DRM_ERROR("Switching back to LCPLL failed\n");
6560         }
6561
6562         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6563 }
6564
6565 void hsw_enable_pc8_work(struct work_struct *__work)
6566 {
6567         struct drm_i915_private *dev_priv =
6568                 container_of(to_delayed_work(__work), struct drm_i915_private,
6569                              pc8.enable_work);
6570         struct drm_device *dev = dev_priv->dev;
6571         uint32_t val;
6572
6573         if (dev_priv->pc8.enabled)
6574                 return;
6575
6576         DRM_DEBUG_KMS("Enabling package C8+\n");
6577
6578         dev_priv->pc8.enabled = true;
6579
6580         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6581                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6582                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6583                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6584         }
6585
6586         lpt_disable_clkout_dp(dev);
6587         hsw_pc8_disable_interrupts(dev);
6588         hsw_disable_lcpll(dev_priv, true, true);
6589 }
6590
6591 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6592 {
6593         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6594         WARN(dev_priv->pc8.disable_count < 1,
6595              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6596
6597         dev_priv->pc8.disable_count--;
6598         if (dev_priv->pc8.disable_count != 0)
6599                 return;
6600
6601         schedule_delayed_work(&dev_priv->pc8.enable_work,
6602                               msecs_to_jiffies(i915_pc8_timeout));
6603 }
6604
6605 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6606 {
6607         struct drm_device *dev = dev_priv->dev;
6608         uint32_t val;
6609
6610         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6611         WARN(dev_priv->pc8.disable_count < 0,
6612              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6613
6614         dev_priv->pc8.disable_count++;
6615         if (dev_priv->pc8.disable_count != 1)
6616                 return;
6617
6618         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6619         if (!dev_priv->pc8.enabled)
6620                 return;
6621
6622         DRM_DEBUG_KMS("Disabling package C8+\n");
6623
6624         hsw_restore_lcpll(dev_priv);
6625         hsw_pc8_restore_interrupts(dev);
6626         lpt_init_pch_refclk(dev);
6627
6628         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6629                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6630                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6631                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6632         }
6633
6634         intel_prepare_ddi(dev);
6635         i915_gem_init_swizzling(dev);
6636         mutex_lock(&dev_priv->rps.hw_lock);
6637         gen6_update_ring_freq(dev);
6638         mutex_unlock(&dev_priv->rps.hw_lock);
6639         dev_priv->pc8.enabled = false;
6640 }
6641
6642 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6643 {
6644         mutex_lock(&dev_priv->pc8.lock);
6645         __hsw_enable_package_c8(dev_priv);
6646         mutex_unlock(&dev_priv->pc8.lock);
6647 }
6648
6649 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6650 {
6651         mutex_lock(&dev_priv->pc8.lock);
6652         __hsw_disable_package_c8(dev_priv);
6653         mutex_unlock(&dev_priv->pc8.lock);
6654 }
6655
6656 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6657 {
6658         struct drm_device *dev = dev_priv->dev;
6659         struct intel_crtc *crtc;
6660         uint32_t val;
6661
6662         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6663                 if (crtc->base.enabled)
6664                         return false;
6665
6666         /* This case is still possible since we have the i915.disable_power_well
6667          * parameter and also the KVMr or something else might be requesting the
6668          * power well. */
6669         val = I915_READ(HSW_PWR_WELL_DRIVER);
6670         if (val != 0) {
6671                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6672                 return false;
6673         }
6674
6675         return true;
6676 }
6677
6678 /* Since we're called from modeset_global_resources there's no way to
6679  * symmetrically increase and decrease the refcount, so we use
6680  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6681  * or not.
6682  */
6683 static void hsw_update_package_c8(struct drm_device *dev)
6684 {
6685         struct drm_i915_private *dev_priv = dev->dev_private;
6686         bool allow;
6687
6688         if (!i915_enable_pc8)
6689                 return;
6690
6691         mutex_lock(&dev_priv->pc8.lock);
6692
6693         allow = hsw_can_enable_package_c8(dev_priv);
6694
6695         if (allow == dev_priv->pc8.requirements_met)
6696                 goto done;
6697
6698         dev_priv->pc8.requirements_met = allow;
6699
6700         if (allow)
6701                 __hsw_enable_package_c8(dev_priv);
6702         else
6703                 __hsw_disable_package_c8(dev_priv);
6704
6705 done:
6706         mutex_unlock(&dev_priv->pc8.lock);
6707 }
6708
6709 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6710 {
6711         if (!dev_priv->pc8.gpu_idle) {
6712                 dev_priv->pc8.gpu_idle = true;
6713                 hsw_enable_package_c8(dev_priv);
6714         }
6715 }
6716
6717 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6718 {
6719         if (dev_priv->pc8.gpu_idle) {
6720                 dev_priv->pc8.gpu_idle = false;
6721                 hsw_disable_package_c8(dev_priv);
6722         }
6723 }
6724
6725 #define for_each_power_domain(domain, mask)                             \
6726         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
6727                 if ((1 << (domain)) & (mask))
6728
6729 static unsigned long get_pipe_power_domains(struct drm_device *dev,
6730                                             enum pipe pipe, bool pfit_enabled)
6731 {
6732         unsigned long mask;
6733         enum transcoder transcoder;
6734
6735         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6736
6737         mask = BIT(POWER_DOMAIN_PIPE(pipe));
6738         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6739         if (pfit_enabled)
6740                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6741
6742         return mask;
6743 }
6744
6745 void intel_display_set_init_power(struct drm_device *dev, bool enable)
6746 {
6747         struct drm_i915_private *dev_priv = dev->dev_private;
6748
6749         if (dev_priv->power_domains.init_power_on == enable)
6750                 return;
6751
6752         if (enable)
6753                 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6754         else
6755                 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6756
6757         dev_priv->power_domains.init_power_on = enable;
6758 }
6759
6760 static void modeset_update_power_wells(struct drm_device *dev)
6761 {
6762         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6763         struct intel_crtc *crtc;
6764
6765         /*
6766          * First get all needed power domains, then put all unneeded, to avoid
6767          * any unnecessary toggling of the power wells.
6768          */
6769         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6770                 enum intel_display_power_domain domain;
6771
6772                 if (!crtc->base.enabled)
6773                         continue;
6774
6775                 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6776                                                 crtc->pipe,
6777                                                 crtc->config.pch_pfit.enabled);
6778
6779                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6780                         intel_display_power_get(dev, domain);
6781         }
6782
6783         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6784                 enum intel_display_power_domain domain;
6785
6786                 for_each_power_domain(domain, crtc->enabled_power_domains)
6787                         intel_display_power_put(dev, domain);
6788
6789                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6790         }
6791
6792         intel_display_set_init_power(dev, false);
6793 }
6794
6795 static void haswell_modeset_global_resources(struct drm_device *dev)
6796 {
6797         modeset_update_power_wells(dev);
6798         hsw_update_package_c8(dev);
6799 }
6800
6801 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6802                                  int x, int y,
6803                                  struct drm_framebuffer *fb)
6804 {
6805         struct drm_device *dev = crtc->dev;
6806         struct drm_i915_private *dev_priv = dev->dev_private;
6807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6808         int plane = intel_crtc->plane;
6809         int ret;
6810
6811         if (!intel_ddi_pll_mode_set(crtc))
6812                 return -EINVAL;
6813
6814         if (intel_crtc->config.has_dp_encoder)
6815                 intel_dp_set_m_n(intel_crtc);
6816
6817         intel_crtc->lowfreq_avail = false;
6818
6819         intel_set_pipe_timings(intel_crtc);
6820
6821         if (intel_crtc->config.has_pch_encoder) {
6822                 intel_cpu_transcoder_set_m_n(intel_crtc,
6823                                              &intel_crtc->config.fdi_m_n);
6824         }
6825
6826         haswell_set_pipeconf(crtc);
6827
6828         intel_set_pipe_csc(crtc);
6829
6830         /* Set up the display plane register */
6831         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6832         POSTING_READ(DSPCNTR(plane));
6833
6834         ret = intel_pipe_set_base(crtc, x, y, fb);
6835
6836         return ret;
6837 }
6838
6839 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6840                                     struct intel_crtc_config *pipe_config)
6841 {
6842         struct drm_device *dev = crtc->base.dev;
6843         struct drm_i915_private *dev_priv = dev->dev_private;
6844         enum intel_display_power_domain pfit_domain;
6845         uint32_t tmp;
6846
6847         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6848         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6849
6850         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6851         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6852                 enum pipe trans_edp_pipe;
6853                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6854                 default:
6855                         WARN(1, "unknown pipe linked to edp transcoder\n");
6856                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6857                 case TRANS_DDI_EDP_INPUT_A_ON:
6858                         trans_edp_pipe = PIPE_A;
6859                         break;
6860                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6861                         trans_edp_pipe = PIPE_B;
6862                         break;
6863                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6864                         trans_edp_pipe = PIPE_C;
6865                         break;
6866                 }
6867
6868                 if (trans_edp_pipe == crtc->pipe)
6869                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6870         }
6871
6872         if (!intel_display_power_enabled(dev,
6873                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6874                 return false;
6875
6876         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6877         if (!(tmp & PIPECONF_ENABLE))
6878                 return false;
6879
6880         /*
6881          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6882          * DDI E. So just check whether this pipe is wired to DDI E and whether
6883          * the PCH transcoder is on.
6884          */
6885         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6886         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6887             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6888                 pipe_config->has_pch_encoder = true;
6889
6890                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6891                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6892                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6893
6894                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6895         }
6896
6897         intel_get_pipe_timings(crtc, pipe_config);
6898
6899         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6900         if (intel_display_power_enabled(dev, pfit_domain))
6901                 ironlake_get_pfit_config(crtc, pipe_config);
6902
6903         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6904                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6905
6906         pipe_config->pixel_multiplier = 1;
6907
6908         return true;
6909 }
6910
6911 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6912                                int x, int y,
6913                                struct drm_framebuffer *fb)
6914 {
6915         struct drm_device *dev = crtc->dev;
6916         struct drm_i915_private *dev_priv = dev->dev_private;
6917         struct intel_encoder *encoder;
6918         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6919         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6920         int pipe = intel_crtc->pipe;
6921         int ret;
6922
6923         drm_vblank_pre_modeset(dev, pipe);
6924
6925         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6926
6927         drm_vblank_post_modeset(dev, pipe);
6928
6929         if (ret != 0)
6930                 return ret;
6931
6932         for_each_encoder_on_crtc(dev, crtc, encoder) {
6933                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6934                         encoder->base.base.id,
6935                         drm_get_encoder_name(&encoder->base),
6936                         mode->base.id, mode->name);
6937                 encoder->mode_set(encoder);
6938         }
6939
6940         return 0;
6941 }
6942
6943 static struct {
6944         int clock;
6945         u32 config;
6946 } hdmi_audio_clock[] = {
6947         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
6948         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
6949         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
6950         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
6951         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
6952         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
6953         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
6954         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
6955         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
6956         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
6957 };
6958
6959 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
6960 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
6961 {
6962         int i;
6963
6964         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
6965                 if (mode->clock == hdmi_audio_clock[i].clock)
6966                         break;
6967         }
6968
6969         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
6970                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
6971                 i = 1;
6972         }
6973
6974         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
6975                       hdmi_audio_clock[i].clock,
6976                       hdmi_audio_clock[i].config);
6977
6978         return hdmi_audio_clock[i].config;
6979 }
6980
6981 static bool intel_eld_uptodate(struct drm_connector *connector,
6982                                int reg_eldv, uint32_t bits_eldv,
6983                                int reg_elda, uint32_t bits_elda,
6984                                int reg_edid)
6985 {
6986         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6987         uint8_t *eld = connector->eld;
6988         uint32_t i;
6989
6990         i = I915_READ(reg_eldv);
6991         i &= bits_eldv;
6992
6993         if (!eld[0])
6994                 return !i;
6995
6996         if (!i)
6997                 return false;
6998
6999         i = I915_READ(reg_elda);
7000         i &= ~bits_elda;
7001         I915_WRITE(reg_elda, i);
7002
7003         for (i = 0; i < eld[2]; i++)
7004                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7005                         return false;
7006
7007         return true;
7008 }
7009
7010 static void g4x_write_eld(struct drm_connector *connector,
7011                           struct drm_crtc *crtc,
7012                           struct drm_display_mode *mode)
7013 {
7014         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7015         uint8_t *eld = connector->eld;
7016         uint32_t eldv;
7017         uint32_t len;
7018         uint32_t i;
7019
7020         i = I915_READ(G4X_AUD_VID_DID);
7021
7022         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7023                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7024         else
7025                 eldv = G4X_ELDV_DEVCTG;
7026
7027         if (intel_eld_uptodate(connector,
7028                                G4X_AUD_CNTL_ST, eldv,
7029                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7030                                G4X_HDMIW_HDMIEDID))
7031                 return;
7032
7033         i = I915_READ(G4X_AUD_CNTL_ST);
7034         i &= ~(eldv | G4X_ELD_ADDR);
7035         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7036         I915_WRITE(G4X_AUD_CNTL_ST, i);
7037
7038         if (!eld[0])
7039                 return;
7040
7041         len = min_t(uint8_t, eld[2], len);
7042         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7043         for (i = 0; i < len; i++)
7044                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7045
7046         i = I915_READ(G4X_AUD_CNTL_ST);
7047         i |= eldv;
7048         I915_WRITE(G4X_AUD_CNTL_ST, i);
7049 }
7050
7051 static void haswell_write_eld(struct drm_connector *connector,
7052                               struct drm_crtc *crtc,
7053                               struct drm_display_mode *mode)
7054 {
7055         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7056         uint8_t *eld = connector->eld;
7057         struct drm_device *dev = crtc->dev;
7058         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7059         uint32_t eldv;
7060         uint32_t i;
7061         int len;
7062         int pipe = to_intel_crtc(crtc)->pipe;
7063         int tmp;
7064
7065         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7066         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7067         int aud_config = HSW_AUD_CFG(pipe);
7068         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7069
7070
7071         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7072
7073         /* Audio output enable */
7074         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7075         tmp = I915_READ(aud_cntrl_st2);
7076         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7077         I915_WRITE(aud_cntrl_st2, tmp);
7078
7079         /* Wait for 1 vertical blank */
7080         intel_wait_for_vblank(dev, pipe);
7081
7082         /* Set ELD valid state */
7083         tmp = I915_READ(aud_cntrl_st2);
7084         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7085         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7086         I915_WRITE(aud_cntrl_st2, tmp);
7087         tmp = I915_READ(aud_cntrl_st2);
7088         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7089
7090         /* Enable HDMI mode */
7091         tmp = I915_READ(aud_config);
7092         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7093         /* clear N_programing_enable and N_value_index */
7094         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7095         I915_WRITE(aud_config, tmp);
7096
7097         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7098
7099         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7100         intel_crtc->eld_vld = true;
7101
7102         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7103                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7104                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7105                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7106         } else {
7107                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7108         }
7109
7110         if (intel_eld_uptodate(connector,
7111                                aud_cntrl_st2, eldv,
7112                                aud_cntl_st, IBX_ELD_ADDRESS,
7113                                hdmiw_hdmiedid))
7114                 return;
7115
7116         i = I915_READ(aud_cntrl_st2);
7117         i &= ~eldv;
7118         I915_WRITE(aud_cntrl_st2, i);
7119
7120         if (!eld[0])
7121                 return;
7122
7123         i = I915_READ(aud_cntl_st);
7124         i &= ~IBX_ELD_ADDRESS;
7125         I915_WRITE(aud_cntl_st, i);
7126         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7127         DRM_DEBUG_DRIVER("port num:%d\n", i);
7128
7129         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7130         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7131         for (i = 0; i < len; i++)
7132                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7133
7134         i = I915_READ(aud_cntrl_st2);
7135         i |= eldv;
7136         I915_WRITE(aud_cntrl_st2, i);
7137
7138 }
7139
7140 static void ironlake_write_eld(struct drm_connector *connector,
7141                                struct drm_crtc *crtc,
7142                                struct drm_display_mode *mode)
7143 {
7144         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7145         uint8_t *eld = connector->eld;
7146         uint32_t eldv;
7147         uint32_t i;
7148         int len;
7149         int hdmiw_hdmiedid;
7150         int aud_config;
7151         int aud_cntl_st;
7152         int aud_cntrl_st2;
7153         int pipe = to_intel_crtc(crtc)->pipe;
7154
7155         if (HAS_PCH_IBX(connector->dev)) {
7156                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7157                 aud_config = IBX_AUD_CFG(pipe);
7158                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7159                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7160         } else {
7161                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7162                 aud_config = CPT_AUD_CFG(pipe);
7163                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7164                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7165         }
7166
7167         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7168
7169         i = I915_READ(aud_cntl_st);
7170         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7171         if (!i) {
7172                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7173                 /* operate blindly on all ports */
7174                 eldv = IBX_ELD_VALIDB;
7175                 eldv |= IBX_ELD_VALIDB << 4;
7176                 eldv |= IBX_ELD_VALIDB << 8;
7177         } else {
7178                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7179                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7180         }
7181
7182         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7183                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7184                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7185                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7186         } else {
7187                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7188         }
7189
7190         if (intel_eld_uptodate(connector,
7191                                aud_cntrl_st2, eldv,
7192                                aud_cntl_st, IBX_ELD_ADDRESS,
7193                                hdmiw_hdmiedid))
7194                 return;
7195
7196         i = I915_READ(aud_cntrl_st2);
7197         i &= ~eldv;
7198         I915_WRITE(aud_cntrl_st2, i);
7199
7200         if (!eld[0])
7201                 return;
7202
7203         i = I915_READ(aud_cntl_st);
7204         i &= ~IBX_ELD_ADDRESS;
7205         I915_WRITE(aud_cntl_st, i);
7206
7207         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7208         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7209         for (i = 0; i < len; i++)
7210                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7211
7212         i = I915_READ(aud_cntrl_st2);
7213         i |= eldv;
7214         I915_WRITE(aud_cntrl_st2, i);
7215 }
7216
7217 void intel_write_eld(struct drm_encoder *encoder,
7218                      struct drm_display_mode *mode)
7219 {
7220         struct drm_crtc *crtc = encoder->crtc;
7221         struct drm_connector *connector;
7222         struct drm_device *dev = encoder->dev;
7223         struct drm_i915_private *dev_priv = dev->dev_private;
7224
7225         connector = drm_select_eld(encoder, mode);
7226         if (!connector)
7227                 return;
7228
7229         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7230                          connector->base.id,
7231                          drm_get_connector_name(connector),
7232                          connector->encoder->base.id,
7233                          drm_get_encoder_name(connector->encoder));
7234
7235         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7236
7237         if (dev_priv->display.write_eld)
7238                 dev_priv->display.write_eld(connector, crtc, mode);
7239 }
7240
7241 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7242 {
7243         struct drm_device *dev = crtc->dev;
7244         struct drm_i915_private *dev_priv = dev->dev_private;
7245         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7246         bool visible = base != 0;
7247         u32 cntl;
7248
7249         if (intel_crtc->cursor_visible == visible)
7250                 return;
7251
7252         cntl = I915_READ(_CURACNTR);
7253         if (visible) {
7254                 /* On these chipsets we can only modify the base whilst
7255                  * the cursor is disabled.
7256                  */
7257                 I915_WRITE(_CURABASE, base);
7258
7259                 cntl &= ~(CURSOR_FORMAT_MASK);
7260                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7261                 cntl |= CURSOR_ENABLE |
7262                         CURSOR_GAMMA_ENABLE |
7263                         CURSOR_FORMAT_ARGB;
7264         } else
7265                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7266         I915_WRITE(_CURACNTR, cntl);
7267
7268         intel_crtc->cursor_visible = visible;
7269 }
7270
7271 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7272 {
7273         struct drm_device *dev = crtc->dev;
7274         struct drm_i915_private *dev_priv = dev->dev_private;
7275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7276         int pipe = intel_crtc->pipe;
7277         bool visible = base != 0;
7278
7279         if (intel_crtc->cursor_visible != visible) {
7280                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7281                 if (base) {
7282                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7283                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7284                         cntl |= pipe << 28; /* Connect to correct pipe */
7285                 } else {
7286                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7287                         cntl |= CURSOR_MODE_DISABLE;
7288                 }
7289                 I915_WRITE(CURCNTR(pipe), cntl);
7290
7291                 intel_crtc->cursor_visible = visible;
7292         }
7293         /* and commit changes on next vblank */
7294         I915_WRITE(CURBASE(pipe), base);
7295 }
7296
7297 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7298 {
7299         struct drm_device *dev = crtc->dev;
7300         struct drm_i915_private *dev_priv = dev->dev_private;
7301         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7302         int pipe = intel_crtc->pipe;
7303         bool visible = base != 0;
7304
7305         if (intel_crtc->cursor_visible != visible) {
7306                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7307                 if (base) {
7308                         cntl &= ~CURSOR_MODE;
7309                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7310                 } else {
7311                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7312                         cntl |= CURSOR_MODE_DISABLE;
7313                 }
7314                 if (IS_HASWELL(dev)) {
7315                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7316                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7317                 }
7318                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7319
7320                 intel_crtc->cursor_visible = visible;
7321         }
7322         /* and commit changes on next vblank */
7323         I915_WRITE(CURBASE_IVB(pipe), base);
7324 }
7325
7326 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7327 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7328                                      bool on)
7329 {
7330         struct drm_device *dev = crtc->dev;
7331         struct drm_i915_private *dev_priv = dev->dev_private;
7332         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7333         int pipe = intel_crtc->pipe;
7334         int x = intel_crtc->cursor_x;
7335         int y = intel_crtc->cursor_y;
7336         u32 base = 0, pos = 0;
7337         bool visible;
7338
7339         if (on)
7340                 base = intel_crtc->cursor_addr;
7341
7342         if (x >= intel_crtc->config.pipe_src_w)
7343                 base = 0;
7344
7345         if (y >= intel_crtc->config.pipe_src_h)
7346                 base = 0;
7347
7348         if (x < 0) {
7349                 if (x + intel_crtc->cursor_width <= 0)
7350                         base = 0;
7351
7352                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7353                 x = -x;
7354         }
7355         pos |= x << CURSOR_X_SHIFT;
7356
7357         if (y < 0) {
7358                 if (y + intel_crtc->cursor_height <= 0)
7359                         base = 0;
7360
7361                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7362                 y = -y;
7363         }
7364         pos |= y << CURSOR_Y_SHIFT;
7365
7366         visible = base != 0;
7367         if (!visible && !intel_crtc->cursor_visible)
7368                 return;
7369
7370         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
7371                 I915_WRITE(CURPOS_IVB(pipe), pos);
7372                 ivb_update_cursor(crtc, base);
7373         } else {
7374                 I915_WRITE(CURPOS(pipe), pos);
7375                 if (IS_845G(dev) || IS_I865G(dev))
7376                         i845_update_cursor(crtc, base);
7377                 else
7378                         i9xx_update_cursor(crtc, base);
7379         }
7380 }
7381
7382 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7383                                  struct drm_file *file,
7384                                  uint32_t handle,
7385                                  uint32_t width, uint32_t height)
7386 {
7387         struct drm_device *dev = crtc->dev;
7388         struct drm_i915_private *dev_priv = dev->dev_private;
7389         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7390         struct drm_i915_gem_object *obj;
7391         uint32_t addr;
7392         int ret;
7393
7394         /* if we want to turn off the cursor ignore width and height */
7395         if (!handle) {
7396                 DRM_DEBUG_KMS("cursor off\n");
7397                 addr = 0;
7398                 obj = NULL;
7399                 mutex_lock(&dev->struct_mutex);
7400                 goto finish;
7401         }
7402
7403         /* Currently we only support 64x64 cursors */
7404         if (width != 64 || height != 64) {
7405                 DRM_ERROR("we currently only support 64x64 cursors\n");
7406                 return -EINVAL;
7407         }
7408
7409         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7410         if (&obj->base == NULL)
7411                 return -ENOENT;
7412
7413         if (obj->base.size < width * height * 4) {
7414                 DRM_ERROR("buffer is to small\n");
7415                 ret = -ENOMEM;
7416                 goto fail;
7417         }
7418
7419         /* we only need to pin inside GTT if cursor is non-phy */
7420         mutex_lock(&dev->struct_mutex);
7421         if (!dev_priv->info->cursor_needs_physical) {
7422                 unsigned alignment;
7423
7424                 if (obj->tiling_mode) {
7425                         DRM_ERROR("cursor cannot be tiled\n");
7426                         ret = -EINVAL;
7427                         goto fail_locked;
7428                 }
7429
7430                 /* Note that the w/a also requires 2 PTE of padding following
7431                  * the bo. We currently fill all unused PTE with the shadow
7432                  * page and so we should always have valid PTE following the
7433                  * cursor preventing the VT-d warning.
7434                  */
7435                 alignment = 0;
7436                 if (need_vtd_wa(dev))
7437                         alignment = 64*1024;
7438
7439                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7440                 if (ret) {
7441                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7442                         goto fail_locked;
7443                 }
7444
7445                 ret = i915_gem_object_put_fence(obj);
7446                 if (ret) {
7447                         DRM_ERROR("failed to release fence for cursor");
7448                         goto fail_unpin;
7449                 }
7450
7451                 addr = i915_gem_obj_ggtt_offset(obj);
7452         } else {
7453                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7454                 ret = i915_gem_attach_phys_object(dev, obj,
7455                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7456                                                   align);
7457                 if (ret) {
7458                         DRM_ERROR("failed to attach phys object\n");
7459                         goto fail_locked;
7460                 }
7461                 addr = obj->phys_obj->handle->busaddr;
7462         }
7463
7464         if (IS_GEN2(dev))
7465                 I915_WRITE(CURSIZE, (height << 12) | width);
7466
7467  finish:
7468         if (intel_crtc->cursor_bo) {
7469                 if (dev_priv->info->cursor_needs_physical) {
7470                         if (intel_crtc->cursor_bo != obj)
7471                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7472                 } else
7473                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7474                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7475         }
7476
7477         mutex_unlock(&dev->struct_mutex);
7478
7479         intel_crtc->cursor_addr = addr;
7480         intel_crtc->cursor_bo = obj;
7481         intel_crtc->cursor_width = width;
7482         intel_crtc->cursor_height = height;
7483
7484         if (intel_crtc->active)
7485                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7486
7487         return 0;
7488 fail_unpin:
7489         i915_gem_object_unpin_from_display_plane(obj);
7490 fail_locked:
7491         mutex_unlock(&dev->struct_mutex);
7492 fail:
7493         drm_gem_object_unreference_unlocked(&obj->base);
7494         return ret;
7495 }
7496
7497 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7498 {
7499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7500
7501         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7502         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7503
7504         if (intel_crtc->active)
7505                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7506
7507         return 0;
7508 }
7509
7510 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7511                                  u16 *blue, uint32_t start, uint32_t size)
7512 {
7513         int end = (start + size > 256) ? 256 : start + size, i;
7514         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7515
7516         for (i = start; i < end; i++) {
7517                 intel_crtc->lut_r[i] = red[i] >> 8;
7518                 intel_crtc->lut_g[i] = green[i] >> 8;
7519                 intel_crtc->lut_b[i] = blue[i] >> 8;
7520         }
7521
7522         intel_crtc_load_lut(crtc);
7523 }
7524
7525 /* VESA 640x480x72Hz mode to set on the pipe */
7526 static struct drm_display_mode load_detect_mode = {
7527         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7528                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7529 };
7530
7531 static struct drm_framebuffer *
7532 intel_framebuffer_create(struct drm_device *dev,
7533                          struct drm_mode_fb_cmd2 *mode_cmd,
7534                          struct drm_i915_gem_object *obj)
7535 {
7536         struct intel_framebuffer *intel_fb;
7537         int ret;
7538
7539         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7540         if (!intel_fb) {
7541                 drm_gem_object_unreference_unlocked(&obj->base);
7542                 return ERR_PTR(-ENOMEM);
7543         }
7544
7545         ret = i915_mutex_lock_interruptible(dev);
7546         if (ret)
7547                 goto err;
7548
7549         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7550         mutex_unlock(&dev->struct_mutex);
7551         if (ret)
7552                 goto err;
7553
7554         return &intel_fb->base;
7555 err:
7556         drm_gem_object_unreference_unlocked(&obj->base);
7557         kfree(intel_fb);
7558
7559         return ERR_PTR(ret);
7560 }
7561
7562 static u32
7563 intel_framebuffer_pitch_for_width(int width, int bpp)
7564 {
7565         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7566         return ALIGN(pitch, 64);
7567 }
7568
7569 static u32
7570 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7571 {
7572         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7573         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7574 }
7575
7576 static struct drm_framebuffer *
7577 intel_framebuffer_create_for_mode(struct drm_device *dev,
7578                                   struct drm_display_mode *mode,
7579                                   int depth, int bpp)
7580 {
7581         struct drm_i915_gem_object *obj;
7582         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7583
7584         obj = i915_gem_alloc_object(dev,
7585                                     intel_framebuffer_size_for_mode(mode, bpp));
7586         if (obj == NULL)
7587                 return ERR_PTR(-ENOMEM);
7588
7589         mode_cmd.width = mode->hdisplay;
7590         mode_cmd.height = mode->vdisplay;
7591         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7592                                                                 bpp);
7593         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7594
7595         return intel_framebuffer_create(dev, &mode_cmd, obj);
7596 }
7597
7598 static struct drm_framebuffer *
7599 mode_fits_in_fbdev(struct drm_device *dev,
7600                    struct drm_display_mode *mode)
7601 {
7602 #ifdef CONFIG_DRM_I915_FBDEV
7603         struct drm_i915_private *dev_priv = dev->dev_private;
7604         struct drm_i915_gem_object *obj;
7605         struct drm_framebuffer *fb;
7606
7607         if (dev_priv->fbdev == NULL)
7608                 return NULL;
7609
7610         obj = dev_priv->fbdev->ifb.obj;
7611         if (obj == NULL)
7612                 return NULL;
7613
7614         fb = &dev_priv->fbdev->ifb.base;
7615         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7616                                                                fb->bits_per_pixel))
7617                 return NULL;
7618
7619         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7620                 return NULL;
7621
7622         return fb;
7623 #else
7624         return NULL;
7625 #endif
7626 }
7627
7628 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7629                                 struct drm_display_mode *mode,
7630                                 struct intel_load_detect_pipe *old)
7631 {
7632         struct intel_crtc *intel_crtc;
7633         struct intel_encoder *intel_encoder =
7634                 intel_attached_encoder(connector);
7635         struct drm_crtc *possible_crtc;
7636         struct drm_encoder *encoder = &intel_encoder->base;
7637         struct drm_crtc *crtc = NULL;
7638         struct drm_device *dev = encoder->dev;
7639         struct drm_framebuffer *fb;
7640         int i = -1;
7641
7642         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7643                       connector->base.id, drm_get_connector_name(connector),
7644                       encoder->base.id, drm_get_encoder_name(encoder));
7645
7646         /*
7647          * Algorithm gets a little messy:
7648          *
7649          *   - if the connector already has an assigned crtc, use it (but make
7650          *     sure it's on first)
7651          *
7652          *   - try to find the first unused crtc that can drive this connector,
7653          *     and use that if we find one
7654          */
7655
7656         /* See if we already have a CRTC for this connector */
7657         if (encoder->crtc) {
7658                 crtc = encoder->crtc;
7659
7660                 mutex_lock(&crtc->mutex);
7661
7662                 old->dpms_mode = connector->dpms;
7663                 old->load_detect_temp = false;
7664
7665                 /* Make sure the crtc and connector are running */
7666                 if (connector->dpms != DRM_MODE_DPMS_ON)
7667                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7668
7669                 return true;
7670         }
7671
7672         /* Find an unused one (if possible) */
7673         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7674                 i++;
7675                 if (!(encoder->possible_crtcs & (1 << i)))
7676                         continue;
7677                 if (!possible_crtc->enabled) {
7678                         crtc = possible_crtc;
7679                         break;
7680                 }
7681         }
7682
7683         /*
7684          * If we didn't find an unused CRTC, don't use any.
7685          */
7686         if (!crtc) {
7687                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7688                 return false;
7689         }
7690
7691         mutex_lock(&crtc->mutex);
7692         intel_encoder->new_crtc = to_intel_crtc(crtc);
7693         to_intel_connector(connector)->new_encoder = intel_encoder;
7694
7695         intel_crtc = to_intel_crtc(crtc);
7696         old->dpms_mode = connector->dpms;
7697         old->load_detect_temp = true;
7698         old->release_fb = NULL;
7699
7700         if (!mode)
7701                 mode = &load_detect_mode;
7702
7703         /* We need a framebuffer large enough to accommodate all accesses
7704          * that the plane may generate whilst we perform load detection.
7705          * We can not rely on the fbcon either being present (we get called
7706          * during its initialisation to detect all boot displays, or it may
7707          * not even exist) or that it is large enough to satisfy the
7708          * requested mode.
7709          */
7710         fb = mode_fits_in_fbdev(dev, mode);
7711         if (fb == NULL) {
7712                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7713                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7714                 old->release_fb = fb;
7715         } else
7716                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7717         if (IS_ERR(fb)) {
7718                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7719                 mutex_unlock(&crtc->mutex);
7720                 return false;
7721         }
7722
7723         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7724                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7725                 if (old->release_fb)
7726                         old->release_fb->funcs->destroy(old->release_fb);
7727                 mutex_unlock(&crtc->mutex);
7728                 return false;
7729         }
7730
7731         /* let the connector get through one full cycle before testing */
7732         intel_wait_for_vblank(dev, intel_crtc->pipe);
7733         return true;
7734 }
7735
7736 void intel_release_load_detect_pipe(struct drm_connector *connector,
7737                                     struct intel_load_detect_pipe *old)
7738 {
7739         struct intel_encoder *intel_encoder =
7740                 intel_attached_encoder(connector);
7741         struct drm_encoder *encoder = &intel_encoder->base;
7742         struct drm_crtc *crtc = encoder->crtc;
7743
7744         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7745                       connector->base.id, drm_get_connector_name(connector),
7746                       encoder->base.id, drm_get_encoder_name(encoder));
7747
7748         if (old->load_detect_temp) {
7749                 to_intel_connector(connector)->new_encoder = NULL;
7750                 intel_encoder->new_crtc = NULL;
7751                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7752
7753                 if (old->release_fb) {
7754                         drm_framebuffer_unregister_private(old->release_fb);
7755                         drm_framebuffer_unreference(old->release_fb);
7756                 }
7757
7758                 mutex_unlock(&crtc->mutex);
7759                 return;
7760         }
7761
7762         /* Switch crtc and encoder back off if necessary */
7763         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7764                 connector->funcs->dpms(connector, old->dpms_mode);
7765
7766         mutex_unlock(&crtc->mutex);
7767 }
7768
7769 static int i9xx_pll_refclk(struct drm_device *dev,
7770                            const struct intel_crtc_config *pipe_config)
7771 {
7772         struct drm_i915_private *dev_priv = dev->dev_private;
7773         u32 dpll = pipe_config->dpll_hw_state.dpll;
7774
7775         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7776                 return dev_priv->vbt.lvds_ssc_freq * 1000;
7777         else if (HAS_PCH_SPLIT(dev))
7778                 return 120000;
7779         else if (!IS_GEN2(dev))
7780                 return 96000;
7781         else
7782                 return 48000;
7783 }
7784
7785 /* Returns the clock of the currently programmed mode of the given pipe. */
7786 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7787                                 struct intel_crtc_config *pipe_config)
7788 {
7789         struct drm_device *dev = crtc->base.dev;
7790         struct drm_i915_private *dev_priv = dev->dev_private;
7791         int pipe = pipe_config->cpu_transcoder;
7792         u32 dpll = pipe_config->dpll_hw_state.dpll;
7793         u32 fp;
7794         intel_clock_t clock;
7795         int refclk = i9xx_pll_refclk(dev, pipe_config);
7796
7797         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7798                 fp = pipe_config->dpll_hw_state.fp0;
7799         else
7800                 fp = pipe_config->dpll_hw_state.fp1;
7801
7802         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7803         if (IS_PINEVIEW(dev)) {
7804                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7805                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7806         } else {
7807                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7808                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7809         }
7810
7811         if (!IS_GEN2(dev)) {
7812                 if (IS_PINEVIEW(dev))
7813                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7814                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7815                 else
7816                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7817                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7818
7819                 switch (dpll & DPLL_MODE_MASK) {
7820                 case DPLLB_MODE_DAC_SERIAL:
7821                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7822                                 5 : 10;
7823                         break;
7824                 case DPLLB_MODE_LVDS:
7825                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7826                                 7 : 14;
7827                         break;
7828                 default:
7829                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7830                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7831                         return;
7832                 }
7833
7834                 if (IS_PINEVIEW(dev))
7835                         pineview_clock(refclk, &clock);
7836                 else
7837                         i9xx_clock(refclk, &clock);
7838         } else {
7839                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7840
7841                 if (is_lvds) {
7842                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7843                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7844                         clock.p2 = 14;
7845                 } else {
7846                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7847                                 clock.p1 = 2;
7848                         else {
7849                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7850                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7851                         }
7852                         if (dpll & PLL_P2_DIVIDE_BY_4)
7853                                 clock.p2 = 4;
7854                         else
7855                                 clock.p2 = 2;
7856                 }
7857
7858                 i9xx_clock(refclk, &clock);
7859         }
7860
7861         /*
7862          * This value includes pixel_multiplier. We will use
7863          * port_clock to compute adjusted_mode.crtc_clock in the
7864          * encoder's get_config() function.
7865          */
7866         pipe_config->port_clock = clock.dot;
7867 }
7868
7869 int intel_dotclock_calculate(int link_freq,
7870                              const struct intel_link_m_n *m_n)
7871 {
7872         /*
7873          * The calculation for the data clock is:
7874          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7875          * But we want to avoid losing precison if possible, so:
7876          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7877          *
7878          * and the link clock is simpler:
7879          * link_clock = (m * link_clock) / n
7880          */
7881
7882         if (!m_n->link_n)
7883                 return 0;
7884
7885         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7886 }
7887
7888 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7889                                    struct intel_crtc_config *pipe_config)
7890 {
7891         struct drm_device *dev = crtc->base.dev;
7892
7893         /* read out port_clock from the DPLL */
7894         i9xx_crtc_clock_get(crtc, pipe_config);
7895
7896         /*
7897          * This value does not include pixel_multiplier.
7898          * We will check that port_clock and adjusted_mode.crtc_clock
7899          * agree once we know their relationship in the encoder's
7900          * get_config() function.
7901          */
7902         pipe_config->adjusted_mode.crtc_clock =
7903                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7904                                          &pipe_config->fdi_m_n);
7905 }
7906
7907 /** Returns the currently programmed mode of the given pipe. */
7908 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7909                                              struct drm_crtc *crtc)
7910 {
7911         struct drm_i915_private *dev_priv = dev->dev_private;
7912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7913         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7914         struct drm_display_mode *mode;
7915         struct intel_crtc_config pipe_config;
7916         int htot = I915_READ(HTOTAL(cpu_transcoder));
7917         int hsync = I915_READ(HSYNC(cpu_transcoder));
7918         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7919         int vsync = I915_READ(VSYNC(cpu_transcoder));
7920         enum pipe pipe = intel_crtc->pipe;
7921
7922         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7923         if (!mode)
7924                 return NULL;
7925
7926         /*
7927          * Construct a pipe_config sufficient for getting the clock info
7928          * back out of crtc_clock_get.
7929          *
7930          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7931          * to use a real value here instead.
7932          */
7933         pipe_config.cpu_transcoder = (enum transcoder) pipe;
7934         pipe_config.pixel_multiplier = 1;
7935         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7936         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7937         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7938         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7939
7940         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
7941         mode->hdisplay = (htot & 0xffff) + 1;
7942         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7943         mode->hsync_start = (hsync & 0xffff) + 1;
7944         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7945         mode->vdisplay = (vtot & 0xffff) + 1;
7946         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7947         mode->vsync_start = (vsync & 0xffff) + 1;
7948         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7949
7950         drm_mode_set_name(mode);
7951
7952         return mode;
7953 }
7954
7955 static void intel_increase_pllclock(struct drm_crtc *crtc)
7956 {
7957         struct drm_device *dev = crtc->dev;
7958         drm_i915_private_t *dev_priv = dev->dev_private;
7959         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7960         int pipe = intel_crtc->pipe;
7961         int dpll_reg = DPLL(pipe);
7962         int dpll;
7963
7964         if (HAS_PCH_SPLIT(dev))
7965                 return;
7966
7967         if (!dev_priv->lvds_downclock_avail)
7968                 return;
7969
7970         dpll = I915_READ(dpll_reg);
7971         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7972                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7973
7974                 assert_panel_unlocked(dev_priv, pipe);
7975
7976                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7977                 I915_WRITE(dpll_reg, dpll);
7978                 intel_wait_for_vblank(dev, pipe);
7979
7980                 dpll = I915_READ(dpll_reg);
7981                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7982                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7983         }
7984 }
7985
7986 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7987 {
7988         struct drm_device *dev = crtc->dev;
7989         drm_i915_private_t *dev_priv = dev->dev_private;
7990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7991
7992         if (HAS_PCH_SPLIT(dev))
7993                 return;
7994
7995         if (!dev_priv->lvds_downclock_avail)
7996                 return;
7997
7998         /*
7999          * Since this is called by a timer, we should never get here in
8000          * the manual case.
8001          */
8002         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8003                 int pipe = intel_crtc->pipe;
8004                 int dpll_reg = DPLL(pipe);
8005                 int dpll;
8006
8007                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8008
8009                 assert_panel_unlocked(dev_priv, pipe);
8010
8011                 dpll = I915_READ(dpll_reg);
8012                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8013                 I915_WRITE(dpll_reg, dpll);
8014                 intel_wait_for_vblank(dev, pipe);
8015                 dpll = I915_READ(dpll_reg);
8016                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8017                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8018         }
8019
8020 }
8021
8022 void intel_mark_busy(struct drm_device *dev)
8023 {
8024         struct drm_i915_private *dev_priv = dev->dev_private;
8025
8026         hsw_package_c8_gpu_busy(dev_priv);
8027         i915_update_gfx_val(dev_priv);
8028 }
8029
8030 void intel_mark_idle(struct drm_device *dev)
8031 {
8032         struct drm_i915_private *dev_priv = dev->dev_private;
8033         struct drm_crtc *crtc;
8034
8035         hsw_package_c8_gpu_idle(dev_priv);
8036
8037         if (!i915_powersave)
8038                 return;
8039
8040         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8041                 if (!crtc->fb)
8042                         continue;
8043
8044                 intel_decrease_pllclock(crtc);
8045         }
8046
8047         if (dev_priv->info->gen >= 6)
8048                 gen6_rps_idle(dev->dev_private);
8049 }
8050
8051 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8052                         struct intel_ring_buffer *ring)
8053 {
8054         struct drm_device *dev = obj->base.dev;
8055         struct drm_crtc *crtc;
8056
8057         if (!i915_powersave)
8058                 return;
8059
8060         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8061                 if (!crtc->fb)
8062                         continue;
8063
8064                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8065                         continue;
8066
8067                 intel_increase_pllclock(crtc);
8068                 if (ring && intel_fbc_enabled(dev))
8069                         ring->fbc_dirty = true;
8070         }
8071 }
8072
8073 static void intel_crtc_destroy(struct drm_crtc *crtc)
8074 {
8075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8076         struct drm_device *dev = crtc->dev;
8077         struct intel_unpin_work *work;
8078         unsigned long flags;
8079
8080         spin_lock_irqsave(&dev->event_lock, flags);
8081         work = intel_crtc->unpin_work;
8082         intel_crtc->unpin_work = NULL;
8083         spin_unlock_irqrestore(&dev->event_lock, flags);
8084
8085         if (work) {
8086                 cancel_work_sync(&work->work);
8087                 kfree(work);
8088         }
8089
8090         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8091
8092         drm_crtc_cleanup(crtc);
8093
8094         kfree(intel_crtc);
8095 }
8096
8097 static void intel_unpin_work_fn(struct work_struct *__work)
8098 {
8099         struct intel_unpin_work *work =
8100                 container_of(__work, struct intel_unpin_work, work);
8101         struct drm_device *dev = work->crtc->dev;
8102
8103         mutex_lock(&dev->struct_mutex);
8104         intel_unpin_fb_obj(work->old_fb_obj);
8105         drm_gem_object_unreference(&work->pending_flip_obj->base);
8106         drm_gem_object_unreference(&work->old_fb_obj->base);
8107
8108         intel_update_fbc(dev);
8109         mutex_unlock(&dev->struct_mutex);
8110
8111         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8112         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8113
8114         kfree(work);
8115 }
8116
8117 static void do_intel_finish_page_flip(struct drm_device *dev,
8118                                       struct drm_crtc *crtc)
8119 {
8120         drm_i915_private_t *dev_priv = dev->dev_private;
8121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8122         struct intel_unpin_work *work;
8123         unsigned long flags;
8124
8125         /* Ignore early vblank irqs */
8126         if (intel_crtc == NULL)
8127                 return;
8128
8129         spin_lock_irqsave(&dev->event_lock, flags);
8130         work = intel_crtc->unpin_work;
8131
8132         /* Ensure we don't miss a work->pending update ... */
8133         smp_rmb();
8134
8135         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8136                 spin_unlock_irqrestore(&dev->event_lock, flags);
8137                 return;
8138         }
8139
8140         /* and that the unpin work is consistent wrt ->pending. */
8141         smp_rmb();
8142
8143         intel_crtc->unpin_work = NULL;
8144
8145         if (work->event)
8146                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8147
8148         drm_vblank_put(dev, intel_crtc->pipe);
8149
8150         spin_unlock_irqrestore(&dev->event_lock, flags);
8151
8152         wake_up_all(&dev_priv->pending_flip_queue);
8153
8154         queue_work(dev_priv->wq, &work->work);
8155
8156         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8157 }
8158
8159 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8160 {
8161         drm_i915_private_t *dev_priv = dev->dev_private;
8162         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8163
8164         do_intel_finish_page_flip(dev, crtc);
8165 }
8166
8167 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8168 {
8169         drm_i915_private_t *dev_priv = dev->dev_private;
8170         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8171
8172         do_intel_finish_page_flip(dev, crtc);
8173 }
8174
8175 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8176 {
8177         drm_i915_private_t *dev_priv = dev->dev_private;
8178         struct intel_crtc *intel_crtc =
8179                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8180         unsigned long flags;
8181
8182         /* NB: An MMIO update of the plane base pointer will also
8183          * generate a page-flip completion irq, i.e. every modeset
8184          * is also accompanied by a spurious intel_prepare_page_flip().
8185          */
8186         spin_lock_irqsave(&dev->event_lock, flags);
8187         if (intel_crtc->unpin_work)
8188                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8189         spin_unlock_irqrestore(&dev->event_lock, flags);
8190 }
8191
8192 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8193 {
8194         /* Ensure that the work item is consistent when activating it ... */
8195         smp_wmb();
8196         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8197         /* and that it is marked active as soon as the irq could fire. */
8198         smp_wmb();
8199 }
8200
8201 static int intel_gen2_queue_flip(struct drm_device *dev,
8202                                  struct drm_crtc *crtc,
8203                                  struct drm_framebuffer *fb,
8204                                  struct drm_i915_gem_object *obj,
8205                                  uint32_t flags)
8206 {
8207         struct drm_i915_private *dev_priv = dev->dev_private;
8208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8209         u32 flip_mask;
8210         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8211         int ret;
8212
8213         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8214         if (ret)
8215                 goto err;
8216
8217         ret = intel_ring_begin(ring, 6);
8218         if (ret)
8219                 goto err_unpin;
8220
8221         /* Can't queue multiple flips, so wait for the previous
8222          * one to finish before executing the next.
8223          */
8224         if (intel_crtc->plane)
8225                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8226         else
8227                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8228         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8229         intel_ring_emit(ring, MI_NOOP);
8230         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8231                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8232         intel_ring_emit(ring, fb->pitches[0]);
8233         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8234         intel_ring_emit(ring, 0); /* aux display base address, unused */
8235
8236         intel_mark_page_flip_active(intel_crtc);
8237         __intel_ring_advance(ring);
8238         return 0;
8239
8240 err_unpin:
8241         intel_unpin_fb_obj(obj);
8242 err:
8243         return ret;
8244 }
8245
8246 static int intel_gen3_queue_flip(struct drm_device *dev,
8247                                  struct drm_crtc *crtc,
8248                                  struct drm_framebuffer *fb,
8249                                  struct drm_i915_gem_object *obj,
8250                                  uint32_t flags)
8251 {
8252         struct drm_i915_private *dev_priv = dev->dev_private;
8253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8254         u32 flip_mask;
8255         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8256         int ret;
8257
8258         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8259         if (ret)
8260                 goto err;
8261
8262         ret = intel_ring_begin(ring, 6);
8263         if (ret)
8264                 goto err_unpin;
8265
8266         if (intel_crtc->plane)
8267                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8268         else
8269                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8270         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8271         intel_ring_emit(ring, MI_NOOP);
8272         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8273                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8274         intel_ring_emit(ring, fb->pitches[0]);
8275         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8276         intel_ring_emit(ring, MI_NOOP);
8277
8278         intel_mark_page_flip_active(intel_crtc);
8279         __intel_ring_advance(ring);
8280         return 0;
8281
8282 err_unpin:
8283         intel_unpin_fb_obj(obj);
8284 err:
8285         return ret;
8286 }
8287
8288 static int intel_gen4_queue_flip(struct drm_device *dev,
8289                                  struct drm_crtc *crtc,
8290                                  struct drm_framebuffer *fb,
8291                                  struct drm_i915_gem_object *obj,
8292                                  uint32_t flags)
8293 {
8294         struct drm_i915_private *dev_priv = dev->dev_private;
8295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8296         uint32_t pf, pipesrc;
8297         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8298         int ret;
8299
8300         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8301         if (ret)
8302                 goto err;
8303
8304         ret = intel_ring_begin(ring, 4);
8305         if (ret)
8306                 goto err_unpin;
8307
8308         /* i965+ uses the linear or tiled offsets from the
8309          * Display Registers (which do not change across a page-flip)
8310          * so we need only reprogram the base address.
8311          */
8312         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8313                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8314         intel_ring_emit(ring, fb->pitches[0]);
8315         intel_ring_emit(ring,
8316                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8317                         obj->tiling_mode);
8318
8319         /* XXX Enabling the panel-fitter across page-flip is so far
8320          * untested on non-native modes, so ignore it for now.
8321          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8322          */
8323         pf = 0;
8324         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8325         intel_ring_emit(ring, pf | pipesrc);
8326
8327         intel_mark_page_flip_active(intel_crtc);
8328         __intel_ring_advance(ring);
8329         return 0;
8330
8331 err_unpin:
8332         intel_unpin_fb_obj(obj);
8333 err:
8334         return ret;
8335 }
8336
8337 static int intel_gen6_queue_flip(struct drm_device *dev,
8338                                  struct drm_crtc *crtc,
8339                                  struct drm_framebuffer *fb,
8340                                  struct drm_i915_gem_object *obj,
8341                                  uint32_t flags)
8342 {
8343         struct drm_i915_private *dev_priv = dev->dev_private;
8344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8345         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8346         uint32_t pf, pipesrc;
8347         int ret;
8348
8349         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8350         if (ret)
8351                 goto err;
8352
8353         ret = intel_ring_begin(ring, 4);
8354         if (ret)
8355                 goto err_unpin;
8356
8357         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8358                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8359         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8360         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8361
8362         /* Contrary to the suggestions in the documentation,
8363          * "Enable Panel Fitter" does not seem to be required when page
8364          * flipping with a non-native mode, and worse causes a normal
8365          * modeset to fail.
8366          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8367          */
8368         pf = 0;
8369         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8370         intel_ring_emit(ring, pf | pipesrc);
8371
8372         intel_mark_page_flip_active(intel_crtc);
8373         __intel_ring_advance(ring);
8374         return 0;
8375
8376 err_unpin:
8377         intel_unpin_fb_obj(obj);
8378 err:
8379         return ret;
8380 }
8381
8382 static int intel_gen7_queue_flip(struct drm_device *dev,
8383                                  struct drm_crtc *crtc,
8384                                  struct drm_framebuffer *fb,
8385                                  struct drm_i915_gem_object *obj,
8386                                  uint32_t flags)
8387 {
8388         struct drm_i915_private *dev_priv = dev->dev_private;
8389         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8390         struct intel_ring_buffer *ring;
8391         uint32_t plane_bit = 0;
8392         int len, ret;
8393
8394         ring = obj->ring;
8395         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8396                 ring = &dev_priv->ring[BCS];
8397
8398         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8399         if (ret)
8400                 goto err;
8401
8402         switch(intel_crtc->plane) {
8403         case PLANE_A:
8404                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8405                 break;
8406         case PLANE_B:
8407                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8408                 break;
8409         case PLANE_C:
8410                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8411                 break;
8412         default:
8413                 WARN_ONCE(1, "unknown plane in flip command\n");
8414                 ret = -ENODEV;
8415                 goto err_unpin;
8416         }
8417
8418         len = 4;
8419         if (ring->id == RCS)
8420                 len += 6;
8421
8422         ret = intel_ring_begin(ring, len);
8423         if (ret)
8424                 goto err_unpin;
8425
8426         /* Unmask the flip-done completion message. Note that the bspec says that
8427          * we should do this for both the BCS and RCS, and that we must not unmask
8428          * more than one flip event at any time (or ensure that one flip message
8429          * can be sent by waiting for flip-done prior to queueing new flips).
8430          * Experimentation says that BCS works despite DERRMR masking all
8431          * flip-done completion events and that unmasking all planes at once
8432          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8433          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8434          */
8435         if (ring->id == RCS) {
8436                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8437                 intel_ring_emit(ring, DERRMR);
8438                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8439                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8440                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8441                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8442                 intel_ring_emit(ring, DERRMR);
8443                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8444         }
8445
8446         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8447         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8448         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8449         intel_ring_emit(ring, (MI_NOOP));
8450
8451         intel_mark_page_flip_active(intel_crtc);
8452         __intel_ring_advance(ring);
8453         return 0;
8454
8455 err_unpin:
8456         intel_unpin_fb_obj(obj);
8457 err:
8458         return ret;
8459 }
8460
8461 static int intel_default_queue_flip(struct drm_device *dev,
8462                                     struct drm_crtc *crtc,
8463                                     struct drm_framebuffer *fb,
8464                                     struct drm_i915_gem_object *obj,
8465                                     uint32_t flags)
8466 {
8467         return -ENODEV;
8468 }
8469
8470 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8471                                 struct drm_framebuffer *fb,
8472                                 struct drm_pending_vblank_event *event,
8473                                 uint32_t page_flip_flags)
8474 {
8475         struct drm_device *dev = crtc->dev;
8476         struct drm_i915_private *dev_priv = dev->dev_private;
8477         struct drm_framebuffer *old_fb = crtc->fb;
8478         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8479         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8480         struct intel_unpin_work *work;
8481         unsigned long flags;
8482         int ret;
8483
8484         /* Can't change pixel format via MI display flips. */
8485         if (fb->pixel_format != crtc->fb->pixel_format)
8486                 return -EINVAL;
8487
8488         /*
8489          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8490          * Note that pitch changes could also affect these register.
8491          */
8492         if (INTEL_INFO(dev)->gen > 3 &&
8493             (fb->offsets[0] != crtc->fb->offsets[0] ||
8494              fb->pitches[0] != crtc->fb->pitches[0]))
8495                 return -EINVAL;
8496
8497         work = kzalloc(sizeof(*work), GFP_KERNEL);
8498         if (work == NULL)
8499                 return -ENOMEM;
8500
8501         work->event = event;
8502         work->crtc = crtc;
8503         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8504         INIT_WORK(&work->work, intel_unpin_work_fn);
8505
8506         ret = drm_vblank_get(dev, intel_crtc->pipe);
8507         if (ret)
8508                 goto free_work;
8509
8510         /* We borrow the event spin lock for protecting unpin_work */
8511         spin_lock_irqsave(&dev->event_lock, flags);
8512         if (intel_crtc->unpin_work) {
8513                 spin_unlock_irqrestore(&dev->event_lock, flags);
8514                 kfree(work);
8515                 drm_vblank_put(dev, intel_crtc->pipe);
8516
8517                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8518                 return -EBUSY;
8519         }
8520         intel_crtc->unpin_work = work;
8521         spin_unlock_irqrestore(&dev->event_lock, flags);
8522
8523         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8524                 flush_workqueue(dev_priv->wq);
8525
8526         ret = i915_mutex_lock_interruptible(dev);
8527         if (ret)
8528                 goto cleanup;
8529
8530         /* Reference the objects for the scheduled work. */
8531         drm_gem_object_reference(&work->old_fb_obj->base);
8532         drm_gem_object_reference(&obj->base);
8533
8534         crtc->fb = fb;
8535
8536         work->pending_flip_obj = obj;
8537
8538         work->enable_stall_check = true;
8539
8540         atomic_inc(&intel_crtc->unpin_work_count);
8541         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8542
8543         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8544         if (ret)
8545                 goto cleanup_pending;
8546
8547         intel_disable_fbc(dev);
8548         intel_mark_fb_busy(obj, NULL);
8549         mutex_unlock(&dev->struct_mutex);
8550
8551         trace_i915_flip_request(intel_crtc->plane, obj);
8552
8553         return 0;
8554
8555 cleanup_pending:
8556         atomic_dec(&intel_crtc->unpin_work_count);
8557         crtc->fb = old_fb;
8558         drm_gem_object_unreference(&work->old_fb_obj->base);
8559         drm_gem_object_unreference(&obj->base);
8560         mutex_unlock(&dev->struct_mutex);
8561
8562 cleanup:
8563         spin_lock_irqsave(&dev->event_lock, flags);
8564         intel_crtc->unpin_work = NULL;
8565         spin_unlock_irqrestore(&dev->event_lock, flags);
8566
8567         drm_vblank_put(dev, intel_crtc->pipe);
8568 free_work:
8569         kfree(work);
8570
8571         return ret;
8572 }
8573
8574 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8575         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8576         .load_lut = intel_crtc_load_lut,
8577 };
8578
8579 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8580                                   struct drm_crtc *crtc)
8581 {
8582         struct drm_device *dev;
8583         struct drm_crtc *tmp;
8584         int crtc_mask = 1;
8585
8586         WARN(!crtc, "checking null crtc?\n");
8587
8588         dev = crtc->dev;
8589
8590         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8591                 if (tmp == crtc)
8592                         break;
8593                 crtc_mask <<= 1;
8594         }
8595
8596         if (encoder->possible_crtcs & crtc_mask)
8597                 return true;
8598         return false;
8599 }
8600
8601 /**
8602  * intel_modeset_update_staged_output_state
8603  *
8604  * Updates the staged output configuration state, e.g. after we've read out the
8605  * current hw state.
8606  */
8607 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8608 {
8609         struct intel_encoder *encoder;
8610         struct intel_connector *connector;
8611
8612         list_for_each_entry(connector, &dev->mode_config.connector_list,
8613                             base.head) {
8614                 connector->new_encoder =
8615                         to_intel_encoder(connector->base.encoder);
8616         }
8617
8618         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8619                             base.head) {
8620                 encoder->new_crtc =
8621                         to_intel_crtc(encoder->base.crtc);
8622         }
8623 }
8624
8625 /**
8626  * intel_modeset_commit_output_state
8627  *
8628  * This function copies the stage display pipe configuration to the real one.
8629  */
8630 static void intel_modeset_commit_output_state(struct drm_device *dev)
8631 {
8632         struct intel_encoder *encoder;
8633         struct intel_connector *connector;
8634
8635         list_for_each_entry(connector, &dev->mode_config.connector_list,
8636                             base.head) {
8637                 connector->base.encoder = &connector->new_encoder->base;
8638         }
8639
8640         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8641                             base.head) {
8642                 encoder->base.crtc = &encoder->new_crtc->base;
8643         }
8644 }
8645
8646 static void
8647 connected_sink_compute_bpp(struct intel_connector * connector,
8648                            struct intel_crtc_config *pipe_config)
8649 {
8650         int bpp = pipe_config->pipe_bpp;
8651
8652         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8653                 connector->base.base.id,
8654                 drm_get_connector_name(&connector->base));
8655
8656         /* Don't use an invalid EDID bpc value */
8657         if (connector->base.display_info.bpc &&
8658             connector->base.display_info.bpc * 3 < bpp) {
8659                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8660                               bpp, connector->base.display_info.bpc*3);
8661                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8662         }
8663
8664         /* Clamp bpp to 8 on screens without EDID 1.4 */
8665         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8666                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8667                               bpp);
8668                 pipe_config->pipe_bpp = 24;
8669         }
8670 }
8671
8672 static int
8673 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8674                           struct drm_framebuffer *fb,
8675                           struct intel_crtc_config *pipe_config)
8676 {
8677         struct drm_device *dev = crtc->base.dev;
8678         struct intel_connector *connector;
8679         int bpp;
8680
8681         switch (fb->pixel_format) {
8682         case DRM_FORMAT_C8:
8683                 bpp = 8*3; /* since we go through a colormap */
8684                 break;
8685         case DRM_FORMAT_XRGB1555:
8686         case DRM_FORMAT_ARGB1555:
8687                 /* checked in intel_framebuffer_init already */
8688                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8689                         return -EINVAL;
8690         case DRM_FORMAT_RGB565:
8691                 bpp = 6*3; /* min is 18bpp */
8692                 break;
8693         case DRM_FORMAT_XBGR8888:
8694         case DRM_FORMAT_ABGR8888:
8695                 /* checked in intel_framebuffer_init already */
8696                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8697                         return -EINVAL;
8698         case DRM_FORMAT_XRGB8888:
8699         case DRM_FORMAT_ARGB8888:
8700                 bpp = 8*3;
8701                 break;
8702         case DRM_FORMAT_XRGB2101010:
8703         case DRM_FORMAT_ARGB2101010:
8704         case DRM_FORMAT_XBGR2101010:
8705         case DRM_FORMAT_ABGR2101010:
8706                 /* checked in intel_framebuffer_init already */
8707                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8708                         return -EINVAL;
8709                 bpp = 10*3;
8710                 break;
8711         /* TODO: gen4+ supports 16 bpc floating point, too. */
8712         default:
8713                 DRM_DEBUG_KMS("unsupported depth\n");
8714                 return -EINVAL;
8715         }
8716
8717         pipe_config->pipe_bpp = bpp;
8718
8719         /* Clamp display bpp to EDID value */
8720         list_for_each_entry(connector, &dev->mode_config.connector_list,
8721                             base.head) {
8722                 if (!connector->new_encoder ||
8723                     connector->new_encoder->new_crtc != crtc)
8724                         continue;
8725
8726                 connected_sink_compute_bpp(connector, pipe_config);
8727         }
8728
8729         return bpp;
8730 }
8731
8732 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8733 {
8734         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8735                         "type: 0x%x flags: 0x%x\n",
8736                 mode->crtc_clock,
8737                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8738                 mode->crtc_hsync_end, mode->crtc_htotal,
8739                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8740                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8741 }
8742
8743 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8744                                    struct intel_crtc_config *pipe_config,
8745                                    const char *context)
8746 {
8747         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8748                       context, pipe_name(crtc->pipe));
8749
8750         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8751         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8752                       pipe_config->pipe_bpp, pipe_config->dither);
8753         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8754                       pipe_config->has_pch_encoder,
8755                       pipe_config->fdi_lanes,
8756                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8757                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8758                       pipe_config->fdi_m_n.tu);
8759         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8760                       pipe_config->has_dp_encoder,
8761                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8762                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8763                       pipe_config->dp_m_n.tu);
8764         DRM_DEBUG_KMS("requested mode:\n");
8765         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8766         DRM_DEBUG_KMS("adjusted mode:\n");
8767         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8768         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8769         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8770         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8771                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8772         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8773                       pipe_config->gmch_pfit.control,
8774                       pipe_config->gmch_pfit.pgm_ratios,
8775                       pipe_config->gmch_pfit.lvds_border_bits);
8776         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8777                       pipe_config->pch_pfit.pos,
8778                       pipe_config->pch_pfit.size,
8779                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8780         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8781         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8782 }
8783
8784 static bool check_encoder_cloning(struct drm_crtc *crtc)
8785 {
8786         int num_encoders = 0;
8787         bool uncloneable_encoders = false;
8788         struct intel_encoder *encoder;
8789
8790         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8791                             base.head) {
8792                 if (&encoder->new_crtc->base != crtc)
8793                         continue;
8794
8795                 num_encoders++;
8796                 if (!encoder->cloneable)
8797                         uncloneable_encoders = true;
8798         }
8799
8800         return !(num_encoders > 1 && uncloneable_encoders);
8801 }
8802
8803 static struct intel_crtc_config *
8804 intel_modeset_pipe_config(struct drm_crtc *crtc,
8805                           struct drm_framebuffer *fb,
8806                           struct drm_display_mode *mode)
8807 {
8808         struct drm_device *dev = crtc->dev;
8809         struct intel_encoder *encoder;
8810         struct intel_crtc_config *pipe_config;
8811         int plane_bpp, ret = -EINVAL;
8812         bool retry = true;
8813
8814         if (!check_encoder_cloning(crtc)) {
8815                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8816                 return ERR_PTR(-EINVAL);
8817         }
8818
8819         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8820         if (!pipe_config)
8821                 return ERR_PTR(-ENOMEM);
8822
8823         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8824         drm_mode_copy(&pipe_config->requested_mode, mode);
8825
8826         pipe_config->cpu_transcoder =
8827                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8828         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8829
8830         /*
8831          * Sanitize sync polarity flags based on requested ones. If neither
8832          * positive or negative polarity is requested, treat this as meaning
8833          * negative polarity.
8834          */
8835         if (!(pipe_config->adjusted_mode.flags &
8836               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8837                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8838
8839         if (!(pipe_config->adjusted_mode.flags &
8840               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8841                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8842
8843         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8844          * plane pixel format and any sink constraints into account. Returns the
8845          * source plane bpp so that dithering can be selected on mismatches
8846          * after encoders and crtc also have had their say. */
8847         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8848                                               fb, pipe_config);
8849         if (plane_bpp < 0)
8850                 goto fail;
8851
8852         /*
8853          * Determine the real pipe dimensions. Note that stereo modes can
8854          * increase the actual pipe size due to the frame doubling and
8855          * insertion of additional space for blanks between the frame. This
8856          * is stored in the crtc timings. We use the requested mode to do this
8857          * computation to clearly distinguish it from the adjusted mode, which
8858          * can be changed by the connectors in the below retry loop.
8859          */
8860         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8861         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8862         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8863
8864 encoder_retry:
8865         /* Ensure the port clock defaults are reset when retrying. */
8866         pipe_config->port_clock = 0;
8867         pipe_config->pixel_multiplier = 1;
8868
8869         /* Fill in default crtc timings, allow encoders to overwrite them. */
8870         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8871
8872         /* Pass our mode to the connectors and the CRTC to give them a chance to
8873          * adjust it according to limitations or connector properties, and also
8874          * a chance to reject the mode entirely.
8875          */
8876         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8877                             base.head) {
8878
8879                 if (&encoder->new_crtc->base != crtc)
8880                         continue;
8881
8882                 if (!(encoder->compute_config(encoder, pipe_config))) {
8883                         DRM_DEBUG_KMS("Encoder config failure\n");
8884                         goto fail;
8885                 }
8886         }
8887
8888         /* Set default port clock if not overwritten by the encoder. Needs to be
8889          * done afterwards in case the encoder adjusts the mode. */
8890         if (!pipe_config->port_clock)
8891                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
8892                         * pipe_config->pixel_multiplier;
8893
8894         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8895         if (ret < 0) {
8896                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8897                 goto fail;
8898         }
8899
8900         if (ret == RETRY) {
8901                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8902                         ret = -EINVAL;
8903                         goto fail;
8904                 }
8905
8906                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8907                 retry = false;
8908                 goto encoder_retry;
8909         }
8910
8911         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8912         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8913                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8914
8915         return pipe_config;
8916 fail:
8917         kfree(pipe_config);
8918         return ERR_PTR(ret);
8919 }
8920
8921 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8922  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8923 static void
8924 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8925                              unsigned *prepare_pipes, unsigned *disable_pipes)
8926 {
8927         struct intel_crtc *intel_crtc;
8928         struct drm_device *dev = crtc->dev;
8929         struct intel_encoder *encoder;
8930         struct intel_connector *connector;
8931         struct drm_crtc *tmp_crtc;
8932
8933         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8934
8935         /* Check which crtcs have changed outputs connected to them, these need
8936          * to be part of the prepare_pipes mask. We don't (yet) support global
8937          * modeset across multiple crtcs, so modeset_pipes will only have one
8938          * bit set at most. */
8939         list_for_each_entry(connector, &dev->mode_config.connector_list,
8940                             base.head) {
8941                 if (connector->base.encoder == &connector->new_encoder->base)
8942                         continue;
8943
8944                 if (connector->base.encoder) {
8945                         tmp_crtc = connector->base.encoder->crtc;
8946
8947                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8948                 }
8949
8950                 if (connector->new_encoder)
8951                         *prepare_pipes |=
8952                                 1 << connector->new_encoder->new_crtc->pipe;
8953         }
8954
8955         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8956                             base.head) {
8957                 if (encoder->base.crtc == &encoder->new_crtc->base)
8958                         continue;
8959
8960                 if (encoder->base.crtc) {
8961                         tmp_crtc = encoder->base.crtc;
8962
8963                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8964                 }
8965
8966                 if (encoder->new_crtc)
8967                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8968         }
8969
8970         /* Check for any pipes that will be fully disabled ... */
8971         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8972                             base.head) {
8973                 bool used = false;
8974
8975                 /* Don't try to disable disabled crtcs. */
8976                 if (!intel_crtc->base.enabled)
8977                         continue;
8978
8979                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8980                                     base.head) {
8981                         if (encoder->new_crtc == intel_crtc)
8982                                 used = true;
8983                 }
8984
8985                 if (!used)
8986                         *disable_pipes |= 1 << intel_crtc->pipe;
8987         }
8988
8989
8990         /* set_mode is also used to update properties on life display pipes. */
8991         intel_crtc = to_intel_crtc(crtc);
8992         if (crtc->enabled)
8993                 *prepare_pipes |= 1 << intel_crtc->pipe;
8994
8995         /*
8996          * For simplicity do a full modeset on any pipe where the output routing
8997          * changed. We could be more clever, but that would require us to be
8998          * more careful with calling the relevant encoder->mode_set functions.
8999          */
9000         if (*prepare_pipes)
9001                 *modeset_pipes = *prepare_pipes;
9002
9003         /* ... and mask these out. */
9004         *modeset_pipes &= ~(*disable_pipes);
9005         *prepare_pipes &= ~(*disable_pipes);
9006
9007         /*
9008          * HACK: We don't (yet) fully support global modesets. intel_set_config
9009          * obies this rule, but the modeset restore mode of
9010          * intel_modeset_setup_hw_state does not.
9011          */
9012         *modeset_pipes &= 1 << intel_crtc->pipe;
9013         *prepare_pipes &= 1 << intel_crtc->pipe;
9014
9015         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9016                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9017 }
9018
9019 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9020 {
9021         struct drm_encoder *encoder;
9022         struct drm_device *dev = crtc->dev;
9023
9024         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9025                 if (encoder->crtc == crtc)
9026                         return true;
9027
9028         return false;
9029 }
9030
9031 static void
9032 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9033 {
9034         struct intel_encoder *intel_encoder;
9035         struct intel_crtc *intel_crtc;
9036         struct drm_connector *connector;
9037
9038         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9039                             base.head) {
9040                 if (!intel_encoder->base.crtc)
9041                         continue;
9042
9043                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9044
9045                 if (prepare_pipes & (1 << intel_crtc->pipe))
9046                         intel_encoder->connectors_active = false;
9047         }
9048
9049         intel_modeset_commit_output_state(dev);
9050
9051         /* Update computed state. */
9052         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9053                             base.head) {
9054                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
9055         }
9056
9057         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9058                 if (!connector->encoder || !connector->encoder->crtc)
9059                         continue;
9060
9061                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9062
9063                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9064                         struct drm_property *dpms_property =
9065                                 dev->mode_config.dpms_property;
9066
9067                         connector->dpms = DRM_MODE_DPMS_ON;
9068                         drm_object_property_set_value(&connector->base,
9069                                                          dpms_property,
9070                                                          DRM_MODE_DPMS_ON);
9071
9072                         intel_encoder = to_intel_encoder(connector->encoder);
9073                         intel_encoder->connectors_active = true;
9074                 }
9075         }
9076
9077 }
9078
9079 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9080 {
9081         int diff;
9082
9083         if (clock1 == clock2)
9084                 return true;
9085
9086         if (!clock1 || !clock2)
9087                 return false;
9088
9089         diff = abs(clock1 - clock2);
9090
9091         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9092                 return true;
9093
9094         return false;
9095 }
9096
9097 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9098         list_for_each_entry((intel_crtc), \
9099                             &(dev)->mode_config.crtc_list, \
9100                             base.head) \
9101                 if (mask & (1 <<(intel_crtc)->pipe))
9102
9103 static bool
9104 intel_pipe_config_compare(struct drm_device *dev,
9105                           struct intel_crtc_config *current_config,
9106                           struct intel_crtc_config *pipe_config)
9107 {
9108 #define PIPE_CONF_CHECK_X(name) \
9109         if (current_config->name != pipe_config->name) { \
9110                 DRM_ERROR("mismatch in " #name " " \
9111                           "(expected 0x%08x, found 0x%08x)\n", \
9112                           current_config->name, \
9113                           pipe_config->name); \
9114                 return false; \
9115         }
9116
9117 #define PIPE_CONF_CHECK_I(name) \
9118         if (current_config->name != pipe_config->name) { \
9119                 DRM_ERROR("mismatch in " #name " " \
9120                           "(expected %i, found %i)\n", \
9121                           current_config->name, \
9122                           pipe_config->name); \
9123                 return false; \
9124         }
9125
9126 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9127         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9128                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9129                           "(expected %i, found %i)\n", \
9130                           current_config->name & (mask), \
9131                           pipe_config->name & (mask)); \
9132                 return false; \
9133         }
9134
9135 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9136         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9137                 DRM_ERROR("mismatch in " #name " " \
9138                           "(expected %i, found %i)\n", \
9139                           current_config->name, \
9140                           pipe_config->name); \
9141                 return false; \
9142         }
9143
9144 #define PIPE_CONF_QUIRK(quirk)  \
9145         ((current_config->quirks | pipe_config->quirks) & (quirk))
9146
9147         PIPE_CONF_CHECK_I(cpu_transcoder);
9148
9149         PIPE_CONF_CHECK_I(has_pch_encoder);
9150         PIPE_CONF_CHECK_I(fdi_lanes);
9151         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9152         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9153         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9154         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9155         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9156
9157         PIPE_CONF_CHECK_I(has_dp_encoder);
9158         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9159         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9160         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9161         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9162         PIPE_CONF_CHECK_I(dp_m_n.tu);
9163
9164         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9165         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9166         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9167         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9168         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9169         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9170
9171         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9172         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9173         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9174         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9175         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9176         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9177
9178         PIPE_CONF_CHECK_I(pixel_multiplier);
9179
9180         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9181                               DRM_MODE_FLAG_INTERLACE);
9182
9183         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9184                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9185                                       DRM_MODE_FLAG_PHSYNC);
9186                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9187                                       DRM_MODE_FLAG_NHSYNC);
9188                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9189                                       DRM_MODE_FLAG_PVSYNC);
9190                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9191                                       DRM_MODE_FLAG_NVSYNC);
9192         }
9193
9194         PIPE_CONF_CHECK_I(pipe_src_w);
9195         PIPE_CONF_CHECK_I(pipe_src_h);
9196
9197         PIPE_CONF_CHECK_I(gmch_pfit.control);
9198         /* pfit ratios are autocomputed by the hw on gen4+ */
9199         if (INTEL_INFO(dev)->gen < 4)
9200                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9201         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9202         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9203         if (current_config->pch_pfit.enabled) {
9204                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9205                 PIPE_CONF_CHECK_I(pch_pfit.size);
9206         }
9207
9208         PIPE_CONF_CHECK_I(ips_enabled);
9209
9210         PIPE_CONF_CHECK_I(double_wide);
9211
9212         PIPE_CONF_CHECK_I(shared_dpll);
9213         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9214         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9215         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9216         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9217
9218         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9219                 PIPE_CONF_CHECK_I(pipe_bpp);
9220
9221         if (!IS_HASWELL(dev)) {
9222                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9223                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9224         }
9225
9226 #undef PIPE_CONF_CHECK_X
9227 #undef PIPE_CONF_CHECK_I
9228 #undef PIPE_CONF_CHECK_FLAGS
9229 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9230 #undef PIPE_CONF_QUIRK
9231
9232         return true;
9233 }
9234
9235 static void
9236 check_connector_state(struct drm_device *dev)
9237 {
9238         struct intel_connector *connector;
9239
9240         list_for_each_entry(connector, &dev->mode_config.connector_list,
9241                             base.head) {
9242                 /* This also checks the encoder/connector hw state with the
9243                  * ->get_hw_state callbacks. */
9244                 intel_connector_check_state(connector);
9245
9246                 WARN(&connector->new_encoder->base != connector->base.encoder,
9247                      "connector's staged encoder doesn't match current encoder\n");
9248         }
9249 }
9250
9251 static void
9252 check_encoder_state(struct drm_device *dev)
9253 {
9254         struct intel_encoder *encoder;
9255         struct intel_connector *connector;
9256
9257         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9258                             base.head) {
9259                 bool enabled = false;
9260                 bool active = false;
9261                 enum pipe pipe, tracked_pipe;
9262
9263                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9264                               encoder->base.base.id,
9265                               drm_get_encoder_name(&encoder->base));
9266
9267                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9268                      "encoder's stage crtc doesn't match current crtc\n");
9269                 WARN(encoder->connectors_active && !encoder->base.crtc,
9270                      "encoder's active_connectors set, but no crtc\n");
9271
9272                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9273                                     base.head) {
9274                         if (connector->base.encoder != &encoder->base)
9275                                 continue;
9276                         enabled = true;
9277                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9278                                 active = true;
9279                 }
9280                 WARN(!!encoder->base.crtc != enabled,
9281                      "encoder's enabled state mismatch "
9282                      "(expected %i, found %i)\n",
9283                      !!encoder->base.crtc, enabled);
9284                 WARN(active && !encoder->base.crtc,
9285                      "active encoder with no crtc\n");
9286
9287                 WARN(encoder->connectors_active != active,
9288                      "encoder's computed active state doesn't match tracked active state "
9289                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9290
9291                 active = encoder->get_hw_state(encoder, &pipe);
9292                 WARN(active != encoder->connectors_active,
9293                      "encoder's hw state doesn't match sw tracking "
9294                      "(expected %i, found %i)\n",
9295                      encoder->connectors_active, active);
9296
9297                 if (!encoder->base.crtc)
9298                         continue;
9299
9300                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9301                 WARN(active && pipe != tracked_pipe,
9302                      "active encoder's pipe doesn't match"
9303                      "(expected %i, found %i)\n",
9304                      tracked_pipe, pipe);
9305
9306         }
9307 }
9308
9309 static void
9310 check_crtc_state(struct drm_device *dev)
9311 {
9312         drm_i915_private_t *dev_priv = dev->dev_private;
9313         struct intel_crtc *crtc;
9314         struct intel_encoder *encoder;
9315         struct intel_crtc_config pipe_config;
9316
9317         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9318                             base.head) {
9319                 bool enabled = false;
9320                 bool active = false;
9321
9322                 memset(&pipe_config, 0, sizeof(pipe_config));
9323
9324                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9325                               crtc->base.base.id);
9326
9327                 WARN(crtc->active && !crtc->base.enabled,
9328                      "active crtc, but not enabled in sw tracking\n");
9329
9330                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9331                                     base.head) {
9332                         if (encoder->base.crtc != &crtc->base)
9333                                 continue;
9334                         enabled = true;
9335                         if (encoder->connectors_active)
9336                                 active = true;
9337                 }
9338
9339                 WARN(active != crtc->active,
9340                      "crtc's computed active state doesn't match tracked active state "
9341                      "(expected %i, found %i)\n", active, crtc->active);
9342                 WARN(enabled != crtc->base.enabled,
9343                      "crtc's computed enabled state doesn't match tracked enabled state "
9344                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9345
9346                 active = dev_priv->display.get_pipe_config(crtc,
9347                                                            &pipe_config);
9348
9349                 /* hw state is inconsistent with the pipe A quirk */
9350                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9351                         active = crtc->active;
9352
9353                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9354                                     base.head) {
9355                         enum pipe pipe;
9356                         if (encoder->base.crtc != &crtc->base)
9357                                 continue;
9358                         if (encoder->get_config &&
9359                             encoder->get_hw_state(encoder, &pipe))
9360                                 encoder->get_config(encoder, &pipe_config);
9361                 }
9362
9363                 WARN(crtc->active != active,
9364                      "crtc active state doesn't match with hw state "
9365                      "(expected %i, found %i)\n", crtc->active, active);
9366
9367                 if (active &&
9368                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9369                         WARN(1, "pipe state doesn't match!\n");
9370                         intel_dump_pipe_config(crtc, &pipe_config,
9371                                                "[hw state]");
9372                         intel_dump_pipe_config(crtc, &crtc->config,
9373                                                "[sw state]");
9374                 }
9375         }
9376 }
9377
9378 static void
9379 check_shared_dpll_state(struct drm_device *dev)
9380 {
9381         drm_i915_private_t *dev_priv = dev->dev_private;
9382         struct intel_crtc *crtc;
9383         struct intel_dpll_hw_state dpll_hw_state;
9384         int i;
9385
9386         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9387                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9388                 int enabled_crtcs = 0, active_crtcs = 0;
9389                 bool active;
9390
9391                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9392
9393                 DRM_DEBUG_KMS("%s\n", pll->name);
9394
9395                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9396
9397                 WARN(pll->active > pll->refcount,
9398                      "more active pll users than references: %i vs %i\n",
9399                      pll->active, pll->refcount);
9400                 WARN(pll->active && !pll->on,
9401                      "pll in active use but not on in sw tracking\n");
9402                 WARN(pll->on && !pll->active,
9403                      "pll in on but not on in use in sw tracking\n");
9404                 WARN(pll->on != active,
9405                      "pll on state mismatch (expected %i, found %i)\n",
9406                      pll->on, active);
9407
9408                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9409                                     base.head) {
9410                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9411                                 enabled_crtcs++;
9412                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9413                                 active_crtcs++;
9414                 }
9415                 WARN(pll->active != active_crtcs,
9416                      "pll active crtcs mismatch (expected %i, found %i)\n",
9417                      pll->active, active_crtcs);
9418                 WARN(pll->refcount != enabled_crtcs,
9419                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9420                      pll->refcount, enabled_crtcs);
9421
9422                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9423                                        sizeof(dpll_hw_state)),
9424                      "pll hw state mismatch\n");
9425         }
9426 }
9427
9428 void
9429 intel_modeset_check_state(struct drm_device *dev)
9430 {
9431         check_connector_state(dev);
9432         check_encoder_state(dev);
9433         check_crtc_state(dev);
9434         check_shared_dpll_state(dev);
9435 }
9436
9437 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9438                                      int dotclock)
9439 {
9440         /*
9441          * FDI already provided one idea for the dotclock.
9442          * Yell if the encoder disagrees.
9443          */
9444         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9445              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9446              pipe_config->adjusted_mode.crtc_clock, dotclock);
9447 }
9448
9449 static int __intel_set_mode(struct drm_crtc *crtc,
9450                             struct drm_display_mode *mode,
9451                             int x, int y, struct drm_framebuffer *fb)
9452 {
9453         struct drm_device *dev = crtc->dev;
9454         drm_i915_private_t *dev_priv = dev->dev_private;
9455         struct drm_display_mode *saved_mode, *saved_hwmode;
9456         struct intel_crtc_config *pipe_config = NULL;
9457         struct intel_crtc *intel_crtc;
9458         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9459         int ret = 0;
9460
9461         saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9462         if (!saved_mode)
9463                 return -ENOMEM;
9464         saved_hwmode = saved_mode + 1;
9465
9466         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9467                                      &prepare_pipes, &disable_pipes);
9468
9469         *saved_hwmode = crtc->hwmode;
9470         *saved_mode = crtc->mode;
9471
9472         /* Hack: Because we don't (yet) support global modeset on multiple
9473          * crtcs, we don't keep track of the new mode for more than one crtc.
9474          * Hence simply check whether any bit is set in modeset_pipes in all the
9475          * pieces of code that are not yet converted to deal with mutliple crtcs
9476          * changing their mode at the same time. */
9477         if (modeset_pipes) {
9478                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9479                 if (IS_ERR(pipe_config)) {
9480                         ret = PTR_ERR(pipe_config);
9481                         pipe_config = NULL;
9482
9483                         goto out;
9484                 }
9485                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9486                                        "[modeset]");
9487         }
9488
9489         /*
9490          * See if the config requires any additional preparation, e.g.
9491          * to adjust global state with pipes off.  We need to do this
9492          * here so we can get the modeset_pipe updated config for the new
9493          * mode set on this crtc.  For other crtcs we need to use the
9494          * adjusted_mode bits in the crtc directly.
9495          */
9496         if (IS_VALLEYVIEW(dev))
9497                 valleyview_modeset_global_pipes(dev, &prepare_pipes,
9498                                                 modeset_pipes, pipe_config);
9499
9500         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9501                 intel_crtc_disable(&intel_crtc->base);
9502
9503         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9504                 if (intel_crtc->base.enabled)
9505                         dev_priv->display.crtc_disable(&intel_crtc->base);
9506         }
9507
9508         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9509          * to set it here already despite that we pass it down the callchain.
9510          */
9511         if (modeset_pipes) {
9512                 crtc->mode = *mode;
9513                 /* mode_set/enable/disable functions rely on a correct pipe
9514                  * config. */
9515                 to_intel_crtc(crtc)->config = *pipe_config;
9516         }
9517
9518         /* Only after disabling all output pipelines that will be changed can we
9519          * update the the output configuration. */
9520         intel_modeset_update_state(dev, prepare_pipes);
9521
9522         if (dev_priv->display.modeset_global_resources)
9523                 dev_priv->display.modeset_global_resources(dev);
9524
9525         /* Set up the DPLL and any encoders state that needs to adjust or depend
9526          * on the DPLL.
9527          */
9528         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9529                 ret = intel_crtc_mode_set(&intel_crtc->base,
9530                                           x, y, fb);
9531                 if (ret)
9532                         goto done;
9533         }
9534
9535         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9536         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9537                 dev_priv->display.crtc_enable(&intel_crtc->base);
9538
9539         if (modeset_pipes) {
9540                 /* Store real post-adjustment hardware mode. */
9541                 crtc->hwmode = pipe_config->adjusted_mode;
9542
9543                 /* Calculate and store various constants which
9544                  * are later needed by vblank and swap-completion
9545                  * timestamping. They are derived from true hwmode.
9546                  */
9547                 drm_calc_timestamping_constants(crtc);
9548         }
9549
9550         /* FIXME: add subpixel order */
9551 done:
9552         if (ret && crtc->enabled) {
9553                 crtc->hwmode = *saved_hwmode;
9554                 crtc->mode = *saved_mode;
9555         }
9556
9557 out:
9558         kfree(pipe_config);
9559         kfree(saved_mode);
9560         return ret;
9561 }
9562
9563 static int intel_set_mode(struct drm_crtc *crtc,
9564                           struct drm_display_mode *mode,
9565                           int x, int y, struct drm_framebuffer *fb)
9566 {
9567         int ret;
9568
9569         ret = __intel_set_mode(crtc, mode, x, y, fb);
9570
9571         if (ret == 0)
9572                 intel_modeset_check_state(crtc->dev);
9573
9574         return ret;
9575 }
9576
9577 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9578 {
9579         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9580 }
9581
9582 #undef for_each_intel_crtc_masked
9583
9584 static void intel_set_config_free(struct intel_set_config *config)
9585 {
9586         if (!config)
9587                 return;
9588
9589         kfree(config->save_connector_encoders);
9590         kfree(config->save_encoder_crtcs);
9591         kfree(config);
9592 }
9593
9594 static int intel_set_config_save_state(struct drm_device *dev,
9595                                        struct intel_set_config *config)
9596 {
9597         struct drm_encoder *encoder;
9598         struct drm_connector *connector;
9599         int count;
9600
9601         config->save_encoder_crtcs =
9602                 kcalloc(dev->mode_config.num_encoder,
9603                         sizeof(struct drm_crtc *), GFP_KERNEL);
9604         if (!config->save_encoder_crtcs)
9605                 return -ENOMEM;
9606
9607         config->save_connector_encoders =
9608                 kcalloc(dev->mode_config.num_connector,
9609                         sizeof(struct drm_encoder *), GFP_KERNEL);
9610         if (!config->save_connector_encoders)
9611                 return -ENOMEM;
9612
9613         /* Copy data. Note that driver private data is not affected.
9614          * Should anything bad happen only the expected state is
9615          * restored, not the drivers personal bookkeeping.
9616          */
9617         count = 0;
9618         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9619                 config->save_encoder_crtcs[count++] = encoder->crtc;
9620         }
9621
9622         count = 0;
9623         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9624                 config->save_connector_encoders[count++] = connector->encoder;
9625         }
9626
9627         return 0;
9628 }
9629
9630 static void intel_set_config_restore_state(struct drm_device *dev,
9631                                            struct intel_set_config *config)
9632 {
9633         struct intel_encoder *encoder;
9634         struct intel_connector *connector;
9635         int count;
9636
9637         count = 0;
9638         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9639                 encoder->new_crtc =
9640                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9641         }
9642
9643         count = 0;
9644         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9645                 connector->new_encoder =
9646                         to_intel_encoder(config->save_connector_encoders[count++]);
9647         }
9648 }
9649
9650 static bool
9651 is_crtc_connector_off(struct drm_mode_set *set)
9652 {
9653         int i;
9654
9655         if (set->num_connectors == 0)
9656                 return false;
9657
9658         if (WARN_ON(set->connectors == NULL))
9659                 return false;
9660
9661         for (i = 0; i < set->num_connectors; i++)
9662                 if (set->connectors[i]->encoder &&
9663                     set->connectors[i]->encoder->crtc == set->crtc &&
9664                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9665                         return true;
9666
9667         return false;
9668 }
9669
9670 static void
9671 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9672                                       struct intel_set_config *config)
9673 {
9674
9675         /* We should be able to check here if the fb has the same properties
9676          * and then just flip_or_move it */
9677         if (is_crtc_connector_off(set)) {
9678                 config->mode_changed = true;
9679         } else if (set->crtc->fb != set->fb) {
9680                 /* If we have no fb then treat it as a full mode set */
9681                 if (set->crtc->fb == NULL) {
9682                         struct intel_crtc *intel_crtc =
9683                                 to_intel_crtc(set->crtc);
9684
9685                         if (intel_crtc->active && i915_fastboot) {
9686                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9687                                 config->fb_changed = true;
9688                         } else {
9689                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9690                                 config->mode_changed = true;
9691                         }
9692                 } else if (set->fb == NULL) {
9693                         config->mode_changed = true;
9694                 } else if (set->fb->pixel_format !=
9695                            set->crtc->fb->pixel_format) {
9696                         config->mode_changed = true;
9697                 } else {
9698                         config->fb_changed = true;
9699                 }
9700         }
9701
9702         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9703                 config->fb_changed = true;
9704
9705         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9706                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9707                 drm_mode_debug_printmodeline(&set->crtc->mode);
9708                 drm_mode_debug_printmodeline(set->mode);
9709                 config->mode_changed = true;
9710         }
9711
9712         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9713                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9714 }
9715
9716 static int
9717 intel_modeset_stage_output_state(struct drm_device *dev,
9718                                  struct drm_mode_set *set,
9719                                  struct intel_set_config *config)
9720 {
9721         struct drm_crtc *new_crtc;
9722         struct intel_connector *connector;
9723         struct intel_encoder *encoder;
9724         int ro;
9725
9726         /* The upper layers ensure that we either disable a crtc or have a list
9727          * of connectors. For paranoia, double-check this. */
9728         WARN_ON(!set->fb && (set->num_connectors != 0));
9729         WARN_ON(set->fb && (set->num_connectors == 0));
9730
9731         list_for_each_entry(connector, &dev->mode_config.connector_list,
9732                             base.head) {
9733                 /* Otherwise traverse passed in connector list and get encoders
9734                  * for them. */
9735                 for (ro = 0; ro < set->num_connectors; ro++) {
9736                         if (set->connectors[ro] == &connector->base) {
9737                                 connector->new_encoder = connector->encoder;
9738                                 break;
9739                         }
9740                 }
9741
9742                 /* If we disable the crtc, disable all its connectors. Also, if
9743                  * the connector is on the changing crtc but not on the new
9744                  * connector list, disable it. */
9745                 if ((!set->fb || ro == set->num_connectors) &&
9746                     connector->base.encoder &&
9747                     connector->base.encoder->crtc == set->crtc) {
9748                         connector->new_encoder = NULL;
9749
9750                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9751                                 connector->base.base.id,
9752                                 drm_get_connector_name(&connector->base));
9753                 }
9754
9755
9756                 if (&connector->new_encoder->base != connector->base.encoder) {
9757                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9758                         config->mode_changed = true;
9759                 }
9760         }
9761         /* connector->new_encoder is now updated for all connectors. */
9762
9763         /* Update crtc of enabled connectors. */
9764         list_for_each_entry(connector, &dev->mode_config.connector_list,
9765                             base.head) {
9766                 if (!connector->new_encoder)
9767                         continue;
9768
9769                 new_crtc = connector->new_encoder->base.crtc;
9770
9771                 for (ro = 0; ro < set->num_connectors; ro++) {
9772                         if (set->connectors[ro] == &connector->base)
9773                                 new_crtc = set->crtc;
9774                 }
9775
9776                 /* Make sure the new CRTC will work with the encoder */
9777                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9778                                            new_crtc)) {
9779                         return -EINVAL;
9780                 }
9781                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9782
9783                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9784                         connector->base.base.id,
9785                         drm_get_connector_name(&connector->base),
9786                         new_crtc->base.id);
9787         }
9788
9789         /* Check for any encoders that needs to be disabled. */
9790         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9791                             base.head) {
9792                 list_for_each_entry(connector,
9793                                     &dev->mode_config.connector_list,
9794                                     base.head) {
9795                         if (connector->new_encoder == encoder) {
9796                                 WARN_ON(!connector->new_encoder->new_crtc);
9797
9798                                 goto next_encoder;
9799                         }
9800                 }
9801                 encoder->new_crtc = NULL;
9802 next_encoder:
9803                 /* Only now check for crtc changes so we don't miss encoders
9804                  * that will be disabled. */
9805                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9806                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9807                         config->mode_changed = true;
9808                 }
9809         }
9810         /* Now we've also updated encoder->new_crtc for all encoders. */
9811
9812         return 0;
9813 }
9814
9815 static int intel_crtc_set_config(struct drm_mode_set *set)
9816 {
9817         struct drm_device *dev;
9818         struct drm_mode_set save_set;
9819         struct intel_set_config *config;
9820         int ret;
9821
9822         BUG_ON(!set);
9823         BUG_ON(!set->crtc);
9824         BUG_ON(!set->crtc->helper_private);
9825
9826         /* Enforce sane interface api - has been abused by the fb helper. */
9827         BUG_ON(!set->mode && set->fb);
9828         BUG_ON(set->fb && set->num_connectors == 0);
9829
9830         if (set->fb) {
9831                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9832                                 set->crtc->base.id, set->fb->base.id,
9833                                 (int)set->num_connectors, set->x, set->y);
9834         } else {
9835                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9836         }
9837
9838         dev = set->crtc->dev;
9839
9840         ret = -ENOMEM;
9841         config = kzalloc(sizeof(*config), GFP_KERNEL);
9842         if (!config)
9843                 goto out_config;
9844
9845         ret = intel_set_config_save_state(dev, config);
9846         if (ret)
9847                 goto out_config;
9848
9849         save_set.crtc = set->crtc;
9850         save_set.mode = &set->crtc->mode;
9851         save_set.x = set->crtc->x;
9852         save_set.y = set->crtc->y;
9853         save_set.fb = set->crtc->fb;
9854
9855         /* Compute whether we need a full modeset, only an fb base update or no
9856          * change at all. In the future we might also check whether only the
9857          * mode changed, e.g. for LVDS where we only change the panel fitter in
9858          * such cases. */
9859         intel_set_config_compute_mode_changes(set, config);
9860
9861         ret = intel_modeset_stage_output_state(dev, set, config);
9862         if (ret)
9863                 goto fail;
9864
9865         if (config->mode_changed) {
9866                 ret = intel_set_mode(set->crtc, set->mode,
9867                                      set->x, set->y, set->fb);
9868         } else if (config->fb_changed) {
9869                 intel_crtc_wait_for_pending_flips(set->crtc);
9870
9871                 ret = intel_pipe_set_base(set->crtc,
9872                                           set->x, set->y, set->fb);
9873         }
9874
9875         if (ret) {
9876                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9877                               set->crtc->base.id, ret);
9878 fail:
9879                 intel_set_config_restore_state(dev, config);
9880
9881                 /* Try to restore the config */
9882                 if (config->mode_changed &&
9883                     intel_set_mode(save_set.crtc, save_set.mode,
9884                                    save_set.x, save_set.y, save_set.fb))
9885                         DRM_ERROR("failed to restore config after modeset failure\n");
9886         }
9887
9888 out_config:
9889         intel_set_config_free(config);
9890         return ret;
9891 }
9892
9893 static const struct drm_crtc_funcs intel_crtc_funcs = {
9894         .cursor_set = intel_crtc_cursor_set,
9895         .cursor_move = intel_crtc_cursor_move,
9896         .gamma_set = intel_crtc_gamma_set,
9897         .set_config = intel_crtc_set_config,
9898         .destroy = intel_crtc_destroy,
9899         .page_flip = intel_crtc_page_flip,
9900 };
9901
9902 static void intel_cpu_pll_init(struct drm_device *dev)
9903 {
9904         if (HAS_DDI(dev))
9905                 intel_ddi_pll_init(dev);
9906 }
9907
9908 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9909                                       struct intel_shared_dpll *pll,
9910                                       struct intel_dpll_hw_state *hw_state)
9911 {
9912         uint32_t val;
9913
9914         val = I915_READ(PCH_DPLL(pll->id));
9915         hw_state->dpll = val;
9916         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9917         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9918
9919         return val & DPLL_VCO_ENABLE;
9920 }
9921
9922 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9923                                   struct intel_shared_dpll *pll)
9924 {
9925         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9926         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9927 }
9928
9929 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9930                                 struct intel_shared_dpll *pll)
9931 {
9932         /* PCH refclock must be enabled first */
9933         assert_pch_refclk_enabled(dev_priv);
9934
9935         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9936
9937         /* Wait for the clocks to stabilize. */
9938         POSTING_READ(PCH_DPLL(pll->id));
9939         udelay(150);
9940
9941         /* The pixel multiplier can only be updated once the
9942          * DPLL is enabled and the clocks are stable.
9943          *
9944          * So write it again.
9945          */
9946         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9947         POSTING_READ(PCH_DPLL(pll->id));
9948         udelay(200);
9949 }
9950
9951 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9952                                  struct intel_shared_dpll *pll)
9953 {
9954         struct drm_device *dev = dev_priv->dev;
9955         struct intel_crtc *crtc;
9956
9957         /* Make sure no transcoder isn't still depending on us. */
9958         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9959                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9960                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9961         }
9962
9963         I915_WRITE(PCH_DPLL(pll->id), 0);
9964         POSTING_READ(PCH_DPLL(pll->id));
9965         udelay(200);
9966 }
9967
9968 static char *ibx_pch_dpll_names[] = {
9969         "PCH DPLL A",
9970         "PCH DPLL B",
9971 };
9972
9973 static void ibx_pch_dpll_init(struct drm_device *dev)
9974 {
9975         struct drm_i915_private *dev_priv = dev->dev_private;
9976         int i;
9977
9978         dev_priv->num_shared_dpll = 2;
9979
9980         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9981                 dev_priv->shared_dplls[i].id = i;
9982                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9983                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9984                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9985                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9986                 dev_priv->shared_dplls[i].get_hw_state =
9987                         ibx_pch_dpll_get_hw_state;
9988         }
9989 }
9990
9991 static void intel_shared_dpll_init(struct drm_device *dev)
9992 {
9993         struct drm_i915_private *dev_priv = dev->dev_private;
9994
9995         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9996                 ibx_pch_dpll_init(dev);
9997         else
9998                 dev_priv->num_shared_dpll = 0;
9999
10000         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10001         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
10002                       dev_priv->num_shared_dpll);
10003 }
10004
10005 static void intel_crtc_init(struct drm_device *dev, int pipe)
10006 {
10007         drm_i915_private_t *dev_priv = dev->dev_private;
10008         struct intel_crtc *intel_crtc;
10009         int i;
10010
10011         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10012         if (intel_crtc == NULL)
10013                 return;
10014
10015         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10016
10017         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10018         for (i = 0; i < 256; i++) {
10019                 intel_crtc->lut_r[i] = i;
10020                 intel_crtc->lut_g[i] = i;
10021                 intel_crtc->lut_b[i] = i;
10022         }
10023
10024         /* Swap pipes & planes for FBC on pre-965 */
10025         intel_crtc->pipe = pipe;
10026         intel_crtc->plane = pipe;
10027         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
10028                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10029                 intel_crtc->plane = !pipe;
10030         }
10031
10032         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10033                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10034         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10035         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10036
10037         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10038 }
10039
10040 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10041                                 struct drm_file *file)
10042 {
10043         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10044         struct drm_mode_object *drmmode_obj;
10045         struct intel_crtc *crtc;
10046
10047         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10048                 return -ENODEV;
10049
10050         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10051                         DRM_MODE_OBJECT_CRTC);
10052
10053         if (!drmmode_obj) {
10054                 DRM_ERROR("no such CRTC id\n");
10055                 return -EINVAL;
10056         }
10057
10058         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10059         pipe_from_crtc_id->pipe = crtc->pipe;
10060
10061         return 0;
10062 }
10063
10064 static int intel_encoder_clones(struct intel_encoder *encoder)
10065 {
10066         struct drm_device *dev = encoder->base.dev;
10067         struct intel_encoder *source_encoder;
10068         int index_mask = 0;
10069         int entry = 0;
10070
10071         list_for_each_entry(source_encoder,
10072                             &dev->mode_config.encoder_list, base.head) {
10073
10074                 if (encoder == source_encoder)
10075                         index_mask |= (1 << entry);
10076
10077                 /* Intel hw has only one MUX where enocoders could be cloned. */
10078                 if (encoder->cloneable && source_encoder->cloneable)
10079                         index_mask |= (1 << entry);
10080
10081                 entry++;
10082         }
10083
10084         return index_mask;
10085 }
10086
10087 static bool has_edp_a(struct drm_device *dev)
10088 {
10089         struct drm_i915_private *dev_priv = dev->dev_private;
10090
10091         if (!IS_MOBILE(dev))
10092                 return false;
10093
10094         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10095                 return false;
10096
10097         if (IS_GEN5(dev) &&
10098             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
10099                 return false;
10100
10101         return true;
10102 }
10103
10104 static void intel_setup_outputs(struct drm_device *dev)
10105 {
10106         struct drm_i915_private *dev_priv = dev->dev_private;
10107         struct intel_encoder *encoder;
10108         bool dpd_is_edp = false;
10109
10110         intel_lvds_init(dev);
10111
10112         if (!IS_ULT(dev))
10113                 intel_crt_init(dev);
10114
10115         if (HAS_DDI(dev)) {
10116                 int found;
10117
10118                 /* Haswell uses DDI functions to detect digital outputs */
10119                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10120                 /* DDI A only supports eDP */
10121                 if (found)
10122                         intel_ddi_init(dev, PORT_A);
10123
10124                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10125                  * register */
10126                 found = I915_READ(SFUSE_STRAP);
10127
10128                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10129                         intel_ddi_init(dev, PORT_B);
10130                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10131                         intel_ddi_init(dev, PORT_C);
10132                 if (found & SFUSE_STRAP_DDID_DETECTED)
10133                         intel_ddi_init(dev, PORT_D);
10134         } else if (HAS_PCH_SPLIT(dev)) {
10135                 int found;
10136                 dpd_is_edp = intel_dpd_is_edp(dev);
10137
10138                 if (has_edp_a(dev))
10139                         intel_dp_init(dev, DP_A, PORT_A);
10140
10141                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10142                         /* PCH SDVOB multiplex with HDMIB */
10143                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10144                         if (!found)
10145                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10146                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10147                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10148                 }
10149
10150                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10151                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10152
10153                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10154                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10155
10156                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10157                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10158
10159                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10160                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10161         } else if (IS_VALLEYVIEW(dev)) {
10162                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10163                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10164                                         PORT_B);
10165                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10166                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10167                 }
10168
10169                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10170                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10171                                         PORT_C);
10172                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10173                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
10174                                               PORT_C);
10175                 }
10176
10177                 intel_dsi_init(dev);
10178         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10179                 bool found = false;
10180
10181                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10182                         DRM_DEBUG_KMS("probing SDVOB\n");
10183                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10184                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10185                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10186                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10187                         }
10188
10189                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10190                                 intel_dp_init(dev, DP_B, PORT_B);
10191                 }
10192
10193                 /* Before G4X SDVOC doesn't have its own detect register */
10194
10195                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10196                         DRM_DEBUG_KMS("probing SDVOC\n");
10197                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10198                 }
10199
10200                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10201
10202                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10203                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10204                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10205                         }
10206                         if (SUPPORTS_INTEGRATED_DP(dev))
10207                                 intel_dp_init(dev, DP_C, PORT_C);
10208                 }
10209
10210                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10211                     (I915_READ(DP_D) & DP_DETECTED))
10212                         intel_dp_init(dev, DP_D, PORT_D);
10213         } else if (IS_GEN2(dev))
10214                 intel_dvo_init(dev);
10215
10216         if (SUPPORTS_TV(dev))
10217                 intel_tv_init(dev);
10218
10219         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10220                 encoder->base.possible_crtcs = encoder->crtc_mask;
10221                 encoder->base.possible_clones =
10222                         intel_encoder_clones(encoder);
10223         }
10224
10225         intel_init_pch_refclk(dev);
10226
10227         drm_helper_move_panel_connectors_to_head(dev);
10228 }
10229
10230 void intel_framebuffer_fini(struct intel_framebuffer *fb)
10231 {
10232         drm_framebuffer_cleanup(&fb->base);
10233         WARN_ON(!fb->obj->framebuffer_references--);
10234         drm_gem_object_unreference_unlocked(&fb->obj->base);
10235 }
10236
10237 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10238 {
10239         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10240
10241         intel_framebuffer_fini(intel_fb);
10242         kfree(intel_fb);
10243 }
10244
10245 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10246                                                 struct drm_file *file,
10247                                                 unsigned int *handle)
10248 {
10249         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10250         struct drm_i915_gem_object *obj = intel_fb->obj;
10251
10252         return drm_gem_handle_create(file, &obj->base, handle);
10253 }
10254
10255 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10256         .destroy = intel_user_framebuffer_destroy,
10257         .create_handle = intel_user_framebuffer_create_handle,
10258 };
10259
10260 int intel_framebuffer_init(struct drm_device *dev,
10261                            struct intel_framebuffer *intel_fb,
10262                            struct drm_mode_fb_cmd2 *mode_cmd,
10263                            struct drm_i915_gem_object *obj)
10264 {
10265         int aligned_height, tile_height;
10266         int pitch_limit;
10267         int ret;
10268
10269         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10270
10271         if (obj->tiling_mode == I915_TILING_Y) {
10272                 DRM_DEBUG("hardware does not support tiling Y\n");
10273                 return -EINVAL;
10274         }
10275
10276         if (mode_cmd->pitches[0] & 63) {
10277                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10278                           mode_cmd->pitches[0]);
10279                 return -EINVAL;
10280         }
10281
10282         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10283                 pitch_limit = 32*1024;
10284         } else if (INTEL_INFO(dev)->gen >= 4) {
10285                 if (obj->tiling_mode)
10286                         pitch_limit = 16*1024;
10287                 else
10288                         pitch_limit = 32*1024;
10289         } else if (INTEL_INFO(dev)->gen >= 3) {
10290                 if (obj->tiling_mode)
10291                         pitch_limit = 8*1024;
10292                 else
10293                         pitch_limit = 16*1024;
10294         } else
10295                 /* XXX DSPC is limited to 4k tiled */
10296                 pitch_limit = 8*1024;
10297
10298         if (mode_cmd->pitches[0] > pitch_limit) {
10299                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10300                           obj->tiling_mode ? "tiled" : "linear",
10301                           mode_cmd->pitches[0], pitch_limit);
10302                 return -EINVAL;
10303         }
10304
10305         if (obj->tiling_mode != I915_TILING_NONE &&
10306             mode_cmd->pitches[0] != obj->stride) {
10307                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10308                           mode_cmd->pitches[0], obj->stride);
10309                 return -EINVAL;
10310         }
10311
10312         /* Reject formats not supported by any plane early. */
10313         switch (mode_cmd->pixel_format) {
10314         case DRM_FORMAT_C8:
10315         case DRM_FORMAT_RGB565:
10316         case DRM_FORMAT_XRGB8888:
10317         case DRM_FORMAT_ARGB8888:
10318                 break;
10319         case DRM_FORMAT_XRGB1555:
10320         case DRM_FORMAT_ARGB1555:
10321                 if (INTEL_INFO(dev)->gen > 3) {
10322                         DRM_DEBUG("unsupported pixel format: %s\n",
10323                                   drm_get_format_name(mode_cmd->pixel_format));
10324                         return -EINVAL;
10325                 }
10326                 break;
10327         case DRM_FORMAT_XBGR8888:
10328         case DRM_FORMAT_ABGR8888:
10329         case DRM_FORMAT_XRGB2101010:
10330         case DRM_FORMAT_ARGB2101010:
10331         case DRM_FORMAT_XBGR2101010:
10332         case DRM_FORMAT_ABGR2101010:
10333                 if (INTEL_INFO(dev)->gen < 4) {
10334                         DRM_DEBUG("unsupported pixel format: %s\n",
10335                                   drm_get_format_name(mode_cmd->pixel_format));
10336                         return -EINVAL;
10337                 }
10338                 break;
10339         case DRM_FORMAT_YUYV:
10340         case DRM_FORMAT_UYVY:
10341         case DRM_FORMAT_YVYU:
10342         case DRM_FORMAT_VYUY:
10343                 if (INTEL_INFO(dev)->gen < 5) {
10344                         DRM_DEBUG("unsupported pixel format: %s\n",
10345                                   drm_get_format_name(mode_cmd->pixel_format));
10346                         return -EINVAL;
10347                 }
10348                 break;
10349         default:
10350                 DRM_DEBUG("unsupported pixel format: %s\n",
10351                           drm_get_format_name(mode_cmd->pixel_format));
10352                 return -EINVAL;
10353         }
10354
10355         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10356         if (mode_cmd->offsets[0] != 0)
10357                 return -EINVAL;
10358
10359         tile_height = IS_GEN2(dev) ? 16 : 8;
10360         aligned_height = ALIGN(mode_cmd->height,
10361                                obj->tiling_mode ? tile_height : 1);
10362         /* FIXME drm helper for size checks (especially planar formats)? */
10363         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10364                 return -EINVAL;
10365
10366         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10367         intel_fb->obj = obj;
10368         intel_fb->obj->framebuffer_references++;
10369
10370         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10371         if (ret) {
10372                 DRM_ERROR("framebuffer init failed %d\n", ret);
10373                 return ret;
10374         }
10375
10376         return 0;
10377 }
10378
10379 static struct drm_framebuffer *
10380 intel_user_framebuffer_create(struct drm_device *dev,
10381                               struct drm_file *filp,
10382                               struct drm_mode_fb_cmd2 *mode_cmd)
10383 {
10384         struct drm_i915_gem_object *obj;
10385
10386         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10387                                                 mode_cmd->handles[0]));
10388         if (&obj->base == NULL)
10389                 return ERR_PTR(-ENOENT);
10390
10391         return intel_framebuffer_create(dev, mode_cmd, obj);
10392 }
10393
10394 #ifndef CONFIG_DRM_I915_FBDEV
10395 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10396 {
10397 }
10398 #endif
10399
10400 static const struct drm_mode_config_funcs intel_mode_funcs = {
10401         .fb_create = intel_user_framebuffer_create,
10402         .output_poll_changed = intel_fbdev_output_poll_changed,
10403 };
10404
10405 /* Set up chip specific display functions */
10406 static void intel_init_display(struct drm_device *dev)
10407 {
10408         struct drm_i915_private *dev_priv = dev->dev_private;
10409
10410         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10411                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10412         else if (IS_VALLEYVIEW(dev))
10413                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10414         else if (IS_PINEVIEW(dev))
10415                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10416         else
10417                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10418
10419         if (HAS_DDI(dev)) {
10420                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10421                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10422                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10423                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10424                 dev_priv->display.off = haswell_crtc_off;
10425                 dev_priv->display.update_plane = ironlake_update_plane;
10426         } else if (HAS_PCH_SPLIT(dev)) {
10427                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10428                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10429                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10430                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10431                 dev_priv->display.off = ironlake_crtc_off;
10432                 dev_priv->display.update_plane = ironlake_update_plane;
10433         } else if (IS_VALLEYVIEW(dev)) {
10434                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10435                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10436                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10437                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10438                 dev_priv->display.off = i9xx_crtc_off;
10439                 dev_priv->display.update_plane = i9xx_update_plane;
10440         } else {
10441                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10442                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10443                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10444                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10445                 dev_priv->display.off = i9xx_crtc_off;
10446                 dev_priv->display.update_plane = i9xx_update_plane;
10447         }
10448
10449         /* Returns the core display clock speed */
10450         if (IS_VALLEYVIEW(dev))
10451                 dev_priv->display.get_display_clock_speed =
10452                         valleyview_get_display_clock_speed;
10453         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10454                 dev_priv->display.get_display_clock_speed =
10455                         i945_get_display_clock_speed;
10456         else if (IS_I915G(dev))
10457                 dev_priv->display.get_display_clock_speed =
10458                         i915_get_display_clock_speed;
10459         else if (IS_I945GM(dev) || IS_845G(dev))
10460                 dev_priv->display.get_display_clock_speed =
10461                         i9xx_misc_get_display_clock_speed;
10462         else if (IS_PINEVIEW(dev))
10463                 dev_priv->display.get_display_clock_speed =
10464                         pnv_get_display_clock_speed;
10465         else if (IS_I915GM(dev))
10466                 dev_priv->display.get_display_clock_speed =
10467                         i915gm_get_display_clock_speed;
10468         else if (IS_I865G(dev))
10469                 dev_priv->display.get_display_clock_speed =
10470                         i865_get_display_clock_speed;
10471         else if (IS_I85X(dev))
10472                 dev_priv->display.get_display_clock_speed =
10473                         i855_get_display_clock_speed;
10474         else /* 852, 830 */
10475                 dev_priv->display.get_display_clock_speed =
10476                         i830_get_display_clock_speed;
10477
10478         if (HAS_PCH_SPLIT(dev)) {
10479                 if (IS_GEN5(dev)) {
10480                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10481                         dev_priv->display.write_eld = ironlake_write_eld;
10482                 } else if (IS_GEN6(dev)) {
10483                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10484                         dev_priv->display.write_eld = ironlake_write_eld;
10485                 } else if (IS_IVYBRIDGE(dev)) {
10486                         /* FIXME: detect B0+ stepping and use auto training */
10487                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10488                         dev_priv->display.write_eld = ironlake_write_eld;
10489                         dev_priv->display.modeset_global_resources =
10490                                 ivb_modeset_global_resources;
10491                 } else if (IS_HASWELL(dev)) {
10492                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10493                         dev_priv->display.write_eld = haswell_write_eld;
10494                         dev_priv->display.modeset_global_resources =
10495                                 haswell_modeset_global_resources;
10496                 }
10497         } else if (IS_G4X(dev)) {
10498                 dev_priv->display.write_eld = g4x_write_eld;
10499         } else if (IS_VALLEYVIEW(dev)) {
10500                 dev_priv->display.modeset_global_resources =
10501                         valleyview_modeset_global_resources;
10502         }
10503
10504         /* Default just returns -ENODEV to indicate unsupported */
10505         dev_priv->display.queue_flip = intel_default_queue_flip;
10506
10507         switch (INTEL_INFO(dev)->gen) {
10508         case 2:
10509                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10510                 break;
10511
10512         case 3:
10513                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10514                 break;
10515
10516         case 4:
10517         case 5:
10518                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10519                 break;
10520
10521         case 6:
10522                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10523                 break;
10524         case 7:
10525                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10526                 break;
10527         }
10528 }
10529
10530 /*
10531  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10532  * resume, or other times.  This quirk makes sure that's the case for
10533  * affected systems.
10534  */
10535 static void quirk_pipea_force(struct drm_device *dev)
10536 {
10537         struct drm_i915_private *dev_priv = dev->dev_private;
10538
10539         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10540         DRM_INFO("applying pipe a force quirk\n");
10541 }
10542
10543 /*
10544  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10545  */
10546 static void quirk_ssc_force_disable(struct drm_device *dev)
10547 {
10548         struct drm_i915_private *dev_priv = dev->dev_private;
10549         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10550         DRM_INFO("applying lvds SSC disable quirk\n");
10551 }
10552
10553 /*
10554  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10555  * brightness value
10556  */
10557 static void quirk_invert_brightness(struct drm_device *dev)
10558 {
10559         struct drm_i915_private *dev_priv = dev->dev_private;
10560         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10561         DRM_INFO("applying inverted panel brightness quirk\n");
10562 }
10563
10564 /*
10565  * Some machines (Dell XPS13) suffer broken backlight controls if
10566  * BLM_PCH_PWM_ENABLE is set.
10567  */
10568 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10569 {
10570         struct drm_i915_private *dev_priv = dev->dev_private;
10571         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10572         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10573 }
10574
10575 struct intel_quirk {
10576         int device;
10577         int subsystem_vendor;
10578         int subsystem_device;
10579         void (*hook)(struct drm_device *dev);
10580 };
10581
10582 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10583 struct intel_dmi_quirk {
10584         void (*hook)(struct drm_device *dev);
10585         const struct dmi_system_id (*dmi_id_list)[];
10586 };
10587
10588 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10589 {
10590         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10591         return 1;
10592 }
10593
10594 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10595         {
10596                 .dmi_id_list = &(const struct dmi_system_id[]) {
10597                         {
10598                                 .callback = intel_dmi_reverse_brightness,
10599                                 .ident = "NCR Corporation",
10600                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10601                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10602                                 },
10603                         },
10604                         { }  /* terminating entry */
10605                 },
10606                 .hook = quirk_invert_brightness,
10607         },
10608 };
10609
10610 static struct intel_quirk intel_quirks[] = {
10611         /* HP Mini needs pipe A force quirk (LP: #322104) */
10612         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10613
10614         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10615         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10616
10617         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10618         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10619
10620         /* 830 needs to leave pipe A & dpll A up */
10621         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10622
10623         /* Lenovo U160 cannot use SSC on LVDS */
10624         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10625
10626         /* Sony Vaio Y cannot use SSC on LVDS */
10627         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10628
10629         /*
10630          * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10631          * seem to use inverted backlight PWM.
10632          */
10633         { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10634
10635         /* Dell XPS13 HD Sandy Bridge */
10636         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10637         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10638         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10639 };
10640
10641 static void intel_init_quirks(struct drm_device *dev)
10642 {
10643         struct pci_dev *d = dev->pdev;
10644         int i;
10645
10646         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10647                 struct intel_quirk *q = &intel_quirks[i];
10648
10649                 if (d->device == q->device &&
10650                     (d->subsystem_vendor == q->subsystem_vendor ||
10651                      q->subsystem_vendor == PCI_ANY_ID) &&
10652                     (d->subsystem_device == q->subsystem_device ||
10653                      q->subsystem_device == PCI_ANY_ID))
10654                         q->hook(dev);
10655         }
10656         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10657                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10658                         intel_dmi_quirks[i].hook(dev);
10659         }
10660 }
10661
10662 /* Disable the VGA plane that we never use */
10663 static void i915_disable_vga(struct drm_device *dev)
10664 {
10665         struct drm_i915_private *dev_priv = dev->dev_private;
10666         u8 sr1;
10667         u32 vga_reg = i915_vgacntrl_reg(dev);
10668
10669         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10670         outb(SR01, VGA_SR_INDEX);
10671         sr1 = inb(VGA_SR_DATA);
10672         outb(sr1 | 1<<5, VGA_SR_DATA);
10673         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10674         udelay(300);
10675
10676         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10677         POSTING_READ(vga_reg);
10678 }
10679
10680 void intel_modeset_init_hw(struct drm_device *dev)
10681 {
10682         struct drm_i915_private *dev_priv = dev->dev_private;
10683
10684         intel_prepare_ddi(dev);
10685
10686         intel_init_clock_gating(dev);
10687
10688         /* Enable the CRI clock source so we can get at the display */
10689         if (IS_VALLEYVIEW(dev))
10690                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10691                            DPLL_INTEGRATED_CRI_CLK_VLV);
10692
10693         intel_init_dpio(dev);
10694
10695         mutex_lock(&dev->struct_mutex);
10696         intel_enable_gt_powersave(dev);
10697         mutex_unlock(&dev->struct_mutex);
10698 }
10699
10700 void intel_modeset_suspend_hw(struct drm_device *dev)
10701 {
10702         intel_suspend_hw(dev);
10703 }
10704
10705 void intel_modeset_init(struct drm_device *dev)
10706 {
10707         struct drm_i915_private *dev_priv = dev->dev_private;
10708         int i, j, ret;
10709
10710         drm_mode_config_init(dev);
10711
10712         dev->mode_config.min_width = 0;
10713         dev->mode_config.min_height = 0;
10714
10715         dev->mode_config.preferred_depth = 24;
10716         dev->mode_config.prefer_shadow = 1;
10717
10718         dev->mode_config.funcs = &intel_mode_funcs;
10719
10720         intel_init_quirks(dev);
10721
10722         intel_init_pm(dev);
10723
10724         if (INTEL_INFO(dev)->num_pipes == 0)
10725                 return;
10726
10727         intel_init_display(dev);
10728
10729         if (IS_GEN2(dev)) {
10730                 dev->mode_config.max_width = 2048;
10731                 dev->mode_config.max_height = 2048;
10732         } else if (IS_GEN3(dev)) {
10733                 dev->mode_config.max_width = 4096;
10734                 dev->mode_config.max_height = 4096;
10735         } else {
10736                 dev->mode_config.max_width = 8192;
10737                 dev->mode_config.max_height = 8192;
10738         }
10739         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10740
10741         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10742                       INTEL_INFO(dev)->num_pipes,
10743                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10744
10745         for_each_pipe(i) {
10746                 intel_crtc_init(dev, i);
10747                 for (j = 0; j < dev_priv->num_plane; j++) {
10748                         ret = intel_plane_init(dev, i, j);
10749                         if (ret)
10750                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10751                                               pipe_name(i), sprite_name(i, j), ret);
10752                 }
10753         }
10754
10755         intel_cpu_pll_init(dev);
10756         intel_shared_dpll_init(dev);
10757
10758         /* Just disable it once at startup */
10759         i915_disable_vga(dev);
10760         intel_setup_outputs(dev);
10761
10762         /* Just in case the BIOS is doing something questionable. */
10763         intel_disable_fbc(dev);
10764 }
10765
10766 static void
10767 intel_connector_break_all_links(struct intel_connector *connector)
10768 {
10769         connector->base.dpms = DRM_MODE_DPMS_OFF;
10770         connector->base.encoder = NULL;
10771         connector->encoder->connectors_active = false;
10772         connector->encoder->base.crtc = NULL;
10773 }
10774
10775 static void intel_enable_pipe_a(struct drm_device *dev)
10776 {
10777         struct intel_connector *connector;
10778         struct drm_connector *crt = NULL;
10779         struct intel_load_detect_pipe load_detect_temp;
10780
10781         /* We can't just switch on the pipe A, we need to set things up with a
10782          * proper mode and output configuration. As a gross hack, enable pipe A
10783          * by enabling the load detect pipe once. */
10784         list_for_each_entry(connector,
10785                             &dev->mode_config.connector_list,
10786                             base.head) {
10787                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10788                         crt = &connector->base;
10789                         break;
10790                 }
10791         }
10792
10793         if (!crt)
10794                 return;
10795
10796         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10797                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10798
10799
10800 }
10801
10802 static bool
10803 intel_check_plane_mapping(struct intel_crtc *crtc)
10804 {
10805         struct drm_device *dev = crtc->base.dev;
10806         struct drm_i915_private *dev_priv = dev->dev_private;
10807         u32 reg, val;
10808
10809         if (INTEL_INFO(dev)->num_pipes == 1)
10810                 return true;
10811
10812         reg = DSPCNTR(!crtc->plane);
10813         val = I915_READ(reg);
10814
10815         if ((val & DISPLAY_PLANE_ENABLE) &&
10816             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10817                 return false;
10818
10819         return true;
10820 }
10821
10822 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10823 {
10824         struct drm_device *dev = crtc->base.dev;
10825         struct drm_i915_private *dev_priv = dev->dev_private;
10826         u32 reg;
10827
10828         /* Clear any frame start delays used for debugging left by the BIOS */
10829         reg = PIPECONF(crtc->config.cpu_transcoder);
10830         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10831
10832         /* We need to sanitize the plane -> pipe mapping first because this will
10833          * disable the crtc (and hence change the state) if it is wrong. Note
10834          * that gen4+ has a fixed plane -> pipe mapping.  */
10835         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10836                 struct intel_connector *connector;
10837                 bool plane;
10838
10839                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10840                               crtc->base.base.id);
10841
10842                 /* Pipe has the wrong plane attached and the plane is active.
10843                  * Temporarily change the plane mapping and disable everything
10844                  * ...  */
10845                 plane = crtc->plane;
10846                 crtc->plane = !plane;
10847                 dev_priv->display.crtc_disable(&crtc->base);
10848                 crtc->plane = plane;
10849
10850                 /* ... and break all links. */
10851                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10852                                     base.head) {
10853                         if (connector->encoder->base.crtc != &crtc->base)
10854                                 continue;
10855
10856                         intel_connector_break_all_links(connector);
10857                 }
10858
10859                 WARN_ON(crtc->active);
10860                 crtc->base.enabled = false;
10861         }
10862
10863         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10864             crtc->pipe == PIPE_A && !crtc->active) {
10865                 /* BIOS forgot to enable pipe A, this mostly happens after
10866                  * resume. Force-enable the pipe to fix this, the update_dpms
10867                  * call below we restore the pipe to the right state, but leave
10868                  * the required bits on. */
10869                 intel_enable_pipe_a(dev);
10870         }
10871
10872         /* Adjust the state of the output pipe according to whether we
10873          * have active connectors/encoders. */
10874         intel_crtc_update_dpms(&crtc->base);
10875
10876         if (crtc->active != crtc->base.enabled) {
10877                 struct intel_encoder *encoder;
10878
10879                 /* This can happen either due to bugs in the get_hw_state
10880                  * functions or because the pipe is force-enabled due to the
10881                  * pipe A quirk. */
10882                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10883                               crtc->base.base.id,
10884                               crtc->base.enabled ? "enabled" : "disabled",
10885                               crtc->active ? "enabled" : "disabled");
10886
10887                 crtc->base.enabled = crtc->active;
10888
10889                 /* Because we only establish the connector -> encoder ->
10890                  * crtc links if something is active, this means the
10891                  * crtc is now deactivated. Break the links. connector
10892                  * -> encoder links are only establish when things are
10893                  *  actually up, hence no need to break them. */
10894                 WARN_ON(crtc->active);
10895
10896                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10897                         WARN_ON(encoder->connectors_active);
10898                         encoder->base.crtc = NULL;
10899                 }
10900         }
10901 }
10902
10903 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10904 {
10905         struct intel_connector *connector;
10906         struct drm_device *dev = encoder->base.dev;
10907
10908         /* We need to check both for a crtc link (meaning that the
10909          * encoder is active and trying to read from a pipe) and the
10910          * pipe itself being active. */
10911         bool has_active_crtc = encoder->base.crtc &&
10912                 to_intel_crtc(encoder->base.crtc)->active;
10913
10914         if (encoder->connectors_active && !has_active_crtc) {
10915                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10916                               encoder->base.base.id,
10917                               drm_get_encoder_name(&encoder->base));
10918
10919                 /* Connector is active, but has no active pipe. This is
10920                  * fallout from our resume register restoring. Disable
10921                  * the encoder manually again. */
10922                 if (encoder->base.crtc) {
10923                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10924                                       encoder->base.base.id,
10925                                       drm_get_encoder_name(&encoder->base));
10926                         encoder->disable(encoder);
10927                 }
10928
10929                 /* Inconsistent output/port/pipe state happens presumably due to
10930                  * a bug in one of the get_hw_state functions. Or someplace else
10931                  * in our code, like the register restore mess on resume. Clamp
10932                  * things to off as a safer default. */
10933                 list_for_each_entry(connector,
10934                                     &dev->mode_config.connector_list,
10935                                     base.head) {
10936                         if (connector->encoder != encoder)
10937                                 continue;
10938
10939                         intel_connector_break_all_links(connector);
10940                 }
10941         }
10942         /* Enabled encoders without active connectors will be fixed in
10943          * the crtc fixup. */
10944 }
10945
10946 void i915_redisable_vga(struct drm_device *dev)
10947 {
10948         struct drm_i915_private *dev_priv = dev->dev_private;
10949         u32 vga_reg = i915_vgacntrl_reg(dev);
10950
10951         /* This function can be called both from intel_modeset_setup_hw_state or
10952          * at a very early point in our resume sequence, where the power well
10953          * structures are not yet restored. Since this function is at a very
10954          * paranoid "someone might have enabled VGA while we were not looking"
10955          * level, just check if the power well is enabled instead of trying to
10956          * follow the "don't touch the power well if we don't need it" policy
10957          * the rest of the driver uses. */
10958         if (HAS_POWER_WELL(dev) &&
10959             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10960                 return;
10961
10962         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
10963                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10964                 i915_disable_vga(dev);
10965         }
10966 }
10967
10968 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10969 {
10970         struct drm_i915_private *dev_priv = dev->dev_private;
10971         enum pipe pipe;
10972         struct intel_crtc *crtc;
10973         struct intel_encoder *encoder;
10974         struct intel_connector *connector;
10975         int i;
10976
10977         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10978                             base.head) {
10979                 memset(&crtc->config, 0, sizeof(crtc->config));
10980
10981                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10982                                                                  &crtc->config);
10983
10984                 crtc->base.enabled = crtc->active;
10985                 crtc->primary_enabled = crtc->active;
10986
10987                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10988                               crtc->base.base.id,
10989                               crtc->active ? "enabled" : "disabled");
10990         }
10991
10992         /* FIXME: Smash this into the new shared dpll infrastructure. */
10993         if (HAS_DDI(dev))
10994                 intel_ddi_setup_hw_pll_state(dev);
10995
10996         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10997                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10998
10999                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11000                 pll->active = 0;
11001                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11002                                     base.head) {
11003                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11004                                 pll->active++;
11005                 }
11006                 pll->refcount = pll->active;
11007
11008                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11009                               pll->name, pll->refcount, pll->on);
11010         }
11011
11012         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11013                             base.head) {
11014                 pipe = 0;
11015
11016                 if (encoder->get_hw_state(encoder, &pipe)) {
11017                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11018                         encoder->base.crtc = &crtc->base;
11019                         if (encoder->get_config)
11020                                 encoder->get_config(encoder, &crtc->config);
11021                 } else {
11022                         encoder->base.crtc = NULL;
11023                 }
11024
11025                 encoder->connectors_active = false;
11026                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11027                               encoder->base.base.id,
11028                               drm_get_encoder_name(&encoder->base),
11029                               encoder->base.crtc ? "enabled" : "disabled",
11030                               pipe_name(pipe));
11031         }
11032
11033         list_for_each_entry(connector, &dev->mode_config.connector_list,
11034                             base.head) {
11035                 if (connector->get_hw_state(connector)) {
11036                         connector->base.dpms = DRM_MODE_DPMS_ON;
11037                         connector->encoder->connectors_active = true;
11038                         connector->base.encoder = &connector->encoder->base;
11039                 } else {
11040                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11041                         connector->base.encoder = NULL;
11042                 }
11043                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11044                               connector->base.base.id,
11045                               drm_get_connector_name(&connector->base),
11046                               connector->base.encoder ? "enabled" : "disabled");
11047         }
11048 }
11049
11050 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11051  * and i915 state tracking structures. */
11052 void intel_modeset_setup_hw_state(struct drm_device *dev,
11053                                   bool force_restore)
11054 {
11055         struct drm_i915_private *dev_priv = dev->dev_private;
11056         enum pipe pipe;
11057         struct intel_crtc *crtc;
11058         struct intel_encoder *encoder;
11059         int i;
11060
11061         intel_modeset_readout_hw_state(dev);
11062
11063         /*
11064          * Now that we have the config, copy it to each CRTC struct
11065          * Note that this could go away if we move to using crtc_config
11066          * checking everywhere.
11067          */
11068         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11069                             base.head) {
11070                 if (crtc->active && i915_fastboot) {
11071                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
11072
11073                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11074                                       crtc->base.base.id);
11075                         drm_mode_debug_printmodeline(&crtc->base.mode);
11076                 }
11077         }
11078
11079         /* HW state is read out, now we need to sanitize this mess. */
11080         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11081                             base.head) {
11082                 intel_sanitize_encoder(encoder);
11083         }
11084
11085         for_each_pipe(pipe) {
11086                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11087                 intel_sanitize_crtc(crtc);
11088                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11089         }
11090
11091         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11092                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11093
11094                 if (!pll->on || pll->active)
11095                         continue;
11096
11097                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11098
11099                 pll->disable(dev_priv, pll);
11100                 pll->on = false;
11101         }
11102
11103         if (IS_HASWELL(dev))
11104                 ilk_wm_get_hw_state(dev);
11105
11106         if (force_restore) {
11107                 i915_redisable_vga(dev);
11108
11109                 /*
11110                  * We need to use raw interfaces for restoring state to avoid
11111                  * checking (bogus) intermediate states.
11112                  */
11113                 for_each_pipe(pipe) {
11114                         struct drm_crtc *crtc =
11115                                 dev_priv->pipe_to_crtc_mapping[pipe];
11116
11117                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11118                                          crtc->fb);
11119                 }
11120         } else {
11121                 intel_modeset_update_staged_output_state(dev);
11122         }
11123
11124         intel_modeset_check_state(dev);
11125
11126         drm_mode_config_reset(dev);
11127 }
11128
11129 void intel_modeset_gem_init(struct drm_device *dev)
11130 {
11131         intel_modeset_init_hw(dev);
11132
11133         intel_setup_overlay(dev);
11134
11135         intel_modeset_setup_hw_state(dev, false);
11136 }
11137
11138 void intel_modeset_cleanup(struct drm_device *dev)
11139 {
11140         struct drm_i915_private *dev_priv = dev->dev_private;
11141         struct drm_crtc *crtc;
11142         struct drm_connector *connector;
11143
11144         /*
11145          * Interrupts and polling as the first thing to avoid creating havoc.
11146          * Too much stuff here (turning of rps, connectors, ...) would
11147          * experience fancy races otherwise.
11148          */
11149         drm_irq_uninstall(dev);
11150         cancel_work_sync(&dev_priv->hotplug_work);
11151         /*
11152          * Due to the hpd irq storm handling the hotplug work can re-arm the
11153          * poll handlers. Hence disable polling after hpd handling is shut down.
11154          */
11155         drm_kms_helper_poll_fini(dev);
11156
11157         mutex_lock(&dev->struct_mutex);
11158
11159         intel_unregister_dsm_handler();
11160
11161         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11162                 /* Skip inactive CRTCs */
11163                 if (!crtc->fb)
11164                         continue;
11165
11166                 intel_increase_pllclock(crtc);
11167         }
11168
11169         intel_disable_fbc(dev);
11170
11171         intel_disable_gt_powersave(dev);
11172
11173         ironlake_teardown_rc6(dev);
11174
11175         mutex_unlock(&dev->struct_mutex);
11176
11177         /* flush any delayed tasks or pending work */
11178         flush_scheduled_work();
11179
11180         /* destroy backlight, if any, before the connectors */
11181         intel_panel_destroy_backlight(dev);
11182
11183         /* destroy the sysfs files before encoders/connectors */
11184         list_for_each_entry(connector, &dev->mode_config.connector_list, head)
11185                 drm_sysfs_connector_remove(connector);
11186
11187         drm_mode_config_cleanup(dev);
11188
11189         intel_cleanup_overlay(dev);
11190 }
11191
11192 /*
11193  * Return which encoder is currently attached for connector.
11194  */
11195 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11196 {
11197         return &intel_attached_encoder(connector)->base;
11198 }
11199
11200 void intel_connector_attach_encoder(struct intel_connector *connector,
11201                                     struct intel_encoder *encoder)
11202 {
11203         connector->encoder = encoder;
11204         drm_mode_connector_attach_encoder(&connector->base,
11205                                           &encoder->base);
11206 }
11207
11208 /*
11209  * set vga decode state - true == enable VGA decode
11210  */
11211 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11212 {
11213         struct drm_i915_private *dev_priv = dev->dev_private;
11214         u16 gmch_ctrl;
11215
11216         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
11217         if (state)
11218                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11219         else
11220                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11221         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
11222         return 0;
11223 }
11224
11225 struct intel_display_error_state {
11226
11227         u32 power_well_driver;
11228
11229         int num_transcoders;
11230
11231         struct intel_cursor_error_state {
11232                 u32 control;
11233                 u32 position;
11234                 u32 base;
11235                 u32 size;
11236         } cursor[I915_MAX_PIPES];
11237
11238         struct intel_pipe_error_state {
11239                 u32 source;
11240         } pipe[I915_MAX_PIPES];
11241
11242         struct intel_plane_error_state {
11243                 u32 control;
11244                 u32 stride;
11245                 u32 size;
11246                 u32 pos;
11247                 u32 addr;
11248                 u32 surface;
11249                 u32 tile_offset;
11250         } plane[I915_MAX_PIPES];
11251
11252         struct intel_transcoder_error_state {
11253                 enum transcoder cpu_transcoder;
11254
11255                 u32 conf;
11256
11257                 u32 htotal;
11258                 u32 hblank;
11259                 u32 hsync;
11260                 u32 vtotal;
11261                 u32 vblank;
11262                 u32 vsync;
11263         } transcoder[4];
11264 };
11265
11266 struct intel_display_error_state *
11267 intel_display_capture_error_state(struct drm_device *dev)
11268 {
11269         drm_i915_private_t *dev_priv = dev->dev_private;
11270         struct intel_display_error_state *error;
11271         int transcoders[] = {
11272                 TRANSCODER_A,
11273                 TRANSCODER_B,
11274                 TRANSCODER_C,
11275                 TRANSCODER_EDP,
11276         };
11277         int i;
11278
11279         if (INTEL_INFO(dev)->num_pipes == 0)
11280                 return NULL;
11281
11282         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11283         if (error == NULL)
11284                 return NULL;
11285
11286         if (HAS_POWER_WELL(dev))
11287                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11288
11289         for_each_pipe(i) {
11290                 if (!intel_display_power_enabled(dev, POWER_DOMAIN_PIPE(i)))
11291                         continue;
11292
11293                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11294                         error->cursor[i].control = I915_READ(CURCNTR(i));
11295                         error->cursor[i].position = I915_READ(CURPOS(i));
11296                         error->cursor[i].base = I915_READ(CURBASE(i));
11297                 } else {
11298                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11299                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11300                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11301                 }
11302
11303                 error->plane[i].control = I915_READ(DSPCNTR(i));
11304                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11305                 if (INTEL_INFO(dev)->gen <= 3) {
11306                         error->plane[i].size = I915_READ(DSPSIZE(i));
11307                         error->plane[i].pos = I915_READ(DSPPOS(i));
11308                 }
11309                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11310                         error->plane[i].addr = I915_READ(DSPADDR(i));
11311                 if (INTEL_INFO(dev)->gen >= 4) {
11312                         error->plane[i].surface = I915_READ(DSPSURF(i));
11313                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11314                 }
11315
11316                 error->pipe[i].source = I915_READ(PIPESRC(i));
11317         }
11318
11319         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11320         if (HAS_DDI(dev_priv->dev))
11321                 error->num_transcoders++; /* Account for eDP. */
11322
11323         for (i = 0; i < error->num_transcoders; i++) {
11324                 enum transcoder cpu_transcoder = transcoders[i];
11325
11326                 if (!intel_display_power_enabled(dev,
11327                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
11328                         continue;
11329
11330                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11331
11332                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11333                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11334                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11335                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11336                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11337                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11338                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11339         }
11340
11341         return error;
11342 }
11343
11344 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11345
11346 void
11347 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11348                                 struct drm_device *dev,
11349                                 struct intel_display_error_state *error)
11350 {
11351         int i;
11352
11353         if (!error)
11354                 return;
11355
11356         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11357         if (HAS_POWER_WELL(dev))
11358                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11359                            error->power_well_driver);
11360         for_each_pipe(i) {
11361                 err_printf(m, "Pipe [%d]:\n", i);
11362                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11363
11364                 err_printf(m, "Plane [%d]:\n", i);
11365                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11366                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11367                 if (INTEL_INFO(dev)->gen <= 3) {
11368                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11369                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11370                 }
11371                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11372                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11373                 if (INTEL_INFO(dev)->gen >= 4) {
11374                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11375                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
11376                 }
11377
11378                 err_printf(m, "Cursor [%d]:\n", i);
11379                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
11380                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
11381                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
11382         }
11383
11384         for (i = 0; i < error->num_transcoders; i++) {
11385                 err_printf(m, "CPU transcoder: %c\n",
11386                            transcoder_name(error->transcoder[i].cpu_transcoder));
11387                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
11388                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
11389                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
11390                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
11391                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
11392                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
11393                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
11394         }
11395 }