43af081328fef478fcc970e49d37f08760cc3689
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_dp.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73     bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74                               int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN              25000
78 #define I8XX_DOT_MAX             350000
79 #define I8XX_VCO_MIN             930000
80 #define I8XX_VCO_MAX            1400000
81 #define I8XX_N_MIN                    3
82 #define I8XX_N_MAX                   16
83 #define I8XX_M_MIN                   96
84 #define I8XX_M_MAX                  140
85 #define I8XX_M1_MIN                  18
86 #define I8XX_M1_MAX                  26
87 #define I8XX_M2_MIN                   6
88 #define I8XX_M2_MAX                  16
89 #define I8XX_P_MIN                    4
90 #define I8XX_P_MAX                  128
91 #define I8XX_P1_MIN                   2
92 #define I8XX_P1_MAX                  33
93 #define I8XX_P1_LVDS_MIN              1
94 #define I8XX_P1_LVDS_MAX              6
95 #define I8XX_P2_SLOW                  4
96 #define I8XX_P2_FAST                  2
97 #define I8XX_P2_LVDS_SLOW             14
98 #define I8XX_P2_LVDS_FAST             7
99 #define I8XX_P2_SLOW_LIMIT       165000
100
101 #define I9XX_DOT_MIN              20000
102 #define I9XX_DOT_MAX             400000
103 #define I9XX_VCO_MIN            1400000
104 #define I9XX_VCO_MAX            2800000
105 #define IGD_VCO_MIN             1700000
106 #define IGD_VCO_MAX             3500000
107 #define I9XX_N_MIN                    1
108 #define I9XX_N_MAX                    6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN                     3
111 #define IGD_N_MAX                     6
112 #define I9XX_M_MIN                   70
113 #define I9XX_M_MAX                  120
114 #define IGD_M_MIN                     2
115 #define IGD_M_MAX                   256
116 #define I9XX_M1_MIN                  10
117 #define I9XX_M1_MAX                  22
118 #define I9XX_M2_MIN                   5
119 #define I9XX_M2_MAX                   9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN                    0
122 #define IGD_M1_MAX                    0
123 #define IGD_M2_MIN                    0
124 #define IGD_M2_MAX                    254
125 #define I9XX_P_SDVO_DAC_MIN           5
126 #define I9XX_P_SDVO_DAC_MAX          80
127 #define I9XX_P_LVDS_MIN               7
128 #define I9XX_P_LVDS_MAX              98
129 #define IGD_P_LVDS_MIN                7
130 #define IGD_P_LVDS_MAX               112
131 #define I9XX_P1_MIN                   1
132 #define I9XX_P1_MAX                   8
133 #define I9XX_P2_SDVO_DAC_SLOW                10
134 #define I9XX_P2_SDVO_DAC_FAST                 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
136 #define I9XX_P2_LVDS_SLOW                    14
137 #define I9XX_P2_LVDS_FAST                     7
138 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN           25000
142 #define G4X_DOT_SDVO_MAX           270000
143 #define G4X_VCO_MIN                1750000
144 #define G4X_VCO_MAX                3500000
145 #define G4X_N_SDVO_MIN             1
146 #define G4X_N_SDVO_MAX             4
147 #define G4X_M_SDVO_MIN             104
148 #define G4X_M_SDVO_MAX             138
149 #define G4X_M1_SDVO_MIN            17
150 #define G4X_M1_SDVO_MAX            23
151 #define G4X_M2_SDVO_MIN            5
152 #define G4X_M2_SDVO_MAX            11
153 #define G4X_P_SDVO_MIN             10
154 #define G4X_P_SDVO_MAX             30
155 #define G4X_P1_SDVO_MIN            1
156 #define G4X_P1_SDVO_MAX            3
157 #define G4X_P2_SDVO_SLOW           10
158 #define G4X_P2_SDVO_FAST           10
159 #define G4X_P2_SDVO_LIMIT          270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN           22000
163 #define G4X_DOT_HDMI_DAC_MAX           400000
164 #define G4X_N_HDMI_DAC_MIN             1
165 #define G4X_N_HDMI_DAC_MAX             4
166 #define G4X_M_HDMI_DAC_MIN             104
167 #define G4X_M_HDMI_DAC_MAX             138
168 #define G4X_M1_HDMI_DAC_MIN            16
169 #define G4X_M1_HDMI_DAC_MAX            23
170 #define G4X_M2_HDMI_DAC_MIN            5
171 #define G4X_M2_HDMI_DAC_MAX            11
172 #define G4X_P_HDMI_DAC_MIN             5
173 #define G4X_P_HDMI_DAC_MAX             80
174 #define G4X_P1_HDMI_DAC_MIN            1
175 #define G4X_P1_HDMI_DAC_MAX            8
176 #define G4X_P2_HDMI_DAC_SLOW           10
177 #define G4X_P2_HDMI_DAC_FAST           5
178 #define G4X_P2_HDMI_DAC_LIMIT          165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN           161670
220 #define G4X_DOT_DISPLAY_PORT_MAX           227000
221 #define G4X_N_DISPLAY_PORT_MIN             1
222 #define G4X_N_DISPLAY_PORT_MAX             2
223 #define G4X_M_DISPLAY_PORT_MIN             97
224 #define G4X_M_DISPLAY_PORT_MAX             108
225 #define G4X_M1_DISPLAY_PORT_MIN            0x10
226 #define G4X_M1_DISPLAY_PORT_MAX            0x12
227 #define G4X_M2_DISPLAY_PORT_MIN            0x05
228 #define G4X_M2_DISPLAY_PORT_MAX            0x06
229 #define G4X_P_DISPLAY_PORT_MIN             10
230 #define G4X_P_DISPLAY_PORT_MAX             20
231 #define G4X_P1_DISPLAY_PORT_MIN            1
232 #define G4X_P1_DISPLAY_PORT_MAX            2
233 #define G4X_P2_DISPLAY_PORT_SLOW           10
234 #define G4X_P2_DISPLAY_PORT_FAST           10
235 #define G4X_P2_DISPLAY_PORT_LIMIT          0
236
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239    N/M1/M2, so here the range value for them is (actual_value-2).
240  */
241 #define IGDNG_DOT_MIN         25000
242 #define IGDNG_DOT_MAX         350000
243 #define IGDNG_VCO_MIN         1760000
244 #define IGDNG_VCO_MAX         3510000
245 #define IGDNG_N_MIN           1
246 #define IGDNG_N_MAX           5
247 #define IGDNG_M_MIN           79
248 #define IGDNG_M_MAX           118
249 #define IGDNG_M1_MIN          12
250 #define IGDNG_M1_MAX          23
251 #define IGDNG_M2_MIN          5
252 #define IGDNG_M2_MAX          9
253 #define IGDNG_P_SDVO_DAC_MIN  5
254 #define IGDNG_P_SDVO_DAC_MAX  80
255 #define IGDNG_P_LVDS_MIN      28
256 #define IGDNG_P_LVDS_MAX      112
257 #define IGDNG_P1_MIN          1
258 #define IGDNG_P1_MAX          8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
263 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
264
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267                     int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270                             int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273                         int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276                         int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280                       int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283                       int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
287         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
288         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
289         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
290         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
291         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
292         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
293         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
294         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
296         .find_pll = intel_find_best_PLL,
297         .find_reduced_pll = intel_find_best_reduced_PLL,
298 };
299
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
302         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
303         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
304         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
305         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
306         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
307         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
308         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
309         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
311         .find_pll = intel_find_best_PLL,
312         .find_reduced_pll = intel_find_best_reduced_PLL,
313 };
314         
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
317         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
318         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
319         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
320         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
321         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
322         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
323         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
324         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326         .find_pll = intel_find_best_PLL,
327         .find_reduced_pll = intel_find_best_reduced_PLL,
328 };
329
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
332         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
333         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
334         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
335         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
336         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
337         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
338         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
339         /* The single-channel range is 25-112Mhz, and dual-channel
340          * is 80-224Mhz.  Prefer single channel as much as possible.
341          */
342         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
344         .find_pll = intel_find_best_PLL,
345         .find_reduced_pll = intel_find_best_reduced_PLL,
346 };
347
348     /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
351         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
352         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
353         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
354         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
355         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
356         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
357         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
358         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
359                  .p2_slow = G4X_P2_SDVO_SLOW,
360                  .p2_fast = G4X_P2_SDVO_FAST
361         },
362         .find_pll = intel_g4x_find_best_PLL,
363         .find_reduced_pll = intel_g4x_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
368         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
369         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
370         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
371         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
372         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
373         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
374         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
375         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377                  .p2_fast = G4X_P2_HDMI_DAC_FAST
378         },
379         .find_pll = intel_g4x_find_best_PLL,
380         .find_reduced_pll = intel_g4x_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386         .vco = { .min = G4X_VCO_MIN,
387                  .max = G4X_VCO_MAX },
388         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
403         },
404         .find_pll = intel_g4x_find_best_PLL,
405         .find_reduced_pll = intel_g4x_find_best_PLL,
406 };
407
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411         .vco = { .min = G4X_VCO_MIN,
412                  .max = G4X_VCO_MAX },
413         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
428         },
429         .find_pll = intel_g4x_find_best_PLL,
430         .find_reduced_pll = intel_g4x_find_best_PLL,
431 };
432
433 static const intel_limit_t intel_limits_g4x_display_port = {
434         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435                  .max = G4X_DOT_DISPLAY_PORT_MAX },
436         .vco = { .min = G4X_VCO_MIN,
437                  .max = G4X_VCO_MAX},
438         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
439                  .max = G4X_N_DISPLAY_PORT_MAX },
440         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
441                  .max = G4X_M_DISPLAY_PORT_MAX },
442         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
443                  .max = G4X_M1_DISPLAY_PORT_MAX },
444         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
445                  .max = G4X_M2_DISPLAY_PORT_MAX },
446         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
447                  .max = G4X_P_DISPLAY_PORT_MAX },
448         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
449                  .max = G4X_P1_DISPLAY_PORT_MAX},
450         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453         .find_pll = intel_find_pll_g4x_dp,
454 };
455
456 static const intel_limit_t intel_limits_igd_sdvo = {
457         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
458         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
459         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
460         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
461         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
462         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
463         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
464         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
465         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467         .find_pll = intel_find_best_PLL,
468         .find_reduced_pll = intel_find_best_reduced_PLL,
469 };
470
471 static const intel_limit_t intel_limits_igd_lvds = {
472         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
473         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
474         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
475         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
476         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
477         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
478         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
480         /* IGD only supports single-channel mode. */
481         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
483         .find_pll = intel_find_best_PLL,
484         .find_reduced_pll = intel_find_best_reduced_PLL,
485 };
486
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
489         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
490         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
491         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
492         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
493         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
494         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
495         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
496         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499         .find_pll = intel_igdng_find_best_PLL,
500 };
501
502 static const intel_limit_t intel_limits_igdng_lvds = {
503         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
504         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
505         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
506         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
507         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
508         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
509         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
510         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
511         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512                  .p2_slow = IGDNG_P2_LVDS_SLOW,
513                  .p2_fast = IGDNG_P2_LVDS_FAST },
514         .find_pll = intel_igdng_find_best_PLL,
515 };
516
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
518 {
519         const intel_limit_t *limit;
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521                 limit = &intel_limits_igdng_lvds;
522         else
523                 limit = &intel_limits_igdng_sdvo;
524
525         return limit;
526 }
527
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
529 {
530         struct drm_device *dev = crtc->dev;
531         struct drm_i915_private *dev_priv = dev->dev_private;
532         const intel_limit_t *limit;
533
534         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536                     LVDS_CLKB_POWER_UP)
537                         /* LVDS with dual channel */
538                         limit = &intel_limits_g4x_dual_channel_lvds;
539                 else
540                         /* LVDS with dual channel */
541                         limit = &intel_limits_g4x_single_channel_lvds;
542         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544                 limit = &intel_limits_g4x_hdmi;
545         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546                 limit = &intel_limits_g4x_sdvo;
547         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548                 limit = &intel_limits_g4x_display_port;
549         } else /* The option is for other outputs */
550                 limit = &intel_limits_i9xx_sdvo;
551
552         return limit;
553 }
554
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
556 {
557         struct drm_device *dev = crtc->dev;
558         const intel_limit_t *limit;
559
560         if (IS_IGDNG(dev))
561                 limit = intel_igdng_limit(crtc);
562         else if (IS_G4X(dev)) {
563                 limit = intel_g4x_limit(crtc);
564         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566                         limit = &intel_limits_i9xx_lvds;
567                 else
568                         limit = &intel_limits_i9xx_sdvo;
569         } else if (IS_IGD(dev)) {
570                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571                         limit = &intel_limits_igd_lvds;
572                 else
573                         limit = &intel_limits_igd_sdvo;
574         } else {
575                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576                         limit = &intel_limits_i8xx_lvds;
577                 else
578                         limit = &intel_limits_i8xx_dvo;
579         }
580         return limit;
581 }
582
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
585 {
586         clock->m = clock->m2 + 2;
587         clock->p = clock->p1 * clock->p2;
588         clock->vco = refclk * clock->m / clock->n;
589         clock->dot = clock->vco / clock->p;
590 }
591
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
593 {
594         if (IS_IGD(dev)) {
595                 igd_clock(refclk, clock);
596                 return;
597         }
598         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599         clock->p = clock->p1 * clock->p2;
600         clock->vco = refclk * clock->m / (clock->n + 2);
601         clock->dot = clock->vco / clock->p;
602 }
603
604 /**
605  * Returns whether any output on the specified pipe is of the specified type
606  */
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
608 {
609     struct drm_device *dev = crtc->dev;
610     struct drm_mode_config *mode_config = &dev->mode_config;
611     struct drm_connector *l_entry;
612
613     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614             if (l_entry->encoder &&
615                 l_entry->encoder->crtc == crtc) {
616                     struct intel_output *intel_output = to_intel_output(l_entry);
617                     if (intel_output->type == type)
618                             return true;
619             }
620     }
621     return false;
622 }
623
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
626 {
627     struct drm_device *dev = crtc->dev;
628     struct drm_mode_config *mode_config = &dev->mode_config;
629     struct drm_connector *l_entry, *ret = NULL;
630
631     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632             if (l_entry->encoder &&
633                 l_entry->encoder->crtc == crtc) {
634                     ret = l_entry;
635                     break;
636             }
637     }
638     return ret;
639 }
640
641 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643  * Returns whether the given set of divisors are valid for a given refclk with
644  * the given connectors.
645  */
646
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
648 {
649         const intel_limit_t *limit = intel_limit (crtc);
650         struct drm_device *dev = crtc->dev;
651
652         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
653                 INTELPllInvalid ("p1 out of range\n");
654         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
655                 INTELPllInvalid ("p out of range\n");
656         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
657                 INTELPllInvalid ("m2 out of range\n");
658         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
659                 INTELPllInvalid ("m1 out of range\n");
660         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661                 INTELPllInvalid ("m1 <= m2\n");
662         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
663                 INTELPllInvalid ("m out of range\n");
664         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
665                 INTELPllInvalid ("n out of range\n");
666         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667                 INTELPllInvalid ("vco out of range\n");
668         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669          * connector, etc., rather than just a single range.
670          */
671         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672                 INTELPllInvalid ("dot out of range\n");
673
674         return true;
675 }
676
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679                     int target, int refclk, intel_clock_t *best_clock)
680
681 {
682         struct drm_device *dev = crtc->dev;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684         intel_clock_t clock;
685         int err = target;
686
687         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688             (I915_READ(LVDS)) != 0) {
689                 /*
690                  * For LVDS, if the panel is on, just rely on its current
691                  * settings for dual-channel.  We haven't figured out how to
692                  * reliably set up different single/dual channel state, if we
693                  * even can.
694                  */
695                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696                     LVDS_CLKB_POWER_UP)
697                         clock.p2 = limit->p2.p2_fast;
698                 else
699                         clock.p2 = limit->p2.p2_slow;
700         } else {
701                 if (target < limit->p2.dot_limit)
702                         clock.p2 = limit->p2.p2_slow;
703                 else
704                         clock.p2 = limit->p2.p2_fast;
705         }
706
707         memset (best_clock, 0, sizeof (*best_clock));
708
709         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711                      clock.m1++) {
712                         for (clock.m2 = limit->m2.min;
713                              clock.m2 <= limit->m2.max; clock.m2++) {
714                                 /* m1 is always 0 in IGD */
715                                 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716                                         break;
717                                 for (clock.n = limit->n.min;
718                                      clock.n <= limit->n.max; clock.n++) {
719                                         int this_err;
720
721                                         intel_clock(dev, refclk, &clock);
722
723                                         if (!intel_PLL_is_valid(crtc, &clock))
724                                                 continue;
725
726                                         this_err = abs(clock.dot - target);
727                                         if (this_err < err) {
728                                                 *best_clock = clock;
729                                                 err = this_err;
730                                         }
731                                 }
732                         }
733                 }
734         }
735
736         return (err != target);
737 }
738
739
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                             int target, int refclk, intel_clock_t *best_clock)
743
744 {
745         struct drm_device *dev = crtc->dev;
746         intel_clock_t clock;
747         int err = target;
748         bool found = false;
749
750         memcpy(&clock, best_clock, sizeof(intel_clock_t));
751
752         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754                         /* m1 is always 0 in IGD */
755                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756                                 break;
757                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
758                              clock.n++) {
759                                 int this_err;
760
761                                 intel_clock(dev, refclk, &clock);
762
763                                 if (!intel_PLL_is_valid(crtc, &clock))
764                                         continue;
765
766                                 this_err = abs(clock.dot - target);
767                                 if (this_err < err) {
768                                         *best_clock = clock;
769                                         err = this_err;
770                                         found = true;
771                                 }
772                         }
773                 }
774         }
775
776         return found;
777 }
778
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781                         int target, int refclk, intel_clock_t *best_clock)
782 {
783         struct drm_device *dev = crtc->dev;
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         intel_clock_t clock;
786         int max_n;
787         bool found;
788         /* approximately equals target * 0.00488 */
789         int err_most = (target >> 8) + (target >> 10);
790         found = false;
791
792         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794                     LVDS_CLKB_POWER_UP)
795                         clock.p2 = limit->p2.p2_fast;
796                 else
797                         clock.p2 = limit->p2.p2_slow;
798         } else {
799                 if (target < limit->p2.dot_limit)
800                         clock.p2 = limit->p2.p2_slow;
801                 else
802                         clock.p2 = limit->p2.p2_fast;
803         }
804
805         memset(best_clock, 0, sizeof(*best_clock));
806         max_n = limit->n.max;
807         /* based on hardware requriment prefer smaller n to precision */
808         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809                 /* based on hardware requirment prefere larger m1,m2 */
810                 for (clock.m1 = limit->m1.max;
811                      clock.m1 >= limit->m1.min; clock.m1--) {
812                         for (clock.m2 = limit->m2.max;
813                              clock.m2 >= limit->m2.min; clock.m2--) {
814                                 for (clock.p1 = limit->p1.max;
815                                      clock.p1 >= limit->p1.min; clock.p1--) {
816                                         int this_err;
817
818                                         intel_clock(dev, refclk, &clock);
819                                         if (!intel_PLL_is_valid(crtc, &clock))
820                                                 continue;
821                                         this_err = abs(clock.dot - target) ;
822                                         if (this_err < err_most) {
823                                                 *best_clock = clock;
824                                                 err_most = this_err;
825                                                 max_n = clock.n;
826                                                 found = true;
827                                         }
828                                 }
829                         }
830                 }
831         }
832         return found;
833 }
834
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *best_clock)
838 {
839         struct drm_device *dev = crtc->dev;
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.n = 1;
843                 clock.p1 = 2;
844                 clock.p2 = 10;
845                 clock.m1 = 12;
846                 clock.m2 = 9;
847         } else {
848                 clock.n = 2;
849                 clock.p1 = 1;
850                 clock.p2 = 10;
851                 clock.m1 = 14;
852                 clock.m2 = 8;
853         }
854         intel_clock(dev, refclk, &clock);
855         memcpy(best_clock, &clock, sizeof(intel_clock_t));
856         return true;
857 }
858
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861                         int target, int refclk, intel_clock_t *best_clock)
862 {
863         struct drm_device *dev = crtc->dev;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865         intel_clock_t clock;
866         int err_most = 47;
867         int err_min = 10000;
868
869         /* eDP has only 2 clock choice, no n/m/p setting */
870         if (HAS_eDP)
871                 return true;
872
873         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
874                 return intel_find_pll_igdng_dp(limit, crtc, target,
875                                                refclk, best_clock);
876
877         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
878                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
879                     LVDS_CLKB_POWER_UP)
880                         clock.p2 = limit->p2.p2_fast;
881                 else
882                         clock.p2 = limit->p2.p2_slow;
883         } else {
884                 if (target < limit->p2.dot_limit)
885                         clock.p2 = limit->p2.p2_slow;
886                 else
887                         clock.p2 = limit->p2.p2_fast;
888         }
889
890         memset(best_clock, 0, sizeof(*best_clock));
891         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
892                 /* based on hardware requriment prefer smaller n to precision */
893                 for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
894                         /* based on hardware requirment prefere larger m1,m2 */
895                         for (clock.m1 = limit->m1.max;
896                              clock.m1 >= limit->m1.min; clock.m1--) {
897                                 for (clock.m2 = limit->m2.max;
898                                      clock.m2 >= limit->m2.min; clock.m2--) {
899                                         int this_err;
900
901                                         intel_clock(dev, refclk, &clock);
902                                         if (!intel_PLL_is_valid(crtc, &clock))
903                                                 continue;
904                                         this_err = abs((10000 - (target*10000/clock.dot)));
905                                         if (this_err < err_most) {
906                                                 *best_clock = clock;
907                                                 /* found on first matching */
908                                                 goto out;
909                                         } else if (this_err < err_min) {
910                                                 *best_clock = clock;
911                                                 err_min = this_err;
912                                         }
913                                 }
914                         }
915                 }
916         }
917 out:
918         return true;
919 }
920
921 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
922 static bool
923 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
924                       int target, int refclk, intel_clock_t *best_clock)
925 {
926     intel_clock_t clock;
927     if (target < 200000) {
928         clock.p1 = 2;
929         clock.p2 = 10;
930         clock.n = 2;
931         clock.m1 = 23;
932         clock.m2 = 8;
933     } else {
934         clock.p1 = 1;
935         clock.p2 = 10;
936         clock.n = 1;
937         clock.m1 = 14;
938         clock.m2 = 2;
939     }
940     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
941     clock.p = (clock.p1 * clock.p2);
942     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
943     clock.vco = 0;
944     memcpy(best_clock, &clock, sizeof(intel_clock_t));
945     return true;
946 }
947
948 void
949 intel_wait_for_vblank(struct drm_device *dev)
950 {
951         /* Wait for 20ms, i.e. one cycle at 50hz. */
952         mdelay(20);
953 }
954
955 /* Parameters have changed, update FBC info */
956 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
957 {
958         struct drm_device *dev = crtc->dev;
959         struct drm_i915_private *dev_priv = dev->dev_private;
960         struct drm_framebuffer *fb = crtc->fb;
961         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
962         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
964         int plane, i;
965         u32 fbc_ctl, fbc_ctl2;
966
967         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
968
969         if (fb->pitch < dev_priv->cfb_pitch)
970                 dev_priv->cfb_pitch = fb->pitch;
971
972         /* FBC_CTL wants 64B units */
973         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
974         dev_priv->cfb_fence = obj_priv->fence_reg;
975         dev_priv->cfb_plane = intel_crtc->plane;
976         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
977
978         /* Clear old tags */
979         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
980                 I915_WRITE(FBC_TAG + (i * 4), 0);
981
982         /* Set it up... */
983         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
984         if (obj_priv->tiling_mode != I915_TILING_NONE)
985                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
986         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
987         I915_WRITE(FBC_FENCE_OFF, crtc->y);
988
989         /* enable it... */
990         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
991         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
992         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
993         if (obj_priv->tiling_mode != I915_TILING_NONE)
994                 fbc_ctl |= dev_priv->cfb_fence;
995         I915_WRITE(FBC_CONTROL, fbc_ctl);
996
997         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
998                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
999 }
1000
1001 void i8xx_disable_fbc(struct drm_device *dev)
1002 {
1003         struct drm_i915_private *dev_priv = dev->dev_private;
1004         u32 fbc_ctl;
1005
1006         if (!I915_HAS_FBC(dev))
1007                 return;
1008
1009         /* Disable compression */
1010         fbc_ctl = I915_READ(FBC_CONTROL);
1011         fbc_ctl &= ~FBC_CTL_EN;
1012         I915_WRITE(FBC_CONTROL, fbc_ctl);
1013
1014         /* Wait for compressing bit to clear */
1015         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1016                 ; /* nothing */
1017
1018         intel_wait_for_vblank(dev);
1019
1020         DRM_DEBUG_KMS("disabled FBC\n");
1021 }
1022
1023 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1024 {
1025         struct drm_device *dev = crtc->dev;
1026         struct drm_i915_private *dev_priv = dev->dev_private;
1027
1028         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1029 }
1030
1031 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1032 {
1033         struct drm_device *dev = crtc->dev;
1034         struct drm_i915_private *dev_priv = dev->dev_private;
1035         struct drm_framebuffer *fb = crtc->fb;
1036         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1037         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1039         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1040                      DPFC_CTL_PLANEB);
1041         unsigned long stall_watermark = 200;
1042         u32 dpfc_ctl;
1043
1044         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1045         dev_priv->cfb_fence = obj_priv->fence_reg;
1046         dev_priv->cfb_plane = intel_crtc->plane;
1047
1048         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1049         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1050                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1051                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1052         } else {
1053                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1054         }
1055
1056         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1057         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1058                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1059                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1060         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1061
1062         /* enable it... */
1063         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1064
1065         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1066 }
1067
1068 void g4x_disable_fbc(struct drm_device *dev)
1069 {
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         u32 dpfc_ctl;
1072
1073         /* Disable compression */
1074         dpfc_ctl = I915_READ(DPFC_CONTROL);
1075         dpfc_ctl &= ~DPFC_CTL_EN;
1076         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1077         intel_wait_for_vblank(dev);
1078
1079         DRM_DEBUG_KMS("disabled FBC\n");
1080 }
1081
1082 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1083 {
1084         struct drm_device *dev = crtc->dev;
1085         struct drm_i915_private *dev_priv = dev->dev_private;
1086
1087         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1088 }
1089
1090 /**
1091  * intel_update_fbc - enable/disable FBC as needed
1092  * @crtc: CRTC to point the compressor at
1093  * @mode: mode in use
1094  *
1095  * Set up the framebuffer compression hardware at mode set time.  We
1096  * enable it if possible:
1097  *   - plane A only (on pre-965)
1098  *   - no pixel mulitply/line duplication
1099  *   - no alpha buffer discard
1100  *   - no dual wide
1101  *   - framebuffer <= 2048 in width, 1536 in height
1102  *
1103  * We can't assume that any compression will take place (worst case),
1104  * so the compressed buffer has to be the same size as the uncompressed
1105  * one.  It also must reside (along with the line length buffer) in
1106  * stolen memory.
1107  *
1108  * We need to enable/disable FBC on a global basis.
1109  */
1110 static void intel_update_fbc(struct drm_crtc *crtc,
1111                              struct drm_display_mode *mode)
1112 {
1113         struct drm_device *dev = crtc->dev;
1114         struct drm_i915_private *dev_priv = dev->dev_private;
1115         struct drm_framebuffer *fb = crtc->fb;
1116         struct intel_framebuffer *intel_fb;
1117         struct drm_i915_gem_object *obj_priv;
1118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1119         int plane = intel_crtc->plane;
1120
1121         if (!i915_powersave)
1122                 return;
1123
1124         if (!dev_priv->display.fbc_enabled ||
1125             !dev_priv->display.enable_fbc ||
1126             !dev_priv->display.disable_fbc)
1127                 return;
1128
1129         if (!crtc->fb)
1130                 return;
1131
1132         intel_fb = to_intel_framebuffer(fb);
1133         obj_priv = intel_fb->obj->driver_private;
1134
1135         /*
1136          * If FBC is already on, we just have to verify that we can
1137          * keep it that way...
1138          * Need to disable if:
1139          *   - changing FBC params (stride, fence, mode)
1140          *   - new fb is too large to fit in compressed buffer
1141          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1142          */
1143         if (intel_fb->obj->size > dev_priv->cfb_size) {
1144                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1145                                 "compression\n");
1146                 goto out_disable;
1147         }
1148         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1149             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1150                 DRM_DEBUG_KMS("mode incompatible with compression, "
1151                                 "disabling\n");
1152                 goto out_disable;
1153         }
1154         if ((mode->hdisplay > 2048) ||
1155             (mode->vdisplay > 1536)) {
1156                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1157                 goto out_disable;
1158         }
1159         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1160                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1161                 goto out_disable;
1162         }
1163         if (obj_priv->tiling_mode != I915_TILING_X) {
1164                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1165                 goto out_disable;
1166         }
1167
1168         if (dev_priv->display.fbc_enabled(crtc)) {
1169                 /* We can re-enable it in this case, but need to update pitch */
1170                 if (fb->pitch > dev_priv->cfb_pitch)
1171                         dev_priv->display.disable_fbc(dev);
1172                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1173                         dev_priv->display.disable_fbc(dev);
1174                 if (plane != dev_priv->cfb_plane)
1175                         dev_priv->display.disable_fbc(dev);
1176         }
1177
1178         if (!dev_priv->display.fbc_enabled(crtc)) {
1179                 /* Now try to turn it back on if possible */
1180                 dev_priv->display.enable_fbc(crtc, 500);
1181         }
1182
1183         return;
1184
1185 out_disable:
1186         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1187         /* Multiple disables should be harmless */
1188         if (dev_priv->display.fbc_enabled(crtc))
1189                 dev_priv->display.disable_fbc(dev);
1190 }
1191
1192 static int
1193 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1194                     struct drm_framebuffer *old_fb)
1195 {
1196         struct drm_device *dev = crtc->dev;
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         struct drm_i915_master_private *master_priv;
1199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1200         struct intel_framebuffer *intel_fb;
1201         struct drm_i915_gem_object *obj_priv;
1202         struct drm_gem_object *obj;
1203         int pipe = intel_crtc->pipe;
1204         int plane = intel_crtc->plane;
1205         unsigned long Start, Offset;
1206         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1207         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1208         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1209         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1210         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1211         u32 dspcntr, alignment;
1212         int ret;
1213
1214         /* no fb bound */
1215         if (!crtc->fb) {
1216                 DRM_DEBUG_KMS("No FB bound\n");
1217                 return 0;
1218         }
1219
1220         switch (plane) {
1221         case 0:
1222         case 1:
1223                 break;
1224         default:
1225                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1226                 return -EINVAL;
1227         }
1228
1229         intel_fb = to_intel_framebuffer(crtc->fb);
1230         obj = intel_fb->obj;
1231         obj_priv = obj->driver_private;
1232
1233         switch (obj_priv->tiling_mode) {
1234         case I915_TILING_NONE:
1235                 alignment = 64 * 1024;
1236                 break;
1237         case I915_TILING_X:
1238                 /* pin() will align the object as required by fence */
1239                 alignment = 0;
1240                 break;
1241         case I915_TILING_Y:
1242                 /* FIXME: Is this true? */
1243                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1244                 return -EINVAL;
1245         default:
1246                 BUG();
1247         }
1248
1249         mutex_lock(&dev->struct_mutex);
1250         ret = i915_gem_object_pin(obj, alignment);
1251         if (ret != 0) {
1252                 mutex_unlock(&dev->struct_mutex);
1253                 return ret;
1254         }
1255
1256         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1257         if (ret != 0) {
1258                 i915_gem_object_unpin(obj);
1259                 mutex_unlock(&dev->struct_mutex);
1260                 return ret;
1261         }
1262
1263         /* Install a fence for tiled scan-out. Pre-i965 always needs a fence,
1264          * whereas 965+ only requires a fence if using framebuffer compression.
1265          * For simplicity, we always install a fence as the cost is not that onerous.
1266          */
1267         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1268             obj_priv->tiling_mode != I915_TILING_NONE) {
1269                 ret = i915_gem_object_get_fence_reg(obj);
1270                 if (ret != 0) {
1271                         i915_gem_object_unpin(obj);
1272                         mutex_unlock(&dev->struct_mutex);
1273                         return ret;
1274                 }
1275         }
1276
1277         dspcntr = I915_READ(dspcntr_reg);
1278         /* Mask out pixel format bits in case we change it */
1279         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1280         switch (crtc->fb->bits_per_pixel) {
1281         case 8:
1282                 dspcntr |= DISPPLANE_8BPP;
1283                 break;
1284         case 16:
1285                 if (crtc->fb->depth == 15)
1286                         dspcntr |= DISPPLANE_15_16BPP;
1287                 else
1288                         dspcntr |= DISPPLANE_16BPP;
1289                 break;
1290         case 24:
1291         case 32:
1292                 if (crtc->fb->depth == 30)
1293                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1294                 else
1295                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1296                 break;
1297         default:
1298                 DRM_ERROR("Unknown color depth\n");
1299                 i915_gem_object_unpin(obj);
1300                 mutex_unlock(&dev->struct_mutex);
1301                 return -EINVAL;
1302         }
1303         if (IS_I965G(dev)) {
1304                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1305                         dspcntr |= DISPPLANE_TILED;
1306                 else
1307                         dspcntr &= ~DISPPLANE_TILED;
1308         }
1309
1310         if (IS_IGDNG(dev))
1311                 /* must disable */
1312                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1313
1314         I915_WRITE(dspcntr_reg, dspcntr);
1315
1316         Start = obj_priv->gtt_offset;
1317         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1318
1319         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1320         I915_WRITE(dspstride, crtc->fb->pitch);
1321         if (IS_I965G(dev)) {
1322                 I915_WRITE(dspbase, Offset);
1323                 I915_READ(dspbase);
1324                 I915_WRITE(dspsurf, Start);
1325                 I915_READ(dspsurf);
1326                 I915_WRITE(dsptileoff, (y << 16) | x);
1327         } else {
1328                 I915_WRITE(dspbase, Start + Offset);
1329                 I915_READ(dspbase);
1330         }
1331
1332         if ((IS_I965G(dev) || plane == 0))
1333                 intel_update_fbc(crtc, &crtc->mode);
1334
1335         intel_wait_for_vblank(dev);
1336
1337         if (old_fb) {
1338                 intel_fb = to_intel_framebuffer(old_fb);
1339                 obj_priv = intel_fb->obj->driver_private;
1340                 i915_gem_object_unpin(intel_fb->obj);
1341         }
1342         intel_increase_pllclock(crtc, true);
1343
1344         mutex_unlock(&dev->struct_mutex);
1345
1346         if (!dev->primary->master)
1347                 return 0;
1348
1349         master_priv = dev->primary->master->driver_priv;
1350         if (!master_priv->sarea_priv)
1351                 return 0;
1352
1353         if (pipe) {
1354                 master_priv->sarea_priv->pipeB_x = x;
1355                 master_priv->sarea_priv->pipeB_y = y;
1356         } else {
1357                 master_priv->sarea_priv->pipeA_x = x;
1358                 master_priv->sarea_priv->pipeA_y = y;
1359         }
1360
1361         return 0;
1362 }
1363
1364 /* Disable the VGA plane that we never use */
1365 static void i915_disable_vga (struct drm_device *dev)
1366 {
1367         struct drm_i915_private *dev_priv = dev->dev_private;
1368         u8 sr1;
1369         u32 vga_reg;
1370
1371         if (IS_IGDNG(dev))
1372                 vga_reg = CPU_VGACNTRL;
1373         else
1374                 vga_reg = VGACNTRL;
1375
1376         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1377                 return;
1378
1379         I915_WRITE8(VGA_SR_INDEX, 1);
1380         sr1 = I915_READ8(VGA_SR_DATA);
1381         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1382         udelay(100);
1383
1384         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1385 }
1386
1387 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1388 {
1389         struct drm_device *dev = crtc->dev;
1390         struct drm_i915_private *dev_priv = dev->dev_private;
1391         u32 dpa_ctl;
1392
1393         DRM_DEBUG_KMS("\n");
1394         dpa_ctl = I915_READ(DP_A);
1395         dpa_ctl &= ~DP_PLL_ENABLE;
1396         I915_WRITE(DP_A, dpa_ctl);
1397 }
1398
1399 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1400 {
1401         struct drm_device *dev = crtc->dev;
1402         struct drm_i915_private *dev_priv = dev->dev_private;
1403         u32 dpa_ctl;
1404
1405         dpa_ctl = I915_READ(DP_A);
1406         dpa_ctl |= DP_PLL_ENABLE;
1407         I915_WRITE(DP_A, dpa_ctl);
1408         udelay(200);
1409 }
1410
1411
1412 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1413 {
1414         struct drm_device *dev = crtc->dev;
1415         struct drm_i915_private *dev_priv = dev->dev_private;
1416         u32 dpa_ctl;
1417
1418         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1419         dpa_ctl = I915_READ(DP_A);
1420         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1421
1422         if (clock < 200000) {
1423                 u32 temp;
1424                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1425                 /* workaround for 160Mhz:
1426                    1) program 0x4600c bits 15:0 = 0x8124
1427                    2) program 0x46010 bit 0 = 1
1428                    3) program 0x46034 bit 24 = 1
1429                    4) program 0x64000 bit 14 = 1
1430                    */
1431                 temp = I915_READ(0x4600c);
1432                 temp &= 0xffff0000;
1433                 I915_WRITE(0x4600c, temp | 0x8124);
1434
1435                 temp = I915_READ(0x46010);
1436                 I915_WRITE(0x46010, temp | 1);
1437
1438                 temp = I915_READ(0x46034);
1439                 I915_WRITE(0x46034, temp | (1 << 24));
1440         } else {
1441                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1442         }
1443         I915_WRITE(DP_A, dpa_ctl);
1444
1445         udelay(500);
1446 }
1447
1448 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1449 {
1450         struct drm_device *dev = crtc->dev;
1451         struct drm_i915_private *dev_priv = dev->dev_private;
1452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1453         int pipe = intel_crtc->pipe;
1454         int plane = intel_crtc->plane;
1455         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1456         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1457         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1458         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1459         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1460         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1461         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1462         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1463         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1464         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1465         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1466         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1467         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1468         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1469         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1470         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1471         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1472         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1473         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1474         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1475         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1476         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1477         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1478         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1479         u32 temp;
1480         int tries = 5, j, n;
1481
1482         /* XXX: When our outputs are all unaware of DPMS modes other than off
1483          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1484          */
1485         switch (mode) {
1486         case DRM_MODE_DPMS_ON:
1487         case DRM_MODE_DPMS_STANDBY:
1488         case DRM_MODE_DPMS_SUSPEND:
1489                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1490                 if (HAS_eDP) {
1491                         /* enable eDP PLL */
1492                         igdng_enable_pll_edp(crtc);
1493                 } else {
1494                         /* enable PCH DPLL */
1495                         temp = I915_READ(pch_dpll_reg);
1496                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1497                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1498                                 I915_READ(pch_dpll_reg);
1499                         }
1500
1501                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1502                         temp = I915_READ(fdi_rx_reg);
1503                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1504                                         FDI_SEL_PCDCLK |
1505                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1506                         I915_READ(fdi_rx_reg);
1507                         udelay(200);
1508
1509                         /* Enable CPU FDI TX PLL, always on for IGDNG */
1510                         temp = I915_READ(fdi_tx_reg);
1511                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1512                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1513                                 I915_READ(fdi_tx_reg);
1514                                 udelay(100);
1515                         }
1516                 }
1517
1518                 /* Enable panel fitting for LVDS */
1519                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1520                         temp = I915_READ(pf_ctl_reg);
1521                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1522
1523                         /* currently full aspect */
1524                         I915_WRITE(pf_win_pos, 0);
1525
1526                         I915_WRITE(pf_win_size,
1527                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1528                                    (dev_priv->panel_fixed_mode->vdisplay));
1529                 }
1530
1531                 /* Enable CPU pipe */
1532                 temp = I915_READ(pipeconf_reg);
1533                 if ((temp & PIPEACONF_ENABLE) == 0) {
1534                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1535                         I915_READ(pipeconf_reg);
1536                         udelay(100);
1537                 }
1538
1539                 /* configure and enable CPU plane */
1540                 temp = I915_READ(dspcntr_reg);
1541                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1542                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1543                         /* Flush the plane changes */
1544                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1545                 }
1546
1547                 if (!HAS_eDP) {
1548                         /* enable CPU FDI TX and PCH FDI RX */
1549                         temp = I915_READ(fdi_tx_reg);
1550                         temp |= FDI_TX_ENABLE;
1551                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1552                         temp &= ~FDI_LINK_TRAIN_NONE;
1553                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1554                         I915_WRITE(fdi_tx_reg, temp);
1555                         I915_READ(fdi_tx_reg);
1556
1557                         temp = I915_READ(fdi_rx_reg);
1558                         temp &= ~FDI_LINK_TRAIN_NONE;
1559                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1560                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1561                         I915_READ(fdi_rx_reg);
1562
1563                         udelay(150);
1564
1565                         /* Train FDI. */
1566                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1567                            for train result */
1568                         temp = I915_READ(fdi_rx_imr_reg);
1569                         temp &= ~FDI_RX_SYMBOL_LOCK;
1570                         temp &= ~FDI_RX_BIT_LOCK;
1571                         I915_WRITE(fdi_rx_imr_reg, temp);
1572                         I915_READ(fdi_rx_imr_reg);
1573                         udelay(150);
1574
1575                         temp = I915_READ(fdi_rx_iir_reg);
1576                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1577
1578                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1579                                 for (j = 0; j < tries; j++) {
1580                                         temp = I915_READ(fdi_rx_iir_reg);
1581                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1582                                                                 temp);
1583                                         if (temp & FDI_RX_BIT_LOCK)
1584                                                 break;
1585                                         udelay(200);
1586                                 }
1587                                 if (j != tries)
1588                                         I915_WRITE(fdi_rx_iir_reg,
1589                                                         temp | FDI_RX_BIT_LOCK);
1590                                 else
1591                                         DRM_DEBUG_KMS("train 1 fail\n");
1592                         } else {
1593                                 I915_WRITE(fdi_rx_iir_reg,
1594                                                 temp | FDI_RX_BIT_LOCK);
1595                                 DRM_DEBUG_KMS("train 1 ok 2!\n");
1596                         }
1597                         temp = I915_READ(fdi_tx_reg);
1598                         temp &= ~FDI_LINK_TRAIN_NONE;
1599                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1600                         I915_WRITE(fdi_tx_reg, temp);
1601
1602                         temp = I915_READ(fdi_rx_reg);
1603                         temp &= ~FDI_LINK_TRAIN_NONE;
1604                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1605                         I915_WRITE(fdi_rx_reg, temp);
1606
1607                         udelay(150);
1608
1609                         temp = I915_READ(fdi_rx_iir_reg);
1610                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1611
1612                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1613                                 for (j = 0; j < tries; j++) {
1614                                         temp = I915_READ(fdi_rx_iir_reg);
1615                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1616                                                                 temp);
1617                                         if (temp & FDI_RX_SYMBOL_LOCK)
1618                                                 break;
1619                                         udelay(200);
1620                                 }
1621                                 if (j != tries) {
1622                                         I915_WRITE(fdi_rx_iir_reg,
1623                                                         temp | FDI_RX_SYMBOL_LOCK);
1624                                         DRM_DEBUG_KMS("train 2 ok 1!\n");
1625                                 } else
1626                                         DRM_DEBUG_KMS("train 2 fail\n");
1627                         } else {
1628                                 I915_WRITE(fdi_rx_iir_reg,
1629                                                 temp | FDI_RX_SYMBOL_LOCK);
1630                                 DRM_DEBUG_KMS("train 2 ok 2!\n");
1631                         }
1632                         DRM_DEBUG_KMS("train done\n");
1633
1634                         /* set transcoder timing */
1635                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1636                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1637                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1638
1639                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1640                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1641                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1642
1643                         /* enable PCH transcoder */
1644                         temp = I915_READ(transconf_reg);
1645                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1646                         I915_READ(transconf_reg);
1647
1648                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1649                                 ;
1650
1651                         /* enable normal */
1652
1653                         temp = I915_READ(fdi_tx_reg);
1654                         temp &= ~FDI_LINK_TRAIN_NONE;
1655                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1656                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1657                         I915_READ(fdi_tx_reg);
1658
1659                         temp = I915_READ(fdi_rx_reg);
1660                         temp &= ~FDI_LINK_TRAIN_NONE;
1661                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1662                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1663                         I915_READ(fdi_rx_reg);
1664
1665                         /* wait one idle pattern time */
1666                         udelay(100);
1667
1668                 }
1669
1670                 intel_crtc_load_lut(crtc);
1671
1672         break;
1673         case DRM_MODE_DPMS_OFF:
1674                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1675
1676                 i915_disable_vga(dev);
1677
1678                 /* Disable display plane */
1679                 temp = I915_READ(dspcntr_reg);
1680                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1681                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1682                         /* Flush the plane changes */
1683                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1684                         I915_READ(dspbase_reg);
1685                 }
1686
1687                 /* disable cpu pipe, disable after all planes disabled */
1688                 temp = I915_READ(pipeconf_reg);
1689                 if ((temp & PIPEACONF_ENABLE) != 0) {
1690                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1691                         I915_READ(pipeconf_reg);
1692                         n = 0;
1693                         /* wait for cpu pipe off, pipe state */
1694                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1695                                 n++;
1696                                 if (n < 60) {
1697                                         udelay(500);
1698                                         continue;
1699                                 } else {
1700                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1701                                                                 pipe);
1702                                         break;
1703                                 }
1704                         }
1705                 } else
1706                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1707
1708                 if (HAS_eDP) {
1709                         igdng_disable_pll_edp(crtc);
1710                 }
1711
1712                 /* disable CPU FDI tx and PCH FDI rx */
1713                 temp = I915_READ(fdi_tx_reg);
1714                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1715                 I915_READ(fdi_tx_reg);
1716
1717                 temp = I915_READ(fdi_rx_reg);
1718                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1719                 I915_READ(fdi_rx_reg);
1720
1721                 udelay(100);
1722
1723                 /* still set train pattern 1 */
1724                 temp = I915_READ(fdi_tx_reg);
1725                 temp &= ~FDI_LINK_TRAIN_NONE;
1726                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1727                 I915_WRITE(fdi_tx_reg, temp);
1728
1729                 temp = I915_READ(fdi_rx_reg);
1730                 temp &= ~FDI_LINK_TRAIN_NONE;
1731                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1732                 I915_WRITE(fdi_rx_reg, temp);
1733
1734                 udelay(100);
1735
1736                 /* disable PCH transcoder */
1737                 temp = I915_READ(transconf_reg);
1738                 if ((temp & TRANS_ENABLE) != 0) {
1739                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1740                         I915_READ(transconf_reg);
1741                         n = 0;
1742                         /* wait for PCH transcoder off, transcoder state */
1743                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1744                                 n++;
1745                                 if (n < 60) {
1746                                         udelay(500);
1747                                         continue;
1748                                 } else {
1749                                         DRM_DEBUG_KMS("transcoder %d off "
1750                                                         "delay\n", pipe);
1751                                         break;
1752                                 }
1753                         }
1754                 }
1755
1756                 /* disable PCH DPLL */
1757                 temp = I915_READ(pch_dpll_reg);
1758                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1759                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1760                         I915_READ(pch_dpll_reg);
1761                 }
1762
1763                 temp = I915_READ(fdi_rx_reg);
1764                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1765                         temp &= ~FDI_SEL_PCDCLK;
1766                         temp &= ~FDI_RX_PLL_ENABLE;
1767                         I915_WRITE(fdi_rx_reg, temp);
1768                         I915_READ(fdi_rx_reg);
1769                 }
1770
1771                 /* Disable CPU FDI TX PLL */
1772                 temp = I915_READ(fdi_tx_reg);
1773                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1774                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1775                         I915_READ(fdi_tx_reg);
1776                         udelay(100);
1777                 }
1778
1779                 /* Disable PF */
1780                 temp = I915_READ(pf_ctl_reg);
1781                 if ((temp & PF_ENABLE) != 0) {
1782                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1783                         I915_READ(pf_ctl_reg);
1784                 }
1785                 I915_WRITE(pf_win_size, 0);
1786
1787                 /* Wait for the clocks to turn off. */
1788                 udelay(150);
1789                 break;
1790         }
1791 }
1792
1793 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1794 {
1795         struct intel_overlay *overlay;
1796         int ret;
1797
1798         if (!enable && intel_crtc->overlay) {
1799                 overlay = intel_crtc->overlay;
1800                 mutex_lock(&overlay->dev->struct_mutex);
1801                 for (;;) {
1802                         ret = intel_overlay_switch_off(overlay);
1803                         if (ret == 0)
1804                                 break;
1805
1806                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
1807                         if (ret != 0) {
1808                                 /* overlay doesn't react anymore. Usually
1809                                  * results in a black screen and an unkillable
1810                                  * X server. */
1811                                 BUG();
1812                                 overlay->hw_wedged = HW_WEDGED;
1813                                 break;
1814                         }
1815                 }
1816                 mutex_unlock(&overlay->dev->struct_mutex);
1817         }
1818         /* Let userspace switch the overlay on again. In most cases userspace
1819          * has to recompute where to put it anyway. */
1820
1821         return;
1822 }
1823
1824 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1825 {
1826         struct drm_device *dev = crtc->dev;
1827         struct drm_i915_private *dev_priv = dev->dev_private;
1828         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1829         int pipe = intel_crtc->pipe;
1830         int plane = intel_crtc->plane;
1831         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1832         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1833         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1834         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1835         u32 temp;
1836
1837         /* XXX: When our outputs are all unaware of DPMS modes other than off
1838          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1839          */
1840         switch (mode) {
1841         case DRM_MODE_DPMS_ON:
1842         case DRM_MODE_DPMS_STANDBY:
1843         case DRM_MODE_DPMS_SUSPEND:
1844                 intel_update_watermarks(dev);
1845
1846                 /* Enable the DPLL */
1847                 temp = I915_READ(dpll_reg);
1848                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1849                         I915_WRITE(dpll_reg, temp);
1850                         I915_READ(dpll_reg);
1851                         /* Wait for the clocks to stabilize. */
1852                         udelay(150);
1853                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1854                         I915_READ(dpll_reg);
1855                         /* Wait for the clocks to stabilize. */
1856                         udelay(150);
1857                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1858                         I915_READ(dpll_reg);
1859                         /* Wait for the clocks to stabilize. */
1860                         udelay(150);
1861                 }
1862
1863                 /* Enable the pipe */
1864                 temp = I915_READ(pipeconf_reg);
1865                 if ((temp & PIPEACONF_ENABLE) == 0)
1866                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1867
1868                 /* Enable the plane */
1869                 temp = I915_READ(dspcntr_reg);
1870                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1871                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1872                         /* Flush the plane changes */
1873                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1874                 }
1875
1876                 intel_crtc_load_lut(crtc);
1877
1878                 if ((IS_I965G(dev) || plane == 0))
1879                         intel_update_fbc(crtc, &crtc->mode);
1880
1881                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1882                 intel_crtc_dpms_overlay(intel_crtc, true);
1883         break;
1884         case DRM_MODE_DPMS_OFF:
1885                 intel_update_watermarks(dev);
1886
1887                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1888                 intel_crtc_dpms_overlay(intel_crtc, false);
1889
1890                 if (dev_priv->cfb_plane == plane &&
1891                     dev_priv->display.disable_fbc)
1892                         dev_priv->display.disable_fbc(dev);
1893
1894                 /* Disable the VGA plane that we never use */
1895                 i915_disable_vga(dev);
1896
1897                 /* Disable display plane */
1898                 temp = I915_READ(dspcntr_reg);
1899                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1900                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1901                         /* Flush the plane changes */
1902                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1903                         I915_READ(dspbase_reg);
1904                 }
1905
1906                 if (!IS_I9XX(dev)) {
1907                         /* Wait for vblank for the disable to take effect */
1908                         intel_wait_for_vblank(dev);
1909                 }
1910
1911                 /* Next, disable display pipes */
1912                 temp = I915_READ(pipeconf_reg);
1913                 if ((temp & PIPEACONF_ENABLE) != 0) {
1914                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1915                         I915_READ(pipeconf_reg);
1916                 }
1917
1918                 /* Wait for vblank for the disable to take effect. */
1919                 intel_wait_for_vblank(dev);
1920
1921                 temp = I915_READ(dpll_reg);
1922                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1923                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1924                         I915_READ(dpll_reg);
1925                 }
1926
1927                 /* Wait for the clocks to turn off. */
1928                 udelay(150);
1929                 break;
1930         }
1931 }
1932
1933 /**
1934  * Sets the power management mode of the pipe and plane.
1935  *
1936  * This code should probably grow support for turning the cursor off and back
1937  * on appropriately at the same time as we're turning the pipe off/on.
1938  */
1939 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1940 {
1941         struct drm_device *dev = crtc->dev;
1942         struct drm_i915_private *dev_priv = dev->dev_private;
1943         struct drm_i915_master_private *master_priv;
1944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1945         int pipe = intel_crtc->pipe;
1946         bool enabled;
1947
1948         dev_priv->display.dpms(crtc, mode);
1949
1950         intel_crtc->dpms_mode = mode;
1951
1952         if (!dev->primary->master)
1953                 return;
1954
1955         master_priv = dev->primary->master->driver_priv;
1956         if (!master_priv->sarea_priv)
1957                 return;
1958
1959         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1960
1961         switch (pipe) {
1962         case 0:
1963                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1964                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1965                 break;
1966         case 1:
1967                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1968                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1969                 break;
1970         default:
1971                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1972                 break;
1973         }
1974 }
1975
1976 static void intel_crtc_prepare (struct drm_crtc *crtc)
1977 {
1978         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1979         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1980 }
1981
1982 static void intel_crtc_commit (struct drm_crtc *crtc)
1983 {
1984         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1985         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1986 }
1987
1988 void intel_encoder_prepare (struct drm_encoder *encoder)
1989 {
1990         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1991         /* lvds has its own version of prepare see intel_lvds_prepare */
1992         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1993 }
1994
1995 void intel_encoder_commit (struct drm_encoder *encoder)
1996 {
1997         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1998         /* lvds has its own version of commit see intel_lvds_commit */
1999         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2000 }
2001
2002 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2003                                   struct drm_display_mode *mode,
2004                                   struct drm_display_mode *adjusted_mode)
2005 {
2006         struct drm_device *dev = crtc->dev;
2007         if (IS_IGDNG(dev)) {
2008                 /* FDI link clock is fixed at 2.7G */
2009                 if (mode->clock * 3 > 27000 * 4)
2010                         return MODE_CLOCK_HIGH;
2011         }
2012         return true;
2013 }
2014
2015 static int i945_get_display_clock_speed(struct drm_device *dev)
2016 {
2017         return 400000;
2018 }
2019
2020 static int i915_get_display_clock_speed(struct drm_device *dev)
2021 {
2022         return 333000;
2023 }
2024
2025 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2026 {
2027         return 200000;
2028 }
2029
2030 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2031 {
2032         u16 gcfgc = 0;
2033
2034         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2035
2036         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2037                 return 133000;
2038         else {
2039                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2040                 case GC_DISPLAY_CLOCK_333_MHZ:
2041                         return 333000;
2042                 default:
2043                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2044                         return 190000;
2045                 }
2046         }
2047 }
2048
2049 static int i865_get_display_clock_speed(struct drm_device *dev)
2050 {
2051         return 266000;
2052 }
2053
2054 static int i855_get_display_clock_speed(struct drm_device *dev)
2055 {
2056         u16 hpllcc = 0;
2057         /* Assume that the hardware is in the high speed state.  This
2058          * should be the default.
2059          */
2060         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2061         case GC_CLOCK_133_200:
2062         case GC_CLOCK_100_200:
2063                 return 200000;
2064         case GC_CLOCK_166_250:
2065                 return 250000;
2066         case GC_CLOCK_100_133:
2067                 return 133000;
2068         }
2069
2070         /* Shouldn't happen */
2071         return 0;
2072 }
2073
2074 static int i830_get_display_clock_speed(struct drm_device *dev)
2075 {
2076         return 133000;
2077 }
2078
2079 /**
2080  * Return the pipe currently connected to the panel fitter,
2081  * or -1 if the panel fitter is not present or not in use
2082  */
2083 int intel_panel_fitter_pipe (struct drm_device *dev)
2084 {
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         u32  pfit_control;
2087
2088         /* i830 doesn't have a panel fitter */
2089         if (IS_I830(dev))
2090                 return -1;
2091
2092         pfit_control = I915_READ(PFIT_CONTROL);
2093
2094         /* See if the panel fitter is in use */
2095         if ((pfit_control & PFIT_ENABLE) == 0)
2096                 return -1;
2097
2098         /* 965 can place panel fitter on either pipe */
2099         if (IS_I965G(dev))
2100                 return (pfit_control >> 29) & 0x3;
2101
2102         /* older chips can only use pipe 1 */
2103         return 1;
2104 }
2105
2106 struct fdi_m_n {
2107         u32        tu;
2108         u32        gmch_m;
2109         u32        gmch_n;
2110         u32        link_m;
2111         u32        link_n;
2112 };
2113
2114 static void
2115 fdi_reduce_ratio(u32 *num, u32 *den)
2116 {
2117         while (*num > 0xffffff || *den > 0xffffff) {
2118                 *num >>= 1;
2119                 *den >>= 1;
2120         }
2121 }
2122
2123 #define DATA_N 0x800000
2124 #define LINK_N 0x80000
2125
2126 static void
2127 igdng_compute_m_n(int bits_per_pixel, int nlanes,
2128                 int pixel_clock, int link_clock,
2129                 struct fdi_m_n *m_n)
2130 {
2131         u64 temp;
2132
2133         m_n->tu = 64; /* default size */
2134
2135         temp = (u64) DATA_N * pixel_clock;
2136         temp = div_u64(temp, link_clock);
2137         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2138         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2139         m_n->gmch_n = DATA_N;
2140         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2141
2142         temp = (u64) LINK_N * pixel_clock;
2143         m_n->link_m = div_u64(temp, link_clock);
2144         m_n->link_n = LINK_N;
2145         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2146 }
2147
2148
2149 struct intel_watermark_params {
2150         unsigned long fifo_size;
2151         unsigned long max_wm;
2152         unsigned long default_wm;
2153         unsigned long guard_size;
2154         unsigned long cacheline_size;
2155 };
2156
2157 /* IGD has different values for various configs */
2158 static struct intel_watermark_params igd_display_wm = {
2159         IGD_DISPLAY_FIFO,
2160         IGD_MAX_WM,
2161         IGD_DFT_WM,
2162         IGD_GUARD_WM,
2163         IGD_FIFO_LINE_SIZE
2164 };
2165 static struct intel_watermark_params igd_display_hplloff_wm = {
2166         IGD_DISPLAY_FIFO,
2167         IGD_MAX_WM,
2168         IGD_DFT_HPLLOFF_WM,
2169         IGD_GUARD_WM,
2170         IGD_FIFO_LINE_SIZE
2171 };
2172 static struct intel_watermark_params igd_cursor_wm = {
2173         IGD_CURSOR_FIFO,
2174         IGD_CURSOR_MAX_WM,
2175         IGD_CURSOR_DFT_WM,
2176         IGD_CURSOR_GUARD_WM,
2177         IGD_FIFO_LINE_SIZE,
2178 };
2179 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2180         IGD_CURSOR_FIFO,
2181         IGD_CURSOR_MAX_WM,
2182         IGD_CURSOR_DFT_WM,
2183         IGD_CURSOR_GUARD_WM,
2184         IGD_FIFO_LINE_SIZE
2185 };
2186 static struct intel_watermark_params g4x_wm_info = {
2187         G4X_FIFO_SIZE,
2188         G4X_MAX_WM,
2189         G4X_MAX_WM,
2190         2,
2191         G4X_FIFO_LINE_SIZE,
2192 };
2193 static struct intel_watermark_params i945_wm_info = {
2194         I945_FIFO_SIZE,
2195         I915_MAX_WM,
2196         1,
2197         2,
2198         I915_FIFO_LINE_SIZE
2199 };
2200 static struct intel_watermark_params i915_wm_info = {
2201         I915_FIFO_SIZE,
2202         I915_MAX_WM,
2203         1,
2204         2,
2205         I915_FIFO_LINE_SIZE
2206 };
2207 static struct intel_watermark_params i855_wm_info = {
2208         I855GM_FIFO_SIZE,
2209         I915_MAX_WM,
2210         1,
2211         2,
2212         I830_FIFO_LINE_SIZE
2213 };
2214 static struct intel_watermark_params i830_wm_info = {
2215         I830_FIFO_SIZE,
2216         I915_MAX_WM,
2217         1,
2218         2,
2219         I830_FIFO_LINE_SIZE
2220 };
2221
2222 /**
2223  * intel_calculate_wm - calculate watermark level
2224  * @clock_in_khz: pixel clock
2225  * @wm: chip FIFO params
2226  * @pixel_size: display pixel size
2227  * @latency_ns: memory latency for the platform
2228  *
2229  * Calculate the watermark level (the level at which the display plane will
2230  * start fetching from memory again).  Each chip has a different display
2231  * FIFO size and allocation, so the caller needs to figure that out and pass
2232  * in the correct intel_watermark_params structure.
2233  *
2234  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2235  * on the pixel size.  When it reaches the watermark level, it'll start
2236  * fetching FIFO line sized based chunks from memory until the FIFO fills
2237  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2238  * will occur, and a display engine hang could result.
2239  */
2240 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2241                                         struct intel_watermark_params *wm,
2242                                         int pixel_size,
2243                                         unsigned long latency_ns)
2244 {
2245         long entries_required, wm_size;
2246
2247         /*
2248          * Note: we need to make sure we don't overflow for various clock &
2249          * latency values.
2250          * clocks go from a few thousand to several hundred thousand.
2251          * latency is usually a few thousand
2252          */
2253         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2254                 1000;
2255         entries_required /= wm->cacheline_size;
2256
2257         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2258
2259         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2260
2261         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2262
2263         /* Don't promote wm_size to unsigned... */
2264         if (wm_size > (long)wm->max_wm)
2265                 wm_size = wm->max_wm;
2266         if (wm_size <= 0)
2267                 wm_size = wm->default_wm;
2268         return wm_size;
2269 }
2270
2271 struct cxsr_latency {
2272         int is_desktop;
2273         unsigned long fsb_freq;
2274         unsigned long mem_freq;
2275         unsigned long display_sr;
2276         unsigned long display_hpll_disable;
2277         unsigned long cursor_sr;
2278         unsigned long cursor_hpll_disable;
2279 };
2280
2281 static struct cxsr_latency cxsr_latency_table[] = {
2282         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2283         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2284         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2285
2286         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2287         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2288         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2289
2290         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2291         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2292         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2293
2294         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2295         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2296         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2297
2298         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2299         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2300         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2301
2302         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2303         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2304         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2305 };
2306
2307 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2308                                                    int mem)
2309 {
2310         int i;
2311         struct cxsr_latency *latency;
2312
2313         if (fsb == 0 || mem == 0)
2314                 return NULL;
2315
2316         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2317                 latency = &cxsr_latency_table[i];
2318                 if (is_desktop == latency->is_desktop &&
2319                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2320                         return latency;
2321         }
2322
2323         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2324
2325         return NULL;
2326 }
2327
2328 static void igd_disable_cxsr(struct drm_device *dev)
2329 {
2330         struct drm_i915_private *dev_priv = dev->dev_private;
2331         u32 reg;
2332
2333         /* deactivate cxsr */
2334         reg = I915_READ(DSPFW3);
2335         reg &= ~(IGD_SELF_REFRESH_EN);
2336         I915_WRITE(DSPFW3, reg);
2337         DRM_INFO("Big FIFO is disabled\n");
2338 }
2339
2340 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2341                             int pixel_size)
2342 {
2343         struct drm_i915_private *dev_priv = dev->dev_private;
2344         u32 reg;
2345         unsigned long wm;
2346         struct cxsr_latency *latency;
2347
2348         latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2349                 dev_priv->mem_freq);
2350         if (!latency) {
2351                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2352                 igd_disable_cxsr(dev);
2353                 return;
2354         }
2355
2356         /* Display SR */
2357         wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2358                                 latency->display_sr);
2359         reg = I915_READ(DSPFW1);
2360         reg &= 0x7fffff;
2361         reg |= wm << 23;
2362         I915_WRITE(DSPFW1, reg);
2363         DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2364
2365         /* cursor SR */
2366         wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2367                                 latency->cursor_sr);
2368         reg = I915_READ(DSPFW3);
2369         reg &= ~(0x3f << 24);
2370         reg |= (wm & 0x3f) << 24;
2371         I915_WRITE(DSPFW3, reg);
2372
2373         /* Display HPLL off SR */
2374         wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2375                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2376         reg = I915_READ(DSPFW3);
2377         reg &= 0xfffffe00;
2378         reg |= wm & 0x1ff;
2379         I915_WRITE(DSPFW3, reg);
2380
2381         /* cursor HPLL off SR */
2382         wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2383                                 latency->cursor_hpll_disable);
2384         reg = I915_READ(DSPFW3);
2385         reg &= ~(0x3f << 16);
2386         reg |= (wm & 0x3f) << 16;
2387         I915_WRITE(DSPFW3, reg);
2388         DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2389
2390         /* activate cxsr */
2391         reg = I915_READ(DSPFW3);
2392         reg |= IGD_SELF_REFRESH_EN;
2393         I915_WRITE(DSPFW3, reg);
2394
2395         DRM_INFO("Big FIFO is enabled\n");
2396
2397         return;
2398 }
2399
2400 /*
2401  * Latency for FIFO fetches is dependent on several factors:
2402  *   - memory configuration (speed, channels)
2403  *   - chipset
2404  *   - current MCH state
2405  * It can be fairly high in some situations, so here we assume a fairly
2406  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2407  * set this value too high, the FIFO will fetch frequently to stay full)
2408  * and power consumption (set it too low to save power and we might see
2409  * FIFO underruns and display "flicker").
2410  *
2411  * A value of 5us seems to be a good balance; safe for very low end
2412  * platforms but not overly aggressive on lower latency configs.
2413  */
2414 const static int latency_ns = 5000;
2415
2416 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2417 {
2418         struct drm_i915_private *dev_priv = dev->dev_private;
2419         uint32_t dsparb = I915_READ(DSPARB);
2420         int size;
2421
2422         if (plane == 0)
2423                 size = dsparb & 0x7f;
2424         else
2425                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2426                         (dsparb & 0x7f);
2427
2428         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2429                         plane ? "B" : "A", size);
2430
2431         return size;
2432 }
2433
2434 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2435 {
2436         struct drm_i915_private *dev_priv = dev->dev_private;
2437         uint32_t dsparb = I915_READ(DSPARB);
2438         int size;
2439
2440         if (plane == 0)
2441                 size = dsparb & 0x1ff;
2442         else
2443                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2444                         (dsparb & 0x1ff);
2445         size >>= 1; /* Convert to cachelines */
2446
2447         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2448                         plane ? "B" : "A", size);
2449
2450         return size;
2451 }
2452
2453 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2454 {
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456         uint32_t dsparb = I915_READ(DSPARB);
2457         int size;
2458
2459         size = dsparb & 0x7f;
2460         size >>= 2; /* Convert to cachelines */
2461
2462         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2463                         plane ? "B" : "A",
2464                   size);
2465
2466         return size;
2467 }
2468
2469 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2470 {
2471         struct drm_i915_private *dev_priv = dev->dev_private;
2472         uint32_t dsparb = I915_READ(DSPARB);
2473         int size;
2474
2475         size = dsparb & 0x7f;
2476         size >>= 1; /* Convert to cachelines */
2477
2478         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2479                         plane ? "B" : "A", size);
2480
2481         return size;
2482 }
2483
2484 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2485                           int planeb_clock, int sr_hdisplay, int pixel_size)
2486 {
2487         struct drm_i915_private *dev_priv = dev->dev_private;
2488         int total_size, cacheline_size;
2489         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2490         struct intel_watermark_params planea_params, planeb_params;
2491         unsigned long line_time_us;
2492         int sr_clock, sr_entries = 0, entries_required;
2493
2494         /* Create copies of the base settings for each pipe */
2495         planea_params = planeb_params = g4x_wm_info;
2496
2497         /* Grab a couple of global values before we overwrite them */
2498         total_size = planea_params.fifo_size;
2499         cacheline_size = planea_params.cacheline_size;
2500
2501         /*
2502          * Note: we need to make sure we don't overflow for various clock &
2503          * latency values.
2504          * clocks go from a few thousand to several hundred thousand.
2505          * latency is usually a few thousand
2506          */
2507         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2508                 1000;
2509         entries_required /= G4X_FIFO_LINE_SIZE;
2510         planea_wm = entries_required + planea_params.guard_size;
2511
2512         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2513                 1000;
2514         entries_required /= G4X_FIFO_LINE_SIZE;
2515         planeb_wm = entries_required + planeb_params.guard_size;
2516
2517         cursora_wm = cursorb_wm = 16;
2518         cursor_sr = 32;
2519
2520         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2521
2522         /* Calc sr entries for one plane configs */
2523         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2524                 /* self-refresh has much higher latency */
2525                 const static int sr_latency_ns = 12000;
2526
2527                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2528                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2529
2530                 /* Use ns/us then divide to preserve precision */
2531                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2532                               pixel_size * sr_hdisplay) / 1000;
2533                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2534                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2535                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2536         }
2537
2538         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2539                   planea_wm, planeb_wm, sr_entries);
2540
2541         planea_wm &= 0x3f;
2542         planeb_wm &= 0x3f;
2543
2544         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2545                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2546                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2547         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2548                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2549         /* HPLL off in SR has some issues on G4x... disable it */
2550         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2551                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2552 }
2553
2554 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2555                            int planeb_clock, int sr_hdisplay, int pixel_size)
2556 {
2557         struct drm_i915_private *dev_priv = dev->dev_private;
2558         unsigned long line_time_us;
2559         int sr_clock, sr_entries, srwm = 1;
2560
2561         /* Calc sr entries for one plane configs */
2562         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2563                 /* self-refresh has much higher latency */
2564                 const static int sr_latency_ns = 12000;
2565
2566                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2567                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2568
2569                 /* Use ns/us then divide to preserve precision */
2570                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2571                               pixel_size * sr_hdisplay) / 1000;
2572                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2573                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2574                 srwm = I945_FIFO_SIZE - sr_entries;
2575                 if (srwm < 0)
2576                         srwm = 1;
2577                 srwm &= 0x3f;
2578                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2579         }
2580
2581         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2582                       srwm);
2583
2584         /* 965 has limitations... */
2585         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2586                    (8 << 0));
2587         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2588 }
2589
2590 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2591                            int planeb_clock, int sr_hdisplay, int pixel_size)
2592 {
2593         struct drm_i915_private *dev_priv = dev->dev_private;
2594         uint32_t fwater_lo;
2595         uint32_t fwater_hi;
2596         int total_size, cacheline_size, cwm, srwm = 1;
2597         int planea_wm, planeb_wm;
2598         struct intel_watermark_params planea_params, planeb_params;
2599         unsigned long line_time_us;
2600         int sr_clock, sr_entries = 0;
2601
2602         /* Create copies of the base settings for each pipe */
2603         if (IS_I965GM(dev) || IS_I945GM(dev))
2604                 planea_params = planeb_params = i945_wm_info;
2605         else if (IS_I9XX(dev))
2606                 planea_params = planeb_params = i915_wm_info;
2607         else
2608                 planea_params = planeb_params = i855_wm_info;
2609
2610         /* Grab a couple of global values before we overwrite them */
2611         total_size = planea_params.fifo_size;
2612         cacheline_size = planea_params.cacheline_size;
2613
2614         /* Update per-plane FIFO sizes */
2615         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2616         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2617
2618         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2619                                        pixel_size, latency_ns);
2620         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2621                                        pixel_size, latency_ns);
2622         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2623
2624         /*
2625          * Overlay gets an aggressive default since video jitter is bad.
2626          */
2627         cwm = 2;
2628
2629         /* Calc sr entries for one plane configs */
2630         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2631             (!planea_clock || !planeb_clock)) {
2632                 /* self-refresh has much higher latency */
2633                 const static int sr_latency_ns = 6000;
2634
2635                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2636                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2637
2638                 /* Use ns/us then divide to preserve precision */
2639                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2640                               pixel_size * sr_hdisplay) / 1000;
2641                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2642                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2643                 srwm = total_size - sr_entries;
2644                 if (srwm < 0)
2645                         srwm = 1;
2646                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2647         }
2648
2649         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2650                   planea_wm, planeb_wm, cwm, srwm);
2651
2652         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2653         fwater_hi = (cwm & 0x1f);
2654
2655         /* Set request length to 8 cachelines per fetch */
2656         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2657         fwater_hi = fwater_hi | (1 << 8);
2658
2659         I915_WRITE(FW_BLC, fwater_lo);
2660         I915_WRITE(FW_BLC2, fwater_hi);
2661 }
2662
2663 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2664                            int unused2, int pixel_size)
2665 {
2666         struct drm_i915_private *dev_priv = dev->dev_private;
2667         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2668         int planea_wm;
2669
2670         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2671
2672         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2673                                        pixel_size, latency_ns);
2674         fwater_lo |= (3<<8) | planea_wm;
2675
2676         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2677
2678         I915_WRITE(FW_BLC, fwater_lo);
2679 }
2680
2681 /**
2682  * intel_update_watermarks - update FIFO watermark values based on current modes
2683  *
2684  * Calculate watermark values for the various WM regs based on current mode
2685  * and plane configuration.
2686  *
2687  * There are several cases to deal with here:
2688  *   - normal (i.e. non-self-refresh)
2689  *   - self-refresh (SR) mode
2690  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2691  *   - lines are small relative to FIFO size (buffer can hold more than 2
2692  *     lines), so need to account for TLB latency
2693  *
2694  *   The normal calculation is:
2695  *     watermark = dotclock * bytes per pixel * latency
2696  *   where latency is platform & configuration dependent (we assume pessimal
2697  *   values here).
2698  *
2699  *   The SR calculation is:
2700  *     watermark = (trunc(latency/line time)+1) * surface width *
2701  *       bytes per pixel
2702  *   where
2703  *     line time = htotal / dotclock
2704  *   and latency is assumed to be high, as above.
2705  *
2706  * The final value programmed to the register should always be rounded up,
2707  * and include an extra 2 entries to account for clock crossings.
2708  *
2709  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2710  * to set the non-SR watermarks to 8.
2711   */
2712 static void intel_update_watermarks(struct drm_device *dev)
2713 {
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         struct drm_crtc *crtc;
2716         struct intel_crtc *intel_crtc;
2717         int sr_hdisplay = 0;
2718         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2719         int enabled = 0, pixel_size = 0;
2720
2721         if (!dev_priv->display.update_wm)
2722                 return;
2723
2724         /* Get the clock config from both planes */
2725         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2726                 intel_crtc = to_intel_crtc(crtc);
2727                 if (crtc->enabled) {
2728                         enabled++;
2729                         if (intel_crtc->plane == 0) {
2730                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2731                                           intel_crtc->pipe, crtc->mode.clock);
2732                                 planea_clock = crtc->mode.clock;
2733                         } else {
2734                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2735                                           intel_crtc->pipe, crtc->mode.clock);
2736                                 planeb_clock = crtc->mode.clock;
2737                         }
2738                         sr_hdisplay = crtc->mode.hdisplay;
2739                         sr_clock = crtc->mode.clock;
2740                         if (crtc->fb)
2741                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2742                         else
2743                                 pixel_size = 4; /* by default */
2744                 }
2745         }
2746
2747         if (enabled <= 0)
2748                 return;
2749
2750         /* Single plane configs can enable self refresh */
2751         if (enabled == 1 && IS_IGD(dev))
2752                 igd_enable_cxsr(dev, sr_clock, pixel_size);
2753         else if (IS_IGD(dev))
2754                 igd_disable_cxsr(dev);
2755
2756         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2757                                     sr_hdisplay, pixel_size);
2758 }
2759
2760 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2761                                struct drm_display_mode *mode,
2762                                struct drm_display_mode *adjusted_mode,
2763                                int x, int y,
2764                                struct drm_framebuffer *old_fb)
2765 {
2766         struct drm_device *dev = crtc->dev;
2767         struct drm_i915_private *dev_priv = dev->dev_private;
2768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2769         int pipe = intel_crtc->pipe;
2770         int plane = intel_crtc->plane;
2771         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2772         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2773         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2774         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2775         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2776         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2777         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2778         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2779         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2780         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2781         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2782         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2783         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2784         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2785         int refclk, num_outputs = 0;
2786         intel_clock_t clock, reduced_clock;
2787         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2788         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2789         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2790         bool is_edp = false;
2791         struct drm_mode_config *mode_config = &dev->mode_config;
2792         struct drm_connector *connector;
2793         const intel_limit_t *limit;
2794         int ret;
2795         struct fdi_m_n m_n = {0};
2796         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2797         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2798         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2799         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2800         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2801         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2802         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2803         int lvds_reg = LVDS;
2804         u32 temp;
2805         int sdvo_pixel_multiply;
2806         int target_clock;
2807
2808         drm_vblank_pre_modeset(dev, pipe);
2809
2810         list_for_each_entry(connector, &mode_config->connector_list, head) {
2811                 struct intel_output *intel_output = to_intel_output(connector);
2812
2813                 if (!connector->encoder || connector->encoder->crtc != crtc)
2814                         continue;
2815
2816                 switch (intel_output->type) {
2817                 case INTEL_OUTPUT_LVDS:
2818                         is_lvds = true;
2819                         break;
2820                 case INTEL_OUTPUT_SDVO:
2821                 case INTEL_OUTPUT_HDMI:
2822                         is_sdvo = true;
2823                         if (intel_output->needs_tv_clock)
2824                                 is_tv = true;
2825                         break;
2826                 case INTEL_OUTPUT_DVO:
2827                         is_dvo = true;
2828                         break;
2829                 case INTEL_OUTPUT_TVOUT:
2830                         is_tv = true;
2831                         break;
2832                 case INTEL_OUTPUT_ANALOG:
2833                         is_crt = true;
2834                         break;
2835                 case INTEL_OUTPUT_DISPLAYPORT:
2836                         is_dp = true;
2837                         break;
2838                 case INTEL_OUTPUT_EDP:
2839                         is_edp = true;
2840                         break;
2841                 }
2842
2843                 num_outputs++;
2844         }
2845
2846         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2847                 refclk = dev_priv->lvds_ssc_freq * 1000;
2848                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2849                                         refclk / 1000);
2850         } else if (IS_I9XX(dev)) {
2851                 refclk = 96000;
2852                 if (IS_IGDNG(dev))
2853                         refclk = 120000; /* 120Mhz refclk */
2854         } else {
2855                 refclk = 48000;
2856         }
2857         
2858
2859         /*
2860          * Returns a set of divisors for the desired target clock with the given
2861          * refclk, or FALSE.  The returned values represent the clock equation:
2862          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2863          */
2864         limit = intel_limit(crtc);
2865         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2866         if (!ok) {
2867                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2868                 drm_vblank_post_modeset(dev, pipe);
2869                 return -EINVAL;
2870         }
2871
2872         if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2873                 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2874                 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2875                                                             (adjusted_mode->clock*3/4),
2876                                                             refclk,
2877                                                             &reduced_clock);
2878         }
2879
2880         /* SDVO TV has fixed PLL values depend on its clock range,
2881            this mirrors vbios setting. */
2882         if (is_sdvo && is_tv) {
2883                 if (adjusted_mode->clock >= 100000
2884                                 && adjusted_mode->clock < 140500) {
2885                         clock.p1 = 2;
2886                         clock.p2 = 10;
2887                         clock.n = 3;
2888                         clock.m1 = 16;
2889                         clock.m2 = 8;
2890                 } else if (adjusted_mode->clock >= 140500
2891                                 && adjusted_mode->clock <= 200000) {
2892                         clock.p1 = 1;
2893                         clock.p2 = 10;
2894                         clock.n = 6;
2895                         clock.m1 = 12;
2896                         clock.m2 = 8;
2897                 }
2898         }
2899
2900         /* FDI link */
2901         if (IS_IGDNG(dev)) {
2902                 int lane, link_bw, bpp;
2903                 /* eDP doesn't require FDI link, so just set DP M/N
2904                    according to current link config */
2905                 if (is_edp) {
2906                         struct drm_connector *edp;
2907                         target_clock = mode->clock;
2908                         edp = intel_pipe_get_output(crtc);
2909                         intel_edp_link_config(to_intel_output(edp),
2910                                         &lane, &link_bw);
2911                 } else {
2912                         /* DP over FDI requires target mode clock
2913                            instead of link clock */
2914                         if (is_dp)
2915                                 target_clock = mode->clock;
2916                         else
2917                                 target_clock = adjusted_mode->clock;
2918                         lane = 4;
2919                         link_bw = 270000;
2920                 }
2921
2922                 /* determine panel color depth */
2923                 temp = I915_READ(pipeconf_reg);
2924
2925                 switch (temp & PIPE_BPC_MASK) {
2926                 case PIPE_8BPC:
2927                         bpp = 24;
2928                         break;
2929                 case PIPE_10BPC:
2930                         bpp = 30;
2931                         break;
2932                 case PIPE_6BPC:
2933                         bpp = 18;
2934                         break;
2935                 case PIPE_12BPC:
2936                         bpp = 36;
2937                         break;
2938                 default:
2939                         DRM_ERROR("unknown pipe bpc value\n");
2940                         bpp = 24;
2941                 }
2942
2943                 igdng_compute_m_n(bpp, lane, target_clock,
2944                                   link_bw, &m_n);
2945         }
2946
2947         /* Ironlake: try to setup display ref clock before DPLL
2948          * enabling. This is only under driver's control after
2949          * PCH B stepping, previous chipset stepping should be
2950          * ignoring this setting.
2951          */
2952         if (IS_IGDNG(dev)) {
2953                 temp = I915_READ(PCH_DREF_CONTROL);
2954                 /* Always enable nonspread source */
2955                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2956                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
2957                 I915_WRITE(PCH_DREF_CONTROL, temp);
2958                 POSTING_READ(PCH_DREF_CONTROL);
2959
2960                 temp &= ~DREF_SSC_SOURCE_MASK;
2961                 temp |= DREF_SSC_SOURCE_ENABLE;
2962                 I915_WRITE(PCH_DREF_CONTROL, temp);
2963                 POSTING_READ(PCH_DREF_CONTROL);
2964
2965                 udelay(200);
2966
2967                 if (is_edp) {
2968                         if (dev_priv->lvds_use_ssc) {
2969                                 temp |= DREF_SSC1_ENABLE;
2970                                 I915_WRITE(PCH_DREF_CONTROL, temp);
2971                                 POSTING_READ(PCH_DREF_CONTROL);
2972
2973                                 udelay(200);
2974
2975                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2976                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2977                                 I915_WRITE(PCH_DREF_CONTROL, temp);
2978                                 POSTING_READ(PCH_DREF_CONTROL);
2979                         } else {
2980                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2981                                 I915_WRITE(PCH_DREF_CONTROL, temp);
2982                                 POSTING_READ(PCH_DREF_CONTROL);
2983                         }
2984                 }
2985         }
2986
2987         if (IS_IGD(dev)) {
2988                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2989                 if (has_reduced_clock)
2990                         fp2 = (1 << reduced_clock.n) << 16 |
2991                                 reduced_clock.m1 << 8 | reduced_clock.m2;
2992         } else {
2993                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2994                 if (has_reduced_clock)
2995                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2996                                 reduced_clock.m2;
2997         }
2998
2999         if (!IS_IGDNG(dev))
3000                 dpll = DPLL_VGA_MODE_DIS;
3001
3002         if (IS_I9XX(dev)) {
3003                 if (is_lvds)
3004                         dpll |= DPLLB_MODE_LVDS;
3005                 else
3006                         dpll |= DPLLB_MODE_DAC_SERIAL;
3007                 if (is_sdvo) {
3008                         dpll |= DPLL_DVO_HIGH_SPEED;
3009                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3010                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3011                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3012                         else if (IS_IGDNG(dev))
3013                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3014                 }
3015                 if (is_dp)
3016                         dpll |= DPLL_DVO_HIGH_SPEED;
3017
3018                 /* compute bitmask from p1 value */
3019                 if (IS_IGD(dev))
3020                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
3021                 else {
3022                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3023                         /* also FPA1 */
3024                         if (IS_IGDNG(dev))
3025                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3026                         if (IS_G4X(dev) && has_reduced_clock)
3027                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3028                 }
3029                 switch (clock.p2) {
3030                 case 5:
3031                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3032                         break;
3033                 case 7:
3034                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3035                         break;
3036                 case 10:
3037                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3038                         break;
3039                 case 14:
3040                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3041                         break;
3042                 }
3043                 if (IS_I965G(dev) && !IS_IGDNG(dev))
3044                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3045         } else {
3046                 if (is_lvds) {
3047                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3048                 } else {
3049                         if (clock.p1 == 2)
3050                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3051                         else
3052                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3053                         if (clock.p2 == 4)
3054                                 dpll |= PLL_P2_DIVIDE_BY_4;
3055                 }
3056         }
3057
3058         if (is_sdvo && is_tv)
3059                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3060         else if (is_tv)
3061                 /* XXX: just matching BIOS for now */
3062                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3063                 dpll |= 3;
3064         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
3065                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3066         else
3067                 dpll |= PLL_REF_INPUT_DREFCLK;
3068
3069         /* setup pipeconf */
3070         pipeconf = I915_READ(pipeconf_reg);
3071
3072         /* Set up the display plane register */
3073         dspcntr = DISPPLANE_GAMMA_ENABLE;
3074
3075         /* IGDNG's plane is forced to pipe, bit 24 is to
3076            enable color space conversion */
3077         if (!IS_IGDNG(dev)) {
3078                 if (pipe == 0)
3079                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3080                 else
3081                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3082         }
3083
3084         if (pipe == 0 && !IS_I965G(dev)) {
3085                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3086                  * core speed.
3087                  *
3088                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3089                  * pipe == 0 check?
3090                  */
3091                 if (mode->clock >
3092                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3093                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3094                 else
3095                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3096         }
3097
3098         dspcntr |= DISPLAY_PLANE_ENABLE;
3099         pipeconf |= PIPEACONF_ENABLE;
3100         dpll |= DPLL_VCO_ENABLE;
3101
3102
3103         /* Disable the panel fitter if it was on our pipe */
3104         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
3105                 I915_WRITE(PFIT_CONTROL, 0);
3106
3107         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3108         drm_mode_debug_printmodeline(mode);
3109
3110         /* assign to IGDNG registers */
3111         if (IS_IGDNG(dev)) {
3112                 fp_reg = pch_fp_reg;
3113                 dpll_reg = pch_dpll_reg;
3114         }
3115
3116         if (is_edp) {
3117                 igdng_disable_pll_edp(crtc);
3118         } else if ((dpll & DPLL_VCO_ENABLE)) {
3119                 I915_WRITE(fp_reg, fp);
3120                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3121                 I915_READ(dpll_reg);
3122                 udelay(150);
3123         }
3124
3125         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3126          * This is an exception to the general rule that mode_set doesn't turn
3127          * things on.
3128          */
3129         if (is_lvds) {
3130                 u32 lvds;
3131
3132                 if (IS_IGDNG(dev))
3133                         lvds_reg = PCH_LVDS;
3134
3135                 lvds = I915_READ(lvds_reg);
3136                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3137                 /* set the corresponsding LVDS_BORDER bit */
3138                 lvds |= dev_priv->lvds_border_bits;
3139                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3140                  * set the DPLLs for dual-channel mode or not.
3141                  */
3142                 if (clock.p2 == 7)
3143                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3144                 else
3145                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3146
3147                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3148                  * appropriately here, but we need to look more thoroughly into how
3149                  * panels behave in the two modes.
3150                  */
3151
3152                 I915_WRITE(lvds_reg, lvds);
3153                 I915_READ(lvds_reg);
3154         }
3155         if (is_dp)
3156                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3157
3158         if (!is_edp) {
3159                 I915_WRITE(fp_reg, fp);
3160                 I915_WRITE(dpll_reg, dpll);
3161                 I915_READ(dpll_reg);
3162                 /* Wait for the clocks to stabilize. */
3163                 udelay(150);
3164
3165                 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
3166                         if (is_sdvo) {
3167                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3168                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3169                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3170                         } else
3171                                 I915_WRITE(dpll_md_reg, 0);
3172                 } else {
3173                         /* write it again -- the BIOS does, after all */
3174                         I915_WRITE(dpll_reg, dpll);
3175                 }
3176                 I915_READ(dpll_reg);
3177                 /* Wait for the clocks to stabilize. */
3178                 udelay(150);
3179         }
3180
3181         if (is_lvds && has_reduced_clock && i915_powersave) {
3182                 I915_WRITE(fp_reg + 4, fp2);
3183                 intel_crtc->lowfreq_avail = true;
3184                 if (HAS_PIPE_CXSR(dev)) {
3185                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3186                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3187                 }
3188         } else {
3189                 I915_WRITE(fp_reg + 4, fp);
3190                 intel_crtc->lowfreq_avail = false;
3191                 if (HAS_PIPE_CXSR(dev)) {
3192                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3193                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3194                 }
3195         }
3196
3197         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3198                    ((adjusted_mode->crtc_htotal - 1) << 16));
3199         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3200                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3201         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3202                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3203         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3204                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3205         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3206                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3207         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3208                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3209         /* pipesrc and dspsize control the size that is scaled from, which should
3210          * always be the user's requested size.
3211          */
3212         if (!IS_IGDNG(dev)) {
3213                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3214                                 (mode->hdisplay - 1));
3215                 I915_WRITE(dsppos_reg, 0);
3216         }
3217         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3218
3219         if (IS_IGDNG(dev)) {
3220                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3221                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3222                 I915_WRITE(link_m1_reg, m_n.link_m);
3223                 I915_WRITE(link_n1_reg, m_n.link_n);
3224
3225                 if (is_edp) {
3226                         igdng_set_pll_edp(crtc, adjusted_mode->clock);
3227                 } else {
3228                         /* enable FDI RX PLL too */
3229                         temp = I915_READ(fdi_rx_reg);
3230                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3231                         udelay(200);
3232                 }
3233         }
3234
3235         I915_WRITE(pipeconf_reg, pipeconf);
3236         I915_READ(pipeconf_reg);
3237
3238         intel_wait_for_vblank(dev);
3239
3240         if (IS_IGDNG(dev)) {
3241                 /* enable address swizzle for tiling buffer */
3242                 temp = I915_READ(DISP_ARB_CTL);
3243                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3244         }
3245
3246         I915_WRITE(dspcntr_reg, dspcntr);
3247
3248         /* Flush the plane changes */
3249         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3250
3251         if ((IS_I965G(dev) || plane == 0))
3252                 intel_update_fbc(crtc, &crtc->mode);
3253
3254         intel_update_watermarks(dev);
3255
3256         drm_vblank_post_modeset(dev, pipe);
3257
3258         return ret;
3259 }
3260
3261 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3262 void intel_crtc_load_lut(struct drm_crtc *crtc)
3263 {
3264         struct drm_device *dev = crtc->dev;
3265         struct drm_i915_private *dev_priv = dev->dev_private;
3266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3267         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3268         int i;
3269
3270         /* The clocks have to be on to load the palette. */
3271         if (!crtc->enabled)
3272                 return;
3273
3274         /* use legacy palette for IGDNG */
3275         if (IS_IGDNG(dev))
3276                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3277                                                    LGC_PALETTE_B;
3278
3279         for (i = 0; i < 256; i++) {
3280                 I915_WRITE(palreg + 4 * i,
3281                            (intel_crtc->lut_r[i] << 16) |
3282                            (intel_crtc->lut_g[i] << 8) |
3283                            intel_crtc->lut_b[i]);
3284         }
3285 }
3286
3287 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3288                                  struct drm_file *file_priv,
3289                                  uint32_t handle,
3290                                  uint32_t width, uint32_t height)
3291 {
3292         struct drm_device *dev = crtc->dev;
3293         struct drm_i915_private *dev_priv = dev->dev_private;
3294         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3295         struct drm_gem_object *bo;
3296         struct drm_i915_gem_object *obj_priv;
3297         int pipe = intel_crtc->pipe;
3298         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3299         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3300         uint32_t temp = I915_READ(control);
3301         size_t addr;
3302         int ret;
3303
3304         DRM_DEBUG_KMS("\n");
3305
3306         /* if we want to turn off the cursor ignore width and height */
3307         if (!handle) {
3308                 DRM_DEBUG_KMS("cursor off\n");
3309                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3310                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3311                         temp |= CURSOR_MODE_DISABLE;
3312                 } else {
3313                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3314                 }
3315                 addr = 0;
3316                 bo = NULL;
3317                 mutex_lock(&dev->struct_mutex);
3318                 goto finish;
3319         }
3320
3321         /* Currently we only support 64x64 cursors */
3322         if (width != 64 || height != 64) {
3323                 DRM_ERROR("we currently only support 64x64 cursors\n");
3324                 return -EINVAL;
3325         }
3326
3327         bo = drm_gem_object_lookup(dev, file_priv, handle);
3328         if (!bo)
3329                 return -ENOENT;
3330
3331         obj_priv = bo->driver_private;
3332
3333         if (bo->size < width * height * 4) {
3334                 DRM_ERROR("buffer is to small\n");
3335                 ret = -ENOMEM;
3336                 goto fail;
3337         }
3338
3339         /* we only need to pin inside GTT if cursor is non-phy */
3340         mutex_lock(&dev->struct_mutex);
3341         if (!dev_priv->cursor_needs_physical) {
3342                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3343                 if (ret) {
3344                         DRM_ERROR("failed to pin cursor bo\n");
3345                         goto fail_locked;
3346                 }
3347                 addr = obj_priv->gtt_offset;
3348         } else {
3349                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3350                 if (ret) {
3351                         DRM_ERROR("failed to attach phys object\n");
3352                         goto fail_locked;
3353                 }
3354                 addr = obj_priv->phys_obj->handle->busaddr;
3355         }
3356
3357         if (!IS_I9XX(dev))
3358                 I915_WRITE(CURSIZE, (height << 12) | width);
3359
3360         /* Hooray for CUR*CNTR differences */
3361         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3362                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3363                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3364                 temp |= (pipe << 28); /* Connect to correct pipe */
3365         } else {
3366                 temp &= ~(CURSOR_FORMAT_MASK);
3367                 temp |= CURSOR_ENABLE;
3368                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3369         }
3370
3371  finish:
3372         I915_WRITE(control, temp);
3373         I915_WRITE(base, addr);
3374
3375         if (intel_crtc->cursor_bo) {
3376                 if (dev_priv->cursor_needs_physical) {
3377                         if (intel_crtc->cursor_bo != bo)
3378                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3379                 } else
3380                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3381                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3382         }
3383
3384         mutex_unlock(&dev->struct_mutex);
3385
3386         intel_crtc->cursor_addr = addr;
3387         intel_crtc->cursor_bo = bo;
3388
3389         return 0;
3390 fail:
3391         mutex_lock(&dev->struct_mutex);
3392 fail_locked:
3393         drm_gem_object_unreference(bo);
3394         mutex_unlock(&dev->struct_mutex);
3395         return ret;
3396 }
3397
3398 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3399 {
3400         struct drm_device *dev = crtc->dev;
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3403         struct intel_framebuffer *intel_fb;
3404         int pipe = intel_crtc->pipe;
3405         uint32_t temp = 0;
3406         uint32_t adder;
3407
3408         if (crtc->fb) {
3409                 intel_fb = to_intel_framebuffer(crtc->fb);
3410                 intel_mark_busy(dev, intel_fb->obj);
3411         }
3412
3413         if (x < 0) {
3414                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3415                 x = -x;
3416         }
3417         if (y < 0) {
3418                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3419                 y = -y;
3420         }
3421
3422         temp |= x << CURSOR_X_SHIFT;
3423         temp |= y << CURSOR_Y_SHIFT;
3424
3425         adder = intel_crtc->cursor_addr;
3426         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3427         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3428
3429         return 0;
3430 }
3431
3432 /** Sets the color ramps on behalf of RandR */
3433 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3434                                  u16 blue, int regno)
3435 {
3436         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3437
3438         intel_crtc->lut_r[regno] = red >> 8;
3439         intel_crtc->lut_g[regno] = green >> 8;
3440         intel_crtc->lut_b[regno] = blue >> 8;
3441 }
3442
3443 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3444                              u16 *blue, int regno)
3445 {
3446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3447
3448         *red = intel_crtc->lut_r[regno] << 8;
3449         *green = intel_crtc->lut_g[regno] << 8;
3450         *blue = intel_crtc->lut_b[regno] << 8;
3451 }
3452
3453 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3454                                  u16 *blue, uint32_t size)
3455 {
3456         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3457         int i;
3458
3459         if (size != 256)
3460                 return;
3461
3462         for (i = 0; i < 256; i++) {
3463                 intel_crtc->lut_r[i] = red[i] >> 8;
3464                 intel_crtc->lut_g[i] = green[i] >> 8;
3465                 intel_crtc->lut_b[i] = blue[i] >> 8;
3466         }
3467
3468         intel_crtc_load_lut(crtc);
3469 }
3470
3471 /**
3472  * Get a pipe with a simple mode set on it for doing load-based monitor
3473  * detection.
3474  *
3475  * It will be up to the load-detect code to adjust the pipe as appropriate for
3476  * its requirements.  The pipe will be connected to no other outputs.
3477  *
3478  * Currently this code will only succeed if there is a pipe with no outputs
3479  * configured for it.  In the future, it could choose to temporarily disable
3480  * some outputs to free up a pipe for its use.
3481  *
3482  * \return crtc, or NULL if no pipes are available.
3483  */
3484
3485 /* VESA 640x480x72Hz mode to set on the pipe */
3486 static struct drm_display_mode load_detect_mode = {
3487         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3488                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3489 };
3490
3491 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3492                                             struct drm_display_mode *mode,
3493                                             int *dpms_mode)
3494 {
3495         struct intel_crtc *intel_crtc;
3496         struct drm_crtc *possible_crtc;
3497         struct drm_crtc *supported_crtc =NULL;
3498         struct drm_encoder *encoder = &intel_output->enc;
3499         struct drm_crtc *crtc = NULL;
3500         struct drm_device *dev = encoder->dev;
3501         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3502         struct drm_crtc_helper_funcs *crtc_funcs;
3503         int i = -1;
3504
3505         /*
3506          * Algorithm gets a little messy:
3507          *   - if the connector already has an assigned crtc, use it (but make
3508          *     sure it's on first)
3509          *   - try to find the first unused crtc that can drive this connector,
3510          *     and use that if we find one
3511          *   - if there are no unused crtcs available, try to use the first
3512          *     one we found that supports the connector
3513          */
3514
3515         /* See if we already have a CRTC for this connector */
3516         if (encoder->crtc) {
3517                 crtc = encoder->crtc;
3518                 /* Make sure the crtc and connector are running */
3519                 intel_crtc = to_intel_crtc(crtc);
3520                 *dpms_mode = intel_crtc->dpms_mode;
3521                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3522                         crtc_funcs = crtc->helper_private;
3523                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3524                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3525                 }
3526                 return crtc;
3527         }
3528
3529         /* Find an unused one (if possible) */
3530         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3531                 i++;
3532                 if (!(encoder->possible_crtcs & (1 << i)))
3533                         continue;
3534                 if (!possible_crtc->enabled) {
3535                         crtc = possible_crtc;
3536                         break;
3537                 }
3538                 if (!supported_crtc)
3539                         supported_crtc = possible_crtc;
3540         }
3541
3542         /*
3543          * If we didn't find an unused CRTC, don't use any.
3544          */
3545         if (!crtc) {
3546                 return NULL;
3547         }
3548
3549         encoder->crtc = crtc;
3550         intel_output->base.encoder = encoder;
3551         intel_output->load_detect_temp = true;
3552
3553         intel_crtc = to_intel_crtc(crtc);
3554         *dpms_mode = intel_crtc->dpms_mode;
3555
3556         if (!crtc->enabled) {
3557                 if (!mode)
3558                         mode = &load_detect_mode;
3559                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3560         } else {
3561                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3562                         crtc_funcs = crtc->helper_private;
3563                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3564                 }
3565
3566                 /* Add this connector to the crtc */
3567                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3568                 encoder_funcs->commit(encoder);
3569         }
3570         /* let the connector get through one full cycle before testing */
3571         intel_wait_for_vblank(dev);
3572
3573         return crtc;
3574 }
3575
3576 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3577 {
3578         struct drm_encoder *encoder = &intel_output->enc;
3579         struct drm_device *dev = encoder->dev;
3580         struct drm_crtc *crtc = encoder->crtc;
3581         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3582         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3583
3584         if (intel_output->load_detect_temp) {
3585                 encoder->crtc = NULL;
3586                 intel_output->base.encoder = NULL;
3587                 intel_output->load_detect_temp = false;
3588                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3589                 drm_helper_disable_unused_functions(dev);
3590         }
3591
3592         /* Switch crtc and output back off if necessary */
3593         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3594                 if (encoder->crtc == crtc)
3595                         encoder_funcs->dpms(encoder, dpms_mode);
3596                 crtc_funcs->dpms(crtc, dpms_mode);
3597         }
3598 }
3599
3600 /* Returns the clock of the currently programmed mode of the given pipe. */
3601 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3602 {
3603         struct drm_i915_private *dev_priv = dev->dev_private;
3604         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3605         int pipe = intel_crtc->pipe;
3606         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3607         u32 fp;
3608         intel_clock_t clock;
3609
3610         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3611                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3612         else
3613                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3614
3615         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3616         if (IS_IGD(dev)) {
3617                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3618                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3619         } else {
3620                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3621                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3622         }
3623
3624         if (IS_I9XX(dev)) {
3625                 if (IS_IGD(dev))
3626                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3627                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3628                 else
3629                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3630                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3631
3632                 switch (dpll & DPLL_MODE_MASK) {
3633                 case DPLLB_MODE_DAC_SERIAL:
3634                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3635                                 5 : 10;
3636                         break;
3637                 case DPLLB_MODE_LVDS:
3638                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3639                                 7 : 14;
3640                         break;
3641                 default:
3642                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3643                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3644                         return 0;
3645                 }
3646
3647                 /* XXX: Handle the 100Mhz refclk */
3648                 intel_clock(dev, 96000, &clock);
3649         } else {
3650                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3651
3652                 if (is_lvds) {
3653                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3654                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3655                         clock.p2 = 14;
3656
3657                         if ((dpll & PLL_REF_INPUT_MASK) ==
3658                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3659                                 /* XXX: might not be 66MHz */
3660                                 intel_clock(dev, 66000, &clock);
3661                         } else
3662                                 intel_clock(dev, 48000, &clock);
3663                 } else {
3664                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3665                                 clock.p1 = 2;
3666                         else {
3667                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3668                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3669                         }
3670                         if (dpll & PLL_P2_DIVIDE_BY_4)
3671                                 clock.p2 = 4;
3672                         else
3673                                 clock.p2 = 2;
3674
3675                         intel_clock(dev, 48000, &clock);
3676                 }
3677         }
3678
3679         /* XXX: It would be nice to validate the clocks, but we can't reuse
3680          * i830PllIsValid() because it relies on the xf86_config connector
3681          * configuration being accurate, which it isn't necessarily.
3682          */
3683
3684         return clock.dot;
3685 }
3686
3687 /** Returns the currently programmed mode of the given pipe. */
3688 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3689                                              struct drm_crtc *crtc)
3690 {
3691         struct drm_i915_private *dev_priv = dev->dev_private;
3692         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3693         int pipe = intel_crtc->pipe;
3694         struct drm_display_mode *mode;
3695         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3696         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3697         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3698         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3699
3700         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3701         if (!mode)
3702                 return NULL;
3703
3704         mode->clock = intel_crtc_clock_get(dev, crtc);
3705         mode->hdisplay = (htot & 0xffff) + 1;
3706         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3707         mode->hsync_start = (hsync & 0xffff) + 1;
3708         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3709         mode->vdisplay = (vtot & 0xffff) + 1;
3710         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3711         mode->vsync_start = (vsync & 0xffff) + 1;
3712         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3713
3714         drm_mode_set_name(mode);
3715         drm_mode_set_crtcinfo(mode, 0);
3716
3717         return mode;
3718 }
3719
3720 #define GPU_IDLE_TIMEOUT 500 /* ms */
3721
3722 /* When this timer fires, we've been idle for awhile */
3723 static void intel_gpu_idle_timer(unsigned long arg)
3724 {
3725         struct drm_device *dev = (struct drm_device *)arg;
3726         drm_i915_private_t *dev_priv = dev->dev_private;
3727
3728         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3729
3730         dev_priv->busy = false;
3731
3732         queue_work(dev_priv->wq, &dev_priv->idle_work);
3733 }
3734
3735 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3736 {
3737         drm_i915_private_t *dev_priv = dev->dev_private;
3738
3739         if (IS_IGDNG(dev))
3740                 return;
3741
3742         if (!dev_priv->render_reclock_avail) {
3743                 DRM_DEBUG_DRIVER("not reclocking render clock\n");
3744                 return;
3745         }
3746
3747         /* Restore render clock frequency to original value */
3748         if (IS_G4X(dev) || IS_I9XX(dev))
3749                 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3750         else if (IS_I85X(dev))
3751                 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3752         DRM_DEBUG_DRIVER("increasing render clock frequency\n");
3753
3754         /* Schedule downclock */
3755         if (schedule)
3756                 mod_timer(&dev_priv->idle_timer, jiffies +
3757                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3758 }
3759
3760 void intel_decrease_renderclock(struct drm_device *dev)
3761 {
3762         drm_i915_private_t *dev_priv = dev->dev_private;
3763
3764         if (IS_IGDNG(dev))
3765                 return;
3766
3767         if (!dev_priv->render_reclock_avail) {
3768                 DRM_DEBUG_DRIVER("not reclocking render clock\n");
3769                 return;
3770         }
3771
3772         if (IS_G4X(dev)) {
3773                 u16 gcfgc;
3774
3775                 /* Adjust render clock... */
3776                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3777
3778                 /* Down to minimum... */
3779                 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3780                 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3781
3782                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3783         } else if (IS_I965G(dev)) {
3784                 u16 gcfgc;
3785
3786                 /* Adjust render clock... */
3787                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3788
3789                 /* Down to minimum... */
3790                 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3791                 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3792
3793                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3794         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3795                 u16 gcfgc;
3796
3797                 /* Adjust render clock... */
3798                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3799
3800                 /* Down to minimum... */
3801                 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3802                 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3803
3804                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3805         } else if (IS_I915G(dev)) {
3806                 u16 gcfgc;
3807
3808                 /* Adjust render clock... */
3809                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3810
3811                 /* Down to minimum... */
3812                 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3813                 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3814
3815                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3816         } else if (IS_I85X(dev)) {
3817                 u16 hpllcc;
3818
3819                 /* Adjust render clock... */
3820                 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3821
3822                 /* Up to maximum... */
3823                 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3824                 hpllcc |= GC_CLOCK_133_200;
3825
3826                 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3827         }
3828         DRM_DEBUG_DRIVER("decreasing render clock frequency\n");
3829 }
3830
3831 /* Note that no increase function is needed for this - increase_renderclock()
3832  *  will also rewrite these bits
3833  */
3834 void intel_decrease_displayclock(struct drm_device *dev)
3835 {
3836         if (IS_IGDNG(dev))
3837                 return;
3838
3839         if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3840             IS_I915GM(dev)) {
3841                 u16 gcfgc;
3842
3843                 /* Adjust render clock... */
3844                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3845
3846                 /* Down to minimum... */
3847                 gcfgc &= ~0xf0;
3848                 gcfgc |= 0x80;
3849
3850                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3851         }
3852 }
3853
3854 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3855
3856 static void intel_crtc_idle_timer(unsigned long arg)
3857 {
3858         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3859         struct drm_crtc *crtc = &intel_crtc->base;
3860         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3861
3862         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3863
3864         intel_crtc->busy = false;
3865
3866         queue_work(dev_priv->wq, &dev_priv->idle_work);
3867 }
3868
3869 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3870 {
3871         struct drm_device *dev = crtc->dev;
3872         drm_i915_private_t *dev_priv = dev->dev_private;
3873         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3874         int pipe = intel_crtc->pipe;
3875         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3876         int dpll = I915_READ(dpll_reg);
3877
3878         if (IS_IGDNG(dev))
3879                 return;
3880
3881         if (!dev_priv->lvds_downclock_avail)
3882                 return;
3883
3884         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3885                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3886
3887                 /* Unlock panel regs */
3888                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3889
3890                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3891                 I915_WRITE(dpll_reg, dpll);
3892                 dpll = I915_READ(dpll_reg);
3893                 intel_wait_for_vblank(dev);
3894                 dpll = I915_READ(dpll_reg);
3895                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3896                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3897
3898                 /* ...and lock them again */
3899                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3900         }
3901
3902         /* Schedule downclock */
3903         if (schedule)
3904                 mod_timer(&intel_crtc->idle_timer, jiffies +
3905                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3906 }
3907
3908 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3909 {
3910         struct drm_device *dev = crtc->dev;
3911         drm_i915_private_t *dev_priv = dev->dev_private;
3912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3913         int pipe = intel_crtc->pipe;
3914         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3915         int dpll = I915_READ(dpll_reg);
3916
3917         if (IS_IGDNG(dev))
3918                 return;
3919
3920         if (!dev_priv->lvds_downclock_avail)
3921                 return;
3922
3923         /*
3924          * Since this is called by a timer, we should never get here in
3925          * the manual case.
3926          */
3927         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3928                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3929
3930                 /* Unlock panel regs */
3931                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3932
3933                 dpll |= DISPLAY_RATE_SELECT_FPA1;
3934                 I915_WRITE(dpll_reg, dpll);
3935                 dpll = I915_READ(dpll_reg);
3936                 intel_wait_for_vblank(dev);
3937                 dpll = I915_READ(dpll_reg);
3938                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3939                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
3940
3941                 /* ...and lock them again */
3942                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3943         }
3944
3945 }
3946
3947 /**
3948  * intel_idle_update - adjust clocks for idleness
3949  * @work: work struct
3950  *
3951  * Either the GPU or display (or both) went idle.  Check the busy status
3952  * here and adjust the CRTC and GPU clocks as necessary.
3953  */
3954 static void intel_idle_update(struct work_struct *work)
3955 {
3956         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3957                                                     idle_work);
3958         struct drm_device *dev = dev_priv->dev;
3959         struct drm_crtc *crtc;
3960         struct intel_crtc *intel_crtc;
3961
3962         if (!i915_powersave)
3963                 return;
3964
3965         mutex_lock(&dev->struct_mutex);
3966
3967         /* GPU isn't processing, downclock it. */
3968         if (!dev_priv->busy) {
3969                 intel_decrease_renderclock(dev);
3970                 intel_decrease_displayclock(dev);
3971         }
3972
3973         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3974                 /* Skip inactive CRTCs */
3975                 if (!crtc->fb)
3976                         continue;
3977
3978                 intel_crtc = to_intel_crtc(crtc);
3979                 if (!intel_crtc->busy)
3980                         intel_decrease_pllclock(crtc);
3981         }
3982
3983         mutex_unlock(&dev->struct_mutex);
3984 }
3985
3986 /**
3987  * intel_mark_busy - mark the GPU and possibly the display busy
3988  * @dev: drm device
3989  * @obj: object we're operating on
3990  *
3991  * Callers can use this function to indicate that the GPU is busy processing
3992  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
3993  * buffer), we'll also mark the display as busy, so we know to increase its
3994  * clock frequency.
3995  */
3996 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3997 {
3998         drm_i915_private_t *dev_priv = dev->dev_private;
3999         struct drm_crtc *crtc = NULL;
4000         struct intel_framebuffer *intel_fb;
4001         struct intel_crtc *intel_crtc;
4002
4003         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4004                 return;
4005
4006         dev_priv->busy = true;
4007         intel_increase_renderclock(dev, true);
4008
4009         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4010                 if (!crtc->fb)
4011                         continue;
4012
4013                 intel_crtc = to_intel_crtc(crtc);
4014                 intel_fb = to_intel_framebuffer(crtc->fb);
4015                 if (intel_fb->obj == obj) {
4016                         if (!intel_crtc->busy) {
4017                                 /* Non-busy -> busy, upclock */
4018                                 intel_increase_pllclock(crtc, true);
4019                                 intel_crtc->busy = true;
4020                         } else {
4021                                 /* Busy -> busy, put off timer */
4022                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4023                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4024                         }
4025                 }
4026         }
4027 }
4028
4029 static void intel_crtc_destroy(struct drm_crtc *crtc)
4030 {
4031         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4032
4033         drm_crtc_cleanup(crtc);
4034         kfree(intel_crtc);
4035 }
4036
4037 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4038         .dpms = intel_crtc_dpms,
4039         .mode_fixup = intel_crtc_mode_fixup,
4040         .mode_set = intel_crtc_mode_set,
4041         .mode_set_base = intel_pipe_set_base,
4042         .prepare = intel_crtc_prepare,
4043         .commit = intel_crtc_commit,
4044         .load_lut = intel_crtc_load_lut,
4045 };
4046
4047 static const struct drm_crtc_funcs intel_crtc_funcs = {
4048         .cursor_set = intel_crtc_cursor_set,
4049         .cursor_move = intel_crtc_cursor_move,
4050         .gamma_set = intel_crtc_gamma_set,
4051         .set_config = drm_crtc_helper_set_config,
4052         .destroy = intel_crtc_destroy,
4053 };
4054
4055
4056 static void intel_crtc_init(struct drm_device *dev, int pipe)
4057 {
4058         struct intel_crtc *intel_crtc;
4059         int i;
4060
4061         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4062         if (intel_crtc == NULL)
4063                 return;
4064
4065         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4066
4067         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4068         intel_crtc->pipe = pipe;
4069         intel_crtc->plane = pipe;
4070         for (i = 0; i < 256; i++) {
4071                 intel_crtc->lut_r[i] = i;
4072                 intel_crtc->lut_g[i] = i;
4073                 intel_crtc->lut_b[i] = i;
4074         }
4075
4076         /* Swap pipes & planes for FBC on pre-965 */
4077         intel_crtc->pipe = pipe;
4078         intel_crtc->plane = pipe;
4079         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4080                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4081                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4082         }
4083
4084         intel_crtc->cursor_addr = 0;
4085         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4086         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4087
4088         intel_crtc->busy = false;
4089
4090         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4091                     (unsigned long)intel_crtc);
4092 }
4093
4094 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4095                                 struct drm_file *file_priv)
4096 {
4097         drm_i915_private_t *dev_priv = dev->dev_private;
4098         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4099         struct drm_mode_object *drmmode_obj;
4100         struct intel_crtc *crtc;
4101
4102         if (!dev_priv) {
4103                 DRM_ERROR("called with no initialization\n");
4104                 return -EINVAL;
4105         }
4106
4107         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4108                         DRM_MODE_OBJECT_CRTC);
4109
4110         if (!drmmode_obj) {
4111                 DRM_ERROR("no such CRTC id\n");
4112                 return -EINVAL;
4113         }
4114
4115         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4116         pipe_from_crtc_id->pipe = crtc->pipe;
4117
4118         return 0;
4119 }
4120
4121 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4122 {
4123         struct drm_crtc *crtc = NULL;
4124
4125         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4126                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4127                 if (intel_crtc->pipe == pipe)
4128                         break;
4129         }
4130         return crtc;
4131 }
4132
4133 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4134 {
4135         int index_mask = 0;
4136         struct drm_connector *connector;
4137         int entry = 0;
4138
4139         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4140                 struct intel_output *intel_output = to_intel_output(connector);
4141                 if (type_mask & intel_output->clone_mask)
4142                         index_mask |= (1 << entry);
4143                 entry++;
4144         }
4145         return index_mask;
4146 }
4147
4148
4149 static void intel_setup_outputs(struct drm_device *dev)
4150 {
4151         struct drm_i915_private *dev_priv = dev->dev_private;
4152         struct drm_connector *connector;
4153
4154         intel_crt_init(dev);
4155
4156         /* Set up integrated LVDS */
4157         if (IS_MOBILE(dev) && !IS_I830(dev))
4158                 intel_lvds_init(dev);
4159
4160         if (IS_IGDNG(dev)) {
4161                 int found;
4162
4163                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4164                         intel_dp_init(dev, DP_A);
4165
4166                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4167                         /* check SDVOB */
4168                         /* found = intel_sdvo_init(dev, HDMIB); */
4169                         found = 0;
4170                         if (!found)
4171                                 intel_hdmi_init(dev, HDMIB);
4172                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4173                                 intel_dp_init(dev, PCH_DP_B);
4174                 }
4175
4176                 if (I915_READ(HDMIC) & PORT_DETECTED)
4177                         intel_hdmi_init(dev, HDMIC);
4178
4179                 if (I915_READ(HDMID) & PORT_DETECTED)
4180                         intel_hdmi_init(dev, HDMID);
4181
4182                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4183                         intel_dp_init(dev, PCH_DP_C);
4184
4185                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4186                         intel_dp_init(dev, PCH_DP_D);
4187
4188         } else if (IS_I9XX(dev)) {
4189                 bool found = false;
4190
4191                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4192                         found = intel_sdvo_init(dev, SDVOB);
4193                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
4194                                 intel_hdmi_init(dev, SDVOB);
4195
4196                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
4197                                 intel_dp_init(dev, DP_B);
4198                 }
4199
4200                 /* Before G4X SDVOC doesn't have its own detect register */
4201
4202                 if (I915_READ(SDVOB) & SDVO_DETECTED)
4203                         found = intel_sdvo_init(dev, SDVOC);
4204
4205                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4206
4207                         if (SUPPORTS_INTEGRATED_HDMI(dev))
4208                                 intel_hdmi_init(dev, SDVOC);
4209                         if (SUPPORTS_INTEGRATED_DP(dev))
4210                                 intel_dp_init(dev, DP_C);
4211                 }
4212
4213                 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
4214                         intel_dp_init(dev, DP_D);
4215         } else
4216                 intel_dvo_init(dev);
4217
4218         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
4219                 intel_tv_init(dev);
4220
4221         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4222                 struct intel_output *intel_output = to_intel_output(connector);
4223                 struct drm_encoder *encoder = &intel_output->enc;
4224
4225                 encoder->possible_crtcs = intel_output->crtc_mask;
4226                 encoder->possible_clones = intel_connector_clones(dev,
4227                                                 intel_output->clone_mask);
4228         }
4229 }
4230
4231 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4232 {
4233         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4234         struct drm_device *dev = fb->dev;
4235
4236         if (fb->fbdev)
4237                 intelfb_remove(dev, fb);
4238
4239         drm_framebuffer_cleanup(fb);
4240         mutex_lock(&dev->struct_mutex);
4241         drm_gem_object_unreference(intel_fb->obj);
4242         mutex_unlock(&dev->struct_mutex);
4243
4244         kfree(intel_fb);
4245 }
4246
4247 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4248                                                 struct drm_file *file_priv,
4249                                                 unsigned int *handle)
4250 {
4251         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4252         struct drm_gem_object *object = intel_fb->obj;
4253
4254         return drm_gem_handle_create(file_priv, object, handle);
4255 }
4256
4257 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4258         .destroy = intel_user_framebuffer_destroy,
4259         .create_handle = intel_user_framebuffer_create_handle,
4260 };
4261
4262 int intel_framebuffer_create(struct drm_device *dev,
4263                              struct drm_mode_fb_cmd *mode_cmd,
4264                              struct drm_framebuffer **fb,
4265                              struct drm_gem_object *obj)
4266 {
4267         struct intel_framebuffer *intel_fb;
4268         int ret;
4269
4270         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4271         if (!intel_fb)
4272                 return -ENOMEM;
4273
4274         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4275         if (ret) {
4276                 DRM_ERROR("framebuffer init failed %d\n", ret);
4277                 return ret;
4278         }
4279
4280         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4281
4282         intel_fb->obj = obj;
4283
4284         *fb = &intel_fb->base;
4285
4286         return 0;
4287 }
4288
4289
4290 static struct drm_framebuffer *
4291 intel_user_framebuffer_create(struct drm_device *dev,
4292                               struct drm_file *filp,
4293                               struct drm_mode_fb_cmd *mode_cmd)
4294 {
4295         struct drm_gem_object *obj;
4296         struct drm_framebuffer *fb;
4297         int ret;
4298
4299         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4300         if (!obj)
4301                 return NULL;
4302
4303         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4304         if (ret) {
4305                 mutex_lock(&dev->struct_mutex);
4306                 drm_gem_object_unreference(obj);
4307                 mutex_unlock(&dev->struct_mutex);
4308                 return NULL;
4309         }
4310
4311         return fb;
4312 }
4313
4314 static const struct drm_mode_config_funcs intel_mode_funcs = {
4315         .fb_create = intel_user_framebuffer_create,
4316         .fb_changed = intelfb_probe,
4317 };
4318
4319 void intel_init_clock_gating(struct drm_device *dev)
4320 {
4321         struct drm_i915_private *dev_priv = dev->dev_private;
4322
4323         /*
4324          * Disable clock gating reported to work incorrectly according to the
4325          * specs, but enable as much else as we can.
4326          */
4327         if (IS_IGDNG(dev)) {
4328                 return;
4329         } else if (IS_G4X(dev)) {
4330                 uint32_t dspclk_gate;
4331                 I915_WRITE(RENCLK_GATE_D1, 0);
4332                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4333                        GS_UNIT_CLOCK_GATE_DISABLE |
4334                        CL_UNIT_CLOCK_GATE_DISABLE);
4335                 I915_WRITE(RAMCLK_GATE_D, 0);
4336                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4337                         OVRUNIT_CLOCK_GATE_DISABLE |
4338                         OVCUNIT_CLOCK_GATE_DISABLE;
4339                 if (IS_GM45(dev))
4340                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4341                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4342         } else if (IS_I965GM(dev)) {
4343                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4344                 I915_WRITE(RENCLK_GATE_D2, 0);
4345                 I915_WRITE(DSPCLK_GATE_D, 0);
4346                 I915_WRITE(RAMCLK_GATE_D, 0);
4347                 I915_WRITE16(DEUC, 0);
4348         } else if (IS_I965G(dev)) {
4349                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4350                        I965_RCC_CLOCK_GATE_DISABLE |
4351                        I965_RCPB_CLOCK_GATE_DISABLE |
4352                        I965_ISC_CLOCK_GATE_DISABLE |
4353                        I965_FBC_CLOCK_GATE_DISABLE);
4354                 I915_WRITE(RENCLK_GATE_D2, 0);
4355         } else if (IS_I9XX(dev)) {
4356                 u32 dstate = I915_READ(D_STATE);
4357
4358                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4359                         DSTATE_DOT_CLOCK_GATING;
4360                 I915_WRITE(D_STATE, dstate);
4361         } else if (IS_I85X(dev) || IS_I865G(dev)) {
4362                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4363         } else if (IS_I830(dev)) {
4364                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4365         }
4366
4367         /*
4368          * GPU can automatically power down the render unit if given a page
4369          * to save state.
4370          */
4371         if (I915_HAS_RC6(dev)) {
4372                 struct drm_gem_object *pwrctx;
4373                 struct drm_i915_gem_object *obj_priv;
4374                 int ret;
4375
4376                 pwrctx = drm_gem_object_alloc(dev, 4096);
4377                 if (!pwrctx) {
4378                         DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4379                         goto out;
4380                 }
4381
4382                 ret = i915_gem_object_pin(pwrctx, 4096);
4383                 if (ret) {
4384                         DRM_ERROR("failed to pin power context: %d\n", ret);
4385                         drm_gem_object_unreference(pwrctx);
4386                         goto out;
4387                 }
4388
4389                 i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4390
4391                 obj_priv = pwrctx->driver_private;
4392
4393                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4394                 I915_WRITE(MCHBAR_RENDER_STANDBY,
4395                            I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4396
4397                 dev_priv->pwrctx = pwrctx;
4398         }
4399
4400 out:
4401         return;
4402 }
4403
4404 /* Set up chip specific display functions */
4405 static void intel_init_display(struct drm_device *dev)
4406 {
4407         struct drm_i915_private *dev_priv = dev->dev_private;
4408
4409         /* We always want a DPMS function */
4410         if (IS_IGDNG(dev))
4411                 dev_priv->display.dpms = igdng_crtc_dpms;
4412         else
4413                 dev_priv->display.dpms = i9xx_crtc_dpms;
4414
4415         /* Only mobile has FBC, leave pointers NULL for other chips */
4416         if (IS_MOBILE(dev)) {
4417                 if (IS_GM45(dev)) {
4418                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4419                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4420                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4421                 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4422                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4423                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4424                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4425                 }
4426                 /* 855GM needs testing */
4427         }
4428
4429         /* Returns the core display clock speed */
4430         if (IS_I945G(dev))
4431                 dev_priv->display.get_display_clock_speed =
4432                         i945_get_display_clock_speed;
4433         else if (IS_I915G(dev))
4434                 dev_priv->display.get_display_clock_speed =
4435                         i915_get_display_clock_speed;
4436         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
4437                 dev_priv->display.get_display_clock_speed =
4438                         i9xx_misc_get_display_clock_speed;
4439         else if (IS_I915GM(dev))
4440                 dev_priv->display.get_display_clock_speed =
4441                         i915gm_get_display_clock_speed;
4442         else if (IS_I865G(dev))
4443                 dev_priv->display.get_display_clock_speed =
4444                         i865_get_display_clock_speed;
4445         else if (IS_I85X(dev))
4446                 dev_priv->display.get_display_clock_speed =
4447                         i855_get_display_clock_speed;
4448         else /* 852, 830 */
4449                 dev_priv->display.get_display_clock_speed =
4450                         i830_get_display_clock_speed;
4451
4452         /* For FIFO watermark updates */
4453         if (IS_IGDNG(dev))
4454                 dev_priv->display.update_wm = NULL;
4455         else if (IS_G4X(dev))
4456                 dev_priv->display.update_wm = g4x_update_wm;
4457         else if (IS_I965G(dev))
4458                 dev_priv->display.update_wm = i965_update_wm;
4459         else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4460                 dev_priv->display.update_wm = i9xx_update_wm;
4461                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4462         } else {
4463                 if (IS_I85X(dev))
4464                         dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4465                 else if (IS_845G(dev))
4466                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4467                 else
4468                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4469                 dev_priv->display.update_wm = i830_update_wm;
4470         }
4471 }
4472
4473 void intel_modeset_init(struct drm_device *dev)
4474 {
4475         struct drm_i915_private *dev_priv = dev->dev_private;
4476         int num_pipe;
4477         int i;
4478
4479         drm_mode_config_init(dev);
4480
4481         dev->mode_config.min_width = 0;
4482         dev->mode_config.min_height = 0;
4483
4484         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4485
4486         intel_init_display(dev);
4487
4488         if (IS_I965G(dev)) {
4489                 dev->mode_config.max_width = 8192;
4490                 dev->mode_config.max_height = 8192;
4491         } else if (IS_I9XX(dev)) {
4492                 dev->mode_config.max_width = 4096;
4493                 dev->mode_config.max_height = 4096;
4494         } else {
4495                 dev->mode_config.max_width = 2048;
4496                 dev->mode_config.max_height = 2048;
4497         }
4498
4499         /* set memory base */
4500         if (IS_I9XX(dev))
4501                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4502         else
4503                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4504
4505         if (IS_MOBILE(dev) || IS_I9XX(dev))
4506                 num_pipe = 2;
4507         else
4508                 num_pipe = 1;
4509         DRM_DEBUG_KMS("%d display pipe%s available.\n",
4510                   num_pipe, num_pipe > 1 ? "s" : "");
4511
4512         if (IS_I85X(dev))
4513                 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4514         else if (IS_I9XX(dev) || IS_G4X(dev))
4515                 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4516
4517         for (i = 0; i < num_pipe; i++) {
4518                 intel_crtc_init(dev, i);
4519         }
4520
4521         intel_setup_outputs(dev);
4522
4523         intel_init_clock_gating(dev);
4524
4525         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4526         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4527                     (unsigned long)dev);
4528
4529         intel_setup_overlay(dev);
4530 }
4531
4532 void intel_modeset_cleanup(struct drm_device *dev)
4533 {
4534         struct drm_i915_private *dev_priv = dev->dev_private;
4535         struct drm_crtc *crtc;
4536         struct intel_crtc *intel_crtc;
4537
4538         mutex_lock(&dev->struct_mutex);
4539
4540         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4541                 /* Skip inactive CRTCs */
4542                 if (!crtc->fb)
4543                         continue;
4544
4545                 intel_crtc = to_intel_crtc(crtc);
4546                 intel_increase_pllclock(crtc, false);
4547                 del_timer_sync(&intel_crtc->idle_timer);
4548         }
4549
4550         intel_increase_renderclock(dev, false);
4551         del_timer_sync(&dev_priv->idle_timer);
4552
4553         mutex_unlock(&dev->struct_mutex);
4554
4555         if (dev_priv->display.disable_fbc)
4556                 dev_priv->display.disable_fbc(dev);
4557
4558         if (dev_priv->pwrctx) {
4559                 i915_gem_object_unpin(dev_priv->pwrctx);
4560                 drm_gem_object_unreference(dev_priv->pwrctx);
4561         }
4562
4563         drm_mode_config_cleanup(dev);
4564 }
4565
4566
4567 /* current intel driver doesn't take advantage of encoders
4568    always give back the encoder for the connector
4569 */
4570 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4571 {
4572         struct intel_output *intel_output = to_intel_output(connector);
4573
4574         return &intel_output->enc;
4575 }
4576
4577 /*
4578  * set vga decode state - true == enable VGA decode
4579  */
4580 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4581 {
4582         struct drm_i915_private *dev_priv = dev->dev_private;
4583         u16 gmch_ctrl;
4584
4585         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4586         if (state)
4587                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4588         else
4589                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4590         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4591         return 0;
4592 }