drm/i915: CPT+ pch transcoder workaround
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * ironlake_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1674                                            enum pipe pipe)
1675 {
1676         struct drm_device *dev = dev_priv->dev;
1677         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1678         uint32_t reg, val, pipeconf_val;
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         if (HAS_PCH_CPT(dev)) {
1693                 /* Workaround: Set the timing override bit before enabling the
1694                  * pch transcoder. */
1695                 reg = TRANS_CHICKEN2(pipe);
1696                 val = I915_READ(reg);
1697                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1698                 I915_WRITE(reg, val);
1699         }
1700
1701         reg = TRANSCONF(pipe);
1702         val = I915_READ(reg);
1703         pipeconf_val = I915_READ(PIPECONF(pipe));
1704
1705         if (HAS_PCH_IBX(dev_priv->dev)) {
1706                 /*
1707                  * make the BPC in transcoder be consistent with
1708                  * that in pipeconf reg.
1709                  */
1710                 val &= ~PIPE_BPC_MASK;
1711                 val |= pipeconf_val & PIPE_BPC_MASK;
1712         }
1713
1714         val &= ~TRANS_INTERLACE_MASK;
1715         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1716                 if (HAS_PCH_IBX(dev_priv->dev) &&
1717                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1718                         val |= TRANS_LEGACY_INTERLACED_ILK;
1719                 else
1720                         val |= TRANS_INTERLACED;
1721         else
1722                 val |= TRANS_PROGRESSIVE;
1723
1724         I915_WRITE(reg, val | TRANS_ENABLE);
1725         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1726                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1727 }
1728
1729 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1730                                       enum transcoder cpu_transcoder)
1731 {
1732         u32 val, pipeconf_val;
1733
1734         /* PCH only available on ILK+ */
1735         BUG_ON(dev_priv->info->gen < 5);
1736
1737         /* FDI must be feeding us bits for PCH ports */
1738         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1739         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1740
1741         /* Workaround: set timing override bit. */
1742         val = I915_READ(_TRANSA_CHICKEN2);
1743         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1744         I915_WRITE(_TRANSA_CHICKEN2, val);
1745
1746         val = TRANS_ENABLE;
1747         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1748
1749         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1750             PIPECONF_INTERLACED_ILK)
1751                 val |= TRANS_INTERLACED;
1752         else
1753                 val |= TRANS_PROGRESSIVE;
1754
1755         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1756         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1757                 DRM_ERROR("Failed to enable PCH transcoder\n");
1758 }
1759
1760 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1761                                             enum pipe pipe)
1762 {
1763         struct drm_device *dev = dev_priv->dev;
1764         uint32_t reg, val;
1765
1766         /* FDI relies on the transcoder */
1767         assert_fdi_tx_disabled(dev_priv, pipe);
1768         assert_fdi_rx_disabled(dev_priv, pipe);
1769
1770         /* Ports must be off as well */
1771         assert_pch_ports_disabled(dev_priv, pipe);
1772
1773         reg = TRANSCONF(pipe);
1774         val = I915_READ(reg);
1775         val &= ~TRANS_ENABLE;
1776         I915_WRITE(reg, val);
1777         /* wait for PCH transcoder off, transcoder state */
1778         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1779                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1780
1781         if (!HAS_PCH_IBX(dev)) {
1782                 /* Workaround: Clear the timing override chicken bit again. */
1783                 reg = TRANS_CHICKEN2(pipe);
1784                 val = I915_READ(reg);
1785                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1786                 I915_WRITE(reg, val);
1787         }
1788 }
1789
1790 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1791 {
1792         u32 val;
1793
1794         val = I915_READ(_TRANSACONF);
1795         val &= ~TRANS_ENABLE;
1796         I915_WRITE(_TRANSACONF, val);
1797         /* wait for PCH transcoder off, transcoder state */
1798         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1799                 DRM_ERROR("Failed to disable PCH transcoder\n");
1800
1801         /* Workaround: clear timing override bit. */
1802         val = I915_READ(_TRANSA_CHICKEN2);
1803         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1804         I915_WRITE(_TRANSA_CHICKEN2, val);
1805 }
1806
1807 /**
1808  * intel_enable_pipe - enable a pipe, asserting requirements
1809  * @dev_priv: i915 private structure
1810  * @pipe: pipe to enable
1811  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1812  *
1813  * Enable @pipe, making sure that various hardware specific requirements
1814  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1815  *
1816  * @pipe should be %PIPE_A or %PIPE_B.
1817  *
1818  * Will wait until the pipe is actually running (i.e. first vblank) before
1819  * returning.
1820  */
1821 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1822                               bool pch_port)
1823 {
1824         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1825                                                                       pipe);
1826         int reg;
1827         u32 val;
1828
1829         /*
1830          * A pipe without a PLL won't actually be able to drive bits from
1831          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1832          * need the check.
1833          */
1834         if (!HAS_PCH_SPLIT(dev_priv->dev))
1835                 assert_pll_enabled(dev_priv, pipe);
1836         else {
1837                 if (pch_port) {
1838                         /* if driving the PCH, we need FDI enabled */
1839                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1840                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1841                 }
1842                 /* FIXME: assert CPU port conditions for SNB+ */
1843         }
1844
1845         reg = PIPECONF(cpu_transcoder);
1846         val = I915_READ(reg);
1847         if (val & PIPECONF_ENABLE)
1848                 return;
1849
1850         I915_WRITE(reg, val | PIPECONF_ENABLE);
1851         intel_wait_for_vblank(dev_priv->dev, pipe);
1852 }
1853
1854 /**
1855  * intel_disable_pipe - disable a pipe, asserting requirements
1856  * @dev_priv: i915 private structure
1857  * @pipe: pipe to disable
1858  *
1859  * Disable @pipe, making sure that various hardware specific requirements
1860  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1861  *
1862  * @pipe should be %PIPE_A or %PIPE_B.
1863  *
1864  * Will wait until the pipe has shut down before returning.
1865  */
1866 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1867                                enum pipe pipe)
1868 {
1869         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1870                                                                       pipe);
1871         int reg;
1872         u32 val;
1873
1874         /*
1875          * Make sure planes won't keep trying to pump pixels to us,
1876          * or we might hang the display.
1877          */
1878         assert_planes_disabled(dev_priv, pipe);
1879
1880         /* Don't disable pipe A or pipe A PLLs if needed */
1881         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1882                 return;
1883
1884         reg = PIPECONF(cpu_transcoder);
1885         val = I915_READ(reg);
1886         if ((val & PIPECONF_ENABLE) == 0)
1887                 return;
1888
1889         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1890         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1891 }
1892
1893 /*
1894  * Plane regs are double buffered, going from enabled->disabled needs a
1895  * trigger in order to latch.  The display address reg provides this.
1896  */
1897 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1898                                       enum plane plane)
1899 {
1900         if (dev_priv->info->gen >= 4)
1901                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1902         else
1903                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1904 }
1905
1906 /**
1907  * intel_enable_plane - enable a display plane on a given pipe
1908  * @dev_priv: i915 private structure
1909  * @plane: plane to enable
1910  * @pipe: pipe being fed
1911  *
1912  * Enable @plane on @pipe, making sure that @pipe is running first.
1913  */
1914 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1915                                enum plane plane, enum pipe pipe)
1916 {
1917         int reg;
1918         u32 val;
1919
1920         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1921         assert_pipe_enabled(dev_priv, pipe);
1922
1923         reg = DSPCNTR(plane);
1924         val = I915_READ(reg);
1925         if (val & DISPLAY_PLANE_ENABLE)
1926                 return;
1927
1928         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1929         intel_flush_display_plane(dev_priv, plane);
1930         intel_wait_for_vblank(dev_priv->dev, pipe);
1931 }
1932
1933 /**
1934  * intel_disable_plane - disable a display plane
1935  * @dev_priv: i915 private structure
1936  * @plane: plane to disable
1937  * @pipe: pipe consuming the data
1938  *
1939  * Disable @plane; should be an independent operation.
1940  */
1941 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1942                                 enum plane plane, enum pipe pipe)
1943 {
1944         int reg;
1945         u32 val;
1946
1947         reg = DSPCNTR(plane);
1948         val = I915_READ(reg);
1949         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1950                 return;
1951
1952         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1953         intel_flush_display_plane(dev_priv, plane);
1954         intel_wait_for_vblank(dev_priv->dev, pipe);
1955 }
1956
1957 int
1958 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1959                            struct drm_i915_gem_object *obj,
1960                            struct intel_ring_buffer *pipelined)
1961 {
1962         struct drm_i915_private *dev_priv = dev->dev_private;
1963         u32 alignment;
1964         int ret;
1965
1966         switch (obj->tiling_mode) {
1967         case I915_TILING_NONE:
1968                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1969                         alignment = 128 * 1024;
1970                 else if (INTEL_INFO(dev)->gen >= 4)
1971                         alignment = 4 * 1024;
1972                 else
1973                         alignment = 64 * 1024;
1974                 break;
1975         case I915_TILING_X:
1976                 /* pin() will align the object as required by fence */
1977                 alignment = 0;
1978                 break;
1979         case I915_TILING_Y:
1980                 /* FIXME: Is this true? */
1981                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1982                 return -EINVAL;
1983         default:
1984                 BUG();
1985         }
1986
1987         dev_priv->mm.interruptible = false;
1988         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1989         if (ret)
1990                 goto err_interruptible;
1991
1992         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1993          * fence, whereas 965+ only requires a fence if using
1994          * framebuffer compression.  For simplicity, we always install
1995          * a fence as the cost is not that onerous.
1996          */
1997         ret = i915_gem_object_get_fence(obj);
1998         if (ret)
1999                 goto err_unpin;
2000
2001         i915_gem_object_pin_fence(obj);
2002
2003         dev_priv->mm.interruptible = true;
2004         return 0;
2005
2006 err_unpin:
2007         i915_gem_object_unpin(obj);
2008 err_interruptible:
2009         dev_priv->mm.interruptible = true;
2010         return ret;
2011 }
2012
2013 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2014 {
2015         i915_gem_object_unpin_fence(obj);
2016         i915_gem_object_unpin(obj);
2017 }
2018
2019 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2020  * is assumed to be a power-of-two. */
2021 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2022                                                unsigned int bpp,
2023                                                unsigned int pitch)
2024 {
2025         int tile_rows, tiles;
2026
2027         tile_rows = *y / 8;
2028         *y %= 8;
2029         tiles = *x / (512/bpp);
2030         *x %= 512/bpp;
2031
2032         return tile_rows * pitch * 8 + tiles * 4096;
2033 }
2034
2035 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2036                              int x, int y)
2037 {
2038         struct drm_device *dev = crtc->dev;
2039         struct drm_i915_private *dev_priv = dev->dev_private;
2040         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2041         struct intel_framebuffer *intel_fb;
2042         struct drm_i915_gem_object *obj;
2043         int plane = intel_crtc->plane;
2044         unsigned long linear_offset;
2045         u32 dspcntr;
2046         u32 reg;
2047
2048         switch (plane) {
2049         case 0:
2050         case 1:
2051                 break;
2052         default:
2053                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2054                 return -EINVAL;
2055         }
2056
2057         intel_fb = to_intel_framebuffer(fb);
2058         obj = intel_fb->obj;
2059
2060         reg = DSPCNTR(plane);
2061         dspcntr = I915_READ(reg);
2062         /* Mask out pixel format bits in case we change it */
2063         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2064         switch (fb->pixel_format) {
2065         case DRM_FORMAT_C8:
2066                 dspcntr |= DISPPLANE_8BPP;
2067                 break;
2068         case DRM_FORMAT_XRGB1555:
2069         case DRM_FORMAT_ARGB1555:
2070                 dspcntr |= DISPPLANE_BGRX555;
2071                 break;
2072         case DRM_FORMAT_RGB565:
2073                 dspcntr |= DISPPLANE_BGRX565;
2074                 break;
2075         case DRM_FORMAT_XRGB8888:
2076         case DRM_FORMAT_ARGB8888:
2077                 dspcntr |= DISPPLANE_BGRX888;
2078                 break;
2079         case DRM_FORMAT_XBGR8888:
2080         case DRM_FORMAT_ABGR8888:
2081                 dspcntr |= DISPPLANE_RGBX888;
2082                 break;
2083         case DRM_FORMAT_XRGB2101010:
2084         case DRM_FORMAT_ARGB2101010:
2085                 dspcntr |= DISPPLANE_BGRX101010;
2086                 break;
2087         case DRM_FORMAT_XBGR2101010:
2088         case DRM_FORMAT_ABGR2101010:
2089                 dspcntr |= DISPPLANE_RGBX101010;
2090                 break;
2091         default:
2092                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2093                 return -EINVAL;
2094         }
2095
2096         if (INTEL_INFO(dev)->gen >= 4) {
2097                 if (obj->tiling_mode != I915_TILING_NONE)
2098                         dspcntr |= DISPPLANE_TILED;
2099                 else
2100                         dspcntr &= ~DISPPLANE_TILED;
2101         }
2102
2103         I915_WRITE(reg, dspcntr);
2104
2105         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2106
2107         if (INTEL_INFO(dev)->gen >= 4) {
2108                 intel_crtc->dspaddr_offset =
2109                         intel_gen4_compute_offset_xtiled(&x, &y,
2110                                                          fb->bits_per_pixel / 8,
2111                                                          fb->pitches[0]);
2112                 linear_offset -= intel_crtc->dspaddr_offset;
2113         } else {
2114                 intel_crtc->dspaddr_offset = linear_offset;
2115         }
2116
2117         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2118                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2119         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2120         if (INTEL_INFO(dev)->gen >= 4) {
2121                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2122                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2123                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2124                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2125         } else
2126                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2127         POSTING_READ(reg);
2128
2129         return 0;
2130 }
2131
2132 static int ironlake_update_plane(struct drm_crtc *crtc,
2133                                  struct drm_framebuffer *fb, int x, int y)
2134 {
2135         struct drm_device *dev = crtc->dev;
2136         struct drm_i915_private *dev_priv = dev->dev_private;
2137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2138         struct intel_framebuffer *intel_fb;
2139         struct drm_i915_gem_object *obj;
2140         int plane = intel_crtc->plane;
2141         unsigned long linear_offset;
2142         u32 dspcntr;
2143         u32 reg;
2144
2145         switch (plane) {
2146         case 0:
2147         case 1:
2148         case 2:
2149                 break;
2150         default:
2151                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2152                 return -EINVAL;
2153         }
2154
2155         intel_fb = to_intel_framebuffer(fb);
2156         obj = intel_fb->obj;
2157
2158         reg = DSPCNTR(plane);
2159         dspcntr = I915_READ(reg);
2160         /* Mask out pixel format bits in case we change it */
2161         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2162         switch (fb->pixel_format) {
2163         case DRM_FORMAT_C8:
2164                 dspcntr |= DISPPLANE_8BPP;
2165                 break;
2166         case DRM_FORMAT_RGB565:
2167                 dspcntr |= DISPPLANE_BGRX565;
2168                 break;
2169         case DRM_FORMAT_XRGB8888:
2170         case DRM_FORMAT_ARGB8888:
2171                 dspcntr |= DISPPLANE_BGRX888;
2172                 break;
2173         case DRM_FORMAT_XBGR8888:
2174         case DRM_FORMAT_ABGR8888:
2175                 dspcntr |= DISPPLANE_RGBX888;
2176                 break;
2177         case DRM_FORMAT_XRGB2101010:
2178         case DRM_FORMAT_ARGB2101010:
2179                 dspcntr |= DISPPLANE_BGRX101010;
2180                 break;
2181         case DRM_FORMAT_XBGR2101010:
2182         case DRM_FORMAT_ABGR2101010:
2183                 dspcntr |= DISPPLANE_RGBX101010;
2184                 break;
2185         default:
2186                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2187                 return -EINVAL;
2188         }
2189
2190         if (obj->tiling_mode != I915_TILING_NONE)
2191                 dspcntr |= DISPPLANE_TILED;
2192         else
2193                 dspcntr &= ~DISPPLANE_TILED;
2194
2195         /* must disable */
2196         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2197
2198         I915_WRITE(reg, dspcntr);
2199
2200         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2201         intel_crtc->dspaddr_offset =
2202                 intel_gen4_compute_offset_xtiled(&x, &y,
2203                                                  fb->bits_per_pixel / 8,
2204                                                  fb->pitches[0]);
2205         linear_offset -= intel_crtc->dspaddr_offset;
2206
2207         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2208                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2209         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2210         I915_MODIFY_DISPBASE(DSPSURF(plane),
2211                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2212         if (IS_HASWELL(dev)) {
2213                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2214         } else {
2215                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2216                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2217         }
2218         POSTING_READ(reg);
2219
2220         return 0;
2221 }
2222
2223 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2224 static int
2225 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2226                            int x, int y, enum mode_set_atomic state)
2227 {
2228         struct drm_device *dev = crtc->dev;
2229         struct drm_i915_private *dev_priv = dev->dev_private;
2230
2231         if (dev_priv->display.disable_fbc)
2232                 dev_priv->display.disable_fbc(dev);
2233         intel_increase_pllclock(crtc);
2234
2235         return dev_priv->display.update_plane(crtc, fb, x, y);
2236 }
2237
2238 static int
2239 intel_finish_fb(struct drm_framebuffer *old_fb)
2240 {
2241         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2242         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2243         bool was_interruptible = dev_priv->mm.interruptible;
2244         int ret;
2245
2246         wait_event(dev_priv->pending_flip_queue,
2247                    atomic_read(&dev_priv->mm.wedged) ||
2248                    atomic_read(&obj->pending_flip) == 0);
2249
2250         /* Big Hammer, we also need to ensure that any pending
2251          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2252          * current scanout is retired before unpinning the old
2253          * framebuffer.
2254          *
2255          * This should only fail upon a hung GPU, in which case we
2256          * can safely continue.
2257          */
2258         dev_priv->mm.interruptible = false;
2259         ret = i915_gem_object_finish_gpu(obj);
2260         dev_priv->mm.interruptible = was_interruptible;
2261
2262         return ret;
2263 }
2264
2265 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2266 {
2267         struct drm_device *dev = crtc->dev;
2268         struct drm_i915_master_private *master_priv;
2269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2270
2271         if (!dev->primary->master)
2272                 return;
2273
2274         master_priv = dev->primary->master->driver_priv;
2275         if (!master_priv->sarea_priv)
2276                 return;
2277
2278         switch (intel_crtc->pipe) {
2279         case 0:
2280                 master_priv->sarea_priv->pipeA_x = x;
2281                 master_priv->sarea_priv->pipeA_y = y;
2282                 break;
2283         case 1:
2284                 master_priv->sarea_priv->pipeB_x = x;
2285                 master_priv->sarea_priv->pipeB_y = y;
2286                 break;
2287         default:
2288                 break;
2289         }
2290 }
2291
2292 static int
2293 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2294                     struct drm_framebuffer *fb)
2295 {
2296         struct drm_device *dev = crtc->dev;
2297         struct drm_i915_private *dev_priv = dev->dev_private;
2298         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2299         struct drm_framebuffer *old_fb;
2300         int ret;
2301
2302         /* no fb bound */
2303         if (!fb) {
2304                 DRM_ERROR("No FB bound\n");
2305                 return 0;
2306         }
2307
2308         if(intel_crtc->plane > dev_priv->num_pipe) {
2309                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2310                                 intel_crtc->plane,
2311                                 dev_priv->num_pipe);
2312                 return -EINVAL;
2313         }
2314
2315         mutex_lock(&dev->struct_mutex);
2316         ret = intel_pin_and_fence_fb_obj(dev,
2317                                          to_intel_framebuffer(fb)->obj,
2318                                          NULL);
2319         if (ret != 0) {
2320                 mutex_unlock(&dev->struct_mutex);
2321                 DRM_ERROR("pin & fence failed\n");
2322                 return ret;
2323         }
2324
2325         if (crtc->fb)
2326                 intel_finish_fb(crtc->fb);
2327
2328         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2329         if (ret) {
2330                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2331                 mutex_unlock(&dev->struct_mutex);
2332                 DRM_ERROR("failed to update base address\n");
2333                 return ret;
2334         }
2335
2336         old_fb = crtc->fb;
2337         crtc->fb = fb;
2338         crtc->x = x;
2339         crtc->y = y;
2340
2341         if (old_fb) {
2342                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2343                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2344         }
2345
2346         intel_update_fbc(dev);
2347         mutex_unlock(&dev->struct_mutex);
2348
2349         intel_crtc_update_sarea_pos(crtc, x, y);
2350
2351         return 0;
2352 }
2353
2354 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2355 {
2356         struct drm_device *dev = crtc->dev;
2357         struct drm_i915_private *dev_priv = dev->dev_private;
2358         u32 dpa_ctl;
2359
2360         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2361         dpa_ctl = I915_READ(DP_A);
2362         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2363
2364         if (clock < 200000) {
2365                 u32 temp;
2366                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2367                 /* workaround for 160Mhz:
2368                    1) program 0x4600c bits 15:0 = 0x8124
2369                    2) program 0x46010 bit 0 = 1
2370                    3) program 0x46034 bit 24 = 1
2371                    4) program 0x64000 bit 14 = 1
2372                    */
2373                 temp = I915_READ(0x4600c);
2374                 temp &= 0xffff0000;
2375                 I915_WRITE(0x4600c, temp | 0x8124);
2376
2377                 temp = I915_READ(0x46010);
2378                 I915_WRITE(0x46010, temp | 1);
2379
2380                 temp = I915_READ(0x46034);
2381                 I915_WRITE(0x46034, temp | (1 << 24));
2382         } else {
2383                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2384         }
2385         I915_WRITE(DP_A, dpa_ctl);
2386
2387         POSTING_READ(DP_A);
2388         udelay(500);
2389 }
2390
2391 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2392 {
2393         struct drm_device *dev = crtc->dev;
2394         struct drm_i915_private *dev_priv = dev->dev_private;
2395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2396         int pipe = intel_crtc->pipe;
2397         u32 reg, temp;
2398
2399         /* enable normal train */
2400         reg = FDI_TX_CTL(pipe);
2401         temp = I915_READ(reg);
2402         if (IS_IVYBRIDGE(dev)) {
2403                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2404                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2405         } else {
2406                 temp &= ~FDI_LINK_TRAIN_NONE;
2407                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2408         }
2409         I915_WRITE(reg, temp);
2410
2411         reg = FDI_RX_CTL(pipe);
2412         temp = I915_READ(reg);
2413         if (HAS_PCH_CPT(dev)) {
2414                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2415                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2416         } else {
2417                 temp &= ~FDI_LINK_TRAIN_NONE;
2418                 temp |= FDI_LINK_TRAIN_NONE;
2419         }
2420         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2421
2422         /* wait one idle pattern time */
2423         POSTING_READ(reg);
2424         udelay(1000);
2425
2426         /* IVB wants error correction enabled */
2427         if (IS_IVYBRIDGE(dev))
2428                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2429                            FDI_FE_ERRC_ENABLE);
2430 }
2431
2432 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2433 {
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         u32 flags = I915_READ(SOUTH_CHICKEN1);
2436
2437         flags |= FDI_PHASE_SYNC_OVR(pipe);
2438         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2439         flags |= FDI_PHASE_SYNC_EN(pipe);
2440         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2441         POSTING_READ(SOUTH_CHICKEN1);
2442 }
2443
2444 static void ivb_modeset_global_resources(struct drm_device *dev)
2445 {
2446         struct drm_i915_private *dev_priv = dev->dev_private;
2447         struct intel_crtc *pipe_B_crtc =
2448                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2449         struct intel_crtc *pipe_C_crtc =
2450                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2451         uint32_t temp;
2452
2453         /* When everything is off disable fdi C so that we could enable fdi B
2454          * with all lanes. XXX: This misses the case where a pipe is not using
2455          * any pch resources and so doesn't need any fdi lanes. */
2456         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2457                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2458                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2459
2460                 temp = I915_READ(SOUTH_CHICKEN1);
2461                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2462                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2463                 I915_WRITE(SOUTH_CHICKEN1, temp);
2464         }
2465 }
2466
2467 /* The FDI link training functions for ILK/Ibexpeak. */
2468 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2469 {
2470         struct drm_device *dev = crtc->dev;
2471         struct drm_i915_private *dev_priv = dev->dev_private;
2472         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2473         int pipe = intel_crtc->pipe;
2474         int plane = intel_crtc->plane;
2475         u32 reg, temp, tries;
2476
2477         /* FDI needs bits from pipe & plane first */
2478         assert_pipe_enabled(dev_priv, pipe);
2479         assert_plane_enabled(dev_priv, plane);
2480
2481         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2482            for train result */
2483         reg = FDI_RX_IMR(pipe);
2484         temp = I915_READ(reg);
2485         temp &= ~FDI_RX_SYMBOL_LOCK;
2486         temp &= ~FDI_RX_BIT_LOCK;
2487         I915_WRITE(reg, temp);
2488         I915_READ(reg);
2489         udelay(150);
2490
2491         /* enable CPU FDI TX and PCH FDI RX */
2492         reg = FDI_TX_CTL(pipe);
2493         temp = I915_READ(reg);
2494         temp &= ~(7 << 19);
2495         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2496         temp &= ~FDI_LINK_TRAIN_NONE;
2497         temp |= FDI_LINK_TRAIN_PATTERN_1;
2498         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2499
2500         reg = FDI_RX_CTL(pipe);
2501         temp = I915_READ(reg);
2502         temp &= ~FDI_LINK_TRAIN_NONE;
2503         temp |= FDI_LINK_TRAIN_PATTERN_1;
2504         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2505
2506         POSTING_READ(reg);
2507         udelay(150);
2508
2509         /* Ironlake workaround, enable clock pointer after FDI enable*/
2510         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2511         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2512                    FDI_RX_PHASE_SYNC_POINTER_EN);
2513
2514         reg = FDI_RX_IIR(pipe);
2515         for (tries = 0; tries < 5; tries++) {
2516                 temp = I915_READ(reg);
2517                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2518
2519                 if ((temp & FDI_RX_BIT_LOCK)) {
2520                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2521                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2522                         break;
2523                 }
2524         }
2525         if (tries == 5)
2526                 DRM_ERROR("FDI train 1 fail!\n");
2527
2528         /* Train 2 */
2529         reg = FDI_TX_CTL(pipe);
2530         temp = I915_READ(reg);
2531         temp &= ~FDI_LINK_TRAIN_NONE;
2532         temp |= FDI_LINK_TRAIN_PATTERN_2;
2533         I915_WRITE(reg, temp);
2534
2535         reg = FDI_RX_CTL(pipe);
2536         temp = I915_READ(reg);
2537         temp &= ~FDI_LINK_TRAIN_NONE;
2538         temp |= FDI_LINK_TRAIN_PATTERN_2;
2539         I915_WRITE(reg, temp);
2540
2541         POSTING_READ(reg);
2542         udelay(150);
2543
2544         reg = FDI_RX_IIR(pipe);
2545         for (tries = 0; tries < 5; tries++) {
2546                 temp = I915_READ(reg);
2547                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2548
2549                 if (temp & FDI_RX_SYMBOL_LOCK) {
2550                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2551                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2552                         break;
2553                 }
2554         }
2555         if (tries == 5)
2556                 DRM_ERROR("FDI train 2 fail!\n");
2557
2558         DRM_DEBUG_KMS("FDI train done\n");
2559
2560 }
2561
2562 static const int snb_b_fdi_train_param[] = {
2563         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2564         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2565         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2566         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2567 };
2568
2569 /* The FDI link training functions for SNB/Cougarpoint. */
2570 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2571 {
2572         struct drm_device *dev = crtc->dev;
2573         struct drm_i915_private *dev_priv = dev->dev_private;
2574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2575         int pipe = intel_crtc->pipe;
2576         u32 reg, temp, i, retry;
2577
2578         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2579            for train result */
2580         reg = FDI_RX_IMR(pipe);
2581         temp = I915_READ(reg);
2582         temp &= ~FDI_RX_SYMBOL_LOCK;
2583         temp &= ~FDI_RX_BIT_LOCK;
2584         I915_WRITE(reg, temp);
2585
2586         POSTING_READ(reg);
2587         udelay(150);
2588
2589         /* enable CPU FDI TX and PCH FDI RX */
2590         reg = FDI_TX_CTL(pipe);
2591         temp = I915_READ(reg);
2592         temp &= ~(7 << 19);
2593         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2594         temp &= ~FDI_LINK_TRAIN_NONE;
2595         temp |= FDI_LINK_TRAIN_PATTERN_1;
2596         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2597         /* SNB-B */
2598         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2599         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2600
2601         I915_WRITE(FDI_RX_MISC(pipe),
2602                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2603
2604         reg = FDI_RX_CTL(pipe);
2605         temp = I915_READ(reg);
2606         if (HAS_PCH_CPT(dev)) {
2607                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2608                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2609         } else {
2610                 temp &= ~FDI_LINK_TRAIN_NONE;
2611                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2612         }
2613         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2614
2615         POSTING_READ(reg);
2616         udelay(150);
2617
2618         cpt_phase_pointer_enable(dev, pipe);
2619
2620         for (i = 0; i < 4; i++) {
2621                 reg = FDI_TX_CTL(pipe);
2622                 temp = I915_READ(reg);
2623                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2624                 temp |= snb_b_fdi_train_param[i];
2625                 I915_WRITE(reg, temp);
2626
2627                 POSTING_READ(reg);
2628                 udelay(500);
2629
2630                 for (retry = 0; retry < 5; retry++) {
2631                         reg = FDI_RX_IIR(pipe);
2632                         temp = I915_READ(reg);
2633                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2634                         if (temp & FDI_RX_BIT_LOCK) {
2635                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2636                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2637                                 break;
2638                         }
2639                         udelay(50);
2640                 }
2641                 if (retry < 5)
2642                         break;
2643         }
2644         if (i == 4)
2645                 DRM_ERROR("FDI train 1 fail!\n");
2646
2647         /* Train 2 */
2648         reg = FDI_TX_CTL(pipe);
2649         temp = I915_READ(reg);
2650         temp &= ~FDI_LINK_TRAIN_NONE;
2651         temp |= FDI_LINK_TRAIN_PATTERN_2;
2652         if (IS_GEN6(dev)) {
2653                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2654                 /* SNB-B */
2655                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2656         }
2657         I915_WRITE(reg, temp);
2658
2659         reg = FDI_RX_CTL(pipe);
2660         temp = I915_READ(reg);
2661         if (HAS_PCH_CPT(dev)) {
2662                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2663                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2664         } else {
2665                 temp &= ~FDI_LINK_TRAIN_NONE;
2666                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2667         }
2668         I915_WRITE(reg, temp);
2669
2670         POSTING_READ(reg);
2671         udelay(150);
2672
2673         for (i = 0; i < 4; i++) {
2674                 reg = FDI_TX_CTL(pipe);
2675                 temp = I915_READ(reg);
2676                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2677                 temp |= snb_b_fdi_train_param[i];
2678                 I915_WRITE(reg, temp);
2679
2680                 POSTING_READ(reg);
2681                 udelay(500);
2682
2683                 for (retry = 0; retry < 5; retry++) {
2684                         reg = FDI_RX_IIR(pipe);
2685                         temp = I915_READ(reg);
2686                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2687                         if (temp & FDI_RX_SYMBOL_LOCK) {
2688                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2689                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2690                                 break;
2691                         }
2692                         udelay(50);
2693                 }
2694                 if (retry < 5)
2695                         break;
2696         }
2697         if (i == 4)
2698                 DRM_ERROR("FDI train 2 fail!\n");
2699
2700         DRM_DEBUG_KMS("FDI train done.\n");
2701 }
2702
2703 /* Manual link training for Ivy Bridge A0 parts */
2704 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2705 {
2706         struct drm_device *dev = crtc->dev;
2707         struct drm_i915_private *dev_priv = dev->dev_private;
2708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2709         int pipe = intel_crtc->pipe;
2710         u32 reg, temp, i;
2711
2712         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2713            for train result */
2714         reg = FDI_RX_IMR(pipe);
2715         temp = I915_READ(reg);
2716         temp &= ~FDI_RX_SYMBOL_LOCK;
2717         temp &= ~FDI_RX_BIT_LOCK;
2718         I915_WRITE(reg, temp);
2719
2720         POSTING_READ(reg);
2721         udelay(150);
2722
2723         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2724                       I915_READ(FDI_RX_IIR(pipe)));
2725
2726         /* enable CPU FDI TX and PCH FDI RX */
2727         reg = FDI_TX_CTL(pipe);
2728         temp = I915_READ(reg);
2729         temp &= ~(7 << 19);
2730         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2731         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2732         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2733         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2734         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2735         temp |= FDI_COMPOSITE_SYNC;
2736         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2737
2738         I915_WRITE(FDI_RX_MISC(pipe),
2739                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2740
2741         reg = FDI_RX_CTL(pipe);
2742         temp = I915_READ(reg);
2743         temp &= ~FDI_LINK_TRAIN_AUTO;
2744         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2745         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2746         temp |= FDI_COMPOSITE_SYNC;
2747         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2748
2749         POSTING_READ(reg);
2750         udelay(150);
2751
2752         cpt_phase_pointer_enable(dev, pipe);
2753
2754         for (i = 0; i < 4; i++) {
2755                 reg = FDI_TX_CTL(pipe);
2756                 temp = I915_READ(reg);
2757                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2758                 temp |= snb_b_fdi_train_param[i];
2759                 I915_WRITE(reg, temp);
2760
2761                 POSTING_READ(reg);
2762                 udelay(500);
2763
2764                 reg = FDI_RX_IIR(pipe);
2765                 temp = I915_READ(reg);
2766                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2767
2768                 if (temp & FDI_RX_BIT_LOCK ||
2769                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2770                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2771                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2772                         break;
2773                 }
2774         }
2775         if (i == 4)
2776                 DRM_ERROR("FDI train 1 fail!\n");
2777
2778         /* Train 2 */
2779         reg = FDI_TX_CTL(pipe);
2780         temp = I915_READ(reg);
2781         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2782         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2783         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2784         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2785         I915_WRITE(reg, temp);
2786
2787         reg = FDI_RX_CTL(pipe);
2788         temp = I915_READ(reg);
2789         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2790         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2791         I915_WRITE(reg, temp);
2792
2793         POSTING_READ(reg);
2794         udelay(150);
2795
2796         for (i = 0; i < 4; i++) {
2797                 reg = FDI_TX_CTL(pipe);
2798                 temp = I915_READ(reg);
2799                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2800                 temp |= snb_b_fdi_train_param[i];
2801                 I915_WRITE(reg, temp);
2802
2803                 POSTING_READ(reg);
2804                 udelay(500);
2805
2806                 reg = FDI_RX_IIR(pipe);
2807                 temp = I915_READ(reg);
2808                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2809
2810                 if (temp & FDI_RX_SYMBOL_LOCK) {
2811                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2812                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2813                         break;
2814                 }
2815         }
2816         if (i == 4)
2817                 DRM_ERROR("FDI train 2 fail!\n");
2818
2819         DRM_DEBUG_KMS("FDI train done.\n");
2820 }
2821
2822 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2823 {
2824         struct drm_device *dev = intel_crtc->base.dev;
2825         struct drm_i915_private *dev_priv = dev->dev_private;
2826         int pipe = intel_crtc->pipe;
2827         u32 reg, temp;
2828
2829
2830         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2831         reg = FDI_RX_CTL(pipe);
2832         temp = I915_READ(reg);
2833         temp &= ~((0x7 << 19) | (0x7 << 16));
2834         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2835         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2836         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2837
2838         POSTING_READ(reg);
2839         udelay(200);
2840
2841         /* Switch from Rawclk to PCDclk */
2842         temp = I915_READ(reg);
2843         I915_WRITE(reg, temp | FDI_PCDCLK);
2844
2845         POSTING_READ(reg);
2846         udelay(200);
2847
2848         /* On Haswell, the PLL configuration for ports and pipes is handled
2849          * separately, as part of DDI setup */
2850         if (!IS_HASWELL(dev)) {
2851                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2852                 reg = FDI_TX_CTL(pipe);
2853                 temp = I915_READ(reg);
2854                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2855                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2856
2857                         POSTING_READ(reg);
2858                         udelay(100);
2859                 }
2860         }
2861 }
2862
2863 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2864 {
2865         struct drm_device *dev = intel_crtc->base.dev;
2866         struct drm_i915_private *dev_priv = dev->dev_private;
2867         int pipe = intel_crtc->pipe;
2868         u32 reg, temp;
2869
2870         /* Switch from PCDclk to Rawclk */
2871         reg = FDI_RX_CTL(pipe);
2872         temp = I915_READ(reg);
2873         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2874
2875         /* Disable CPU FDI TX PLL */
2876         reg = FDI_TX_CTL(pipe);
2877         temp = I915_READ(reg);
2878         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2879
2880         POSTING_READ(reg);
2881         udelay(100);
2882
2883         reg = FDI_RX_CTL(pipe);
2884         temp = I915_READ(reg);
2885         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2886
2887         /* Wait for the clocks to turn off. */
2888         POSTING_READ(reg);
2889         udelay(100);
2890 }
2891
2892 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2893 {
2894         struct drm_i915_private *dev_priv = dev->dev_private;
2895         u32 flags = I915_READ(SOUTH_CHICKEN1);
2896
2897         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2898         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2899         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2900         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2901         POSTING_READ(SOUTH_CHICKEN1);
2902 }
2903 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2904 {
2905         struct drm_device *dev = crtc->dev;
2906         struct drm_i915_private *dev_priv = dev->dev_private;
2907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2908         int pipe = intel_crtc->pipe;
2909         u32 reg, temp;
2910
2911         /* disable CPU FDI tx and PCH FDI rx */
2912         reg = FDI_TX_CTL(pipe);
2913         temp = I915_READ(reg);
2914         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2915         POSTING_READ(reg);
2916
2917         reg = FDI_RX_CTL(pipe);
2918         temp = I915_READ(reg);
2919         temp &= ~(0x7 << 16);
2920         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2921         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2922
2923         POSTING_READ(reg);
2924         udelay(100);
2925
2926         /* Ironlake workaround, disable clock pointer after downing FDI */
2927         if (HAS_PCH_IBX(dev)) {
2928                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2929                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2930                            I915_READ(FDI_RX_CHICKEN(pipe) &
2931                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2932         } else if (HAS_PCH_CPT(dev)) {
2933                 cpt_phase_pointer_disable(dev, pipe);
2934         }
2935
2936         /* still set train pattern 1 */
2937         reg = FDI_TX_CTL(pipe);
2938         temp = I915_READ(reg);
2939         temp &= ~FDI_LINK_TRAIN_NONE;
2940         temp |= FDI_LINK_TRAIN_PATTERN_1;
2941         I915_WRITE(reg, temp);
2942
2943         reg = FDI_RX_CTL(pipe);
2944         temp = I915_READ(reg);
2945         if (HAS_PCH_CPT(dev)) {
2946                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2947                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2948         } else {
2949                 temp &= ~FDI_LINK_TRAIN_NONE;
2950                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2951         }
2952         /* BPC in FDI rx is consistent with that in PIPECONF */
2953         temp &= ~(0x07 << 16);
2954         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2955         I915_WRITE(reg, temp);
2956
2957         POSTING_READ(reg);
2958         udelay(100);
2959 }
2960
2961 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2962 {
2963         struct drm_device *dev = crtc->dev;
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         unsigned long flags;
2966         bool pending;
2967
2968         if (atomic_read(&dev_priv->mm.wedged))
2969                 return false;
2970
2971         spin_lock_irqsave(&dev->event_lock, flags);
2972         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2973         spin_unlock_irqrestore(&dev->event_lock, flags);
2974
2975         return pending;
2976 }
2977
2978 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2979 {
2980         struct drm_device *dev = crtc->dev;
2981         struct drm_i915_private *dev_priv = dev->dev_private;
2982
2983         if (crtc->fb == NULL)
2984                 return;
2985
2986         wait_event(dev_priv->pending_flip_queue,
2987                    !intel_crtc_has_pending_flip(crtc));
2988
2989         mutex_lock(&dev->struct_mutex);
2990         intel_finish_fb(crtc->fb);
2991         mutex_unlock(&dev->struct_mutex);
2992 }
2993
2994 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2995 {
2996         struct drm_device *dev = crtc->dev;
2997         struct intel_encoder *intel_encoder;
2998
2999         /*
3000          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
3001          * must be driven by its own crtc; no sharing is possible.
3002          */
3003         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3004                 switch (intel_encoder->type) {
3005                 case INTEL_OUTPUT_EDP:
3006                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
3007                                 return false;
3008                         continue;
3009                 }
3010         }
3011
3012         return true;
3013 }
3014
3015 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3016 {
3017         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3018 }
3019
3020 /* Program iCLKIP clock to the desired frequency */
3021 static void lpt_program_iclkip(struct drm_crtc *crtc)
3022 {
3023         struct drm_device *dev = crtc->dev;
3024         struct drm_i915_private *dev_priv = dev->dev_private;
3025         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3026         u32 temp;
3027
3028         /* It is necessary to ungate the pixclk gate prior to programming
3029          * the divisors, and gate it back when it is done.
3030          */
3031         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3032
3033         /* Disable SSCCTL */
3034         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3035                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3036                                         SBI_SSCCTL_DISABLE);
3037
3038         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3039         if (crtc->mode.clock == 20000) {
3040                 auxdiv = 1;
3041                 divsel = 0x41;
3042                 phaseinc = 0x20;
3043         } else {
3044                 /* The iCLK virtual clock root frequency is in MHz,
3045                  * but the crtc->mode.clock in in KHz. To get the divisors,
3046                  * it is necessary to divide one by another, so we
3047                  * convert the virtual clock precision to KHz here for higher
3048                  * precision.
3049                  */
3050                 u32 iclk_virtual_root_freq = 172800 * 1000;
3051                 u32 iclk_pi_range = 64;
3052                 u32 desired_divisor, msb_divisor_value, pi_value;
3053
3054                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3055                 msb_divisor_value = desired_divisor / iclk_pi_range;
3056                 pi_value = desired_divisor % iclk_pi_range;
3057
3058                 auxdiv = 0;
3059                 divsel = msb_divisor_value - 2;
3060                 phaseinc = pi_value;
3061         }
3062
3063         /* This should not happen with any sane values */
3064         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3065                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3066         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3067                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3068
3069         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3070                         crtc->mode.clock,
3071                         auxdiv,
3072                         divsel,
3073                         phasedir,
3074                         phaseinc);
3075
3076         /* Program SSCDIVINTPHASE6 */
3077         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3078         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3079         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3080         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3081         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3082         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3083         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3084
3085         intel_sbi_write(dev_priv,
3086                         SBI_SSCDIVINTPHASE6,
3087                         temp);
3088
3089         /* Program SSCAUXDIV */
3090         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3091         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3092         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3093         intel_sbi_write(dev_priv,
3094                         SBI_SSCAUXDIV6,
3095                         temp);
3096
3097
3098         /* Enable modulator and associated divider */
3099         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3100         temp &= ~SBI_SSCCTL_DISABLE;
3101         intel_sbi_write(dev_priv,
3102                         SBI_SSCCTL6,
3103                         temp);
3104
3105         /* Wait for initialization time */
3106         udelay(24);
3107
3108         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3109 }
3110
3111 /*
3112  * Enable PCH resources required for PCH ports:
3113  *   - PCH PLLs
3114  *   - FDI training & RX/TX
3115  *   - update transcoder timings
3116  *   - DP transcoding bits
3117  *   - transcoder
3118  */
3119 static void ironlake_pch_enable(struct drm_crtc *crtc)
3120 {
3121         struct drm_device *dev = crtc->dev;
3122         struct drm_i915_private *dev_priv = dev->dev_private;
3123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3124         int pipe = intel_crtc->pipe;
3125         u32 reg, temp;
3126
3127         assert_transcoder_disabled(dev_priv, pipe);
3128
3129         /* Write the TU size bits before fdi link training, so that error
3130          * detection works. */
3131         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3132                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3133
3134         /* For PCH output, training FDI link */
3135         dev_priv->display.fdi_link_train(crtc);
3136
3137         /* XXX: pch pll's can be enabled any time before we enable the PCH
3138          * transcoder, and we actually should do this to not upset any PCH
3139          * transcoder that already use the clock when we share it.
3140          *
3141          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3142          * unconditionally resets the pll - we need that to have the right LVDS
3143          * enable sequence. */
3144         ironlake_enable_pch_pll(intel_crtc);
3145
3146         if (HAS_PCH_CPT(dev)) {
3147                 u32 sel;
3148
3149                 temp = I915_READ(PCH_DPLL_SEL);
3150                 switch (pipe) {
3151                 default:
3152                 case 0:
3153                         temp |= TRANSA_DPLL_ENABLE;
3154                         sel = TRANSA_DPLLB_SEL;
3155                         break;
3156                 case 1:
3157                         temp |= TRANSB_DPLL_ENABLE;
3158                         sel = TRANSB_DPLLB_SEL;
3159                         break;
3160                 case 2:
3161                         temp |= TRANSC_DPLL_ENABLE;
3162                         sel = TRANSC_DPLLB_SEL;
3163                         break;
3164                 }
3165                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3166                         temp |= sel;
3167                 else
3168                         temp &= ~sel;
3169                 I915_WRITE(PCH_DPLL_SEL, temp);
3170         }
3171
3172         /* set transcoder timing, panel must allow it */
3173         assert_panel_unlocked(dev_priv, pipe);
3174         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3175         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3176         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3177
3178         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3179         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3180         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3181         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3182
3183         intel_fdi_normal_train(crtc);
3184
3185         /* For PCH DP, enable TRANS_DP_CTL */
3186         if (HAS_PCH_CPT(dev) &&
3187             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3188              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3189                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3190                 reg = TRANS_DP_CTL(pipe);
3191                 temp = I915_READ(reg);
3192                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3193                           TRANS_DP_SYNC_MASK |
3194                           TRANS_DP_BPC_MASK);
3195                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3196                          TRANS_DP_ENH_FRAMING);
3197                 temp |= bpc << 9; /* same format but at 11:9 */
3198
3199                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3200                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3201                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3202                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3203
3204                 switch (intel_trans_dp_port_sel(crtc)) {
3205                 case PCH_DP_B:
3206                         temp |= TRANS_DP_PORT_SEL_B;
3207                         break;
3208                 case PCH_DP_C:
3209                         temp |= TRANS_DP_PORT_SEL_C;
3210                         break;
3211                 case PCH_DP_D:
3212                         temp |= TRANS_DP_PORT_SEL_D;
3213                         break;
3214                 default:
3215                         BUG();
3216                 }
3217
3218                 I915_WRITE(reg, temp);
3219         }
3220
3221         ironlake_enable_pch_transcoder(dev_priv, pipe);
3222 }
3223
3224 static void lpt_pch_enable(struct drm_crtc *crtc)
3225 {
3226         struct drm_device *dev = crtc->dev;
3227         struct drm_i915_private *dev_priv = dev->dev_private;
3228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3229         int pipe = intel_crtc->pipe;
3230         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3231
3232         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3233
3234         /* Write the TU size bits before fdi link training, so that error
3235          * detection works. */
3236         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3237                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3238
3239         /* For PCH output, training FDI link */
3240         dev_priv->display.fdi_link_train(crtc);
3241
3242         lpt_program_iclkip(crtc);
3243
3244         /* Set transcoder timing. */
3245         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3246         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3247         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3248
3249         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3250         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3251         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3252         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3253
3254         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3255 }
3256
3257 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3258 {
3259         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3260
3261         if (pll == NULL)
3262                 return;
3263
3264         if (pll->refcount == 0) {
3265                 WARN(1, "bad PCH PLL refcount\n");
3266                 return;
3267         }
3268
3269         --pll->refcount;
3270         intel_crtc->pch_pll = NULL;
3271 }
3272
3273 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3274 {
3275         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3276         struct intel_pch_pll *pll;
3277         int i;
3278
3279         pll = intel_crtc->pch_pll;
3280         if (pll) {
3281                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3282                               intel_crtc->base.base.id, pll->pll_reg);
3283                 goto prepare;
3284         }
3285
3286         if (HAS_PCH_IBX(dev_priv->dev)) {
3287                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3288                 i = intel_crtc->pipe;
3289                 pll = &dev_priv->pch_plls[i];
3290
3291                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3292                               intel_crtc->base.base.id, pll->pll_reg);
3293
3294                 goto found;
3295         }
3296
3297         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3298                 pll = &dev_priv->pch_plls[i];
3299
3300                 /* Only want to check enabled timings first */
3301                 if (pll->refcount == 0)
3302                         continue;
3303
3304                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3305                     fp == I915_READ(pll->fp0_reg)) {
3306                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3307                                       intel_crtc->base.base.id,
3308                                       pll->pll_reg, pll->refcount, pll->active);
3309
3310                         goto found;
3311                 }
3312         }
3313
3314         /* Ok no matching timings, maybe there's a free one? */
3315         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3316                 pll = &dev_priv->pch_plls[i];
3317                 if (pll->refcount == 0) {
3318                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3319                                       intel_crtc->base.base.id, pll->pll_reg);
3320                         goto found;
3321                 }
3322         }
3323
3324         return NULL;
3325
3326 found:
3327         intel_crtc->pch_pll = pll;
3328         pll->refcount++;
3329         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3330 prepare: /* separate function? */
3331         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3332
3333         /* Wait for the clocks to stabilize before rewriting the regs */
3334         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3335         POSTING_READ(pll->pll_reg);
3336         udelay(150);
3337
3338         I915_WRITE(pll->fp0_reg, fp);
3339         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3340         pll->on = false;
3341         return pll;
3342 }
3343
3344 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3345 {
3346         struct drm_i915_private *dev_priv = dev->dev_private;
3347         int dslreg = PIPEDSL(pipe);
3348         u32 temp;
3349
3350         temp = I915_READ(dslreg);
3351         udelay(500);
3352         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3353                 if (wait_for(I915_READ(dslreg) != temp, 5))
3354                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3355         }
3356 }
3357
3358 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3359 {
3360         struct drm_device *dev = crtc->dev;
3361         struct drm_i915_private *dev_priv = dev->dev_private;
3362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3363         struct intel_encoder *encoder;
3364         int pipe = intel_crtc->pipe;
3365         int plane = intel_crtc->plane;
3366         u32 temp;
3367         bool is_pch_port;
3368
3369         WARN_ON(!crtc->enabled);
3370
3371         if (intel_crtc->active)
3372                 return;
3373
3374         intel_crtc->active = true;
3375         intel_update_watermarks(dev);
3376
3377         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3378                 temp = I915_READ(PCH_LVDS);
3379                 if ((temp & LVDS_PORT_EN) == 0)
3380                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3381         }
3382
3383         is_pch_port = ironlake_crtc_driving_pch(crtc);
3384
3385         if (is_pch_port) {
3386                 /* Note: FDI PLL enabling _must_ be done before we enable the
3387                  * cpu pipes, hence this is separate from all the other fdi/pch
3388                  * enabling. */
3389                 ironlake_fdi_pll_enable(intel_crtc);
3390         } else {
3391                 assert_fdi_tx_disabled(dev_priv, pipe);
3392                 assert_fdi_rx_disabled(dev_priv, pipe);
3393         }
3394
3395         for_each_encoder_on_crtc(dev, crtc, encoder)
3396                 if (encoder->pre_enable)
3397                         encoder->pre_enable(encoder);
3398
3399         /* Enable panel fitting for LVDS */
3400         if (dev_priv->pch_pf_size &&
3401             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3402                 /* Force use of hard-coded filter coefficients
3403                  * as some pre-programmed values are broken,
3404                  * e.g. x201.
3405                  */
3406                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3407                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3408                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3409         }
3410
3411         /*
3412          * On ILK+ LUT must be loaded before the pipe is running but with
3413          * clocks enabled
3414          */
3415         intel_crtc_load_lut(crtc);
3416
3417         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3418         intel_enable_plane(dev_priv, plane, pipe);
3419
3420         if (is_pch_port)
3421                 ironlake_pch_enable(crtc);
3422
3423         mutex_lock(&dev->struct_mutex);
3424         intel_update_fbc(dev);
3425         mutex_unlock(&dev->struct_mutex);
3426
3427         intel_crtc_update_cursor(crtc, true);
3428
3429         for_each_encoder_on_crtc(dev, crtc, encoder)
3430                 encoder->enable(encoder);
3431
3432         if (HAS_PCH_CPT(dev))
3433                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3434
3435         /*
3436          * There seems to be a race in PCH platform hw (at least on some
3437          * outputs) where an enabled pipe still completes any pageflip right
3438          * away (as if the pipe is off) instead of waiting for vblank. As soon
3439          * as the first vblank happend, everything works as expected. Hence just
3440          * wait for one vblank before returning to avoid strange things
3441          * happening.
3442          */
3443         intel_wait_for_vblank(dev, intel_crtc->pipe);
3444 }
3445
3446 static void haswell_crtc_enable(struct drm_crtc *crtc)
3447 {
3448         struct drm_device *dev = crtc->dev;
3449         struct drm_i915_private *dev_priv = dev->dev_private;
3450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3451         struct intel_encoder *encoder;
3452         int pipe = intel_crtc->pipe;
3453         int plane = intel_crtc->plane;
3454         bool is_pch_port;
3455
3456         WARN_ON(!crtc->enabled);
3457
3458         if (intel_crtc->active)
3459                 return;
3460
3461         intel_crtc->active = true;
3462         intel_update_watermarks(dev);
3463
3464         is_pch_port = haswell_crtc_driving_pch(crtc);
3465
3466         if (is_pch_port)
3467                 ironlake_fdi_pll_enable(intel_crtc);
3468
3469         for_each_encoder_on_crtc(dev, crtc, encoder)
3470                 if (encoder->pre_enable)
3471                         encoder->pre_enable(encoder);
3472
3473         intel_ddi_enable_pipe_clock(intel_crtc);
3474
3475         /* Enable panel fitting for eDP */
3476         if (dev_priv->pch_pf_size && HAS_eDP) {
3477                 /* Force use of hard-coded filter coefficients
3478                  * as some pre-programmed values are broken,
3479                  * e.g. x201.
3480                  */
3481                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3482                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3483                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3484         }
3485
3486         /*
3487          * On ILK+ LUT must be loaded before the pipe is running but with
3488          * clocks enabled
3489          */
3490         intel_crtc_load_lut(crtc);
3491
3492         intel_ddi_set_pipe_settings(crtc);
3493         intel_ddi_enable_pipe_func(crtc);
3494
3495         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3496         intel_enable_plane(dev_priv, plane, pipe);
3497
3498         if (is_pch_port)
3499                 lpt_pch_enable(crtc);
3500
3501         mutex_lock(&dev->struct_mutex);
3502         intel_update_fbc(dev);
3503         mutex_unlock(&dev->struct_mutex);
3504
3505         intel_crtc_update_cursor(crtc, true);
3506
3507         for_each_encoder_on_crtc(dev, crtc, encoder)
3508                 encoder->enable(encoder);
3509
3510         /*
3511          * There seems to be a race in PCH platform hw (at least on some
3512          * outputs) where an enabled pipe still completes any pageflip right
3513          * away (as if the pipe is off) instead of waiting for vblank. As soon
3514          * as the first vblank happend, everything works as expected. Hence just
3515          * wait for one vblank before returning to avoid strange things
3516          * happening.
3517          */
3518         intel_wait_for_vblank(dev, intel_crtc->pipe);
3519 }
3520
3521 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3522 {
3523         struct drm_device *dev = crtc->dev;
3524         struct drm_i915_private *dev_priv = dev->dev_private;
3525         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3526         struct intel_encoder *encoder;
3527         int pipe = intel_crtc->pipe;
3528         int plane = intel_crtc->plane;
3529         u32 reg, temp;
3530
3531
3532         if (!intel_crtc->active)
3533                 return;
3534
3535         for_each_encoder_on_crtc(dev, crtc, encoder)
3536                 encoder->disable(encoder);
3537
3538         intel_crtc_wait_for_pending_flips(crtc);
3539         drm_vblank_off(dev, pipe);
3540         intel_crtc_update_cursor(crtc, false);
3541
3542         intel_disable_plane(dev_priv, plane, pipe);
3543
3544         if (dev_priv->cfb_plane == plane)
3545                 intel_disable_fbc(dev);
3546
3547         intel_disable_pipe(dev_priv, pipe);
3548
3549         /* Disable PF */
3550         I915_WRITE(PF_CTL(pipe), 0);
3551         I915_WRITE(PF_WIN_SZ(pipe), 0);
3552
3553         for_each_encoder_on_crtc(dev, crtc, encoder)
3554                 if (encoder->post_disable)
3555                         encoder->post_disable(encoder);
3556
3557         ironlake_fdi_disable(crtc);
3558
3559         ironlake_disable_pch_transcoder(dev_priv, pipe);
3560
3561         if (HAS_PCH_CPT(dev)) {
3562                 /* disable TRANS_DP_CTL */
3563                 reg = TRANS_DP_CTL(pipe);
3564                 temp = I915_READ(reg);
3565                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3566                 temp |= TRANS_DP_PORT_SEL_NONE;
3567                 I915_WRITE(reg, temp);
3568
3569                 /* disable DPLL_SEL */
3570                 temp = I915_READ(PCH_DPLL_SEL);
3571                 switch (pipe) {
3572                 case 0:
3573                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3574                         break;
3575                 case 1:
3576                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3577                         break;
3578                 case 2:
3579                         /* C shares PLL A or B */
3580                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3581                         break;
3582                 default:
3583                         BUG(); /* wtf */
3584                 }
3585                 I915_WRITE(PCH_DPLL_SEL, temp);
3586         }
3587
3588         /* disable PCH DPLL */
3589         intel_disable_pch_pll(intel_crtc);
3590
3591         ironlake_fdi_pll_disable(intel_crtc);
3592
3593         intel_crtc->active = false;
3594         intel_update_watermarks(dev);
3595
3596         mutex_lock(&dev->struct_mutex);
3597         intel_update_fbc(dev);
3598         mutex_unlock(&dev->struct_mutex);
3599 }
3600
3601 static void haswell_crtc_disable(struct drm_crtc *crtc)
3602 {
3603         struct drm_device *dev = crtc->dev;
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3606         struct intel_encoder *encoder;
3607         int pipe = intel_crtc->pipe;
3608         int plane = intel_crtc->plane;
3609         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3610         bool is_pch_port;
3611
3612         if (!intel_crtc->active)
3613                 return;
3614
3615         is_pch_port = haswell_crtc_driving_pch(crtc);
3616
3617         for_each_encoder_on_crtc(dev, crtc, encoder)
3618                 encoder->disable(encoder);
3619
3620         intel_crtc_wait_for_pending_flips(crtc);
3621         drm_vblank_off(dev, pipe);
3622         intel_crtc_update_cursor(crtc, false);
3623
3624         intel_disable_plane(dev_priv, plane, pipe);
3625
3626         if (dev_priv->cfb_plane == plane)
3627                 intel_disable_fbc(dev);
3628
3629         intel_disable_pipe(dev_priv, pipe);
3630
3631         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3632
3633         /* Disable PF */
3634         I915_WRITE(PF_CTL(pipe), 0);
3635         I915_WRITE(PF_WIN_SZ(pipe), 0);
3636
3637         intel_ddi_disable_pipe_clock(intel_crtc);
3638
3639         for_each_encoder_on_crtc(dev, crtc, encoder)
3640                 if (encoder->post_disable)
3641                         encoder->post_disable(encoder);
3642
3643         if (is_pch_port) {
3644                 ironlake_fdi_disable(crtc);
3645                 lpt_disable_pch_transcoder(dev_priv);
3646                 ironlake_fdi_pll_disable(intel_crtc);
3647         }
3648
3649         intel_crtc->active = false;
3650         intel_update_watermarks(dev);
3651
3652         mutex_lock(&dev->struct_mutex);
3653         intel_update_fbc(dev);
3654         mutex_unlock(&dev->struct_mutex);
3655 }
3656
3657 static void ironlake_crtc_off(struct drm_crtc *crtc)
3658 {
3659         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3660         intel_put_pch_pll(intel_crtc);
3661 }
3662
3663 static void haswell_crtc_off(struct drm_crtc *crtc)
3664 {
3665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3666
3667         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3668          * start using it. */
3669         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3670
3671         intel_ddi_put_crtc_pll(crtc);
3672 }
3673
3674 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3675 {
3676         if (!enable && intel_crtc->overlay) {
3677                 struct drm_device *dev = intel_crtc->base.dev;
3678                 struct drm_i915_private *dev_priv = dev->dev_private;
3679
3680                 mutex_lock(&dev->struct_mutex);
3681                 dev_priv->mm.interruptible = false;
3682                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3683                 dev_priv->mm.interruptible = true;
3684                 mutex_unlock(&dev->struct_mutex);
3685         }
3686
3687         /* Let userspace switch the overlay on again. In most cases userspace
3688          * has to recompute where to put it anyway.
3689          */
3690 }
3691
3692 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3693 {
3694         struct drm_device *dev = crtc->dev;
3695         struct drm_i915_private *dev_priv = dev->dev_private;
3696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3697         struct intel_encoder *encoder;
3698         int pipe = intel_crtc->pipe;
3699         int plane = intel_crtc->plane;
3700
3701         WARN_ON(!crtc->enabled);
3702
3703         if (intel_crtc->active)
3704                 return;
3705
3706         intel_crtc->active = true;
3707         intel_update_watermarks(dev);
3708
3709         intel_enable_pll(dev_priv, pipe);
3710         intel_enable_pipe(dev_priv, pipe, false);
3711         intel_enable_plane(dev_priv, plane, pipe);
3712
3713         intel_crtc_load_lut(crtc);
3714         intel_update_fbc(dev);
3715
3716         /* Give the overlay scaler a chance to enable if it's on this pipe */
3717         intel_crtc_dpms_overlay(intel_crtc, true);
3718         intel_crtc_update_cursor(crtc, true);
3719
3720         for_each_encoder_on_crtc(dev, crtc, encoder)
3721                 encoder->enable(encoder);
3722 }
3723
3724 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3725 {
3726         struct drm_device *dev = crtc->dev;
3727         struct drm_i915_private *dev_priv = dev->dev_private;
3728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3729         struct intel_encoder *encoder;
3730         int pipe = intel_crtc->pipe;
3731         int plane = intel_crtc->plane;
3732
3733
3734         if (!intel_crtc->active)
3735                 return;
3736
3737         for_each_encoder_on_crtc(dev, crtc, encoder)
3738                 encoder->disable(encoder);
3739
3740         /* Give the overlay scaler a chance to disable if it's on this pipe */
3741         intel_crtc_wait_for_pending_flips(crtc);
3742         drm_vblank_off(dev, pipe);
3743         intel_crtc_dpms_overlay(intel_crtc, false);
3744         intel_crtc_update_cursor(crtc, false);
3745
3746         if (dev_priv->cfb_plane == plane)
3747                 intel_disable_fbc(dev);
3748
3749         intel_disable_plane(dev_priv, plane, pipe);
3750         intel_disable_pipe(dev_priv, pipe);
3751         intel_disable_pll(dev_priv, pipe);
3752
3753         intel_crtc->active = false;
3754         intel_update_fbc(dev);
3755         intel_update_watermarks(dev);
3756 }
3757
3758 static void i9xx_crtc_off(struct drm_crtc *crtc)
3759 {
3760 }
3761
3762 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3763                                     bool enabled)
3764 {
3765         struct drm_device *dev = crtc->dev;
3766         struct drm_i915_master_private *master_priv;
3767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768         int pipe = intel_crtc->pipe;
3769
3770         if (!dev->primary->master)
3771                 return;
3772
3773         master_priv = dev->primary->master->driver_priv;
3774         if (!master_priv->sarea_priv)
3775                 return;
3776
3777         switch (pipe) {
3778         case 0:
3779                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3780                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3781                 break;
3782         case 1:
3783                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3784                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3785                 break;
3786         default:
3787                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3788                 break;
3789         }
3790 }
3791
3792 /**
3793  * Sets the power management mode of the pipe and plane.
3794  */
3795 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3796 {
3797         struct drm_device *dev = crtc->dev;
3798         struct drm_i915_private *dev_priv = dev->dev_private;
3799         struct intel_encoder *intel_encoder;
3800         bool enable = false;
3801
3802         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3803                 enable |= intel_encoder->connectors_active;
3804
3805         if (enable)
3806                 dev_priv->display.crtc_enable(crtc);
3807         else
3808                 dev_priv->display.crtc_disable(crtc);
3809
3810         intel_crtc_update_sarea(crtc, enable);
3811 }
3812
3813 static void intel_crtc_noop(struct drm_crtc *crtc)
3814 {
3815 }
3816
3817 static void intel_crtc_disable(struct drm_crtc *crtc)
3818 {
3819         struct drm_device *dev = crtc->dev;
3820         struct drm_connector *connector;
3821         struct drm_i915_private *dev_priv = dev->dev_private;
3822
3823         /* crtc should still be enabled when we disable it. */
3824         WARN_ON(!crtc->enabled);
3825
3826         dev_priv->display.crtc_disable(crtc);
3827         intel_crtc_update_sarea(crtc, false);
3828         dev_priv->display.off(crtc);
3829
3830         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3831         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3832
3833         if (crtc->fb) {
3834                 mutex_lock(&dev->struct_mutex);
3835                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3836                 mutex_unlock(&dev->struct_mutex);
3837                 crtc->fb = NULL;
3838         }
3839
3840         /* Update computed state. */
3841         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3842                 if (!connector->encoder || !connector->encoder->crtc)
3843                         continue;
3844
3845                 if (connector->encoder->crtc != crtc)
3846                         continue;
3847
3848                 connector->dpms = DRM_MODE_DPMS_OFF;
3849                 to_intel_encoder(connector->encoder)->connectors_active = false;
3850         }
3851 }
3852
3853 void intel_modeset_disable(struct drm_device *dev)
3854 {
3855         struct drm_crtc *crtc;
3856
3857         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3858                 if (crtc->enabled)
3859                         intel_crtc_disable(crtc);
3860         }
3861 }
3862
3863 void intel_encoder_noop(struct drm_encoder *encoder)
3864 {
3865 }
3866
3867 void intel_encoder_destroy(struct drm_encoder *encoder)
3868 {
3869         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3870
3871         drm_encoder_cleanup(encoder);
3872         kfree(intel_encoder);
3873 }
3874
3875 /* Simple dpms helper for encodres with just one connector, no cloning and only
3876  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3877  * state of the entire output pipe. */
3878 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3879 {
3880         if (mode == DRM_MODE_DPMS_ON) {
3881                 encoder->connectors_active = true;
3882
3883                 intel_crtc_update_dpms(encoder->base.crtc);
3884         } else {
3885                 encoder->connectors_active = false;
3886
3887                 intel_crtc_update_dpms(encoder->base.crtc);
3888         }
3889 }
3890
3891 /* Cross check the actual hw state with our own modeset state tracking (and it's
3892  * internal consistency). */
3893 static void intel_connector_check_state(struct intel_connector *connector)
3894 {
3895         if (connector->get_hw_state(connector)) {
3896                 struct intel_encoder *encoder = connector->encoder;
3897                 struct drm_crtc *crtc;
3898                 bool encoder_enabled;
3899                 enum pipe pipe;
3900
3901                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3902                               connector->base.base.id,
3903                               drm_get_connector_name(&connector->base));
3904
3905                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3906                      "wrong connector dpms state\n");
3907                 WARN(connector->base.encoder != &encoder->base,
3908                      "active connector not linked to encoder\n");
3909                 WARN(!encoder->connectors_active,
3910                      "encoder->connectors_active not set\n");
3911
3912                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3913                 WARN(!encoder_enabled, "encoder not enabled\n");
3914                 if (WARN_ON(!encoder->base.crtc))
3915                         return;
3916
3917                 crtc = encoder->base.crtc;
3918
3919                 WARN(!crtc->enabled, "crtc not enabled\n");
3920                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3921                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3922                      "encoder active on the wrong pipe\n");
3923         }
3924 }
3925
3926 /* Even simpler default implementation, if there's really no special case to
3927  * consider. */
3928 void intel_connector_dpms(struct drm_connector *connector, int mode)
3929 {
3930         struct intel_encoder *encoder = intel_attached_encoder(connector);
3931
3932         /* All the simple cases only support two dpms states. */
3933         if (mode != DRM_MODE_DPMS_ON)
3934                 mode = DRM_MODE_DPMS_OFF;
3935
3936         if (mode == connector->dpms)
3937                 return;
3938
3939         connector->dpms = mode;
3940
3941         /* Only need to change hw state when actually enabled */
3942         if (encoder->base.crtc)
3943                 intel_encoder_dpms(encoder, mode);
3944         else
3945                 WARN_ON(encoder->connectors_active != false);
3946
3947         intel_modeset_check_state(connector->dev);
3948 }
3949
3950 /* Simple connector->get_hw_state implementation for encoders that support only
3951  * one connector and no cloning and hence the encoder state determines the state
3952  * of the connector. */
3953 bool intel_connector_get_hw_state(struct intel_connector *connector)
3954 {
3955         enum pipe pipe = 0;
3956         struct intel_encoder *encoder = connector->encoder;
3957
3958         return encoder->get_hw_state(encoder, &pipe);
3959 }
3960
3961 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3962                                   const struct drm_display_mode *mode,
3963                                   struct drm_display_mode *adjusted_mode)
3964 {
3965         struct drm_device *dev = crtc->dev;
3966
3967         if (HAS_PCH_SPLIT(dev)) {
3968                 /* FDI link clock is fixed at 2.7G */
3969                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3970                         return false;
3971         }
3972
3973         /* All interlaced capable intel hw wants timings in frames. Note though
3974          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3975          * timings, so we need to be careful not to clobber these.*/
3976         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3977                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3978
3979         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3980          * with a hsync front porch of 0.
3981          */
3982         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3983                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3984                 return false;
3985
3986         return true;
3987 }
3988
3989 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3990 {
3991         return 400000; /* FIXME */
3992 }
3993
3994 static int i945_get_display_clock_speed(struct drm_device *dev)
3995 {
3996         return 400000;
3997 }
3998
3999 static int i915_get_display_clock_speed(struct drm_device *dev)
4000 {
4001         return 333000;
4002 }
4003
4004 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4005 {
4006         return 200000;
4007 }
4008
4009 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4010 {
4011         u16 gcfgc = 0;
4012
4013         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4014
4015         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4016                 return 133000;
4017         else {
4018                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4019                 case GC_DISPLAY_CLOCK_333_MHZ:
4020                         return 333000;
4021                 default:
4022                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4023                         return 190000;
4024                 }
4025         }
4026 }
4027
4028 static int i865_get_display_clock_speed(struct drm_device *dev)
4029 {
4030         return 266000;
4031 }
4032
4033 static int i855_get_display_clock_speed(struct drm_device *dev)
4034 {
4035         u16 hpllcc = 0;
4036         /* Assume that the hardware is in the high speed state.  This
4037          * should be the default.
4038          */
4039         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4040         case GC_CLOCK_133_200:
4041         case GC_CLOCK_100_200:
4042                 return 200000;
4043         case GC_CLOCK_166_250:
4044                 return 250000;
4045         case GC_CLOCK_100_133:
4046                 return 133000;
4047         }
4048
4049         /* Shouldn't happen */
4050         return 0;
4051 }
4052
4053 static int i830_get_display_clock_speed(struct drm_device *dev)
4054 {
4055         return 133000;
4056 }
4057
4058 struct fdi_m_n {
4059         u32        tu;
4060         u32        gmch_m;
4061         u32        gmch_n;
4062         u32        link_m;
4063         u32        link_n;
4064 };
4065
4066 static void
4067 fdi_reduce_ratio(u32 *num, u32 *den)
4068 {
4069         while (*num > 0xffffff || *den > 0xffffff) {
4070                 *num >>= 1;
4071                 *den >>= 1;
4072         }
4073 }
4074
4075 static void
4076 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4077                      int link_clock, struct fdi_m_n *m_n)
4078 {
4079         m_n->tu = 64; /* default size */
4080
4081         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4082         m_n->gmch_m = bits_per_pixel * pixel_clock;
4083         m_n->gmch_n = link_clock * nlanes * 8;
4084         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4085
4086         m_n->link_m = pixel_clock;
4087         m_n->link_n = link_clock;
4088         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4089 }
4090
4091 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4092 {
4093         if (i915_panel_use_ssc >= 0)
4094                 return i915_panel_use_ssc != 0;
4095         return dev_priv->lvds_use_ssc
4096                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4097 }
4098
4099 /**
4100  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4101  * @crtc: CRTC structure
4102  * @mode: requested mode
4103  *
4104  * A pipe may be connected to one or more outputs.  Based on the depth of the
4105  * attached framebuffer, choose a good color depth to use on the pipe.
4106  *
4107  * If possible, match the pipe depth to the fb depth.  In some cases, this
4108  * isn't ideal, because the connected output supports a lesser or restricted
4109  * set of depths.  Resolve that here:
4110  *    LVDS typically supports only 6bpc, so clamp down in that case
4111  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4112  *    Displays may support a restricted set as well, check EDID and clamp as
4113  *      appropriate.
4114  *    DP may want to dither down to 6bpc to fit larger modes
4115  *
4116  * RETURNS:
4117  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4118  * true if they don't match).
4119  */
4120 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4121                                          struct drm_framebuffer *fb,
4122                                          unsigned int *pipe_bpp,
4123                                          struct drm_display_mode *mode)
4124 {
4125         struct drm_device *dev = crtc->dev;
4126         struct drm_i915_private *dev_priv = dev->dev_private;
4127         struct drm_connector *connector;
4128         struct intel_encoder *intel_encoder;
4129         unsigned int display_bpc = UINT_MAX, bpc;
4130
4131         /* Walk the encoders & connectors on this crtc, get min bpc */
4132         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4133
4134                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4135                         unsigned int lvds_bpc;
4136
4137                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4138                             LVDS_A3_POWER_UP)
4139                                 lvds_bpc = 8;
4140                         else
4141                                 lvds_bpc = 6;
4142
4143                         if (lvds_bpc < display_bpc) {
4144                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4145                                 display_bpc = lvds_bpc;
4146                         }
4147                         continue;
4148                 }
4149
4150                 /* Not one of the known troublemakers, check the EDID */
4151                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4152                                     head) {
4153                         if (connector->encoder != &intel_encoder->base)
4154                                 continue;
4155
4156                         /* Don't use an invalid EDID bpc value */
4157                         if (connector->display_info.bpc &&
4158                             connector->display_info.bpc < display_bpc) {
4159                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4160                                 display_bpc = connector->display_info.bpc;
4161                         }
4162                 }
4163
4164                 /*
4165                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4166                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4167                  */
4168                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4169                         if (display_bpc > 8 && display_bpc < 12) {
4170                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4171                                 display_bpc = 12;
4172                         } else {
4173                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4174                                 display_bpc = 8;
4175                         }
4176                 }
4177         }
4178
4179         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4180                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4181                 display_bpc = 6;
4182         }
4183
4184         /*
4185          * We could just drive the pipe at the highest bpc all the time and
4186          * enable dithering as needed, but that costs bandwidth.  So choose
4187          * the minimum value that expresses the full color range of the fb but
4188          * also stays within the max display bpc discovered above.
4189          */
4190
4191         switch (fb->depth) {
4192         case 8:
4193                 bpc = 8; /* since we go through a colormap */
4194                 break;
4195         case 15:
4196         case 16:
4197                 bpc = 6; /* min is 18bpp */
4198                 break;
4199         case 24:
4200                 bpc = 8;
4201                 break;
4202         case 30:
4203                 bpc = 10;
4204                 break;
4205         case 48:
4206                 bpc = 12;
4207                 break;
4208         default:
4209                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4210                 bpc = min((unsigned int)8, display_bpc);
4211                 break;
4212         }
4213
4214         display_bpc = min(display_bpc, bpc);
4215
4216         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4217                       bpc, display_bpc);
4218
4219         *pipe_bpp = display_bpc * 3;
4220
4221         return display_bpc != bpc;
4222 }
4223
4224 static int vlv_get_refclk(struct drm_crtc *crtc)
4225 {
4226         struct drm_device *dev = crtc->dev;
4227         struct drm_i915_private *dev_priv = dev->dev_private;
4228         int refclk = 27000; /* for DP & HDMI */
4229
4230         return 100000; /* only one validated so far */
4231
4232         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4233                 refclk = 96000;
4234         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4235                 if (intel_panel_use_ssc(dev_priv))
4236                         refclk = 100000;
4237                 else
4238                         refclk = 96000;
4239         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4240                 refclk = 100000;
4241         }
4242
4243         return refclk;
4244 }
4245
4246 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4247 {
4248         struct drm_device *dev = crtc->dev;
4249         struct drm_i915_private *dev_priv = dev->dev_private;
4250         int refclk;
4251
4252         if (IS_VALLEYVIEW(dev)) {
4253                 refclk = vlv_get_refclk(crtc);
4254         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4255             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4256                 refclk = dev_priv->lvds_ssc_freq * 1000;
4257                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4258                               refclk / 1000);
4259         } else if (!IS_GEN2(dev)) {
4260                 refclk = 96000;
4261         } else {
4262                 refclk = 48000;
4263         }
4264
4265         return refclk;
4266 }
4267
4268 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4269                                       intel_clock_t *clock)
4270 {
4271         /* SDVO TV has fixed PLL values depend on its clock range,
4272            this mirrors vbios setting. */
4273         if (adjusted_mode->clock >= 100000
4274             && adjusted_mode->clock < 140500) {
4275                 clock->p1 = 2;
4276                 clock->p2 = 10;
4277                 clock->n = 3;
4278                 clock->m1 = 16;
4279                 clock->m2 = 8;
4280         } else if (adjusted_mode->clock >= 140500
4281                    && adjusted_mode->clock <= 200000) {
4282                 clock->p1 = 1;
4283                 clock->p2 = 10;
4284                 clock->n = 6;
4285                 clock->m1 = 12;
4286                 clock->m2 = 8;
4287         }
4288 }
4289
4290 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4291                                      intel_clock_t *clock,
4292                                      intel_clock_t *reduced_clock)
4293 {
4294         struct drm_device *dev = crtc->dev;
4295         struct drm_i915_private *dev_priv = dev->dev_private;
4296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4297         int pipe = intel_crtc->pipe;
4298         u32 fp, fp2 = 0;
4299
4300         if (IS_PINEVIEW(dev)) {
4301                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4302                 if (reduced_clock)
4303                         fp2 = (1 << reduced_clock->n) << 16 |
4304                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4305         } else {
4306                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4307                 if (reduced_clock)
4308                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4309                                 reduced_clock->m2;
4310         }
4311
4312         I915_WRITE(FP0(pipe), fp);
4313
4314         intel_crtc->lowfreq_avail = false;
4315         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4316             reduced_clock && i915_powersave) {
4317                 I915_WRITE(FP1(pipe), fp2);
4318                 intel_crtc->lowfreq_avail = true;
4319         } else {
4320                 I915_WRITE(FP1(pipe), fp);
4321         }
4322 }
4323
4324 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4325                               struct drm_display_mode *adjusted_mode)
4326 {
4327         struct drm_device *dev = crtc->dev;
4328         struct drm_i915_private *dev_priv = dev->dev_private;
4329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4330         int pipe = intel_crtc->pipe;
4331         u32 temp;
4332
4333         temp = I915_READ(LVDS);
4334         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4335         if (pipe == 1) {
4336                 temp |= LVDS_PIPEB_SELECT;
4337         } else {
4338                 temp &= ~LVDS_PIPEB_SELECT;
4339         }
4340         /* set the corresponsding LVDS_BORDER bit */
4341         temp |= dev_priv->lvds_border_bits;
4342         /* Set the B0-B3 data pairs corresponding to whether we're going to
4343          * set the DPLLs for dual-channel mode or not.
4344          */
4345         if (clock->p2 == 7)
4346                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4347         else
4348                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4349
4350         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4351          * appropriately here, but we need to look more thoroughly into how
4352          * panels behave in the two modes.
4353          */
4354         /* set the dithering flag on LVDS as needed */
4355         if (INTEL_INFO(dev)->gen >= 4) {
4356                 if (dev_priv->lvds_dither)
4357                         temp |= LVDS_ENABLE_DITHER;
4358                 else
4359                         temp &= ~LVDS_ENABLE_DITHER;
4360         }
4361         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4362         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4363                 temp |= LVDS_HSYNC_POLARITY;
4364         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4365                 temp |= LVDS_VSYNC_POLARITY;
4366         I915_WRITE(LVDS, temp);
4367 }
4368
4369 static void vlv_update_pll(struct drm_crtc *crtc,
4370                            struct drm_display_mode *mode,
4371                            struct drm_display_mode *adjusted_mode,
4372                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4373                            int num_connectors)
4374 {
4375         struct drm_device *dev = crtc->dev;
4376         struct drm_i915_private *dev_priv = dev->dev_private;
4377         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4378         int pipe = intel_crtc->pipe;
4379         u32 dpll, mdiv, pdiv;
4380         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4381         bool is_sdvo;
4382         u32 temp;
4383
4384         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4385                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4386
4387         dpll = DPLL_VGA_MODE_DIS;
4388         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4389         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4390         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4391
4392         I915_WRITE(DPLL(pipe), dpll);
4393         POSTING_READ(DPLL(pipe));
4394
4395         bestn = clock->n;
4396         bestm1 = clock->m1;
4397         bestm2 = clock->m2;
4398         bestp1 = clock->p1;
4399         bestp2 = clock->p2;
4400
4401         /*
4402          * In Valleyview PLL and program lane counter registers are exposed
4403          * through DPIO interface
4404          */
4405         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4406         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4407         mdiv |= ((bestn << DPIO_N_SHIFT));
4408         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4409         mdiv |= (1 << DPIO_K_SHIFT);
4410         mdiv |= DPIO_ENABLE_CALIBRATION;
4411         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4412
4413         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4414
4415         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4416                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4417                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4418                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4419         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4420
4421         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4422
4423         dpll |= DPLL_VCO_ENABLE;
4424         I915_WRITE(DPLL(pipe), dpll);
4425         POSTING_READ(DPLL(pipe));
4426         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4427                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4428
4429         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4430
4431         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4432                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4433
4434         I915_WRITE(DPLL(pipe), dpll);
4435
4436         /* Wait for the clocks to stabilize. */
4437         POSTING_READ(DPLL(pipe));
4438         udelay(150);
4439
4440         temp = 0;
4441         if (is_sdvo) {
4442                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4443                 if (temp > 1)
4444                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4445                 else
4446                         temp = 0;
4447         }
4448         I915_WRITE(DPLL_MD(pipe), temp);
4449         POSTING_READ(DPLL_MD(pipe));
4450
4451         /* Now program lane control registers */
4452         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4453                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4454         {
4455                 temp = 0x1000C4;
4456                 if(pipe == 1)
4457                         temp |= (1 << 21);
4458                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4459         }
4460         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4461         {
4462                 temp = 0x1000C4;
4463                 if(pipe == 1)
4464                         temp |= (1 << 21);
4465                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4466         }
4467 }
4468
4469 static void i9xx_update_pll(struct drm_crtc *crtc,
4470                             struct drm_display_mode *mode,
4471                             struct drm_display_mode *adjusted_mode,
4472                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4473                             int num_connectors)
4474 {
4475         struct drm_device *dev = crtc->dev;
4476         struct drm_i915_private *dev_priv = dev->dev_private;
4477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4478         int pipe = intel_crtc->pipe;
4479         u32 dpll;
4480         bool is_sdvo;
4481
4482         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4483
4484         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4485                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4486
4487         dpll = DPLL_VGA_MODE_DIS;
4488
4489         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4490                 dpll |= DPLLB_MODE_LVDS;
4491         else
4492                 dpll |= DPLLB_MODE_DAC_SERIAL;
4493         if (is_sdvo) {
4494                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4495                 if (pixel_multiplier > 1) {
4496                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4497                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4498                 }
4499                 dpll |= DPLL_DVO_HIGH_SPEED;
4500         }
4501         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4502                 dpll |= DPLL_DVO_HIGH_SPEED;
4503
4504         /* compute bitmask from p1 value */
4505         if (IS_PINEVIEW(dev))
4506                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4507         else {
4508                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4509                 if (IS_G4X(dev) && reduced_clock)
4510                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4511         }
4512         switch (clock->p2) {
4513         case 5:
4514                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4515                 break;
4516         case 7:
4517                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4518                 break;
4519         case 10:
4520                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4521                 break;
4522         case 14:
4523                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4524                 break;
4525         }
4526         if (INTEL_INFO(dev)->gen >= 4)
4527                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4528
4529         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4530                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4531         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4532                 /* XXX: just matching BIOS for now */
4533                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4534                 dpll |= 3;
4535         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4536                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4537                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4538         else
4539                 dpll |= PLL_REF_INPUT_DREFCLK;
4540
4541         dpll |= DPLL_VCO_ENABLE;
4542         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4543         POSTING_READ(DPLL(pipe));
4544         udelay(150);
4545
4546         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4547          * This is an exception to the general rule that mode_set doesn't turn
4548          * things on.
4549          */
4550         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4551                 intel_update_lvds(crtc, clock, adjusted_mode);
4552
4553         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4554                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4555
4556         I915_WRITE(DPLL(pipe), dpll);
4557
4558         /* Wait for the clocks to stabilize. */
4559         POSTING_READ(DPLL(pipe));
4560         udelay(150);
4561
4562         if (INTEL_INFO(dev)->gen >= 4) {
4563                 u32 temp = 0;
4564                 if (is_sdvo) {
4565                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4566                         if (temp > 1)
4567                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4568                         else
4569                                 temp = 0;
4570                 }
4571                 I915_WRITE(DPLL_MD(pipe), temp);
4572         } else {
4573                 /* The pixel multiplier can only be updated once the
4574                  * DPLL is enabled and the clocks are stable.
4575                  *
4576                  * So write it again.
4577                  */
4578                 I915_WRITE(DPLL(pipe), dpll);
4579         }
4580 }
4581
4582 static void i8xx_update_pll(struct drm_crtc *crtc,
4583                             struct drm_display_mode *adjusted_mode,
4584                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4585                             int num_connectors)
4586 {
4587         struct drm_device *dev = crtc->dev;
4588         struct drm_i915_private *dev_priv = dev->dev_private;
4589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4590         int pipe = intel_crtc->pipe;
4591         u32 dpll;
4592
4593         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4594
4595         dpll = DPLL_VGA_MODE_DIS;
4596
4597         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4598                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4599         } else {
4600                 if (clock->p1 == 2)
4601                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4602                 else
4603                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4604                 if (clock->p2 == 4)
4605                         dpll |= PLL_P2_DIVIDE_BY_4;
4606         }
4607
4608         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4609                 /* XXX: just matching BIOS for now */
4610                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4611                 dpll |= 3;
4612         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4613                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4614                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4615         else
4616                 dpll |= PLL_REF_INPUT_DREFCLK;
4617
4618         dpll |= DPLL_VCO_ENABLE;
4619         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4620         POSTING_READ(DPLL(pipe));
4621         udelay(150);
4622
4623         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4624          * This is an exception to the general rule that mode_set doesn't turn
4625          * things on.
4626          */
4627         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4628                 intel_update_lvds(crtc, clock, adjusted_mode);
4629
4630         I915_WRITE(DPLL(pipe), dpll);
4631
4632         /* Wait for the clocks to stabilize. */
4633         POSTING_READ(DPLL(pipe));
4634         udelay(150);
4635
4636         /* The pixel multiplier can only be updated once the
4637          * DPLL is enabled and the clocks are stable.
4638          *
4639          * So write it again.
4640          */
4641         I915_WRITE(DPLL(pipe), dpll);
4642 }
4643
4644 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4645                                    struct drm_display_mode *mode,
4646                                    struct drm_display_mode *adjusted_mode)
4647 {
4648         struct drm_device *dev = intel_crtc->base.dev;
4649         struct drm_i915_private *dev_priv = dev->dev_private;
4650         enum pipe pipe = intel_crtc->pipe;
4651         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4652         uint32_t vsyncshift;
4653
4654         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4655                 /* the chip adds 2 halflines automatically */
4656                 adjusted_mode->crtc_vtotal -= 1;
4657                 adjusted_mode->crtc_vblank_end -= 1;
4658                 vsyncshift = adjusted_mode->crtc_hsync_start
4659                              - adjusted_mode->crtc_htotal / 2;
4660         } else {
4661                 vsyncshift = 0;
4662         }
4663
4664         if (INTEL_INFO(dev)->gen > 3)
4665                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4666
4667         I915_WRITE(HTOTAL(cpu_transcoder),
4668                    (adjusted_mode->crtc_hdisplay - 1) |
4669                    ((adjusted_mode->crtc_htotal - 1) << 16));
4670         I915_WRITE(HBLANK(cpu_transcoder),
4671                    (adjusted_mode->crtc_hblank_start - 1) |
4672                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4673         I915_WRITE(HSYNC(cpu_transcoder),
4674                    (adjusted_mode->crtc_hsync_start - 1) |
4675                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4676
4677         I915_WRITE(VTOTAL(cpu_transcoder),
4678                    (adjusted_mode->crtc_vdisplay - 1) |
4679                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4680         I915_WRITE(VBLANK(cpu_transcoder),
4681                    (adjusted_mode->crtc_vblank_start - 1) |
4682                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4683         I915_WRITE(VSYNC(cpu_transcoder),
4684                    (adjusted_mode->crtc_vsync_start - 1) |
4685                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4686
4687         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4688          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4689          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4690          * bits. */
4691         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4692             (pipe == PIPE_B || pipe == PIPE_C))
4693                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4694
4695         /* pipesrc controls the size that is scaled from, which should
4696          * always be the user's requested size.
4697          */
4698         I915_WRITE(PIPESRC(pipe),
4699                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4700 }
4701
4702 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4703                               struct drm_display_mode *mode,
4704                               struct drm_display_mode *adjusted_mode,
4705                               int x, int y,
4706                               struct drm_framebuffer *fb)
4707 {
4708         struct drm_device *dev = crtc->dev;
4709         struct drm_i915_private *dev_priv = dev->dev_private;
4710         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4711         int pipe = intel_crtc->pipe;
4712         int plane = intel_crtc->plane;
4713         int refclk, num_connectors = 0;
4714         intel_clock_t clock, reduced_clock;
4715         u32 dspcntr, pipeconf;
4716         bool ok, has_reduced_clock = false, is_sdvo = false;
4717         bool is_lvds = false, is_tv = false, is_dp = false;
4718         struct intel_encoder *encoder;
4719         const intel_limit_t *limit;
4720         int ret;
4721
4722         for_each_encoder_on_crtc(dev, crtc, encoder) {
4723                 switch (encoder->type) {
4724                 case INTEL_OUTPUT_LVDS:
4725                         is_lvds = true;
4726                         break;
4727                 case INTEL_OUTPUT_SDVO:
4728                 case INTEL_OUTPUT_HDMI:
4729                         is_sdvo = true;
4730                         if (encoder->needs_tv_clock)
4731                                 is_tv = true;
4732                         break;
4733                 case INTEL_OUTPUT_TVOUT:
4734                         is_tv = true;
4735                         break;
4736                 case INTEL_OUTPUT_DISPLAYPORT:
4737                         is_dp = true;
4738                         break;
4739                 }
4740
4741                 num_connectors++;
4742         }
4743
4744         refclk = i9xx_get_refclk(crtc, num_connectors);
4745
4746         /*
4747          * Returns a set of divisors for the desired target clock with the given
4748          * refclk, or FALSE.  The returned values represent the clock equation:
4749          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4750          */
4751         limit = intel_limit(crtc, refclk);
4752         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4753                              &clock);
4754         if (!ok) {
4755                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4756                 return -EINVAL;
4757         }
4758
4759         /* Ensure that the cursor is valid for the new mode before changing... */
4760         intel_crtc_update_cursor(crtc, true);
4761
4762         if (is_lvds && dev_priv->lvds_downclock_avail) {
4763                 /*
4764                  * Ensure we match the reduced clock's P to the target clock.
4765                  * If the clocks don't match, we can't switch the display clock
4766                  * by using the FP0/FP1. In such case we will disable the LVDS
4767                  * downclock feature.
4768                 */
4769                 has_reduced_clock = limit->find_pll(limit, crtc,
4770                                                     dev_priv->lvds_downclock,
4771                                                     refclk,
4772                                                     &clock,
4773                                                     &reduced_clock);
4774         }
4775
4776         if (is_sdvo && is_tv)
4777                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4778
4779         if (IS_GEN2(dev))
4780                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4781                                 has_reduced_clock ? &reduced_clock : NULL,
4782                                 num_connectors);
4783         else if (IS_VALLEYVIEW(dev))
4784                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4785                                 has_reduced_clock ? &reduced_clock : NULL,
4786                                 num_connectors);
4787         else
4788                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4789                                 has_reduced_clock ? &reduced_clock : NULL,
4790                                 num_connectors);
4791
4792         /* setup pipeconf */
4793         pipeconf = I915_READ(PIPECONF(pipe));
4794
4795         /* Set up the display plane register */
4796         dspcntr = DISPPLANE_GAMMA_ENABLE;
4797
4798         if (pipe == 0)
4799                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4800         else
4801                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4802
4803         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4804                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4805                  * core speed.
4806                  *
4807                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4808                  * pipe == 0 check?
4809                  */
4810                 if (mode->clock >
4811                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4812                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4813                 else
4814                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4815         }
4816
4817         /* default to 8bpc */
4818         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4819         if (is_dp) {
4820                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4821                         pipeconf |= PIPECONF_BPP_6 |
4822                                     PIPECONF_DITHER_EN |
4823                                     PIPECONF_DITHER_TYPE_SP;
4824                 }
4825         }
4826
4827         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4828                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4829                         pipeconf |= PIPECONF_BPP_6 |
4830                                         PIPECONF_ENABLE |
4831                                         I965_PIPECONF_ACTIVE;
4832                 }
4833         }
4834
4835         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4836         drm_mode_debug_printmodeline(mode);
4837
4838         if (HAS_PIPE_CXSR(dev)) {
4839                 if (intel_crtc->lowfreq_avail) {
4840                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4841                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4842                 } else {
4843                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4844                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4845                 }
4846         }
4847
4848         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4849         if (!IS_GEN2(dev) &&
4850             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4851                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4852         else
4853                 pipeconf |= PIPECONF_PROGRESSIVE;
4854
4855         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4856
4857         /* pipesrc and dspsize control the size that is scaled from,
4858          * which should always be the user's requested size.
4859          */
4860         I915_WRITE(DSPSIZE(plane),
4861                    ((mode->vdisplay - 1) << 16) |
4862                    (mode->hdisplay - 1));
4863         I915_WRITE(DSPPOS(plane), 0);
4864
4865         I915_WRITE(PIPECONF(pipe), pipeconf);
4866         POSTING_READ(PIPECONF(pipe));
4867         intel_enable_pipe(dev_priv, pipe, false);
4868
4869         intel_wait_for_vblank(dev, pipe);
4870
4871         I915_WRITE(DSPCNTR(plane), dspcntr);
4872         POSTING_READ(DSPCNTR(plane));
4873
4874         ret = intel_pipe_set_base(crtc, x, y, fb);
4875
4876         intel_update_watermarks(dev);
4877
4878         return ret;
4879 }
4880
4881 /*
4882  * Initialize reference clocks when the driver loads
4883  */
4884 void ironlake_init_pch_refclk(struct drm_device *dev)
4885 {
4886         struct drm_i915_private *dev_priv = dev->dev_private;
4887         struct drm_mode_config *mode_config = &dev->mode_config;
4888         struct intel_encoder *encoder;
4889         u32 temp;
4890         bool has_lvds = false;
4891         bool has_cpu_edp = false;
4892         bool has_pch_edp = false;
4893         bool has_panel = false;
4894         bool has_ck505 = false;
4895         bool can_ssc = false;
4896
4897         /* We need to take the global config into account */
4898         list_for_each_entry(encoder, &mode_config->encoder_list,
4899                             base.head) {
4900                 switch (encoder->type) {
4901                 case INTEL_OUTPUT_LVDS:
4902                         has_panel = true;
4903                         has_lvds = true;
4904                         break;
4905                 case INTEL_OUTPUT_EDP:
4906                         has_panel = true;
4907                         if (intel_encoder_is_pch_edp(&encoder->base))
4908                                 has_pch_edp = true;
4909                         else
4910                                 has_cpu_edp = true;
4911                         break;
4912                 }
4913         }
4914
4915         if (HAS_PCH_IBX(dev)) {
4916                 has_ck505 = dev_priv->display_clock_mode;
4917                 can_ssc = has_ck505;
4918         } else {
4919                 has_ck505 = false;
4920                 can_ssc = true;
4921         }
4922
4923         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4924                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4925                       has_ck505);
4926
4927         /* Ironlake: try to setup display ref clock before DPLL
4928          * enabling. This is only under driver's control after
4929          * PCH B stepping, previous chipset stepping should be
4930          * ignoring this setting.
4931          */
4932         temp = I915_READ(PCH_DREF_CONTROL);
4933         /* Always enable nonspread source */
4934         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4935
4936         if (has_ck505)
4937                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4938         else
4939                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4940
4941         if (has_panel) {
4942                 temp &= ~DREF_SSC_SOURCE_MASK;
4943                 temp |= DREF_SSC_SOURCE_ENABLE;
4944
4945                 /* SSC must be turned on before enabling the CPU output  */
4946                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4947                         DRM_DEBUG_KMS("Using SSC on panel\n");
4948                         temp |= DREF_SSC1_ENABLE;
4949                 } else
4950                         temp &= ~DREF_SSC1_ENABLE;
4951
4952                 /* Get SSC going before enabling the outputs */
4953                 I915_WRITE(PCH_DREF_CONTROL, temp);
4954                 POSTING_READ(PCH_DREF_CONTROL);
4955                 udelay(200);
4956
4957                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4958
4959                 /* Enable CPU source on CPU attached eDP */
4960                 if (has_cpu_edp) {
4961                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4962                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4963                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4964                         }
4965                         else
4966                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4967                 } else
4968                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4969
4970                 I915_WRITE(PCH_DREF_CONTROL, temp);
4971                 POSTING_READ(PCH_DREF_CONTROL);
4972                 udelay(200);
4973         } else {
4974                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4975
4976                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4977
4978                 /* Turn off CPU output */
4979                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4980
4981                 I915_WRITE(PCH_DREF_CONTROL, temp);
4982                 POSTING_READ(PCH_DREF_CONTROL);
4983                 udelay(200);
4984
4985                 /* Turn off the SSC source */
4986                 temp &= ~DREF_SSC_SOURCE_MASK;
4987                 temp |= DREF_SSC_SOURCE_DISABLE;
4988
4989                 /* Turn off SSC1 */
4990                 temp &= ~ DREF_SSC1_ENABLE;
4991
4992                 I915_WRITE(PCH_DREF_CONTROL, temp);
4993                 POSTING_READ(PCH_DREF_CONTROL);
4994                 udelay(200);
4995         }
4996 }
4997
4998 static int ironlake_get_refclk(struct drm_crtc *crtc)
4999 {
5000         struct drm_device *dev = crtc->dev;
5001         struct drm_i915_private *dev_priv = dev->dev_private;
5002         struct intel_encoder *encoder;
5003         struct intel_encoder *edp_encoder = NULL;
5004         int num_connectors = 0;
5005         bool is_lvds = false;
5006
5007         for_each_encoder_on_crtc(dev, crtc, encoder) {
5008                 switch (encoder->type) {
5009                 case INTEL_OUTPUT_LVDS:
5010                         is_lvds = true;
5011                         break;
5012                 case INTEL_OUTPUT_EDP:
5013                         edp_encoder = encoder;
5014                         break;
5015                 }
5016                 num_connectors++;
5017         }
5018
5019         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5020                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5021                               dev_priv->lvds_ssc_freq);
5022                 return dev_priv->lvds_ssc_freq * 1000;
5023         }
5024
5025         return 120000;
5026 }
5027
5028 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5029                                   struct drm_display_mode *adjusted_mode,
5030                                   bool dither)
5031 {
5032         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5034         int pipe = intel_crtc->pipe;
5035         uint32_t val;
5036
5037         val = I915_READ(PIPECONF(pipe));
5038
5039         val &= ~PIPE_BPC_MASK;
5040         switch (intel_crtc->bpp) {
5041         case 18:
5042                 val |= PIPE_6BPC;
5043                 break;
5044         case 24:
5045                 val |= PIPE_8BPC;
5046                 break;
5047         case 30:
5048                 val |= PIPE_10BPC;
5049                 break;
5050         case 36:
5051                 val |= PIPE_12BPC;
5052                 break;
5053         default:
5054                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5055                 BUG();
5056         }
5057
5058         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5059         if (dither)
5060                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5061
5062         val &= ~PIPECONF_INTERLACE_MASK;
5063         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5064                 val |= PIPECONF_INTERLACED_ILK;
5065         else
5066                 val |= PIPECONF_PROGRESSIVE;
5067
5068         I915_WRITE(PIPECONF(pipe), val);
5069         POSTING_READ(PIPECONF(pipe));
5070 }
5071
5072 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5073                                  struct drm_display_mode *adjusted_mode,
5074                                  bool dither)
5075 {
5076         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5078         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5079         uint32_t val;
5080
5081         val = I915_READ(PIPECONF(cpu_transcoder));
5082
5083         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5084         if (dither)
5085                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5086
5087         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5088         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5089                 val |= PIPECONF_INTERLACED_ILK;
5090         else
5091                 val |= PIPECONF_PROGRESSIVE;
5092
5093         I915_WRITE(PIPECONF(cpu_transcoder), val);
5094         POSTING_READ(PIPECONF(cpu_transcoder));
5095 }
5096
5097 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5098                                     struct drm_display_mode *adjusted_mode,
5099                                     intel_clock_t *clock,
5100                                     bool *has_reduced_clock,
5101                                     intel_clock_t *reduced_clock)
5102 {
5103         struct drm_device *dev = crtc->dev;
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105         struct intel_encoder *intel_encoder;
5106         int refclk;
5107         const intel_limit_t *limit;
5108         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5109
5110         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5111                 switch (intel_encoder->type) {
5112                 case INTEL_OUTPUT_LVDS:
5113                         is_lvds = true;
5114                         break;
5115                 case INTEL_OUTPUT_SDVO:
5116                 case INTEL_OUTPUT_HDMI:
5117                         is_sdvo = true;
5118                         if (intel_encoder->needs_tv_clock)
5119                                 is_tv = true;
5120                         break;
5121                 case INTEL_OUTPUT_TVOUT:
5122                         is_tv = true;
5123                         break;
5124                 }
5125         }
5126
5127         refclk = ironlake_get_refclk(crtc);
5128
5129         /*
5130          * Returns a set of divisors for the desired target clock with the given
5131          * refclk, or FALSE.  The returned values represent the clock equation:
5132          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5133          */
5134         limit = intel_limit(crtc, refclk);
5135         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5136                               clock);
5137         if (!ret)
5138                 return false;
5139
5140         if (is_lvds && dev_priv->lvds_downclock_avail) {
5141                 /*
5142                  * Ensure we match the reduced clock's P to the target clock.
5143                  * If the clocks don't match, we can't switch the display clock
5144                  * by using the FP0/FP1. In such case we will disable the LVDS
5145                  * downclock feature.
5146                 */
5147                 *has_reduced_clock = limit->find_pll(limit, crtc,
5148                                                      dev_priv->lvds_downclock,
5149                                                      refclk,
5150                                                      clock,
5151                                                      reduced_clock);
5152         }
5153
5154         if (is_sdvo && is_tv)
5155                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5156
5157         return true;
5158 }
5159
5160 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5161 {
5162         struct drm_i915_private *dev_priv = dev->dev_private;
5163         uint32_t temp;
5164
5165         temp = I915_READ(SOUTH_CHICKEN1);
5166         if (temp & FDI_BC_BIFURCATION_SELECT)
5167                 return;
5168
5169         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5170         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5171
5172         temp |= FDI_BC_BIFURCATION_SELECT;
5173         DRM_DEBUG_KMS("enabling fdi C rx\n");
5174         I915_WRITE(SOUTH_CHICKEN1, temp);
5175         POSTING_READ(SOUTH_CHICKEN1);
5176 }
5177
5178 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5179 {
5180         struct drm_device *dev = intel_crtc->base.dev;
5181         struct drm_i915_private *dev_priv = dev->dev_private;
5182         struct intel_crtc *pipe_B_crtc =
5183                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5184
5185         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5186                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5187         if (intel_crtc->fdi_lanes > 4) {
5188                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5189                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5190                 /* Clamp lanes to avoid programming the hw with bogus values. */
5191                 intel_crtc->fdi_lanes = 4;
5192
5193                 return false;
5194         }
5195
5196         if (dev_priv->num_pipe == 2)
5197                 return true;
5198
5199         switch (intel_crtc->pipe) {
5200         case PIPE_A:
5201                 return true;
5202         case PIPE_B:
5203                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5204                     intel_crtc->fdi_lanes > 2) {
5205                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5206                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5207                         /* Clamp lanes to avoid programming the hw with bogus values. */
5208                         intel_crtc->fdi_lanes = 2;
5209
5210                         return false;
5211                 }
5212
5213                 if (intel_crtc->fdi_lanes > 2)
5214                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5215                 else
5216                         cpt_enable_fdi_bc_bifurcation(dev);
5217
5218                 return true;
5219         case PIPE_C:
5220                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5221                         if (intel_crtc->fdi_lanes > 2) {
5222                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5223                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5224                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5225                                 intel_crtc->fdi_lanes = 2;
5226
5227                                 return false;
5228                         }
5229                 } else {
5230                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5231                         return false;
5232                 }
5233
5234                 cpt_enable_fdi_bc_bifurcation(dev);
5235
5236                 return true;
5237         default:
5238                 BUG();
5239         }
5240 }
5241
5242 static void ironlake_set_m_n(struct drm_crtc *crtc,
5243                              struct drm_display_mode *mode,
5244                              struct drm_display_mode *adjusted_mode)
5245 {
5246         struct drm_device *dev = crtc->dev;
5247         struct drm_i915_private *dev_priv = dev->dev_private;
5248         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5249         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5250         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5251         struct fdi_m_n m_n = {0};
5252         int target_clock, pixel_multiplier, lane, link_bw;
5253         bool is_dp = false, is_cpu_edp = false;
5254
5255         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5256                 switch (intel_encoder->type) {
5257                 case INTEL_OUTPUT_DISPLAYPORT:
5258                         is_dp = true;
5259                         break;
5260                 case INTEL_OUTPUT_EDP:
5261                         is_dp = true;
5262                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5263                                 is_cpu_edp = true;
5264                         edp_encoder = intel_encoder;
5265                         break;
5266                 }
5267         }
5268
5269         /* FDI link */
5270         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5271         lane = 0;
5272         /* CPU eDP doesn't require FDI link, so just set DP M/N
5273            according to current link config */
5274         if (is_cpu_edp) {
5275                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5276         } else {
5277                 /* FDI is a binary signal running at ~2.7GHz, encoding
5278                  * each output octet as 10 bits. The actual frequency
5279                  * is stored as a divider into a 100MHz clock, and the
5280                  * mode pixel clock is stored in units of 1KHz.
5281                  * Hence the bw of each lane in terms of the mode signal
5282                  * is:
5283                  */
5284                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5285         }
5286
5287         /* [e]DP over FDI requires target mode clock instead of link clock. */
5288         if (edp_encoder)
5289                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5290         else if (is_dp)
5291                 target_clock = mode->clock;
5292         else
5293                 target_clock = adjusted_mode->clock;
5294
5295         if (!lane) {
5296                 /*
5297                  * Account for spread spectrum to avoid
5298                  * oversubscribing the link. Max center spread
5299                  * is 2.5%; use 5% for safety's sake.
5300                  */
5301                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5302                 lane = bps / (link_bw * 8) + 1;
5303         }
5304
5305         intel_crtc->fdi_lanes = lane;
5306
5307         if (pixel_multiplier > 1)
5308                 link_bw *= pixel_multiplier;
5309         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5310                              &m_n);
5311
5312         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5313         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5314         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5315         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5316 }
5317
5318 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5319                                       struct drm_display_mode *adjusted_mode,
5320                                       intel_clock_t *clock, u32 fp)
5321 {
5322         struct drm_crtc *crtc = &intel_crtc->base;
5323         struct drm_device *dev = crtc->dev;
5324         struct drm_i915_private *dev_priv = dev->dev_private;
5325         struct intel_encoder *intel_encoder;
5326         uint32_t dpll;
5327         int factor, pixel_multiplier, num_connectors = 0;
5328         bool is_lvds = false, is_sdvo = false, is_tv = false;
5329         bool is_dp = false, is_cpu_edp = false;
5330
5331         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5332                 switch (intel_encoder->type) {
5333                 case INTEL_OUTPUT_LVDS:
5334                         is_lvds = true;
5335                         break;
5336                 case INTEL_OUTPUT_SDVO:
5337                 case INTEL_OUTPUT_HDMI:
5338                         is_sdvo = true;
5339                         if (intel_encoder->needs_tv_clock)
5340                                 is_tv = true;
5341                         break;
5342                 case INTEL_OUTPUT_TVOUT:
5343                         is_tv = true;
5344                         break;
5345                 case INTEL_OUTPUT_DISPLAYPORT:
5346                         is_dp = true;
5347                         break;
5348                 case INTEL_OUTPUT_EDP:
5349                         is_dp = true;
5350                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5351                                 is_cpu_edp = true;
5352                         break;
5353                 }
5354
5355                 num_connectors++;
5356         }
5357
5358         /* Enable autotuning of the PLL clock (if permissible) */
5359         factor = 21;
5360         if (is_lvds) {
5361                 if ((intel_panel_use_ssc(dev_priv) &&
5362                      dev_priv->lvds_ssc_freq == 100) ||
5363                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5364                         factor = 25;
5365         } else if (is_sdvo && is_tv)
5366                 factor = 20;
5367
5368         if (clock->m < factor * clock->n)
5369                 fp |= FP_CB_TUNE;
5370
5371         dpll = 0;
5372
5373         if (is_lvds)
5374                 dpll |= DPLLB_MODE_LVDS;
5375         else
5376                 dpll |= DPLLB_MODE_DAC_SERIAL;
5377         if (is_sdvo) {
5378                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5379                 if (pixel_multiplier > 1) {
5380                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5381                 }
5382                 dpll |= DPLL_DVO_HIGH_SPEED;
5383         }
5384         if (is_dp && !is_cpu_edp)
5385                 dpll |= DPLL_DVO_HIGH_SPEED;
5386
5387         /* compute bitmask from p1 value */
5388         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5389         /* also FPA1 */
5390         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5391
5392         switch (clock->p2) {
5393         case 5:
5394                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5395                 break;
5396         case 7:
5397                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5398                 break;
5399         case 10:
5400                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5401                 break;
5402         case 14:
5403                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5404                 break;
5405         }
5406
5407         if (is_sdvo && is_tv)
5408                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5409         else if (is_tv)
5410                 /* XXX: just matching BIOS for now */
5411                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5412                 dpll |= 3;
5413         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5414                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5415         else
5416                 dpll |= PLL_REF_INPUT_DREFCLK;
5417
5418         return dpll;
5419 }
5420
5421 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5422                                   struct drm_display_mode *mode,
5423                                   struct drm_display_mode *adjusted_mode,
5424                                   int x, int y,
5425                                   struct drm_framebuffer *fb)
5426 {
5427         struct drm_device *dev = crtc->dev;
5428         struct drm_i915_private *dev_priv = dev->dev_private;
5429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5430         int pipe = intel_crtc->pipe;
5431         int plane = intel_crtc->plane;
5432         int num_connectors = 0;
5433         intel_clock_t clock, reduced_clock;
5434         u32 dpll, fp = 0, fp2 = 0;
5435         bool ok, has_reduced_clock = false;
5436         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5437         struct intel_encoder *encoder;
5438         u32 temp;
5439         int ret;
5440         bool dither, fdi_config_ok;
5441
5442         for_each_encoder_on_crtc(dev, crtc, encoder) {
5443                 switch (encoder->type) {
5444                 case INTEL_OUTPUT_LVDS:
5445                         is_lvds = true;
5446                         break;
5447                 case INTEL_OUTPUT_DISPLAYPORT:
5448                         is_dp = true;
5449                         break;
5450                 case INTEL_OUTPUT_EDP:
5451                         is_dp = true;
5452                         if (!intel_encoder_is_pch_edp(&encoder->base))
5453                                 is_cpu_edp = true;
5454                         break;
5455                 }
5456
5457                 num_connectors++;
5458         }
5459
5460         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5461              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5462
5463         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5464                                      &has_reduced_clock, &reduced_clock);
5465         if (!ok) {
5466                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5467                 return -EINVAL;
5468         }
5469
5470         /* Ensure that the cursor is valid for the new mode before changing... */
5471         intel_crtc_update_cursor(crtc, true);
5472
5473         /* determine panel color depth */
5474         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5475                                               adjusted_mode);
5476         if (is_lvds && dev_priv->lvds_dither)
5477                 dither = true;
5478
5479         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5480         if (has_reduced_clock)
5481                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5482                         reduced_clock.m2;
5483
5484         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5485
5486         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5487         drm_mode_debug_printmodeline(mode);
5488
5489         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5490         if (!is_cpu_edp) {
5491                 struct intel_pch_pll *pll;
5492
5493                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5494                 if (pll == NULL) {
5495                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5496                                          pipe);
5497                         return -EINVAL;
5498                 }
5499         } else
5500                 intel_put_pch_pll(intel_crtc);
5501
5502         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5503          * This is an exception to the general rule that mode_set doesn't turn
5504          * things on.
5505          */
5506         if (is_lvds) {
5507                 temp = I915_READ(PCH_LVDS);
5508                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5509                 if (HAS_PCH_CPT(dev)) {
5510                         temp &= ~PORT_TRANS_SEL_MASK;
5511                         temp |= PORT_TRANS_SEL_CPT(pipe);
5512                 } else {
5513                         if (pipe == 1)
5514                                 temp |= LVDS_PIPEB_SELECT;
5515                         else
5516                                 temp &= ~LVDS_PIPEB_SELECT;
5517                 }
5518
5519                 /* set the corresponsding LVDS_BORDER bit */
5520                 temp |= dev_priv->lvds_border_bits;
5521                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5522                  * set the DPLLs for dual-channel mode or not.
5523                  */
5524                 if (clock.p2 == 7)
5525                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5526                 else
5527                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5528
5529                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5530                  * appropriately here, but we need to look more thoroughly into how
5531                  * panels behave in the two modes.
5532                  */
5533                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5534                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5535                         temp |= LVDS_HSYNC_POLARITY;
5536                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5537                         temp |= LVDS_VSYNC_POLARITY;
5538                 I915_WRITE(PCH_LVDS, temp);
5539         }
5540
5541         if (is_dp && !is_cpu_edp) {
5542                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5543         } else {
5544                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5545                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5546                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5547                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5548                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5549         }
5550
5551         if (intel_crtc->pch_pll) {
5552                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5553
5554                 /* Wait for the clocks to stabilize. */
5555                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5556                 udelay(150);
5557
5558                 /* The pixel multiplier can only be updated once the
5559                  * DPLL is enabled and the clocks are stable.
5560                  *
5561                  * So write it again.
5562                  */
5563                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5564         }
5565
5566         intel_crtc->lowfreq_avail = false;
5567         if (intel_crtc->pch_pll) {
5568                 if (is_lvds && has_reduced_clock && i915_powersave) {
5569                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5570                         intel_crtc->lowfreq_avail = true;
5571                 } else {
5572                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5573                 }
5574         }
5575
5576         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5577
5578         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5579          * ironlake_check_fdi_lanes. */
5580         ironlake_set_m_n(crtc, mode, adjusted_mode);
5581
5582         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5583
5584         if (is_cpu_edp)
5585                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5586
5587         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5588
5589         intel_wait_for_vblank(dev, pipe);
5590
5591         /* Set up the display plane register */
5592         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5593         POSTING_READ(DSPCNTR(plane));
5594
5595         ret = intel_pipe_set_base(crtc, x, y, fb);
5596
5597         intel_update_watermarks(dev);
5598
5599         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5600
5601         return fdi_config_ok ? ret : -EINVAL;
5602 }
5603
5604 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5605                                  struct drm_display_mode *mode,
5606                                  struct drm_display_mode *adjusted_mode,
5607                                  int x, int y,
5608                                  struct drm_framebuffer *fb)
5609 {
5610         struct drm_device *dev = crtc->dev;
5611         struct drm_i915_private *dev_priv = dev->dev_private;
5612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5613         int pipe = intel_crtc->pipe;
5614         int plane = intel_crtc->plane;
5615         int num_connectors = 0;
5616         intel_clock_t clock, reduced_clock;
5617         u32 dpll = 0, fp = 0, fp2 = 0;
5618         bool ok, has_reduced_clock = false;
5619         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5620         struct intel_encoder *encoder;
5621         u32 temp;
5622         int ret;
5623         bool dither;
5624
5625         for_each_encoder_on_crtc(dev, crtc, encoder) {
5626                 switch (encoder->type) {
5627                 case INTEL_OUTPUT_LVDS:
5628                         is_lvds = true;
5629                         break;
5630                 case INTEL_OUTPUT_DISPLAYPORT:
5631                         is_dp = true;
5632                         break;
5633                 case INTEL_OUTPUT_EDP:
5634                         is_dp = true;
5635                         if (!intel_encoder_is_pch_edp(&encoder->base))
5636                                 is_cpu_edp = true;
5637                         break;
5638                 }
5639
5640                 num_connectors++;
5641         }
5642
5643         if (is_cpu_edp)
5644                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5645         else
5646                 intel_crtc->cpu_transcoder = pipe;
5647
5648         /* We are not sure yet this won't happen. */
5649         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5650              INTEL_PCH_TYPE(dev));
5651
5652         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5653              num_connectors, pipe_name(pipe));
5654
5655         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5656                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5657
5658         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5659
5660         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5661                 return -EINVAL;
5662
5663         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5664                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5665                                              &has_reduced_clock,
5666                                              &reduced_clock);
5667                 if (!ok) {
5668                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5669                         return -EINVAL;
5670                 }
5671         }
5672
5673         /* Ensure that the cursor is valid for the new mode before changing... */
5674         intel_crtc_update_cursor(crtc, true);
5675
5676         /* determine panel color depth */
5677         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5678                                               adjusted_mode);
5679         if (is_lvds && dev_priv->lvds_dither)
5680                 dither = true;
5681
5682         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5683         drm_mode_debug_printmodeline(mode);
5684
5685         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5686                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5687                 if (has_reduced_clock)
5688                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5689                               reduced_clock.m2;
5690
5691                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5692                                              fp);
5693
5694                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5695                  * own on pre-Haswell/LPT generation */
5696                 if (!is_cpu_edp) {
5697                         struct intel_pch_pll *pll;
5698
5699                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5700                         if (pll == NULL) {
5701                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5702                                                  pipe);
5703                                 return -EINVAL;
5704                         }
5705                 } else
5706                         intel_put_pch_pll(intel_crtc);
5707
5708                 /* The LVDS pin pair needs to be on before the DPLLs are
5709                  * enabled.  This is an exception to the general rule that
5710                  * mode_set doesn't turn things on.
5711                  */
5712                 if (is_lvds) {
5713                         temp = I915_READ(PCH_LVDS);
5714                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5715                         if (HAS_PCH_CPT(dev)) {
5716                                 temp &= ~PORT_TRANS_SEL_MASK;
5717                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5718                         } else {
5719                                 if (pipe == 1)
5720                                         temp |= LVDS_PIPEB_SELECT;
5721                                 else
5722                                         temp &= ~LVDS_PIPEB_SELECT;
5723                         }
5724
5725                         /* set the corresponsding LVDS_BORDER bit */
5726                         temp |= dev_priv->lvds_border_bits;
5727                         /* Set the B0-B3 data pairs corresponding to whether
5728                          * we're going to set the DPLLs for dual-channel mode or
5729                          * not.
5730                          */
5731                         if (clock.p2 == 7)
5732                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5733                         else
5734                                 temp &= ~(LVDS_B0B3_POWER_UP |
5735                                           LVDS_CLKB_POWER_UP);
5736
5737                         /* It would be nice to set 24 vs 18-bit mode
5738                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5739                          * look more thoroughly into how panels behave in the
5740                          * two modes.
5741                          */
5742                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5743                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5744                                 temp |= LVDS_HSYNC_POLARITY;
5745                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5746                                 temp |= LVDS_VSYNC_POLARITY;
5747                         I915_WRITE(PCH_LVDS, temp);
5748                 }
5749         }
5750
5751         if (is_dp && !is_cpu_edp) {
5752                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5753         } else {
5754                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5755                         /* For non-DP output, clear any trans DP clock recovery
5756                          * setting.*/
5757                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5758                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5759                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5760                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5761                 }
5762         }
5763
5764         intel_crtc->lowfreq_avail = false;
5765         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5766                 if (intel_crtc->pch_pll) {
5767                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5768
5769                         /* Wait for the clocks to stabilize. */
5770                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5771                         udelay(150);
5772
5773                         /* The pixel multiplier can only be updated once the
5774                          * DPLL is enabled and the clocks are stable.
5775                          *
5776                          * So write it again.
5777                          */
5778                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5779                 }
5780
5781                 if (intel_crtc->pch_pll) {
5782                         if (is_lvds && has_reduced_clock && i915_powersave) {
5783                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5784                                 intel_crtc->lowfreq_avail = true;
5785                         } else {
5786                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5787                         }
5788                 }
5789         }
5790
5791         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5792
5793         if (!is_dp || is_cpu_edp)
5794                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5795
5796         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5797                 if (is_cpu_edp)
5798                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5799
5800         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5801
5802         /* Set up the display plane register */
5803         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5804         POSTING_READ(DSPCNTR(plane));
5805
5806         ret = intel_pipe_set_base(crtc, x, y, fb);
5807
5808         intel_update_watermarks(dev);
5809
5810         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5811
5812         return ret;
5813 }
5814
5815 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5816                                struct drm_display_mode *mode,
5817                                struct drm_display_mode *adjusted_mode,
5818                                int x, int y,
5819                                struct drm_framebuffer *fb)
5820 {
5821         struct drm_device *dev = crtc->dev;
5822         struct drm_i915_private *dev_priv = dev->dev_private;
5823         struct drm_encoder_helper_funcs *encoder_funcs;
5824         struct intel_encoder *encoder;
5825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5826         int pipe = intel_crtc->pipe;
5827         int ret;
5828
5829         drm_vblank_pre_modeset(dev, pipe);
5830
5831         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5832                                               x, y, fb);
5833         drm_vblank_post_modeset(dev, pipe);
5834
5835         if (ret != 0)
5836                 return ret;
5837
5838         for_each_encoder_on_crtc(dev, crtc, encoder) {
5839                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5840                         encoder->base.base.id,
5841                         drm_get_encoder_name(&encoder->base),
5842                         mode->base.id, mode->name);
5843                 encoder_funcs = encoder->base.helper_private;
5844                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5845         }
5846
5847         return 0;
5848 }
5849
5850 static bool intel_eld_uptodate(struct drm_connector *connector,
5851                                int reg_eldv, uint32_t bits_eldv,
5852                                int reg_elda, uint32_t bits_elda,
5853                                int reg_edid)
5854 {
5855         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5856         uint8_t *eld = connector->eld;
5857         uint32_t i;
5858
5859         i = I915_READ(reg_eldv);
5860         i &= bits_eldv;
5861
5862         if (!eld[0])
5863                 return !i;
5864
5865         if (!i)
5866                 return false;
5867
5868         i = I915_READ(reg_elda);
5869         i &= ~bits_elda;
5870         I915_WRITE(reg_elda, i);
5871
5872         for (i = 0; i < eld[2]; i++)
5873                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5874                         return false;
5875
5876         return true;
5877 }
5878
5879 static void g4x_write_eld(struct drm_connector *connector,
5880                           struct drm_crtc *crtc)
5881 {
5882         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5883         uint8_t *eld = connector->eld;
5884         uint32_t eldv;
5885         uint32_t len;
5886         uint32_t i;
5887
5888         i = I915_READ(G4X_AUD_VID_DID);
5889
5890         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5891                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5892         else
5893                 eldv = G4X_ELDV_DEVCTG;
5894
5895         if (intel_eld_uptodate(connector,
5896                                G4X_AUD_CNTL_ST, eldv,
5897                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5898                                G4X_HDMIW_HDMIEDID))
5899                 return;
5900
5901         i = I915_READ(G4X_AUD_CNTL_ST);
5902         i &= ~(eldv | G4X_ELD_ADDR);
5903         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5904         I915_WRITE(G4X_AUD_CNTL_ST, i);
5905
5906         if (!eld[0])
5907                 return;
5908
5909         len = min_t(uint8_t, eld[2], len);
5910         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5911         for (i = 0; i < len; i++)
5912                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5913
5914         i = I915_READ(G4X_AUD_CNTL_ST);
5915         i |= eldv;
5916         I915_WRITE(G4X_AUD_CNTL_ST, i);
5917 }
5918
5919 static void haswell_write_eld(struct drm_connector *connector,
5920                                      struct drm_crtc *crtc)
5921 {
5922         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5923         uint8_t *eld = connector->eld;
5924         struct drm_device *dev = crtc->dev;
5925         uint32_t eldv;
5926         uint32_t i;
5927         int len;
5928         int pipe = to_intel_crtc(crtc)->pipe;
5929         int tmp;
5930
5931         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5932         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5933         int aud_config = HSW_AUD_CFG(pipe);
5934         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5935
5936
5937         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5938
5939         /* Audio output enable */
5940         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5941         tmp = I915_READ(aud_cntrl_st2);
5942         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5943         I915_WRITE(aud_cntrl_st2, tmp);
5944
5945         /* Wait for 1 vertical blank */
5946         intel_wait_for_vblank(dev, pipe);
5947
5948         /* Set ELD valid state */
5949         tmp = I915_READ(aud_cntrl_st2);
5950         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5951         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5952         I915_WRITE(aud_cntrl_st2, tmp);
5953         tmp = I915_READ(aud_cntrl_st2);
5954         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5955
5956         /* Enable HDMI mode */
5957         tmp = I915_READ(aud_config);
5958         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5959         /* clear N_programing_enable and N_value_index */
5960         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5961         I915_WRITE(aud_config, tmp);
5962
5963         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5964
5965         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5966
5967         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5968                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5969                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5970                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5971         } else
5972                 I915_WRITE(aud_config, 0);
5973
5974         if (intel_eld_uptodate(connector,
5975                                aud_cntrl_st2, eldv,
5976                                aud_cntl_st, IBX_ELD_ADDRESS,
5977                                hdmiw_hdmiedid))
5978                 return;
5979
5980         i = I915_READ(aud_cntrl_st2);
5981         i &= ~eldv;
5982         I915_WRITE(aud_cntrl_st2, i);
5983
5984         if (!eld[0])
5985                 return;
5986
5987         i = I915_READ(aud_cntl_st);
5988         i &= ~IBX_ELD_ADDRESS;
5989         I915_WRITE(aud_cntl_st, i);
5990         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5991         DRM_DEBUG_DRIVER("port num:%d\n", i);
5992
5993         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5994         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5995         for (i = 0; i < len; i++)
5996                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5997
5998         i = I915_READ(aud_cntrl_st2);
5999         i |= eldv;
6000         I915_WRITE(aud_cntrl_st2, i);
6001
6002 }
6003
6004 static void ironlake_write_eld(struct drm_connector *connector,
6005                                      struct drm_crtc *crtc)
6006 {
6007         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6008         uint8_t *eld = connector->eld;
6009         uint32_t eldv;
6010         uint32_t i;
6011         int len;
6012         int hdmiw_hdmiedid;
6013         int aud_config;
6014         int aud_cntl_st;
6015         int aud_cntrl_st2;
6016         int pipe = to_intel_crtc(crtc)->pipe;
6017
6018         if (HAS_PCH_IBX(connector->dev)) {
6019                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6020                 aud_config = IBX_AUD_CFG(pipe);
6021                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6022                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6023         } else {
6024                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6025                 aud_config = CPT_AUD_CFG(pipe);
6026                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6027                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6028         }
6029
6030         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6031
6032         i = I915_READ(aud_cntl_st);
6033         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6034         if (!i) {
6035                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6036                 /* operate blindly on all ports */
6037                 eldv = IBX_ELD_VALIDB;
6038                 eldv |= IBX_ELD_VALIDB << 4;
6039                 eldv |= IBX_ELD_VALIDB << 8;
6040         } else {
6041                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6042                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6043         }
6044
6045         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6046                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6047                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6048                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6049         } else
6050                 I915_WRITE(aud_config, 0);
6051
6052         if (intel_eld_uptodate(connector,
6053                                aud_cntrl_st2, eldv,
6054                                aud_cntl_st, IBX_ELD_ADDRESS,
6055                                hdmiw_hdmiedid))
6056                 return;
6057
6058         i = I915_READ(aud_cntrl_st2);
6059         i &= ~eldv;
6060         I915_WRITE(aud_cntrl_st2, i);
6061
6062         if (!eld[0])
6063                 return;
6064
6065         i = I915_READ(aud_cntl_st);
6066         i &= ~IBX_ELD_ADDRESS;
6067         I915_WRITE(aud_cntl_st, i);
6068
6069         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6070         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6071         for (i = 0; i < len; i++)
6072                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6073
6074         i = I915_READ(aud_cntrl_st2);
6075         i |= eldv;
6076         I915_WRITE(aud_cntrl_st2, i);
6077 }
6078
6079 void intel_write_eld(struct drm_encoder *encoder,
6080                      struct drm_display_mode *mode)
6081 {
6082         struct drm_crtc *crtc = encoder->crtc;
6083         struct drm_connector *connector;
6084         struct drm_device *dev = encoder->dev;
6085         struct drm_i915_private *dev_priv = dev->dev_private;
6086
6087         connector = drm_select_eld(encoder, mode);
6088         if (!connector)
6089                 return;
6090
6091         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6092                          connector->base.id,
6093                          drm_get_connector_name(connector),
6094                          connector->encoder->base.id,
6095                          drm_get_encoder_name(connector->encoder));
6096
6097         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6098
6099         if (dev_priv->display.write_eld)
6100                 dev_priv->display.write_eld(connector, crtc);
6101 }
6102
6103 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6104 void intel_crtc_load_lut(struct drm_crtc *crtc)
6105 {
6106         struct drm_device *dev = crtc->dev;
6107         struct drm_i915_private *dev_priv = dev->dev_private;
6108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6109         int palreg = PALETTE(intel_crtc->pipe);
6110         int i;
6111
6112         /* The clocks have to be on to load the palette. */
6113         if (!crtc->enabled || !intel_crtc->active)
6114                 return;
6115
6116         /* use legacy palette for Ironlake */
6117         if (HAS_PCH_SPLIT(dev))
6118                 palreg = LGC_PALETTE(intel_crtc->pipe);
6119
6120         for (i = 0; i < 256; i++) {
6121                 I915_WRITE(palreg + 4 * i,
6122                            (intel_crtc->lut_r[i] << 16) |
6123                            (intel_crtc->lut_g[i] << 8) |
6124                            intel_crtc->lut_b[i]);
6125         }
6126 }
6127
6128 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6129 {
6130         struct drm_device *dev = crtc->dev;
6131         struct drm_i915_private *dev_priv = dev->dev_private;
6132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6133         bool visible = base != 0;
6134         u32 cntl;
6135
6136         if (intel_crtc->cursor_visible == visible)
6137                 return;
6138
6139         cntl = I915_READ(_CURACNTR);
6140         if (visible) {
6141                 /* On these chipsets we can only modify the base whilst
6142                  * the cursor is disabled.
6143                  */
6144                 I915_WRITE(_CURABASE, base);
6145
6146                 cntl &= ~(CURSOR_FORMAT_MASK);
6147                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6148                 cntl |= CURSOR_ENABLE |
6149                         CURSOR_GAMMA_ENABLE |
6150                         CURSOR_FORMAT_ARGB;
6151         } else
6152                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6153         I915_WRITE(_CURACNTR, cntl);
6154
6155         intel_crtc->cursor_visible = visible;
6156 }
6157
6158 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6159 {
6160         struct drm_device *dev = crtc->dev;
6161         struct drm_i915_private *dev_priv = dev->dev_private;
6162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6163         int pipe = intel_crtc->pipe;
6164         bool visible = base != 0;
6165
6166         if (intel_crtc->cursor_visible != visible) {
6167                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6168                 if (base) {
6169                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6170                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6171                         cntl |= pipe << 28; /* Connect to correct pipe */
6172                 } else {
6173                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6174                         cntl |= CURSOR_MODE_DISABLE;
6175                 }
6176                 I915_WRITE(CURCNTR(pipe), cntl);
6177
6178                 intel_crtc->cursor_visible = visible;
6179         }
6180         /* and commit changes on next vblank */
6181         I915_WRITE(CURBASE(pipe), base);
6182 }
6183
6184 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6185 {
6186         struct drm_device *dev = crtc->dev;
6187         struct drm_i915_private *dev_priv = dev->dev_private;
6188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6189         int pipe = intel_crtc->pipe;
6190         bool visible = base != 0;
6191
6192         if (intel_crtc->cursor_visible != visible) {
6193                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6194                 if (base) {
6195                         cntl &= ~CURSOR_MODE;
6196                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6197                 } else {
6198                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6199                         cntl |= CURSOR_MODE_DISABLE;
6200                 }
6201                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6202
6203                 intel_crtc->cursor_visible = visible;
6204         }
6205         /* and commit changes on next vblank */
6206         I915_WRITE(CURBASE_IVB(pipe), base);
6207 }
6208
6209 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6210 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6211                                      bool on)
6212 {
6213         struct drm_device *dev = crtc->dev;
6214         struct drm_i915_private *dev_priv = dev->dev_private;
6215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6216         int pipe = intel_crtc->pipe;
6217         int x = intel_crtc->cursor_x;
6218         int y = intel_crtc->cursor_y;
6219         u32 base, pos;
6220         bool visible;
6221
6222         pos = 0;
6223
6224         if (on && crtc->enabled && crtc->fb) {
6225                 base = intel_crtc->cursor_addr;
6226                 if (x > (int) crtc->fb->width)
6227                         base = 0;
6228
6229                 if (y > (int) crtc->fb->height)
6230                         base = 0;
6231         } else
6232                 base = 0;
6233
6234         if (x < 0) {
6235                 if (x + intel_crtc->cursor_width < 0)
6236                         base = 0;
6237
6238                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6239                 x = -x;
6240         }
6241         pos |= x << CURSOR_X_SHIFT;
6242
6243         if (y < 0) {
6244                 if (y + intel_crtc->cursor_height < 0)
6245                         base = 0;
6246
6247                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6248                 y = -y;
6249         }
6250         pos |= y << CURSOR_Y_SHIFT;
6251
6252         visible = base != 0;
6253         if (!visible && !intel_crtc->cursor_visible)
6254                 return;
6255
6256         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6257                 I915_WRITE(CURPOS_IVB(pipe), pos);
6258                 ivb_update_cursor(crtc, base);
6259         } else {
6260                 I915_WRITE(CURPOS(pipe), pos);
6261                 if (IS_845G(dev) || IS_I865G(dev))
6262                         i845_update_cursor(crtc, base);
6263                 else
6264                         i9xx_update_cursor(crtc, base);
6265         }
6266 }
6267
6268 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6269                                  struct drm_file *file,
6270                                  uint32_t handle,
6271                                  uint32_t width, uint32_t height)
6272 {
6273         struct drm_device *dev = crtc->dev;
6274         struct drm_i915_private *dev_priv = dev->dev_private;
6275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6276         struct drm_i915_gem_object *obj;
6277         uint32_t addr;
6278         int ret;
6279
6280         /* if we want to turn off the cursor ignore width and height */
6281         if (!handle) {
6282                 DRM_DEBUG_KMS("cursor off\n");
6283                 addr = 0;
6284                 obj = NULL;
6285                 mutex_lock(&dev->struct_mutex);
6286                 goto finish;
6287         }
6288
6289         /* Currently we only support 64x64 cursors */
6290         if (width != 64 || height != 64) {
6291                 DRM_ERROR("we currently only support 64x64 cursors\n");
6292                 return -EINVAL;
6293         }
6294
6295         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6296         if (&obj->base == NULL)
6297                 return -ENOENT;
6298
6299         if (obj->base.size < width * height * 4) {
6300                 DRM_ERROR("buffer is to small\n");
6301                 ret = -ENOMEM;
6302                 goto fail;
6303         }
6304
6305         /* we only need to pin inside GTT if cursor is non-phy */
6306         mutex_lock(&dev->struct_mutex);
6307         if (!dev_priv->info->cursor_needs_physical) {
6308                 if (obj->tiling_mode) {
6309                         DRM_ERROR("cursor cannot be tiled\n");
6310                         ret = -EINVAL;
6311                         goto fail_locked;
6312                 }
6313
6314                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6315                 if (ret) {
6316                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6317                         goto fail_locked;
6318                 }
6319
6320                 ret = i915_gem_object_put_fence(obj);
6321                 if (ret) {
6322                         DRM_ERROR("failed to release fence for cursor");
6323                         goto fail_unpin;
6324                 }
6325
6326                 addr = obj->gtt_offset;
6327         } else {
6328                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6329                 ret = i915_gem_attach_phys_object(dev, obj,
6330                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6331                                                   align);
6332                 if (ret) {
6333                         DRM_ERROR("failed to attach phys object\n");
6334                         goto fail_locked;
6335                 }
6336                 addr = obj->phys_obj->handle->busaddr;
6337         }
6338
6339         if (IS_GEN2(dev))
6340                 I915_WRITE(CURSIZE, (height << 12) | width);
6341
6342  finish:
6343         if (intel_crtc->cursor_bo) {
6344                 if (dev_priv->info->cursor_needs_physical) {
6345                         if (intel_crtc->cursor_bo != obj)
6346                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6347                 } else
6348                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6349                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6350         }
6351
6352         mutex_unlock(&dev->struct_mutex);
6353
6354         intel_crtc->cursor_addr = addr;
6355         intel_crtc->cursor_bo = obj;
6356         intel_crtc->cursor_width = width;
6357         intel_crtc->cursor_height = height;
6358
6359         intel_crtc_update_cursor(crtc, true);
6360
6361         return 0;
6362 fail_unpin:
6363         i915_gem_object_unpin(obj);
6364 fail_locked:
6365         mutex_unlock(&dev->struct_mutex);
6366 fail:
6367         drm_gem_object_unreference_unlocked(&obj->base);
6368         return ret;
6369 }
6370
6371 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6372 {
6373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6374
6375         intel_crtc->cursor_x = x;
6376         intel_crtc->cursor_y = y;
6377
6378         intel_crtc_update_cursor(crtc, true);
6379
6380         return 0;
6381 }
6382
6383 /** Sets the color ramps on behalf of RandR */
6384 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6385                                  u16 blue, int regno)
6386 {
6387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6388
6389         intel_crtc->lut_r[regno] = red >> 8;
6390         intel_crtc->lut_g[regno] = green >> 8;
6391         intel_crtc->lut_b[regno] = blue >> 8;
6392 }
6393
6394 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6395                              u16 *blue, int regno)
6396 {
6397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6398
6399         *red = intel_crtc->lut_r[regno] << 8;
6400         *green = intel_crtc->lut_g[regno] << 8;
6401         *blue = intel_crtc->lut_b[regno] << 8;
6402 }
6403
6404 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6405                                  u16 *blue, uint32_t start, uint32_t size)
6406 {
6407         int end = (start + size > 256) ? 256 : start + size, i;
6408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409
6410         for (i = start; i < end; i++) {
6411                 intel_crtc->lut_r[i] = red[i] >> 8;
6412                 intel_crtc->lut_g[i] = green[i] >> 8;
6413                 intel_crtc->lut_b[i] = blue[i] >> 8;
6414         }
6415
6416         intel_crtc_load_lut(crtc);
6417 }
6418
6419 /**
6420  * Get a pipe with a simple mode set on it for doing load-based monitor
6421  * detection.
6422  *
6423  * It will be up to the load-detect code to adjust the pipe as appropriate for
6424  * its requirements.  The pipe will be connected to no other encoders.
6425  *
6426  * Currently this code will only succeed if there is a pipe with no encoders
6427  * configured for it.  In the future, it could choose to temporarily disable
6428  * some outputs to free up a pipe for its use.
6429  *
6430  * \return crtc, or NULL if no pipes are available.
6431  */
6432
6433 /* VESA 640x480x72Hz mode to set on the pipe */
6434 static struct drm_display_mode load_detect_mode = {
6435         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6436                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6437 };
6438
6439 static struct drm_framebuffer *
6440 intel_framebuffer_create(struct drm_device *dev,
6441                          struct drm_mode_fb_cmd2 *mode_cmd,
6442                          struct drm_i915_gem_object *obj)
6443 {
6444         struct intel_framebuffer *intel_fb;
6445         int ret;
6446
6447         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6448         if (!intel_fb) {
6449                 drm_gem_object_unreference_unlocked(&obj->base);
6450                 return ERR_PTR(-ENOMEM);
6451         }
6452
6453         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6454         if (ret) {
6455                 drm_gem_object_unreference_unlocked(&obj->base);
6456                 kfree(intel_fb);
6457                 return ERR_PTR(ret);
6458         }
6459
6460         return &intel_fb->base;
6461 }
6462
6463 static u32
6464 intel_framebuffer_pitch_for_width(int width, int bpp)
6465 {
6466         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6467         return ALIGN(pitch, 64);
6468 }
6469
6470 static u32
6471 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6472 {
6473         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6474         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6475 }
6476
6477 static struct drm_framebuffer *
6478 intel_framebuffer_create_for_mode(struct drm_device *dev,
6479                                   struct drm_display_mode *mode,
6480                                   int depth, int bpp)
6481 {
6482         struct drm_i915_gem_object *obj;
6483         struct drm_mode_fb_cmd2 mode_cmd;
6484
6485         obj = i915_gem_alloc_object(dev,
6486                                     intel_framebuffer_size_for_mode(mode, bpp));
6487         if (obj == NULL)
6488                 return ERR_PTR(-ENOMEM);
6489
6490         mode_cmd.width = mode->hdisplay;
6491         mode_cmd.height = mode->vdisplay;
6492         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6493                                                                 bpp);
6494         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6495
6496         return intel_framebuffer_create(dev, &mode_cmd, obj);
6497 }
6498
6499 static struct drm_framebuffer *
6500 mode_fits_in_fbdev(struct drm_device *dev,
6501                    struct drm_display_mode *mode)
6502 {
6503         struct drm_i915_private *dev_priv = dev->dev_private;
6504         struct drm_i915_gem_object *obj;
6505         struct drm_framebuffer *fb;
6506
6507         if (dev_priv->fbdev == NULL)
6508                 return NULL;
6509
6510         obj = dev_priv->fbdev->ifb.obj;
6511         if (obj == NULL)
6512                 return NULL;
6513
6514         fb = &dev_priv->fbdev->ifb.base;
6515         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6516                                                                fb->bits_per_pixel))
6517                 return NULL;
6518
6519         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6520                 return NULL;
6521
6522         return fb;
6523 }
6524
6525 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6526                                 struct drm_display_mode *mode,
6527                                 struct intel_load_detect_pipe *old)
6528 {
6529         struct intel_crtc *intel_crtc;
6530         struct intel_encoder *intel_encoder =
6531                 intel_attached_encoder(connector);
6532         struct drm_crtc *possible_crtc;
6533         struct drm_encoder *encoder = &intel_encoder->base;
6534         struct drm_crtc *crtc = NULL;
6535         struct drm_device *dev = encoder->dev;
6536         struct drm_framebuffer *fb;
6537         int i = -1;
6538
6539         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6540                       connector->base.id, drm_get_connector_name(connector),
6541                       encoder->base.id, drm_get_encoder_name(encoder));
6542
6543         /*
6544          * Algorithm gets a little messy:
6545          *
6546          *   - if the connector already has an assigned crtc, use it (but make
6547          *     sure it's on first)
6548          *
6549          *   - try to find the first unused crtc that can drive this connector,
6550          *     and use that if we find one
6551          */
6552
6553         /* See if we already have a CRTC for this connector */
6554         if (encoder->crtc) {
6555                 crtc = encoder->crtc;
6556
6557                 old->dpms_mode = connector->dpms;
6558                 old->load_detect_temp = false;
6559
6560                 /* Make sure the crtc and connector are running */
6561                 if (connector->dpms != DRM_MODE_DPMS_ON)
6562                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6563
6564                 return true;
6565         }
6566
6567         /* Find an unused one (if possible) */
6568         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6569                 i++;
6570                 if (!(encoder->possible_crtcs & (1 << i)))
6571                         continue;
6572                 if (!possible_crtc->enabled) {
6573                         crtc = possible_crtc;
6574                         break;
6575                 }
6576         }
6577
6578         /*
6579          * If we didn't find an unused CRTC, don't use any.
6580          */
6581         if (!crtc) {
6582                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6583                 return false;
6584         }
6585
6586         intel_encoder->new_crtc = to_intel_crtc(crtc);
6587         to_intel_connector(connector)->new_encoder = intel_encoder;
6588
6589         intel_crtc = to_intel_crtc(crtc);
6590         old->dpms_mode = connector->dpms;
6591         old->load_detect_temp = true;
6592         old->release_fb = NULL;
6593
6594         if (!mode)
6595                 mode = &load_detect_mode;
6596
6597         /* We need a framebuffer large enough to accommodate all accesses
6598          * that the plane may generate whilst we perform load detection.
6599          * We can not rely on the fbcon either being present (we get called
6600          * during its initialisation to detect all boot displays, or it may
6601          * not even exist) or that it is large enough to satisfy the
6602          * requested mode.
6603          */
6604         fb = mode_fits_in_fbdev(dev, mode);
6605         if (fb == NULL) {
6606                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6607                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6608                 old->release_fb = fb;
6609         } else
6610                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6611         if (IS_ERR(fb)) {
6612                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6613                 goto fail;
6614         }
6615
6616         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6617                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6618                 if (old->release_fb)
6619                         old->release_fb->funcs->destroy(old->release_fb);
6620                 goto fail;
6621         }
6622
6623         /* let the connector get through one full cycle before testing */
6624         intel_wait_for_vblank(dev, intel_crtc->pipe);
6625
6626         return true;
6627 fail:
6628         connector->encoder = NULL;
6629         encoder->crtc = NULL;
6630         return false;
6631 }
6632
6633 void intel_release_load_detect_pipe(struct drm_connector *connector,
6634                                     struct intel_load_detect_pipe *old)
6635 {
6636         struct intel_encoder *intel_encoder =
6637                 intel_attached_encoder(connector);
6638         struct drm_encoder *encoder = &intel_encoder->base;
6639
6640         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6641                       connector->base.id, drm_get_connector_name(connector),
6642                       encoder->base.id, drm_get_encoder_name(encoder));
6643
6644         if (old->load_detect_temp) {
6645                 struct drm_crtc *crtc = encoder->crtc;
6646
6647                 to_intel_connector(connector)->new_encoder = NULL;
6648                 intel_encoder->new_crtc = NULL;
6649                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6650
6651                 if (old->release_fb)
6652                         old->release_fb->funcs->destroy(old->release_fb);
6653
6654                 return;
6655         }
6656
6657         /* Switch crtc and encoder back off if necessary */
6658         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6659                 connector->funcs->dpms(connector, old->dpms_mode);
6660 }
6661
6662 /* Returns the clock of the currently programmed mode of the given pipe. */
6663 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6664 {
6665         struct drm_i915_private *dev_priv = dev->dev_private;
6666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6667         int pipe = intel_crtc->pipe;
6668         u32 dpll = I915_READ(DPLL(pipe));
6669         u32 fp;
6670         intel_clock_t clock;
6671
6672         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6673                 fp = I915_READ(FP0(pipe));
6674         else
6675                 fp = I915_READ(FP1(pipe));
6676
6677         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6678         if (IS_PINEVIEW(dev)) {
6679                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6680                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6681         } else {
6682                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6683                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6684         }
6685
6686         if (!IS_GEN2(dev)) {
6687                 if (IS_PINEVIEW(dev))
6688                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6689                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6690                 else
6691                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6692                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6693
6694                 switch (dpll & DPLL_MODE_MASK) {
6695                 case DPLLB_MODE_DAC_SERIAL:
6696                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6697                                 5 : 10;
6698                         break;
6699                 case DPLLB_MODE_LVDS:
6700                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6701                                 7 : 14;
6702                         break;
6703                 default:
6704                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6705                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6706                         return 0;
6707                 }
6708
6709                 /* XXX: Handle the 100Mhz refclk */
6710                 intel_clock(dev, 96000, &clock);
6711         } else {
6712                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6713
6714                 if (is_lvds) {
6715                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6716                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6717                         clock.p2 = 14;
6718
6719                         if ((dpll & PLL_REF_INPUT_MASK) ==
6720                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6721                                 /* XXX: might not be 66MHz */
6722                                 intel_clock(dev, 66000, &clock);
6723                         } else
6724                                 intel_clock(dev, 48000, &clock);
6725                 } else {
6726                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6727                                 clock.p1 = 2;
6728                         else {
6729                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6730                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6731                         }
6732                         if (dpll & PLL_P2_DIVIDE_BY_4)
6733                                 clock.p2 = 4;
6734                         else
6735                                 clock.p2 = 2;
6736
6737                         intel_clock(dev, 48000, &clock);
6738                 }
6739         }
6740
6741         /* XXX: It would be nice to validate the clocks, but we can't reuse
6742          * i830PllIsValid() because it relies on the xf86_config connector
6743          * configuration being accurate, which it isn't necessarily.
6744          */
6745
6746         return clock.dot;
6747 }
6748
6749 /** Returns the currently programmed mode of the given pipe. */
6750 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6751                                              struct drm_crtc *crtc)
6752 {
6753         struct drm_i915_private *dev_priv = dev->dev_private;
6754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6755         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6756         struct drm_display_mode *mode;
6757         int htot = I915_READ(HTOTAL(cpu_transcoder));
6758         int hsync = I915_READ(HSYNC(cpu_transcoder));
6759         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6760         int vsync = I915_READ(VSYNC(cpu_transcoder));
6761
6762         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6763         if (!mode)
6764                 return NULL;
6765
6766         mode->clock = intel_crtc_clock_get(dev, crtc);
6767         mode->hdisplay = (htot & 0xffff) + 1;
6768         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6769         mode->hsync_start = (hsync & 0xffff) + 1;
6770         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6771         mode->vdisplay = (vtot & 0xffff) + 1;
6772         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6773         mode->vsync_start = (vsync & 0xffff) + 1;
6774         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6775
6776         drm_mode_set_name(mode);
6777
6778         return mode;
6779 }
6780
6781 static void intel_increase_pllclock(struct drm_crtc *crtc)
6782 {
6783         struct drm_device *dev = crtc->dev;
6784         drm_i915_private_t *dev_priv = dev->dev_private;
6785         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6786         int pipe = intel_crtc->pipe;
6787         int dpll_reg = DPLL(pipe);
6788         int dpll;
6789
6790         if (HAS_PCH_SPLIT(dev))
6791                 return;
6792
6793         if (!dev_priv->lvds_downclock_avail)
6794                 return;
6795
6796         dpll = I915_READ(dpll_reg);
6797         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6798                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6799
6800                 assert_panel_unlocked(dev_priv, pipe);
6801
6802                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6803                 I915_WRITE(dpll_reg, dpll);
6804                 intel_wait_for_vblank(dev, pipe);
6805
6806                 dpll = I915_READ(dpll_reg);
6807                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6808                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6809         }
6810 }
6811
6812 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6813 {
6814         struct drm_device *dev = crtc->dev;
6815         drm_i915_private_t *dev_priv = dev->dev_private;
6816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6817
6818         if (HAS_PCH_SPLIT(dev))
6819                 return;
6820
6821         if (!dev_priv->lvds_downclock_avail)
6822                 return;
6823
6824         /*
6825          * Since this is called by a timer, we should never get here in
6826          * the manual case.
6827          */
6828         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6829                 int pipe = intel_crtc->pipe;
6830                 int dpll_reg = DPLL(pipe);
6831                 int dpll;
6832
6833                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6834
6835                 assert_panel_unlocked(dev_priv, pipe);
6836
6837                 dpll = I915_READ(dpll_reg);
6838                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6839                 I915_WRITE(dpll_reg, dpll);
6840                 intel_wait_for_vblank(dev, pipe);
6841                 dpll = I915_READ(dpll_reg);
6842                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6843                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6844         }
6845
6846 }
6847
6848 void intel_mark_busy(struct drm_device *dev)
6849 {
6850         i915_update_gfx_val(dev->dev_private);
6851 }
6852
6853 void intel_mark_idle(struct drm_device *dev)
6854 {
6855 }
6856
6857 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6858 {
6859         struct drm_device *dev = obj->base.dev;
6860         struct drm_crtc *crtc;
6861
6862         if (!i915_powersave)
6863                 return;
6864
6865         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6866                 if (!crtc->fb)
6867                         continue;
6868
6869                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6870                         intel_increase_pllclock(crtc);
6871         }
6872 }
6873
6874 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6875 {
6876         struct drm_device *dev = obj->base.dev;
6877         struct drm_crtc *crtc;
6878
6879         if (!i915_powersave)
6880                 return;
6881
6882         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6883                 if (!crtc->fb)
6884                         continue;
6885
6886                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6887                         intel_decrease_pllclock(crtc);
6888         }
6889 }
6890
6891 static void intel_crtc_destroy(struct drm_crtc *crtc)
6892 {
6893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6894         struct drm_device *dev = crtc->dev;
6895         struct intel_unpin_work *work;
6896         unsigned long flags;
6897
6898         spin_lock_irqsave(&dev->event_lock, flags);
6899         work = intel_crtc->unpin_work;
6900         intel_crtc->unpin_work = NULL;
6901         spin_unlock_irqrestore(&dev->event_lock, flags);
6902
6903         if (work) {
6904                 cancel_work_sync(&work->work);
6905                 kfree(work);
6906         }
6907
6908         drm_crtc_cleanup(crtc);
6909
6910         kfree(intel_crtc);
6911 }
6912
6913 static void intel_unpin_work_fn(struct work_struct *__work)
6914 {
6915         struct intel_unpin_work *work =
6916                 container_of(__work, struct intel_unpin_work, work);
6917
6918         mutex_lock(&work->dev->struct_mutex);
6919         intel_unpin_fb_obj(work->old_fb_obj);
6920         drm_gem_object_unreference(&work->pending_flip_obj->base);
6921         drm_gem_object_unreference(&work->old_fb_obj->base);
6922
6923         intel_update_fbc(work->dev);
6924         mutex_unlock(&work->dev->struct_mutex);
6925         kfree(work);
6926 }
6927
6928 static void do_intel_finish_page_flip(struct drm_device *dev,
6929                                       struct drm_crtc *crtc)
6930 {
6931         drm_i915_private_t *dev_priv = dev->dev_private;
6932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6933         struct intel_unpin_work *work;
6934         struct drm_i915_gem_object *obj;
6935         struct drm_pending_vblank_event *e;
6936         struct timeval tvbl;
6937         unsigned long flags;
6938
6939         /* Ignore early vblank irqs */
6940         if (intel_crtc == NULL)
6941                 return;
6942
6943         spin_lock_irqsave(&dev->event_lock, flags);
6944         work = intel_crtc->unpin_work;
6945         if (work == NULL || !work->pending) {
6946                 spin_unlock_irqrestore(&dev->event_lock, flags);
6947                 return;
6948         }
6949
6950         intel_crtc->unpin_work = NULL;
6951
6952         if (work->event) {
6953                 e = work->event;
6954                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6955
6956                 e->event.tv_sec = tvbl.tv_sec;
6957                 e->event.tv_usec = tvbl.tv_usec;
6958
6959                 list_add_tail(&e->base.link,
6960                               &e->base.file_priv->event_list);
6961                 wake_up_interruptible(&e->base.file_priv->event_wait);
6962         }
6963
6964         drm_vblank_put(dev, intel_crtc->pipe);
6965
6966         spin_unlock_irqrestore(&dev->event_lock, flags);
6967
6968         obj = work->old_fb_obj;
6969
6970         atomic_clear_mask(1 << intel_crtc->plane,
6971                           &obj->pending_flip.counter);
6972
6973         wake_up(&dev_priv->pending_flip_queue);
6974         schedule_work(&work->work);
6975
6976         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6977 }
6978
6979 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6980 {
6981         drm_i915_private_t *dev_priv = dev->dev_private;
6982         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6983
6984         do_intel_finish_page_flip(dev, crtc);
6985 }
6986
6987 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6988 {
6989         drm_i915_private_t *dev_priv = dev->dev_private;
6990         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6991
6992         do_intel_finish_page_flip(dev, crtc);
6993 }
6994
6995 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6996 {
6997         drm_i915_private_t *dev_priv = dev->dev_private;
6998         struct intel_crtc *intel_crtc =
6999                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7000         unsigned long flags;
7001
7002         spin_lock_irqsave(&dev->event_lock, flags);
7003         if (intel_crtc->unpin_work) {
7004                 if ((++intel_crtc->unpin_work->pending) > 1)
7005                         DRM_ERROR("Prepared flip multiple times\n");
7006         } else {
7007                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7008         }
7009         spin_unlock_irqrestore(&dev->event_lock, flags);
7010 }
7011
7012 static int intel_gen2_queue_flip(struct drm_device *dev,
7013                                  struct drm_crtc *crtc,
7014                                  struct drm_framebuffer *fb,
7015                                  struct drm_i915_gem_object *obj)
7016 {
7017         struct drm_i915_private *dev_priv = dev->dev_private;
7018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7019         u32 flip_mask;
7020         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7021         int ret;
7022
7023         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7024         if (ret)
7025                 goto err;
7026
7027         ret = intel_ring_begin(ring, 6);
7028         if (ret)
7029                 goto err_unpin;
7030
7031         /* Can't queue multiple flips, so wait for the previous
7032          * one to finish before executing the next.
7033          */
7034         if (intel_crtc->plane)
7035                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7036         else
7037                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7038         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7039         intel_ring_emit(ring, MI_NOOP);
7040         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7041                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7042         intel_ring_emit(ring, fb->pitches[0]);
7043         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7044         intel_ring_emit(ring, 0); /* aux display base address, unused */
7045         intel_ring_advance(ring);
7046         return 0;
7047
7048 err_unpin:
7049         intel_unpin_fb_obj(obj);
7050 err:
7051         return ret;
7052 }
7053
7054 static int intel_gen3_queue_flip(struct drm_device *dev,
7055                                  struct drm_crtc *crtc,
7056                                  struct drm_framebuffer *fb,
7057                                  struct drm_i915_gem_object *obj)
7058 {
7059         struct drm_i915_private *dev_priv = dev->dev_private;
7060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7061         u32 flip_mask;
7062         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7063         int ret;
7064
7065         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7066         if (ret)
7067                 goto err;
7068
7069         ret = intel_ring_begin(ring, 6);
7070         if (ret)
7071                 goto err_unpin;
7072
7073         if (intel_crtc->plane)
7074                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7075         else
7076                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7077         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7078         intel_ring_emit(ring, MI_NOOP);
7079         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7080                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7081         intel_ring_emit(ring, fb->pitches[0]);
7082         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7083         intel_ring_emit(ring, MI_NOOP);
7084
7085         intel_ring_advance(ring);
7086         return 0;
7087
7088 err_unpin:
7089         intel_unpin_fb_obj(obj);
7090 err:
7091         return ret;
7092 }
7093
7094 static int intel_gen4_queue_flip(struct drm_device *dev,
7095                                  struct drm_crtc *crtc,
7096                                  struct drm_framebuffer *fb,
7097                                  struct drm_i915_gem_object *obj)
7098 {
7099         struct drm_i915_private *dev_priv = dev->dev_private;
7100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7101         uint32_t pf, pipesrc;
7102         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7103         int ret;
7104
7105         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7106         if (ret)
7107                 goto err;
7108
7109         ret = intel_ring_begin(ring, 4);
7110         if (ret)
7111                 goto err_unpin;
7112
7113         /* i965+ uses the linear or tiled offsets from the
7114          * Display Registers (which do not change across a page-flip)
7115          * so we need only reprogram the base address.
7116          */
7117         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7118                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7119         intel_ring_emit(ring, fb->pitches[0]);
7120         intel_ring_emit(ring,
7121                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7122                         obj->tiling_mode);
7123
7124         /* XXX Enabling the panel-fitter across page-flip is so far
7125          * untested on non-native modes, so ignore it for now.
7126          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7127          */
7128         pf = 0;
7129         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7130         intel_ring_emit(ring, pf | pipesrc);
7131         intel_ring_advance(ring);
7132         return 0;
7133
7134 err_unpin:
7135         intel_unpin_fb_obj(obj);
7136 err:
7137         return ret;
7138 }
7139
7140 static int intel_gen6_queue_flip(struct drm_device *dev,
7141                                  struct drm_crtc *crtc,
7142                                  struct drm_framebuffer *fb,
7143                                  struct drm_i915_gem_object *obj)
7144 {
7145         struct drm_i915_private *dev_priv = dev->dev_private;
7146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7147         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7148         uint32_t pf, pipesrc;
7149         int ret;
7150
7151         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7152         if (ret)
7153                 goto err;
7154
7155         ret = intel_ring_begin(ring, 4);
7156         if (ret)
7157                 goto err_unpin;
7158
7159         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7160                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7161         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7162         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7163
7164         /* Contrary to the suggestions in the documentation,
7165          * "Enable Panel Fitter" does not seem to be required when page
7166          * flipping with a non-native mode, and worse causes a normal
7167          * modeset to fail.
7168          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7169          */
7170         pf = 0;
7171         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7172         intel_ring_emit(ring, pf | pipesrc);
7173         intel_ring_advance(ring);
7174         return 0;
7175
7176 err_unpin:
7177         intel_unpin_fb_obj(obj);
7178 err:
7179         return ret;
7180 }
7181
7182 /*
7183  * On gen7 we currently use the blit ring because (in early silicon at least)
7184  * the render ring doesn't give us interrpts for page flip completion, which
7185  * means clients will hang after the first flip is queued.  Fortunately the
7186  * blit ring generates interrupts properly, so use it instead.
7187  */
7188 static int intel_gen7_queue_flip(struct drm_device *dev,
7189                                  struct drm_crtc *crtc,
7190                                  struct drm_framebuffer *fb,
7191                                  struct drm_i915_gem_object *obj)
7192 {
7193         struct drm_i915_private *dev_priv = dev->dev_private;
7194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7195         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7196         uint32_t plane_bit = 0;
7197         int ret;
7198
7199         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7200         if (ret)
7201                 goto err;
7202
7203         switch(intel_crtc->plane) {
7204         case PLANE_A:
7205                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7206                 break;
7207         case PLANE_B:
7208                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7209                 break;
7210         case PLANE_C:
7211                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7212                 break;
7213         default:
7214                 WARN_ONCE(1, "unknown plane in flip command\n");
7215                 ret = -ENODEV;
7216                 goto err_unpin;
7217         }
7218
7219         ret = intel_ring_begin(ring, 4);
7220         if (ret)
7221                 goto err_unpin;
7222
7223         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7224         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7225         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7226         intel_ring_emit(ring, (MI_NOOP));
7227         intel_ring_advance(ring);
7228         return 0;
7229
7230 err_unpin:
7231         intel_unpin_fb_obj(obj);
7232 err:
7233         return ret;
7234 }
7235
7236 static int intel_default_queue_flip(struct drm_device *dev,
7237                                     struct drm_crtc *crtc,
7238                                     struct drm_framebuffer *fb,
7239                                     struct drm_i915_gem_object *obj)
7240 {
7241         return -ENODEV;
7242 }
7243
7244 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7245                                 struct drm_framebuffer *fb,
7246                                 struct drm_pending_vblank_event *event)
7247 {
7248         struct drm_device *dev = crtc->dev;
7249         struct drm_i915_private *dev_priv = dev->dev_private;
7250         struct intel_framebuffer *intel_fb;
7251         struct drm_i915_gem_object *obj;
7252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7253         struct intel_unpin_work *work;
7254         unsigned long flags;
7255         int ret;
7256
7257         /* Can't change pixel format via MI display flips. */
7258         if (fb->pixel_format != crtc->fb->pixel_format)
7259                 return -EINVAL;
7260
7261         /*
7262          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7263          * Note that pitch changes could also affect these register.
7264          */
7265         if (INTEL_INFO(dev)->gen > 3 &&
7266             (fb->offsets[0] != crtc->fb->offsets[0] ||
7267              fb->pitches[0] != crtc->fb->pitches[0]))
7268                 return -EINVAL;
7269
7270         work = kzalloc(sizeof *work, GFP_KERNEL);
7271         if (work == NULL)
7272                 return -ENOMEM;
7273
7274         work->event = event;
7275         work->dev = crtc->dev;
7276         intel_fb = to_intel_framebuffer(crtc->fb);
7277         work->old_fb_obj = intel_fb->obj;
7278         INIT_WORK(&work->work, intel_unpin_work_fn);
7279
7280         ret = drm_vblank_get(dev, intel_crtc->pipe);
7281         if (ret)
7282                 goto free_work;
7283
7284         /* We borrow the event spin lock for protecting unpin_work */
7285         spin_lock_irqsave(&dev->event_lock, flags);
7286         if (intel_crtc->unpin_work) {
7287                 spin_unlock_irqrestore(&dev->event_lock, flags);
7288                 kfree(work);
7289                 drm_vblank_put(dev, intel_crtc->pipe);
7290
7291                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7292                 return -EBUSY;
7293         }
7294         intel_crtc->unpin_work = work;
7295         spin_unlock_irqrestore(&dev->event_lock, flags);
7296
7297         intel_fb = to_intel_framebuffer(fb);
7298         obj = intel_fb->obj;
7299
7300         ret = i915_mutex_lock_interruptible(dev);
7301         if (ret)
7302                 goto cleanup;
7303
7304         /* Reference the objects for the scheduled work. */
7305         drm_gem_object_reference(&work->old_fb_obj->base);
7306         drm_gem_object_reference(&obj->base);
7307
7308         crtc->fb = fb;
7309
7310         work->pending_flip_obj = obj;
7311
7312         work->enable_stall_check = true;
7313
7314         /* Block clients from rendering to the new back buffer until
7315          * the flip occurs and the object is no longer visible.
7316          */
7317         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7318
7319         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7320         if (ret)
7321                 goto cleanup_pending;
7322
7323         intel_disable_fbc(dev);
7324         intel_mark_fb_busy(obj);
7325         mutex_unlock(&dev->struct_mutex);
7326
7327         trace_i915_flip_request(intel_crtc->plane, obj);
7328
7329         return 0;
7330
7331 cleanup_pending:
7332         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7333         drm_gem_object_unreference(&work->old_fb_obj->base);
7334         drm_gem_object_unreference(&obj->base);
7335         mutex_unlock(&dev->struct_mutex);
7336
7337 cleanup:
7338         spin_lock_irqsave(&dev->event_lock, flags);
7339         intel_crtc->unpin_work = NULL;
7340         spin_unlock_irqrestore(&dev->event_lock, flags);
7341
7342         drm_vblank_put(dev, intel_crtc->pipe);
7343 free_work:
7344         kfree(work);
7345
7346         return ret;
7347 }
7348
7349 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7350         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7351         .load_lut = intel_crtc_load_lut,
7352         .disable = intel_crtc_noop,
7353 };
7354
7355 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7356 {
7357         struct intel_encoder *other_encoder;
7358         struct drm_crtc *crtc = &encoder->new_crtc->base;
7359
7360         if (WARN_ON(!crtc))
7361                 return false;
7362
7363         list_for_each_entry(other_encoder,
7364                             &crtc->dev->mode_config.encoder_list,
7365                             base.head) {
7366
7367                 if (&other_encoder->new_crtc->base != crtc ||
7368                     encoder == other_encoder)
7369                         continue;
7370                 else
7371                         return true;
7372         }
7373
7374         return false;
7375 }
7376
7377 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7378                                   struct drm_crtc *crtc)
7379 {
7380         struct drm_device *dev;
7381         struct drm_crtc *tmp;
7382         int crtc_mask = 1;
7383
7384         WARN(!crtc, "checking null crtc?\n");
7385
7386         dev = crtc->dev;
7387
7388         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7389                 if (tmp == crtc)
7390                         break;
7391                 crtc_mask <<= 1;
7392         }
7393
7394         if (encoder->possible_crtcs & crtc_mask)
7395                 return true;
7396         return false;
7397 }
7398
7399 /**
7400  * intel_modeset_update_staged_output_state
7401  *
7402  * Updates the staged output configuration state, e.g. after we've read out the
7403  * current hw state.
7404  */
7405 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7406 {
7407         struct intel_encoder *encoder;
7408         struct intel_connector *connector;
7409
7410         list_for_each_entry(connector, &dev->mode_config.connector_list,
7411                             base.head) {
7412                 connector->new_encoder =
7413                         to_intel_encoder(connector->base.encoder);
7414         }
7415
7416         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7417                             base.head) {
7418                 encoder->new_crtc =
7419                         to_intel_crtc(encoder->base.crtc);
7420         }
7421 }
7422
7423 /**
7424  * intel_modeset_commit_output_state
7425  *
7426  * This function copies the stage display pipe configuration to the real one.
7427  */
7428 static void intel_modeset_commit_output_state(struct drm_device *dev)
7429 {
7430         struct intel_encoder *encoder;
7431         struct intel_connector *connector;
7432
7433         list_for_each_entry(connector, &dev->mode_config.connector_list,
7434                             base.head) {
7435                 connector->base.encoder = &connector->new_encoder->base;
7436         }
7437
7438         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7439                             base.head) {
7440                 encoder->base.crtc = &encoder->new_crtc->base;
7441         }
7442 }
7443
7444 static struct drm_display_mode *
7445 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7446                             struct drm_display_mode *mode)
7447 {
7448         struct drm_device *dev = crtc->dev;
7449         struct drm_display_mode *adjusted_mode;
7450         struct drm_encoder_helper_funcs *encoder_funcs;
7451         struct intel_encoder *encoder;
7452
7453         adjusted_mode = drm_mode_duplicate(dev, mode);
7454         if (!adjusted_mode)
7455                 return ERR_PTR(-ENOMEM);
7456
7457         /* Pass our mode to the connectors and the CRTC to give them a chance to
7458          * adjust it according to limitations or connector properties, and also
7459          * a chance to reject the mode entirely.
7460          */
7461         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7462                             base.head) {
7463
7464                 if (&encoder->new_crtc->base != crtc)
7465                         continue;
7466                 encoder_funcs = encoder->base.helper_private;
7467                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7468                                                 adjusted_mode))) {
7469                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7470                         goto fail;
7471                 }
7472         }
7473
7474         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7475                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7476                 goto fail;
7477         }
7478         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7479
7480         return adjusted_mode;
7481 fail:
7482         drm_mode_destroy(dev, adjusted_mode);
7483         return ERR_PTR(-EINVAL);
7484 }
7485
7486 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7487  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7488 static void
7489 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7490                              unsigned *prepare_pipes, unsigned *disable_pipes)
7491 {
7492         struct intel_crtc *intel_crtc;
7493         struct drm_device *dev = crtc->dev;
7494         struct intel_encoder *encoder;
7495         struct intel_connector *connector;
7496         struct drm_crtc *tmp_crtc;
7497
7498         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7499
7500         /* Check which crtcs have changed outputs connected to them, these need
7501          * to be part of the prepare_pipes mask. We don't (yet) support global
7502          * modeset across multiple crtcs, so modeset_pipes will only have one
7503          * bit set at most. */
7504         list_for_each_entry(connector, &dev->mode_config.connector_list,
7505                             base.head) {
7506                 if (connector->base.encoder == &connector->new_encoder->base)
7507                         continue;
7508
7509                 if (connector->base.encoder) {
7510                         tmp_crtc = connector->base.encoder->crtc;
7511
7512                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7513                 }
7514
7515                 if (connector->new_encoder)
7516                         *prepare_pipes |=
7517                                 1 << connector->new_encoder->new_crtc->pipe;
7518         }
7519
7520         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7521                             base.head) {
7522                 if (encoder->base.crtc == &encoder->new_crtc->base)
7523                         continue;
7524
7525                 if (encoder->base.crtc) {
7526                         tmp_crtc = encoder->base.crtc;
7527
7528                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7529                 }
7530
7531                 if (encoder->new_crtc)
7532                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7533         }
7534
7535         /* Check for any pipes that will be fully disabled ... */
7536         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7537                             base.head) {
7538                 bool used = false;
7539
7540                 /* Don't try to disable disabled crtcs. */
7541                 if (!intel_crtc->base.enabled)
7542                         continue;
7543
7544                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7545                                     base.head) {
7546                         if (encoder->new_crtc == intel_crtc)
7547                                 used = true;
7548                 }
7549
7550                 if (!used)
7551                         *disable_pipes |= 1 << intel_crtc->pipe;
7552         }
7553
7554
7555         /* set_mode is also used to update properties on life display pipes. */
7556         intel_crtc = to_intel_crtc(crtc);
7557         if (crtc->enabled)
7558                 *prepare_pipes |= 1 << intel_crtc->pipe;
7559
7560         /* We only support modeset on one single crtc, hence we need to do that
7561          * only for the passed in crtc iff we change anything else than just
7562          * disable crtcs.
7563          *
7564          * This is actually not true, to be fully compatible with the old crtc
7565          * helper we automatically disable _any_ output (i.e. doesn't need to be
7566          * connected to the crtc we're modesetting on) if it's disconnected.
7567          * Which is a rather nutty api (since changed the output configuration
7568          * without userspace's explicit request can lead to confusion), but
7569          * alas. Hence we currently need to modeset on all pipes we prepare. */
7570         if (*prepare_pipes)
7571                 *modeset_pipes = *prepare_pipes;
7572
7573         /* ... and mask these out. */
7574         *modeset_pipes &= ~(*disable_pipes);
7575         *prepare_pipes &= ~(*disable_pipes);
7576 }
7577
7578 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7579 {
7580         struct drm_encoder *encoder;
7581         struct drm_device *dev = crtc->dev;
7582
7583         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7584                 if (encoder->crtc == crtc)
7585                         return true;
7586
7587         return false;
7588 }
7589
7590 static void
7591 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7592 {
7593         struct intel_encoder *intel_encoder;
7594         struct intel_crtc *intel_crtc;
7595         struct drm_connector *connector;
7596
7597         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7598                             base.head) {
7599                 if (!intel_encoder->base.crtc)
7600                         continue;
7601
7602                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7603
7604                 if (prepare_pipes & (1 << intel_crtc->pipe))
7605                         intel_encoder->connectors_active = false;
7606         }
7607
7608         intel_modeset_commit_output_state(dev);
7609
7610         /* Update computed state. */
7611         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7612                             base.head) {
7613                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7614         }
7615
7616         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7617                 if (!connector->encoder || !connector->encoder->crtc)
7618                         continue;
7619
7620                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7621
7622                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7623                         struct drm_property *dpms_property =
7624                                 dev->mode_config.dpms_property;
7625
7626                         connector->dpms = DRM_MODE_DPMS_ON;
7627                         drm_connector_property_set_value(connector,
7628                                                          dpms_property,
7629                                                          DRM_MODE_DPMS_ON);
7630
7631                         intel_encoder = to_intel_encoder(connector->encoder);
7632                         intel_encoder->connectors_active = true;
7633                 }
7634         }
7635
7636 }
7637
7638 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7639         list_for_each_entry((intel_crtc), \
7640                             &(dev)->mode_config.crtc_list, \
7641                             base.head) \
7642                 if (mask & (1 <<(intel_crtc)->pipe)) \
7643
7644 void
7645 intel_modeset_check_state(struct drm_device *dev)
7646 {
7647         struct intel_crtc *crtc;
7648         struct intel_encoder *encoder;
7649         struct intel_connector *connector;
7650
7651         list_for_each_entry(connector, &dev->mode_config.connector_list,
7652                             base.head) {
7653                 /* This also checks the encoder/connector hw state with the
7654                  * ->get_hw_state callbacks. */
7655                 intel_connector_check_state(connector);
7656
7657                 WARN(&connector->new_encoder->base != connector->base.encoder,
7658                      "connector's staged encoder doesn't match current encoder\n");
7659         }
7660
7661         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7662                             base.head) {
7663                 bool enabled = false;
7664                 bool active = false;
7665                 enum pipe pipe, tracked_pipe;
7666
7667                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7668                               encoder->base.base.id,
7669                               drm_get_encoder_name(&encoder->base));
7670
7671                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7672                      "encoder's stage crtc doesn't match current crtc\n");
7673                 WARN(encoder->connectors_active && !encoder->base.crtc,
7674                      "encoder's active_connectors set, but no crtc\n");
7675
7676                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7677                                     base.head) {
7678                         if (connector->base.encoder != &encoder->base)
7679                                 continue;
7680                         enabled = true;
7681                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7682                                 active = true;
7683                 }
7684                 WARN(!!encoder->base.crtc != enabled,
7685                      "encoder's enabled state mismatch "
7686                      "(expected %i, found %i)\n",
7687                      !!encoder->base.crtc, enabled);
7688                 WARN(active && !encoder->base.crtc,
7689                      "active encoder with no crtc\n");
7690
7691                 WARN(encoder->connectors_active != active,
7692                      "encoder's computed active state doesn't match tracked active state "
7693                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7694
7695                 active = encoder->get_hw_state(encoder, &pipe);
7696                 WARN(active != encoder->connectors_active,
7697                      "encoder's hw state doesn't match sw tracking "
7698                      "(expected %i, found %i)\n",
7699                      encoder->connectors_active, active);
7700
7701                 if (!encoder->base.crtc)
7702                         continue;
7703
7704                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7705                 WARN(active && pipe != tracked_pipe,
7706                      "active encoder's pipe doesn't match"
7707                      "(expected %i, found %i)\n",
7708                      tracked_pipe, pipe);
7709
7710         }
7711
7712         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7713                             base.head) {
7714                 bool enabled = false;
7715                 bool active = false;
7716
7717                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7718                               crtc->base.base.id);
7719
7720                 WARN(crtc->active && !crtc->base.enabled,
7721                      "active crtc, but not enabled in sw tracking\n");
7722
7723                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7724                                     base.head) {
7725                         if (encoder->base.crtc != &crtc->base)
7726                                 continue;
7727                         enabled = true;
7728                         if (encoder->connectors_active)
7729                                 active = true;
7730                 }
7731                 WARN(active != crtc->active,
7732                      "crtc's computed active state doesn't match tracked active state "
7733                      "(expected %i, found %i)\n", active, crtc->active);
7734                 WARN(enabled != crtc->base.enabled,
7735                      "crtc's computed enabled state doesn't match tracked enabled state "
7736                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7737
7738                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7739         }
7740 }
7741
7742 bool intel_set_mode(struct drm_crtc *crtc,
7743                     struct drm_display_mode *mode,
7744                     int x, int y, struct drm_framebuffer *fb)
7745 {
7746         struct drm_device *dev = crtc->dev;
7747         drm_i915_private_t *dev_priv = dev->dev_private;
7748         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7749         struct intel_crtc *intel_crtc;
7750         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7751         bool ret = true;
7752
7753         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7754                                      &prepare_pipes, &disable_pipes);
7755
7756         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7757                       modeset_pipes, prepare_pipes, disable_pipes);
7758
7759         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7760                 intel_crtc_disable(&intel_crtc->base);
7761
7762         saved_hwmode = crtc->hwmode;
7763         saved_mode = crtc->mode;
7764
7765         /* Hack: Because we don't (yet) support global modeset on multiple
7766          * crtcs, we don't keep track of the new mode for more than one crtc.
7767          * Hence simply check whether any bit is set in modeset_pipes in all the
7768          * pieces of code that are not yet converted to deal with mutliple crtcs
7769          * changing their mode at the same time. */
7770         adjusted_mode = NULL;
7771         if (modeset_pipes) {
7772                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7773                 if (IS_ERR(adjusted_mode)) {
7774                         return false;
7775                 }
7776         }
7777
7778         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7779                 if (intel_crtc->base.enabled)
7780                         dev_priv->display.crtc_disable(&intel_crtc->base);
7781         }
7782
7783         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7784          * to set it here already despite that we pass it down the callchain.
7785          */
7786         if (modeset_pipes)
7787                 crtc->mode = *mode;
7788
7789         /* Only after disabling all output pipelines that will be changed can we
7790          * update the the output configuration. */
7791         intel_modeset_update_state(dev, prepare_pipes);
7792
7793         if (dev_priv->display.modeset_global_resources)
7794                 dev_priv->display.modeset_global_resources(dev);
7795
7796         /* Set up the DPLL and any encoders state that needs to adjust or depend
7797          * on the DPLL.
7798          */
7799         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7800                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7801                                            mode, adjusted_mode,
7802                                            x, y, fb);
7803                 if (!ret)
7804                     goto done;
7805         }
7806
7807         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7808         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7809                 dev_priv->display.crtc_enable(&intel_crtc->base);
7810
7811         if (modeset_pipes) {
7812                 /* Store real post-adjustment hardware mode. */
7813                 crtc->hwmode = *adjusted_mode;
7814
7815                 /* Calculate and store various constants which
7816                  * are later needed by vblank and swap-completion
7817                  * timestamping. They are derived from true hwmode.
7818                  */
7819                 drm_calc_timestamping_constants(crtc);
7820         }
7821
7822         /* FIXME: add subpixel order */
7823 done:
7824         drm_mode_destroy(dev, adjusted_mode);
7825         if (!ret && crtc->enabled) {
7826                 crtc->hwmode = saved_hwmode;
7827                 crtc->mode = saved_mode;
7828         } else {
7829                 intel_modeset_check_state(dev);
7830         }
7831
7832         return ret;
7833 }
7834
7835 #undef for_each_intel_crtc_masked
7836
7837 static void intel_set_config_free(struct intel_set_config *config)
7838 {
7839         if (!config)
7840                 return;
7841
7842         kfree(config->save_connector_encoders);
7843         kfree(config->save_encoder_crtcs);
7844         kfree(config);
7845 }
7846
7847 static int intel_set_config_save_state(struct drm_device *dev,
7848                                        struct intel_set_config *config)
7849 {
7850         struct drm_encoder *encoder;
7851         struct drm_connector *connector;
7852         int count;
7853
7854         config->save_encoder_crtcs =
7855                 kcalloc(dev->mode_config.num_encoder,
7856                         sizeof(struct drm_crtc *), GFP_KERNEL);
7857         if (!config->save_encoder_crtcs)
7858                 return -ENOMEM;
7859
7860         config->save_connector_encoders =
7861                 kcalloc(dev->mode_config.num_connector,
7862                         sizeof(struct drm_encoder *), GFP_KERNEL);
7863         if (!config->save_connector_encoders)
7864                 return -ENOMEM;
7865
7866         /* Copy data. Note that driver private data is not affected.
7867          * Should anything bad happen only the expected state is
7868          * restored, not the drivers personal bookkeeping.
7869          */
7870         count = 0;
7871         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7872                 config->save_encoder_crtcs[count++] = encoder->crtc;
7873         }
7874
7875         count = 0;
7876         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7877                 config->save_connector_encoders[count++] = connector->encoder;
7878         }
7879
7880         return 0;
7881 }
7882
7883 static void intel_set_config_restore_state(struct drm_device *dev,
7884                                            struct intel_set_config *config)
7885 {
7886         struct intel_encoder *encoder;
7887         struct intel_connector *connector;
7888         int count;
7889
7890         count = 0;
7891         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7892                 encoder->new_crtc =
7893                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7894         }
7895
7896         count = 0;
7897         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7898                 connector->new_encoder =
7899                         to_intel_encoder(config->save_connector_encoders[count++]);
7900         }
7901 }
7902
7903 static void
7904 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7905                                       struct intel_set_config *config)
7906 {
7907
7908         /* We should be able to check here if the fb has the same properties
7909          * and then just flip_or_move it */
7910         if (set->crtc->fb != set->fb) {
7911                 /* If we have no fb then treat it as a full mode set */
7912                 if (set->crtc->fb == NULL) {
7913                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7914                         config->mode_changed = true;
7915                 } else if (set->fb == NULL) {
7916                         config->mode_changed = true;
7917                 } else if (set->fb->depth != set->crtc->fb->depth) {
7918                         config->mode_changed = true;
7919                 } else if (set->fb->bits_per_pixel !=
7920                            set->crtc->fb->bits_per_pixel) {
7921                         config->mode_changed = true;
7922                 } else
7923                         config->fb_changed = true;
7924         }
7925
7926         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7927                 config->fb_changed = true;
7928
7929         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7930                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7931                 drm_mode_debug_printmodeline(&set->crtc->mode);
7932                 drm_mode_debug_printmodeline(set->mode);
7933                 config->mode_changed = true;
7934         }
7935 }
7936
7937 static int
7938 intel_modeset_stage_output_state(struct drm_device *dev,
7939                                  struct drm_mode_set *set,
7940                                  struct intel_set_config *config)
7941 {
7942         struct drm_crtc *new_crtc;
7943         struct intel_connector *connector;
7944         struct intel_encoder *encoder;
7945         int count, ro;
7946
7947         /* The upper layers ensure that we either disabl a crtc or have a list
7948          * of connectors. For paranoia, double-check this. */
7949         WARN_ON(!set->fb && (set->num_connectors != 0));
7950         WARN_ON(set->fb && (set->num_connectors == 0));
7951
7952         count = 0;
7953         list_for_each_entry(connector, &dev->mode_config.connector_list,
7954                             base.head) {
7955                 /* Otherwise traverse passed in connector list and get encoders
7956                  * for them. */
7957                 for (ro = 0; ro < set->num_connectors; ro++) {
7958                         if (set->connectors[ro] == &connector->base) {
7959                                 connector->new_encoder = connector->encoder;
7960                                 break;
7961                         }
7962                 }
7963
7964                 /* If we disable the crtc, disable all its connectors. Also, if
7965                  * the connector is on the changing crtc but not on the new
7966                  * connector list, disable it. */
7967                 if ((!set->fb || ro == set->num_connectors) &&
7968                     connector->base.encoder &&
7969                     connector->base.encoder->crtc == set->crtc) {
7970                         connector->new_encoder = NULL;
7971
7972                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7973                                 connector->base.base.id,
7974                                 drm_get_connector_name(&connector->base));
7975                 }
7976
7977
7978                 if (&connector->new_encoder->base != connector->base.encoder) {
7979                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7980                         config->mode_changed = true;
7981                 }
7982
7983                 /* Disable all disconnected encoders. */
7984                 if (connector->base.status == connector_status_disconnected)
7985                         connector->new_encoder = NULL;
7986         }
7987         /* connector->new_encoder is now updated for all connectors. */
7988
7989         /* Update crtc of enabled connectors. */
7990         count = 0;
7991         list_for_each_entry(connector, &dev->mode_config.connector_list,
7992                             base.head) {
7993                 if (!connector->new_encoder)
7994                         continue;
7995
7996                 new_crtc = connector->new_encoder->base.crtc;
7997
7998                 for (ro = 0; ro < set->num_connectors; ro++) {
7999                         if (set->connectors[ro] == &connector->base)
8000                                 new_crtc = set->crtc;
8001                 }
8002
8003                 /* Make sure the new CRTC will work with the encoder */
8004                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8005                                            new_crtc)) {
8006                         return -EINVAL;
8007                 }
8008                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8009
8010                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8011                         connector->base.base.id,
8012                         drm_get_connector_name(&connector->base),
8013                         new_crtc->base.id);
8014         }
8015
8016         /* Check for any encoders that needs to be disabled. */
8017         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8018                             base.head) {
8019                 list_for_each_entry(connector,
8020                                     &dev->mode_config.connector_list,
8021                                     base.head) {
8022                         if (connector->new_encoder == encoder) {
8023                                 WARN_ON(!connector->new_encoder->new_crtc);
8024
8025                                 goto next_encoder;
8026                         }
8027                 }
8028                 encoder->new_crtc = NULL;
8029 next_encoder:
8030                 /* Only now check for crtc changes so we don't miss encoders
8031                  * that will be disabled. */
8032                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8033                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8034                         config->mode_changed = true;
8035                 }
8036         }
8037         /* Now we've also updated encoder->new_crtc for all encoders. */
8038
8039         return 0;
8040 }
8041
8042 static int intel_crtc_set_config(struct drm_mode_set *set)
8043 {
8044         struct drm_device *dev;
8045         struct drm_mode_set save_set;
8046         struct intel_set_config *config;
8047         int ret;
8048
8049         BUG_ON(!set);
8050         BUG_ON(!set->crtc);
8051         BUG_ON(!set->crtc->helper_private);
8052
8053         if (!set->mode)
8054                 set->fb = NULL;
8055
8056         /* The fb helper likes to play gross jokes with ->mode_set_config.
8057          * Unfortunately the crtc helper doesn't do much at all for this case,
8058          * so we have to cope with this madness until the fb helper is fixed up. */
8059         if (set->fb && set->num_connectors == 0)
8060                 return 0;
8061
8062         if (set->fb) {
8063                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8064                                 set->crtc->base.id, set->fb->base.id,
8065                                 (int)set->num_connectors, set->x, set->y);
8066         } else {
8067                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8068         }
8069
8070         dev = set->crtc->dev;
8071
8072         ret = -ENOMEM;
8073         config = kzalloc(sizeof(*config), GFP_KERNEL);
8074         if (!config)
8075                 goto out_config;
8076
8077         ret = intel_set_config_save_state(dev, config);
8078         if (ret)
8079                 goto out_config;
8080
8081         save_set.crtc = set->crtc;
8082         save_set.mode = &set->crtc->mode;
8083         save_set.x = set->crtc->x;
8084         save_set.y = set->crtc->y;
8085         save_set.fb = set->crtc->fb;
8086
8087         /* Compute whether we need a full modeset, only an fb base update or no
8088          * change at all. In the future we might also check whether only the
8089          * mode changed, e.g. for LVDS where we only change the panel fitter in
8090          * such cases. */
8091         intel_set_config_compute_mode_changes(set, config);
8092
8093         ret = intel_modeset_stage_output_state(dev, set, config);
8094         if (ret)
8095                 goto fail;
8096
8097         if (config->mode_changed) {
8098                 if (set->mode) {
8099                         DRM_DEBUG_KMS("attempting to set mode from"
8100                                         " userspace\n");
8101                         drm_mode_debug_printmodeline(set->mode);
8102                 }
8103
8104                 if (!intel_set_mode(set->crtc, set->mode,
8105                                     set->x, set->y, set->fb)) {
8106                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8107                                   set->crtc->base.id);
8108                         ret = -EINVAL;
8109                         goto fail;
8110                 }
8111         } else if (config->fb_changed) {
8112                 ret = intel_pipe_set_base(set->crtc,
8113                                           set->x, set->y, set->fb);
8114         }
8115
8116         intel_set_config_free(config);
8117
8118         return 0;
8119
8120 fail:
8121         intel_set_config_restore_state(dev, config);
8122
8123         /* Try to restore the config */
8124         if (config->mode_changed &&
8125             !intel_set_mode(save_set.crtc, save_set.mode,
8126                             save_set.x, save_set.y, save_set.fb))
8127                 DRM_ERROR("failed to restore config after modeset failure\n");
8128
8129 out_config:
8130         intel_set_config_free(config);
8131         return ret;
8132 }
8133
8134 static const struct drm_crtc_funcs intel_crtc_funcs = {
8135         .cursor_set = intel_crtc_cursor_set,
8136         .cursor_move = intel_crtc_cursor_move,
8137         .gamma_set = intel_crtc_gamma_set,
8138         .set_config = intel_crtc_set_config,
8139         .destroy = intel_crtc_destroy,
8140         .page_flip = intel_crtc_page_flip,
8141 };
8142
8143 static void intel_cpu_pll_init(struct drm_device *dev)
8144 {
8145         if (IS_HASWELL(dev))
8146                 intel_ddi_pll_init(dev);
8147 }
8148
8149 static void intel_pch_pll_init(struct drm_device *dev)
8150 {
8151         drm_i915_private_t *dev_priv = dev->dev_private;
8152         int i;
8153
8154         if (dev_priv->num_pch_pll == 0) {
8155                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8156                 return;
8157         }
8158
8159         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8160                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8161                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8162                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8163         }
8164 }
8165
8166 static void intel_crtc_init(struct drm_device *dev, int pipe)
8167 {
8168         drm_i915_private_t *dev_priv = dev->dev_private;
8169         struct intel_crtc *intel_crtc;
8170         int i;
8171
8172         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8173         if (intel_crtc == NULL)
8174                 return;
8175
8176         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8177
8178         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8179         for (i = 0; i < 256; i++) {
8180                 intel_crtc->lut_r[i] = i;
8181                 intel_crtc->lut_g[i] = i;
8182                 intel_crtc->lut_b[i] = i;
8183         }
8184
8185         /* Swap pipes & planes for FBC on pre-965 */
8186         intel_crtc->pipe = pipe;
8187         intel_crtc->plane = pipe;
8188         intel_crtc->cpu_transcoder = pipe;
8189         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8190                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8191                 intel_crtc->plane = !pipe;
8192         }
8193
8194         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8195                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8196         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8197         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8198
8199         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8200
8201         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8202 }
8203
8204 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8205                                 struct drm_file *file)
8206 {
8207         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8208         struct drm_mode_object *drmmode_obj;
8209         struct intel_crtc *crtc;
8210
8211         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8212                 return -ENODEV;
8213
8214         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8215                         DRM_MODE_OBJECT_CRTC);
8216
8217         if (!drmmode_obj) {
8218                 DRM_ERROR("no such CRTC id\n");
8219                 return -EINVAL;
8220         }
8221
8222         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8223         pipe_from_crtc_id->pipe = crtc->pipe;
8224
8225         return 0;
8226 }
8227
8228 static int intel_encoder_clones(struct intel_encoder *encoder)
8229 {
8230         struct drm_device *dev = encoder->base.dev;
8231         struct intel_encoder *source_encoder;
8232         int index_mask = 0;
8233         int entry = 0;
8234
8235         list_for_each_entry(source_encoder,
8236                             &dev->mode_config.encoder_list, base.head) {
8237
8238                 if (encoder == source_encoder)
8239                         index_mask |= (1 << entry);
8240
8241                 /* Intel hw has only one MUX where enocoders could be cloned. */
8242                 if (encoder->cloneable && source_encoder->cloneable)
8243                         index_mask |= (1 << entry);
8244
8245                 entry++;
8246         }
8247
8248         return index_mask;
8249 }
8250
8251 static bool has_edp_a(struct drm_device *dev)
8252 {
8253         struct drm_i915_private *dev_priv = dev->dev_private;
8254
8255         if (!IS_MOBILE(dev))
8256                 return false;
8257
8258         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8259                 return false;
8260
8261         if (IS_GEN5(dev) &&
8262             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8263                 return false;
8264
8265         return true;
8266 }
8267
8268 static void intel_setup_outputs(struct drm_device *dev)
8269 {
8270         struct drm_i915_private *dev_priv = dev->dev_private;
8271         struct intel_encoder *encoder;
8272         bool dpd_is_edp = false;
8273         bool has_lvds;
8274
8275         has_lvds = intel_lvds_init(dev);
8276         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8277                 /* disable the panel fitter on everything but LVDS */
8278                 I915_WRITE(PFIT_CONTROL, 0);
8279         }
8280
8281         intel_crt_init(dev);
8282
8283         if (IS_HASWELL(dev)) {
8284                 int found;
8285
8286                 /* Haswell uses DDI functions to detect digital outputs */
8287                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8288                 /* DDI A only supports eDP */
8289                 if (found)
8290                         intel_ddi_init(dev, PORT_A);
8291
8292                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8293                  * register */
8294                 found = I915_READ(SFUSE_STRAP);
8295
8296                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8297                         intel_ddi_init(dev, PORT_B);
8298                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8299                         intel_ddi_init(dev, PORT_C);
8300                 if (found & SFUSE_STRAP_DDID_DETECTED)
8301                         intel_ddi_init(dev, PORT_D);
8302         } else if (HAS_PCH_SPLIT(dev)) {
8303                 int found;
8304                 dpd_is_edp = intel_dpd_is_edp(dev);
8305
8306                 if (has_edp_a(dev))
8307                         intel_dp_init(dev, DP_A, PORT_A);
8308
8309                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8310                         /* PCH SDVOB multiplex with HDMIB */
8311                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8312                         if (!found)
8313                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8314                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8315                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8316                 }
8317
8318                 if (I915_READ(HDMIC) & PORT_DETECTED)
8319                         intel_hdmi_init(dev, HDMIC, PORT_C);
8320
8321                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8322                         intel_hdmi_init(dev, HDMID, PORT_D);
8323
8324                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8325                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8326
8327                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8328                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8329         } else if (IS_VALLEYVIEW(dev)) {
8330                 int found;
8331
8332                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8333                 if (I915_READ(DP_C) & DP_DETECTED)
8334                         intel_dp_init(dev, DP_C, PORT_C);
8335
8336                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8337                         /* SDVOB multiplex with HDMIB */
8338                         found = intel_sdvo_init(dev, SDVOB, true);
8339                         if (!found)
8340                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8341                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8342                                 intel_dp_init(dev, DP_B, PORT_B);
8343                 }
8344
8345                 if (I915_READ(SDVOC) & PORT_DETECTED)
8346                         intel_hdmi_init(dev, SDVOC, PORT_C);
8347
8348         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8349                 bool found = false;
8350
8351                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8352                         DRM_DEBUG_KMS("probing SDVOB\n");
8353                         found = intel_sdvo_init(dev, SDVOB, true);
8354                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8355                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8356                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8357                         }
8358
8359                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8360                                 DRM_DEBUG_KMS("probing DP_B\n");
8361                                 intel_dp_init(dev, DP_B, PORT_B);
8362                         }
8363                 }
8364
8365                 /* Before G4X SDVOC doesn't have its own detect register */
8366
8367                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8368                         DRM_DEBUG_KMS("probing SDVOC\n");
8369                         found = intel_sdvo_init(dev, SDVOC, false);
8370                 }
8371
8372                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8373
8374                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8375                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8376                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8377                         }
8378                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8379                                 DRM_DEBUG_KMS("probing DP_C\n");
8380                                 intel_dp_init(dev, DP_C, PORT_C);
8381                         }
8382                 }
8383
8384                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8385                     (I915_READ(DP_D) & DP_DETECTED)) {
8386                         DRM_DEBUG_KMS("probing DP_D\n");
8387                         intel_dp_init(dev, DP_D, PORT_D);
8388                 }
8389         } else if (IS_GEN2(dev))
8390                 intel_dvo_init(dev);
8391
8392         if (SUPPORTS_TV(dev))
8393                 intel_tv_init(dev);
8394
8395         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8396                 encoder->base.possible_crtcs = encoder->crtc_mask;
8397                 encoder->base.possible_clones =
8398                         intel_encoder_clones(encoder);
8399         }
8400
8401         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8402                 ironlake_init_pch_refclk(dev);
8403
8404         drm_helper_move_panel_connectors_to_head(dev);
8405 }
8406
8407 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8408 {
8409         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8410
8411         drm_framebuffer_cleanup(fb);
8412         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8413
8414         kfree(intel_fb);
8415 }
8416
8417 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8418                                                 struct drm_file *file,
8419                                                 unsigned int *handle)
8420 {
8421         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8422         struct drm_i915_gem_object *obj = intel_fb->obj;
8423
8424         return drm_gem_handle_create(file, &obj->base, handle);
8425 }
8426
8427 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8428         .destroy = intel_user_framebuffer_destroy,
8429         .create_handle = intel_user_framebuffer_create_handle,
8430 };
8431
8432 int intel_framebuffer_init(struct drm_device *dev,
8433                            struct intel_framebuffer *intel_fb,
8434                            struct drm_mode_fb_cmd2 *mode_cmd,
8435                            struct drm_i915_gem_object *obj)
8436 {
8437         int ret;
8438
8439         if (obj->tiling_mode == I915_TILING_Y)
8440                 return -EINVAL;
8441
8442         if (mode_cmd->pitches[0] & 63)
8443                 return -EINVAL;
8444
8445         /* FIXME <= Gen4 stride limits are bit unclear */
8446         if (mode_cmd->pitches[0] > 32768)
8447                 return -EINVAL;
8448
8449         if (obj->tiling_mode != I915_TILING_NONE &&
8450             mode_cmd->pitches[0] != obj->stride)
8451                 return -EINVAL;
8452
8453         /* Reject formats not supported by any plane early. */
8454         switch (mode_cmd->pixel_format) {
8455         case DRM_FORMAT_C8:
8456         case DRM_FORMAT_RGB565:
8457         case DRM_FORMAT_XRGB8888:
8458         case DRM_FORMAT_ARGB8888:
8459                 break;
8460         case DRM_FORMAT_XRGB1555:
8461         case DRM_FORMAT_ARGB1555:
8462                 if (INTEL_INFO(dev)->gen > 3)
8463                         return -EINVAL;
8464                 break;
8465         case DRM_FORMAT_XBGR8888:
8466         case DRM_FORMAT_ABGR8888:
8467         case DRM_FORMAT_XRGB2101010:
8468         case DRM_FORMAT_ARGB2101010:
8469         case DRM_FORMAT_XBGR2101010:
8470         case DRM_FORMAT_ABGR2101010:
8471                 if (INTEL_INFO(dev)->gen < 4)
8472                         return -EINVAL;
8473                 break;
8474         case DRM_FORMAT_YUYV:
8475         case DRM_FORMAT_UYVY:
8476         case DRM_FORMAT_YVYU:
8477         case DRM_FORMAT_VYUY:
8478                 if (INTEL_INFO(dev)->gen < 6)
8479                         return -EINVAL;
8480                 break;
8481         default:
8482                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8483                 return -EINVAL;
8484         }
8485
8486         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8487         if (mode_cmd->offsets[0] != 0)
8488                 return -EINVAL;
8489
8490         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8491         if (ret) {
8492                 DRM_ERROR("framebuffer init failed %d\n", ret);
8493                 return ret;
8494         }
8495
8496         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8497         intel_fb->obj = obj;
8498         return 0;
8499 }
8500
8501 static struct drm_framebuffer *
8502 intel_user_framebuffer_create(struct drm_device *dev,
8503                               struct drm_file *filp,
8504                               struct drm_mode_fb_cmd2 *mode_cmd)
8505 {
8506         struct drm_i915_gem_object *obj;
8507
8508         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8509                                                 mode_cmd->handles[0]));
8510         if (&obj->base == NULL)
8511                 return ERR_PTR(-ENOENT);
8512
8513         return intel_framebuffer_create(dev, mode_cmd, obj);
8514 }
8515
8516 static const struct drm_mode_config_funcs intel_mode_funcs = {
8517         .fb_create = intel_user_framebuffer_create,
8518         .output_poll_changed = intel_fb_output_poll_changed,
8519 };
8520
8521 /* Set up chip specific display functions */
8522 static void intel_init_display(struct drm_device *dev)
8523 {
8524         struct drm_i915_private *dev_priv = dev->dev_private;
8525
8526         /* We always want a DPMS function */
8527         if (IS_HASWELL(dev)) {
8528                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8529                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8530                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8531                 dev_priv->display.off = haswell_crtc_off;
8532                 dev_priv->display.update_plane = ironlake_update_plane;
8533         } else if (HAS_PCH_SPLIT(dev)) {
8534                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8535                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8536                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8537                 dev_priv->display.off = ironlake_crtc_off;
8538                 dev_priv->display.update_plane = ironlake_update_plane;
8539         } else {
8540                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8541                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8542                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8543                 dev_priv->display.off = i9xx_crtc_off;
8544                 dev_priv->display.update_plane = i9xx_update_plane;
8545         }
8546
8547         /* Returns the core display clock speed */
8548         if (IS_VALLEYVIEW(dev))
8549                 dev_priv->display.get_display_clock_speed =
8550                         valleyview_get_display_clock_speed;
8551         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8552                 dev_priv->display.get_display_clock_speed =
8553                         i945_get_display_clock_speed;
8554         else if (IS_I915G(dev))
8555                 dev_priv->display.get_display_clock_speed =
8556                         i915_get_display_clock_speed;
8557         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8558                 dev_priv->display.get_display_clock_speed =
8559                         i9xx_misc_get_display_clock_speed;
8560         else if (IS_I915GM(dev))
8561                 dev_priv->display.get_display_clock_speed =
8562                         i915gm_get_display_clock_speed;
8563         else if (IS_I865G(dev))
8564                 dev_priv->display.get_display_clock_speed =
8565                         i865_get_display_clock_speed;
8566         else if (IS_I85X(dev))
8567                 dev_priv->display.get_display_clock_speed =
8568                         i855_get_display_clock_speed;
8569         else /* 852, 830 */
8570                 dev_priv->display.get_display_clock_speed =
8571                         i830_get_display_clock_speed;
8572
8573         if (HAS_PCH_SPLIT(dev)) {
8574                 if (IS_GEN5(dev)) {
8575                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8576                         dev_priv->display.write_eld = ironlake_write_eld;
8577                 } else if (IS_GEN6(dev)) {
8578                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8579                         dev_priv->display.write_eld = ironlake_write_eld;
8580                 } else if (IS_IVYBRIDGE(dev)) {
8581                         /* FIXME: detect B0+ stepping and use auto training */
8582                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8583                         dev_priv->display.write_eld = ironlake_write_eld;
8584                         dev_priv->display.modeset_global_resources =
8585                                 ivb_modeset_global_resources;
8586                 } else if (IS_HASWELL(dev)) {
8587                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8588                         dev_priv->display.write_eld = haswell_write_eld;
8589                 } else
8590                         dev_priv->display.update_wm = NULL;
8591         } else if (IS_G4X(dev)) {
8592                 dev_priv->display.write_eld = g4x_write_eld;
8593         }
8594
8595         /* Default just returns -ENODEV to indicate unsupported */
8596         dev_priv->display.queue_flip = intel_default_queue_flip;
8597
8598         switch (INTEL_INFO(dev)->gen) {
8599         case 2:
8600                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8601                 break;
8602
8603         case 3:
8604                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8605                 break;
8606
8607         case 4:
8608         case 5:
8609                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8610                 break;
8611
8612         case 6:
8613                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8614                 break;
8615         case 7:
8616                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8617                 break;
8618         }
8619 }
8620
8621 /*
8622  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8623  * resume, or other times.  This quirk makes sure that's the case for
8624  * affected systems.
8625  */
8626 static void quirk_pipea_force(struct drm_device *dev)
8627 {
8628         struct drm_i915_private *dev_priv = dev->dev_private;
8629
8630         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8631         DRM_INFO("applying pipe a force quirk\n");
8632 }
8633
8634 /*
8635  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8636  */
8637 static void quirk_ssc_force_disable(struct drm_device *dev)
8638 {
8639         struct drm_i915_private *dev_priv = dev->dev_private;
8640         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8641         DRM_INFO("applying lvds SSC disable quirk\n");
8642 }
8643
8644 /*
8645  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8646  * brightness value
8647  */
8648 static void quirk_invert_brightness(struct drm_device *dev)
8649 {
8650         struct drm_i915_private *dev_priv = dev->dev_private;
8651         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8652         DRM_INFO("applying inverted panel brightness quirk\n");
8653 }
8654
8655 struct intel_quirk {
8656         int device;
8657         int subsystem_vendor;
8658         int subsystem_device;
8659         void (*hook)(struct drm_device *dev);
8660 };
8661
8662 static struct intel_quirk intel_quirks[] = {
8663         /* HP Mini needs pipe A force quirk (LP: #322104) */
8664         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8665
8666         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8667         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8668
8669         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8670         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8671
8672         /* 830/845 need to leave pipe A & dpll A up */
8673         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8674         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8675
8676         /* Lenovo U160 cannot use SSC on LVDS */
8677         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8678
8679         /* Sony Vaio Y cannot use SSC on LVDS */
8680         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8681
8682         /* Acer Aspire 5734Z must invert backlight brightness */
8683         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8684 };
8685
8686 static void intel_init_quirks(struct drm_device *dev)
8687 {
8688         struct pci_dev *d = dev->pdev;
8689         int i;
8690
8691         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8692                 struct intel_quirk *q = &intel_quirks[i];
8693
8694                 if (d->device == q->device &&
8695                     (d->subsystem_vendor == q->subsystem_vendor ||
8696                      q->subsystem_vendor == PCI_ANY_ID) &&
8697                     (d->subsystem_device == q->subsystem_device ||
8698                      q->subsystem_device == PCI_ANY_ID))
8699                         q->hook(dev);
8700         }
8701 }
8702
8703 /* Disable the VGA plane that we never use */
8704 static void i915_disable_vga(struct drm_device *dev)
8705 {
8706         struct drm_i915_private *dev_priv = dev->dev_private;
8707         u8 sr1;
8708         u32 vga_reg;
8709
8710         if (HAS_PCH_SPLIT(dev))
8711                 vga_reg = CPU_VGACNTRL;
8712         else
8713                 vga_reg = VGACNTRL;
8714
8715         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8716         outb(SR01, VGA_SR_INDEX);
8717         sr1 = inb(VGA_SR_DATA);
8718         outb(sr1 | 1<<5, VGA_SR_DATA);
8719         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8720         udelay(300);
8721
8722         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8723         POSTING_READ(vga_reg);
8724 }
8725
8726 void intel_modeset_init_hw(struct drm_device *dev)
8727 {
8728         /* We attempt to init the necessary power wells early in the initialization
8729          * time, so the subsystems that expect power to be enabled can work.
8730          */
8731         intel_init_power_wells(dev);
8732
8733         intel_prepare_ddi(dev);
8734
8735         intel_init_clock_gating(dev);
8736
8737         mutex_lock(&dev->struct_mutex);
8738         intel_enable_gt_powersave(dev);
8739         mutex_unlock(&dev->struct_mutex);
8740 }
8741
8742 void intel_modeset_init(struct drm_device *dev)
8743 {
8744         struct drm_i915_private *dev_priv = dev->dev_private;
8745         int i, ret;
8746
8747         drm_mode_config_init(dev);
8748
8749         dev->mode_config.min_width = 0;
8750         dev->mode_config.min_height = 0;
8751
8752         dev->mode_config.preferred_depth = 24;
8753         dev->mode_config.prefer_shadow = 1;
8754
8755         dev->mode_config.funcs = &intel_mode_funcs;
8756
8757         intel_init_quirks(dev);
8758
8759         intel_init_pm(dev);
8760
8761         intel_init_display(dev);
8762
8763         if (IS_GEN2(dev)) {
8764                 dev->mode_config.max_width = 2048;
8765                 dev->mode_config.max_height = 2048;
8766         } else if (IS_GEN3(dev)) {
8767                 dev->mode_config.max_width = 4096;
8768                 dev->mode_config.max_height = 4096;
8769         } else {
8770                 dev->mode_config.max_width = 8192;
8771                 dev->mode_config.max_height = 8192;
8772         }
8773         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8774
8775         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8776                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8777
8778         for (i = 0; i < dev_priv->num_pipe; i++) {
8779                 intel_crtc_init(dev, i);
8780                 ret = intel_plane_init(dev, i);
8781                 if (ret)
8782                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8783         }
8784
8785         intel_cpu_pll_init(dev);
8786         intel_pch_pll_init(dev);
8787
8788         /* Just disable it once at startup */
8789         i915_disable_vga(dev);
8790         intel_setup_outputs(dev);
8791 }
8792
8793 static void
8794 intel_connector_break_all_links(struct intel_connector *connector)
8795 {
8796         connector->base.dpms = DRM_MODE_DPMS_OFF;
8797         connector->base.encoder = NULL;
8798         connector->encoder->connectors_active = false;
8799         connector->encoder->base.crtc = NULL;
8800 }
8801
8802 static void intel_enable_pipe_a(struct drm_device *dev)
8803 {
8804         struct intel_connector *connector;
8805         struct drm_connector *crt = NULL;
8806         struct intel_load_detect_pipe load_detect_temp;
8807
8808         /* We can't just switch on the pipe A, we need to set things up with a
8809          * proper mode and output configuration. As a gross hack, enable pipe A
8810          * by enabling the load detect pipe once. */
8811         list_for_each_entry(connector,
8812                             &dev->mode_config.connector_list,
8813                             base.head) {
8814                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8815                         crt = &connector->base;
8816                         break;
8817                 }
8818         }
8819
8820         if (!crt)
8821                 return;
8822
8823         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8824                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8825
8826
8827 }
8828
8829 static bool
8830 intel_check_plane_mapping(struct intel_crtc *crtc)
8831 {
8832         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8833         u32 reg, val;
8834
8835         if (dev_priv->num_pipe == 1)
8836                 return true;
8837
8838         reg = DSPCNTR(!crtc->plane);
8839         val = I915_READ(reg);
8840
8841         if ((val & DISPLAY_PLANE_ENABLE) &&
8842             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8843                 return false;
8844
8845         return true;
8846 }
8847
8848 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8849 {
8850         struct drm_device *dev = crtc->base.dev;
8851         struct drm_i915_private *dev_priv = dev->dev_private;
8852         u32 reg;
8853
8854         /* Clear any frame start delays used for debugging left by the BIOS */
8855         reg = PIPECONF(crtc->cpu_transcoder);
8856         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8857
8858         /* We need to sanitize the plane -> pipe mapping first because this will
8859          * disable the crtc (and hence change the state) if it is wrong. Note
8860          * that gen4+ has a fixed plane -> pipe mapping.  */
8861         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8862                 struct intel_connector *connector;
8863                 bool plane;
8864
8865                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8866                               crtc->base.base.id);
8867
8868                 /* Pipe has the wrong plane attached and the plane is active.
8869                  * Temporarily change the plane mapping and disable everything
8870                  * ...  */
8871                 plane = crtc->plane;
8872                 crtc->plane = !plane;
8873                 dev_priv->display.crtc_disable(&crtc->base);
8874                 crtc->plane = plane;
8875
8876                 /* ... and break all links. */
8877                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8878                                     base.head) {
8879                         if (connector->encoder->base.crtc != &crtc->base)
8880                                 continue;
8881
8882                         intel_connector_break_all_links(connector);
8883                 }
8884
8885                 WARN_ON(crtc->active);
8886                 crtc->base.enabled = false;
8887         }
8888
8889         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8890             crtc->pipe == PIPE_A && !crtc->active) {
8891                 /* BIOS forgot to enable pipe A, this mostly happens after
8892                  * resume. Force-enable the pipe to fix this, the update_dpms
8893                  * call below we restore the pipe to the right state, but leave
8894                  * the required bits on. */
8895                 intel_enable_pipe_a(dev);
8896         }
8897
8898         /* Adjust the state of the output pipe according to whether we
8899          * have active connectors/encoders. */
8900         intel_crtc_update_dpms(&crtc->base);
8901
8902         if (crtc->active != crtc->base.enabled) {
8903                 struct intel_encoder *encoder;
8904
8905                 /* This can happen either due to bugs in the get_hw_state
8906                  * functions or because the pipe is force-enabled due to the
8907                  * pipe A quirk. */
8908                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8909                               crtc->base.base.id,
8910                               crtc->base.enabled ? "enabled" : "disabled",
8911                               crtc->active ? "enabled" : "disabled");
8912
8913                 crtc->base.enabled = crtc->active;
8914
8915                 /* Because we only establish the connector -> encoder ->
8916                  * crtc links if something is active, this means the
8917                  * crtc is now deactivated. Break the links. connector
8918                  * -> encoder links are only establish when things are
8919                  *  actually up, hence no need to break them. */
8920                 WARN_ON(crtc->active);
8921
8922                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8923                         WARN_ON(encoder->connectors_active);
8924                         encoder->base.crtc = NULL;
8925                 }
8926         }
8927 }
8928
8929 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8930 {
8931         struct intel_connector *connector;
8932         struct drm_device *dev = encoder->base.dev;
8933
8934         /* We need to check both for a crtc link (meaning that the
8935          * encoder is active and trying to read from a pipe) and the
8936          * pipe itself being active. */
8937         bool has_active_crtc = encoder->base.crtc &&
8938                 to_intel_crtc(encoder->base.crtc)->active;
8939
8940         if (encoder->connectors_active && !has_active_crtc) {
8941                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8942                               encoder->base.base.id,
8943                               drm_get_encoder_name(&encoder->base));
8944
8945                 /* Connector is active, but has no active pipe. This is
8946                  * fallout from our resume register restoring. Disable
8947                  * the encoder manually again. */
8948                 if (encoder->base.crtc) {
8949                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8950                                       encoder->base.base.id,
8951                                       drm_get_encoder_name(&encoder->base));
8952                         encoder->disable(encoder);
8953                 }
8954
8955                 /* Inconsistent output/port/pipe state happens presumably due to
8956                  * a bug in one of the get_hw_state functions. Or someplace else
8957                  * in our code, like the register restore mess on resume. Clamp
8958                  * things to off as a safer default. */
8959                 list_for_each_entry(connector,
8960                                     &dev->mode_config.connector_list,
8961                                     base.head) {
8962                         if (connector->encoder != encoder)
8963                                 continue;
8964
8965                         intel_connector_break_all_links(connector);
8966                 }
8967         }
8968         /* Enabled encoders without active connectors will be fixed in
8969          * the crtc fixup. */
8970 }
8971
8972 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8973  * and i915 state tracking structures. */
8974 void intel_modeset_setup_hw_state(struct drm_device *dev)
8975 {
8976         struct drm_i915_private *dev_priv = dev->dev_private;
8977         enum pipe pipe;
8978         u32 tmp;
8979         struct intel_crtc *crtc;
8980         struct intel_encoder *encoder;
8981         struct intel_connector *connector;
8982
8983         if (IS_HASWELL(dev)) {
8984                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8985
8986                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8987                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8988                         case TRANS_DDI_EDP_INPUT_A_ON:
8989                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8990                                 pipe = PIPE_A;
8991                                 break;
8992                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8993                                 pipe = PIPE_B;
8994                                 break;
8995                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8996                                 pipe = PIPE_C;
8997                                 break;
8998                         }
8999
9000                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9001                         crtc->cpu_transcoder = TRANSCODER_EDP;
9002
9003                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9004                                       pipe_name(pipe));
9005                 }
9006         }
9007
9008         for_each_pipe(pipe) {
9009                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9010
9011                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9012                 if (tmp & PIPECONF_ENABLE)
9013                         crtc->active = true;
9014                 else
9015                         crtc->active = false;
9016
9017                 crtc->base.enabled = crtc->active;
9018
9019                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9020                               crtc->base.base.id,
9021                               crtc->active ? "enabled" : "disabled");
9022         }
9023
9024         if (IS_HASWELL(dev))
9025                 intel_ddi_setup_hw_pll_state(dev);
9026
9027         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9028                             base.head) {
9029                 pipe = 0;
9030
9031                 if (encoder->get_hw_state(encoder, &pipe)) {
9032                         encoder->base.crtc =
9033                                 dev_priv->pipe_to_crtc_mapping[pipe];
9034                 } else {
9035                         encoder->base.crtc = NULL;
9036                 }
9037
9038                 encoder->connectors_active = false;
9039                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9040                               encoder->base.base.id,
9041                               drm_get_encoder_name(&encoder->base),
9042                               encoder->base.crtc ? "enabled" : "disabled",
9043                               pipe);
9044         }
9045
9046         list_for_each_entry(connector, &dev->mode_config.connector_list,
9047                             base.head) {
9048                 if (connector->get_hw_state(connector)) {
9049                         connector->base.dpms = DRM_MODE_DPMS_ON;
9050                         connector->encoder->connectors_active = true;
9051                         connector->base.encoder = &connector->encoder->base;
9052                 } else {
9053                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9054                         connector->base.encoder = NULL;
9055                 }
9056                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9057                               connector->base.base.id,
9058                               drm_get_connector_name(&connector->base),
9059                               connector->base.encoder ? "enabled" : "disabled");
9060         }
9061
9062         /* HW state is read out, now we need to sanitize this mess. */
9063         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9064                             base.head) {
9065                 intel_sanitize_encoder(encoder);
9066         }
9067
9068         for_each_pipe(pipe) {
9069                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9070                 intel_sanitize_crtc(crtc);
9071         }
9072
9073         intel_modeset_update_staged_output_state(dev);
9074
9075         intel_modeset_check_state(dev);
9076
9077         drm_mode_config_reset(dev);
9078 }
9079
9080 void intel_modeset_gem_init(struct drm_device *dev)
9081 {
9082         intel_modeset_init_hw(dev);
9083
9084         intel_setup_overlay(dev);
9085
9086         intel_modeset_setup_hw_state(dev);
9087 }
9088
9089 void intel_modeset_cleanup(struct drm_device *dev)
9090 {
9091         struct drm_i915_private *dev_priv = dev->dev_private;
9092         struct drm_crtc *crtc;
9093         struct intel_crtc *intel_crtc;
9094
9095         drm_kms_helper_poll_fini(dev);
9096         mutex_lock(&dev->struct_mutex);
9097
9098         intel_unregister_dsm_handler();
9099
9100
9101         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9102                 /* Skip inactive CRTCs */
9103                 if (!crtc->fb)
9104                         continue;
9105
9106                 intel_crtc = to_intel_crtc(crtc);
9107                 intel_increase_pllclock(crtc);
9108         }
9109
9110         intel_disable_fbc(dev);
9111
9112         intel_disable_gt_powersave(dev);
9113
9114         ironlake_teardown_rc6(dev);
9115
9116         if (IS_VALLEYVIEW(dev))
9117                 vlv_init_dpio(dev);
9118
9119         mutex_unlock(&dev->struct_mutex);
9120
9121         /* Disable the irq before mode object teardown, for the irq might
9122          * enqueue unpin/hotplug work. */
9123         drm_irq_uninstall(dev);
9124         cancel_work_sync(&dev_priv->hotplug_work);
9125         cancel_work_sync(&dev_priv->rps.work);
9126
9127         /* flush any delayed tasks or pending work */
9128         flush_scheduled_work();
9129
9130         drm_mode_config_cleanup(dev);
9131 }
9132
9133 /*
9134  * Return which encoder is currently attached for connector.
9135  */
9136 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9137 {
9138         return &intel_attached_encoder(connector)->base;
9139 }
9140
9141 void intel_connector_attach_encoder(struct intel_connector *connector,
9142                                     struct intel_encoder *encoder)
9143 {
9144         connector->encoder = encoder;
9145         drm_mode_connector_attach_encoder(&connector->base,
9146                                           &encoder->base);
9147 }
9148
9149 /*
9150  * set vga decode state - true == enable VGA decode
9151  */
9152 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9153 {
9154         struct drm_i915_private *dev_priv = dev->dev_private;
9155         u16 gmch_ctrl;
9156
9157         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9158         if (state)
9159                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9160         else
9161                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9162         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9163         return 0;
9164 }
9165
9166 #ifdef CONFIG_DEBUG_FS
9167 #include <linux/seq_file.h>
9168
9169 struct intel_display_error_state {
9170         struct intel_cursor_error_state {
9171                 u32 control;
9172                 u32 position;
9173                 u32 base;
9174                 u32 size;
9175         } cursor[I915_MAX_PIPES];
9176
9177         struct intel_pipe_error_state {
9178                 u32 conf;
9179                 u32 source;
9180
9181                 u32 htotal;
9182                 u32 hblank;
9183                 u32 hsync;
9184                 u32 vtotal;
9185                 u32 vblank;
9186                 u32 vsync;
9187         } pipe[I915_MAX_PIPES];
9188
9189         struct intel_plane_error_state {
9190                 u32 control;
9191                 u32 stride;
9192                 u32 size;
9193                 u32 pos;
9194                 u32 addr;
9195                 u32 surface;
9196                 u32 tile_offset;
9197         } plane[I915_MAX_PIPES];
9198 };
9199
9200 struct intel_display_error_state *
9201 intel_display_capture_error_state(struct drm_device *dev)
9202 {
9203         drm_i915_private_t *dev_priv = dev->dev_private;
9204         struct intel_display_error_state *error;
9205         enum transcoder cpu_transcoder;
9206         int i;
9207
9208         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9209         if (error == NULL)
9210                 return NULL;
9211
9212         for_each_pipe(i) {
9213                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9214
9215                 error->cursor[i].control = I915_READ(CURCNTR(i));
9216                 error->cursor[i].position = I915_READ(CURPOS(i));
9217                 error->cursor[i].base = I915_READ(CURBASE(i));
9218
9219                 error->plane[i].control = I915_READ(DSPCNTR(i));
9220                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9221                 error->plane[i].size = I915_READ(DSPSIZE(i));
9222                 error->plane[i].pos = I915_READ(DSPPOS(i));
9223                 error->plane[i].addr = I915_READ(DSPADDR(i));
9224                 if (INTEL_INFO(dev)->gen >= 4) {
9225                         error->plane[i].surface = I915_READ(DSPSURF(i));
9226                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9227                 }
9228
9229                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9230                 error->pipe[i].source = I915_READ(PIPESRC(i));
9231                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9232                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9233                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9234                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9235                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9236                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9237         }
9238
9239         return error;
9240 }
9241
9242 void
9243 intel_display_print_error_state(struct seq_file *m,
9244                                 struct drm_device *dev,
9245                                 struct intel_display_error_state *error)
9246 {
9247         drm_i915_private_t *dev_priv = dev->dev_private;
9248         int i;
9249
9250         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9251         for_each_pipe(i) {
9252                 seq_printf(m, "Pipe [%d]:\n", i);
9253                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9254                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9255                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9256                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9257                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9258                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9259                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9260                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9261
9262                 seq_printf(m, "Plane [%d]:\n", i);
9263                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9264                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9265                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9266                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9267                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9268                 if (INTEL_INFO(dev)->gen >= 4) {
9269                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9270                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9271                 }
9272
9273                 seq_printf(m, "Cursor [%d]:\n", i);
9274                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9275                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9276                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9277         }
9278 }
9279 #endif