drm/i915: Move sprite/cursor plane disable to intel_sanitize_crtc()
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75         DRM_FORMAT_YUYV,
76         DRM_FORMAT_YVYU,
77         DRM_FORMAT_UYVY,
78         DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83         DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121         int     min, max;
122 } intel_range_t;
123
124 typedef struct {
125         int     dot_limit;
126         int     p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
132         intel_p2_t          p2;
133 };
134
135 int
136 intel_pch_rawclk(struct drm_device *dev)
137 {
138         struct drm_i915_private *dev_priv = dev->dev_private;
139
140         WARN_ON(!HAS_PCH_SPLIT(dev));
141
142         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
143 }
144
145 /* hrawclock is 1/4 the FSB frequency */
146 int intel_hrawclk(struct drm_device *dev)
147 {
148         struct drm_i915_private *dev_priv = dev->dev_private;
149         uint32_t clkcfg;
150
151         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
152         if (IS_VALLEYVIEW(dev))
153                 return 200;
154
155         clkcfg = I915_READ(CLKCFG);
156         switch (clkcfg & CLKCFG_FSB_MASK) {
157         case CLKCFG_FSB_400:
158                 return 100;
159         case CLKCFG_FSB_533:
160                 return 133;
161         case CLKCFG_FSB_667:
162                 return 166;
163         case CLKCFG_FSB_800:
164                 return 200;
165         case CLKCFG_FSB_1067:
166                 return 266;
167         case CLKCFG_FSB_1333:
168                 return 333;
169         /* these two are just a guess; one of them might be right */
170         case CLKCFG_FSB_1600:
171         case CLKCFG_FSB_1600_ALT:
172                 return 400;
173         default:
174                 return 133;
175         }
176 }
177
178 static inline u32 /* units of 100MHz */
179 intel_fdi_link_freq(struct drm_device *dev)
180 {
181         if (IS_GEN5(dev)) {
182                 struct drm_i915_private *dev_priv = dev->dev_private;
183                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
184         } else
185                 return 27;
186 }
187
188 static const intel_limit_t intel_limits_i8xx_dac = {
189         .dot = { .min = 25000, .max = 350000 },
190         .vco = { .min = 908000, .max = 1512000 },
191         .n = { .min = 2, .max = 16 },
192         .m = { .min = 96, .max = 140 },
193         .m1 = { .min = 18, .max = 26 },
194         .m2 = { .min = 6, .max = 16 },
195         .p = { .min = 4, .max = 128 },
196         .p1 = { .min = 2, .max = 33 },
197         .p2 = { .dot_limit = 165000,
198                 .p2_slow = 4, .p2_fast = 2 },
199 };
200
201 static const intel_limit_t intel_limits_i8xx_dvo = {
202         .dot = { .min = 25000, .max = 350000 },
203         .vco = { .min = 908000, .max = 1512000 },
204         .n = { .min = 2, .max = 16 },
205         .m = { .min = 96, .max = 140 },
206         .m1 = { .min = 18, .max = 26 },
207         .m2 = { .min = 6, .max = 16 },
208         .p = { .min = 4, .max = 128 },
209         .p1 = { .min = 2, .max = 33 },
210         .p2 = { .dot_limit = 165000,
211                 .p2_slow = 4, .p2_fast = 4 },
212 };
213
214 static const intel_limit_t intel_limits_i8xx_lvds = {
215         .dot = { .min = 25000, .max = 350000 },
216         .vco = { .min = 908000, .max = 1512000 },
217         .n = { .min = 2, .max = 16 },
218         .m = { .min = 96, .max = 140 },
219         .m1 = { .min = 18, .max = 26 },
220         .m2 = { .min = 6, .max = 16 },
221         .p = { .min = 4, .max = 128 },
222         .p1 = { .min = 1, .max = 6 },
223         .p2 = { .dot_limit = 165000,
224                 .p2_slow = 14, .p2_fast = 7 },
225 };
226
227 static const intel_limit_t intel_limits_i9xx_sdvo = {
228         .dot = { .min = 20000, .max = 400000 },
229         .vco = { .min = 1400000, .max = 2800000 },
230         .n = { .min = 1, .max = 6 },
231         .m = { .min = 70, .max = 120 },
232         .m1 = { .min = 8, .max = 18 },
233         .m2 = { .min = 3, .max = 7 },
234         .p = { .min = 5, .max = 80 },
235         .p1 = { .min = 1, .max = 8 },
236         .p2 = { .dot_limit = 200000,
237                 .p2_slow = 10, .p2_fast = 5 },
238 };
239
240 static const intel_limit_t intel_limits_i9xx_lvds = {
241         .dot = { .min = 20000, .max = 400000 },
242         .vco = { .min = 1400000, .max = 2800000 },
243         .n = { .min = 1, .max = 6 },
244         .m = { .min = 70, .max = 120 },
245         .m1 = { .min = 8, .max = 18 },
246         .m2 = { .min = 3, .max = 7 },
247         .p = { .min = 7, .max = 98 },
248         .p1 = { .min = 1, .max = 8 },
249         .p2 = { .dot_limit = 112000,
250                 .p2_slow = 14, .p2_fast = 7 },
251 };
252
253
254 static const intel_limit_t intel_limits_g4x_sdvo = {
255         .dot = { .min = 25000, .max = 270000 },
256         .vco = { .min = 1750000, .max = 3500000},
257         .n = { .min = 1, .max = 4 },
258         .m = { .min = 104, .max = 138 },
259         .m1 = { .min = 17, .max = 23 },
260         .m2 = { .min = 5, .max = 11 },
261         .p = { .min = 10, .max = 30 },
262         .p1 = { .min = 1, .max = 3},
263         .p2 = { .dot_limit = 270000,
264                 .p2_slow = 10,
265                 .p2_fast = 10
266         },
267 };
268
269 static const intel_limit_t intel_limits_g4x_hdmi = {
270         .dot = { .min = 22000, .max = 400000 },
271         .vco = { .min = 1750000, .max = 3500000},
272         .n = { .min = 1, .max = 4 },
273         .m = { .min = 104, .max = 138 },
274         .m1 = { .min = 16, .max = 23 },
275         .m2 = { .min = 5, .max = 11 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8},
278         .p2 = { .dot_limit = 165000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
283         .dot = { .min = 20000, .max = 115000 },
284         .vco = { .min = 1750000, .max = 3500000 },
285         .n = { .min = 1, .max = 3 },
286         .m = { .min = 104, .max = 138 },
287         .m1 = { .min = 17, .max = 23 },
288         .m2 = { .min = 5, .max = 11 },
289         .p = { .min = 28, .max = 112 },
290         .p1 = { .min = 2, .max = 8 },
291         .p2 = { .dot_limit = 0,
292                 .p2_slow = 14, .p2_fast = 14
293         },
294 };
295
296 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
297         .dot = { .min = 80000, .max = 224000 },
298         .vco = { .min = 1750000, .max = 3500000 },
299         .n = { .min = 1, .max = 3 },
300         .m = { .min = 104, .max = 138 },
301         .m1 = { .min = 17, .max = 23 },
302         .m2 = { .min = 5, .max = 11 },
303         .p = { .min = 14, .max = 42 },
304         .p1 = { .min = 2, .max = 6 },
305         .p2 = { .dot_limit = 0,
306                 .p2_slow = 7, .p2_fast = 7
307         },
308 };
309
310 static const intel_limit_t intel_limits_pineview_sdvo = {
311         .dot = { .min = 20000, .max = 400000},
312         .vco = { .min = 1700000, .max = 3500000 },
313         /* Pineview's Ncounter is a ring counter */
314         .n = { .min = 3, .max = 6 },
315         .m = { .min = 2, .max = 256 },
316         /* Pineview only has one combined m divider, which we treat as m2. */
317         .m1 = { .min = 0, .max = 0 },
318         .m2 = { .min = 0, .max = 254 },
319         .p = { .min = 5, .max = 80 },
320         .p1 = { .min = 1, .max = 8 },
321         .p2 = { .dot_limit = 200000,
322                 .p2_slow = 10, .p2_fast = 5 },
323 };
324
325 static const intel_limit_t intel_limits_pineview_lvds = {
326         .dot = { .min = 20000, .max = 400000 },
327         .vco = { .min = 1700000, .max = 3500000 },
328         .n = { .min = 3, .max = 6 },
329         .m = { .min = 2, .max = 256 },
330         .m1 = { .min = 0, .max = 0 },
331         .m2 = { .min = 0, .max = 254 },
332         .p = { .min = 7, .max = 112 },
333         .p1 = { .min = 1, .max = 8 },
334         .p2 = { .dot_limit = 112000,
335                 .p2_slow = 14, .p2_fast = 14 },
336 };
337
338 /* Ironlake / Sandybridge
339  *
340  * We calculate clock using (register_value + 2) for N/M1/M2, so here
341  * the range value for them is (actual_value - 2).
342  */
343 static const intel_limit_t intel_limits_ironlake_dac = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 5 },
347         .m = { .min = 79, .max = 127 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 5, .max = 80 },
351         .p1 = { .min = 1, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 10, .p2_fast = 5 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_single_lvds = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 118 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 28, .max = 112 },
364         .p1 = { .min = 2, .max = 8 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 14, .p2_fast = 14 },
367 };
368
369 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
370         .dot = { .min = 25000, .max = 350000 },
371         .vco = { .min = 1760000, .max = 3510000 },
372         .n = { .min = 1, .max = 3 },
373         .m = { .min = 79, .max = 127 },
374         .m1 = { .min = 12, .max = 22 },
375         .m2 = { .min = 5, .max = 9 },
376         .p = { .min = 14, .max = 56 },
377         .p1 = { .min = 2, .max = 8 },
378         .p2 = { .dot_limit = 225000,
379                 .p2_slow = 7, .p2_fast = 7 },
380 };
381
382 /* LVDS 100mhz refclk limits. */
383 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
384         .dot = { .min = 25000, .max = 350000 },
385         .vco = { .min = 1760000, .max = 3510000 },
386         .n = { .min = 1, .max = 2 },
387         .m = { .min = 79, .max = 126 },
388         .m1 = { .min = 12, .max = 22 },
389         .m2 = { .min = 5, .max = 9 },
390         .p = { .min = 28, .max = 112 },
391         .p1 = { .min = 2, .max = 8 },
392         .p2 = { .dot_limit = 225000,
393                 .p2_slow = 14, .p2_fast = 14 },
394 };
395
396 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
397         .dot = { .min = 25000, .max = 350000 },
398         .vco = { .min = 1760000, .max = 3510000 },
399         .n = { .min = 1, .max = 3 },
400         .m = { .min = 79, .max = 126 },
401         .m1 = { .min = 12, .max = 22 },
402         .m2 = { .min = 5, .max = 9 },
403         .p = { .min = 14, .max = 42 },
404         .p1 = { .min = 2, .max = 6 },
405         .p2 = { .dot_limit = 225000,
406                 .p2_slow = 7, .p2_fast = 7 },
407 };
408
409 static const intel_limit_t intel_limits_vlv = {
410          /*
411           * These are the data rate limits (measured in fast clocks)
412           * since those are the strictest limits we have. The fast
413           * clock and actual rate limits are more relaxed, so checking
414           * them would make no difference.
415           */
416         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
417         .vco = { .min = 4000000, .max = 6000000 },
418         .n = { .min = 1, .max = 7 },
419         .m1 = { .min = 2, .max = 3 },
420         .m2 = { .min = 11, .max = 156 },
421         .p1 = { .min = 2, .max = 3 },
422         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
423 };
424
425 static const intel_limit_t intel_limits_chv = {
426         /*
427          * These are the data rate limits (measured in fast clocks)
428          * since those are the strictest limits we have.  The fast
429          * clock and actual rate limits are more relaxed, so checking
430          * them would make no difference.
431          */
432         .dot = { .min = 25000 * 5, .max = 540000 * 5},
433         .vco = { .min = 4800000, .max = 6480000 },
434         .n = { .min = 1, .max = 1 },
435         .m1 = { .min = 2, .max = 2 },
436         .m2 = { .min = 24 << 22, .max = 175 << 22 },
437         .p1 = { .min = 2, .max = 4 },
438         .p2 = { .p2_slow = 1, .p2_fast = 14 },
439 };
440
441 static const intel_limit_t intel_limits_bxt = {
442         /* FIXME: find real dot limits */
443         .dot = { .min = 0, .max = INT_MAX },
444         .vco = { .min = 4800000, .max = 6700000 },
445         .n = { .min = 1, .max = 1 },
446         .m1 = { .min = 2, .max = 2 },
447         /* FIXME: find real m2 limits */
448         .m2 = { .min = 2 << 22, .max = 255 << 22 },
449         .p1 = { .min = 2, .max = 4 },
450         .p2 = { .p2_slow = 1, .p2_fast = 20 },
451 };
452
453 static bool
454 needs_modeset(struct drm_crtc_state *state)
455 {
456         return drm_atomic_crtc_needs_modeset(state);
457 }
458
459 /**
460  * Returns whether any output on the specified pipe is of the specified type
461  */
462 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
463 {
464         struct drm_device *dev = crtc->base.dev;
465         struct intel_encoder *encoder;
466
467         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
468                 if (encoder->type == type)
469                         return true;
470
471         return false;
472 }
473
474 /**
475  * Returns whether any output on the specified pipe will have the specified
476  * type after a staged modeset is complete, i.e., the same as
477  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
478  * encoder->crtc.
479  */
480 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
481                                       int type)
482 {
483         struct drm_atomic_state *state = crtc_state->base.state;
484         struct drm_connector *connector;
485         struct drm_connector_state *connector_state;
486         struct intel_encoder *encoder;
487         int i, num_connectors = 0;
488
489         for_each_connector_in_state(state, connector, connector_state, i) {
490                 if (connector_state->crtc != crtc_state->base.crtc)
491                         continue;
492
493                 num_connectors++;
494
495                 encoder = to_intel_encoder(connector_state->best_encoder);
496                 if (encoder->type == type)
497                         return true;
498         }
499
500         WARN_ON(num_connectors == 0);
501
502         return false;
503 }
504
505 static const intel_limit_t *
506 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
507 {
508         struct drm_device *dev = crtc_state->base.crtc->dev;
509         const intel_limit_t *limit;
510
511         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
512                 if (intel_is_dual_link_lvds(dev)) {
513                         if (refclk == 100000)
514                                 limit = &intel_limits_ironlake_dual_lvds_100m;
515                         else
516                                 limit = &intel_limits_ironlake_dual_lvds;
517                 } else {
518                         if (refclk == 100000)
519                                 limit = &intel_limits_ironlake_single_lvds_100m;
520                         else
521                                 limit = &intel_limits_ironlake_single_lvds;
522                 }
523         } else
524                 limit = &intel_limits_ironlake_dac;
525
526         return limit;
527 }
528
529 static const intel_limit_t *
530 intel_g4x_limit(struct intel_crtc_state *crtc_state)
531 {
532         struct drm_device *dev = crtc_state->base.crtc->dev;
533         const intel_limit_t *limit;
534
535         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
536                 if (intel_is_dual_link_lvds(dev))
537                         limit = &intel_limits_g4x_dual_channel_lvds;
538                 else
539                         limit = &intel_limits_g4x_single_channel_lvds;
540         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
541                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
542                 limit = &intel_limits_g4x_hdmi;
543         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
544                 limit = &intel_limits_g4x_sdvo;
545         } else /* The option is for other outputs */
546                 limit = &intel_limits_i9xx_sdvo;
547
548         return limit;
549 }
550
551 static const intel_limit_t *
552 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
553 {
554         struct drm_device *dev = crtc_state->base.crtc->dev;
555         const intel_limit_t *limit;
556
557         if (IS_BROXTON(dev))
558                 limit = &intel_limits_bxt;
559         else if (HAS_PCH_SPLIT(dev))
560                 limit = intel_ironlake_limit(crtc_state, refclk);
561         else if (IS_G4X(dev)) {
562                 limit = intel_g4x_limit(crtc_state);
563         } else if (IS_PINEVIEW(dev)) {
564                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
565                         limit = &intel_limits_pineview_lvds;
566                 else
567                         limit = &intel_limits_pineview_sdvo;
568         } else if (IS_CHERRYVIEW(dev)) {
569                 limit = &intel_limits_chv;
570         } else if (IS_VALLEYVIEW(dev)) {
571                 limit = &intel_limits_vlv;
572         } else if (!IS_GEN2(dev)) {
573                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
574                         limit = &intel_limits_i9xx_lvds;
575                 else
576                         limit = &intel_limits_i9xx_sdvo;
577         } else {
578                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
579                         limit = &intel_limits_i8xx_lvds;
580                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
581                         limit = &intel_limits_i8xx_dvo;
582                 else
583                         limit = &intel_limits_i8xx_dac;
584         }
585         return limit;
586 }
587
588 /*
589  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
590  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
591  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
592  * The helpers' return value is the rate of the clock that is fed to the
593  * display engine's pipe which can be the above fast dot clock rate or a
594  * divided-down version of it.
595  */
596 /* m1 is reserved as 0 in Pineview, n is a ring counter */
597 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
598 {
599         clock->m = clock->m2 + 2;
600         clock->p = clock->p1 * clock->p2;
601         if (WARN_ON(clock->n == 0 || clock->p == 0))
602                 return 0;
603         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
604         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
605
606         return clock->dot;
607 }
608
609 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
610 {
611         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
612 }
613
614 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
615 {
616         clock->m = i9xx_dpll_compute_m(clock);
617         clock->p = clock->p1 * clock->p2;
618         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
619                 return 0;
620         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
621         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
622
623         return clock->dot;
624 }
625
626 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
627 {
628         clock->m = clock->m1 * clock->m2;
629         clock->p = clock->p1 * clock->p2;
630         if (WARN_ON(clock->n == 0 || clock->p == 0))
631                 return 0;
632         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
633         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
634
635         return clock->dot / 5;
636 }
637
638 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
639 {
640         clock->m = clock->m1 * clock->m2;
641         clock->p = clock->p1 * clock->p2;
642         if (WARN_ON(clock->n == 0 || clock->p == 0))
643                 return 0;
644         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
645                         clock->n << 22);
646         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
647
648         return clock->dot / 5;
649 }
650
651 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
652 /**
653  * Returns whether the given set of divisors are valid for a given refclk with
654  * the given connectors.
655  */
656
657 static bool intel_PLL_is_valid(struct drm_device *dev,
658                                const intel_limit_t *limit,
659                                const intel_clock_t *clock)
660 {
661         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
662                 INTELPllInvalid("n out of range\n");
663         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
664                 INTELPllInvalid("p1 out of range\n");
665         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
666                 INTELPllInvalid("m2 out of range\n");
667         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
668                 INTELPllInvalid("m1 out of range\n");
669
670         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
671                 if (clock->m1 <= clock->m2)
672                         INTELPllInvalid("m1 <= m2\n");
673
674         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
675                 if (clock->p < limit->p.min || limit->p.max < clock->p)
676                         INTELPllInvalid("p out of range\n");
677                 if (clock->m < limit->m.min || limit->m.max < clock->m)
678                         INTELPllInvalid("m out of range\n");
679         }
680
681         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
682                 INTELPllInvalid("vco out of range\n");
683         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
684          * connector, etc., rather than just a single range.
685          */
686         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
687                 INTELPllInvalid("dot out of range\n");
688
689         return true;
690 }
691
692 static int
693 i9xx_select_p2_div(const intel_limit_t *limit,
694                    const struct intel_crtc_state *crtc_state,
695                    int target)
696 {
697         struct drm_device *dev = crtc_state->base.crtc->dev;
698
699         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
700                 /*
701                  * For LVDS just rely on its current settings for dual-channel.
702                  * We haven't figured out how to reliably set up different
703                  * single/dual channel state, if we even can.
704                  */
705                 if (intel_is_dual_link_lvds(dev))
706                         return limit->p2.p2_fast;
707                 else
708                         return limit->p2.p2_slow;
709         } else {
710                 if (target < limit->p2.dot_limit)
711                         return limit->p2.p2_slow;
712                 else
713                         return limit->p2.p2_fast;
714         }
715 }
716
717 static bool
718 i9xx_find_best_dpll(const intel_limit_t *limit,
719                     struct intel_crtc_state *crtc_state,
720                     int target, int refclk, intel_clock_t *match_clock,
721                     intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc_state->base.crtc->dev;
724         intel_clock_t clock;
725         int err = target;
726
727         memset(best_clock, 0, sizeof(*best_clock));
728
729         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
730
731         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
732              clock.m1++) {
733                 for (clock.m2 = limit->m2.min;
734                      clock.m2 <= limit->m2.max; clock.m2++) {
735                         if (clock.m2 >= clock.m1)
736                                 break;
737                         for (clock.n = limit->n.min;
738                              clock.n <= limit->n.max; clock.n++) {
739                                 for (clock.p1 = limit->p1.min;
740                                         clock.p1 <= limit->p1.max; clock.p1++) {
741                                         int this_err;
742
743                                         i9xx_calc_dpll_params(refclk, &clock);
744                                         if (!intel_PLL_is_valid(dev, limit,
745                                                                 &clock))
746                                                 continue;
747                                         if (match_clock &&
748                                             clock.p != match_clock->p)
749                                                 continue;
750
751                                         this_err = abs(clock.dot - target);
752                                         if (this_err < err) {
753                                                 *best_clock = clock;
754                                                 err = this_err;
755                                         }
756                                 }
757                         }
758                 }
759         }
760
761         return (err != target);
762 }
763
764 static bool
765 pnv_find_best_dpll(const intel_limit_t *limit,
766                    struct intel_crtc_state *crtc_state,
767                    int target, int refclk, intel_clock_t *match_clock,
768                    intel_clock_t *best_clock)
769 {
770         struct drm_device *dev = crtc_state->base.crtc->dev;
771         intel_clock_t clock;
772         int err = target;
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779              clock.m1++) {
780                 for (clock.m2 = limit->m2.min;
781                      clock.m2 <= limit->m2.max; clock.m2++) {
782                         for (clock.n = limit->n.min;
783                              clock.n <= limit->n.max; clock.n++) {
784                                 for (clock.p1 = limit->p1.min;
785                                         clock.p1 <= limit->p1.max; clock.p1++) {
786                                         int this_err;
787
788                                         pnv_calc_dpll_params(refclk, &clock);
789                                         if (!intel_PLL_is_valid(dev, limit,
790                                                                 &clock))
791                                                 continue;
792                                         if (match_clock &&
793                                             clock.p != match_clock->p)
794                                                 continue;
795
796                                         this_err = abs(clock.dot - target);
797                                         if (this_err < err) {
798                                                 *best_clock = clock;
799                                                 err = this_err;
800                                         }
801                                 }
802                         }
803                 }
804         }
805
806         return (err != target);
807 }
808
809 static bool
810 g4x_find_best_dpll(const intel_limit_t *limit,
811                    struct intel_crtc_state *crtc_state,
812                    int target, int refclk, intel_clock_t *match_clock,
813                    intel_clock_t *best_clock)
814 {
815         struct drm_device *dev = crtc_state->base.crtc->dev;
816         intel_clock_t clock;
817         int max_n;
818         bool found = false;
819         /* approximately equals target * 0.00585 */
820         int err_most = (target >> 8) + (target >> 9);
821
822         memset(best_clock, 0, sizeof(*best_clock));
823
824         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
825
826         max_n = limit->n.max;
827         /* based on hardware requirement, prefer smaller n to precision */
828         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
829                 /* based on hardware requirement, prefere larger m1,m2 */
830                 for (clock.m1 = limit->m1.max;
831                      clock.m1 >= limit->m1.min; clock.m1--) {
832                         for (clock.m2 = limit->m2.max;
833                              clock.m2 >= limit->m2.min; clock.m2--) {
834                                 for (clock.p1 = limit->p1.max;
835                                      clock.p1 >= limit->p1.min; clock.p1--) {
836                                         int this_err;
837
838                                         i9xx_calc_dpll_params(refclk, &clock);
839                                         if (!intel_PLL_is_valid(dev, limit,
840                                                                 &clock))
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err_most) {
845                                                 *best_clock = clock;
846                                                 err_most = this_err;
847                                                 max_n = clock.n;
848                                                 found = true;
849                                         }
850                                 }
851                         }
852                 }
853         }
854         return found;
855 }
856
857 /*
858  * Check if the calculated PLL configuration is more optimal compared to the
859  * best configuration and error found so far. Return the calculated error.
860  */
861 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
862                                const intel_clock_t *calculated_clock,
863                                const intel_clock_t *best_clock,
864                                unsigned int best_error_ppm,
865                                unsigned int *error_ppm)
866 {
867         /*
868          * For CHV ignore the error and consider only the P value.
869          * Prefer a bigger P value based on HW requirements.
870          */
871         if (IS_CHERRYVIEW(dev)) {
872                 *error_ppm = 0;
873
874                 return calculated_clock->p > best_clock->p;
875         }
876
877         if (WARN_ON_ONCE(!target_freq))
878                 return false;
879
880         *error_ppm = div_u64(1000000ULL *
881                                 abs(target_freq - calculated_clock->dot),
882                              target_freq);
883         /*
884          * Prefer a better P value over a better (smaller) error if the error
885          * is small. Ensure this preference for future configurations too by
886          * setting the error to 0.
887          */
888         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
889                 *error_ppm = 0;
890
891                 return true;
892         }
893
894         return *error_ppm + 10 < best_error_ppm;
895 }
896
897 static bool
898 vlv_find_best_dpll(const intel_limit_t *limit,
899                    struct intel_crtc_state *crtc_state,
900                    int target, int refclk, intel_clock_t *match_clock,
901                    intel_clock_t *best_clock)
902 {
903         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
904         struct drm_device *dev = crtc->base.dev;
905         intel_clock_t clock;
906         unsigned int bestppm = 1000000;
907         /* min update 19.2 MHz */
908         int max_n = min(limit->n.max, refclk / 19200);
909         bool found = false;
910
911         target *= 5; /* fast clock */
912
913         memset(best_clock, 0, sizeof(*best_clock));
914
915         /* based on hardware requirement, prefer smaller n to precision */
916         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
917                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
918                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
919                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
920                                 clock.p = clock.p1 * clock.p2;
921                                 /* based on hardware requirement, prefer bigger m1,m2 values */
922                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
923                                         unsigned int ppm;
924
925                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
926                                                                      refclk * clock.m1);
927
928                                         vlv_calc_dpll_params(refclk, &clock);
929
930                                         if (!intel_PLL_is_valid(dev, limit,
931                                                                 &clock))
932                                                 continue;
933
934                                         if (!vlv_PLL_is_optimal(dev, target,
935                                                                 &clock,
936                                                                 best_clock,
937                                                                 bestppm, &ppm))
938                                                 continue;
939
940                                         *best_clock = clock;
941                                         bestppm = ppm;
942                                         found = true;
943                                 }
944                         }
945                 }
946         }
947
948         return found;
949 }
950
951 static bool
952 chv_find_best_dpll(const intel_limit_t *limit,
953                    struct intel_crtc_state *crtc_state,
954                    int target, int refclk, intel_clock_t *match_clock,
955                    intel_clock_t *best_clock)
956 {
957         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
958         struct drm_device *dev = crtc->base.dev;
959         unsigned int best_error_ppm;
960         intel_clock_t clock;
961         uint64_t m2;
962         int found = false;
963
964         memset(best_clock, 0, sizeof(*best_clock));
965         best_error_ppm = 1000000;
966
967         /*
968          * Based on hardware doc, the n always set to 1, and m1 always
969          * set to 2.  If requires to support 200Mhz refclk, we need to
970          * revisit this because n may not 1 anymore.
971          */
972         clock.n = 1, clock.m1 = 2;
973         target *= 5;    /* fast clock */
974
975         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
976                 for (clock.p2 = limit->p2.p2_fast;
977                                 clock.p2 >= limit->p2.p2_slow;
978                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
979                         unsigned int error_ppm;
980
981                         clock.p = clock.p1 * clock.p2;
982
983                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
984                                         clock.n) << 22, refclk * clock.m1);
985
986                         if (m2 > INT_MAX/clock.m1)
987                                 continue;
988
989                         clock.m2 = m2;
990
991                         chv_calc_dpll_params(refclk, &clock);
992
993                         if (!intel_PLL_is_valid(dev, limit, &clock))
994                                 continue;
995
996                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
997                                                 best_error_ppm, &error_ppm))
998                                 continue;
999
1000                         *best_clock = clock;
1001                         best_error_ppm = error_ppm;
1002                         found = true;
1003                 }
1004         }
1005
1006         return found;
1007 }
1008
1009 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1010                         intel_clock_t *best_clock)
1011 {
1012         int refclk = i9xx_get_refclk(crtc_state, 0);
1013
1014         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1015                                   target_clock, refclk, NULL, best_clock);
1016 }
1017
1018 bool intel_crtc_active(struct drm_crtc *crtc)
1019 {
1020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1021
1022         /* Be paranoid as we can arrive here with only partial
1023          * state retrieved from the hardware during setup.
1024          *
1025          * We can ditch the adjusted_mode.crtc_clock check as soon
1026          * as Haswell has gained clock readout/fastboot support.
1027          *
1028          * We can ditch the crtc->primary->fb check as soon as we can
1029          * properly reconstruct framebuffers.
1030          *
1031          * FIXME: The intel_crtc->active here should be switched to
1032          * crtc->state->active once we have proper CRTC states wired up
1033          * for atomic.
1034          */
1035         return intel_crtc->active && crtc->primary->state->fb &&
1036                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1037 }
1038
1039 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1040                                              enum pipe pipe)
1041 {
1042         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1044
1045         return intel_crtc->config->cpu_transcoder;
1046 }
1047
1048 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1049 {
1050         struct drm_i915_private *dev_priv = dev->dev_private;
1051         u32 reg = PIPEDSL(pipe);
1052         u32 line1, line2;
1053         u32 line_mask;
1054
1055         if (IS_GEN2(dev))
1056                 line_mask = DSL_LINEMASK_GEN2;
1057         else
1058                 line_mask = DSL_LINEMASK_GEN3;
1059
1060         line1 = I915_READ(reg) & line_mask;
1061         msleep(5);
1062         line2 = I915_READ(reg) & line_mask;
1063
1064         return line1 == line2;
1065 }
1066
1067 /*
1068  * intel_wait_for_pipe_off - wait for pipe to turn off
1069  * @crtc: crtc whose pipe to wait for
1070  *
1071  * After disabling a pipe, we can't wait for vblank in the usual way,
1072  * spinning on the vblank interrupt status bit, since we won't actually
1073  * see an interrupt when the pipe is disabled.
1074  *
1075  * On Gen4 and above:
1076  *   wait for the pipe register state bit to turn off
1077  *
1078  * Otherwise:
1079  *   wait for the display line value to settle (it usually
1080  *   ends up stopping at the start of the next frame).
1081  *
1082  */
1083 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1084 {
1085         struct drm_device *dev = crtc->base.dev;
1086         struct drm_i915_private *dev_priv = dev->dev_private;
1087         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1088         enum pipe pipe = crtc->pipe;
1089
1090         if (INTEL_INFO(dev)->gen >= 4) {
1091                 int reg = PIPECONF(cpu_transcoder);
1092
1093                 /* Wait for the Pipe State to go off */
1094                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1095                              100))
1096                         WARN(1, "pipe_off wait timed out\n");
1097         } else {
1098                 /* Wait for the display line to settle */
1099                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1100                         WARN(1, "pipe_off wait timed out\n");
1101         }
1102 }
1103
1104 static const char *state_string(bool enabled)
1105 {
1106         return enabled ? "on" : "off";
1107 }
1108
1109 /* Only for pre-ILK configs */
1110 void assert_pll(struct drm_i915_private *dev_priv,
1111                 enum pipe pipe, bool state)
1112 {
1113         int reg;
1114         u32 val;
1115         bool cur_state;
1116
1117         reg = DPLL(pipe);
1118         val = I915_READ(reg);
1119         cur_state = !!(val & DPLL_VCO_ENABLE);
1120         I915_STATE_WARN(cur_state != state,
1121              "PLL state assertion failure (expected %s, current %s)\n",
1122              state_string(state), state_string(cur_state));
1123 }
1124
1125 /* XXX: the dsi pll is shared between MIPI DSI ports */
1126 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1127 {
1128         u32 val;
1129         bool cur_state;
1130
1131         mutex_lock(&dev_priv->sb_lock);
1132         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1133         mutex_unlock(&dev_priv->sb_lock);
1134
1135         cur_state = val & DSI_PLL_VCO_EN;
1136         I915_STATE_WARN(cur_state != state,
1137              "DSI PLL state assertion failure (expected %s, current %s)\n",
1138              state_string(state), state_string(cur_state));
1139 }
1140 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1141 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1142
1143 struct intel_shared_dpll *
1144 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1145 {
1146         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1147
1148         if (crtc->config->shared_dpll < 0)
1149                 return NULL;
1150
1151         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1152 }
1153
1154 /* For ILK+ */
1155 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1156                         struct intel_shared_dpll *pll,
1157                         bool state)
1158 {
1159         bool cur_state;
1160         struct intel_dpll_hw_state hw_state;
1161
1162         if (WARN (!pll,
1163                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1164                 return;
1165
1166         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1167         I915_STATE_WARN(cur_state != state,
1168              "%s assertion failure (expected %s, current %s)\n",
1169              pll->name, state_string(state), state_string(cur_state));
1170 }
1171
1172 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1173                           enum pipe pipe, bool state)
1174 {
1175         int reg;
1176         u32 val;
1177         bool cur_state;
1178         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1179                                                                       pipe);
1180
1181         if (HAS_DDI(dev_priv->dev)) {
1182                 /* DDI does not have a specific FDI_TX register */
1183                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1184                 val = I915_READ(reg);
1185                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1186         } else {
1187                 reg = FDI_TX_CTL(pipe);
1188                 val = I915_READ(reg);
1189                 cur_state = !!(val & FDI_TX_ENABLE);
1190         }
1191         I915_STATE_WARN(cur_state != state,
1192              "FDI TX state assertion failure (expected %s, current %s)\n",
1193              state_string(state), state_string(cur_state));
1194 }
1195 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1196 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1197
1198 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         int reg;
1202         u32 val;
1203         bool cur_state;
1204
1205         reg = FDI_RX_CTL(pipe);
1206         val = I915_READ(reg);
1207         cur_state = !!(val & FDI_RX_ENABLE);
1208         I915_STATE_WARN(cur_state != state,
1209              "FDI RX state assertion failure (expected %s, current %s)\n",
1210              state_string(state), state_string(cur_state));
1211 }
1212 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1213 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1214
1215 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1216                                       enum pipe pipe)
1217 {
1218         int reg;
1219         u32 val;
1220
1221         /* ILK FDI PLL is always enabled */
1222         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1223                 return;
1224
1225         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1226         if (HAS_DDI(dev_priv->dev))
1227                 return;
1228
1229         reg = FDI_TX_CTL(pipe);
1230         val = I915_READ(reg);
1231         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1232 }
1233
1234 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1235                        enum pipe pipe, bool state)
1236 {
1237         int reg;
1238         u32 val;
1239         bool cur_state;
1240
1241         reg = FDI_RX_CTL(pipe);
1242         val = I915_READ(reg);
1243         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1244         I915_STATE_WARN(cur_state != state,
1245              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1246              state_string(state), state_string(cur_state));
1247 }
1248
1249 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1250                            enum pipe pipe)
1251 {
1252         struct drm_device *dev = dev_priv->dev;
1253         int pp_reg;
1254         u32 val;
1255         enum pipe panel_pipe = PIPE_A;
1256         bool locked = true;
1257
1258         if (WARN_ON(HAS_DDI(dev)))
1259                 return;
1260
1261         if (HAS_PCH_SPLIT(dev)) {
1262                 u32 port_sel;
1263
1264                 pp_reg = PCH_PP_CONTROL;
1265                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1266
1267                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1268                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1269                         panel_pipe = PIPE_B;
1270                 /* XXX: else fix for eDP */
1271         } else if (IS_VALLEYVIEW(dev)) {
1272                 /* presumably write lock depends on pipe, not port select */
1273                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1274                 panel_pipe = pipe;
1275         } else {
1276                 pp_reg = PP_CONTROL;
1277                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1278                         panel_pipe = PIPE_B;
1279         }
1280
1281         val = I915_READ(pp_reg);
1282         if (!(val & PANEL_POWER_ON) ||
1283             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1284                 locked = false;
1285
1286         I915_STATE_WARN(panel_pipe == pipe && locked,
1287              "panel assertion failure, pipe %c regs locked\n",
1288              pipe_name(pipe));
1289 }
1290
1291 static void assert_cursor(struct drm_i915_private *dev_priv,
1292                           enum pipe pipe, bool state)
1293 {
1294         struct drm_device *dev = dev_priv->dev;
1295         bool cur_state;
1296
1297         if (IS_845G(dev) || IS_I865G(dev))
1298                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1299         else
1300                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1301
1302         I915_STATE_WARN(cur_state != state,
1303              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1304              pipe_name(pipe), state_string(state), state_string(cur_state));
1305 }
1306 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1307 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1308
1309 void assert_pipe(struct drm_i915_private *dev_priv,
1310                  enum pipe pipe, bool state)
1311 {
1312         int reg;
1313         u32 val;
1314         bool cur_state;
1315         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1316                                                                       pipe);
1317
1318         /* if we need the pipe quirk it must be always on */
1319         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1320             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1321                 state = true;
1322
1323         if (!intel_display_power_is_enabled(dev_priv,
1324                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1325                 cur_state = false;
1326         } else {
1327                 reg = PIPECONF(cpu_transcoder);
1328                 val = I915_READ(reg);
1329                 cur_state = !!(val & PIPECONF_ENABLE);
1330         }
1331
1332         I915_STATE_WARN(cur_state != state,
1333              "pipe %c assertion failure (expected %s, current %s)\n",
1334              pipe_name(pipe), state_string(state), state_string(cur_state));
1335 }
1336
1337 static void assert_plane(struct drm_i915_private *dev_priv,
1338                          enum plane plane, bool state)
1339 {
1340         int reg;
1341         u32 val;
1342         bool cur_state;
1343
1344         reg = DSPCNTR(plane);
1345         val = I915_READ(reg);
1346         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1347         I915_STATE_WARN(cur_state != state,
1348              "plane %c assertion failure (expected %s, current %s)\n",
1349              plane_name(plane), state_string(state), state_string(cur_state));
1350 }
1351
1352 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1353 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1354
1355 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1356                                    enum pipe pipe)
1357 {
1358         struct drm_device *dev = dev_priv->dev;
1359         int reg, i;
1360         u32 val;
1361         int cur_pipe;
1362
1363         /* Primary planes are fixed to pipes on gen4+ */
1364         if (INTEL_INFO(dev)->gen >= 4) {
1365                 reg = DSPCNTR(pipe);
1366                 val = I915_READ(reg);
1367                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1368                      "plane %c assertion failure, should be disabled but not\n",
1369                      plane_name(pipe));
1370                 return;
1371         }
1372
1373         /* Need to check both planes against the pipe */
1374         for_each_pipe(dev_priv, i) {
1375                 reg = DSPCNTR(i);
1376                 val = I915_READ(reg);
1377                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1378                         DISPPLANE_SEL_PIPE_SHIFT;
1379                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1380                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1381                      plane_name(i), pipe_name(pipe));
1382         }
1383 }
1384
1385 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1386                                     enum pipe pipe)
1387 {
1388         struct drm_device *dev = dev_priv->dev;
1389         int reg, sprite;
1390         u32 val;
1391
1392         if (INTEL_INFO(dev)->gen >= 9) {
1393                 for_each_sprite(dev_priv, pipe, sprite) {
1394                         val = I915_READ(PLANE_CTL(pipe, sprite));
1395                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1396                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1397                              sprite, pipe_name(pipe));
1398                 }
1399         } else if (IS_VALLEYVIEW(dev)) {
1400                 for_each_sprite(dev_priv, pipe, sprite) {
1401                         reg = SPCNTR(pipe, sprite);
1402                         val = I915_READ(reg);
1403                         I915_STATE_WARN(val & SP_ENABLE,
1404                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1405                              sprite_name(pipe, sprite), pipe_name(pipe));
1406                 }
1407         } else if (INTEL_INFO(dev)->gen >= 7) {
1408                 reg = SPRCTL(pipe);
1409                 val = I915_READ(reg);
1410                 I915_STATE_WARN(val & SPRITE_ENABLE,
1411                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1412                      plane_name(pipe), pipe_name(pipe));
1413         } else if (INTEL_INFO(dev)->gen >= 5) {
1414                 reg = DVSCNTR(pipe);
1415                 val = I915_READ(reg);
1416                 I915_STATE_WARN(val & DVS_ENABLE,
1417                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1418                      plane_name(pipe), pipe_name(pipe));
1419         }
1420 }
1421
1422 static void assert_vblank_disabled(struct drm_crtc *crtc)
1423 {
1424         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1425                 drm_crtc_vblank_put(crtc);
1426 }
1427
1428 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1429 {
1430         u32 val;
1431         bool enabled;
1432
1433         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1434
1435         val = I915_READ(PCH_DREF_CONTROL);
1436         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1437                             DREF_SUPERSPREAD_SOURCE_MASK));
1438         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1439 }
1440
1441 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1442                                            enum pipe pipe)
1443 {
1444         int reg;
1445         u32 val;
1446         bool enabled;
1447
1448         reg = PCH_TRANSCONF(pipe);
1449         val = I915_READ(reg);
1450         enabled = !!(val & TRANS_ENABLE);
1451         I915_STATE_WARN(enabled,
1452              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1453              pipe_name(pipe));
1454 }
1455
1456 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1457                             enum pipe pipe, u32 port_sel, u32 val)
1458 {
1459         if ((val & DP_PORT_EN) == 0)
1460                 return false;
1461
1462         if (HAS_PCH_CPT(dev_priv->dev)) {
1463                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1464                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1465                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1466                         return false;
1467         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1468                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1469                         return false;
1470         } else {
1471                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1472                         return false;
1473         }
1474         return true;
1475 }
1476
1477 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1478                               enum pipe pipe, u32 val)
1479 {
1480         if ((val & SDVO_ENABLE) == 0)
1481                 return false;
1482
1483         if (HAS_PCH_CPT(dev_priv->dev)) {
1484                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1485                         return false;
1486         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1487                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1488                         return false;
1489         } else {
1490                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1491                         return false;
1492         }
1493         return true;
1494 }
1495
1496 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1497                               enum pipe pipe, u32 val)
1498 {
1499         if ((val & LVDS_PORT_EN) == 0)
1500                 return false;
1501
1502         if (HAS_PCH_CPT(dev_priv->dev)) {
1503                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1504                         return false;
1505         } else {
1506                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1507                         return false;
1508         }
1509         return true;
1510 }
1511
1512 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1513                               enum pipe pipe, u32 val)
1514 {
1515         if ((val & ADPA_DAC_ENABLE) == 0)
1516                 return false;
1517         if (HAS_PCH_CPT(dev_priv->dev)) {
1518                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1519                         return false;
1520         } else {
1521                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1522                         return false;
1523         }
1524         return true;
1525 }
1526
1527 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1528                                    enum pipe pipe, int reg, u32 port_sel)
1529 {
1530         u32 val = I915_READ(reg);
1531         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1532              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1533              reg, pipe_name(pipe));
1534
1535         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1536              && (val & DP_PIPEB_SELECT),
1537              "IBX PCH dp port still using transcoder B\n");
1538 }
1539
1540 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1541                                      enum pipe pipe, int reg)
1542 {
1543         u32 val = I915_READ(reg);
1544         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1545              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1546              reg, pipe_name(pipe));
1547
1548         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1549              && (val & SDVO_PIPE_B_SELECT),
1550              "IBX PCH hdmi port still using transcoder B\n");
1551 }
1552
1553 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1554                                       enum pipe pipe)
1555 {
1556         int reg;
1557         u32 val;
1558
1559         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1560         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1561         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1562
1563         reg = PCH_ADPA;
1564         val = I915_READ(reg);
1565         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1566              "PCH VGA enabled on transcoder %c, should be disabled\n",
1567              pipe_name(pipe));
1568
1569         reg = PCH_LVDS;
1570         val = I915_READ(reg);
1571         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1572              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1573              pipe_name(pipe));
1574
1575         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1576         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1577         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1578 }
1579
1580 static void vlv_enable_pll(struct intel_crtc *crtc,
1581                            const struct intel_crtc_state *pipe_config)
1582 {
1583         struct drm_device *dev = crtc->base.dev;
1584         struct drm_i915_private *dev_priv = dev->dev_private;
1585         int reg = DPLL(crtc->pipe);
1586         u32 dpll = pipe_config->dpll_hw_state.dpll;
1587
1588         assert_pipe_disabled(dev_priv, crtc->pipe);
1589
1590         /* No really, not for ILK+ */
1591         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1592
1593         /* PLL is protected by panel, make sure we can write it */
1594         if (IS_MOBILE(dev_priv->dev))
1595                 assert_panel_unlocked(dev_priv, crtc->pipe);
1596
1597         I915_WRITE(reg, dpll);
1598         POSTING_READ(reg);
1599         udelay(150);
1600
1601         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1602                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1603
1604         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1605         POSTING_READ(DPLL_MD(crtc->pipe));
1606
1607         /* We do this three times for luck */
1608         I915_WRITE(reg, dpll);
1609         POSTING_READ(reg);
1610         udelay(150); /* wait for warmup */
1611         I915_WRITE(reg, dpll);
1612         POSTING_READ(reg);
1613         udelay(150); /* wait for warmup */
1614         I915_WRITE(reg, dpll);
1615         POSTING_READ(reg);
1616         udelay(150); /* wait for warmup */
1617 }
1618
1619 static void chv_enable_pll(struct intel_crtc *crtc,
1620                            const struct intel_crtc_state *pipe_config)
1621 {
1622         struct drm_device *dev = crtc->base.dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         int pipe = crtc->pipe;
1625         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1626         u32 tmp;
1627
1628         assert_pipe_disabled(dev_priv, crtc->pipe);
1629
1630         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1631
1632         mutex_lock(&dev_priv->sb_lock);
1633
1634         /* Enable back the 10bit clock to display controller */
1635         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1636         tmp |= DPIO_DCLKP_EN;
1637         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1638
1639         mutex_unlock(&dev_priv->sb_lock);
1640
1641         /*
1642          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1643          */
1644         udelay(1);
1645
1646         /* Enable PLL */
1647         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1648
1649         /* Check PLL is locked */
1650         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1651                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1652
1653         /* not sure when this should be written */
1654         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1655         POSTING_READ(DPLL_MD(pipe));
1656 }
1657
1658 static int intel_num_dvo_pipes(struct drm_device *dev)
1659 {
1660         struct intel_crtc *crtc;
1661         int count = 0;
1662
1663         for_each_intel_crtc(dev, crtc)
1664                 count += crtc->base.state->active &&
1665                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1666
1667         return count;
1668 }
1669
1670 static void i9xx_enable_pll(struct intel_crtc *crtc)
1671 {
1672         struct drm_device *dev = crtc->base.dev;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674         int reg = DPLL(crtc->pipe);
1675         u32 dpll = crtc->config->dpll_hw_state.dpll;
1676
1677         assert_pipe_disabled(dev_priv, crtc->pipe);
1678
1679         /* No really, not for ILK+ */
1680         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1681
1682         /* PLL is protected by panel, make sure we can write it */
1683         if (IS_MOBILE(dev) && !IS_I830(dev))
1684                 assert_panel_unlocked(dev_priv, crtc->pipe);
1685
1686         /* Enable DVO 2x clock on both PLLs if necessary */
1687         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1688                 /*
1689                  * It appears to be important that we don't enable this
1690                  * for the current pipe before otherwise configuring the
1691                  * PLL. No idea how this should be handled if multiple
1692                  * DVO outputs are enabled simultaneosly.
1693                  */
1694                 dpll |= DPLL_DVO_2X_MODE;
1695                 I915_WRITE(DPLL(!crtc->pipe),
1696                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1697         }
1698
1699         /* Wait for the clocks to stabilize. */
1700         POSTING_READ(reg);
1701         udelay(150);
1702
1703         if (INTEL_INFO(dev)->gen >= 4) {
1704                 I915_WRITE(DPLL_MD(crtc->pipe),
1705                            crtc->config->dpll_hw_state.dpll_md);
1706         } else {
1707                 /* The pixel multiplier can only be updated once the
1708                  * DPLL is enabled and the clocks are stable.
1709                  *
1710                  * So write it again.
1711                  */
1712                 I915_WRITE(reg, dpll);
1713         }
1714
1715         /* We do this three times for luck */
1716         I915_WRITE(reg, dpll);
1717         POSTING_READ(reg);
1718         udelay(150); /* wait for warmup */
1719         I915_WRITE(reg, dpll);
1720         POSTING_READ(reg);
1721         udelay(150); /* wait for warmup */
1722         I915_WRITE(reg, dpll);
1723         POSTING_READ(reg);
1724         udelay(150); /* wait for warmup */
1725 }
1726
1727 /**
1728  * i9xx_disable_pll - disable a PLL
1729  * @dev_priv: i915 private structure
1730  * @pipe: pipe PLL to disable
1731  *
1732  * Disable the PLL for @pipe, making sure the pipe is off first.
1733  *
1734  * Note!  This is for pre-ILK only.
1735  */
1736 static void i9xx_disable_pll(struct intel_crtc *crtc)
1737 {
1738         struct drm_device *dev = crtc->base.dev;
1739         struct drm_i915_private *dev_priv = dev->dev_private;
1740         enum pipe pipe = crtc->pipe;
1741
1742         /* Disable DVO 2x clock on both PLLs if necessary */
1743         if (IS_I830(dev) &&
1744             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1745             !intel_num_dvo_pipes(dev)) {
1746                 I915_WRITE(DPLL(PIPE_B),
1747                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1748                 I915_WRITE(DPLL(PIPE_A),
1749                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1750         }
1751
1752         /* Don't disable pipe or pipe PLLs if needed */
1753         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1754             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1755                 return;
1756
1757         /* Make sure the pipe isn't still relying on us */
1758         assert_pipe_disabled(dev_priv, pipe);
1759
1760         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1761         POSTING_READ(DPLL(pipe));
1762 }
1763
1764 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1765 {
1766         u32 val;
1767
1768         /* Make sure the pipe isn't still relying on us */
1769         assert_pipe_disabled(dev_priv, pipe);
1770
1771         /*
1772          * Leave integrated clock source and reference clock enabled for pipe B.
1773          * The latter is needed for VGA hotplug / manual detection.
1774          */
1775         val = DPLL_VGA_MODE_DIS;
1776         if (pipe == PIPE_B)
1777                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1778         I915_WRITE(DPLL(pipe), val);
1779         POSTING_READ(DPLL(pipe));
1780
1781 }
1782
1783 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1784 {
1785         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1786         u32 val;
1787
1788         /* Make sure the pipe isn't still relying on us */
1789         assert_pipe_disabled(dev_priv, pipe);
1790
1791         /* Set PLL en = 0 */
1792         val = DPLL_SSC_REF_CLK_CHV |
1793                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1794         if (pipe != PIPE_A)
1795                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1796         I915_WRITE(DPLL(pipe), val);
1797         POSTING_READ(DPLL(pipe));
1798
1799         mutex_lock(&dev_priv->sb_lock);
1800
1801         /* Disable 10bit clock to display controller */
1802         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1803         val &= ~DPIO_DCLKP_EN;
1804         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1805
1806         mutex_unlock(&dev_priv->sb_lock);
1807 }
1808
1809 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1810                          struct intel_digital_port *dport,
1811                          unsigned int expected_mask)
1812 {
1813         u32 port_mask;
1814         int dpll_reg;
1815
1816         switch (dport->port) {
1817         case PORT_B:
1818                 port_mask = DPLL_PORTB_READY_MASK;
1819                 dpll_reg = DPLL(0);
1820                 break;
1821         case PORT_C:
1822                 port_mask = DPLL_PORTC_READY_MASK;
1823                 dpll_reg = DPLL(0);
1824                 expected_mask <<= 4;
1825                 break;
1826         case PORT_D:
1827                 port_mask = DPLL_PORTD_READY_MASK;
1828                 dpll_reg = DPIO_PHY_STATUS;
1829                 break;
1830         default:
1831                 BUG();
1832         }
1833
1834         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1835                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1836                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1837 }
1838
1839 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1840 {
1841         struct drm_device *dev = crtc->base.dev;
1842         struct drm_i915_private *dev_priv = dev->dev_private;
1843         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1844
1845         if (WARN_ON(pll == NULL))
1846                 return;
1847
1848         WARN_ON(!pll->config.crtc_mask);
1849         if (pll->active == 0) {
1850                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1851                 WARN_ON(pll->on);
1852                 assert_shared_dpll_disabled(dev_priv, pll);
1853
1854                 pll->mode_set(dev_priv, pll);
1855         }
1856 }
1857
1858 /**
1859  * intel_enable_shared_dpll - enable PCH PLL
1860  * @dev_priv: i915 private structure
1861  * @pipe: pipe PLL to enable
1862  *
1863  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1864  * drives the transcoder clock.
1865  */
1866 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1867 {
1868         struct drm_device *dev = crtc->base.dev;
1869         struct drm_i915_private *dev_priv = dev->dev_private;
1870         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1871
1872         if (WARN_ON(pll == NULL))
1873                 return;
1874
1875         if (WARN_ON(pll->config.crtc_mask == 0))
1876                 return;
1877
1878         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1879                       pll->name, pll->active, pll->on,
1880                       crtc->base.base.id);
1881
1882         if (pll->active++) {
1883                 WARN_ON(!pll->on);
1884                 assert_shared_dpll_enabled(dev_priv, pll);
1885                 return;
1886         }
1887         WARN_ON(pll->on);
1888
1889         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1890
1891         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1892         pll->enable(dev_priv, pll);
1893         pll->on = true;
1894 }
1895
1896 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1897 {
1898         struct drm_device *dev = crtc->base.dev;
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1901
1902         /* PCH only available on ILK+ */
1903         if (INTEL_INFO(dev)->gen < 5)
1904                 return;
1905
1906         if (pll == NULL)
1907                 return;
1908
1909         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1910                 return;
1911
1912         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1913                       pll->name, pll->active, pll->on,
1914                       crtc->base.base.id);
1915
1916         if (WARN_ON(pll->active == 0)) {
1917                 assert_shared_dpll_disabled(dev_priv, pll);
1918                 return;
1919         }
1920
1921         assert_shared_dpll_enabled(dev_priv, pll);
1922         WARN_ON(!pll->on);
1923         if (--pll->active)
1924                 return;
1925
1926         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1927         pll->disable(dev_priv, pll);
1928         pll->on = false;
1929
1930         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1931 }
1932
1933 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1934                                            enum pipe pipe)
1935 {
1936         struct drm_device *dev = dev_priv->dev;
1937         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1938         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1939         uint32_t reg, val, pipeconf_val;
1940
1941         /* PCH only available on ILK+ */
1942         BUG_ON(!HAS_PCH_SPLIT(dev));
1943
1944         /* Make sure PCH DPLL is enabled */
1945         assert_shared_dpll_enabled(dev_priv,
1946                                    intel_crtc_to_shared_dpll(intel_crtc));
1947
1948         /* FDI must be feeding us bits for PCH ports */
1949         assert_fdi_tx_enabled(dev_priv, pipe);
1950         assert_fdi_rx_enabled(dev_priv, pipe);
1951
1952         if (HAS_PCH_CPT(dev)) {
1953                 /* Workaround: Set the timing override bit before enabling the
1954                  * pch transcoder. */
1955                 reg = TRANS_CHICKEN2(pipe);
1956                 val = I915_READ(reg);
1957                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1958                 I915_WRITE(reg, val);
1959         }
1960
1961         reg = PCH_TRANSCONF(pipe);
1962         val = I915_READ(reg);
1963         pipeconf_val = I915_READ(PIPECONF(pipe));
1964
1965         if (HAS_PCH_IBX(dev_priv->dev)) {
1966                 /*
1967                  * Make the BPC in transcoder be consistent with
1968                  * that in pipeconf reg. For HDMI we must use 8bpc
1969                  * here for both 8bpc and 12bpc.
1970                  */
1971                 val &= ~PIPECONF_BPC_MASK;
1972                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1973                         val |= PIPECONF_8BPC;
1974                 else
1975                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1976         }
1977
1978         val &= ~TRANS_INTERLACE_MASK;
1979         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1980                 if (HAS_PCH_IBX(dev_priv->dev) &&
1981                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1982                         val |= TRANS_LEGACY_INTERLACED_ILK;
1983                 else
1984                         val |= TRANS_INTERLACED;
1985         else
1986                 val |= TRANS_PROGRESSIVE;
1987
1988         I915_WRITE(reg, val | TRANS_ENABLE);
1989         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1990                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1991 }
1992
1993 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1994                                       enum transcoder cpu_transcoder)
1995 {
1996         u32 val, pipeconf_val;
1997
1998         /* PCH only available on ILK+ */
1999         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2000
2001         /* FDI must be feeding us bits for PCH ports */
2002         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2003         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2004
2005         /* Workaround: set timing override bit. */
2006         val = I915_READ(_TRANSA_CHICKEN2);
2007         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2008         I915_WRITE(_TRANSA_CHICKEN2, val);
2009
2010         val = TRANS_ENABLE;
2011         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2012
2013         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2014             PIPECONF_INTERLACED_ILK)
2015                 val |= TRANS_INTERLACED;
2016         else
2017                 val |= TRANS_PROGRESSIVE;
2018
2019         I915_WRITE(LPT_TRANSCONF, val);
2020         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2021                 DRM_ERROR("Failed to enable PCH transcoder\n");
2022 }
2023
2024 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2025                                             enum pipe pipe)
2026 {
2027         struct drm_device *dev = dev_priv->dev;
2028         uint32_t reg, val;
2029
2030         /* FDI relies on the transcoder */
2031         assert_fdi_tx_disabled(dev_priv, pipe);
2032         assert_fdi_rx_disabled(dev_priv, pipe);
2033
2034         /* Ports must be off as well */
2035         assert_pch_ports_disabled(dev_priv, pipe);
2036
2037         reg = PCH_TRANSCONF(pipe);
2038         val = I915_READ(reg);
2039         val &= ~TRANS_ENABLE;
2040         I915_WRITE(reg, val);
2041         /* wait for PCH transcoder off, transcoder state */
2042         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2043                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2044
2045         if (!HAS_PCH_IBX(dev)) {
2046                 /* Workaround: Clear the timing override chicken bit again. */
2047                 reg = TRANS_CHICKEN2(pipe);
2048                 val = I915_READ(reg);
2049                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2050                 I915_WRITE(reg, val);
2051         }
2052 }
2053
2054 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2055 {
2056         u32 val;
2057
2058         val = I915_READ(LPT_TRANSCONF);
2059         val &= ~TRANS_ENABLE;
2060         I915_WRITE(LPT_TRANSCONF, val);
2061         /* wait for PCH transcoder off, transcoder state */
2062         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2063                 DRM_ERROR("Failed to disable PCH transcoder\n");
2064
2065         /* Workaround: clear timing override bit. */
2066         val = I915_READ(_TRANSA_CHICKEN2);
2067         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2068         I915_WRITE(_TRANSA_CHICKEN2, val);
2069 }
2070
2071 /**
2072  * intel_enable_pipe - enable a pipe, asserting requirements
2073  * @crtc: crtc responsible for the pipe
2074  *
2075  * Enable @crtc's pipe, making sure that various hardware specific requirements
2076  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2077  */
2078 static void intel_enable_pipe(struct intel_crtc *crtc)
2079 {
2080         struct drm_device *dev = crtc->base.dev;
2081         struct drm_i915_private *dev_priv = dev->dev_private;
2082         enum pipe pipe = crtc->pipe;
2083         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2084                                                                       pipe);
2085         enum pipe pch_transcoder;
2086         int reg;
2087         u32 val;
2088
2089         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2090
2091         assert_planes_disabled(dev_priv, pipe);
2092         assert_cursor_disabled(dev_priv, pipe);
2093         assert_sprites_disabled(dev_priv, pipe);
2094
2095         if (HAS_PCH_LPT(dev_priv->dev))
2096                 pch_transcoder = TRANSCODER_A;
2097         else
2098                 pch_transcoder = pipe;
2099
2100         /*
2101          * A pipe without a PLL won't actually be able to drive bits from
2102          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2103          * need the check.
2104          */
2105         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2106                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2107                         assert_dsi_pll_enabled(dev_priv);
2108                 else
2109                         assert_pll_enabled(dev_priv, pipe);
2110         else {
2111                 if (crtc->config->has_pch_encoder) {
2112                         /* if driving the PCH, we need FDI enabled */
2113                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2114                         assert_fdi_tx_pll_enabled(dev_priv,
2115                                                   (enum pipe) cpu_transcoder);
2116                 }
2117                 /* FIXME: assert CPU port conditions for SNB+ */
2118         }
2119
2120         reg = PIPECONF(cpu_transcoder);
2121         val = I915_READ(reg);
2122         if (val & PIPECONF_ENABLE) {
2123                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2124                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2125                 return;
2126         }
2127
2128         I915_WRITE(reg, val | PIPECONF_ENABLE);
2129         POSTING_READ(reg);
2130 }
2131
2132 /**
2133  * intel_disable_pipe - disable a pipe, asserting requirements
2134  * @crtc: crtc whose pipes is to be disabled
2135  *
2136  * Disable the pipe of @crtc, making sure that various hardware
2137  * specific requirements are met, if applicable, e.g. plane
2138  * disabled, panel fitter off, etc.
2139  *
2140  * Will wait until the pipe has shut down before returning.
2141  */
2142 static void intel_disable_pipe(struct intel_crtc *crtc)
2143 {
2144         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2145         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2146         enum pipe pipe = crtc->pipe;
2147         int reg;
2148         u32 val;
2149
2150         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2151
2152         /*
2153          * Make sure planes won't keep trying to pump pixels to us,
2154          * or we might hang the display.
2155          */
2156         assert_planes_disabled(dev_priv, pipe);
2157         assert_cursor_disabled(dev_priv, pipe);
2158         assert_sprites_disabled(dev_priv, pipe);
2159
2160         reg = PIPECONF(cpu_transcoder);
2161         val = I915_READ(reg);
2162         if ((val & PIPECONF_ENABLE) == 0)
2163                 return;
2164
2165         /*
2166          * Double wide has implications for planes
2167          * so best keep it disabled when not needed.
2168          */
2169         if (crtc->config->double_wide)
2170                 val &= ~PIPECONF_DOUBLE_WIDE;
2171
2172         /* Don't disable pipe or pipe PLLs if needed */
2173         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2174             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2175                 val &= ~PIPECONF_ENABLE;
2176
2177         I915_WRITE(reg, val);
2178         if ((val & PIPECONF_ENABLE) == 0)
2179                 intel_wait_for_pipe_off(crtc);
2180 }
2181
2182 static bool need_vtd_wa(struct drm_device *dev)
2183 {
2184 #ifdef CONFIG_INTEL_IOMMU
2185         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2186                 return true;
2187 #endif
2188         return false;
2189 }
2190
2191 unsigned int
2192 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2193                   uint64_t fb_format_modifier)
2194 {
2195         unsigned int tile_height;
2196         uint32_t pixel_bytes;
2197
2198         switch (fb_format_modifier) {
2199         case DRM_FORMAT_MOD_NONE:
2200                 tile_height = 1;
2201                 break;
2202         case I915_FORMAT_MOD_X_TILED:
2203                 tile_height = IS_GEN2(dev) ? 16 : 8;
2204                 break;
2205         case I915_FORMAT_MOD_Y_TILED:
2206                 tile_height = 32;
2207                 break;
2208         case I915_FORMAT_MOD_Yf_TILED:
2209                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2210                 switch (pixel_bytes) {
2211                 default:
2212                 case 1:
2213                         tile_height = 64;
2214                         break;
2215                 case 2:
2216                 case 4:
2217                         tile_height = 32;
2218                         break;
2219                 case 8:
2220                         tile_height = 16;
2221                         break;
2222                 case 16:
2223                         WARN_ONCE(1,
2224                                   "128-bit pixels are not supported for display!");
2225                         tile_height = 16;
2226                         break;
2227                 }
2228                 break;
2229         default:
2230                 MISSING_CASE(fb_format_modifier);
2231                 tile_height = 1;
2232                 break;
2233         }
2234
2235         return tile_height;
2236 }
2237
2238 unsigned int
2239 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2240                       uint32_t pixel_format, uint64_t fb_format_modifier)
2241 {
2242         return ALIGN(height, intel_tile_height(dev, pixel_format,
2243                                                fb_format_modifier));
2244 }
2245
2246 static int
2247 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2248                         const struct drm_plane_state *plane_state)
2249 {
2250         struct intel_rotation_info *info = &view->rotation_info;
2251         unsigned int tile_height, tile_pitch;
2252
2253         *view = i915_ggtt_view_normal;
2254
2255         if (!plane_state)
2256                 return 0;
2257
2258         if (!intel_rotation_90_or_270(plane_state->rotation))
2259                 return 0;
2260
2261         *view = i915_ggtt_view_rotated;
2262
2263         info->height = fb->height;
2264         info->pixel_format = fb->pixel_format;
2265         info->pitch = fb->pitches[0];
2266         info->fb_modifier = fb->modifier[0];
2267
2268         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2269                                         fb->modifier[0]);
2270         tile_pitch = PAGE_SIZE / tile_height;
2271         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2272         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2273         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2274
2275         return 0;
2276 }
2277
2278 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2279 {
2280         if (INTEL_INFO(dev_priv)->gen >= 9)
2281                 return 256 * 1024;
2282         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2283                  IS_VALLEYVIEW(dev_priv))
2284                 return 128 * 1024;
2285         else if (INTEL_INFO(dev_priv)->gen >= 4)
2286                 return 4 * 1024;
2287         else
2288                 return 0;
2289 }
2290
2291 int
2292 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2293                            struct drm_framebuffer *fb,
2294                            const struct drm_plane_state *plane_state,
2295                            struct intel_engine_cs *pipelined,
2296                            struct drm_i915_gem_request **pipelined_request)
2297 {
2298         struct drm_device *dev = fb->dev;
2299         struct drm_i915_private *dev_priv = dev->dev_private;
2300         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2301         struct i915_ggtt_view view;
2302         u32 alignment;
2303         int ret;
2304
2305         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2306
2307         switch (fb->modifier[0]) {
2308         case DRM_FORMAT_MOD_NONE:
2309                 alignment = intel_linear_alignment(dev_priv);
2310                 break;
2311         case I915_FORMAT_MOD_X_TILED:
2312                 if (INTEL_INFO(dev)->gen >= 9)
2313                         alignment = 256 * 1024;
2314                 else {
2315                         /* pin() will align the object as required by fence */
2316                         alignment = 0;
2317                 }
2318                 break;
2319         case I915_FORMAT_MOD_Y_TILED:
2320         case I915_FORMAT_MOD_Yf_TILED:
2321                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2322                           "Y tiling bo slipped through, driver bug!\n"))
2323                         return -EINVAL;
2324                 alignment = 1 * 1024 * 1024;
2325                 break;
2326         default:
2327                 MISSING_CASE(fb->modifier[0]);
2328                 return -EINVAL;
2329         }
2330
2331         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2332         if (ret)
2333                 return ret;
2334
2335         /* Note that the w/a also requires 64 PTE of padding following the
2336          * bo. We currently fill all unused PTE with the shadow page and so
2337          * we should always have valid PTE following the scanout preventing
2338          * the VT-d warning.
2339          */
2340         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2341                 alignment = 256 * 1024;
2342
2343         /*
2344          * Global gtt pte registers are special registers which actually forward
2345          * writes to a chunk of system memory. Which means that there is no risk
2346          * that the register values disappear as soon as we call
2347          * intel_runtime_pm_put(), so it is correct to wrap only the
2348          * pin/unpin/fence and not more.
2349          */
2350         intel_runtime_pm_get(dev_priv);
2351
2352         dev_priv->mm.interruptible = false;
2353         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2354                                                    pipelined_request, &view);
2355         if (ret)
2356                 goto err_interruptible;
2357
2358         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2359          * fence, whereas 965+ only requires a fence if using
2360          * framebuffer compression.  For simplicity, we always install
2361          * a fence as the cost is not that onerous.
2362          */
2363         ret = i915_gem_object_get_fence(obj);
2364         if (ret == -EDEADLK) {
2365                 /*
2366                  * -EDEADLK means there are no free fences
2367                  * no pending flips.
2368                  *
2369                  * This is propagated to atomic, but it uses
2370                  * -EDEADLK to force a locking recovery, so
2371                  * change the returned error to -EBUSY.
2372                  */
2373                 ret = -EBUSY;
2374                 goto err_unpin;
2375         } else if (ret)
2376                 goto err_unpin;
2377
2378         i915_gem_object_pin_fence(obj);
2379
2380         dev_priv->mm.interruptible = true;
2381         intel_runtime_pm_put(dev_priv);
2382         return 0;
2383
2384 err_unpin:
2385         i915_gem_object_unpin_from_display_plane(obj, &view);
2386 err_interruptible:
2387         dev_priv->mm.interruptible = true;
2388         intel_runtime_pm_put(dev_priv);
2389         return ret;
2390 }
2391
2392 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2393                                const struct drm_plane_state *plane_state)
2394 {
2395         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2396         struct i915_ggtt_view view;
2397         int ret;
2398
2399         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2400
2401         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2402         WARN_ONCE(ret, "Couldn't get view from plane state!");
2403
2404         i915_gem_object_unpin_fence(obj);
2405         i915_gem_object_unpin_from_display_plane(obj, &view);
2406 }
2407
2408 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2409  * is assumed to be a power-of-two. */
2410 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2411                                              int *x, int *y,
2412                                              unsigned int tiling_mode,
2413                                              unsigned int cpp,
2414                                              unsigned int pitch)
2415 {
2416         if (tiling_mode != I915_TILING_NONE) {
2417                 unsigned int tile_rows, tiles;
2418
2419                 tile_rows = *y / 8;
2420                 *y %= 8;
2421
2422                 tiles = *x / (512/cpp);
2423                 *x %= 512/cpp;
2424
2425                 return tile_rows * pitch * 8 + tiles * 4096;
2426         } else {
2427                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2428                 unsigned int offset;
2429
2430                 offset = *y * pitch + *x * cpp;
2431                 *y = (offset & alignment) / pitch;
2432                 *x = ((offset & alignment) - *y * pitch) / cpp;
2433                 return offset & ~alignment;
2434         }
2435 }
2436
2437 static int i9xx_format_to_fourcc(int format)
2438 {
2439         switch (format) {
2440         case DISPPLANE_8BPP:
2441                 return DRM_FORMAT_C8;
2442         case DISPPLANE_BGRX555:
2443                 return DRM_FORMAT_XRGB1555;
2444         case DISPPLANE_BGRX565:
2445                 return DRM_FORMAT_RGB565;
2446         default:
2447         case DISPPLANE_BGRX888:
2448                 return DRM_FORMAT_XRGB8888;
2449         case DISPPLANE_RGBX888:
2450                 return DRM_FORMAT_XBGR8888;
2451         case DISPPLANE_BGRX101010:
2452                 return DRM_FORMAT_XRGB2101010;
2453         case DISPPLANE_RGBX101010:
2454                 return DRM_FORMAT_XBGR2101010;
2455         }
2456 }
2457
2458 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2459 {
2460         switch (format) {
2461         case PLANE_CTL_FORMAT_RGB_565:
2462                 return DRM_FORMAT_RGB565;
2463         default:
2464         case PLANE_CTL_FORMAT_XRGB_8888:
2465                 if (rgb_order) {
2466                         if (alpha)
2467                                 return DRM_FORMAT_ABGR8888;
2468                         else
2469                                 return DRM_FORMAT_XBGR8888;
2470                 } else {
2471                         if (alpha)
2472                                 return DRM_FORMAT_ARGB8888;
2473                         else
2474                                 return DRM_FORMAT_XRGB8888;
2475                 }
2476         case PLANE_CTL_FORMAT_XRGB_2101010:
2477                 if (rgb_order)
2478                         return DRM_FORMAT_XBGR2101010;
2479                 else
2480                         return DRM_FORMAT_XRGB2101010;
2481         }
2482 }
2483
2484 static bool
2485 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2486                               struct intel_initial_plane_config *plane_config)
2487 {
2488         struct drm_device *dev = crtc->base.dev;
2489         struct drm_i915_gem_object *obj = NULL;
2490         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2491         struct drm_framebuffer *fb = &plane_config->fb->base;
2492         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2493         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2494                                     PAGE_SIZE);
2495
2496         size_aligned -= base_aligned;
2497
2498         if (plane_config->size == 0)
2499                 return false;
2500
2501         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2502                                                              base_aligned,
2503                                                              base_aligned,
2504                                                              size_aligned);
2505         if (!obj)
2506                 return false;
2507
2508         obj->tiling_mode = plane_config->tiling;
2509         if (obj->tiling_mode == I915_TILING_X)
2510                 obj->stride = fb->pitches[0];
2511
2512         mode_cmd.pixel_format = fb->pixel_format;
2513         mode_cmd.width = fb->width;
2514         mode_cmd.height = fb->height;
2515         mode_cmd.pitches[0] = fb->pitches[0];
2516         mode_cmd.modifier[0] = fb->modifier[0];
2517         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2518
2519         mutex_lock(&dev->struct_mutex);
2520         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2521                                    &mode_cmd, obj)) {
2522                 DRM_DEBUG_KMS("intel fb init failed\n");
2523                 goto out_unref_obj;
2524         }
2525         mutex_unlock(&dev->struct_mutex);
2526
2527         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2528         return true;
2529
2530 out_unref_obj:
2531         drm_gem_object_unreference(&obj->base);
2532         mutex_unlock(&dev->struct_mutex);
2533         return false;
2534 }
2535
2536 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2537 static void
2538 update_state_fb(struct drm_plane *plane)
2539 {
2540         if (plane->fb == plane->state->fb)
2541                 return;
2542
2543         if (plane->state->fb)
2544                 drm_framebuffer_unreference(plane->state->fb);
2545         plane->state->fb = plane->fb;
2546         if (plane->state->fb)
2547                 drm_framebuffer_reference(plane->state->fb);
2548 }
2549
2550 static void
2551 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2552                              struct intel_initial_plane_config *plane_config)
2553 {
2554         struct drm_device *dev = intel_crtc->base.dev;
2555         struct drm_i915_private *dev_priv = dev->dev_private;
2556         struct drm_crtc *c;
2557         struct intel_crtc *i;
2558         struct drm_i915_gem_object *obj;
2559         struct drm_plane *primary = intel_crtc->base.primary;
2560         struct drm_plane_state *plane_state = primary->state;
2561         struct drm_framebuffer *fb;
2562
2563         if (!plane_config->fb)
2564                 return;
2565
2566         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2567                 fb = &plane_config->fb->base;
2568                 goto valid_fb;
2569         }
2570
2571         kfree(plane_config->fb);
2572
2573         /*
2574          * Failed to alloc the obj, check to see if we should share
2575          * an fb with another CRTC instead
2576          */
2577         for_each_crtc(dev, c) {
2578                 i = to_intel_crtc(c);
2579
2580                 if (c == &intel_crtc->base)
2581                         continue;
2582
2583                 if (!i->active)
2584                         continue;
2585
2586                 fb = c->primary->fb;
2587                 if (!fb)
2588                         continue;
2589
2590                 obj = intel_fb_obj(fb);
2591                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2592                         drm_framebuffer_reference(fb);
2593                         goto valid_fb;
2594                 }
2595         }
2596
2597         return;
2598
2599 valid_fb:
2600         plane_state->src_x = plane_state->src_y = 0;
2601         plane_state->src_w = fb->width << 16;
2602         plane_state->src_h = fb->height << 16;
2603
2604         plane_state->crtc_x = plane_state->src_y = 0;
2605         plane_state->crtc_w = fb->width;
2606         plane_state->crtc_h = fb->height;
2607
2608         obj = intel_fb_obj(fb);
2609         if (obj->tiling_mode != I915_TILING_NONE)
2610                 dev_priv->preserve_bios_swizzle = true;
2611
2612         drm_framebuffer_reference(fb);
2613         primary->fb = primary->state->fb = fb;
2614         primary->crtc = primary->state->crtc = &intel_crtc->base;
2615         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2616         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2617 }
2618
2619 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2620                                       struct drm_framebuffer *fb,
2621                                       int x, int y)
2622 {
2623         struct drm_device *dev = crtc->dev;
2624         struct drm_i915_private *dev_priv = dev->dev_private;
2625         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2626         struct drm_plane *primary = crtc->primary;
2627         bool visible = to_intel_plane_state(primary->state)->visible;
2628         struct drm_i915_gem_object *obj;
2629         int plane = intel_crtc->plane;
2630         unsigned long linear_offset;
2631         u32 dspcntr;
2632         u32 reg = DSPCNTR(plane);
2633         int pixel_size;
2634
2635         if (!visible || !fb) {
2636                 I915_WRITE(reg, 0);
2637                 if (INTEL_INFO(dev)->gen >= 4)
2638                         I915_WRITE(DSPSURF(plane), 0);
2639                 else
2640                         I915_WRITE(DSPADDR(plane), 0);
2641                 POSTING_READ(reg);
2642                 return;
2643         }
2644
2645         obj = intel_fb_obj(fb);
2646         if (WARN_ON(obj == NULL))
2647                 return;
2648
2649         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2650
2651         dspcntr = DISPPLANE_GAMMA_ENABLE;
2652
2653         dspcntr |= DISPLAY_PLANE_ENABLE;
2654
2655         if (INTEL_INFO(dev)->gen < 4) {
2656                 if (intel_crtc->pipe == PIPE_B)
2657                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2658
2659                 /* pipesrc and dspsize control the size that is scaled from,
2660                  * which should always be the user's requested size.
2661                  */
2662                 I915_WRITE(DSPSIZE(plane),
2663                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2664                            (intel_crtc->config->pipe_src_w - 1));
2665                 I915_WRITE(DSPPOS(plane), 0);
2666         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2667                 I915_WRITE(PRIMSIZE(plane),
2668                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2669                            (intel_crtc->config->pipe_src_w - 1));
2670                 I915_WRITE(PRIMPOS(plane), 0);
2671                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2672         }
2673
2674         switch (fb->pixel_format) {
2675         case DRM_FORMAT_C8:
2676                 dspcntr |= DISPPLANE_8BPP;
2677                 break;
2678         case DRM_FORMAT_XRGB1555:
2679                 dspcntr |= DISPPLANE_BGRX555;
2680                 break;
2681         case DRM_FORMAT_RGB565:
2682                 dspcntr |= DISPPLANE_BGRX565;
2683                 break;
2684         case DRM_FORMAT_XRGB8888:
2685                 dspcntr |= DISPPLANE_BGRX888;
2686                 break;
2687         case DRM_FORMAT_XBGR8888:
2688                 dspcntr |= DISPPLANE_RGBX888;
2689                 break;
2690         case DRM_FORMAT_XRGB2101010:
2691                 dspcntr |= DISPPLANE_BGRX101010;
2692                 break;
2693         case DRM_FORMAT_XBGR2101010:
2694                 dspcntr |= DISPPLANE_RGBX101010;
2695                 break;
2696         default:
2697                 BUG();
2698         }
2699
2700         if (INTEL_INFO(dev)->gen >= 4 &&
2701             obj->tiling_mode != I915_TILING_NONE)
2702                 dspcntr |= DISPPLANE_TILED;
2703
2704         if (IS_G4X(dev))
2705                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2706
2707         linear_offset = y * fb->pitches[0] + x * pixel_size;
2708
2709         if (INTEL_INFO(dev)->gen >= 4) {
2710                 intel_crtc->dspaddr_offset =
2711                         intel_gen4_compute_page_offset(dev_priv,
2712                                                        &x, &y, obj->tiling_mode,
2713                                                        pixel_size,
2714                                                        fb->pitches[0]);
2715                 linear_offset -= intel_crtc->dspaddr_offset;
2716         } else {
2717                 intel_crtc->dspaddr_offset = linear_offset;
2718         }
2719
2720         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2721                 dspcntr |= DISPPLANE_ROTATE_180;
2722
2723                 x += (intel_crtc->config->pipe_src_w - 1);
2724                 y += (intel_crtc->config->pipe_src_h - 1);
2725
2726                 /* Finding the last pixel of the last line of the display
2727                 data and adding to linear_offset*/
2728                 linear_offset +=
2729                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2730                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2731         }
2732
2733         I915_WRITE(reg, dspcntr);
2734
2735         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2736         if (INTEL_INFO(dev)->gen >= 4) {
2737                 I915_WRITE(DSPSURF(plane),
2738                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2739                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2740                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2741         } else
2742                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2743         POSTING_READ(reg);
2744 }
2745
2746 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2747                                           struct drm_framebuffer *fb,
2748                                           int x, int y)
2749 {
2750         struct drm_device *dev = crtc->dev;
2751         struct drm_i915_private *dev_priv = dev->dev_private;
2752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2753         struct drm_plane *primary = crtc->primary;
2754         bool visible = to_intel_plane_state(primary->state)->visible;
2755         struct drm_i915_gem_object *obj;
2756         int plane = intel_crtc->plane;
2757         unsigned long linear_offset;
2758         u32 dspcntr;
2759         u32 reg = DSPCNTR(plane);
2760         int pixel_size;
2761
2762         if (!visible || !fb) {
2763                 I915_WRITE(reg, 0);
2764                 I915_WRITE(DSPSURF(plane), 0);
2765                 POSTING_READ(reg);
2766                 return;
2767         }
2768
2769         obj = intel_fb_obj(fb);
2770         if (WARN_ON(obj == NULL))
2771                 return;
2772
2773         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2774
2775         dspcntr = DISPPLANE_GAMMA_ENABLE;
2776
2777         dspcntr |= DISPLAY_PLANE_ENABLE;
2778
2779         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2780                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2781
2782         switch (fb->pixel_format) {
2783         case DRM_FORMAT_C8:
2784                 dspcntr |= DISPPLANE_8BPP;
2785                 break;
2786         case DRM_FORMAT_RGB565:
2787                 dspcntr |= DISPPLANE_BGRX565;
2788                 break;
2789         case DRM_FORMAT_XRGB8888:
2790                 dspcntr |= DISPPLANE_BGRX888;
2791                 break;
2792         case DRM_FORMAT_XBGR8888:
2793                 dspcntr |= DISPPLANE_RGBX888;
2794                 break;
2795         case DRM_FORMAT_XRGB2101010:
2796                 dspcntr |= DISPPLANE_BGRX101010;
2797                 break;
2798         case DRM_FORMAT_XBGR2101010:
2799                 dspcntr |= DISPPLANE_RGBX101010;
2800                 break;
2801         default:
2802                 BUG();
2803         }
2804
2805         if (obj->tiling_mode != I915_TILING_NONE)
2806                 dspcntr |= DISPPLANE_TILED;
2807
2808         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2809                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2810
2811         linear_offset = y * fb->pitches[0] + x * pixel_size;
2812         intel_crtc->dspaddr_offset =
2813                 intel_gen4_compute_page_offset(dev_priv,
2814                                                &x, &y, obj->tiling_mode,
2815                                                pixel_size,
2816                                                fb->pitches[0]);
2817         linear_offset -= intel_crtc->dspaddr_offset;
2818         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2819                 dspcntr |= DISPPLANE_ROTATE_180;
2820
2821                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2822                         x += (intel_crtc->config->pipe_src_w - 1);
2823                         y += (intel_crtc->config->pipe_src_h - 1);
2824
2825                         /* Finding the last pixel of the last line of the display
2826                         data and adding to linear_offset*/
2827                         linear_offset +=
2828                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2829                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2830                 }
2831         }
2832
2833         I915_WRITE(reg, dspcntr);
2834
2835         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2836         I915_WRITE(DSPSURF(plane),
2837                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2838         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2839                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2840         } else {
2841                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2842                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2843         }
2844         POSTING_READ(reg);
2845 }
2846
2847 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2848                               uint32_t pixel_format)
2849 {
2850         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2851
2852         /*
2853          * The stride is either expressed as a multiple of 64 bytes
2854          * chunks for linear buffers or in number of tiles for tiled
2855          * buffers.
2856          */
2857         switch (fb_modifier) {
2858         case DRM_FORMAT_MOD_NONE:
2859                 return 64;
2860         case I915_FORMAT_MOD_X_TILED:
2861                 if (INTEL_INFO(dev)->gen == 2)
2862                         return 128;
2863                 return 512;
2864         case I915_FORMAT_MOD_Y_TILED:
2865                 /* No need to check for old gens and Y tiling since this is
2866                  * about the display engine and those will be blocked before
2867                  * we get here.
2868                  */
2869                 return 128;
2870         case I915_FORMAT_MOD_Yf_TILED:
2871                 if (bits_per_pixel == 8)
2872                         return 64;
2873                 else
2874                         return 128;
2875         default:
2876                 MISSING_CASE(fb_modifier);
2877                 return 64;
2878         }
2879 }
2880
2881 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2882                                      struct drm_i915_gem_object *obj)
2883 {
2884         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2885
2886         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2887                 view = &i915_ggtt_view_rotated;
2888
2889         return i915_gem_obj_ggtt_offset_view(obj, view);
2890 }
2891
2892 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2893 {
2894         struct drm_device *dev = intel_crtc->base.dev;
2895         struct drm_i915_private *dev_priv = dev->dev_private;
2896
2897         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2898         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2899         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2900 }
2901
2902 /*
2903  * This function detaches (aka. unbinds) unused scalers in hardware
2904  */
2905 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2906 {
2907         struct intel_crtc_scaler_state *scaler_state;
2908         int i;
2909
2910         scaler_state = &intel_crtc->config->scaler_state;
2911
2912         /* loop through and disable scalers that aren't in use */
2913         for (i = 0; i < intel_crtc->num_scalers; i++) {
2914                 if (!scaler_state->scalers[i].in_use)
2915                         skl_detach_scaler(intel_crtc, i);
2916         }
2917 }
2918
2919 u32 skl_plane_ctl_format(uint32_t pixel_format)
2920 {
2921         switch (pixel_format) {
2922         case DRM_FORMAT_C8:
2923                 return PLANE_CTL_FORMAT_INDEXED;
2924         case DRM_FORMAT_RGB565:
2925                 return PLANE_CTL_FORMAT_RGB_565;
2926         case DRM_FORMAT_XBGR8888:
2927                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2928         case DRM_FORMAT_XRGB8888:
2929                 return PLANE_CTL_FORMAT_XRGB_8888;
2930         /*
2931          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2932          * to be already pre-multiplied. We need to add a knob (or a different
2933          * DRM_FORMAT) for user-space to configure that.
2934          */
2935         case DRM_FORMAT_ABGR8888:
2936                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2937                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2938         case DRM_FORMAT_ARGB8888:
2939                 return PLANE_CTL_FORMAT_XRGB_8888 |
2940                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2941         case DRM_FORMAT_XRGB2101010:
2942                 return PLANE_CTL_FORMAT_XRGB_2101010;
2943         case DRM_FORMAT_XBGR2101010:
2944                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2945         case DRM_FORMAT_YUYV:
2946                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2947         case DRM_FORMAT_YVYU:
2948                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2949         case DRM_FORMAT_UYVY:
2950                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2951         case DRM_FORMAT_VYUY:
2952                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2953         default:
2954                 MISSING_CASE(pixel_format);
2955         }
2956
2957         return 0;
2958 }
2959
2960 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2961 {
2962         switch (fb_modifier) {
2963         case DRM_FORMAT_MOD_NONE:
2964                 break;
2965         case I915_FORMAT_MOD_X_TILED:
2966                 return PLANE_CTL_TILED_X;
2967         case I915_FORMAT_MOD_Y_TILED:
2968                 return PLANE_CTL_TILED_Y;
2969         case I915_FORMAT_MOD_Yf_TILED:
2970                 return PLANE_CTL_TILED_YF;
2971         default:
2972                 MISSING_CASE(fb_modifier);
2973         }
2974
2975         return 0;
2976 }
2977
2978 u32 skl_plane_ctl_rotation(unsigned int rotation)
2979 {
2980         switch (rotation) {
2981         case BIT(DRM_ROTATE_0):
2982                 break;
2983         /*
2984          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2985          * while i915 HW rotation is clockwise, thats why this swapping.
2986          */
2987         case BIT(DRM_ROTATE_90):
2988                 return PLANE_CTL_ROTATE_270;
2989         case BIT(DRM_ROTATE_180):
2990                 return PLANE_CTL_ROTATE_180;
2991         case BIT(DRM_ROTATE_270):
2992                 return PLANE_CTL_ROTATE_90;
2993         default:
2994                 MISSING_CASE(rotation);
2995         }
2996
2997         return 0;
2998 }
2999
3000 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3001                                          struct drm_framebuffer *fb,
3002                                          int x, int y)
3003 {
3004         struct drm_device *dev = crtc->dev;
3005         struct drm_i915_private *dev_priv = dev->dev_private;
3006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3007         struct drm_plane *plane = crtc->primary;
3008         bool visible = to_intel_plane_state(plane->state)->visible;
3009         struct drm_i915_gem_object *obj;
3010         int pipe = intel_crtc->pipe;
3011         u32 plane_ctl, stride_div, stride;
3012         u32 tile_height, plane_offset, plane_size;
3013         unsigned int rotation;
3014         int x_offset, y_offset;
3015         unsigned long surf_addr;
3016         struct intel_crtc_state *crtc_state = intel_crtc->config;
3017         struct intel_plane_state *plane_state;
3018         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3019         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3020         int scaler_id = -1;
3021
3022         plane_state = to_intel_plane_state(plane->state);
3023
3024         if (!visible || !fb) {
3025                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3026                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3027                 POSTING_READ(PLANE_CTL(pipe, 0));
3028                 return;
3029         }
3030
3031         plane_ctl = PLANE_CTL_ENABLE |
3032                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3033                     PLANE_CTL_PIPE_CSC_ENABLE;
3034
3035         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3036         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3037         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3038
3039         rotation = plane->state->rotation;
3040         plane_ctl |= skl_plane_ctl_rotation(rotation);
3041
3042         obj = intel_fb_obj(fb);
3043         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3044                                                fb->pixel_format);
3045         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3046
3047         /*
3048          * FIXME: intel_plane_state->src, dst aren't set when transitional
3049          * update_plane helpers are called from legacy paths.
3050          * Once full atomic crtc is available, below check can be avoided.
3051          */
3052         if (drm_rect_width(&plane_state->src)) {
3053                 scaler_id = plane_state->scaler_id;
3054                 src_x = plane_state->src.x1 >> 16;
3055                 src_y = plane_state->src.y1 >> 16;
3056                 src_w = drm_rect_width(&plane_state->src) >> 16;
3057                 src_h = drm_rect_height(&plane_state->src) >> 16;
3058                 dst_x = plane_state->dst.x1;
3059                 dst_y = plane_state->dst.y1;
3060                 dst_w = drm_rect_width(&plane_state->dst);
3061                 dst_h = drm_rect_height(&plane_state->dst);
3062
3063                 WARN_ON(x != src_x || y != src_y);
3064         } else {
3065                 src_w = intel_crtc->config->pipe_src_w;
3066                 src_h = intel_crtc->config->pipe_src_h;
3067         }
3068
3069         if (intel_rotation_90_or_270(rotation)) {
3070                 /* stride = Surface height in tiles */
3071                 tile_height = intel_tile_height(dev, fb->pixel_format,
3072                                                 fb->modifier[0]);
3073                 stride = DIV_ROUND_UP(fb->height, tile_height);
3074                 x_offset = stride * tile_height - y - src_h;
3075                 y_offset = x;
3076                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3077         } else {
3078                 stride = fb->pitches[0] / stride_div;
3079                 x_offset = x;
3080                 y_offset = y;
3081                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3082         }
3083         plane_offset = y_offset << 16 | x_offset;
3084
3085         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3086         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3087         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3088         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3089
3090         if (scaler_id >= 0) {
3091                 uint32_t ps_ctrl = 0;
3092
3093                 WARN_ON(!dst_w || !dst_h);
3094                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3095                         crtc_state->scaler_state.scalers[scaler_id].mode;
3096                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3097                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3098                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3099                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3100                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3101         } else {
3102                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3103         }
3104
3105         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3106
3107         POSTING_READ(PLANE_SURF(pipe, 0));
3108 }
3109
3110 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3111 static int
3112 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3113                            int x, int y, enum mode_set_atomic state)
3114 {
3115         struct drm_device *dev = crtc->dev;
3116         struct drm_i915_private *dev_priv = dev->dev_private;
3117
3118         if (dev_priv->fbc.disable_fbc)
3119                 dev_priv->fbc.disable_fbc(dev_priv);
3120
3121         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3122
3123         return 0;
3124 }
3125
3126 static void intel_complete_page_flips(struct drm_device *dev)
3127 {
3128         struct drm_crtc *crtc;
3129
3130         for_each_crtc(dev, crtc) {
3131                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3132                 enum plane plane = intel_crtc->plane;
3133
3134                 intel_prepare_page_flip(dev, plane);
3135                 intel_finish_page_flip_plane(dev, plane);
3136         }
3137 }
3138
3139 static void intel_update_primary_planes(struct drm_device *dev)
3140 {
3141         struct drm_crtc *crtc;
3142
3143         for_each_crtc(dev, crtc) {
3144                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3145                 struct intel_plane_state *plane_state;
3146
3147                 drm_modeset_lock_crtc(crtc, &plane->base);
3148
3149                 plane_state = to_intel_plane_state(plane->base.state);
3150
3151                 if (plane_state->base.fb)
3152                         plane->commit_plane(&plane->base, plane_state);
3153
3154                 drm_modeset_unlock_crtc(crtc);
3155         }
3156 }
3157
3158 void intel_prepare_reset(struct drm_device *dev)
3159 {
3160         /* no reset support for gen2 */
3161         if (IS_GEN2(dev))
3162                 return;
3163
3164         /* reset doesn't touch the display */
3165         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3166                 return;
3167
3168         drm_modeset_lock_all(dev);
3169         /*
3170          * Disabling the crtcs gracefully seems nicer. Also the
3171          * g33 docs say we should at least disable all the planes.
3172          */
3173         intel_display_suspend(dev);
3174 }
3175
3176 void intel_finish_reset(struct drm_device *dev)
3177 {
3178         struct drm_i915_private *dev_priv = to_i915(dev);
3179
3180         /*
3181          * Flips in the rings will be nuked by the reset,
3182          * so complete all pending flips so that user space
3183          * will get its events and not get stuck.
3184          */
3185         intel_complete_page_flips(dev);
3186
3187         /* no reset support for gen2 */
3188         if (IS_GEN2(dev))
3189                 return;
3190
3191         /* reset doesn't touch the display */
3192         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3193                 /*
3194                  * Flips in the rings have been nuked by the reset,
3195                  * so update the base address of all primary
3196                  * planes to the the last fb to make sure we're
3197                  * showing the correct fb after a reset.
3198                  *
3199                  * FIXME: Atomic will make this obsolete since we won't schedule
3200                  * CS-based flips (which might get lost in gpu resets) any more.
3201                  */
3202                 intel_update_primary_planes(dev);
3203                 return;
3204         }
3205
3206         /*
3207          * The display has been reset as well,
3208          * so need a full re-initialization.
3209          */
3210         intel_runtime_pm_disable_interrupts(dev_priv);
3211         intel_runtime_pm_enable_interrupts(dev_priv);
3212
3213         intel_modeset_init_hw(dev);
3214
3215         spin_lock_irq(&dev_priv->irq_lock);
3216         if (dev_priv->display.hpd_irq_setup)
3217                 dev_priv->display.hpd_irq_setup(dev);
3218         spin_unlock_irq(&dev_priv->irq_lock);
3219
3220         intel_display_resume(dev);
3221
3222         intel_hpd_init(dev_priv);
3223
3224         drm_modeset_unlock_all(dev);
3225 }
3226
3227 static void
3228 intel_finish_fb(struct drm_framebuffer *old_fb)
3229 {
3230         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3231         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3232         bool was_interruptible = dev_priv->mm.interruptible;
3233         int ret;
3234
3235         /* Big Hammer, we also need to ensure that any pending
3236          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3237          * current scanout is retired before unpinning the old
3238          * framebuffer. Note that we rely on userspace rendering
3239          * into the buffer attached to the pipe they are waiting
3240          * on. If not, userspace generates a GPU hang with IPEHR
3241          * point to the MI_WAIT_FOR_EVENT.
3242          *
3243          * This should only fail upon a hung GPU, in which case we
3244          * can safely continue.
3245          */
3246         dev_priv->mm.interruptible = false;
3247         ret = i915_gem_object_wait_rendering(obj, true);
3248         dev_priv->mm.interruptible = was_interruptible;
3249
3250         WARN_ON(ret);
3251 }
3252
3253 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3254 {
3255         struct drm_device *dev = crtc->dev;
3256         struct drm_i915_private *dev_priv = dev->dev_private;
3257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3258         bool pending;
3259
3260         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3261             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3262                 return false;
3263
3264         spin_lock_irq(&dev->event_lock);
3265         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3266         spin_unlock_irq(&dev->event_lock);
3267
3268         return pending;
3269 }
3270
3271 static void intel_update_pipe_config(struct intel_crtc *crtc,
3272                                      struct intel_crtc_state *old_crtc_state)
3273 {
3274         struct drm_device *dev = crtc->base.dev;
3275         struct drm_i915_private *dev_priv = dev->dev_private;
3276         struct intel_crtc_state *pipe_config =
3277                 to_intel_crtc_state(crtc->base.state);
3278
3279         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3280         crtc->base.mode = crtc->base.state->mode;
3281
3282         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3283                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3284                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3285
3286         if (HAS_DDI(dev))
3287                 intel_set_pipe_csc(&crtc->base);
3288
3289         /*
3290          * Update pipe size and adjust fitter if needed: the reason for this is
3291          * that in compute_mode_changes we check the native mode (not the pfit
3292          * mode) to see if we can flip rather than do a full mode set. In the
3293          * fastboot case, we'll flip, but if we don't update the pipesrc and
3294          * pfit state, we'll end up with a big fb scanned out into the wrong
3295          * sized surface.
3296          */
3297
3298         I915_WRITE(PIPESRC(crtc->pipe),
3299                    ((pipe_config->pipe_src_w - 1) << 16) |
3300                    (pipe_config->pipe_src_h - 1));
3301
3302         /* on skylake this is done by detaching scalers */
3303         if (INTEL_INFO(dev)->gen >= 9) {
3304                 skl_detach_scalers(crtc);
3305
3306                 if (pipe_config->pch_pfit.enabled)
3307                         skylake_pfit_enable(crtc);
3308         } else if (HAS_PCH_SPLIT(dev)) {
3309                 if (pipe_config->pch_pfit.enabled)
3310                         ironlake_pfit_enable(crtc);
3311                 else if (old_crtc_state->pch_pfit.enabled)
3312                         ironlake_pfit_disable(crtc, true);
3313         }
3314 }
3315
3316 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3317 {
3318         struct drm_device *dev = crtc->dev;
3319         struct drm_i915_private *dev_priv = dev->dev_private;
3320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3321         int pipe = intel_crtc->pipe;
3322         u32 reg, temp;
3323
3324         /* enable normal train */
3325         reg = FDI_TX_CTL(pipe);
3326         temp = I915_READ(reg);
3327         if (IS_IVYBRIDGE(dev)) {
3328                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3329                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3330         } else {
3331                 temp &= ~FDI_LINK_TRAIN_NONE;
3332                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3333         }
3334         I915_WRITE(reg, temp);
3335
3336         reg = FDI_RX_CTL(pipe);
3337         temp = I915_READ(reg);
3338         if (HAS_PCH_CPT(dev)) {
3339                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3340                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3341         } else {
3342                 temp &= ~FDI_LINK_TRAIN_NONE;
3343                 temp |= FDI_LINK_TRAIN_NONE;
3344         }
3345         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3346
3347         /* wait one idle pattern time */
3348         POSTING_READ(reg);
3349         udelay(1000);
3350
3351         /* IVB wants error correction enabled */
3352         if (IS_IVYBRIDGE(dev))
3353                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3354                            FDI_FE_ERRC_ENABLE);
3355 }
3356
3357 /* The FDI link training functions for ILK/Ibexpeak. */
3358 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3359 {
3360         struct drm_device *dev = crtc->dev;
3361         struct drm_i915_private *dev_priv = dev->dev_private;
3362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3363         int pipe = intel_crtc->pipe;
3364         u32 reg, temp, tries;
3365
3366         /* FDI needs bits from pipe first */
3367         assert_pipe_enabled(dev_priv, pipe);
3368
3369         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3370            for train result */
3371         reg = FDI_RX_IMR(pipe);
3372         temp = I915_READ(reg);
3373         temp &= ~FDI_RX_SYMBOL_LOCK;
3374         temp &= ~FDI_RX_BIT_LOCK;
3375         I915_WRITE(reg, temp);
3376         I915_READ(reg);
3377         udelay(150);
3378
3379         /* enable CPU FDI TX and PCH FDI RX */
3380         reg = FDI_TX_CTL(pipe);
3381         temp = I915_READ(reg);
3382         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3383         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3384         temp &= ~FDI_LINK_TRAIN_NONE;
3385         temp |= FDI_LINK_TRAIN_PATTERN_1;
3386         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3387
3388         reg = FDI_RX_CTL(pipe);
3389         temp = I915_READ(reg);
3390         temp &= ~FDI_LINK_TRAIN_NONE;
3391         temp |= FDI_LINK_TRAIN_PATTERN_1;
3392         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3393
3394         POSTING_READ(reg);
3395         udelay(150);
3396
3397         /* Ironlake workaround, enable clock pointer after FDI enable*/
3398         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3399         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3400                    FDI_RX_PHASE_SYNC_POINTER_EN);
3401
3402         reg = FDI_RX_IIR(pipe);
3403         for (tries = 0; tries < 5; tries++) {
3404                 temp = I915_READ(reg);
3405                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3406
3407                 if ((temp & FDI_RX_BIT_LOCK)) {
3408                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3409                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3410                         break;
3411                 }
3412         }
3413         if (tries == 5)
3414                 DRM_ERROR("FDI train 1 fail!\n");
3415
3416         /* Train 2 */
3417         reg = FDI_TX_CTL(pipe);
3418         temp = I915_READ(reg);
3419         temp &= ~FDI_LINK_TRAIN_NONE;
3420         temp |= FDI_LINK_TRAIN_PATTERN_2;
3421         I915_WRITE(reg, temp);
3422
3423         reg = FDI_RX_CTL(pipe);
3424         temp = I915_READ(reg);
3425         temp &= ~FDI_LINK_TRAIN_NONE;
3426         temp |= FDI_LINK_TRAIN_PATTERN_2;
3427         I915_WRITE(reg, temp);
3428
3429         POSTING_READ(reg);
3430         udelay(150);
3431
3432         reg = FDI_RX_IIR(pipe);
3433         for (tries = 0; tries < 5; tries++) {
3434                 temp = I915_READ(reg);
3435                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3436
3437                 if (temp & FDI_RX_SYMBOL_LOCK) {
3438                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3439                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3440                         break;
3441                 }
3442         }
3443         if (tries == 5)
3444                 DRM_ERROR("FDI train 2 fail!\n");
3445
3446         DRM_DEBUG_KMS("FDI train done\n");
3447
3448 }
3449
3450 static const int snb_b_fdi_train_param[] = {
3451         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3452         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3453         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3454         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3455 };
3456
3457 /* The FDI link training functions for SNB/Cougarpoint. */
3458 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3459 {
3460         struct drm_device *dev = crtc->dev;
3461         struct drm_i915_private *dev_priv = dev->dev_private;
3462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3463         int pipe = intel_crtc->pipe;
3464         u32 reg, temp, i, retry;
3465
3466         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3467            for train result */
3468         reg = FDI_RX_IMR(pipe);
3469         temp = I915_READ(reg);
3470         temp &= ~FDI_RX_SYMBOL_LOCK;
3471         temp &= ~FDI_RX_BIT_LOCK;
3472         I915_WRITE(reg, temp);
3473
3474         POSTING_READ(reg);
3475         udelay(150);
3476
3477         /* enable CPU FDI TX and PCH FDI RX */
3478         reg = FDI_TX_CTL(pipe);
3479         temp = I915_READ(reg);
3480         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3481         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3482         temp &= ~FDI_LINK_TRAIN_NONE;
3483         temp |= FDI_LINK_TRAIN_PATTERN_1;
3484         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3485         /* SNB-B */
3486         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3487         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3488
3489         I915_WRITE(FDI_RX_MISC(pipe),
3490                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3491
3492         reg = FDI_RX_CTL(pipe);
3493         temp = I915_READ(reg);
3494         if (HAS_PCH_CPT(dev)) {
3495                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3496                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3497         } else {
3498                 temp &= ~FDI_LINK_TRAIN_NONE;
3499                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3500         }
3501         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3502
3503         POSTING_READ(reg);
3504         udelay(150);
3505
3506         for (i = 0; i < 4; i++) {
3507                 reg = FDI_TX_CTL(pipe);
3508                 temp = I915_READ(reg);
3509                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3510                 temp |= snb_b_fdi_train_param[i];
3511                 I915_WRITE(reg, temp);
3512
3513                 POSTING_READ(reg);
3514                 udelay(500);
3515
3516                 for (retry = 0; retry < 5; retry++) {
3517                         reg = FDI_RX_IIR(pipe);
3518                         temp = I915_READ(reg);
3519                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3520                         if (temp & FDI_RX_BIT_LOCK) {
3521                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3522                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3523                                 break;
3524                         }
3525                         udelay(50);
3526                 }
3527                 if (retry < 5)
3528                         break;
3529         }
3530         if (i == 4)
3531                 DRM_ERROR("FDI train 1 fail!\n");
3532
3533         /* Train 2 */
3534         reg = FDI_TX_CTL(pipe);
3535         temp = I915_READ(reg);
3536         temp &= ~FDI_LINK_TRAIN_NONE;
3537         temp |= FDI_LINK_TRAIN_PATTERN_2;
3538         if (IS_GEN6(dev)) {
3539                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3540                 /* SNB-B */
3541                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3542         }
3543         I915_WRITE(reg, temp);
3544
3545         reg = FDI_RX_CTL(pipe);
3546         temp = I915_READ(reg);
3547         if (HAS_PCH_CPT(dev)) {
3548                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3549                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3550         } else {
3551                 temp &= ~FDI_LINK_TRAIN_NONE;
3552                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3553         }
3554         I915_WRITE(reg, temp);
3555
3556         POSTING_READ(reg);
3557         udelay(150);
3558
3559         for (i = 0; i < 4; i++) {
3560                 reg = FDI_TX_CTL(pipe);
3561                 temp = I915_READ(reg);
3562                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3563                 temp |= snb_b_fdi_train_param[i];
3564                 I915_WRITE(reg, temp);
3565
3566                 POSTING_READ(reg);
3567                 udelay(500);
3568
3569                 for (retry = 0; retry < 5; retry++) {
3570                         reg = FDI_RX_IIR(pipe);
3571                         temp = I915_READ(reg);
3572                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3573                         if (temp & FDI_RX_SYMBOL_LOCK) {
3574                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3575                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3576                                 break;
3577                         }
3578                         udelay(50);
3579                 }
3580                 if (retry < 5)
3581                         break;
3582         }
3583         if (i == 4)
3584                 DRM_ERROR("FDI train 2 fail!\n");
3585
3586         DRM_DEBUG_KMS("FDI train done.\n");
3587 }
3588
3589 /* Manual link training for Ivy Bridge A0 parts */
3590 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3591 {
3592         struct drm_device *dev = crtc->dev;
3593         struct drm_i915_private *dev_priv = dev->dev_private;
3594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3595         int pipe = intel_crtc->pipe;
3596         u32 reg, temp, i, j;
3597
3598         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3599            for train result */
3600         reg = FDI_RX_IMR(pipe);
3601         temp = I915_READ(reg);
3602         temp &= ~FDI_RX_SYMBOL_LOCK;
3603         temp &= ~FDI_RX_BIT_LOCK;
3604         I915_WRITE(reg, temp);
3605
3606         POSTING_READ(reg);
3607         udelay(150);
3608
3609         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3610                       I915_READ(FDI_RX_IIR(pipe)));
3611
3612         /* Try each vswing and preemphasis setting twice before moving on */
3613         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3614                 /* disable first in case we need to retry */
3615                 reg = FDI_TX_CTL(pipe);
3616                 temp = I915_READ(reg);
3617                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3618                 temp &= ~FDI_TX_ENABLE;
3619                 I915_WRITE(reg, temp);
3620
3621                 reg = FDI_RX_CTL(pipe);
3622                 temp = I915_READ(reg);
3623                 temp &= ~FDI_LINK_TRAIN_AUTO;
3624                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3625                 temp &= ~FDI_RX_ENABLE;
3626                 I915_WRITE(reg, temp);
3627
3628                 /* enable CPU FDI TX and PCH FDI RX */
3629                 reg = FDI_TX_CTL(pipe);
3630                 temp = I915_READ(reg);
3631                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3632                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3633                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3634                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3635                 temp |= snb_b_fdi_train_param[j/2];
3636                 temp |= FDI_COMPOSITE_SYNC;
3637                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3638
3639                 I915_WRITE(FDI_RX_MISC(pipe),
3640                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3641
3642                 reg = FDI_RX_CTL(pipe);
3643                 temp = I915_READ(reg);
3644                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3645                 temp |= FDI_COMPOSITE_SYNC;
3646                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3647
3648                 POSTING_READ(reg);
3649                 udelay(1); /* should be 0.5us */
3650
3651                 for (i = 0; i < 4; i++) {
3652                         reg = FDI_RX_IIR(pipe);
3653                         temp = I915_READ(reg);
3654                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3655
3656                         if (temp & FDI_RX_BIT_LOCK ||
3657                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3658                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3659                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3660                                               i);
3661                                 break;
3662                         }
3663                         udelay(1); /* should be 0.5us */
3664                 }
3665                 if (i == 4) {
3666                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3667                         continue;
3668                 }
3669
3670                 /* Train 2 */
3671                 reg = FDI_TX_CTL(pipe);
3672                 temp = I915_READ(reg);
3673                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3674                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3675                 I915_WRITE(reg, temp);
3676
3677                 reg = FDI_RX_CTL(pipe);
3678                 temp = I915_READ(reg);
3679                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3680                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3681                 I915_WRITE(reg, temp);
3682
3683                 POSTING_READ(reg);
3684                 udelay(2); /* should be 1.5us */
3685
3686                 for (i = 0; i < 4; i++) {
3687                         reg = FDI_RX_IIR(pipe);
3688                         temp = I915_READ(reg);
3689                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3690
3691                         if (temp & FDI_RX_SYMBOL_LOCK ||
3692                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3693                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3694                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3695                                               i);
3696                                 goto train_done;
3697                         }
3698                         udelay(2); /* should be 1.5us */
3699                 }
3700                 if (i == 4)
3701                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3702         }
3703
3704 train_done:
3705         DRM_DEBUG_KMS("FDI train done.\n");
3706 }
3707
3708 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3709 {
3710         struct drm_device *dev = intel_crtc->base.dev;
3711         struct drm_i915_private *dev_priv = dev->dev_private;
3712         int pipe = intel_crtc->pipe;
3713         u32 reg, temp;
3714
3715
3716         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3717         reg = FDI_RX_CTL(pipe);
3718         temp = I915_READ(reg);
3719         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3720         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3721         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3722         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3723
3724         POSTING_READ(reg);
3725         udelay(200);
3726
3727         /* Switch from Rawclk to PCDclk */
3728         temp = I915_READ(reg);
3729         I915_WRITE(reg, temp | FDI_PCDCLK);
3730
3731         POSTING_READ(reg);
3732         udelay(200);
3733
3734         /* Enable CPU FDI TX PLL, always on for Ironlake */
3735         reg = FDI_TX_CTL(pipe);
3736         temp = I915_READ(reg);
3737         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3738                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3739
3740                 POSTING_READ(reg);
3741                 udelay(100);
3742         }
3743 }
3744
3745 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3746 {
3747         struct drm_device *dev = intel_crtc->base.dev;
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749         int pipe = intel_crtc->pipe;
3750         u32 reg, temp;
3751
3752         /* Switch from PCDclk to Rawclk */
3753         reg = FDI_RX_CTL(pipe);
3754         temp = I915_READ(reg);
3755         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3756
3757         /* Disable CPU FDI TX PLL */
3758         reg = FDI_TX_CTL(pipe);
3759         temp = I915_READ(reg);
3760         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3761
3762         POSTING_READ(reg);
3763         udelay(100);
3764
3765         reg = FDI_RX_CTL(pipe);
3766         temp = I915_READ(reg);
3767         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3768
3769         /* Wait for the clocks to turn off. */
3770         POSTING_READ(reg);
3771         udelay(100);
3772 }
3773
3774 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3775 {
3776         struct drm_device *dev = crtc->dev;
3777         struct drm_i915_private *dev_priv = dev->dev_private;
3778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3779         int pipe = intel_crtc->pipe;
3780         u32 reg, temp;
3781
3782         /* disable CPU FDI tx and PCH FDI rx */
3783         reg = FDI_TX_CTL(pipe);
3784         temp = I915_READ(reg);
3785         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3786         POSTING_READ(reg);
3787
3788         reg = FDI_RX_CTL(pipe);
3789         temp = I915_READ(reg);
3790         temp &= ~(0x7 << 16);
3791         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3792         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3793
3794         POSTING_READ(reg);
3795         udelay(100);
3796
3797         /* Ironlake workaround, disable clock pointer after downing FDI */
3798         if (HAS_PCH_IBX(dev))
3799                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3800
3801         /* still set train pattern 1 */
3802         reg = FDI_TX_CTL(pipe);
3803         temp = I915_READ(reg);
3804         temp &= ~FDI_LINK_TRAIN_NONE;
3805         temp |= FDI_LINK_TRAIN_PATTERN_1;
3806         I915_WRITE(reg, temp);
3807
3808         reg = FDI_RX_CTL(pipe);
3809         temp = I915_READ(reg);
3810         if (HAS_PCH_CPT(dev)) {
3811                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3812                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3813         } else {
3814                 temp &= ~FDI_LINK_TRAIN_NONE;
3815                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3816         }
3817         /* BPC in FDI rx is consistent with that in PIPECONF */
3818         temp &= ~(0x07 << 16);
3819         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3820         I915_WRITE(reg, temp);
3821
3822         POSTING_READ(reg);
3823         udelay(100);
3824 }
3825
3826 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3827 {
3828         struct intel_crtc *crtc;
3829
3830         /* Note that we don't need to be called with mode_config.lock here
3831          * as our list of CRTC objects is static for the lifetime of the
3832          * device and so cannot disappear as we iterate. Similarly, we can
3833          * happily treat the predicates as racy, atomic checks as userspace
3834          * cannot claim and pin a new fb without at least acquring the
3835          * struct_mutex and so serialising with us.
3836          */
3837         for_each_intel_crtc(dev, crtc) {
3838                 if (atomic_read(&crtc->unpin_work_count) == 0)
3839                         continue;
3840
3841                 if (crtc->unpin_work)
3842                         intel_wait_for_vblank(dev, crtc->pipe);
3843
3844                 return true;
3845         }
3846
3847         return false;
3848 }
3849
3850 static void page_flip_completed(struct intel_crtc *intel_crtc)
3851 {
3852         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3853         struct intel_unpin_work *work = intel_crtc->unpin_work;
3854
3855         /* ensure that the unpin work is consistent wrt ->pending. */
3856         smp_rmb();
3857         intel_crtc->unpin_work = NULL;
3858
3859         if (work->event)
3860                 drm_send_vblank_event(intel_crtc->base.dev,
3861                                       intel_crtc->pipe,
3862                                       work->event);
3863
3864         drm_crtc_vblank_put(&intel_crtc->base);
3865
3866         wake_up_all(&dev_priv->pending_flip_queue);
3867         queue_work(dev_priv->wq, &work->work);
3868
3869         trace_i915_flip_complete(intel_crtc->plane,
3870                                  work->pending_flip_obj);
3871 }
3872
3873 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3874 {
3875         struct drm_device *dev = crtc->dev;
3876         struct drm_i915_private *dev_priv = dev->dev_private;
3877
3878         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3879         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3880                                        !intel_crtc_has_pending_flip(crtc),
3881                                        60*HZ) == 0)) {
3882                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3883
3884                 spin_lock_irq(&dev->event_lock);
3885                 if (intel_crtc->unpin_work) {
3886                         WARN_ONCE(1, "Removing stuck page flip\n");
3887                         page_flip_completed(intel_crtc);
3888                 }
3889                 spin_unlock_irq(&dev->event_lock);
3890         }
3891
3892         if (crtc->primary->fb) {
3893                 mutex_lock(&dev->struct_mutex);
3894                 intel_finish_fb(crtc->primary->fb);
3895                 mutex_unlock(&dev->struct_mutex);
3896         }
3897 }
3898
3899 /* Program iCLKIP clock to the desired frequency */
3900 static void lpt_program_iclkip(struct drm_crtc *crtc)
3901 {
3902         struct drm_device *dev = crtc->dev;
3903         struct drm_i915_private *dev_priv = dev->dev_private;
3904         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3905         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3906         u32 temp;
3907
3908         mutex_lock(&dev_priv->sb_lock);
3909
3910         /* It is necessary to ungate the pixclk gate prior to programming
3911          * the divisors, and gate it back when it is done.
3912          */
3913         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3914
3915         /* Disable SSCCTL */
3916         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3917                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3918                                 SBI_SSCCTL_DISABLE,
3919                         SBI_ICLK);
3920
3921         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3922         if (clock == 20000) {
3923                 auxdiv = 1;
3924                 divsel = 0x41;
3925                 phaseinc = 0x20;
3926         } else {
3927                 /* The iCLK virtual clock root frequency is in MHz,
3928                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3929                  * divisors, it is necessary to divide one by another, so we
3930                  * convert the virtual clock precision to KHz here for higher
3931                  * precision.
3932                  */
3933                 u32 iclk_virtual_root_freq = 172800 * 1000;
3934                 u32 iclk_pi_range = 64;
3935                 u32 desired_divisor, msb_divisor_value, pi_value;
3936
3937                 desired_divisor = (iclk_virtual_root_freq / clock);
3938                 msb_divisor_value = desired_divisor / iclk_pi_range;
3939                 pi_value = desired_divisor % iclk_pi_range;
3940
3941                 auxdiv = 0;
3942                 divsel = msb_divisor_value - 2;
3943                 phaseinc = pi_value;
3944         }
3945
3946         /* This should not happen with any sane values */
3947         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3948                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3949         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3950                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3951
3952         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3953                         clock,
3954                         auxdiv,
3955                         divsel,
3956                         phasedir,
3957                         phaseinc);
3958
3959         /* Program SSCDIVINTPHASE6 */
3960         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3961         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3962         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3963         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3964         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3965         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3966         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3967         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3968
3969         /* Program SSCAUXDIV */
3970         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3971         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3972         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3973         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3974
3975         /* Enable modulator and associated divider */
3976         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3977         temp &= ~SBI_SSCCTL_DISABLE;
3978         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3979
3980         /* Wait for initialization time */
3981         udelay(24);
3982
3983         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3984
3985         mutex_unlock(&dev_priv->sb_lock);
3986 }
3987
3988 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3989                                                 enum pipe pch_transcoder)
3990 {
3991         struct drm_device *dev = crtc->base.dev;
3992         struct drm_i915_private *dev_priv = dev->dev_private;
3993         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3994
3995         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3996                    I915_READ(HTOTAL(cpu_transcoder)));
3997         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3998                    I915_READ(HBLANK(cpu_transcoder)));
3999         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4000                    I915_READ(HSYNC(cpu_transcoder)));
4001
4002         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4003                    I915_READ(VTOTAL(cpu_transcoder)));
4004         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4005                    I915_READ(VBLANK(cpu_transcoder)));
4006         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4007                    I915_READ(VSYNC(cpu_transcoder)));
4008         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4009                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4010 }
4011
4012 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4013 {
4014         struct drm_i915_private *dev_priv = dev->dev_private;
4015         uint32_t temp;
4016
4017         temp = I915_READ(SOUTH_CHICKEN1);
4018         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4019                 return;
4020
4021         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4022         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4023
4024         temp &= ~FDI_BC_BIFURCATION_SELECT;
4025         if (enable)
4026                 temp |= FDI_BC_BIFURCATION_SELECT;
4027
4028         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4029         I915_WRITE(SOUTH_CHICKEN1, temp);
4030         POSTING_READ(SOUTH_CHICKEN1);
4031 }
4032
4033 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4034 {
4035         struct drm_device *dev = intel_crtc->base.dev;
4036
4037         switch (intel_crtc->pipe) {
4038         case PIPE_A:
4039                 break;
4040         case PIPE_B:
4041                 if (intel_crtc->config->fdi_lanes > 2)
4042                         cpt_set_fdi_bc_bifurcation(dev, false);
4043                 else
4044                         cpt_set_fdi_bc_bifurcation(dev, true);
4045
4046                 break;
4047         case PIPE_C:
4048                 cpt_set_fdi_bc_bifurcation(dev, true);
4049
4050                 break;
4051         default:
4052                 BUG();
4053         }
4054 }
4055
4056 /*
4057  * Enable PCH resources required for PCH ports:
4058  *   - PCH PLLs
4059  *   - FDI training & RX/TX
4060  *   - update transcoder timings
4061  *   - DP transcoding bits
4062  *   - transcoder
4063  */
4064 static void ironlake_pch_enable(struct drm_crtc *crtc)
4065 {
4066         struct drm_device *dev = crtc->dev;
4067         struct drm_i915_private *dev_priv = dev->dev_private;
4068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4069         int pipe = intel_crtc->pipe;
4070         u32 reg, temp;
4071
4072         assert_pch_transcoder_disabled(dev_priv, pipe);
4073
4074         if (IS_IVYBRIDGE(dev))
4075                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4076
4077         /* Write the TU size bits before fdi link training, so that error
4078          * detection works. */
4079         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4080                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4081
4082         /* For PCH output, training FDI link */
4083         dev_priv->display.fdi_link_train(crtc);
4084
4085         /* We need to program the right clock selection before writing the pixel
4086          * mutliplier into the DPLL. */
4087         if (HAS_PCH_CPT(dev)) {
4088                 u32 sel;
4089
4090                 temp = I915_READ(PCH_DPLL_SEL);
4091                 temp |= TRANS_DPLL_ENABLE(pipe);
4092                 sel = TRANS_DPLLB_SEL(pipe);
4093                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4094                         temp |= sel;
4095                 else
4096                         temp &= ~sel;
4097                 I915_WRITE(PCH_DPLL_SEL, temp);
4098         }
4099
4100         /* XXX: pch pll's can be enabled any time before we enable the PCH
4101          * transcoder, and we actually should do this to not upset any PCH
4102          * transcoder that already use the clock when we share it.
4103          *
4104          * Note that enable_shared_dpll tries to do the right thing, but
4105          * get_shared_dpll unconditionally resets the pll - we need that to have
4106          * the right LVDS enable sequence. */
4107         intel_enable_shared_dpll(intel_crtc);
4108
4109         /* set transcoder timing, panel must allow it */
4110         assert_panel_unlocked(dev_priv, pipe);
4111         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4112
4113         intel_fdi_normal_train(crtc);
4114
4115         /* For PCH DP, enable TRANS_DP_CTL */
4116         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4117                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4118                 reg = TRANS_DP_CTL(pipe);
4119                 temp = I915_READ(reg);
4120                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4121                           TRANS_DP_SYNC_MASK |
4122                           TRANS_DP_BPC_MASK);
4123                 temp |= TRANS_DP_OUTPUT_ENABLE;
4124                 temp |= bpc << 9; /* same format but at 11:9 */
4125
4126                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4127                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4128                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4129                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4130
4131                 switch (intel_trans_dp_port_sel(crtc)) {
4132                 case PCH_DP_B:
4133                         temp |= TRANS_DP_PORT_SEL_B;
4134                         break;
4135                 case PCH_DP_C:
4136                         temp |= TRANS_DP_PORT_SEL_C;
4137                         break;
4138                 case PCH_DP_D:
4139                         temp |= TRANS_DP_PORT_SEL_D;
4140                         break;
4141                 default:
4142                         BUG();
4143                 }
4144
4145                 I915_WRITE(reg, temp);
4146         }
4147
4148         ironlake_enable_pch_transcoder(dev_priv, pipe);
4149 }
4150
4151 static void lpt_pch_enable(struct drm_crtc *crtc)
4152 {
4153         struct drm_device *dev = crtc->dev;
4154         struct drm_i915_private *dev_priv = dev->dev_private;
4155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4156         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4157
4158         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4159
4160         lpt_program_iclkip(crtc);
4161
4162         /* Set transcoder timing. */
4163         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4164
4165         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4166 }
4167
4168 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4169                                                 struct intel_crtc_state *crtc_state)
4170 {
4171         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4172         struct intel_shared_dpll *pll;
4173         struct intel_shared_dpll_config *shared_dpll;
4174         enum intel_dpll_id i;
4175
4176         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4177
4178         if (HAS_PCH_IBX(dev_priv->dev)) {
4179                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4180                 i = (enum intel_dpll_id) crtc->pipe;
4181                 pll = &dev_priv->shared_dplls[i];
4182
4183                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4184                               crtc->base.base.id, pll->name);
4185
4186                 WARN_ON(shared_dpll[i].crtc_mask);
4187
4188                 goto found;
4189         }
4190
4191         if (IS_BROXTON(dev_priv->dev)) {
4192                 /* PLL is attached to port in bxt */
4193                 struct intel_encoder *encoder;
4194                 struct intel_digital_port *intel_dig_port;
4195
4196                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4197                 if (WARN_ON(!encoder))
4198                         return NULL;
4199
4200                 intel_dig_port = enc_to_dig_port(&encoder->base);
4201                 /* 1:1 mapping between ports and PLLs */
4202                 i = (enum intel_dpll_id)intel_dig_port->port;
4203                 pll = &dev_priv->shared_dplls[i];
4204                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4205                         crtc->base.base.id, pll->name);
4206                 WARN_ON(shared_dpll[i].crtc_mask);
4207
4208                 goto found;
4209         }
4210
4211         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4212                 pll = &dev_priv->shared_dplls[i];
4213
4214                 /* Only want to check enabled timings first */
4215                 if (shared_dpll[i].crtc_mask == 0)
4216                         continue;
4217
4218                 if (memcmp(&crtc_state->dpll_hw_state,
4219                            &shared_dpll[i].hw_state,
4220                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4221                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4222                                       crtc->base.base.id, pll->name,
4223                                       shared_dpll[i].crtc_mask,
4224                                       pll->active);
4225                         goto found;
4226                 }
4227         }
4228
4229         /* Ok no matching timings, maybe there's a free one? */
4230         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4231                 pll = &dev_priv->shared_dplls[i];
4232                 if (shared_dpll[i].crtc_mask == 0) {
4233                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4234                                       crtc->base.base.id, pll->name);
4235                         goto found;
4236                 }
4237         }
4238
4239         return NULL;
4240
4241 found:
4242         if (shared_dpll[i].crtc_mask == 0)
4243                 shared_dpll[i].hw_state =
4244                         crtc_state->dpll_hw_state;
4245
4246         crtc_state->shared_dpll = i;
4247         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4248                          pipe_name(crtc->pipe));
4249
4250         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4251
4252         return pll;
4253 }
4254
4255 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4256 {
4257         struct drm_i915_private *dev_priv = to_i915(state->dev);
4258         struct intel_shared_dpll_config *shared_dpll;
4259         struct intel_shared_dpll *pll;
4260         enum intel_dpll_id i;
4261
4262         if (!to_intel_atomic_state(state)->dpll_set)
4263                 return;
4264
4265         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4266         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4267                 pll = &dev_priv->shared_dplls[i];
4268                 pll->config = shared_dpll[i];
4269         }
4270 }
4271
4272 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4273 {
4274         struct drm_i915_private *dev_priv = dev->dev_private;
4275         int dslreg = PIPEDSL(pipe);
4276         u32 temp;
4277
4278         temp = I915_READ(dslreg);
4279         udelay(500);
4280         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4281                 if (wait_for(I915_READ(dslreg) != temp, 5))
4282                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4283         }
4284 }
4285
4286 static int
4287 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4288                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4289                   int src_w, int src_h, int dst_w, int dst_h)
4290 {
4291         struct intel_crtc_scaler_state *scaler_state =
4292                 &crtc_state->scaler_state;
4293         struct intel_crtc *intel_crtc =
4294                 to_intel_crtc(crtc_state->base.crtc);
4295         int need_scaling;
4296
4297         need_scaling = intel_rotation_90_or_270(rotation) ?
4298                 (src_h != dst_w || src_w != dst_h):
4299                 (src_w != dst_w || src_h != dst_h);
4300
4301         /*
4302          * if plane is being disabled or scaler is no more required or force detach
4303          *  - free scaler binded to this plane/crtc
4304          *  - in order to do this, update crtc->scaler_usage
4305          *
4306          * Here scaler state in crtc_state is set free so that
4307          * scaler can be assigned to other user. Actual register
4308          * update to free the scaler is done in plane/panel-fit programming.
4309          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4310          */
4311         if (force_detach || !need_scaling) {
4312                 if (*scaler_id >= 0) {
4313                         scaler_state->scaler_users &= ~(1 << scaler_user);
4314                         scaler_state->scalers[*scaler_id].in_use = 0;
4315
4316                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4317                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4318                                 intel_crtc->pipe, scaler_user, *scaler_id,
4319                                 scaler_state->scaler_users);
4320                         *scaler_id = -1;
4321                 }
4322                 return 0;
4323         }
4324
4325         /* range checks */
4326         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4327                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4328
4329                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4330                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4331                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4332                         "size is out of scaler range\n",
4333                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4334                 return -EINVAL;
4335         }
4336
4337         /* mark this plane as a scaler user in crtc_state */
4338         scaler_state->scaler_users |= (1 << scaler_user);
4339         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4340                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4341                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4342                 scaler_state->scaler_users);
4343
4344         return 0;
4345 }
4346
4347 /**
4348  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4349  *
4350  * @state: crtc's scaler state
4351  *
4352  * Return
4353  *     0 - scaler_usage updated successfully
4354  *    error - requested scaling cannot be supported or other error condition
4355  */
4356 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4357 {
4358         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4359         struct drm_display_mode *adjusted_mode =
4360                 &state->base.adjusted_mode;
4361
4362         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4363                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4364
4365         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4366                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4367                 state->pipe_src_w, state->pipe_src_h,
4368                 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4369 }
4370
4371 /**
4372  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4373  *
4374  * @state: crtc's scaler state
4375  * @plane_state: atomic plane state to update
4376  *
4377  * Return
4378  *     0 - scaler_usage updated successfully
4379  *    error - requested scaling cannot be supported or other error condition
4380  */
4381 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4382                                    struct intel_plane_state *plane_state)
4383 {
4384
4385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4386         struct intel_plane *intel_plane =
4387                 to_intel_plane(plane_state->base.plane);
4388         struct drm_framebuffer *fb = plane_state->base.fb;
4389         int ret;
4390
4391         bool force_detach = !fb || !plane_state->visible;
4392
4393         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4394                       intel_plane->base.base.id, intel_crtc->pipe,
4395                       drm_plane_index(&intel_plane->base));
4396
4397         ret = skl_update_scaler(crtc_state, force_detach,
4398                                 drm_plane_index(&intel_plane->base),
4399                                 &plane_state->scaler_id,
4400                                 plane_state->base.rotation,
4401                                 drm_rect_width(&plane_state->src) >> 16,
4402                                 drm_rect_height(&plane_state->src) >> 16,
4403                                 drm_rect_width(&plane_state->dst),
4404                                 drm_rect_height(&plane_state->dst));
4405
4406         if (ret || plane_state->scaler_id < 0)
4407                 return ret;
4408
4409         /* check colorkey */
4410         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4411                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4412                               intel_plane->base.base.id);
4413                 return -EINVAL;
4414         }
4415
4416         /* Check src format */
4417         switch (fb->pixel_format) {
4418         case DRM_FORMAT_RGB565:
4419         case DRM_FORMAT_XBGR8888:
4420         case DRM_FORMAT_XRGB8888:
4421         case DRM_FORMAT_ABGR8888:
4422         case DRM_FORMAT_ARGB8888:
4423         case DRM_FORMAT_XRGB2101010:
4424         case DRM_FORMAT_XBGR2101010:
4425         case DRM_FORMAT_YUYV:
4426         case DRM_FORMAT_YVYU:
4427         case DRM_FORMAT_UYVY:
4428         case DRM_FORMAT_VYUY:
4429                 break;
4430         default:
4431                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4432                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4433                 return -EINVAL;
4434         }
4435
4436         return 0;
4437 }
4438
4439 static void skylake_scaler_disable(struct intel_crtc *crtc)
4440 {
4441         int i;
4442
4443         for (i = 0; i < crtc->num_scalers; i++)
4444                 skl_detach_scaler(crtc, i);
4445 }
4446
4447 static void skylake_pfit_enable(struct intel_crtc *crtc)
4448 {
4449         struct drm_device *dev = crtc->base.dev;
4450         struct drm_i915_private *dev_priv = dev->dev_private;
4451         int pipe = crtc->pipe;
4452         struct intel_crtc_scaler_state *scaler_state =
4453                 &crtc->config->scaler_state;
4454
4455         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4456
4457         if (crtc->config->pch_pfit.enabled) {
4458                 int id;
4459
4460                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4461                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4462                         return;
4463                 }
4464
4465                 id = scaler_state->scaler_id;
4466                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4467                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4468                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4469                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4470
4471                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4472         }
4473 }
4474
4475 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4476 {
4477         struct drm_device *dev = crtc->base.dev;
4478         struct drm_i915_private *dev_priv = dev->dev_private;
4479         int pipe = crtc->pipe;
4480
4481         if (crtc->config->pch_pfit.enabled) {
4482                 /* Force use of hard-coded filter coefficients
4483                  * as some pre-programmed values are broken,
4484                  * e.g. x201.
4485                  */
4486                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4487                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4488                                                  PF_PIPE_SEL_IVB(pipe));
4489                 else
4490                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4491                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4492                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4493         }
4494 }
4495
4496 void hsw_enable_ips(struct intel_crtc *crtc)
4497 {
4498         struct drm_device *dev = crtc->base.dev;
4499         struct drm_i915_private *dev_priv = dev->dev_private;
4500
4501         if (!crtc->config->ips_enabled)
4502                 return;
4503
4504         /* We can only enable IPS after we enable a plane and wait for a vblank */
4505         intel_wait_for_vblank(dev, crtc->pipe);
4506
4507         assert_plane_enabled(dev_priv, crtc->plane);
4508         if (IS_BROADWELL(dev)) {
4509                 mutex_lock(&dev_priv->rps.hw_lock);
4510                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4511                 mutex_unlock(&dev_priv->rps.hw_lock);
4512                 /* Quoting Art Runyan: "its not safe to expect any particular
4513                  * value in IPS_CTL bit 31 after enabling IPS through the
4514                  * mailbox." Moreover, the mailbox may return a bogus state,
4515                  * so we need to just enable it and continue on.
4516                  */
4517         } else {
4518                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4519                 /* The bit only becomes 1 in the next vblank, so this wait here
4520                  * is essentially intel_wait_for_vblank. If we don't have this
4521                  * and don't wait for vblanks until the end of crtc_enable, then
4522                  * the HW state readout code will complain that the expected
4523                  * IPS_CTL value is not the one we read. */
4524                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4525                         DRM_ERROR("Timed out waiting for IPS enable\n");
4526         }
4527 }
4528
4529 void hsw_disable_ips(struct intel_crtc *crtc)
4530 {
4531         struct drm_device *dev = crtc->base.dev;
4532         struct drm_i915_private *dev_priv = dev->dev_private;
4533
4534         if (!crtc->config->ips_enabled)
4535                 return;
4536
4537         assert_plane_enabled(dev_priv, crtc->plane);
4538         if (IS_BROADWELL(dev)) {
4539                 mutex_lock(&dev_priv->rps.hw_lock);
4540                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4541                 mutex_unlock(&dev_priv->rps.hw_lock);
4542                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4543                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4544                         DRM_ERROR("Timed out waiting for IPS disable\n");
4545         } else {
4546                 I915_WRITE(IPS_CTL, 0);
4547                 POSTING_READ(IPS_CTL);
4548         }
4549
4550         /* We need to wait for a vblank before we can disable the plane. */
4551         intel_wait_for_vblank(dev, crtc->pipe);
4552 }
4553
4554 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4555 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4556 {
4557         struct drm_device *dev = crtc->dev;
4558         struct drm_i915_private *dev_priv = dev->dev_private;
4559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4560         enum pipe pipe = intel_crtc->pipe;
4561         int palreg = PALETTE(pipe);
4562         int i;
4563         bool reenable_ips = false;
4564
4565         /* The clocks have to be on to load the palette. */
4566         if (!crtc->state->active)
4567                 return;
4568
4569         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4570                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4571                         assert_dsi_pll_enabled(dev_priv);
4572                 else
4573                         assert_pll_enabled(dev_priv, pipe);
4574         }
4575
4576         /* use legacy palette for Ironlake */
4577         if (!HAS_GMCH_DISPLAY(dev))
4578                 palreg = LGC_PALETTE(pipe);
4579
4580         /* Workaround : Do not read or write the pipe palette/gamma data while
4581          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4582          */
4583         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4584             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4585              GAMMA_MODE_MODE_SPLIT)) {
4586                 hsw_disable_ips(intel_crtc);
4587                 reenable_ips = true;
4588         }
4589
4590         for (i = 0; i < 256; i++) {
4591                 I915_WRITE(palreg + 4 * i,
4592                            (intel_crtc->lut_r[i] << 16) |
4593                            (intel_crtc->lut_g[i] << 8) |
4594                            intel_crtc->lut_b[i]);
4595         }
4596
4597         if (reenable_ips)
4598                 hsw_enable_ips(intel_crtc);
4599 }
4600
4601 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4602 {
4603         if (intel_crtc->overlay) {
4604                 struct drm_device *dev = intel_crtc->base.dev;
4605                 struct drm_i915_private *dev_priv = dev->dev_private;
4606
4607                 mutex_lock(&dev->struct_mutex);
4608                 dev_priv->mm.interruptible = false;
4609                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4610                 dev_priv->mm.interruptible = true;
4611                 mutex_unlock(&dev->struct_mutex);
4612         }
4613
4614         /* Let userspace switch the overlay on again. In most cases userspace
4615          * has to recompute where to put it anyway.
4616          */
4617 }
4618
4619 /**
4620  * intel_post_enable_primary - Perform operations after enabling primary plane
4621  * @crtc: the CRTC whose primary plane was just enabled
4622  *
4623  * Performs potentially sleeping operations that must be done after the primary
4624  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4625  * called due to an explicit primary plane update, or due to an implicit
4626  * re-enable that is caused when a sprite plane is updated to no longer
4627  * completely hide the primary plane.
4628  */
4629 static void
4630 intel_post_enable_primary(struct drm_crtc *crtc)
4631 {
4632         struct drm_device *dev = crtc->dev;
4633         struct drm_i915_private *dev_priv = dev->dev_private;
4634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4635         int pipe = intel_crtc->pipe;
4636
4637         /*
4638          * BDW signals flip done immediately if the plane
4639          * is disabled, even if the plane enable is already
4640          * armed to occur at the next vblank :(
4641          */
4642         if (IS_BROADWELL(dev))
4643                 intel_wait_for_vblank(dev, pipe);
4644
4645         /*
4646          * FIXME IPS should be fine as long as one plane is
4647          * enabled, but in practice it seems to have problems
4648          * when going from primary only to sprite only and vice
4649          * versa.
4650          */
4651         hsw_enable_ips(intel_crtc);
4652
4653         /*
4654          * Gen2 reports pipe underruns whenever all planes are disabled.
4655          * So don't enable underrun reporting before at least some planes
4656          * are enabled.
4657          * FIXME: Need to fix the logic to work when we turn off all planes
4658          * but leave the pipe running.
4659          */
4660         if (IS_GEN2(dev))
4661                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4662
4663         /* Underruns don't raise interrupts, so check manually. */
4664         if (HAS_GMCH_DISPLAY(dev))
4665                 i9xx_check_fifo_underruns(dev_priv);
4666 }
4667
4668 /**
4669  * intel_pre_disable_primary - Perform operations before disabling primary plane
4670  * @crtc: the CRTC whose primary plane is to be disabled
4671  *
4672  * Performs potentially sleeping operations that must be done before the
4673  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4674  * be called due to an explicit primary plane update, or due to an implicit
4675  * disable that is caused when a sprite plane completely hides the primary
4676  * plane.
4677  */
4678 static void
4679 intel_pre_disable_primary(struct drm_crtc *crtc)
4680 {
4681         struct drm_device *dev = crtc->dev;
4682         struct drm_i915_private *dev_priv = dev->dev_private;
4683         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4684         int pipe = intel_crtc->pipe;
4685
4686         /*
4687          * Gen2 reports pipe underruns whenever all planes are disabled.
4688          * So diasble underrun reporting before all the planes get disabled.
4689          * FIXME: Need to fix the logic to work when we turn off all planes
4690          * but leave the pipe running.
4691          */
4692         if (IS_GEN2(dev))
4693                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4694
4695         /*
4696          * Vblank time updates from the shadow to live plane control register
4697          * are blocked if the memory self-refresh mode is active at that
4698          * moment. So to make sure the plane gets truly disabled, disable
4699          * first the self-refresh mode. The self-refresh enable bit in turn
4700          * will be checked/applied by the HW only at the next frame start
4701          * event which is after the vblank start event, so we need to have a
4702          * wait-for-vblank between disabling the plane and the pipe.
4703          */
4704         if (HAS_GMCH_DISPLAY(dev)) {
4705                 intel_set_memory_cxsr(dev_priv, false);
4706                 dev_priv->wm.vlv.cxsr = false;
4707                 intel_wait_for_vblank(dev, pipe);
4708         }
4709
4710         /*
4711          * FIXME IPS should be fine as long as one plane is
4712          * enabled, but in practice it seems to have problems
4713          * when going from primary only to sprite only and vice
4714          * versa.
4715          */
4716         hsw_disable_ips(intel_crtc);
4717 }
4718
4719 static void intel_post_plane_update(struct intel_crtc *crtc)
4720 {
4721         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4722         struct drm_device *dev = crtc->base.dev;
4723         struct drm_i915_private *dev_priv = dev->dev_private;
4724         struct drm_plane *plane;
4725
4726         if (atomic->wait_vblank)
4727                 intel_wait_for_vblank(dev, crtc->pipe);
4728
4729         intel_frontbuffer_flip(dev, atomic->fb_bits);
4730
4731         if (atomic->disable_cxsr)
4732                 crtc->wm.cxsr_allowed = true;
4733
4734         if (crtc->atomic.update_wm_post)
4735                 intel_update_watermarks(&crtc->base);
4736
4737         if (atomic->update_fbc)
4738                 intel_fbc_update(dev_priv);
4739
4740         if (atomic->post_enable_primary)
4741                 intel_post_enable_primary(&crtc->base);
4742
4743         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4744                 intel_update_sprite_watermarks(plane, &crtc->base,
4745                                                0, 0, 0, false, false);
4746
4747         memset(atomic, 0, sizeof(*atomic));
4748 }
4749
4750 static void intel_pre_plane_update(struct intel_crtc *crtc)
4751 {
4752         struct drm_device *dev = crtc->base.dev;
4753         struct drm_i915_private *dev_priv = dev->dev_private;
4754         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4755         struct drm_plane *p;
4756
4757         /* Track fb's for any planes being disabled */
4758         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4759                 struct intel_plane *plane = to_intel_plane(p);
4760
4761                 mutex_lock(&dev->struct_mutex);
4762                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4763                                   plane->frontbuffer_bit);
4764                 mutex_unlock(&dev->struct_mutex);
4765         }
4766
4767         if (atomic->wait_for_flips)
4768                 intel_crtc_wait_for_pending_flips(&crtc->base);
4769
4770         if (atomic->disable_fbc)
4771                 intel_fbc_disable_crtc(crtc);
4772
4773         if (crtc->atomic.disable_ips)
4774                 hsw_disable_ips(crtc);
4775
4776         if (atomic->pre_disable_primary)
4777                 intel_pre_disable_primary(&crtc->base);
4778
4779         if (atomic->disable_cxsr) {
4780                 crtc->wm.cxsr_allowed = false;
4781                 intel_set_memory_cxsr(dev_priv, false);
4782         }
4783 }
4784
4785 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4786 {
4787         struct drm_device *dev = crtc->dev;
4788         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4789         struct drm_plane *p;
4790         int pipe = intel_crtc->pipe;
4791
4792         intel_crtc_dpms_overlay_disable(intel_crtc);
4793
4794         drm_for_each_plane_mask(p, dev, plane_mask)
4795                 to_intel_plane(p)->disable_plane(p, crtc);
4796
4797         /*
4798          * FIXME: Once we grow proper nuclear flip support out of this we need
4799          * to compute the mask of flip planes precisely. For the time being
4800          * consider this a flip to a NULL plane.
4801          */
4802         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4803 }
4804
4805 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4806 {
4807         struct drm_device *dev = crtc->dev;
4808         struct drm_i915_private *dev_priv = dev->dev_private;
4809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4810         struct intel_encoder *encoder;
4811         int pipe = intel_crtc->pipe;
4812
4813         if (WARN_ON(intel_crtc->active))
4814                 return;
4815
4816         if (intel_crtc->config->has_pch_encoder)
4817                 intel_prepare_shared_dpll(intel_crtc);
4818
4819         if (intel_crtc->config->has_dp_encoder)
4820                 intel_dp_set_m_n(intel_crtc, M1_N1);
4821
4822         intel_set_pipe_timings(intel_crtc);
4823
4824         if (intel_crtc->config->has_pch_encoder) {
4825                 intel_cpu_transcoder_set_m_n(intel_crtc,
4826                                      &intel_crtc->config->fdi_m_n, NULL);
4827         }
4828
4829         ironlake_set_pipeconf(crtc);
4830
4831         intel_crtc->active = true;
4832
4833         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4834         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4835
4836         for_each_encoder_on_crtc(dev, crtc, encoder)
4837                 if (encoder->pre_enable)
4838                         encoder->pre_enable(encoder);
4839
4840         if (intel_crtc->config->has_pch_encoder) {
4841                 /* Note: FDI PLL enabling _must_ be done before we enable the
4842                  * cpu pipes, hence this is separate from all the other fdi/pch
4843                  * enabling. */
4844                 ironlake_fdi_pll_enable(intel_crtc);
4845         } else {
4846                 assert_fdi_tx_disabled(dev_priv, pipe);
4847                 assert_fdi_rx_disabled(dev_priv, pipe);
4848         }
4849
4850         ironlake_pfit_enable(intel_crtc);
4851
4852         /*
4853          * On ILK+ LUT must be loaded before the pipe is running but with
4854          * clocks enabled
4855          */
4856         intel_crtc_load_lut(crtc);
4857
4858         intel_update_watermarks(crtc);
4859         intel_enable_pipe(intel_crtc);
4860
4861         if (intel_crtc->config->has_pch_encoder)
4862                 ironlake_pch_enable(crtc);
4863
4864         assert_vblank_disabled(crtc);
4865         drm_crtc_vblank_on(crtc);
4866
4867         for_each_encoder_on_crtc(dev, crtc, encoder)
4868                 encoder->enable(encoder);
4869
4870         if (HAS_PCH_CPT(dev))
4871                 cpt_verify_modeset(dev, intel_crtc->pipe);
4872 }
4873
4874 /* IPS only exists on ULT machines and is tied to pipe A. */
4875 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4876 {
4877         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4878 }
4879
4880 static void haswell_crtc_enable(struct drm_crtc *crtc)
4881 {
4882         struct drm_device *dev = crtc->dev;
4883         struct drm_i915_private *dev_priv = dev->dev_private;
4884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4885         struct intel_encoder *encoder;
4886         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4887         struct intel_crtc_state *pipe_config =
4888                 to_intel_crtc_state(crtc->state);
4889
4890         if (WARN_ON(intel_crtc->active))
4891                 return;
4892
4893         if (intel_crtc_to_shared_dpll(intel_crtc))
4894                 intel_enable_shared_dpll(intel_crtc);
4895
4896         if (intel_crtc->config->has_dp_encoder)
4897                 intel_dp_set_m_n(intel_crtc, M1_N1);
4898
4899         intel_set_pipe_timings(intel_crtc);
4900
4901         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4902                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4903                            intel_crtc->config->pixel_multiplier - 1);
4904         }
4905
4906         if (intel_crtc->config->has_pch_encoder) {
4907                 intel_cpu_transcoder_set_m_n(intel_crtc,
4908                                      &intel_crtc->config->fdi_m_n, NULL);
4909         }
4910
4911         haswell_set_pipeconf(crtc);
4912
4913         intel_set_pipe_csc(crtc);
4914
4915         intel_crtc->active = true;
4916
4917         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4918         for_each_encoder_on_crtc(dev, crtc, encoder)
4919                 if (encoder->pre_enable)
4920                         encoder->pre_enable(encoder);
4921
4922         if (intel_crtc->config->has_pch_encoder) {
4923                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4924                                                       true);
4925                 dev_priv->display.fdi_link_train(crtc);
4926         }
4927
4928         intel_ddi_enable_pipe_clock(intel_crtc);
4929
4930         if (INTEL_INFO(dev)->gen >= 9)
4931                 skylake_pfit_enable(intel_crtc);
4932         else
4933                 ironlake_pfit_enable(intel_crtc);
4934
4935         /*
4936          * On ILK+ LUT must be loaded before the pipe is running but with
4937          * clocks enabled
4938          */
4939         intel_crtc_load_lut(crtc);
4940
4941         intel_ddi_set_pipe_settings(crtc);
4942         intel_ddi_enable_transcoder_func(crtc);
4943
4944         intel_update_watermarks(crtc);
4945         intel_enable_pipe(intel_crtc);
4946
4947         if (intel_crtc->config->has_pch_encoder)
4948                 lpt_pch_enable(crtc);
4949
4950         if (intel_crtc->config->dp_encoder_is_mst)
4951                 intel_ddi_set_vc_payload_alloc(crtc, true);
4952
4953         assert_vblank_disabled(crtc);
4954         drm_crtc_vblank_on(crtc);
4955
4956         for_each_encoder_on_crtc(dev, crtc, encoder) {
4957                 encoder->enable(encoder);
4958                 intel_opregion_notify_encoder(encoder, true);
4959         }
4960
4961         /* If we change the relative order between pipe/planes enabling, we need
4962          * to change the workaround. */
4963         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4964         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4965                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4966                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4967         }
4968 }
4969
4970 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4971 {
4972         struct drm_device *dev = crtc->base.dev;
4973         struct drm_i915_private *dev_priv = dev->dev_private;
4974         int pipe = crtc->pipe;
4975
4976         /* To avoid upsetting the power well on haswell only disable the pfit if
4977          * it's in use. The hw state code will make sure we get this right. */
4978         if (force || crtc->config->pch_pfit.enabled) {
4979                 I915_WRITE(PF_CTL(pipe), 0);
4980                 I915_WRITE(PF_WIN_POS(pipe), 0);
4981                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4982         }
4983 }
4984
4985 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4986 {
4987         struct drm_device *dev = crtc->dev;
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4990         struct intel_encoder *encoder;
4991         int pipe = intel_crtc->pipe;
4992         u32 reg, temp;
4993
4994         for_each_encoder_on_crtc(dev, crtc, encoder)
4995                 encoder->disable(encoder);
4996
4997         drm_crtc_vblank_off(crtc);
4998         assert_vblank_disabled(crtc);
4999
5000         if (intel_crtc->config->has_pch_encoder)
5001                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5002
5003         intel_disable_pipe(intel_crtc);
5004
5005         ironlake_pfit_disable(intel_crtc, false);
5006
5007         if (intel_crtc->config->has_pch_encoder)
5008                 ironlake_fdi_disable(crtc);
5009
5010         for_each_encoder_on_crtc(dev, crtc, encoder)
5011                 if (encoder->post_disable)
5012                         encoder->post_disable(encoder);
5013
5014         if (intel_crtc->config->has_pch_encoder) {
5015                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5016
5017                 if (HAS_PCH_CPT(dev)) {
5018                         /* disable TRANS_DP_CTL */
5019                         reg = TRANS_DP_CTL(pipe);
5020                         temp = I915_READ(reg);
5021                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5022                                   TRANS_DP_PORT_SEL_MASK);
5023                         temp |= TRANS_DP_PORT_SEL_NONE;
5024                         I915_WRITE(reg, temp);
5025
5026                         /* disable DPLL_SEL */
5027                         temp = I915_READ(PCH_DPLL_SEL);
5028                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5029                         I915_WRITE(PCH_DPLL_SEL, temp);
5030                 }
5031
5032                 ironlake_fdi_pll_disable(intel_crtc);
5033         }
5034
5035         intel_crtc->active = false;
5036         intel_update_watermarks(crtc);
5037 }
5038
5039 static void haswell_crtc_disable(struct drm_crtc *crtc)
5040 {
5041         struct drm_device *dev = crtc->dev;
5042         struct drm_i915_private *dev_priv = dev->dev_private;
5043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5044         struct intel_encoder *encoder;
5045         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5046
5047         for_each_encoder_on_crtc(dev, crtc, encoder) {
5048                 intel_opregion_notify_encoder(encoder, false);
5049                 encoder->disable(encoder);
5050         }
5051
5052         drm_crtc_vblank_off(crtc);
5053         assert_vblank_disabled(crtc);
5054
5055         if (intel_crtc->config->has_pch_encoder)
5056                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5057                                                       false);
5058         intel_disable_pipe(intel_crtc);
5059
5060         if (intel_crtc->config->dp_encoder_is_mst)
5061                 intel_ddi_set_vc_payload_alloc(crtc, false);
5062
5063         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5064
5065         if (INTEL_INFO(dev)->gen >= 9)
5066                 skylake_scaler_disable(intel_crtc);
5067         else
5068                 ironlake_pfit_disable(intel_crtc, false);
5069
5070         intel_ddi_disable_pipe_clock(intel_crtc);
5071
5072         if (intel_crtc->config->has_pch_encoder) {
5073                 lpt_disable_pch_transcoder(dev_priv);
5074                 intel_ddi_fdi_disable(crtc);
5075         }
5076
5077         for_each_encoder_on_crtc(dev, crtc, encoder)
5078                 if (encoder->post_disable)
5079                         encoder->post_disable(encoder);
5080
5081         intel_crtc->active = false;
5082         intel_update_watermarks(crtc);
5083 }
5084
5085 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5086 {
5087         struct drm_device *dev = crtc->base.dev;
5088         struct drm_i915_private *dev_priv = dev->dev_private;
5089         struct intel_crtc_state *pipe_config = crtc->config;
5090
5091         if (!pipe_config->gmch_pfit.control)
5092                 return;
5093
5094         /*
5095          * The panel fitter should only be adjusted whilst the pipe is disabled,
5096          * according to register description and PRM.
5097          */
5098         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5099         assert_pipe_disabled(dev_priv, crtc->pipe);
5100
5101         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5102         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5103
5104         /* Border color in case we don't scale up to the full screen. Black by
5105          * default, change to something else for debugging. */
5106         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5107 }
5108
5109 static enum intel_display_power_domain port_to_power_domain(enum port port)
5110 {
5111         switch (port) {
5112         case PORT_A:
5113                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5114         case PORT_B:
5115                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5116         case PORT_C:
5117                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5118         case PORT_D:
5119                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5120         case PORT_E:
5121                 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5122         default:
5123                 WARN_ON_ONCE(1);
5124                 return POWER_DOMAIN_PORT_OTHER;
5125         }
5126 }
5127
5128 #define for_each_power_domain(domain, mask)                             \
5129         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5130                 if ((1 << (domain)) & (mask))
5131
5132 enum intel_display_power_domain
5133 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5134 {
5135         struct drm_device *dev = intel_encoder->base.dev;
5136         struct intel_digital_port *intel_dig_port;
5137
5138         switch (intel_encoder->type) {
5139         case INTEL_OUTPUT_UNKNOWN:
5140                 /* Only DDI platforms should ever use this output type */
5141                 WARN_ON_ONCE(!HAS_DDI(dev));
5142         case INTEL_OUTPUT_DISPLAYPORT:
5143         case INTEL_OUTPUT_HDMI:
5144         case INTEL_OUTPUT_EDP:
5145                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5146                 return port_to_power_domain(intel_dig_port->port);
5147         case INTEL_OUTPUT_DP_MST:
5148                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5149                 return port_to_power_domain(intel_dig_port->port);
5150         case INTEL_OUTPUT_ANALOG:
5151                 return POWER_DOMAIN_PORT_CRT;
5152         case INTEL_OUTPUT_DSI:
5153                 return POWER_DOMAIN_PORT_DSI;
5154         default:
5155                 return POWER_DOMAIN_PORT_OTHER;
5156         }
5157 }
5158
5159 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5160 {
5161         struct drm_device *dev = crtc->dev;
5162         struct intel_encoder *intel_encoder;
5163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5164         enum pipe pipe = intel_crtc->pipe;
5165         unsigned long mask;
5166         enum transcoder transcoder;
5167
5168         if (!crtc->state->active)
5169                 return 0;
5170
5171         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5172
5173         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5174         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5175         if (intel_crtc->config->pch_pfit.enabled ||
5176             intel_crtc->config->pch_pfit.force_thru)
5177                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5178
5179         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5180                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5181
5182         return mask;
5183 }
5184
5185 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5186 {
5187         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5189         enum intel_display_power_domain domain;
5190         unsigned long domains, new_domains, old_domains;
5191
5192         old_domains = intel_crtc->enabled_power_domains;
5193         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5194
5195         domains = new_domains & ~old_domains;
5196
5197         for_each_power_domain(domain, domains)
5198                 intel_display_power_get(dev_priv, domain);
5199
5200         return old_domains & ~new_domains;
5201 }
5202
5203 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5204                                       unsigned long domains)
5205 {
5206         enum intel_display_power_domain domain;
5207
5208         for_each_power_domain(domain, domains)
5209                 intel_display_power_put(dev_priv, domain);
5210 }
5211
5212 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5213 {
5214         struct drm_device *dev = state->dev;
5215         struct drm_i915_private *dev_priv = dev->dev_private;
5216         unsigned long put_domains[I915_MAX_PIPES] = {};
5217         struct drm_crtc_state *crtc_state;
5218         struct drm_crtc *crtc;
5219         int i;
5220
5221         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5222                 if (needs_modeset(crtc->state))
5223                         put_domains[to_intel_crtc(crtc)->pipe] =
5224                                 modeset_get_crtc_power_domains(crtc);
5225         }
5226
5227         if (dev_priv->display.modeset_commit_cdclk) {
5228                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5229
5230                 if (cdclk != dev_priv->cdclk_freq &&
5231                     !WARN_ON(!state->allow_modeset))
5232                         dev_priv->display.modeset_commit_cdclk(state);
5233         }
5234
5235         for (i = 0; i < I915_MAX_PIPES; i++)
5236                 if (put_domains[i])
5237                         modeset_put_power_domains(dev_priv, put_domains[i]);
5238 }
5239
5240 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5241 {
5242         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5243
5244         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5245             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5246                 return max_cdclk_freq;
5247         else if (IS_CHERRYVIEW(dev_priv))
5248                 return max_cdclk_freq*95/100;
5249         else if (INTEL_INFO(dev_priv)->gen < 4)
5250                 return 2*max_cdclk_freq*90/100;
5251         else
5252                 return max_cdclk_freq*90/100;
5253 }
5254
5255 static void intel_update_max_cdclk(struct drm_device *dev)
5256 {
5257         struct drm_i915_private *dev_priv = dev->dev_private;
5258
5259         if (IS_SKYLAKE(dev)) {
5260                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5261
5262                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5263                         dev_priv->max_cdclk_freq = 675000;
5264                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5265                         dev_priv->max_cdclk_freq = 540000;
5266                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5267                         dev_priv->max_cdclk_freq = 450000;
5268                 else
5269                         dev_priv->max_cdclk_freq = 337500;
5270         } else if (IS_BROADWELL(dev))  {
5271                 /*
5272                  * FIXME with extra cooling we can allow
5273                  * 540 MHz for ULX and 675 Mhz for ULT.
5274                  * How can we know if extra cooling is
5275                  * available? PCI ID, VTB, something else?
5276                  */
5277                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5278                         dev_priv->max_cdclk_freq = 450000;
5279                 else if (IS_BDW_ULX(dev))
5280                         dev_priv->max_cdclk_freq = 450000;
5281                 else if (IS_BDW_ULT(dev))
5282                         dev_priv->max_cdclk_freq = 540000;
5283                 else
5284                         dev_priv->max_cdclk_freq = 675000;
5285         } else if (IS_CHERRYVIEW(dev)) {
5286                 dev_priv->max_cdclk_freq = 320000;
5287         } else if (IS_VALLEYVIEW(dev)) {
5288                 dev_priv->max_cdclk_freq = 400000;
5289         } else {
5290                 /* otherwise assume cdclk is fixed */
5291                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5292         }
5293
5294         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5295
5296         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5297                          dev_priv->max_cdclk_freq);
5298
5299         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5300                          dev_priv->max_dotclk_freq);
5301 }
5302
5303 static void intel_update_cdclk(struct drm_device *dev)
5304 {
5305         struct drm_i915_private *dev_priv = dev->dev_private;
5306
5307         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5308         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5309                          dev_priv->cdclk_freq);
5310
5311         /*
5312          * Program the gmbus_freq based on the cdclk frequency.
5313          * BSpec erroneously claims we should aim for 4MHz, but
5314          * in fact 1MHz is the correct frequency.
5315          */
5316         if (IS_VALLEYVIEW(dev)) {
5317                 /*
5318                  * Program the gmbus_freq based on the cdclk frequency.
5319                  * BSpec erroneously claims we should aim for 4MHz, but
5320                  * in fact 1MHz is the correct frequency.
5321                  */
5322                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5323         }
5324
5325         if (dev_priv->max_cdclk_freq == 0)
5326                 intel_update_max_cdclk(dev);
5327 }
5328
5329 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5330 {
5331         struct drm_i915_private *dev_priv = dev->dev_private;
5332         uint32_t divider;
5333         uint32_t ratio;
5334         uint32_t current_freq;
5335         int ret;
5336
5337         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5338         switch (frequency) {
5339         case 144000:
5340                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5341                 ratio = BXT_DE_PLL_RATIO(60);
5342                 break;
5343         case 288000:
5344                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5345                 ratio = BXT_DE_PLL_RATIO(60);
5346                 break;
5347         case 384000:
5348                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5349                 ratio = BXT_DE_PLL_RATIO(60);
5350                 break;
5351         case 576000:
5352                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5353                 ratio = BXT_DE_PLL_RATIO(60);
5354                 break;
5355         case 624000:
5356                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5357                 ratio = BXT_DE_PLL_RATIO(65);
5358                 break;
5359         case 19200:
5360                 /*
5361                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5362                  * to suppress GCC warning.
5363                  */
5364                 ratio = 0;
5365                 divider = 0;
5366                 break;
5367         default:
5368                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5369
5370                 return;
5371         }
5372
5373         mutex_lock(&dev_priv->rps.hw_lock);
5374         /* Inform power controller of upcoming frequency change */
5375         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5376                                       0x80000000);
5377         mutex_unlock(&dev_priv->rps.hw_lock);
5378
5379         if (ret) {
5380                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5381                           ret, frequency);
5382                 return;
5383         }
5384
5385         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5386         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5387         current_freq = current_freq * 500 + 1000;
5388
5389         /*
5390          * DE PLL has to be disabled when
5391          * - setting to 19.2MHz (bypass, PLL isn't used)
5392          * - before setting to 624MHz (PLL needs toggling)
5393          * - before setting to any frequency from 624MHz (PLL needs toggling)
5394          */
5395         if (frequency == 19200 || frequency == 624000 ||
5396             current_freq == 624000) {
5397                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5398                 /* Timeout 200us */
5399                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5400                              1))
5401                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5402         }
5403
5404         if (frequency != 19200) {
5405                 uint32_t val;
5406
5407                 val = I915_READ(BXT_DE_PLL_CTL);
5408                 val &= ~BXT_DE_PLL_RATIO_MASK;
5409                 val |= ratio;
5410                 I915_WRITE(BXT_DE_PLL_CTL, val);
5411
5412                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5413                 /* Timeout 200us */
5414                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5415                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5416
5417                 val = I915_READ(CDCLK_CTL);
5418                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5419                 val |= divider;
5420                 /*
5421                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5422                  * enable otherwise.
5423                  */
5424                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5425                 if (frequency >= 500000)
5426                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5427
5428                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5429                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5430                 val |= (frequency - 1000) / 500;
5431                 I915_WRITE(CDCLK_CTL, val);
5432         }
5433
5434         mutex_lock(&dev_priv->rps.hw_lock);
5435         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5436                                       DIV_ROUND_UP(frequency, 25000));
5437         mutex_unlock(&dev_priv->rps.hw_lock);
5438
5439         if (ret) {
5440                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5441                           ret, frequency);
5442                 return;
5443         }
5444
5445         intel_update_cdclk(dev);
5446 }
5447
5448 void broxton_init_cdclk(struct drm_device *dev)
5449 {
5450         struct drm_i915_private *dev_priv = dev->dev_private;
5451         uint32_t val;
5452
5453         /*
5454          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5455          * or else the reset will hang because there is no PCH to respond.
5456          * Move the handshake programming to initialization sequence.
5457          * Previously was left up to BIOS.
5458          */
5459         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5460         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5461         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5462
5463         /* Enable PG1 for cdclk */
5464         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5465
5466         /* check if cd clock is enabled */
5467         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5468                 DRM_DEBUG_KMS("Display already initialized\n");
5469                 return;
5470         }
5471
5472         /*
5473          * FIXME:
5474          * - The initial CDCLK needs to be read from VBT.
5475          *   Need to make this change after VBT has changes for BXT.
5476          * - check if setting the max (or any) cdclk freq is really necessary
5477          *   here, it belongs to modeset time
5478          */
5479         broxton_set_cdclk(dev, 624000);
5480
5481         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5482         POSTING_READ(DBUF_CTL);
5483
5484         udelay(10);
5485
5486         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5487                 DRM_ERROR("DBuf power enable timeout!\n");
5488 }
5489
5490 void broxton_uninit_cdclk(struct drm_device *dev)
5491 {
5492         struct drm_i915_private *dev_priv = dev->dev_private;
5493
5494         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5495         POSTING_READ(DBUF_CTL);
5496
5497         udelay(10);
5498
5499         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5500                 DRM_ERROR("DBuf power disable timeout!\n");
5501
5502         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5503         broxton_set_cdclk(dev, 19200);
5504
5505         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5506 }
5507
5508 static const struct skl_cdclk_entry {
5509         unsigned int freq;
5510         unsigned int vco;
5511 } skl_cdclk_frequencies[] = {
5512         { .freq = 308570, .vco = 8640 },
5513         { .freq = 337500, .vco = 8100 },
5514         { .freq = 432000, .vco = 8640 },
5515         { .freq = 450000, .vco = 8100 },
5516         { .freq = 540000, .vco = 8100 },
5517         { .freq = 617140, .vco = 8640 },
5518         { .freq = 675000, .vco = 8100 },
5519 };
5520
5521 static unsigned int skl_cdclk_decimal(unsigned int freq)
5522 {
5523         return (freq - 1000) / 500;
5524 }
5525
5526 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5527 {
5528         unsigned int i;
5529
5530         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5531                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5532
5533                 if (e->freq == freq)
5534                         return e->vco;
5535         }
5536
5537         return 8100;
5538 }
5539
5540 static void
5541 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5542 {
5543         unsigned int min_freq;
5544         u32 val;
5545
5546         /* select the minimum CDCLK before enabling DPLL 0 */
5547         val = I915_READ(CDCLK_CTL);
5548         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5549         val |= CDCLK_FREQ_337_308;
5550
5551         if (required_vco == 8640)
5552                 min_freq = 308570;
5553         else
5554                 min_freq = 337500;
5555
5556         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5557
5558         I915_WRITE(CDCLK_CTL, val);
5559         POSTING_READ(CDCLK_CTL);
5560
5561         /*
5562          * We always enable DPLL0 with the lowest link rate possible, but still
5563          * taking into account the VCO required to operate the eDP panel at the
5564          * desired frequency. The usual DP link rates operate with a VCO of
5565          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5566          * The modeset code is responsible for the selection of the exact link
5567          * rate later on, with the constraint of choosing a frequency that
5568          * works with required_vco.
5569          */
5570         val = I915_READ(DPLL_CTRL1);
5571
5572         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5573                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5574         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5575         if (required_vco == 8640)
5576                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5577                                             SKL_DPLL0);
5578         else
5579                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5580                                             SKL_DPLL0);
5581
5582         I915_WRITE(DPLL_CTRL1, val);
5583         POSTING_READ(DPLL_CTRL1);
5584
5585         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5586
5587         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5588                 DRM_ERROR("DPLL0 not locked\n");
5589 }
5590
5591 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5592 {
5593         int ret;
5594         u32 val;
5595
5596         /* inform PCU we want to change CDCLK */
5597         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5598         mutex_lock(&dev_priv->rps.hw_lock);
5599         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5600         mutex_unlock(&dev_priv->rps.hw_lock);
5601
5602         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5603 }
5604
5605 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5606 {
5607         unsigned int i;
5608
5609         for (i = 0; i < 15; i++) {
5610                 if (skl_cdclk_pcu_ready(dev_priv))
5611                         return true;
5612                 udelay(10);
5613         }
5614
5615         return false;
5616 }
5617
5618 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5619 {
5620         struct drm_device *dev = dev_priv->dev;
5621         u32 freq_select, pcu_ack;
5622
5623         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5624
5625         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5626                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5627                 return;
5628         }
5629
5630         /* set CDCLK_CTL */
5631         switch(freq) {
5632         case 450000:
5633         case 432000:
5634                 freq_select = CDCLK_FREQ_450_432;
5635                 pcu_ack = 1;
5636                 break;
5637         case 540000:
5638                 freq_select = CDCLK_FREQ_540;
5639                 pcu_ack = 2;
5640                 break;
5641         case 308570:
5642         case 337500:
5643         default:
5644                 freq_select = CDCLK_FREQ_337_308;
5645                 pcu_ack = 0;
5646                 break;
5647         case 617140:
5648         case 675000:
5649                 freq_select = CDCLK_FREQ_675_617;
5650                 pcu_ack = 3;
5651                 break;
5652         }
5653
5654         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5655         POSTING_READ(CDCLK_CTL);
5656
5657         /* inform PCU of the change */
5658         mutex_lock(&dev_priv->rps.hw_lock);
5659         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5660         mutex_unlock(&dev_priv->rps.hw_lock);
5661
5662         intel_update_cdclk(dev);
5663 }
5664
5665 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5666 {
5667         /* disable DBUF power */
5668         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5669         POSTING_READ(DBUF_CTL);
5670
5671         udelay(10);
5672
5673         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5674                 DRM_ERROR("DBuf power disable timeout\n");
5675
5676         /* disable DPLL0 */
5677         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5678         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5679                 DRM_ERROR("Couldn't disable DPLL0\n");
5680
5681         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5682 }
5683
5684 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5685 {
5686         u32 val;
5687         unsigned int required_vco;
5688
5689         /* enable PCH reset handshake */
5690         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5691         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5692
5693         /* enable PG1 and Misc I/O */
5694         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5695
5696         /* DPLL0 not enabled (happens on early BIOS versions) */
5697         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5698                 /* enable DPLL0 */
5699                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5700                 skl_dpll0_enable(dev_priv, required_vco);
5701         }
5702
5703         /* set CDCLK to the frequency the BIOS chose */
5704         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5705
5706         /* enable DBUF power */
5707         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5708         POSTING_READ(DBUF_CTL);
5709
5710         udelay(10);
5711
5712         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5713                 DRM_ERROR("DBuf power enable timeout\n");
5714 }
5715
5716 /* returns HPLL frequency in kHz */
5717 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5718 {
5719         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5720
5721         /* Obtain SKU information */
5722         mutex_lock(&dev_priv->sb_lock);
5723         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5724                 CCK_FUSE_HPLL_FREQ_MASK;
5725         mutex_unlock(&dev_priv->sb_lock);
5726
5727         return vco_freq[hpll_freq] * 1000;
5728 }
5729
5730 /* Adjust CDclk dividers to allow high res or save power if possible */
5731 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5732 {
5733         struct drm_i915_private *dev_priv = dev->dev_private;
5734         u32 val, cmd;
5735
5736         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5737                                         != dev_priv->cdclk_freq);
5738
5739         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5740                 cmd = 2;
5741         else if (cdclk == 266667)
5742                 cmd = 1;
5743         else
5744                 cmd = 0;
5745
5746         mutex_lock(&dev_priv->rps.hw_lock);
5747         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5748         val &= ~DSPFREQGUAR_MASK;
5749         val |= (cmd << DSPFREQGUAR_SHIFT);
5750         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5751         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5752                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5753                      50)) {
5754                 DRM_ERROR("timed out waiting for CDclk change\n");
5755         }
5756         mutex_unlock(&dev_priv->rps.hw_lock);
5757
5758         mutex_lock(&dev_priv->sb_lock);
5759
5760         if (cdclk == 400000) {
5761                 u32 divider;
5762
5763                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5764
5765                 /* adjust cdclk divider */
5766                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5767                 val &= ~DISPLAY_FREQUENCY_VALUES;
5768                 val |= divider;
5769                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5770
5771                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5772                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5773                              50))
5774                         DRM_ERROR("timed out waiting for CDclk change\n");
5775         }
5776
5777         /* adjust self-refresh exit latency value */
5778         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5779         val &= ~0x7f;
5780
5781         /*
5782          * For high bandwidth configs, we set a higher latency in the bunit
5783          * so that the core display fetch happens in time to avoid underruns.
5784          */
5785         if (cdclk == 400000)
5786                 val |= 4500 / 250; /* 4.5 usec */
5787         else
5788                 val |= 3000 / 250; /* 3.0 usec */
5789         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5790
5791         mutex_unlock(&dev_priv->sb_lock);
5792
5793         intel_update_cdclk(dev);
5794 }
5795
5796 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5797 {
5798         struct drm_i915_private *dev_priv = dev->dev_private;
5799         u32 val, cmd;
5800
5801         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5802                                                 != dev_priv->cdclk_freq);
5803
5804         switch (cdclk) {
5805         case 333333:
5806         case 320000:
5807         case 266667:
5808         case 200000:
5809                 break;
5810         default:
5811                 MISSING_CASE(cdclk);
5812                 return;
5813         }
5814
5815         /*
5816          * Specs are full of misinformation, but testing on actual
5817          * hardware has shown that we just need to write the desired
5818          * CCK divider into the Punit register.
5819          */
5820         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5821
5822         mutex_lock(&dev_priv->rps.hw_lock);
5823         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5824         val &= ~DSPFREQGUAR_MASK_CHV;
5825         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5826         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5827         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5828                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5829                      50)) {
5830                 DRM_ERROR("timed out waiting for CDclk change\n");
5831         }
5832         mutex_unlock(&dev_priv->rps.hw_lock);
5833
5834         intel_update_cdclk(dev);
5835 }
5836
5837 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5838                                  int max_pixclk)
5839 {
5840         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5841         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5842
5843         /*
5844          * Really only a few cases to deal with, as only 4 CDclks are supported:
5845          *   200MHz
5846          *   267MHz
5847          *   320/333MHz (depends on HPLL freq)
5848          *   400MHz (VLV only)
5849          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5850          * of the lower bin and adjust if needed.
5851          *
5852          * We seem to get an unstable or solid color picture at 200MHz.
5853          * Not sure what's wrong. For now use 200MHz only when all pipes
5854          * are off.
5855          */
5856         if (!IS_CHERRYVIEW(dev_priv) &&
5857             max_pixclk > freq_320*limit/100)
5858                 return 400000;
5859         else if (max_pixclk > 266667*limit/100)
5860                 return freq_320;
5861         else if (max_pixclk > 0)
5862                 return 266667;
5863         else
5864                 return 200000;
5865 }
5866
5867 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5868                               int max_pixclk)
5869 {
5870         /*
5871          * FIXME:
5872          * - remove the guardband, it's not needed on BXT
5873          * - set 19.2MHz bypass frequency if there are no active pipes
5874          */
5875         if (max_pixclk > 576000*9/10)
5876                 return 624000;
5877         else if (max_pixclk > 384000*9/10)
5878                 return 576000;
5879         else if (max_pixclk > 288000*9/10)
5880                 return 384000;
5881         else if (max_pixclk > 144000*9/10)
5882                 return 288000;
5883         else
5884                 return 144000;
5885 }
5886
5887 /* Compute the max pixel clock for new configuration. Uses atomic state if
5888  * that's non-NULL, look at current state otherwise. */
5889 static int intel_mode_max_pixclk(struct drm_device *dev,
5890                                  struct drm_atomic_state *state)
5891 {
5892         struct intel_crtc *intel_crtc;
5893         struct intel_crtc_state *crtc_state;
5894         int max_pixclk = 0;
5895
5896         for_each_intel_crtc(dev, intel_crtc) {
5897                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5898                 if (IS_ERR(crtc_state))
5899                         return PTR_ERR(crtc_state);
5900
5901                 if (!crtc_state->base.enable)
5902                         continue;
5903
5904                 max_pixclk = max(max_pixclk,
5905                                  crtc_state->base.adjusted_mode.crtc_clock);
5906         }
5907
5908         return max_pixclk;
5909 }
5910
5911 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5912 {
5913         struct drm_device *dev = state->dev;
5914         struct drm_i915_private *dev_priv = dev->dev_private;
5915         int max_pixclk = intel_mode_max_pixclk(dev, state);
5916
5917         if (max_pixclk < 0)
5918                 return max_pixclk;
5919
5920         to_intel_atomic_state(state)->cdclk =
5921                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5922
5923         return 0;
5924 }
5925
5926 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5927 {
5928         struct drm_device *dev = state->dev;
5929         struct drm_i915_private *dev_priv = dev->dev_private;
5930         int max_pixclk = intel_mode_max_pixclk(dev, state);
5931
5932         if (max_pixclk < 0)
5933                 return max_pixclk;
5934
5935         to_intel_atomic_state(state)->cdclk =
5936                 broxton_calc_cdclk(dev_priv, max_pixclk);
5937
5938         return 0;
5939 }
5940
5941 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5942 {
5943         unsigned int credits, default_credits;
5944
5945         if (IS_CHERRYVIEW(dev_priv))
5946                 default_credits = PFI_CREDIT(12);
5947         else
5948                 default_credits = PFI_CREDIT(8);
5949
5950         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5951                 /* CHV suggested value is 31 or 63 */
5952                 if (IS_CHERRYVIEW(dev_priv))
5953                         credits = PFI_CREDIT_63;
5954                 else
5955                         credits = PFI_CREDIT(15);
5956         } else {
5957                 credits = default_credits;
5958         }
5959
5960         /*
5961          * WA - write default credits before re-programming
5962          * FIXME: should we also set the resend bit here?
5963          */
5964         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5965                    default_credits);
5966
5967         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5968                    credits | PFI_CREDIT_RESEND);
5969
5970         /*
5971          * FIXME is this guaranteed to clear
5972          * immediately or should we poll for it?
5973          */
5974         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5975 }
5976
5977 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5978 {
5979         struct drm_device *dev = old_state->dev;
5980         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
5981         struct drm_i915_private *dev_priv = dev->dev_private;
5982
5983         /*
5984          * FIXME: We can end up here with all power domains off, yet
5985          * with a CDCLK frequency other than the minimum. To account
5986          * for this take the PIPE-A power domain, which covers the HW
5987          * blocks needed for the following programming. This can be
5988          * removed once it's guaranteed that we get here either with
5989          * the minimum CDCLK set, or the required power domains
5990          * enabled.
5991          */
5992         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5993
5994         if (IS_CHERRYVIEW(dev))
5995                 cherryview_set_cdclk(dev, req_cdclk);
5996         else
5997                 valleyview_set_cdclk(dev, req_cdclk);
5998
5999         vlv_program_pfi_credits(dev_priv);
6000
6001         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6002 }
6003
6004 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6005 {
6006         struct drm_device *dev = crtc->dev;
6007         struct drm_i915_private *dev_priv = to_i915(dev);
6008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6009         struct intel_encoder *encoder;
6010         int pipe = intel_crtc->pipe;
6011         bool is_dsi;
6012
6013         if (WARN_ON(intel_crtc->active))
6014                 return;
6015
6016         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6017
6018         if (intel_crtc->config->has_dp_encoder)
6019                 intel_dp_set_m_n(intel_crtc, M1_N1);
6020
6021         intel_set_pipe_timings(intel_crtc);
6022
6023         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6024                 struct drm_i915_private *dev_priv = dev->dev_private;
6025
6026                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6027                 I915_WRITE(CHV_CANVAS(pipe), 0);
6028         }
6029
6030         i9xx_set_pipeconf(intel_crtc);
6031
6032         intel_crtc->active = true;
6033
6034         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6035
6036         for_each_encoder_on_crtc(dev, crtc, encoder)
6037                 if (encoder->pre_pll_enable)
6038                         encoder->pre_pll_enable(encoder);
6039
6040         if (!is_dsi) {
6041                 if (IS_CHERRYVIEW(dev)) {
6042                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6043                         chv_enable_pll(intel_crtc, intel_crtc->config);
6044                 } else {
6045                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6046                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6047                 }
6048         }
6049
6050         for_each_encoder_on_crtc(dev, crtc, encoder)
6051                 if (encoder->pre_enable)
6052                         encoder->pre_enable(encoder);
6053
6054         i9xx_pfit_enable(intel_crtc);
6055
6056         intel_crtc_load_lut(crtc);
6057
6058         intel_enable_pipe(intel_crtc);
6059
6060         assert_vblank_disabled(crtc);
6061         drm_crtc_vblank_on(crtc);
6062
6063         for_each_encoder_on_crtc(dev, crtc, encoder)
6064                 encoder->enable(encoder);
6065 }
6066
6067 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6068 {
6069         struct drm_device *dev = crtc->base.dev;
6070         struct drm_i915_private *dev_priv = dev->dev_private;
6071
6072         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6073         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6074 }
6075
6076 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6077 {
6078         struct drm_device *dev = crtc->dev;
6079         struct drm_i915_private *dev_priv = to_i915(dev);
6080         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6081         struct intel_encoder *encoder;
6082         int pipe = intel_crtc->pipe;
6083
6084         if (WARN_ON(intel_crtc->active))
6085                 return;
6086
6087         i9xx_set_pll_dividers(intel_crtc);
6088
6089         if (intel_crtc->config->has_dp_encoder)
6090                 intel_dp_set_m_n(intel_crtc, M1_N1);
6091
6092         intel_set_pipe_timings(intel_crtc);
6093
6094         i9xx_set_pipeconf(intel_crtc);
6095
6096         intel_crtc->active = true;
6097
6098         if (!IS_GEN2(dev))
6099                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6100
6101         for_each_encoder_on_crtc(dev, crtc, encoder)
6102                 if (encoder->pre_enable)
6103                         encoder->pre_enable(encoder);
6104
6105         i9xx_enable_pll(intel_crtc);
6106
6107         i9xx_pfit_enable(intel_crtc);
6108
6109         intel_crtc_load_lut(crtc);
6110
6111         intel_update_watermarks(crtc);
6112         intel_enable_pipe(intel_crtc);
6113
6114         assert_vblank_disabled(crtc);
6115         drm_crtc_vblank_on(crtc);
6116
6117         for_each_encoder_on_crtc(dev, crtc, encoder)
6118                 encoder->enable(encoder);
6119 }
6120
6121 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6122 {
6123         struct drm_device *dev = crtc->base.dev;
6124         struct drm_i915_private *dev_priv = dev->dev_private;
6125
6126         if (!crtc->config->gmch_pfit.control)
6127                 return;
6128
6129         assert_pipe_disabled(dev_priv, crtc->pipe);
6130
6131         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6132                          I915_READ(PFIT_CONTROL));
6133         I915_WRITE(PFIT_CONTROL, 0);
6134 }
6135
6136 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6137 {
6138         struct drm_device *dev = crtc->dev;
6139         struct drm_i915_private *dev_priv = dev->dev_private;
6140         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6141         struct intel_encoder *encoder;
6142         int pipe = intel_crtc->pipe;
6143
6144         /*
6145          * On gen2 planes are double buffered but the pipe isn't, so we must
6146          * wait for planes to fully turn off before disabling the pipe.
6147          * We also need to wait on all gmch platforms because of the
6148          * self-refresh mode constraint explained above.
6149          */
6150         intel_wait_for_vblank(dev, pipe);
6151
6152         for_each_encoder_on_crtc(dev, crtc, encoder)
6153                 encoder->disable(encoder);
6154
6155         drm_crtc_vblank_off(crtc);
6156         assert_vblank_disabled(crtc);
6157
6158         intel_disable_pipe(intel_crtc);
6159
6160         i9xx_pfit_disable(intel_crtc);
6161
6162         for_each_encoder_on_crtc(dev, crtc, encoder)
6163                 if (encoder->post_disable)
6164                         encoder->post_disable(encoder);
6165
6166         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6167                 if (IS_CHERRYVIEW(dev))
6168                         chv_disable_pll(dev_priv, pipe);
6169                 else if (IS_VALLEYVIEW(dev))
6170                         vlv_disable_pll(dev_priv, pipe);
6171                 else
6172                         i9xx_disable_pll(intel_crtc);
6173         }
6174
6175         for_each_encoder_on_crtc(dev, crtc, encoder)
6176                 if (encoder->post_pll_disable)
6177                         encoder->post_pll_disable(encoder);
6178
6179         if (!IS_GEN2(dev))
6180                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6181
6182         intel_crtc->active = false;
6183         intel_update_watermarks(crtc);
6184 }
6185
6186 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6187 {
6188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6189         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6190         enum intel_display_power_domain domain;
6191         unsigned long domains;
6192
6193         if (!intel_crtc->active)
6194                 return;
6195
6196         if (to_intel_plane_state(crtc->primary->state)->visible) {
6197                 intel_crtc_wait_for_pending_flips(crtc);
6198                 intel_pre_disable_primary(crtc);
6199         }
6200
6201         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6202         dev_priv->display.crtc_disable(crtc);
6203         intel_disable_shared_dpll(intel_crtc);
6204
6205         domains = intel_crtc->enabled_power_domains;
6206         for_each_power_domain(domain, domains)
6207                 intel_display_power_put(dev_priv, domain);
6208         intel_crtc->enabled_power_domains = 0;
6209 }
6210
6211 /*
6212  * turn all crtc's off, but do not adjust state
6213  * This has to be paired with a call to intel_modeset_setup_hw_state.
6214  */
6215 int intel_display_suspend(struct drm_device *dev)
6216 {
6217         struct drm_mode_config *config = &dev->mode_config;
6218         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6219         struct drm_atomic_state *state;
6220         struct drm_crtc *crtc;
6221         unsigned crtc_mask = 0;
6222         int ret = 0;
6223
6224         if (WARN_ON(!ctx))
6225                 return 0;
6226
6227         lockdep_assert_held(&ctx->ww_ctx);
6228         state = drm_atomic_state_alloc(dev);
6229         if (WARN_ON(!state))
6230                 return -ENOMEM;
6231
6232         state->acquire_ctx = ctx;
6233         state->allow_modeset = true;
6234
6235         for_each_crtc(dev, crtc) {
6236                 struct drm_crtc_state *crtc_state =
6237                         drm_atomic_get_crtc_state(state, crtc);
6238
6239                 ret = PTR_ERR_OR_ZERO(crtc_state);
6240                 if (ret)
6241                         goto free;
6242
6243                 if (!crtc_state->active)
6244                         continue;
6245
6246                 crtc_state->active = false;
6247                 crtc_mask |= 1 << drm_crtc_index(crtc);
6248         }
6249
6250         if (crtc_mask) {
6251                 ret = drm_atomic_commit(state);
6252
6253                 if (!ret) {
6254                         for_each_crtc(dev, crtc)
6255                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6256                                         crtc->state->active = true;
6257
6258                         return ret;
6259                 }
6260         }
6261
6262 free:
6263         if (ret)
6264                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6265         drm_atomic_state_free(state);
6266         return ret;
6267 }
6268
6269 void intel_encoder_destroy(struct drm_encoder *encoder)
6270 {
6271         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6272
6273         drm_encoder_cleanup(encoder);
6274         kfree(intel_encoder);
6275 }
6276
6277 /* Cross check the actual hw state with our own modeset state tracking (and it's
6278  * internal consistency). */
6279 static void intel_connector_check_state(struct intel_connector *connector)
6280 {
6281         struct drm_crtc *crtc = connector->base.state->crtc;
6282
6283         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6284                       connector->base.base.id,
6285                       connector->base.name);
6286
6287         if (connector->get_hw_state(connector)) {
6288                 struct drm_encoder *encoder = &connector->encoder->base;
6289                 struct drm_connector_state *conn_state = connector->base.state;
6290
6291                 I915_STATE_WARN(!crtc,
6292                          "connector enabled without attached crtc\n");
6293
6294                 if (!crtc)
6295                         return;
6296
6297                 I915_STATE_WARN(!crtc->state->active,
6298                       "connector is active, but attached crtc isn't\n");
6299
6300                 if (!encoder)
6301                         return;
6302
6303                 I915_STATE_WARN(conn_state->best_encoder != encoder,
6304                         "atomic encoder doesn't match attached encoder\n");
6305
6306                 I915_STATE_WARN(conn_state->crtc != encoder->crtc,
6307                         "attached encoder crtc differs from connector crtc\n");
6308         } else {
6309                 I915_STATE_WARN(crtc && crtc->state->active,
6310                         "attached crtc is active, but connector isn't\n");
6311                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6312                         "best encoder set without crtc!\n");
6313         }
6314 }
6315
6316 int intel_connector_init(struct intel_connector *connector)
6317 {
6318         struct drm_connector_state *connector_state;
6319
6320         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6321         if (!connector_state)
6322                 return -ENOMEM;
6323
6324         connector->base.state = connector_state;
6325         return 0;
6326 }
6327
6328 struct intel_connector *intel_connector_alloc(void)
6329 {
6330         struct intel_connector *connector;
6331
6332         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6333         if (!connector)
6334                 return NULL;
6335
6336         if (intel_connector_init(connector) < 0) {
6337                 kfree(connector);
6338                 return NULL;
6339         }
6340
6341         return connector;
6342 }
6343
6344 /* Simple connector->get_hw_state implementation for encoders that support only
6345  * one connector and no cloning and hence the encoder state determines the state
6346  * of the connector. */
6347 bool intel_connector_get_hw_state(struct intel_connector *connector)
6348 {
6349         enum pipe pipe = 0;
6350         struct intel_encoder *encoder = connector->encoder;
6351
6352         return encoder->get_hw_state(encoder, &pipe);
6353 }
6354
6355 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6356 {
6357         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6358                 return crtc_state->fdi_lanes;
6359
6360         return 0;
6361 }
6362
6363 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6364                                      struct intel_crtc_state *pipe_config)
6365 {
6366         struct drm_atomic_state *state = pipe_config->base.state;
6367         struct intel_crtc *other_crtc;
6368         struct intel_crtc_state *other_crtc_state;
6369
6370         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6371                       pipe_name(pipe), pipe_config->fdi_lanes);
6372         if (pipe_config->fdi_lanes > 4) {
6373                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6374                               pipe_name(pipe), pipe_config->fdi_lanes);
6375                 return -EINVAL;
6376         }
6377
6378         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6379                 if (pipe_config->fdi_lanes > 2) {
6380                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6381                                       pipe_config->fdi_lanes);
6382                         return -EINVAL;
6383                 } else {
6384                         return 0;
6385                 }
6386         }
6387
6388         if (INTEL_INFO(dev)->num_pipes == 2)
6389                 return 0;
6390
6391         /* Ivybridge 3 pipe is really complicated */
6392         switch (pipe) {
6393         case PIPE_A:
6394                 return 0;
6395         case PIPE_B:
6396                 if (pipe_config->fdi_lanes <= 2)
6397                         return 0;
6398
6399                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6400                 other_crtc_state =
6401                         intel_atomic_get_crtc_state(state, other_crtc);
6402                 if (IS_ERR(other_crtc_state))
6403                         return PTR_ERR(other_crtc_state);
6404
6405                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6406                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6407                                       pipe_name(pipe), pipe_config->fdi_lanes);
6408                         return -EINVAL;
6409                 }
6410                 return 0;
6411         case PIPE_C:
6412                 if (pipe_config->fdi_lanes > 2) {
6413                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6414                                       pipe_name(pipe), pipe_config->fdi_lanes);
6415                         return -EINVAL;
6416                 }
6417
6418                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6419                 other_crtc_state =
6420                         intel_atomic_get_crtc_state(state, other_crtc);
6421                 if (IS_ERR(other_crtc_state))
6422                         return PTR_ERR(other_crtc_state);
6423
6424                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6425                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6426                         return -EINVAL;
6427                 }
6428                 return 0;
6429         default:
6430                 BUG();
6431         }
6432 }
6433
6434 #define RETRY 1
6435 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6436                                        struct intel_crtc_state *pipe_config)
6437 {
6438         struct drm_device *dev = intel_crtc->base.dev;
6439         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6440         int lane, link_bw, fdi_dotclock, ret;
6441         bool needs_recompute = false;
6442
6443 retry:
6444         /* FDI is a binary signal running at ~2.7GHz, encoding
6445          * each output octet as 10 bits. The actual frequency
6446          * is stored as a divider into a 100MHz clock, and the
6447          * mode pixel clock is stored in units of 1KHz.
6448          * Hence the bw of each lane in terms of the mode signal
6449          * is:
6450          */
6451         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6452
6453         fdi_dotclock = adjusted_mode->crtc_clock;
6454
6455         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6456                                            pipe_config->pipe_bpp);
6457
6458         pipe_config->fdi_lanes = lane;
6459
6460         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6461                                link_bw, &pipe_config->fdi_m_n);
6462
6463         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6464                                        intel_crtc->pipe, pipe_config);
6465         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6466                 pipe_config->pipe_bpp -= 2*3;
6467                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6468                               pipe_config->pipe_bpp);
6469                 needs_recompute = true;
6470                 pipe_config->bw_constrained = true;
6471
6472                 goto retry;
6473         }
6474
6475         if (needs_recompute)
6476                 return RETRY;
6477
6478         return ret;
6479 }
6480
6481 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6482                                      struct intel_crtc_state *pipe_config)
6483 {
6484         if (pipe_config->pipe_bpp > 24)
6485                 return false;
6486
6487         /* HSW can handle pixel rate up to cdclk? */
6488         if (IS_HASWELL(dev_priv->dev))
6489                 return true;
6490
6491         /*
6492          * We compare against max which means we must take
6493          * the increased cdclk requirement into account when
6494          * calculating the new cdclk.
6495          *
6496          * Should measure whether using a lower cdclk w/o IPS
6497          */
6498         return ilk_pipe_pixel_rate(pipe_config) <=
6499                 dev_priv->max_cdclk_freq * 95 / 100;
6500 }
6501
6502 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6503                                    struct intel_crtc_state *pipe_config)
6504 {
6505         struct drm_device *dev = crtc->base.dev;
6506         struct drm_i915_private *dev_priv = dev->dev_private;
6507
6508         pipe_config->ips_enabled = i915.enable_ips &&
6509                 hsw_crtc_supports_ips(crtc) &&
6510                 pipe_config_supports_ips(dev_priv, pipe_config);
6511 }
6512
6513 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6514                                      struct intel_crtc_state *pipe_config)
6515 {
6516         struct drm_device *dev = crtc->base.dev;
6517         struct drm_i915_private *dev_priv = dev->dev_private;
6518         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6519
6520         /* FIXME should check pixel clock limits on all platforms */
6521         if (INTEL_INFO(dev)->gen < 4) {
6522                 int clock_limit = dev_priv->max_cdclk_freq;
6523
6524                 /*
6525                  * Enable pixel doubling when the dot clock
6526                  * is > 90% of the (display) core speed.
6527                  *
6528                  * GDG double wide on either pipe,
6529                  * otherwise pipe A only.
6530                  */
6531                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6532                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6533                         clock_limit *= 2;
6534                         pipe_config->double_wide = true;
6535                 }
6536
6537                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6538                         return -EINVAL;
6539         }
6540
6541         /*
6542          * Pipe horizontal size must be even in:
6543          * - DVO ganged mode
6544          * - LVDS dual channel mode
6545          * - Double wide pipe
6546          */
6547         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6548              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6549                 pipe_config->pipe_src_w &= ~1;
6550
6551         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6552          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6553          */
6554         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6555                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6556                 return -EINVAL;
6557
6558         if (HAS_IPS(dev))
6559                 hsw_compute_ips_config(crtc, pipe_config);
6560
6561         if (pipe_config->has_pch_encoder)
6562                 return ironlake_fdi_compute_config(crtc, pipe_config);
6563
6564         return 0;
6565 }
6566
6567 static int skylake_get_display_clock_speed(struct drm_device *dev)
6568 {
6569         struct drm_i915_private *dev_priv = to_i915(dev);
6570         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6571         uint32_t cdctl = I915_READ(CDCLK_CTL);
6572         uint32_t linkrate;
6573
6574         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6575                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6576
6577         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6578                 return 540000;
6579
6580         linkrate = (I915_READ(DPLL_CTRL1) &
6581                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6582
6583         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6584             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6585                 /* vco 8640 */
6586                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6587                 case CDCLK_FREQ_450_432:
6588                         return 432000;
6589                 case CDCLK_FREQ_337_308:
6590                         return 308570;
6591                 case CDCLK_FREQ_675_617:
6592                         return 617140;
6593                 default:
6594                         WARN(1, "Unknown cd freq selection\n");
6595                 }
6596         } else {
6597                 /* vco 8100 */
6598                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6599                 case CDCLK_FREQ_450_432:
6600                         return 450000;
6601                 case CDCLK_FREQ_337_308:
6602                         return 337500;
6603                 case CDCLK_FREQ_675_617:
6604                         return 675000;
6605                 default:
6606                         WARN(1, "Unknown cd freq selection\n");
6607                 }
6608         }
6609
6610         /* error case, do as if DPLL0 isn't enabled */
6611         return 24000;
6612 }
6613
6614 static int broxton_get_display_clock_speed(struct drm_device *dev)
6615 {
6616         struct drm_i915_private *dev_priv = to_i915(dev);
6617         uint32_t cdctl = I915_READ(CDCLK_CTL);
6618         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6619         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6620         int cdclk;
6621
6622         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6623                 return 19200;
6624
6625         cdclk = 19200 * pll_ratio / 2;
6626
6627         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6628         case BXT_CDCLK_CD2X_DIV_SEL_1:
6629                 return cdclk;  /* 576MHz or 624MHz */
6630         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6631                 return cdclk * 2 / 3; /* 384MHz */
6632         case BXT_CDCLK_CD2X_DIV_SEL_2:
6633                 return cdclk / 2; /* 288MHz */
6634         case BXT_CDCLK_CD2X_DIV_SEL_4:
6635                 return cdclk / 4; /* 144MHz */
6636         }
6637
6638         /* error case, do as if DE PLL isn't enabled */
6639         return 19200;
6640 }
6641
6642 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6643 {
6644         struct drm_i915_private *dev_priv = dev->dev_private;
6645         uint32_t lcpll = I915_READ(LCPLL_CTL);
6646         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6647
6648         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6649                 return 800000;
6650         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6651                 return 450000;
6652         else if (freq == LCPLL_CLK_FREQ_450)
6653                 return 450000;
6654         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6655                 return 540000;
6656         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6657                 return 337500;
6658         else
6659                 return 675000;
6660 }
6661
6662 static int haswell_get_display_clock_speed(struct drm_device *dev)
6663 {
6664         struct drm_i915_private *dev_priv = dev->dev_private;
6665         uint32_t lcpll = I915_READ(LCPLL_CTL);
6666         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6667
6668         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6669                 return 800000;
6670         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6671                 return 450000;
6672         else if (freq == LCPLL_CLK_FREQ_450)
6673                 return 450000;
6674         else if (IS_HSW_ULT(dev))
6675                 return 337500;
6676         else
6677                 return 540000;
6678 }
6679
6680 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6681 {
6682         struct drm_i915_private *dev_priv = dev->dev_private;
6683         u32 val;
6684         int divider;
6685
6686         if (dev_priv->hpll_freq == 0)
6687                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6688
6689         mutex_lock(&dev_priv->sb_lock);
6690         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6691         mutex_unlock(&dev_priv->sb_lock);
6692
6693         divider = val & DISPLAY_FREQUENCY_VALUES;
6694
6695         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6696              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6697              "cdclk change in progress\n");
6698
6699         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6700 }
6701
6702 static int ilk_get_display_clock_speed(struct drm_device *dev)
6703 {
6704         return 450000;
6705 }
6706
6707 static int i945_get_display_clock_speed(struct drm_device *dev)
6708 {
6709         return 400000;
6710 }
6711
6712 static int i915_get_display_clock_speed(struct drm_device *dev)
6713 {
6714         return 333333;
6715 }
6716
6717 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6718 {
6719         return 200000;
6720 }
6721
6722 static int pnv_get_display_clock_speed(struct drm_device *dev)
6723 {
6724         u16 gcfgc = 0;
6725
6726         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6727
6728         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6729         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6730                 return 266667;
6731         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6732                 return 333333;
6733         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6734                 return 444444;
6735         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6736                 return 200000;
6737         default:
6738                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6739         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6740                 return 133333;
6741         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6742                 return 166667;
6743         }
6744 }
6745
6746 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6747 {
6748         u16 gcfgc = 0;
6749
6750         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6751
6752         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6753                 return 133333;
6754         else {
6755                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6756                 case GC_DISPLAY_CLOCK_333_MHZ:
6757                         return 333333;
6758                 default:
6759                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6760                         return 190000;
6761                 }
6762         }
6763 }
6764
6765 static int i865_get_display_clock_speed(struct drm_device *dev)
6766 {
6767         return 266667;
6768 }
6769
6770 static int i85x_get_display_clock_speed(struct drm_device *dev)
6771 {
6772         u16 hpllcc = 0;
6773
6774         /*
6775          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6776          * encoding is different :(
6777          * FIXME is this the right way to detect 852GM/852GMV?
6778          */
6779         if (dev->pdev->revision == 0x1)
6780                 return 133333;
6781
6782         pci_bus_read_config_word(dev->pdev->bus,
6783                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6784
6785         /* Assume that the hardware is in the high speed state.  This
6786          * should be the default.
6787          */
6788         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6789         case GC_CLOCK_133_200:
6790         case GC_CLOCK_133_200_2:
6791         case GC_CLOCK_100_200:
6792                 return 200000;
6793         case GC_CLOCK_166_250:
6794                 return 250000;
6795         case GC_CLOCK_100_133:
6796                 return 133333;
6797         case GC_CLOCK_133_266:
6798         case GC_CLOCK_133_266_2:
6799         case GC_CLOCK_166_266:
6800                 return 266667;
6801         }
6802
6803         /* Shouldn't happen */
6804         return 0;
6805 }
6806
6807 static int i830_get_display_clock_speed(struct drm_device *dev)
6808 {
6809         return 133333;
6810 }
6811
6812 static unsigned int intel_hpll_vco(struct drm_device *dev)
6813 {
6814         struct drm_i915_private *dev_priv = dev->dev_private;
6815         static const unsigned int blb_vco[8] = {
6816                 [0] = 3200000,
6817                 [1] = 4000000,
6818                 [2] = 5333333,
6819                 [3] = 4800000,
6820                 [4] = 6400000,
6821         };
6822         static const unsigned int pnv_vco[8] = {
6823                 [0] = 3200000,
6824                 [1] = 4000000,
6825                 [2] = 5333333,
6826                 [3] = 4800000,
6827                 [4] = 2666667,
6828         };
6829         static const unsigned int cl_vco[8] = {
6830                 [0] = 3200000,
6831                 [1] = 4000000,
6832                 [2] = 5333333,
6833                 [3] = 6400000,
6834                 [4] = 3333333,
6835                 [5] = 3566667,
6836                 [6] = 4266667,
6837         };
6838         static const unsigned int elk_vco[8] = {
6839                 [0] = 3200000,
6840                 [1] = 4000000,
6841                 [2] = 5333333,
6842                 [3] = 4800000,
6843         };
6844         static const unsigned int ctg_vco[8] = {
6845                 [0] = 3200000,
6846                 [1] = 4000000,
6847                 [2] = 5333333,
6848                 [3] = 6400000,
6849                 [4] = 2666667,
6850                 [5] = 4266667,
6851         };
6852         const unsigned int *vco_table;
6853         unsigned int vco;
6854         uint8_t tmp = 0;
6855
6856         /* FIXME other chipsets? */
6857         if (IS_GM45(dev))
6858                 vco_table = ctg_vco;
6859         else if (IS_G4X(dev))
6860                 vco_table = elk_vco;
6861         else if (IS_CRESTLINE(dev))
6862                 vco_table = cl_vco;
6863         else if (IS_PINEVIEW(dev))
6864                 vco_table = pnv_vco;
6865         else if (IS_G33(dev))
6866                 vco_table = blb_vco;
6867         else
6868                 return 0;
6869
6870         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6871
6872         vco = vco_table[tmp & 0x7];
6873         if (vco == 0)
6874                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6875         else
6876                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6877
6878         return vco;
6879 }
6880
6881 static int gm45_get_display_clock_speed(struct drm_device *dev)
6882 {
6883         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6884         uint16_t tmp = 0;
6885
6886         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6887
6888         cdclk_sel = (tmp >> 12) & 0x1;
6889
6890         switch (vco) {
6891         case 2666667:
6892         case 4000000:
6893         case 5333333:
6894                 return cdclk_sel ? 333333 : 222222;
6895         case 3200000:
6896                 return cdclk_sel ? 320000 : 228571;
6897         default:
6898                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6899                 return 222222;
6900         }
6901 }
6902
6903 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6904 {
6905         static const uint8_t div_3200[] = { 16, 10,  8 };
6906         static const uint8_t div_4000[] = { 20, 12, 10 };
6907         static const uint8_t div_5333[] = { 24, 16, 14 };
6908         const uint8_t *div_table;
6909         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6910         uint16_t tmp = 0;
6911
6912         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6913
6914         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6915
6916         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6917                 goto fail;
6918
6919         switch (vco) {
6920         case 3200000:
6921                 div_table = div_3200;
6922                 break;
6923         case 4000000:
6924                 div_table = div_4000;
6925                 break;
6926         case 5333333:
6927                 div_table = div_5333;
6928                 break;
6929         default:
6930                 goto fail;
6931         }
6932
6933         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6934
6935 fail:
6936         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6937         return 200000;
6938 }
6939
6940 static int g33_get_display_clock_speed(struct drm_device *dev)
6941 {
6942         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6943         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6944         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6945         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6946         const uint8_t *div_table;
6947         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6948         uint16_t tmp = 0;
6949
6950         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6951
6952         cdclk_sel = (tmp >> 4) & 0x7;
6953
6954         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6955                 goto fail;
6956
6957         switch (vco) {
6958         case 3200000:
6959                 div_table = div_3200;
6960                 break;
6961         case 4000000:
6962                 div_table = div_4000;
6963                 break;
6964         case 4800000:
6965                 div_table = div_4800;
6966                 break;
6967         case 5333333:
6968                 div_table = div_5333;
6969                 break;
6970         default:
6971                 goto fail;
6972         }
6973
6974         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6975
6976 fail:
6977         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6978         return 190476;
6979 }
6980
6981 static void
6982 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6983 {
6984         while (*num > DATA_LINK_M_N_MASK ||
6985                *den > DATA_LINK_M_N_MASK) {
6986                 *num >>= 1;
6987                 *den >>= 1;
6988         }
6989 }
6990
6991 static void compute_m_n(unsigned int m, unsigned int n,
6992                         uint32_t *ret_m, uint32_t *ret_n)
6993 {
6994         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6995         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6996         intel_reduce_m_n_ratio(ret_m, ret_n);
6997 }
6998
6999 void
7000 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7001                        int pixel_clock, int link_clock,
7002                        struct intel_link_m_n *m_n)
7003 {
7004         m_n->tu = 64;
7005
7006         compute_m_n(bits_per_pixel * pixel_clock,
7007                     link_clock * nlanes * 8,
7008                     &m_n->gmch_m, &m_n->gmch_n);
7009
7010         compute_m_n(pixel_clock, link_clock,
7011                     &m_n->link_m, &m_n->link_n);
7012 }
7013
7014 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7015 {
7016         if (i915.panel_use_ssc >= 0)
7017                 return i915.panel_use_ssc != 0;
7018         return dev_priv->vbt.lvds_use_ssc
7019                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7020 }
7021
7022 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7023                            int num_connectors)
7024 {
7025         struct drm_device *dev = crtc_state->base.crtc->dev;
7026         struct drm_i915_private *dev_priv = dev->dev_private;
7027         int refclk;
7028
7029         WARN_ON(!crtc_state->base.state);
7030
7031         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7032                 refclk = 100000;
7033         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7034             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7035                 refclk = dev_priv->vbt.lvds_ssc_freq;
7036                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7037         } else if (!IS_GEN2(dev)) {
7038                 refclk = 96000;
7039         } else {
7040                 refclk = 48000;
7041         }
7042
7043         return refclk;
7044 }
7045
7046 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7047 {
7048         return (1 << dpll->n) << 16 | dpll->m2;
7049 }
7050
7051 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7052 {
7053         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7054 }
7055
7056 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7057                                      struct intel_crtc_state *crtc_state,
7058                                      intel_clock_t *reduced_clock)
7059 {
7060         struct drm_device *dev = crtc->base.dev;
7061         u32 fp, fp2 = 0;
7062
7063         if (IS_PINEVIEW(dev)) {
7064                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7065                 if (reduced_clock)
7066                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7067         } else {
7068                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7069                 if (reduced_clock)
7070                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7071         }
7072
7073         crtc_state->dpll_hw_state.fp0 = fp;
7074
7075         crtc->lowfreq_avail = false;
7076         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7077             reduced_clock) {
7078                 crtc_state->dpll_hw_state.fp1 = fp2;
7079                 crtc->lowfreq_avail = true;
7080         } else {
7081                 crtc_state->dpll_hw_state.fp1 = fp;
7082         }
7083 }
7084
7085 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7086                 pipe)
7087 {
7088         u32 reg_val;
7089
7090         /*
7091          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7092          * and set it to a reasonable value instead.
7093          */
7094         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7095         reg_val &= 0xffffff00;
7096         reg_val |= 0x00000030;
7097         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7098
7099         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7100         reg_val &= 0x8cffffff;
7101         reg_val = 0x8c000000;
7102         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7103
7104         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7105         reg_val &= 0xffffff00;
7106         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7107
7108         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7109         reg_val &= 0x00ffffff;
7110         reg_val |= 0xb0000000;
7111         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7112 }
7113
7114 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7115                                          struct intel_link_m_n *m_n)
7116 {
7117         struct drm_device *dev = crtc->base.dev;
7118         struct drm_i915_private *dev_priv = dev->dev_private;
7119         int pipe = crtc->pipe;
7120
7121         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7122         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7123         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7124         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7125 }
7126
7127 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7128                                          struct intel_link_m_n *m_n,
7129                                          struct intel_link_m_n *m2_n2)
7130 {
7131         struct drm_device *dev = crtc->base.dev;
7132         struct drm_i915_private *dev_priv = dev->dev_private;
7133         int pipe = crtc->pipe;
7134         enum transcoder transcoder = crtc->config->cpu_transcoder;
7135
7136         if (INTEL_INFO(dev)->gen >= 5) {
7137                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7138                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7139                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7140                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7141                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7142                  * for gen < 8) and if DRRS is supported (to make sure the
7143                  * registers are not unnecessarily accessed).
7144                  */
7145                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7146                         crtc->config->has_drrs) {
7147                         I915_WRITE(PIPE_DATA_M2(transcoder),
7148                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7149                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7150                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7151                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7152                 }
7153         } else {
7154                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7155                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7156                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7157                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7158         }
7159 }
7160
7161 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7162 {
7163         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7164
7165         if (m_n == M1_N1) {
7166                 dp_m_n = &crtc->config->dp_m_n;
7167                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7168         } else if (m_n == M2_N2) {
7169
7170                 /*
7171                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7172                  * needs to be programmed into M1_N1.
7173                  */
7174                 dp_m_n = &crtc->config->dp_m2_n2;
7175         } else {
7176                 DRM_ERROR("Unsupported divider value\n");
7177                 return;
7178         }
7179
7180         if (crtc->config->has_pch_encoder)
7181                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7182         else
7183                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7184 }
7185
7186 static void vlv_compute_dpll(struct intel_crtc *crtc,
7187                              struct intel_crtc_state *pipe_config)
7188 {
7189         u32 dpll, dpll_md;
7190
7191         /*
7192          * Enable DPIO clock input. We should never disable the reference
7193          * clock for pipe B, since VGA hotplug / manual detection depends
7194          * on it.
7195          */
7196         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7197                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7198         /* We should never disable this, set it here for state tracking */
7199         if (crtc->pipe == PIPE_B)
7200                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7201         dpll |= DPLL_VCO_ENABLE;
7202         pipe_config->dpll_hw_state.dpll = dpll;
7203
7204         dpll_md = (pipe_config->pixel_multiplier - 1)
7205                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7206         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7207 }
7208
7209 static void vlv_prepare_pll(struct intel_crtc *crtc,
7210                             const struct intel_crtc_state *pipe_config)
7211 {
7212         struct drm_device *dev = crtc->base.dev;
7213         struct drm_i915_private *dev_priv = dev->dev_private;
7214         int pipe = crtc->pipe;
7215         u32 mdiv;
7216         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7217         u32 coreclk, reg_val;
7218
7219         mutex_lock(&dev_priv->sb_lock);
7220
7221         bestn = pipe_config->dpll.n;
7222         bestm1 = pipe_config->dpll.m1;
7223         bestm2 = pipe_config->dpll.m2;
7224         bestp1 = pipe_config->dpll.p1;
7225         bestp2 = pipe_config->dpll.p2;
7226
7227         /* See eDP HDMI DPIO driver vbios notes doc */
7228
7229         /* PLL B needs special handling */
7230         if (pipe == PIPE_B)
7231                 vlv_pllb_recal_opamp(dev_priv, pipe);
7232
7233         /* Set up Tx target for periodic Rcomp update */
7234         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7235
7236         /* Disable target IRef on PLL */
7237         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7238         reg_val &= 0x00ffffff;
7239         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7240
7241         /* Disable fast lock */
7242         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7243
7244         /* Set idtafcrecal before PLL is enabled */
7245         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7246         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7247         mdiv |= ((bestn << DPIO_N_SHIFT));
7248         mdiv |= (1 << DPIO_K_SHIFT);
7249
7250         /*
7251          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7252          * but we don't support that).
7253          * Note: don't use the DAC post divider as it seems unstable.
7254          */
7255         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7256         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7257
7258         mdiv |= DPIO_ENABLE_CALIBRATION;
7259         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7260
7261         /* Set HBR and RBR LPF coefficients */
7262         if (pipe_config->port_clock == 162000 ||
7263             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7264             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7265                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7266                                  0x009f0003);
7267         else
7268                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7269                                  0x00d0000f);
7270
7271         if (pipe_config->has_dp_encoder) {
7272                 /* Use SSC source */
7273                 if (pipe == PIPE_A)
7274                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7275                                          0x0df40000);
7276                 else
7277                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7278                                          0x0df70000);
7279         } else { /* HDMI or VGA */
7280                 /* Use bend source */
7281                 if (pipe == PIPE_A)
7282                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7283                                          0x0df70000);
7284                 else
7285                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7286                                          0x0df40000);
7287         }
7288
7289         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7290         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7291         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7292             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7293                 coreclk |= 0x01000000;
7294         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7295
7296         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7297         mutex_unlock(&dev_priv->sb_lock);
7298 }
7299
7300 static void chv_compute_dpll(struct intel_crtc *crtc,
7301                              struct intel_crtc_state *pipe_config)
7302 {
7303         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7304                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7305                 DPLL_VCO_ENABLE;
7306         if (crtc->pipe != PIPE_A)
7307                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7308
7309         pipe_config->dpll_hw_state.dpll_md =
7310                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7311 }
7312
7313 static void chv_prepare_pll(struct intel_crtc *crtc,
7314                             const struct intel_crtc_state *pipe_config)
7315 {
7316         struct drm_device *dev = crtc->base.dev;
7317         struct drm_i915_private *dev_priv = dev->dev_private;
7318         int pipe = crtc->pipe;
7319         int dpll_reg = DPLL(crtc->pipe);
7320         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7321         u32 loopfilter, tribuf_calcntr;
7322         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7323         u32 dpio_val;
7324         int vco;
7325
7326         bestn = pipe_config->dpll.n;
7327         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7328         bestm1 = pipe_config->dpll.m1;
7329         bestm2 = pipe_config->dpll.m2 >> 22;
7330         bestp1 = pipe_config->dpll.p1;
7331         bestp2 = pipe_config->dpll.p2;
7332         vco = pipe_config->dpll.vco;
7333         dpio_val = 0;
7334         loopfilter = 0;
7335
7336         /*
7337          * Enable Refclk and SSC
7338          */
7339         I915_WRITE(dpll_reg,
7340                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7341
7342         mutex_lock(&dev_priv->sb_lock);
7343
7344         /* p1 and p2 divider */
7345         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7346                         5 << DPIO_CHV_S1_DIV_SHIFT |
7347                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7348                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7349                         1 << DPIO_CHV_K_DIV_SHIFT);
7350
7351         /* Feedback post-divider - m2 */
7352         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7353
7354         /* Feedback refclk divider - n and m1 */
7355         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7356                         DPIO_CHV_M1_DIV_BY_2 |
7357                         1 << DPIO_CHV_N_DIV_SHIFT);
7358
7359         /* M2 fraction division */
7360         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7361
7362         /* M2 fraction division enable */
7363         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7364         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7365         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7366         if (bestm2_frac)
7367                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7368         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7369
7370         /* Program digital lock detect threshold */
7371         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7372         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7373                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7374         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7375         if (!bestm2_frac)
7376                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7377         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7378
7379         /* Loop filter */
7380         if (vco == 5400000) {
7381                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7382                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7383                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7384                 tribuf_calcntr = 0x9;
7385         } else if (vco <= 6200000) {
7386                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7387                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7388                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7389                 tribuf_calcntr = 0x9;
7390         } else if (vco <= 6480000) {
7391                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7392                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7393                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7394                 tribuf_calcntr = 0x8;
7395         } else {
7396                 /* Not supported. Apply the same limits as in the max case */
7397                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7398                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7399                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7400                 tribuf_calcntr = 0;
7401         }
7402         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7403
7404         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7405         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7406         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7407         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7408
7409         /* AFC Recal */
7410         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7411                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7412                         DPIO_AFC_RECAL);
7413
7414         mutex_unlock(&dev_priv->sb_lock);
7415 }
7416
7417 /**
7418  * vlv_force_pll_on - forcibly enable just the PLL
7419  * @dev_priv: i915 private structure
7420  * @pipe: pipe PLL to enable
7421  * @dpll: PLL configuration
7422  *
7423  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7424  * in cases where we need the PLL enabled even when @pipe is not going to
7425  * be enabled.
7426  */
7427 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7428                       const struct dpll *dpll)
7429 {
7430         struct intel_crtc *crtc =
7431                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7432         struct intel_crtc_state pipe_config = {
7433                 .base.crtc = &crtc->base,
7434                 .pixel_multiplier = 1,
7435                 .dpll = *dpll,
7436         };
7437
7438         if (IS_CHERRYVIEW(dev)) {
7439                 chv_compute_dpll(crtc, &pipe_config);
7440                 chv_prepare_pll(crtc, &pipe_config);
7441                 chv_enable_pll(crtc, &pipe_config);
7442         } else {
7443                 vlv_compute_dpll(crtc, &pipe_config);
7444                 vlv_prepare_pll(crtc, &pipe_config);
7445                 vlv_enable_pll(crtc, &pipe_config);
7446         }
7447 }
7448
7449 /**
7450  * vlv_force_pll_off - forcibly disable just the PLL
7451  * @dev_priv: i915 private structure
7452  * @pipe: pipe PLL to disable
7453  *
7454  * Disable the PLL for @pipe. To be used in cases where we need
7455  * the PLL enabled even when @pipe is not going to be enabled.
7456  */
7457 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7458 {
7459         if (IS_CHERRYVIEW(dev))
7460                 chv_disable_pll(to_i915(dev), pipe);
7461         else
7462                 vlv_disable_pll(to_i915(dev), pipe);
7463 }
7464
7465 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7466                               struct intel_crtc_state *crtc_state,
7467                               intel_clock_t *reduced_clock,
7468                               int num_connectors)
7469 {
7470         struct drm_device *dev = crtc->base.dev;
7471         struct drm_i915_private *dev_priv = dev->dev_private;
7472         u32 dpll;
7473         bool is_sdvo;
7474         struct dpll *clock = &crtc_state->dpll;
7475
7476         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7477
7478         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7479                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7480
7481         dpll = DPLL_VGA_MODE_DIS;
7482
7483         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7484                 dpll |= DPLLB_MODE_LVDS;
7485         else
7486                 dpll |= DPLLB_MODE_DAC_SERIAL;
7487
7488         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7489                 dpll |= (crtc_state->pixel_multiplier - 1)
7490                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7491         }
7492
7493         if (is_sdvo)
7494                 dpll |= DPLL_SDVO_HIGH_SPEED;
7495
7496         if (crtc_state->has_dp_encoder)
7497                 dpll |= DPLL_SDVO_HIGH_SPEED;
7498
7499         /* compute bitmask from p1 value */
7500         if (IS_PINEVIEW(dev))
7501                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7502         else {
7503                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7504                 if (IS_G4X(dev) && reduced_clock)
7505                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7506         }
7507         switch (clock->p2) {
7508         case 5:
7509                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7510                 break;
7511         case 7:
7512                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7513                 break;
7514         case 10:
7515                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7516                 break;
7517         case 14:
7518                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7519                 break;
7520         }
7521         if (INTEL_INFO(dev)->gen >= 4)
7522                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7523
7524         if (crtc_state->sdvo_tv_clock)
7525                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7526         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7527                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7528                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7529         else
7530                 dpll |= PLL_REF_INPUT_DREFCLK;
7531
7532         dpll |= DPLL_VCO_ENABLE;
7533         crtc_state->dpll_hw_state.dpll = dpll;
7534
7535         if (INTEL_INFO(dev)->gen >= 4) {
7536                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7537                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7538                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7539         }
7540 }
7541
7542 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7543                               struct intel_crtc_state *crtc_state,
7544                               intel_clock_t *reduced_clock,
7545                               int num_connectors)
7546 {
7547         struct drm_device *dev = crtc->base.dev;
7548         struct drm_i915_private *dev_priv = dev->dev_private;
7549         u32 dpll;
7550         struct dpll *clock = &crtc_state->dpll;
7551
7552         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7553
7554         dpll = DPLL_VGA_MODE_DIS;
7555
7556         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7557                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7558         } else {
7559                 if (clock->p1 == 2)
7560                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7561                 else
7562                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7563                 if (clock->p2 == 4)
7564                         dpll |= PLL_P2_DIVIDE_BY_4;
7565         }
7566
7567         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7568                 dpll |= DPLL_DVO_2X_MODE;
7569
7570         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7571                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7572                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7573         else
7574                 dpll |= PLL_REF_INPUT_DREFCLK;
7575
7576         dpll |= DPLL_VCO_ENABLE;
7577         crtc_state->dpll_hw_state.dpll = dpll;
7578 }
7579
7580 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7581 {
7582         struct drm_device *dev = intel_crtc->base.dev;
7583         struct drm_i915_private *dev_priv = dev->dev_private;
7584         enum pipe pipe = intel_crtc->pipe;
7585         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7586         struct drm_display_mode *adjusted_mode =
7587                 &intel_crtc->config->base.adjusted_mode;
7588         uint32_t crtc_vtotal, crtc_vblank_end;
7589         int vsyncshift = 0;
7590
7591         /* We need to be careful not to changed the adjusted mode, for otherwise
7592          * the hw state checker will get angry at the mismatch. */
7593         crtc_vtotal = adjusted_mode->crtc_vtotal;
7594         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7595
7596         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7597                 /* the chip adds 2 halflines automatically */
7598                 crtc_vtotal -= 1;
7599                 crtc_vblank_end -= 1;
7600
7601                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7602                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7603                 else
7604                         vsyncshift = adjusted_mode->crtc_hsync_start -
7605                                 adjusted_mode->crtc_htotal / 2;
7606                 if (vsyncshift < 0)
7607                         vsyncshift += adjusted_mode->crtc_htotal;
7608         }
7609
7610         if (INTEL_INFO(dev)->gen > 3)
7611                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7612
7613         I915_WRITE(HTOTAL(cpu_transcoder),
7614                    (adjusted_mode->crtc_hdisplay - 1) |
7615                    ((adjusted_mode->crtc_htotal - 1) << 16));
7616         I915_WRITE(HBLANK(cpu_transcoder),
7617                    (adjusted_mode->crtc_hblank_start - 1) |
7618                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7619         I915_WRITE(HSYNC(cpu_transcoder),
7620                    (adjusted_mode->crtc_hsync_start - 1) |
7621                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7622
7623         I915_WRITE(VTOTAL(cpu_transcoder),
7624                    (adjusted_mode->crtc_vdisplay - 1) |
7625                    ((crtc_vtotal - 1) << 16));
7626         I915_WRITE(VBLANK(cpu_transcoder),
7627                    (adjusted_mode->crtc_vblank_start - 1) |
7628                    ((crtc_vblank_end - 1) << 16));
7629         I915_WRITE(VSYNC(cpu_transcoder),
7630                    (adjusted_mode->crtc_vsync_start - 1) |
7631                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7632
7633         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7634          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7635          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7636          * bits. */
7637         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7638             (pipe == PIPE_B || pipe == PIPE_C))
7639                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7640
7641         /* pipesrc controls the size that is scaled from, which should
7642          * always be the user's requested size.
7643          */
7644         I915_WRITE(PIPESRC(pipe),
7645                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7646                    (intel_crtc->config->pipe_src_h - 1));
7647 }
7648
7649 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7650                                    struct intel_crtc_state *pipe_config)
7651 {
7652         struct drm_device *dev = crtc->base.dev;
7653         struct drm_i915_private *dev_priv = dev->dev_private;
7654         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7655         uint32_t tmp;
7656
7657         tmp = I915_READ(HTOTAL(cpu_transcoder));
7658         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7659         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7660         tmp = I915_READ(HBLANK(cpu_transcoder));
7661         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7662         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7663         tmp = I915_READ(HSYNC(cpu_transcoder));
7664         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7665         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7666
7667         tmp = I915_READ(VTOTAL(cpu_transcoder));
7668         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7669         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7670         tmp = I915_READ(VBLANK(cpu_transcoder));
7671         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7672         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7673         tmp = I915_READ(VSYNC(cpu_transcoder));
7674         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7675         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7676
7677         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7678                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7679                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7680                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7681         }
7682
7683         tmp = I915_READ(PIPESRC(crtc->pipe));
7684         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7685         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7686
7687         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7688         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7689 }
7690
7691 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7692                                  struct intel_crtc_state *pipe_config)
7693 {
7694         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7695         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7696         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7697         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7698
7699         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7700         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7701         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7702         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7703
7704         mode->flags = pipe_config->base.adjusted_mode.flags;
7705         mode->type = DRM_MODE_TYPE_DRIVER;
7706
7707         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7708         mode->flags |= pipe_config->base.adjusted_mode.flags;
7709
7710         mode->hsync = drm_mode_hsync(mode);
7711         mode->vrefresh = drm_mode_vrefresh(mode);
7712         drm_mode_set_name(mode);
7713 }
7714
7715 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7716 {
7717         struct drm_device *dev = intel_crtc->base.dev;
7718         struct drm_i915_private *dev_priv = dev->dev_private;
7719         uint32_t pipeconf;
7720
7721         pipeconf = 0;
7722
7723         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7724             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7725                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7726
7727         if (intel_crtc->config->double_wide)
7728                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7729
7730         /* only g4x and later have fancy bpc/dither controls */
7731         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7732                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7733                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7734                         pipeconf |= PIPECONF_DITHER_EN |
7735                                     PIPECONF_DITHER_TYPE_SP;
7736
7737                 switch (intel_crtc->config->pipe_bpp) {
7738                 case 18:
7739                         pipeconf |= PIPECONF_6BPC;
7740                         break;
7741                 case 24:
7742                         pipeconf |= PIPECONF_8BPC;
7743                         break;
7744                 case 30:
7745                         pipeconf |= PIPECONF_10BPC;
7746                         break;
7747                 default:
7748                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7749                         BUG();
7750                 }
7751         }
7752
7753         if (HAS_PIPE_CXSR(dev)) {
7754                 if (intel_crtc->lowfreq_avail) {
7755                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7756                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7757                 } else {
7758                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7759                 }
7760         }
7761
7762         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7763                 if (INTEL_INFO(dev)->gen < 4 ||
7764                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7765                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7766                 else
7767                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7768         } else
7769                 pipeconf |= PIPECONF_PROGRESSIVE;
7770
7771         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7772                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7773
7774         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7775         POSTING_READ(PIPECONF(intel_crtc->pipe));
7776 }
7777
7778 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7779                                    struct intel_crtc_state *crtc_state)
7780 {
7781         struct drm_device *dev = crtc->base.dev;
7782         struct drm_i915_private *dev_priv = dev->dev_private;
7783         int refclk, num_connectors = 0;
7784         intel_clock_t clock;
7785         bool ok;
7786         bool is_dsi = false;
7787         struct intel_encoder *encoder;
7788         const intel_limit_t *limit;
7789         struct drm_atomic_state *state = crtc_state->base.state;
7790         struct drm_connector *connector;
7791         struct drm_connector_state *connector_state;
7792         int i;
7793
7794         memset(&crtc_state->dpll_hw_state, 0,
7795                sizeof(crtc_state->dpll_hw_state));
7796
7797         for_each_connector_in_state(state, connector, connector_state, i) {
7798                 if (connector_state->crtc != &crtc->base)
7799                         continue;
7800
7801                 encoder = to_intel_encoder(connector_state->best_encoder);
7802
7803                 switch (encoder->type) {
7804                 case INTEL_OUTPUT_DSI:
7805                         is_dsi = true;
7806                         break;
7807                 default:
7808                         break;
7809                 }
7810
7811                 num_connectors++;
7812         }
7813
7814         if (is_dsi)
7815                 return 0;
7816
7817         if (!crtc_state->clock_set) {
7818                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7819
7820                 /*
7821                  * Returns a set of divisors for the desired target clock with
7822                  * the given refclk, or FALSE.  The returned values represent
7823                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7824                  * 2) / p1 / p2.
7825                  */
7826                 limit = intel_limit(crtc_state, refclk);
7827                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7828                                                  crtc_state->port_clock,
7829                                                  refclk, NULL, &clock);
7830                 if (!ok) {
7831                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7832                         return -EINVAL;
7833                 }
7834
7835                 /* Compat-code for transition, will disappear. */
7836                 crtc_state->dpll.n = clock.n;
7837                 crtc_state->dpll.m1 = clock.m1;
7838                 crtc_state->dpll.m2 = clock.m2;
7839                 crtc_state->dpll.p1 = clock.p1;
7840                 crtc_state->dpll.p2 = clock.p2;
7841         }
7842
7843         if (IS_GEN2(dev)) {
7844                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7845                                   num_connectors);
7846         } else if (IS_CHERRYVIEW(dev)) {
7847                 chv_compute_dpll(crtc, crtc_state);
7848         } else if (IS_VALLEYVIEW(dev)) {
7849                 vlv_compute_dpll(crtc, crtc_state);
7850         } else {
7851                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7852                                   num_connectors);
7853         }
7854
7855         return 0;
7856 }
7857
7858 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7859                                  struct intel_crtc_state *pipe_config)
7860 {
7861         struct drm_device *dev = crtc->base.dev;
7862         struct drm_i915_private *dev_priv = dev->dev_private;
7863         uint32_t tmp;
7864
7865         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7866                 return;
7867
7868         tmp = I915_READ(PFIT_CONTROL);
7869         if (!(tmp & PFIT_ENABLE))
7870                 return;
7871
7872         /* Check whether the pfit is attached to our pipe. */
7873         if (INTEL_INFO(dev)->gen < 4) {
7874                 if (crtc->pipe != PIPE_B)
7875                         return;
7876         } else {
7877                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7878                         return;
7879         }
7880
7881         pipe_config->gmch_pfit.control = tmp;
7882         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7883         if (INTEL_INFO(dev)->gen < 5)
7884                 pipe_config->gmch_pfit.lvds_border_bits =
7885                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7886 }
7887
7888 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7889                                struct intel_crtc_state *pipe_config)
7890 {
7891         struct drm_device *dev = crtc->base.dev;
7892         struct drm_i915_private *dev_priv = dev->dev_private;
7893         int pipe = pipe_config->cpu_transcoder;
7894         intel_clock_t clock;
7895         u32 mdiv;
7896         int refclk = 100000;
7897
7898         /* In case of MIPI DPLL will not even be used */
7899         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7900                 return;
7901
7902         mutex_lock(&dev_priv->sb_lock);
7903         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7904         mutex_unlock(&dev_priv->sb_lock);
7905
7906         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7907         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7908         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7909         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7910         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7911
7912         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7913 }
7914
7915 static void
7916 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7917                               struct intel_initial_plane_config *plane_config)
7918 {
7919         struct drm_device *dev = crtc->base.dev;
7920         struct drm_i915_private *dev_priv = dev->dev_private;
7921         u32 val, base, offset;
7922         int pipe = crtc->pipe, plane = crtc->plane;
7923         int fourcc, pixel_format;
7924         unsigned int aligned_height;
7925         struct drm_framebuffer *fb;
7926         struct intel_framebuffer *intel_fb;
7927
7928         val = I915_READ(DSPCNTR(plane));
7929         if (!(val & DISPLAY_PLANE_ENABLE))
7930                 return;
7931
7932         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7933         if (!intel_fb) {
7934                 DRM_DEBUG_KMS("failed to alloc fb\n");
7935                 return;
7936         }
7937
7938         fb = &intel_fb->base;
7939
7940         if (INTEL_INFO(dev)->gen >= 4) {
7941                 if (val & DISPPLANE_TILED) {
7942                         plane_config->tiling = I915_TILING_X;
7943                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7944                 }
7945         }
7946
7947         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7948         fourcc = i9xx_format_to_fourcc(pixel_format);
7949         fb->pixel_format = fourcc;
7950         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7951
7952         if (INTEL_INFO(dev)->gen >= 4) {
7953                 if (plane_config->tiling)
7954                         offset = I915_READ(DSPTILEOFF(plane));
7955                 else
7956                         offset = I915_READ(DSPLINOFF(plane));
7957                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7958         } else {
7959                 base = I915_READ(DSPADDR(plane));
7960         }
7961         plane_config->base = base;
7962
7963         val = I915_READ(PIPESRC(pipe));
7964         fb->width = ((val >> 16) & 0xfff) + 1;
7965         fb->height = ((val >> 0) & 0xfff) + 1;
7966
7967         val = I915_READ(DSPSTRIDE(pipe));
7968         fb->pitches[0] = val & 0xffffffc0;
7969
7970         aligned_height = intel_fb_align_height(dev, fb->height,
7971                                                fb->pixel_format,
7972                                                fb->modifier[0]);
7973
7974         plane_config->size = fb->pitches[0] * aligned_height;
7975
7976         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7977                       pipe_name(pipe), plane, fb->width, fb->height,
7978                       fb->bits_per_pixel, base, fb->pitches[0],
7979                       plane_config->size);
7980
7981         plane_config->fb = intel_fb;
7982 }
7983
7984 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7985                                struct intel_crtc_state *pipe_config)
7986 {
7987         struct drm_device *dev = crtc->base.dev;
7988         struct drm_i915_private *dev_priv = dev->dev_private;
7989         int pipe = pipe_config->cpu_transcoder;
7990         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7991         intel_clock_t clock;
7992         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7993         int refclk = 100000;
7994
7995         mutex_lock(&dev_priv->sb_lock);
7996         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7997         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7998         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7999         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8000         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8001         mutex_unlock(&dev_priv->sb_lock);
8002
8003         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8004         clock.m2 = (pll_dw0 & 0xff) << 22;
8005         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8006                 clock.m2 |= pll_dw2 & 0x3fffff;
8007         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8008         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8009         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8010
8011         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8012 }
8013
8014 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8015                                  struct intel_crtc_state *pipe_config)
8016 {
8017         struct drm_device *dev = crtc->base.dev;
8018         struct drm_i915_private *dev_priv = dev->dev_private;
8019         uint32_t tmp;
8020
8021         if (!intel_display_power_is_enabled(dev_priv,
8022                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8023                 return false;
8024
8025         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8026         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8027
8028         tmp = I915_READ(PIPECONF(crtc->pipe));
8029         if (!(tmp & PIPECONF_ENABLE))
8030                 return false;
8031
8032         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8033                 switch (tmp & PIPECONF_BPC_MASK) {
8034                 case PIPECONF_6BPC:
8035                         pipe_config->pipe_bpp = 18;
8036                         break;
8037                 case PIPECONF_8BPC:
8038                         pipe_config->pipe_bpp = 24;
8039                         break;
8040                 case PIPECONF_10BPC:
8041                         pipe_config->pipe_bpp = 30;
8042                         break;
8043                 default:
8044                         break;
8045                 }
8046         }
8047
8048         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8049                 pipe_config->limited_color_range = true;
8050
8051         if (INTEL_INFO(dev)->gen < 4)
8052                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8053
8054         intel_get_pipe_timings(crtc, pipe_config);
8055
8056         i9xx_get_pfit_config(crtc, pipe_config);
8057
8058         if (INTEL_INFO(dev)->gen >= 4) {
8059                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8060                 pipe_config->pixel_multiplier =
8061                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8062                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8063                 pipe_config->dpll_hw_state.dpll_md = tmp;
8064         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8065                 tmp = I915_READ(DPLL(crtc->pipe));
8066                 pipe_config->pixel_multiplier =
8067                         ((tmp & SDVO_MULTIPLIER_MASK)
8068                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8069         } else {
8070                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8071                  * port and will be fixed up in the encoder->get_config
8072                  * function. */
8073                 pipe_config->pixel_multiplier = 1;
8074         }
8075         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8076         if (!IS_VALLEYVIEW(dev)) {
8077                 /*
8078                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8079                  * on 830. Filter it out here so that we don't
8080                  * report errors due to that.
8081                  */
8082                 if (IS_I830(dev))
8083                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8084
8085                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8086                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8087         } else {
8088                 /* Mask out read-only status bits. */
8089                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8090                                                      DPLL_PORTC_READY_MASK |
8091                                                      DPLL_PORTB_READY_MASK);
8092         }
8093
8094         if (IS_CHERRYVIEW(dev))
8095                 chv_crtc_clock_get(crtc, pipe_config);
8096         else if (IS_VALLEYVIEW(dev))
8097                 vlv_crtc_clock_get(crtc, pipe_config);
8098         else
8099                 i9xx_crtc_clock_get(crtc, pipe_config);
8100
8101         /*
8102          * Normally the dotclock is filled in by the encoder .get_config()
8103          * but in case the pipe is enabled w/o any ports we need a sane
8104          * default.
8105          */
8106         pipe_config->base.adjusted_mode.crtc_clock =
8107                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8108
8109         return true;
8110 }
8111
8112 static void ironlake_init_pch_refclk(struct drm_device *dev)
8113 {
8114         struct drm_i915_private *dev_priv = dev->dev_private;
8115         struct intel_encoder *encoder;
8116         u32 val, final;
8117         bool has_lvds = false;
8118         bool has_cpu_edp = false;
8119         bool has_panel = false;
8120         bool has_ck505 = false;
8121         bool can_ssc = false;
8122
8123         /* We need to take the global config into account */
8124         for_each_intel_encoder(dev, encoder) {
8125                 switch (encoder->type) {
8126                 case INTEL_OUTPUT_LVDS:
8127                         has_panel = true;
8128                         has_lvds = true;
8129                         break;
8130                 case INTEL_OUTPUT_EDP:
8131                         has_panel = true;
8132                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8133                                 has_cpu_edp = true;
8134                         break;
8135                 default:
8136                         break;
8137                 }
8138         }
8139
8140         if (HAS_PCH_IBX(dev)) {
8141                 has_ck505 = dev_priv->vbt.display_clock_mode;
8142                 can_ssc = has_ck505;
8143         } else {
8144                 has_ck505 = false;
8145                 can_ssc = true;
8146         }
8147
8148         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8149                       has_panel, has_lvds, has_ck505);
8150
8151         /* Ironlake: try to setup display ref clock before DPLL
8152          * enabling. This is only under driver's control after
8153          * PCH B stepping, previous chipset stepping should be
8154          * ignoring this setting.
8155          */
8156         val = I915_READ(PCH_DREF_CONTROL);
8157
8158         /* As we must carefully and slowly disable/enable each source in turn,
8159          * compute the final state we want first and check if we need to
8160          * make any changes at all.
8161          */
8162         final = val;
8163         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8164         if (has_ck505)
8165                 final |= DREF_NONSPREAD_CK505_ENABLE;
8166         else
8167                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8168
8169         final &= ~DREF_SSC_SOURCE_MASK;
8170         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8171         final &= ~DREF_SSC1_ENABLE;
8172
8173         if (has_panel) {
8174                 final |= DREF_SSC_SOURCE_ENABLE;
8175
8176                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8177                         final |= DREF_SSC1_ENABLE;
8178
8179                 if (has_cpu_edp) {
8180                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8181                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8182                         else
8183                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8184                 } else
8185                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8186         } else {
8187                 final |= DREF_SSC_SOURCE_DISABLE;
8188                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8189         }
8190
8191         if (final == val)
8192                 return;
8193
8194         /* Always enable nonspread source */
8195         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8196
8197         if (has_ck505)
8198                 val |= DREF_NONSPREAD_CK505_ENABLE;
8199         else
8200                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8201
8202         if (has_panel) {
8203                 val &= ~DREF_SSC_SOURCE_MASK;
8204                 val |= DREF_SSC_SOURCE_ENABLE;
8205
8206                 /* SSC must be turned on before enabling the CPU output  */
8207                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8208                         DRM_DEBUG_KMS("Using SSC on panel\n");
8209                         val |= DREF_SSC1_ENABLE;
8210                 } else
8211                         val &= ~DREF_SSC1_ENABLE;
8212
8213                 /* Get SSC going before enabling the outputs */
8214                 I915_WRITE(PCH_DREF_CONTROL, val);
8215                 POSTING_READ(PCH_DREF_CONTROL);
8216                 udelay(200);
8217
8218                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8219
8220                 /* Enable CPU source on CPU attached eDP */
8221                 if (has_cpu_edp) {
8222                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8223                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8224                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8225                         } else
8226                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8227                 } else
8228                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8229
8230                 I915_WRITE(PCH_DREF_CONTROL, val);
8231                 POSTING_READ(PCH_DREF_CONTROL);
8232                 udelay(200);
8233         } else {
8234                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8235
8236                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8237
8238                 /* Turn off CPU output */
8239                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8240
8241                 I915_WRITE(PCH_DREF_CONTROL, val);
8242                 POSTING_READ(PCH_DREF_CONTROL);
8243                 udelay(200);
8244
8245                 /* Turn off the SSC source */
8246                 val &= ~DREF_SSC_SOURCE_MASK;
8247                 val |= DREF_SSC_SOURCE_DISABLE;
8248
8249                 /* Turn off SSC1 */
8250                 val &= ~DREF_SSC1_ENABLE;
8251
8252                 I915_WRITE(PCH_DREF_CONTROL, val);
8253                 POSTING_READ(PCH_DREF_CONTROL);
8254                 udelay(200);
8255         }
8256
8257         BUG_ON(val != final);
8258 }
8259
8260 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8261 {
8262         uint32_t tmp;
8263
8264         tmp = I915_READ(SOUTH_CHICKEN2);
8265         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8266         I915_WRITE(SOUTH_CHICKEN2, tmp);
8267
8268         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8269                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8270                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8271
8272         tmp = I915_READ(SOUTH_CHICKEN2);
8273         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8274         I915_WRITE(SOUTH_CHICKEN2, tmp);
8275
8276         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8277                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8278                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8279 }
8280
8281 /* WaMPhyProgramming:hsw */
8282 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8283 {
8284         uint32_t tmp;
8285
8286         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8287         tmp &= ~(0xFF << 24);
8288         tmp |= (0x12 << 24);
8289         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8290
8291         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8292         tmp |= (1 << 11);
8293         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8294
8295         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8296         tmp |= (1 << 11);
8297         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8298
8299         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8300         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8301         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8302
8303         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8304         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8305         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8306
8307         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8308         tmp &= ~(7 << 13);
8309         tmp |= (5 << 13);
8310         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8311
8312         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8313         tmp &= ~(7 << 13);
8314         tmp |= (5 << 13);
8315         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8316
8317         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8318         tmp &= ~0xFF;
8319         tmp |= 0x1C;
8320         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8321
8322         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8323         tmp &= ~0xFF;
8324         tmp |= 0x1C;
8325         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8326
8327         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8328         tmp &= ~(0xFF << 16);
8329         tmp |= (0x1C << 16);
8330         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8331
8332         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8333         tmp &= ~(0xFF << 16);
8334         tmp |= (0x1C << 16);
8335         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8336
8337         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8338         tmp |= (1 << 27);
8339         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8340
8341         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8342         tmp |= (1 << 27);
8343         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8344
8345         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8346         tmp &= ~(0xF << 28);
8347         tmp |= (4 << 28);
8348         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8349
8350         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8351         tmp &= ~(0xF << 28);
8352         tmp |= (4 << 28);
8353         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8354 }
8355
8356 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8357  * Programming" based on the parameters passed:
8358  * - Sequence to enable CLKOUT_DP
8359  * - Sequence to enable CLKOUT_DP without spread
8360  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8361  */
8362 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8363                                  bool with_fdi)
8364 {
8365         struct drm_i915_private *dev_priv = dev->dev_private;
8366         uint32_t reg, tmp;
8367
8368         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8369                 with_spread = true;
8370         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8371                 with_fdi = false;
8372
8373         mutex_lock(&dev_priv->sb_lock);
8374
8375         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8376         tmp &= ~SBI_SSCCTL_DISABLE;
8377         tmp |= SBI_SSCCTL_PATHALT;
8378         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8379
8380         udelay(24);
8381
8382         if (with_spread) {
8383                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8384                 tmp &= ~SBI_SSCCTL_PATHALT;
8385                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8386
8387                 if (with_fdi) {
8388                         lpt_reset_fdi_mphy(dev_priv);
8389                         lpt_program_fdi_mphy(dev_priv);
8390                 }
8391         }
8392
8393         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8394         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8395         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8396         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8397
8398         mutex_unlock(&dev_priv->sb_lock);
8399 }
8400
8401 /* Sequence to disable CLKOUT_DP */
8402 static void lpt_disable_clkout_dp(struct drm_device *dev)
8403 {
8404         struct drm_i915_private *dev_priv = dev->dev_private;
8405         uint32_t reg, tmp;
8406
8407         mutex_lock(&dev_priv->sb_lock);
8408
8409         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8410         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8411         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8412         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8413
8414         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8415         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8416                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8417                         tmp |= SBI_SSCCTL_PATHALT;
8418                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8419                         udelay(32);
8420                 }
8421                 tmp |= SBI_SSCCTL_DISABLE;
8422                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8423         }
8424
8425         mutex_unlock(&dev_priv->sb_lock);
8426 }
8427
8428 static void lpt_init_pch_refclk(struct drm_device *dev)
8429 {
8430         struct intel_encoder *encoder;
8431         bool has_vga = false;
8432
8433         for_each_intel_encoder(dev, encoder) {
8434                 switch (encoder->type) {
8435                 case INTEL_OUTPUT_ANALOG:
8436                         has_vga = true;
8437                         break;
8438                 default:
8439                         break;
8440                 }
8441         }
8442
8443         if (has_vga)
8444                 lpt_enable_clkout_dp(dev, true, true);
8445         else
8446                 lpt_disable_clkout_dp(dev);
8447 }
8448
8449 /*
8450  * Initialize reference clocks when the driver loads
8451  */
8452 void intel_init_pch_refclk(struct drm_device *dev)
8453 {
8454         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8455                 ironlake_init_pch_refclk(dev);
8456         else if (HAS_PCH_LPT(dev))
8457                 lpt_init_pch_refclk(dev);
8458 }
8459
8460 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8461 {
8462         struct drm_device *dev = crtc_state->base.crtc->dev;
8463         struct drm_i915_private *dev_priv = dev->dev_private;
8464         struct drm_atomic_state *state = crtc_state->base.state;
8465         struct drm_connector *connector;
8466         struct drm_connector_state *connector_state;
8467         struct intel_encoder *encoder;
8468         int num_connectors = 0, i;
8469         bool is_lvds = false;
8470
8471         for_each_connector_in_state(state, connector, connector_state, i) {
8472                 if (connector_state->crtc != crtc_state->base.crtc)
8473                         continue;
8474
8475                 encoder = to_intel_encoder(connector_state->best_encoder);
8476
8477                 switch (encoder->type) {
8478                 case INTEL_OUTPUT_LVDS:
8479                         is_lvds = true;
8480                         break;
8481                 default:
8482                         break;
8483                 }
8484                 num_connectors++;
8485         }
8486
8487         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8488                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8489                               dev_priv->vbt.lvds_ssc_freq);
8490                 return dev_priv->vbt.lvds_ssc_freq;
8491         }
8492
8493         return 120000;
8494 }
8495
8496 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8497 {
8498         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8500         int pipe = intel_crtc->pipe;
8501         uint32_t val;
8502
8503         val = 0;
8504
8505         switch (intel_crtc->config->pipe_bpp) {
8506         case 18:
8507                 val |= PIPECONF_6BPC;
8508                 break;
8509         case 24:
8510                 val |= PIPECONF_8BPC;
8511                 break;
8512         case 30:
8513                 val |= PIPECONF_10BPC;
8514                 break;
8515         case 36:
8516                 val |= PIPECONF_12BPC;
8517                 break;
8518         default:
8519                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8520                 BUG();
8521         }
8522
8523         if (intel_crtc->config->dither)
8524                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8525
8526         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8527                 val |= PIPECONF_INTERLACED_ILK;
8528         else
8529                 val |= PIPECONF_PROGRESSIVE;
8530
8531         if (intel_crtc->config->limited_color_range)
8532                 val |= PIPECONF_COLOR_RANGE_SELECT;
8533
8534         I915_WRITE(PIPECONF(pipe), val);
8535         POSTING_READ(PIPECONF(pipe));
8536 }
8537
8538 /*
8539  * Set up the pipe CSC unit.
8540  *
8541  * Currently only full range RGB to limited range RGB conversion
8542  * is supported, but eventually this should handle various
8543  * RGB<->YCbCr scenarios as well.
8544  */
8545 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8546 {
8547         struct drm_device *dev = crtc->dev;
8548         struct drm_i915_private *dev_priv = dev->dev_private;
8549         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8550         int pipe = intel_crtc->pipe;
8551         uint16_t coeff = 0x7800; /* 1.0 */
8552
8553         /*
8554          * TODO: Check what kind of values actually come out of the pipe
8555          * with these coeff/postoff values and adjust to get the best
8556          * accuracy. Perhaps we even need to take the bpc value into
8557          * consideration.
8558          */
8559
8560         if (intel_crtc->config->limited_color_range)
8561                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8562
8563         /*
8564          * GY/GU and RY/RU should be the other way around according
8565          * to BSpec, but reality doesn't agree. Just set them up in
8566          * a way that results in the correct picture.
8567          */
8568         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8569         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8570
8571         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8572         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8573
8574         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8575         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8576
8577         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8578         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8579         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8580
8581         if (INTEL_INFO(dev)->gen > 6) {
8582                 uint16_t postoff = 0;
8583
8584                 if (intel_crtc->config->limited_color_range)
8585                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8586
8587                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8588                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8589                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8590
8591                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8592         } else {
8593                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8594
8595                 if (intel_crtc->config->limited_color_range)
8596                         mode |= CSC_BLACK_SCREEN_OFFSET;
8597
8598                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8599         }
8600 }
8601
8602 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8603 {
8604         struct drm_device *dev = crtc->dev;
8605         struct drm_i915_private *dev_priv = dev->dev_private;
8606         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8607         enum pipe pipe = intel_crtc->pipe;
8608         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8609         uint32_t val;
8610
8611         val = 0;
8612
8613         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8614                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8615
8616         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8617                 val |= PIPECONF_INTERLACED_ILK;
8618         else
8619                 val |= PIPECONF_PROGRESSIVE;
8620
8621         I915_WRITE(PIPECONF(cpu_transcoder), val);
8622         POSTING_READ(PIPECONF(cpu_transcoder));
8623
8624         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8625         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8626
8627         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8628                 val = 0;
8629
8630                 switch (intel_crtc->config->pipe_bpp) {
8631                 case 18:
8632                         val |= PIPEMISC_DITHER_6_BPC;
8633                         break;
8634                 case 24:
8635                         val |= PIPEMISC_DITHER_8_BPC;
8636                         break;
8637                 case 30:
8638                         val |= PIPEMISC_DITHER_10_BPC;
8639                         break;
8640                 case 36:
8641                         val |= PIPEMISC_DITHER_12_BPC;
8642                         break;
8643                 default:
8644                         /* Case prevented by pipe_config_set_bpp. */
8645                         BUG();
8646                 }
8647
8648                 if (intel_crtc->config->dither)
8649                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8650
8651                 I915_WRITE(PIPEMISC(pipe), val);
8652         }
8653 }
8654
8655 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8656                                     struct intel_crtc_state *crtc_state,
8657                                     intel_clock_t *clock,
8658                                     bool *has_reduced_clock,
8659                                     intel_clock_t *reduced_clock)
8660 {
8661         struct drm_device *dev = crtc->dev;
8662         struct drm_i915_private *dev_priv = dev->dev_private;
8663         int refclk;
8664         const intel_limit_t *limit;
8665         bool ret;
8666
8667         refclk = ironlake_get_refclk(crtc_state);
8668
8669         /*
8670          * Returns a set of divisors for the desired target clock with the given
8671          * refclk, or FALSE.  The returned values represent the clock equation:
8672          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8673          */
8674         limit = intel_limit(crtc_state, refclk);
8675         ret = dev_priv->display.find_dpll(limit, crtc_state,
8676                                           crtc_state->port_clock,
8677                                           refclk, NULL, clock);
8678         if (!ret)
8679                 return false;
8680
8681         return true;
8682 }
8683
8684 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8685 {
8686         /*
8687          * Account for spread spectrum to avoid
8688          * oversubscribing the link. Max center spread
8689          * is 2.5%; use 5% for safety's sake.
8690          */
8691         u32 bps = target_clock * bpp * 21 / 20;
8692         return DIV_ROUND_UP(bps, link_bw * 8);
8693 }
8694
8695 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8696 {
8697         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8698 }
8699
8700 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8701                                       struct intel_crtc_state *crtc_state,
8702                                       u32 *fp,
8703                                       intel_clock_t *reduced_clock, u32 *fp2)
8704 {
8705         struct drm_crtc *crtc = &intel_crtc->base;
8706         struct drm_device *dev = crtc->dev;
8707         struct drm_i915_private *dev_priv = dev->dev_private;
8708         struct drm_atomic_state *state = crtc_state->base.state;
8709         struct drm_connector *connector;
8710         struct drm_connector_state *connector_state;
8711         struct intel_encoder *encoder;
8712         uint32_t dpll;
8713         int factor, num_connectors = 0, i;
8714         bool is_lvds = false, is_sdvo = false;
8715
8716         for_each_connector_in_state(state, connector, connector_state, i) {
8717                 if (connector_state->crtc != crtc_state->base.crtc)
8718                         continue;
8719
8720                 encoder = to_intel_encoder(connector_state->best_encoder);
8721
8722                 switch (encoder->type) {
8723                 case INTEL_OUTPUT_LVDS:
8724                         is_lvds = true;
8725                         break;
8726                 case INTEL_OUTPUT_SDVO:
8727                 case INTEL_OUTPUT_HDMI:
8728                         is_sdvo = true;
8729                         break;
8730                 default:
8731                         break;
8732                 }
8733
8734                 num_connectors++;
8735         }
8736
8737         /* Enable autotuning of the PLL clock (if permissible) */
8738         factor = 21;
8739         if (is_lvds) {
8740                 if ((intel_panel_use_ssc(dev_priv) &&
8741                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8742                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8743                         factor = 25;
8744         } else if (crtc_state->sdvo_tv_clock)
8745                 factor = 20;
8746
8747         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8748                 *fp |= FP_CB_TUNE;
8749
8750         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8751                 *fp2 |= FP_CB_TUNE;
8752
8753         dpll = 0;
8754
8755         if (is_lvds)
8756                 dpll |= DPLLB_MODE_LVDS;
8757         else
8758                 dpll |= DPLLB_MODE_DAC_SERIAL;
8759
8760         dpll |= (crtc_state->pixel_multiplier - 1)
8761                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8762
8763         if (is_sdvo)
8764                 dpll |= DPLL_SDVO_HIGH_SPEED;
8765         if (crtc_state->has_dp_encoder)
8766                 dpll |= DPLL_SDVO_HIGH_SPEED;
8767
8768         /* compute bitmask from p1 value */
8769         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8770         /* also FPA1 */
8771         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8772
8773         switch (crtc_state->dpll.p2) {
8774         case 5:
8775                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8776                 break;
8777         case 7:
8778                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8779                 break;
8780         case 10:
8781                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8782                 break;
8783         case 14:
8784                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8785                 break;
8786         }
8787
8788         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8789                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8790         else
8791                 dpll |= PLL_REF_INPUT_DREFCLK;
8792
8793         return dpll | DPLL_VCO_ENABLE;
8794 }
8795
8796 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8797                                        struct intel_crtc_state *crtc_state)
8798 {
8799         struct drm_device *dev = crtc->base.dev;
8800         intel_clock_t clock, reduced_clock;
8801         u32 dpll = 0, fp = 0, fp2 = 0;
8802         bool ok, has_reduced_clock = false;
8803         bool is_lvds = false;
8804         struct intel_shared_dpll *pll;
8805
8806         memset(&crtc_state->dpll_hw_state, 0,
8807                sizeof(crtc_state->dpll_hw_state));
8808
8809         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8810
8811         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8812              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8813
8814         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8815                                      &has_reduced_clock, &reduced_clock);
8816         if (!ok && !crtc_state->clock_set) {
8817                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8818                 return -EINVAL;
8819         }
8820         /* Compat-code for transition, will disappear. */
8821         if (!crtc_state->clock_set) {
8822                 crtc_state->dpll.n = clock.n;
8823                 crtc_state->dpll.m1 = clock.m1;
8824                 crtc_state->dpll.m2 = clock.m2;
8825                 crtc_state->dpll.p1 = clock.p1;
8826                 crtc_state->dpll.p2 = clock.p2;
8827         }
8828
8829         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8830         if (crtc_state->has_pch_encoder) {
8831                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8832                 if (has_reduced_clock)
8833                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8834
8835                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8836                                              &fp, &reduced_clock,
8837                                              has_reduced_clock ? &fp2 : NULL);
8838
8839                 crtc_state->dpll_hw_state.dpll = dpll;
8840                 crtc_state->dpll_hw_state.fp0 = fp;
8841                 if (has_reduced_clock)
8842                         crtc_state->dpll_hw_state.fp1 = fp2;
8843                 else
8844                         crtc_state->dpll_hw_state.fp1 = fp;
8845
8846                 pll = intel_get_shared_dpll(crtc, crtc_state);
8847                 if (pll == NULL) {
8848                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8849                                          pipe_name(crtc->pipe));
8850                         return -EINVAL;
8851                 }
8852         }
8853
8854         if (is_lvds && has_reduced_clock)
8855                 crtc->lowfreq_avail = true;
8856         else
8857                 crtc->lowfreq_avail = false;
8858
8859         return 0;
8860 }
8861
8862 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8863                                          struct intel_link_m_n *m_n)
8864 {
8865         struct drm_device *dev = crtc->base.dev;
8866         struct drm_i915_private *dev_priv = dev->dev_private;
8867         enum pipe pipe = crtc->pipe;
8868
8869         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8870         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8871         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8872                 & ~TU_SIZE_MASK;
8873         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8874         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8875                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8876 }
8877
8878 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8879                                          enum transcoder transcoder,
8880                                          struct intel_link_m_n *m_n,
8881                                          struct intel_link_m_n *m2_n2)
8882 {
8883         struct drm_device *dev = crtc->base.dev;
8884         struct drm_i915_private *dev_priv = dev->dev_private;
8885         enum pipe pipe = crtc->pipe;
8886
8887         if (INTEL_INFO(dev)->gen >= 5) {
8888                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8889                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8890                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8891                         & ~TU_SIZE_MASK;
8892                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8893                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8894                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8895                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8896                  * gen < 8) and if DRRS is supported (to make sure the
8897                  * registers are not unnecessarily read).
8898                  */
8899                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8900                         crtc->config->has_drrs) {
8901                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8902                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8903                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8904                                         & ~TU_SIZE_MASK;
8905                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8906                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8907                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8908                 }
8909         } else {
8910                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8911                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8912                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8913                         & ~TU_SIZE_MASK;
8914                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8915                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8916                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8917         }
8918 }
8919
8920 void intel_dp_get_m_n(struct intel_crtc *crtc,
8921                       struct intel_crtc_state *pipe_config)
8922 {
8923         if (pipe_config->has_pch_encoder)
8924                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8925         else
8926                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8927                                              &pipe_config->dp_m_n,
8928                                              &pipe_config->dp_m2_n2);
8929 }
8930
8931 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8932                                         struct intel_crtc_state *pipe_config)
8933 {
8934         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8935                                      &pipe_config->fdi_m_n, NULL);
8936 }
8937
8938 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8939                                     struct intel_crtc_state *pipe_config)
8940 {
8941         struct drm_device *dev = crtc->base.dev;
8942         struct drm_i915_private *dev_priv = dev->dev_private;
8943         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8944         uint32_t ps_ctrl = 0;
8945         int id = -1;
8946         int i;
8947
8948         /* find scaler attached to this pipe */
8949         for (i = 0; i < crtc->num_scalers; i++) {
8950                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8951                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8952                         id = i;
8953                         pipe_config->pch_pfit.enabled = true;
8954                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8955                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8956                         break;
8957                 }
8958         }
8959
8960         scaler_state->scaler_id = id;
8961         if (id >= 0) {
8962                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8963         } else {
8964                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8965         }
8966 }
8967
8968 static void
8969 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8970                                  struct intel_initial_plane_config *plane_config)
8971 {
8972         struct drm_device *dev = crtc->base.dev;
8973         struct drm_i915_private *dev_priv = dev->dev_private;
8974         u32 val, base, offset, stride_mult, tiling;
8975         int pipe = crtc->pipe;
8976         int fourcc, pixel_format;
8977         unsigned int aligned_height;
8978         struct drm_framebuffer *fb;
8979         struct intel_framebuffer *intel_fb;
8980
8981         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8982         if (!intel_fb) {
8983                 DRM_DEBUG_KMS("failed to alloc fb\n");
8984                 return;
8985         }
8986
8987         fb = &intel_fb->base;
8988
8989         val = I915_READ(PLANE_CTL(pipe, 0));
8990         if (!(val & PLANE_CTL_ENABLE))
8991                 goto error;
8992
8993         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8994         fourcc = skl_format_to_fourcc(pixel_format,
8995                                       val & PLANE_CTL_ORDER_RGBX,
8996                                       val & PLANE_CTL_ALPHA_MASK);
8997         fb->pixel_format = fourcc;
8998         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8999
9000         tiling = val & PLANE_CTL_TILED_MASK;
9001         switch (tiling) {
9002         case PLANE_CTL_TILED_LINEAR:
9003                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9004                 break;
9005         case PLANE_CTL_TILED_X:
9006                 plane_config->tiling = I915_TILING_X;
9007                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9008                 break;
9009         case PLANE_CTL_TILED_Y:
9010                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9011                 break;
9012         case PLANE_CTL_TILED_YF:
9013                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9014                 break;
9015         default:
9016                 MISSING_CASE(tiling);
9017                 goto error;
9018         }
9019
9020         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9021         plane_config->base = base;
9022
9023         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9024
9025         val = I915_READ(PLANE_SIZE(pipe, 0));
9026         fb->height = ((val >> 16) & 0xfff) + 1;
9027         fb->width = ((val >> 0) & 0x1fff) + 1;
9028
9029         val = I915_READ(PLANE_STRIDE(pipe, 0));
9030         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9031                                                 fb->pixel_format);
9032         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9033
9034         aligned_height = intel_fb_align_height(dev, fb->height,
9035                                                fb->pixel_format,
9036                                                fb->modifier[0]);
9037
9038         plane_config->size = fb->pitches[0] * aligned_height;
9039
9040         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9041                       pipe_name(pipe), fb->width, fb->height,
9042                       fb->bits_per_pixel, base, fb->pitches[0],
9043                       plane_config->size);
9044
9045         plane_config->fb = intel_fb;
9046         return;
9047
9048 error:
9049         kfree(fb);
9050 }
9051
9052 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9053                                      struct intel_crtc_state *pipe_config)
9054 {
9055         struct drm_device *dev = crtc->base.dev;
9056         struct drm_i915_private *dev_priv = dev->dev_private;
9057         uint32_t tmp;
9058
9059         tmp = I915_READ(PF_CTL(crtc->pipe));
9060
9061         if (tmp & PF_ENABLE) {
9062                 pipe_config->pch_pfit.enabled = true;
9063                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9064                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9065
9066                 /* We currently do not free assignements of panel fitters on
9067                  * ivb/hsw (since we don't use the higher upscaling modes which
9068                  * differentiates them) so just WARN about this case for now. */
9069                 if (IS_GEN7(dev)) {
9070                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9071                                 PF_PIPE_SEL_IVB(crtc->pipe));
9072                 }
9073         }
9074 }
9075
9076 static void
9077 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9078                                   struct intel_initial_plane_config *plane_config)
9079 {
9080         struct drm_device *dev = crtc->base.dev;
9081         struct drm_i915_private *dev_priv = dev->dev_private;
9082         u32 val, base, offset;
9083         int pipe = crtc->pipe;
9084         int fourcc, pixel_format;
9085         unsigned int aligned_height;
9086         struct drm_framebuffer *fb;
9087         struct intel_framebuffer *intel_fb;
9088
9089         val = I915_READ(DSPCNTR(pipe));
9090         if (!(val & DISPLAY_PLANE_ENABLE))
9091                 return;
9092
9093         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9094         if (!intel_fb) {
9095                 DRM_DEBUG_KMS("failed to alloc fb\n");
9096                 return;
9097         }
9098
9099         fb = &intel_fb->base;
9100
9101         if (INTEL_INFO(dev)->gen >= 4) {
9102                 if (val & DISPPLANE_TILED) {
9103                         plane_config->tiling = I915_TILING_X;
9104                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9105                 }
9106         }
9107
9108         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9109         fourcc = i9xx_format_to_fourcc(pixel_format);
9110         fb->pixel_format = fourcc;
9111         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9112
9113         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9114         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9115                 offset = I915_READ(DSPOFFSET(pipe));
9116         } else {
9117                 if (plane_config->tiling)
9118                         offset = I915_READ(DSPTILEOFF(pipe));
9119                 else
9120                         offset = I915_READ(DSPLINOFF(pipe));
9121         }
9122         plane_config->base = base;
9123
9124         val = I915_READ(PIPESRC(pipe));
9125         fb->width = ((val >> 16) & 0xfff) + 1;
9126         fb->height = ((val >> 0) & 0xfff) + 1;
9127
9128         val = I915_READ(DSPSTRIDE(pipe));
9129         fb->pitches[0] = val & 0xffffffc0;
9130
9131         aligned_height = intel_fb_align_height(dev, fb->height,
9132                                                fb->pixel_format,
9133                                                fb->modifier[0]);
9134
9135         plane_config->size = fb->pitches[0] * aligned_height;
9136
9137         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9138                       pipe_name(pipe), fb->width, fb->height,
9139                       fb->bits_per_pixel, base, fb->pitches[0],
9140                       plane_config->size);
9141
9142         plane_config->fb = intel_fb;
9143 }
9144
9145 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9146                                      struct intel_crtc_state *pipe_config)
9147 {
9148         struct drm_device *dev = crtc->base.dev;
9149         struct drm_i915_private *dev_priv = dev->dev_private;
9150         uint32_t tmp;
9151
9152         if (!intel_display_power_is_enabled(dev_priv,
9153                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9154                 return false;
9155
9156         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9157         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9158
9159         tmp = I915_READ(PIPECONF(crtc->pipe));
9160         if (!(tmp & PIPECONF_ENABLE))
9161                 return false;
9162
9163         switch (tmp & PIPECONF_BPC_MASK) {
9164         case PIPECONF_6BPC:
9165                 pipe_config->pipe_bpp = 18;
9166                 break;
9167         case PIPECONF_8BPC:
9168                 pipe_config->pipe_bpp = 24;
9169                 break;
9170         case PIPECONF_10BPC:
9171                 pipe_config->pipe_bpp = 30;
9172                 break;
9173         case PIPECONF_12BPC:
9174                 pipe_config->pipe_bpp = 36;
9175                 break;
9176         default:
9177                 break;
9178         }
9179
9180         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9181                 pipe_config->limited_color_range = true;
9182
9183         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9184                 struct intel_shared_dpll *pll;
9185
9186                 pipe_config->has_pch_encoder = true;
9187
9188                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9189                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9190                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9191
9192                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9193
9194                 if (HAS_PCH_IBX(dev_priv->dev)) {
9195                         pipe_config->shared_dpll =
9196                                 (enum intel_dpll_id) crtc->pipe;
9197                 } else {
9198                         tmp = I915_READ(PCH_DPLL_SEL);
9199                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9200                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9201                         else
9202                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9203                 }
9204
9205                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9206
9207                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9208                                            &pipe_config->dpll_hw_state));
9209
9210                 tmp = pipe_config->dpll_hw_state.dpll;
9211                 pipe_config->pixel_multiplier =
9212                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9213                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9214
9215                 ironlake_pch_clock_get(crtc, pipe_config);
9216         } else {
9217                 pipe_config->pixel_multiplier = 1;
9218         }
9219
9220         intel_get_pipe_timings(crtc, pipe_config);
9221
9222         ironlake_get_pfit_config(crtc, pipe_config);
9223
9224         return true;
9225 }
9226
9227 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9228 {
9229         struct drm_device *dev = dev_priv->dev;
9230         struct intel_crtc *crtc;
9231
9232         for_each_intel_crtc(dev, crtc)
9233                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9234                      pipe_name(crtc->pipe));
9235
9236         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9237         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9238         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9239         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9240         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9241         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9242              "CPU PWM1 enabled\n");
9243         if (IS_HASWELL(dev))
9244                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9245                      "CPU PWM2 enabled\n");
9246         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9247              "PCH PWM1 enabled\n");
9248         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9249              "Utility pin enabled\n");
9250         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9251
9252         /*
9253          * In theory we can still leave IRQs enabled, as long as only the HPD
9254          * interrupts remain enabled. We used to check for that, but since it's
9255          * gen-specific and since we only disable LCPLL after we fully disable
9256          * the interrupts, the check below should be enough.
9257          */
9258         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9259 }
9260
9261 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9262 {
9263         struct drm_device *dev = dev_priv->dev;
9264
9265         if (IS_HASWELL(dev))
9266                 return I915_READ(D_COMP_HSW);
9267         else
9268                 return I915_READ(D_COMP_BDW);
9269 }
9270
9271 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9272 {
9273         struct drm_device *dev = dev_priv->dev;
9274
9275         if (IS_HASWELL(dev)) {
9276                 mutex_lock(&dev_priv->rps.hw_lock);
9277                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9278                                             val))
9279                         DRM_ERROR("Failed to write to D_COMP\n");
9280                 mutex_unlock(&dev_priv->rps.hw_lock);
9281         } else {
9282                 I915_WRITE(D_COMP_BDW, val);
9283                 POSTING_READ(D_COMP_BDW);
9284         }
9285 }
9286
9287 /*
9288  * This function implements pieces of two sequences from BSpec:
9289  * - Sequence for display software to disable LCPLL
9290  * - Sequence for display software to allow package C8+
9291  * The steps implemented here are just the steps that actually touch the LCPLL
9292  * register. Callers should take care of disabling all the display engine
9293  * functions, doing the mode unset, fixing interrupts, etc.
9294  */
9295 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9296                               bool switch_to_fclk, bool allow_power_down)
9297 {
9298         uint32_t val;
9299
9300         assert_can_disable_lcpll(dev_priv);
9301
9302         val = I915_READ(LCPLL_CTL);
9303
9304         if (switch_to_fclk) {
9305                 val |= LCPLL_CD_SOURCE_FCLK;
9306                 I915_WRITE(LCPLL_CTL, val);
9307
9308                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9309                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9310                         DRM_ERROR("Switching to FCLK failed\n");
9311
9312                 val = I915_READ(LCPLL_CTL);
9313         }
9314
9315         val |= LCPLL_PLL_DISABLE;
9316         I915_WRITE(LCPLL_CTL, val);
9317         POSTING_READ(LCPLL_CTL);
9318
9319         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9320                 DRM_ERROR("LCPLL still locked\n");
9321
9322         val = hsw_read_dcomp(dev_priv);
9323         val |= D_COMP_COMP_DISABLE;
9324         hsw_write_dcomp(dev_priv, val);
9325         ndelay(100);
9326
9327         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9328                      1))
9329                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9330
9331         if (allow_power_down) {
9332                 val = I915_READ(LCPLL_CTL);
9333                 val |= LCPLL_POWER_DOWN_ALLOW;
9334                 I915_WRITE(LCPLL_CTL, val);
9335                 POSTING_READ(LCPLL_CTL);
9336         }
9337 }
9338
9339 /*
9340  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9341  * source.
9342  */
9343 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9344 {
9345         uint32_t val;
9346
9347         val = I915_READ(LCPLL_CTL);
9348
9349         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9350                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9351                 return;
9352
9353         /*
9354          * Make sure we're not on PC8 state before disabling PC8, otherwise
9355          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9356          */
9357         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9358
9359         if (val & LCPLL_POWER_DOWN_ALLOW) {
9360                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9361                 I915_WRITE(LCPLL_CTL, val);
9362                 POSTING_READ(LCPLL_CTL);
9363         }
9364
9365         val = hsw_read_dcomp(dev_priv);
9366         val |= D_COMP_COMP_FORCE;
9367         val &= ~D_COMP_COMP_DISABLE;
9368         hsw_write_dcomp(dev_priv, val);
9369
9370         val = I915_READ(LCPLL_CTL);
9371         val &= ~LCPLL_PLL_DISABLE;
9372         I915_WRITE(LCPLL_CTL, val);
9373
9374         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9375                 DRM_ERROR("LCPLL not locked yet\n");
9376
9377         if (val & LCPLL_CD_SOURCE_FCLK) {
9378                 val = I915_READ(LCPLL_CTL);
9379                 val &= ~LCPLL_CD_SOURCE_FCLK;
9380                 I915_WRITE(LCPLL_CTL, val);
9381
9382                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9383                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9384                         DRM_ERROR("Switching back to LCPLL failed\n");
9385         }
9386
9387         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9388         intel_update_cdclk(dev_priv->dev);
9389 }
9390
9391 /*
9392  * Package states C8 and deeper are really deep PC states that can only be
9393  * reached when all the devices on the system allow it, so even if the graphics
9394  * device allows PC8+, it doesn't mean the system will actually get to these
9395  * states. Our driver only allows PC8+ when going into runtime PM.
9396  *
9397  * The requirements for PC8+ are that all the outputs are disabled, the power
9398  * well is disabled and most interrupts are disabled, and these are also
9399  * requirements for runtime PM. When these conditions are met, we manually do
9400  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9401  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9402  * hang the machine.
9403  *
9404  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9405  * the state of some registers, so when we come back from PC8+ we need to
9406  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9407  * need to take care of the registers kept by RC6. Notice that this happens even
9408  * if we don't put the device in PCI D3 state (which is what currently happens
9409  * because of the runtime PM support).
9410  *
9411  * For more, read "Display Sequences for Package C8" on the hardware
9412  * documentation.
9413  */
9414 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9415 {
9416         struct drm_device *dev = dev_priv->dev;
9417         uint32_t val;
9418
9419         DRM_DEBUG_KMS("Enabling package C8+\n");
9420
9421         if (HAS_PCH_LPT_LP(dev)) {
9422                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9423                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9424                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9425         }
9426
9427         lpt_disable_clkout_dp(dev);
9428         hsw_disable_lcpll(dev_priv, true, true);
9429 }
9430
9431 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9432 {
9433         struct drm_device *dev = dev_priv->dev;
9434         uint32_t val;
9435
9436         DRM_DEBUG_KMS("Disabling package C8+\n");
9437
9438         hsw_restore_lcpll(dev_priv);
9439         lpt_init_pch_refclk(dev);
9440
9441         if (HAS_PCH_LPT_LP(dev)) {
9442                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9443                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9444                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9445         }
9446
9447         intel_prepare_ddi(dev);
9448 }
9449
9450 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9451 {
9452         struct drm_device *dev = old_state->dev;
9453         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9454
9455         broxton_set_cdclk(dev, req_cdclk);
9456 }
9457
9458 /* compute the max rate for new configuration */
9459 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9460 {
9461         struct intel_crtc *intel_crtc;
9462         struct intel_crtc_state *crtc_state;
9463         int max_pixel_rate = 0;
9464
9465         for_each_intel_crtc(state->dev, intel_crtc) {
9466                 int pixel_rate;
9467
9468                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9469                 if (IS_ERR(crtc_state))
9470                         return PTR_ERR(crtc_state);
9471
9472                 if (!crtc_state->base.enable)
9473                         continue;
9474
9475                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9476
9477                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9478                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9479                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9480
9481                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9482         }
9483
9484         return max_pixel_rate;
9485 }
9486
9487 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9488 {
9489         struct drm_i915_private *dev_priv = dev->dev_private;
9490         uint32_t val, data;
9491         int ret;
9492
9493         if (WARN((I915_READ(LCPLL_CTL) &
9494                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9495                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9496                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9497                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9498                  "trying to change cdclk frequency with cdclk not enabled\n"))
9499                 return;
9500
9501         mutex_lock(&dev_priv->rps.hw_lock);
9502         ret = sandybridge_pcode_write(dev_priv,
9503                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9504         mutex_unlock(&dev_priv->rps.hw_lock);
9505         if (ret) {
9506                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9507                 return;
9508         }
9509
9510         val = I915_READ(LCPLL_CTL);
9511         val |= LCPLL_CD_SOURCE_FCLK;
9512         I915_WRITE(LCPLL_CTL, val);
9513
9514         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9515                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9516                 DRM_ERROR("Switching to FCLK failed\n");
9517
9518         val = I915_READ(LCPLL_CTL);
9519         val &= ~LCPLL_CLK_FREQ_MASK;
9520
9521         switch (cdclk) {
9522         case 450000:
9523                 val |= LCPLL_CLK_FREQ_450;
9524                 data = 0;
9525                 break;
9526         case 540000:
9527                 val |= LCPLL_CLK_FREQ_54O_BDW;
9528                 data = 1;
9529                 break;
9530         case 337500:
9531                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9532                 data = 2;
9533                 break;
9534         case 675000:
9535                 val |= LCPLL_CLK_FREQ_675_BDW;
9536                 data = 3;
9537                 break;
9538         default:
9539                 WARN(1, "invalid cdclk frequency\n");
9540                 return;
9541         }
9542
9543         I915_WRITE(LCPLL_CTL, val);
9544
9545         val = I915_READ(LCPLL_CTL);
9546         val &= ~LCPLL_CD_SOURCE_FCLK;
9547         I915_WRITE(LCPLL_CTL, val);
9548
9549         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9550                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9551                 DRM_ERROR("Switching back to LCPLL failed\n");
9552
9553         mutex_lock(&dev_priv->rps.hw_lock);
9554         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9555         mutex_unlock(&dev_priv->rps.hw_lock);
9556
9557         intel_update_cdclk(dev);
9558
9559         WARN(cdclk != dev_priv->cdclk_freq,
9560              "cdclk requested %d kHz but got %d kHz\n",
9561              cdclk, dev_priv->cdclk_freq);
9562 }
9563
9564 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9565 {
9566         struct drm_i915_private *dev_priv = to_i915(state->dev);
9567         int max_pixclk = ilk_max_pixel_rate(state);
9568         int cdclk;
9569
9570         /*
9571          * FIXME should also account for plane ratio
9572          * once 64bpp pixel formats are supported.
9573          */
9574         if (max_pixclk > 540000)
9575                 cdclk = 675000;
9576         else if (max_pixclk > 450000)
9577                 cdclk = 540000;
9578         else if (max_pixclk > 337500)
9579                 cdclk = 450000;
9580         else
9581                 cdclk = 337500;
9582
9583         /*
9584          * FIXME move the cdclk caclulation to
9585          * compute_config() so we can fail gracegully.
9586          */
9587         if (cdclk > dev_priv->max_cdclk_freq) {
9588                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9589                           cdclk, dev_priv->max_cdclk_freq);
9590                 cdclk = dev_priv->max_cdclk_freq;
9591         }
9592
9593         to_intel_atomic_state(state)->cdclk = cdclk;
9594
9595         return 0;
9596 }
9597
9598 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9599 {
9600         struct drm_device *dev = old_state->dev;
9601         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9602
9603         broadwell_set_cdclk(dev, req_cdclk);
9604 }
9605
9606 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9607                                       struct intel_crtc_state *crtc_state)
9608 {
9609         if (!intel_ddi_pll_select(crtc, crtc_state))
9610                 return -EINVAL;
9611
9612         crtc->lowfreq_avail = false;
9613
9614         return 0;
9615 }
9616
9617 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9618                                 enum port port,
9619                                 struct intel_crtc_state *pipe_config)
9620 {
9621         switch (port) {
9622         case PORT_A:
9623                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9624                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9625                 break;
9626         case PORT_B:
9627                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9628                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9629                 break;
9630         case PORT_C:
9631                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9632                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9633                 break;
9634         default:
9635                 DRM_ERROR("Incorrect port type\n");
9636         }
9637 }
9638
9639 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9640                                 enum port port,
9641                                 struct intel_crtc_state *pipe_config)
9642 {
9643         u32 temp, dpll_ctl1;
9644
9645         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9646         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9647
9648         switch (pipe_config->ddi_pll_sel) {
9649         case SKL_DPLL0:
9650                 /*
9651                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9652                  * of the shared DPLL framework and thus needs to be read out
9653                  * separately
9654                  */
9655                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9656                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9657                 break;
9658         case SKL_DPLL1:
9659                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9660                 break;
9661         case SKL_DPLL2:
9662                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9663                 break;
9664         case SKL_DPLL3:
9665                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9666                 break;
9667         }
9668 }
9669
9670 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9671                                 enum port port,
9672                                 struct intel_crtc_state *pipe_config)
9673 {
9674         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9675
9676         switch (pipe_config->ddi_pll_sel) {
9677         case PORT_CLK_SEL_WRPLL1:
9678                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9679                 break;
9680         case PORT_CLK_SEL_WRPLL2:
9681                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9682                 break;
9683         }
9684 }
9685
9686 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9687                                        struct intel_crtc_state *pipe_config)
9688 {
9689         struct drm_device *dev = crtc->base.dev;
9690         struct drm_i915_private *dev_priv = dev->dev_private;
9691         struct intel_shared_dpll *pll;
9692         enum port port;
9693         uint32_t tmp;
9694
9695         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9696
9697         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9698
9699         if (IS_SKYLAKE(dev))
9700                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9701         else if (IS_BROXTON(dev))
9702                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9703         else
9704                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9705
9706         if (pipe_config->shared_dpll >= 0) {
9707                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9708
9709                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9710                                            &pipe_config->dpll_hw_state));
9711         }
9712
9713         /*
9714          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9715          * DDI E. So just check whether this pipe is wired to DDI E and whether
9716          * the PCH transcoder is on.
9717          */
9718         if (INTEL_INFO(dev)->gen < 9 &&
9719             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9720                 pipe_config->has_pch_encoder = true;
9721
9722                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9723                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9724                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9725
9726                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9727         }
9728 }
9729
9730 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9731                                     struct intel_crtc_state *pipe_config)
9732 {
9733         struct drm_device *dev = crtc->base.dev;
9734         struct drm_i915_private *dev_priv = dev->dev_private;
9735         enum intel_display_power_domain pfit_domain;
9736         uint32_t tmp;
9737
9738         if (!intel_display_power_is_enabled(dev_priv,
9739                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9740                 return false;
9741
9742         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9743         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9744
9745         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9746         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9747                 enum pipe trans_edp_pipe;
9748                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9749                 default:
9750                         WARN(1, "unknown pipe linked to edp transcoder\n");
9751                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9752                 case TRANS_DDI_EDP_INPUT_A_ON:
9753                         trans_edp_pipe = PIPE_A;
9754                         break;
9755                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9756                         trans_edp_pipe = PIPE_B;
9757                         break;
9758                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9759                         trans_edp_pipe = PIPE_C;
9760                         break;
9761                 }
9762
9763                 if (trans_edp_pipe == crtc->pipe)
9764                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9765         }
9766
9767         if (!intel_display_power_is_enabled(dev_priv,
9768                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9769                 return false;
9770
9771         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9772         if (!(tmp & PIPECONF_ENABLE))
9773                 return false;
9774
9775         haswell_get_ddi_port_state(crtc, pipe_config);
9776
9777         intel_get_pipe_timings(crtc, pipe_config);
9778
9779         if (INTEL_INFO(dev)->gen >= 9) {
9780                 skl_init_scalers(dev, crtc, pipe_config);
9781         }
9782
9783         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9784
9785         if (INTEL_INFO(dev)->gen >= 9) {
9786                 pipe_config->scaler_state.scaler_id = -1;
9787                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9788         }
9789
9790         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9791                 if (INTEL_INFO(dev)->gen >= 9)
9792                         skylake_get_pfit_config(crtc, pipe_config);
9793                 else
9794                         ironlake_get_pfit_config(crtc, pipe_config);
9795         }
9796
9797         if (IS_HASWELL(dev))
9798                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9799                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9800
9801         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9802                 pipe_config->pixel_multiplier =
9803                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9804         } else {
9805                 pipe_config->pixel_multiplier = 1;
9806         }
9807
9808         return true;
9809 }
9810
9811 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9812 {
9813         struct drm_device *dev = crtc->dev;
9814         struct drm_i915_private *dev_priv = dev->dev_private;
9815         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9816         uint32_t cntl = 0, size = 0;
9817
9818         if (base) {
9819                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9820                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9821                 unsigned int stride = roundup_pow_of_two(width) * 4;
9822
9823                 switch (stride) {
9824                 default:
9825                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9826                                   width, stride);
9827                         stride = 256;
9828                         /* fallthrough */
9829                 case 256:
9830                 case 512:
9831                 case 1024:
9832                 case 2048:
9833                         break;
9834                 }
9835
9836                 cntl |= CURSOR_ENABLE |
9837                         CURSOR_GAMMA_ENABLE |
9838                         CURSOR_FORMAT_ARGB |
9839                         CURSOR_STRIDE(stride);
9840
9841                 size = (height << 12) | width;
9842         }
9843
9844         if (intel_crtc->cursor_cntl != 0 &&
9845             (intel_crtc->cursor_base != base ||
9846              intel_crtc->cursor_size != size ||
9847              intel_crtc->cursor_cntl != cntl)) {
9848                 /* On these chipsets we can only modify the base/size/stride
9849                  * whilst the cursor is disabled.
9850                  */
9851                 I915_WRITE(_CURACNTR, 0);
9852                 POSTING_READ(_CURACNTR);
9853                 intel_crtc->cursor_cntl = 0;
9854         }
9855
9856         if (intel_crtc->cursor_base != base) {
9857                 I915_WRITE(_CURABASE, base);
9858                 intel_crtc->cursor_base = base;
9859         }
9860
9861         if (intel_crtc->cursor_size != size) {
9862                 I915_WRITE(CURSIZE, size);
9863                 intel_crtc->cursor_size = size;
9864         }
9865
9866         if (intel_crtc->cursor_cntl != cntl) {
9867                 I915_WRITE(_CURACNTR, cntl);
9868                 POSTING_READ(_CURACNTR);
9869                 intel_crtc->cursor_cntl = cntl;
9870         }
9871 }
9872
9873 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9874 {
9875         struct drm_device *dev = crtc->dev;
9876         struct drm_i915_private *dev_priv = dev->dev_private;
9877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9878         int pipe = intel_crtc->pipe;
9879         uint32_t cntl;
9880
9881         cntl = 0;
9882         if (base) {
9883                 cntl = MCURSOR_GAMMA_ENABLE;
9884                 switch (intel_crtc->base.cursor->state->crtc_w) {
9885                         case 64:
9886                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9887                                 break;
9888                         case 128:
9889                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9890                                 break;
9891                         case 256:
9892                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9893                                 break;
9894                         default:
9895                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9896                                 return;
9897                 }
9898                 cntl |= pipe << 28; /* Connect to correct pipe */
9899
9900                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9901                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9902         }
9903
9904         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9905                 cntl |= CURSOR_ROTATE_180;
9906
9907         if (intel_crtc->cursor_cntl != cntl) {
9908                 I915_WRITE(CURCNTR(pipe), cntl);
9909                 POSTING_READ(CURCNTR(pipe));
9910                 intel_crtc->cursor_cntl = cntl;
9911         }
9912
9913         /* and commit changes on next vblank */
9914         I915_WRITE(CURBASE(pipe), base);
9915         POSTING_READ(CURBASE(pipe));
9916
9917         intel_crtc->cursor_base = base;
9918 }
9919
9920 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9921 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9922                                      bool on)
9923 {
9924         struct drm_device *dev = crtc->dev;
9925         struct drm_i915_private *dev_priv = dev->dev_private;
9926         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9927         int pipe = intel_crtc->pipe;
9928         struct drm_plane_state *cursor_state = crtc->cursor->state;
9929         int x = cursor_state->crtc_x;
9930         int y = cursor_state->crtc_y;
9931         u32 base = 0, pos = 0;
9932
9933         if (on)
9934                 base = intel_crtc->cursor_addr;
9935
9936         if (x >= intel_crtc->config->pipe_src_w)
9937                 base = 0;
9938
9939         if (y >= intel_crtc->config->pipe_src_h)
9940                 base = 0;
9941
9942         if (x < 0) {
9943                 if (x + cursor_state->crtc_w <= 0)
9944                         base = 0;
9945
9946                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9947                 x = -x;
9948         }
9949         pos |= x << CURSOR_X_SHIFT;
9950
9951         if (y < 0) {
9952                 if (y + cursor_state->crtc_h <= 0)
9953                         base = 0;
9954
9955                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9956                 y = -y;
9957         }
9958         pos |= y << CURSOR_Y_SHIFT;
9959
9960         if (base == 0 && intel_crtc->cursor_base == 0)
9961                 return;
9962
9963         I915_WRITE(CURPOS(pipe), pos);
9964
9965         /* ILK+ do this automagically */
9966         if (HAS_GMCH_DISPLAY(dev) &&
9967             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9968                 base += (cursor_state->crtc_h *
9969                          cursor_state->crtc_w - 1) * 4;
9970         }
9971
9972         if (IS_845G(dev) || IS_I865G(dev))
9973                 i845_update_cursor(crtc, base);
9974         else
9975                 i9xx_update_cursor(crtc, base);
9976 }
9977
9978 static bool cursor_size_ok(struct drm_device *dev,
9979                            uint32_t width, uint32_t height)
9980 {
9981         if (width == 0 || height == 0)
9982                 return false;
9983
9984         /*
9985          * 845g/865g are special in that they are only limited by
9986          * the width of their cursors, the height is arbitrary up to
9987          * the precision of the register. Everything else requires
9988          * square cursors, limited to a few power-of-two sizes.
9989          */
9990         if (IS_845G(dev) || IS_I865G(dev)) {
9991                 if ((width & 63) != 0)
9992                         return false;
9993
9994                 if (width > (IS_845G(dev) ? 64 : 512))
9995                         return false;
9996
9997                 if (height > 1023)
9998                         return false;
9999         } else {
10000                 switch (width | height) {
10001                 case 256:
10002                 case 128:
10003                         if (IS_GEN2(dev))
10004                                 return false;
10005                 case 64:
10006                         break;
10007                 default:
10008                         return false;
10009                 }
10010         }
10011
10012         return true;
10013 }
10014
10015 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10016                                  u16 *blue, uint32_t start, uint32_t size)
10017 {
10018         int end = (start + size > 256) ? 256 : start + size, i;
10019         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10020
10021         for (i = start; i < end; i++) {
10022                 intel_crtc->lut_r[i] = red[i] >> 8;
10023                 intel_crtc->lut_g[i] = green[i] >> 8;
10024                 intel_crtc->lut_b[i] = blue[i] >> 8;
10025         }
10026
10027         intel_crtc_load_lut(crtc);
10028 }
10029
10030 /* VESA 640x480x72Hz mode to set on the pipe */
10031 static struct drm_display_mode load_detect_mode = {
10032         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10033                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10034 };
10035
10036 struct drm_framebuffer *
10037 __intel_framebuffer_create(struct drm_device *dev,
10038                            struct drm_mode_fb_cmd2 *mode_cmd,
10039                            struct drm_i915_gem_object *obj)
10040 {
10041         struct intel_framebuffer *intel_fb;
10042         int ret;
10043
10044         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10045         if (!intel_fb) {
10046                 drm_gem_object_unreference(&obj->base);
10047                 return ERR_PTR(-ENOMEM);
10048         }
10049
10050         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10051         if (ret)
10052                 goto err;
10053
10054         return &intel_fb->base;
10055 err:
10056         drm_gem_object_unreference(&obj->base);
10057         kfree(intel_fb);
10058
10059         return ERR_PTR(ret);
10060 }
10061
10062 static struct drm_framebuffer *
10063 intel_framebuffer_create(struct drm_device *dev,
10064                          struct drm_mode_fb_cmd2 *mode_cmd,
10065                          struct drm_i915_gem_object *obj)
10066 {
10067         struct drm_framebuffer *fb;
10068         int ret;
10069
10070         ret = i915_mutex_lock_interruptible(dev);
10071         if (ret)
10072                 return ERR_PTR(ret);
10073         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10074         mutex_unlock(&dev->struct_mutex);
10075
10076         return fb;
10077 }
10078
10079 static u32
10080 intel_framebuffer_pitch_for_width(int width, int bpp)
10081 {
10082         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10083         return ALIGN(pitch, 64);
10084 }
10085
10086 static u32
10087 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10088 {
10089         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10090         return PAGE_ALIGN(pitch * mode->vdisplay);
10091 }
10092
10093 static struct drm_framebuffer *
10094 intel_framebuffer_create_for_mode(struct drm_device *dev,
10095                                   struct drm_display_mode *mode,
10096                                   int depth, int bpp)
10097 {
10098         struct drm_i915_gem_object *obj;
10099         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10100
10101         obj = i915_gem_alloc_object(dev,
10102                                     intel_framebuffer_size_for_mode(mode, bpp));
10103         if (obj == NULL)
10104                 return ERR_PTR(-ENOMEM);
10105
10106         mode_cmd.width = mode->hdisplay;
10107         mode_cmd.height = mode->vdisplay;
10108         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10109                                                                 bpp);
10110         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10111
10112         return intel_framebuffer_create(dev, &mode_cmd, obj);
10113 }
10114
10115 static struct drm_framebuffer *
10116 mode_fits_in_fbdev(struct drm_device *dev,
10117                    struct drm_display_mode *mode)
10118 {
10119 #ifdef CONFIG_DRM_FBDEV_EMULATION
10120         struct drm_i915_private *dev_priv = dev->dev_private;
10121         struct drm_i915_gem_object *obj;
10122         struct drm_framebuffer *fb;
10123
10124         if (!dev_priv->fbdev)
10125                 return NULL;
10126
10127         if (!dev_priv->fbdev->fb)
10128                 return NULL;
10129
10130         obj = dev_priv->fbdev->fb->obj;
10131         BUG_ON(!obj);
10132
10133         fb = &dev_priv->fbdev->fb->base;
10134         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10135                                                                fb->bits_per_pixel))
10136                 return NULL;
10137
10138         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10139                 return NULL;
10140
10141         return fb;
10142 #else
10143         return NULL;
10144 #endif
10145 }
10146
10147 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10148                                            struct drm_crtc *crtc,
10149                                            struct drm_display_mode *mode,
10150                                            struct drm_framebuffer *fb,
10151                                            int x, int y)
10152 {
10153         struct drm_plane_state *plane_state;
10154         int hdisplay, vdisplay;
10155         int ret;
10156
10157         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10158         if (IS_ERR(plane_state))
10159                 return PTR_ERR(plane_state);
10160
10161         if (mode)
10162                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10163         else
10164                 hdisplay = vdisplay = 0;
10165
10166         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10167         if (ret)
10168                 return ret;
10169         drm_atomic_set_fb_for_plane(plane_state, fb);
10170         plane_state->crtc_x = 0;
10171         plane_state->crtc_y = 0;
10172         plane_state->crtc_w = hdisplay;
10173         plane_state->crtc_h = vdisplay;
10174         plane_state->src_x = x << 16;
10175         plane_state->src_y = y << 16;
10176         plane_state->src_w = hdisplay << 16;
10177         plane_state->src_h = vdisplay << 16;
10178
10179         return 0;
10180 }
10181
10182 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10183                                 struct drm_display_mode *mode,
10184                                 struct intel_load_detect_pipe *old,
10185                                 struct drm_modeset_acquire_ctx *ctx)
10186 {
10187         struct intel_crtc *intel_crtc;
10188         struct intel_encoder *intel_encoder =
10189                 intel_attached_encoder(connector);
10190         struct drm_crtc *possible_crtc;
10191         struct drm_encoder *encoder = &intel_encoder->base;
10192         struct drm_crtc *crtc = NULL;
10193         struct drm_device *dev = encoder->dev;
10194         struct drm_framebuffer *fb;
10195         struct drm_mode_config *config = &dev->mode_config;
10196         struct drm_atomic_state *state = NULL;
10197         struct drm_connector_state *connector_state;
10198         struct intel_crtc_state *crtc_state;
10199         int ret, i = -1;
10200
10201         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10202                       connector->base.id, connector->name,
10203                       encoder->base.id, encoder->name);
10204
10205 retry:
10206         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10207         if (ret)
10208                 goto fail;
10209
10210         /*
10211          * Algorithm gets a little messy:
10212          *
10213          *   - if the connector already has an assigned crtc, use it (but make
10214          *     sure it's on first)
10215          *
10216          *   - try to find the first unused crtc that can drive this connector,
10217          *     and use that if we find one
10218          */
10219
10220         /* See if we already have a CRTC for this connector */
10221         if (encoder->crtc) {
10222                 crtc = encoder->crtc;
10223
10224                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10225                 if (ret)
10226                         goto fail;
10227                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10228                 if (ret)
10229                         goto fail;
10230
10231                 old->dpms_mode = connector->dpms;
10232                 old->load_detect_temp = false;
10233
10234                 /* Make sure the crtc and connector are running */
10235                 if (connector->dpms != DRM_MODE_DPMS_ON)
10236                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10237
10238                 return true;
10239         }
10240
10241         /* Find an unused one (if possible) */
10242         for_each_crtc(dev, possible_crtc) {
10243                 i++;
10244                 if (!(encoder->possible_crtcs & (1 << i)))
10245                         continue;
10246                 if (possible_crtc->state->enable)
10247                         continue;
10248
10249                 crtc = possible_crtc;
10250                 break;
10251         }
10252
10253         /*
10254          * If we didn't find an unused CRTC, don't use any.
10255          */
10256         if (!crtc) {
10257                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10258                 goto fail;
10259         }
10260
10261         ret = drm_modeset_lock(&crtc->mutex, ctx);
10262         if (ret)
10263                 goto fail;
10264         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10265         if (ret)
10266                 goto fail;
10267
10268         intel_crtc = to_intel_crtc(crtc);
10269         old->dpms_mode = connector->dpms;
10270         old->load_detect_temp = true;
10271         old->release_fb = NULL;
10272
10273         state = drm_atomic_state_alloc(dev);
10274         if (!state)
10275                 return false;
10276
10277         state->acquire_ctx = ctx;
10278
10279         connector_state = drm_atomic_get_connector_state(state, connector);
10280         if (IS_ERR(connector_state)) {
10281                 ret = PTR_ERR(connector_state);
10282                 goto fail;
10283         }
10284
10285         connector_state->crtc = crtc;
10286         connector_state->best_encoder = &intel_encoder->base;
10287
10288         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10289         if (IS_ERR(crtc_state)) {
10290                 ret = PTR_ERR(crtc_state);
10291                 goto fail;
10292         }
10293
10294         crtc_state->base.active = crtc_state->base.enable = true;
10295
10296         if (!mode)
10297                 mode = &load_detect_mode;
10298
10299         /* We need a framebuffer large enough to accommodate all accesses
10300          * that the plane may generate whilst we perform load detection.
10301          * We can not rely on the fbcon either being present (we get called
10302          * during its initialisation to detect all boot displays, or it may
10303          * not even exist) or that it is large enough to satisfy the
10304          * requested mode.
10305          */
10306         fb = mode_fits_in_fbdev(dev, mode);
10307         if (fb == NULL) {
10308                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10309                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10310                 old->release_fb = fb;
10311         } else
10312                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10313         if (IS_ERR(fb)) {
10314                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10315                 goto fail;
10316         }
10317
10318         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10319         if (ret)
10320                 goto fail;
10321
10322         drm_mode_copy(&crtc_state->base.mode, mode);
10323
10324         if (drm_atomic_commit(state)) {
10325                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10326                 if (old->release_fb)
10327                         old->release_fb->funcs->destroy(old->release_fb);
10328                 goto fail;
10329         }
10330         crtc->primary->crtc = crtc;
10331
10332         /* let the connector get through one full cycle before testing */
10333         intel_wait_for_vblank(dev, intel_crtc->pipe);
10334         return true;
10335
10336 fail:
10337         drm_atomic_state_free(state);
10338         state = NULL;
10339
10340         if (ret == -EDEADLK) {
10341                 drm_modeset_backoff(ctx);
10342                 goto retry;
10343         }
10344
10345         return false;
10346 }
10347
10348 void intel_release_load_detect_pipe(struct drm_connector *connector,
10349                                     struct intel_load_detect_pipe *old,
10350                                     struct drm_modeset_acquire_ctx *ctx)
10351 {
10352         struct drm_device *dev = connector->dev;
10353         struct intel_encoder *intel_encoder =
10354                 intel_attached_encoder(connector);
10355         struct drm_encoder *encoder = &intel_encoder->base;
10356         struct drm_crtc *crtc = encoder->crtc;
10357         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10358         struct drm_atomic_state *state;
10359         struct drm_connector_state *connector_state;
10360         struct intel_crtc_state *crtc_state;
10361         int ret;
10362
10363         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10364                       connector->base.id, connector->name,
10365                       encoder->base.id, encoder->name);
10366
10367         if (old->load_detect_temp) {
10368                 state = drm_atomic_state_alloc(dev);
10369                 if (!state)
10370                         goto fail;
10371
10372                 state->acquire_ctx = ctx;
10373
10374                 connector_state = drm_atomic_get_connector_state(state, connector);
10375                 if (IS_ERR(connector_state))
10376                         goto fail;
10377
10378                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10379                 if (IS_ERR(crtc_state))
10380                         goto fail;
10381
10382                 connector_state->best_encoder = NULL;
10383                 connector_state->crtc = NULL;
10384
10385                 crtc_state->base.enable = crtc_state->base.active = false;
10386
10387                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10388                                                       0, 0);
10389                 if (ret)
10390                         goto fail;
10391
10392                 ret = drm_atomic_commit(state);
10393                 if (ret)
10394                         goto fail;
10395
10396                 if (old->release_fb) {
10397                         drm_framebuffer_unregister_private(old->release_fb);
10398                         drm_framebuffer_unreference(old->release_fb);
10399                 }
10400
10401                 return;
10402         }
10403
10404         /* Switch crtc and encoder back off if necessary */
10405         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10406                 connector->funcs->dpms(connector, old->dpms_mode);
10407
10408         return;
10409 fail:
10410         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10411         drm_atomic_state_free(state);
10412 }
10413
10414 static int i9xx_pll_refclk(struct drm_device *dev,
10415                            const struct intel_crtc_state *pipe_config)
10416 {
10417         struct drm_i915_private *dev_priv = dev->dev_private;
10418         u32 dpll = pipe_config->dpll_hw_state.dpll;
10419
10420         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10421                 return dev_priv->vbt.lvds_ssc_freq;
10422         else if (HAS_PCH_SPLIT(dev))
10423                 return 120000;
10424         else if (!IS_GEN2(dev))
10425                 return 96000;
10426         else
10427                 return 48000;
10428 }
10429
10430 /* Returns the clock of the currently programmed mode of the given pipe. */
10431 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10432                                 struct intel_crtc_state *pipe_config)
10433 {
10434         struct drm_device *dev = crtc->base.dev;
10435         struct drm_i915_private *dev_priv = dev->dev_private;
10436         int pipe = pipe_config->cpu_transcoder;
10437         u32 dpll = pipe_config->dpll_hw_state.dpll;
10438         u32 fp;
10439         intel_clock_t clock;
10440         int port_clock;
10441         int refclk = i9xx_pll_refclk(dev, pipe_config);
10442
10443         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10444                 fp = pipe_config->dpll_hw_state.fp0;
10445         else
10446                 fp = pipe_config->dpll_hw_state.fp1;
10447
10448         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10449         if (IS_PINEVIEW(dev)) {
10450                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10451                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10452         } else {
10453                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10454                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10455         }
10456
10457         if (!IS_GEN2(dev)) {
10458                 if (IS_PINEVIEW(dev))
10459                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10460                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10461                 else
10462                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10463                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10464
10465                 switch (dpll & DPLL_MODE_MASK) {
10466                 case DPLLB_MODE_DAC_SERIAL:
10467                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10468                                 5 : 10;
10469                         break;
10470                 case DPLLB_MODE_LVDS:
10471                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10472                                 7 : 14;
10473                         break;
10474                 default:
10475                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10476                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10477                         return;
10478                 }
10479
10480                 if (IS_PINEVIEW(dev))
10481                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10482                 else
10483                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10484         } else {
10485                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10486                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10487
10488                 if (is_lvds) {
10489                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10490                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10491
10492                         if (lvds & LVDS_CLKB_POWER_UP)
10493                                 clock.p2 = 7;
10494                         else
10495                                 clock.p2 = 14;
10496                 } else {
10497                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10498                                 clock.p1 = 2;
10499                         else {
10500                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10501                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10502                         }
10503                         if (dpll & PLL_P2_DIVIDE_BY_4)
10504                                 clock.p2 = 4;
10505                         else
10506                                 clock.p2 = 2;
10507                 }
10508
10509                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10510         }
10511
10512         /*
10513          * This value includes pixel_multiplier. We will use
10514          * port_clock to compute adjusted_mode.crtc_clock in the
10515          * encoder's get_config() function.
10516          */
10517         pipe_config->port_clock = port_clock;
10518 }
10519
10520 int intel_dotclock_calculate(int link_freq,
10521                              const struct intel_link_m_n *m_n)
10522 {
10523         /*
10524          * The calculation for the data clock is:
10525          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10526          * But we want to avoid losing precison if possible, so:
10527          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10528          *
10529          * and the link clock is simpler:
10530          * link_clock = (m * link_clock) / n
10531          */
10532
10533         if (!m_n->link_n)
10534                 return 0;
10535
10536         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10537 }
10538
10539 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10540                                    struct intel_crtc_state *pipe_config)
10541 {
10542         struct drm_device *dev = crtc->base.dev;
10543
10544         /* read out port_clock from the DPLL */
10545         i9xx_crtc_clock_get(crtc, pipe_config);
10546
10547         /*
10548          * This value does not include pixel_multiplier.
10549          * We will check that port_clock and adjusted_mode.crtc_clock
10550          * agree once we know their relationship in the encoder's
10551          * get_config() function.
10552          */
10553         pipe_config->base.adjusted_mode.crtc_clock =
10554                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10555                                          &pipe_config->fdi_m_n);
10556 }
10557
10558 /** Returns the currently programmed mode of the given pipe. */
10559 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10560                                              struct drm_crtc *crtc)
10561 {
10562         struct drm_i915_private *dev_priv = dev->dev_private;
10563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10564         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10565         struct drm_display_mode *mode;
10566         struct intel_crtc_state pipe_config;
10567         int htot = I915_READ(HTOTAL(cpu_transcoder));
10568         int hsync = I915_READ(HSYNC(cpu_transcoder));
10569         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10570         int vsync = I915_READ(VSYNC(cpu_transcoder));
10571         enum pipe pipe = intel_crtc->pipe;
10572
10573         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10574         if (!mode)
10575                 return NULL;
10576
10577         /*
10578          * Construct a pipe_config sufficient for getting the clock info
10579          * back out of crtc_clock_get.
10580          *
10581          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10582          * to use a real value here instead.
10583          */
10584         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10585         pipe_config.pixel_multiplier = 1;
10586         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10587         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10588         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10589         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10590
10591         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10592         mode->hdisplay = (htot & 0xffff) + 1;
10593         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10594         mode->hsync_start = (hsync & 0xffff) + 1;
10595         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10596         mode->vdisplay = (vtot & 0xffff) + 1;
10597         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10598         mode->vsync_start = (vsync & 0xffff) + 1;
10599         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10600
10601         drm_mode_set_name(mode);
10602
10603         return mode;
10604 }
10605
10606 void intel_mark_busy(struct drm_device *dev)
10607 {
10608         struct drm_i915_private *dev_priv = dev->dev_private;
10609
10610         if (dev_priv->mm.busy)
10611                 return;
10612
10613         intel_runtime_pm_get(dev_priv);
10614         i915_update_gfx_val(dev_priv);
10615         if (INTEL_INFO(dev)->gen >= 6)
10616                 gen6_rps_busy(dev_priv);
10617         dev_priv->mm.busy = true;
10618 }
10619
10620 void intel_mark_idle(struct drm_device *dev)
10621 {
10622         struct drm_i915_private *dev_priv = dev->dev_private;
10623
10624         if (!dev_priv->mm.busy)
10625                 return;
10626
10627         dev_priv->mm.busy = false;
10628
10629         if (INTEL_INFO(dev)->gen >= 6)
10630                 gen6_rps_idle(dev->dev_private);
10631
10632         intel_runtime_pm_put(dev_priv);
10633 }
10634
10635 static void intel_crtc_destroy(struct drm_crtc *crtc)
10636 {
10637         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10638         struct drm_device *dev = crtc->dev;
10639         struct intel_unpin_work *work;
10640
10641         spin_lock_irq(&dev->event_lock);
10642         work = intel_crtc->unpin_work;
10643         intel_crtc->unpin_work = NULL;
10644         spin_unlock_irq(&dev->event_lock);
10645
10646         if (work) {
10647                 cancel_work_sync(&work->work);
10648                 kfree(work);
10649         }
10650
10651         drm_crtc_cleanup(crtc);
10652
10653         kfree(intel_crtc);
10654 }
10655
10656 static void intel_unpin_work_fn(struct work_struct *__work)
10657 {
10658         struct intel_unpin_work *work =
10659                 container_of(__work, struct intel_unpin_work, work);
10660         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10661         struct drm_device *dev = crtc->base.dev;
10662         struct drm_plane *primary = crtc->base.primary;
10663
10664         mutex_lock(&dev->struct_mutex);
10665         intel_unpin_fb_obj(work->old_fb, primary->state);
10666         drm_gem_object_unreference(&work->pending_flip_obj->base);
10667
10668         if (work->flip_queued_req)
10669                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10670         mutex_unlock(&dev->struct_mutex);
10671
10672         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10673         drm_framebuffer_unreference(work->old_fb);
10674
10675         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10676         atomic_dec(&crtc->unpin_work_count);
10677
10678         kfree(work);
10679 }
10680
10681 static void do_intel_finish_page_flip(struct drm_device *dev,
10682                                       struct drm_crtc *crtc)
10683 {
10684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10685         struct intel_unpin_work *work;
10686         unsigned long flags;
10687
10688         /* Ignore early vblank irqs */
10689         if (intel_crtc == NULL)
10690                 return;
10691
10692         /*
10693          * This is called both by irq handlers and the reset code (to complete
10694          * lost pageflips) so needs the full irqsave spinlocks.
10695          */
10696         spin_lock_irqsave(&dev->event_lock, flags);
10697         work = intel_crtc->unpin_work;
10698
10699         /* Ensure we don't miss a work->pending update ... */
10700         smp_rmb();
10701
10702         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10703                 spin_unlock_irqrestore(&dev->event_lock, flags);
10704                 return;
10705         }
10706
10707         page_flip_completed(intel_crtc);
10708
10709         spin_unlock_irqrestore(&dev->event_lock, flags);
10710 }
10711
10712 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10713 {
10714         struct drm_i915_private *dev_priv = dev->dev_private;
10715         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10716
10717         do_intel_finish_page_flip(dev, crtc);
10718 }
10719
10720 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10721 {
10722         struct drm_i915_private *dev_priv = dev->dev_private;
10723         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10724
10725         do_intel_finish_page_flip(dev, crtc);
10726 }
10727
10728 /* Is 'a' after or equal to 'b'? */
10729 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10730 {
10731         return !((a - b) & 0x80000000);
10732 }
10733
10734 static bool page_flip_finished(struct intel_crtc *crtc)
10735 {
10736         struct drm_device *dev = crtc->base.dev;
10737         struct drm_i915_private *dev_priv = dev->dev_private;
10738
10739         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10740             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10741                 return true;
10742
10743         /*
10744          * The relevant registers doen't exist on pre-ctg.
10745          * As the flip done interrupt doesn't trigger for mmio
10746          * flips on gmch platforms, a flip count check isn't
10747          * really needed there. But since ctg has the registers,
10748          * include it in the check anyway.
10749          */
10750         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10751                 return true;
10752
10753         /*
10754          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10755          * used the same base address. In that case the mmio flip might
10756          * have completed, but the CS hasn't even executed the flip yet.
10757          *
10758          * A flip count check isn't enough as the CS might have updated
10759          * the base address just after start of vblank, but before we
10760          * managed to process the interrupt. This means we'd complete the
10761          * CS flip too soon.
10762          *
10763          * Combining both checks should get us a good enough result. It may
10764          * still happen that the CS flip has been executed, but has not
10765          * yet actually completed. But in case the base address is the same
10766          * anyway, we don't really care.
10767          */
10768         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10769                 crtc->unpin_work->gtt_offset &&
10770                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10771                                     crtc->unpin_work->flip_count);
10772 }
10773
10774 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10775 {
10776         struct drm_i915_private *dev_priv = dev->dev_private;
10777         struct intel_crtc *intel_crtc =
10778                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10779         unsigned long flags;
10780
10781
10782         /*
10783          * This is called both by irq handlers and the reset code (to complete
10784          * lost pageflips) so needs the full irqsave spinlocks.
10785          *
10786          * NB: An MMIO update of the plane base pointer will also
10787          * generate a page-flip completion irq, i.e. every modeset
10788          * is also accompanied by a spurious intel_prepare_page_flip().
10789          */
10790         spin_lock_irqsave(&dev->event_lock, flags);
10791         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10792                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10793         spin_unlock_irqrestore(&dev->event_lock, flags);
10794 }
10795
10796 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10797 {
10798         /* Ensure that the work item is consistent when activating it ... */
10799         smp_wmb();
10800         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10801         /* and that it is marked active as soon as the irq could fire. */
10802         smp_wmb();
10803 }
10804
10805 static int intel_gen2_queue_flip(struct drm_device *dev,
10806                                  struct drm_crtc *crtc,
10807                                  struct drm_framebuffer *fb,
10808                                  struct drm_i915_gem_object *obj,
10809                                  struct drm_i915_gem_request *req,
10810                                  uint32_t flags)
10811 {
10812         struct intel_engine_cs *ring = req->ring;
10813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10814         u32 flip_mask;
10815         int ret;
10816
10817         ret = intel_ring_begin(req, 6);
10818         if (ret)
10819                 return ret;
10820
10821         /* Can't queue multiple flips, so wait for the previous
10822          * one to finish before executing the next.
10823          */
10824         if (intel_crtc->plane)
10825                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10826         else
10827                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10828         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10829         intel_ring_emit(ring, MI_NOOP);
10830         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10831                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10832         intel_ring_emit(ring, fb->pitches[0]);
10833         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10834         intel_ring_emit(ring, 0); /* aux display base address, unused */
10835
10836         intel_mark_page_flip_active(intel_crtc);
10837         return 0;
10838 }
10839
10840 static int intel_gen3_queue_flip(struct drm_device *dev,
10841                                  struct drm_crtc *crtc,
10842                                  struct drm_framebuffer *fb,
10843                                  struct drm_i915_gem_object *obj,
10844                                  struct drm_i915_gem_request *req,
10845                                  uint32_t flags)
10846 {
10847         struct intel_engine_cs *ring = req->ring;
10848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10849         u32 flip_mask;
10850         int ret;
10851
10852         ret = intel_ring_begin(req, 6);
10853         if (ret)
10854                 return ret;
10855
10856         if (intel_crtc->plane)
10857                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10858         else
10859                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10860         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10861         intel_ring_emit(ring, MI_NOOP);
10862         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10863                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10864         intel_ring_emit(ring, fb->pitches[0]);
10865         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10866         intel_ring_emit(ring, MI_NOOP);
10867
10868         intel_mark_page_flip_active(intel_crtc);
10869         return 0;
10870 }
10871
10872 static int intel_gen4_queue_flip(struct drm_device *dev,
10873                                  struct drm_crtc *crtc,
10874                                  struct drm_framebuffer *fb,
10875                                  struct drm_i915_gem_object *obj,
10876                                  struct drm_i915_gem_request *req,
10877                                  uint32_t flags)
10878 {
10879         struct intel_engine_cs *ring = req->ring;
10880         struct drm_i915_private *dev_priv = dev->dev_private;
10881         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10882         uint32_t pf, pipesrc;
10883         int ret;
10884
10885         ret = intel_ring_begin(req, 4);
10886         if (ret)
10887                 return ret;
10888
10889         /* i965+ uses the linear or tiled offsets from the
10890          * Display Registers (which do not change across a page-flip)
10891          * so we need only reprogram the base address.
10892          */
10893         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10894                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10895         intel_ring_emit(ring, fb->pitches[0]);
10896         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10897                         obj->tiling_mode);
10898
10899         /* XXX Enabling the panel-fitter across page-flip is so far
10900          * untested on non-native modes, so ignore it for now.
10901          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10902          */
10903         pf = 0;
10904         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10905         intel_ring_emit(ring, pf | pipesrc);
10906
10907         intel_mark_page_flip_active(intel_crtc);
10908         return 0;
10909 }
10910
10911 static int intel_gen6_queue_flip(struct drm_device *dev,
10912                                  struct drm_crtc *crtc,
10913                                  struct drm_framebuffer *fb,
10914                                  struct drm_i915_gem_object *obj,
10915                                  struct drm_i915_gem_request *req,
10916                                  uint32_t flags)
10917 {
10918         struct intel_engine_cs *ring = req->ring;
10919         struct drm_i915_private *dev_priv = dev->dev_private;
10920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10921         uint32_t pf, pipesrc;
10922         int ret;
10923
10924         ret = intel_ring_begin(req, 4);
10925         if (ret)
10926                 return ret;
10927
10928         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10929                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10930         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10931         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10932
10933         /* Contrary to the suggestions in the documentation,
10934          * "Enable Panel Fitter" does not seem to be required when page
10935          * flipping with a non-native mode, and worse causes a normal
10936          * modeset to fail.
10937          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10938          */
10939         pf = 0;
10940         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10941         intel_ring_emit(ring, pf | pipesrc);
10942
10943         intel_mark_page_flip_active(intel_crtc);
10944         return 0;
10945 }
10946
10947 static int intel_gen7_queue_flip(struct drm_device *dev,
10948                                  struct drm_crtc *crtc,
10949                                  struct drm_framebuffer *fb,
10950                                  struct drm_i915_gem_object *obj,
10951                                  struct drm_i915_gem_request *req,
10952                                  uint32_t flags)
10953 {
10954         struct intel_engine_cs *ring = req->ring;
10955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10956         uint32_t plane_bit = 0;
10957         int len, ret;
10958
10959         switch (intel_crtc->plane) {
10960         case PLANE_A:
10961                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10962                 break;
10963         case PLANE_B:
10964                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10965                 break;
10966         case PLANE_C:
10967                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10968                 break;
10969         default:
10970                 WARN_ONCE(1, "unknown plane in flip command\n");
10971                 return -ENODEV;
10972         }
10973
10974         len = 4;
10975         if (ring->id == RCS) {
10976                 len += 6;
10977                 /*
10978                  * On Gen 8, SRM is now taking an extra dword to accommodate
10979                  * 48bits addresses, and we need a NOOP for the batch size to
10980                  * stay even.
10981                  */
10982                 if (IS_GEN8(dev))
10983                         len += 2;
10984         }
10985
10986         /*
10987          * BSpec MI_DISPLAY_FLIP for IVB:
10988          * "The full packet must be contained within the same cache line."
10989          *
10990          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10991          * cacheline, if we ever start emitting more commands before
10992          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10993          * then do the cacheline alignment, and finally emit the
10994          * MI_DISPLAY_FLIP.
10995          */
10996         ret = intel_ring_cacheline_align(req);
10997         if (ret)
10998                 return ret;
10999
11000         ret = intel_ring_begin(req, len);
11001         if (ret)
11002                 return ret;
11003
11004         /* Unmask the flip-done completion message. Note that the bspec says that
11005          * we should do this for both the BCS and RCS, and that we must not unmask
11006          * more than one flip event at any time (or ensure that one flip message
11007          * can be sent by waiting for flip-done prior to queueing new flips).
11008          * Experimentation says that BCS works despite DERRMR masking all
11009          * flip-done completion events and that unmasking all planes at once
11010          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11011          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11012          */
11013         if (ring->id == RCS) {
11014                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11015                 intel_ring_emit(ring, DERRMR);
11016                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11017                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11018                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11019                 if (IS_GEN8(dev))
11020                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11021                                               MI_SRM_LRM_GLOBAL_GTT);
11022                 else
11023                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11024                                               MI_SRM_LRM_GLOBAL_GTT);
11025                 intel_ring_emit(ring, DERRMR);
11026                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11027                 if (IS_GEN8(dev)) {
11028                         intel_ring_emit(ring, 0);
11029                         intel_ring_emit(ring, MI_NOOP);
11030                 }
11031         }
11032
11033         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11034         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11035         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11036         intel_ring_emit(ring, (MI_NOOP));
11037
11038         intel_mark_page_flip_active(intel_crtc);
11039         return 0;
11040 }
11041
11042 static bool use_mmio_flip(struct intel_engine_cs *ring,
11043                           struct drm_i915_gem_object *obj)
11044 {
11045         /*
11046          * This is not being used for older platforms, because
11047          * non-availability of flip done interrupt forces us to use
11048          * CS flips. Older platforms derive flip done using some clever
11049          * tricks involving the flip_pending status bits and vblank irqs.
11050          * So using MMIO flips there would disrupt this mechanism.
11051          */
11052
11053         if (ring == NULL)
11054                 return true;
11055
11056         if (INTEL_INFO(ring->dev)->gen < 5)
11057                 return false;
11058
11059         if (i915.use_mmio_flip < 0)
11060                 return false;
11061         else if (i915.use_mmio_flip > 0)
11062                 return true;
11063         else if (i915.enable_execlists)
11064                 return true;
11065         else
11066                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11067 }
11068
11069 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11070 {
11071         struct drm_device *dev = intel_crtc->base.dev;
11072         struct drm_i915_private *dev_priv = dev->dev_private;
11073         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11074         const enum pipe pipe = intel_crtc->pipe;
11075         u32 ctl, stride;
11076
11077         ctl = I915_READ(PLANE_CTL(pipe, 0));
11078         ctl &= ~PLANE_CTL_TILED_MASK;
11079         switch (fb->modifier[0]) {
11080         case DRM_FORMAT_MOD_NONE:
11081                 break;
11082         case I915_FORMAT_MOD_X_TILED:
11083                 ctl |= PLANE_CTL_TILED_X;
11084                 break;
11085         case I915_FORMAT_MOD_Y_TILED:
11086                 ctl |= PLANE_CTL_TILED_Y;
11087                 break;
11088         case I915_FORMAT_MOD_Yf_TILED:
11089                 ctl |= PLANE_CTL_TILED_YF;
11090                 break;
11091         default:
11092                 MISSING_CASE(fb->modifier[0]);
11093         }
11094
11095         /*
11096          * The stride is either expressed as a multiple of 64 bytes chunks for
11097          * linear buffers or in number of tiles for tiled buffers.
11098          */
11099         stride = fb->pitches[0] /
11100                  intel_fb_stride_alignment(dev, fb->modifier[0],
11101                                            fb->pixel_format);
11102
11103         /*
11104          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11105          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11106          */
11107         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11108         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11109
11110         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11111         POSTING_READ(PLANE_SURF(pipe, 0));
11112 }
11113
11114 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11115 {
11116         struct drm_device *dev = intel_crtc->base.dev;
11117         struct drm_i915_private *dev_priv = dev->dev_private;
11118         struct intel_framebuffer *intel_fb =
11119                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11120         struct drm_i915_gem_object *obj = intel_fb->obj;
11121         u32 dspcntr;
11122         u32 reg;
11123
11124         reg = DSPCNTR(intel_crtc->plane);
11125         dspcntr = I915_READ(reg);
11126
11127         if (obj->tiling_mode != I915_TILING_NONE)
11128                 dspcntr |= DISPPLANE_TILED;
11129         else
11130                 dspcntr &= ~DISPPLANE_TILED;
11131
11132         I915_WRITE(reg, dspcntr);
11133
11134         I915_WRITE(DSPSURF(intel_crtc->plane),
11135                    intel_crtc->unpin_work->gtt_offset);
11136         POSTING_READ(DSPSURF(intel_crtc->plane));
11137
11138 }
11139
11140 /*
11141  * XXX: This is the temporary way to update the plane registers until we get
11142  * around to using the usual plane update functions for MMIO flips
11143  */
11144 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11145 {
11146         struct drm_device *dev = intel_crtc->base.dev;
11147
11148         intel_mark_page_flip_active(intel_crtc);
11149
11150         intel_pipe_update_start(intel_crtc);
11151
11152         if (INTEL_INFO(dev)->gen >= 9)
11153                 skl_do_mmio_flip(intel_crtc);
11154         else
11155                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11156                 ilk_do_mmio_flip(intel_crtc);
11157
11158         intel_pipe_update_end(intel_crtc);
11159 }
11160
11161 static void intel_mmio_flip_work_func(struct work_struct *work)
11162 {
11163         struct intel_mmio_flip *mmio_flip =
11164                 container_of(work, struct intel_mmio_flip, work);
11165
11166         if (mmio_flip->req)
11167                 WARN_ON(__i915_wait_request(mmio_flip->req,
11168                                             mmio_flip->crtc->reset_counter,
11169                                             false, NULL,
11170                                             &mmio_flip->i915->rps.mmioflips));
11171
11172         intel_do_mmio_flip(mmio_flip->crtc);
11173
11174         i915_gem_request_unreference__unlocked(mmio_flip->req);
11175         kfree(mmio_flip);
11176 }
11177
11178 static int intel_queue_mmio_flip(struct drm_device *dev,
11179                                  struct drm_crtc *crtc,
11180                                  struct drm_framebuffer *fb,
11181                                  struct drm_i915_gem_object *obj,
11182                                  struct intel_engine_cs *ring,
11183                                  uint32_t flags)
11184 {
11185         struct intel_mmio_flip *mmio_flip;
11186
11187         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11188         if (mmio_flip == NULL)
11189                 return -ENOMEM;
11190
11191         mmio_flip->i915 = to_i915(dev);
11192         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11193         mmio_flip->crtc = to_intel_crtc(crtc);
11194
11195         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11196         schedule_work(&mmio_flip->work);
11197
11198         return 0;
11199 }
11200
11201 static int intel_default_queue_flip(struct drm_device *dev,
11202                                     struct drm_crtc *crtc,
11203                                     struct drm_framebuffer *fb,
11204                                     struct drm_i915_gem_object *obj,
11205                                     struct drm_i915_gem_request *req,
11206                                     uint32_t flags)
11207 {
11208         return -ENODEV;
11209 }
11210
11211 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11212                                          struct drm_crtc *crtc)
11213 {
11214         struct drm_i915_private *dev_priv = dev->dev_private;
11215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11216         struct intel_unpin_work *work = intel_crtc->unpin_work;
11217         u32 addr;
11218
11219         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11220                 return true;
11221
11222         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11223                 return false;
11224
11225         if (!work->enable_stall_check)
11226                 return false;
11227
11228         if (work->flip_ready_vblank == 0) {
11229                 if (work->flip_queued_req &&
11230                     !i915_gem_request_completed(work->flip_queued_req, true))
11231                         return false;
11232
11233                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11234         }
11235
11236         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11237                 return false;
11238
11239         /* Potential stall - if we see that the flip has happened,
11240          * assume a missed interrupt. */
11241         if (INTEL_INFO(dev)->gen >= 4)
11242                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11243         else
11244                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11245
11246         /* There is a potential issue here with a false positive after a flip
11247          * to the same address. We could address this by checking for a
11248          * non-incrementing frame counter.
11249          */
11250         return addr == work->gtt_offset;
11251 }
11252
11253 void intel_check_page_flip(struct drm_device *dev, int pipe)
11254 {
11255         struct drm_i915_private *dev_priv = dev->dev_private;
11256         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11258         struct intel_unpin_work *work;
11259
11260         WARN_ON(!in_interrupt());
11261
11262         if (crtc == NULL)
11263                 return;
11264
11265         spin_lock(&dev->event_lock);
11266         work = intel_crtc->unpin_work;
11267         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11268                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11269                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11270                 page_flip_completed(intel_crtc);
11271                 work = NULL;
11272         }
11273         if (work != NULL &&
11274             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11275                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11276         spin_unlock(&dev->event_lock);
11277 }
11278
11279 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11280                                 struct drm_framebuffer *fb,
11281                                 struct drm_pending_vblank_event *event,
11282                                 uint32_t page_flip_flags)
11283 {
11284         struct drm_device *dev = crtc->dev;
11285         struct drm_i915_private *dev_priv = dev->dev_private;
11286         struct drm_framebuffer *old_fb = crtc->primary->fb;
11287         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11289         struct drm_plane *primary = crtc->primary;
11290         enum pipe pipe = intel_crtc->pipe;
11291         struct intel_unpin_work *work;
11292         struct intel_engine_cs *ring;
11293         bool mmio_flip;
11294         struct drm_i915_gem_request *request = NULL;
11295         int ret;
11296
11297         /*
11298          * drm_mode_page_flip_ioctl() should already catch this, but double
11299          * check to be safe.  In the future we may enable pageflipping from
11300          * a disabled primary plane.
11301          */
11302         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11303                 return -EBUSY;
11304
11305         /* Can't change pixel format via MI display flips. */
11306         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11307                 return -EINVAL;
11308
11309         /*
11310          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11311          * Note that pitch changes could also affect these register.
11312          */
11313         if (INTEL_INFO(dev)->gen > 3 &&
11314             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11315              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11316                 return -EINVAL;
11317
11318         if (i915_terminally_wedged(&dev_priv->gpu_error))
11319                 goto out_hang;
11320
11321         work = kzalloc(sizeof(*work), GFP_KERNEL);
11322         if (work == NULL)
11323                 return -ENOMEM;
11324
11325         work->event = event;
11326         work->crtc = crtc;
11327         work->old_fb = old_fb;
11328         INIT_WORK(&work->work, intel_unpin_work_fn);
11329
11330         ret = drm_crtc_vblank_get(crtc);
11331         if (ret)
11332                 goto free_work;
11333
11334         /* We borrow the event spin lock for protecting unpin_work */
11335         spin_lock_irq(&dev->event_lock);
11336         if (intel_crtc->unpin_work) {
11337                 /* Before declaring the flip queue wedged, check if
11338                  * the hardware completed the operation behind our backs.
11339                  */
11340                 if (__intel_pageflip_stall_check(dev, crtc)) {
11341                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11342                         page_flip_completed(intel_crtc);
11343                 } else {
11344                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11345                         spin_unlock_irq(&dev->event_lock);
11346
11347                         drm_crtc_vblank_put(crtc);
11348                         kfree(work);
11349                         return -EBUSY;
11350                 }
11351         }
11352         intel_crtc->unpin_work = work;
11353         spin_unlock_irq(&dev->event_lock);
11354
11355         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11356                 flush_workqueue(dev_priv->wq);
11357
11358         /* Reference the objects for the scheduled work. */
11359         drm_framebuffer_reference(work->old_fb);
11360         drm_gem_object_reference(&obj->base);
11361
11362         crtc->primary->fb = fb;
11363         update_state_fb(crtc->primary);
11364
11365         work->pending_flip_obj = obj;
11366
11367         ret = i915_mutex_lock_interruptible(dev);
11368         if (ret)
11369                 goto cleanup;
11370
11371         atomic_inc(&intel_crtc->unpin_work_count);
11372         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11373
11374         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11375                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11376
11377         if (IS_VALLEYVIEW(dev)) {
11378                 ring = &dev_priv->ring[BCS];
11379                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11380                         /* vlv: DISPLAY_FLIP fails to change tiling */
11381                         ring = NULL;
11382         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11383                 ring = &dev_priv->ring[BCS];
11384         } else if (INTEL_INFO(dev)->gen >= 7) {
11385                 ring = i915_gem_request_get_ring(obj->last_write_req);
11386                 if (ring == NULL || ring->id != RCS)
11387                         ring = &dev_priv->ring[BCS];
11388         } else {
11389                 ring = &dev_priv->ring[RCS];
11390         }
11391
11392         mmio_flip = use_mmio_flip(ring, obj);
11393
11394         /* When using CS flips, we want to emit semaphores between rings.
11395          * However, when using mmio flips we will create a task to do the
11396          * synchronisation, so all we want here is to pin the framebuffer
11397          * into the display plane and skip any waits.
11398          */
11399         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11400                                          crtc->primary->state,
11401                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11402         if (ret)
11403                 goto cleanup_pending;
11404
11405         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11406                                                   + intel_crtc->dspaddr_offset;
11407
11408         if (mmio_flip) {
11409                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11410                                             page_flip_flags);
11411                 if (ret)
11412                         goto cleanup_unpin;
11413
11414                 i915_gem_request_assign(&work->flip_queued_req,
11415                                         obj->last_write_req);
11416         } else {
11417                 if (!request) {
11418                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11419                         if (ret)
11420                                 goto cleanup_unpin;
11421                 }
11422
11423                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11424                                                    page_flip_flags);
11425                 if (ret)
11426                         goto cleanup_unpin;
11427
11428                 i915_gem_request_assign(&work->flip_queued_req, request);
11429         }
11430
11431         if (request)
11432                 i915_add_request_no_flush(request);
11433
11434         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11435         work->enable_stall_check = true;
11436
11437         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11438                           to_intel_plane(primary)->frontbuffer_bit);
11439         mutex_unlock(&dev->struct_mutex);
11440
11441         intel_fbc_disable_crtc(intel_crtc);
11442         intel_frontbuffer_flip_prepare(dev,
11443                                        to_intel_plane(primary)->frontbuffer_bit);
11444
11445         trace_i915_flip_request(intel_crtc->plane, obj);
11446
11447         return 0;
11448
11449 cleanup_unpin:
11450         intel_unpin_fb_obj(fb, crtc->primary->state);
11451 cleanup_pending:
11452         if (request)
11453                 i915_gem_request_cancel(request);
11454         atomic_dec(&intel_crtc->unpin_work_count);
11455         mutex_unlock(&dev->struct_mutex);
11456 cleanup:
11457         crtc->primary->fb = old_fb;
11458         update_state_fb(crtc->primary);
11459
11460         drm_gem_object_unreference_unlocked(&obj->base);
11461         drm_framebuffer_unreference(work->old_fb);
11462
11463         spin_lock_irq(&dev->event_lock);
11464         intel_crtc->unpin_work = NULL;
11465         spin_unlock_irq(&dev->event_lock);
11466
11467         drm_crtc_vblank_put(crtc);
11468 free_work:
11469         kfree(work);
11470
11471         if (ret == -EIO) {
11472                 struct drm_atomic_state *state;
11473                 struct drm_plane_state *plane_state;
11474
11475 out_hang:
11476                 state = drm_atomic_state_alloc(dev);
11477                 if (!state)
11478                         return -ENOMEM;
11479                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11480
11481 retry:
11482                 plane_state = drm_atomic_get_plane_state(state, primary);
11483                 ret = PTR_ERR_OR_ZERO(plane_state);
11484                 if (!ret) {
11485                         drm_atomic_set_fb_for_plane(plane_state, fb);
11486
11487                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11488                         if (!ret)
11489                                 ret = drm_atomic_commit(state);
11490                 }
11491
11492                 if (ret == -EDEADLK) {
11493                         drm_modeset_backoff(state->acquire_ctx);
11494                         drm_atomic_state_clear(state);
11495                         goto retry;
11496                 }
11497
11498                 if (ret)
11499                         drm_atomic_state_free(state);
11500
11501                 if (ret == 0 && event) {
11502                         spin_lock_irq(&dev->event_lock);
11503                         drm_send_vblank_event(dev, pipe, event);
11504                         spin_unlock_irq(&dev->event_lock);
11505                 }
11506         }
11507         return ret;
11508 }
11509
11510
11511 /**
11512  * intel_wm_need_update - Check whether watermarks need updating
11513  * @plane: drm plane
11514  * @state: new plane state
11515  *
11516  * Check current plane state versus the new one to determine whether
11517  * watermarks need to be recalculated.
11518  *
11519  * Returns true or false.
11520  */
11521 static bool intel_wm_need_update(struct drm_plane *plane,
11522                                  struct drm_plane_state *state)
11523 {
11524         /* Update watermarks on tiling changes. */
11525         if (!plane->state->fb || !state->fb ||
11526             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11527             plane->state->rotation != state->rotation)
11528                 return true;
11529
11530         if (plane->state->crtc_w != state->crtc_w)
11531                 return true;
11532
11533         return false;
11534 }
11535
11536 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11537                                     struct drm_plane_state *plane_state)
11538 {
11539         struct drm_crtc *crtc = crtc_state->crtc;
11540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11541         struct drm_plane *plane = plane_state->plane;
11542         struct drm_device *dev = crtc->dev;
11543         struct drm_i915_private *dev_priv = dev->dev_private;
11544         struct intel_plane_state *old_plane_state =
11545                 to_intel_plane_state(plane->state);
11546         int idx = intel_crtc->base.base.id, ret;
11547         int i = drm_plane_index(plane);
11548         bool mode_changed = needs_modeset(crtc_state);
11549         bool was_crtc_enabled = crtc->state->active;
11550         bool is_crtc_enabled = crtc_state->active;
11551
11552         bool turn_off, turn_on, visible, was_visible;
11553         struct drm_framebuffer *fb = plane_state->fb;
11554
11555         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11556             plane->type != DRM_PLANE_TYPE_CURSOR) {
11557                 ret = skl_update_scaler_plane(
11558                         to_intel_crtc_state(crtc_state),
11559                         to_intel_plane_state(plane_state));
11560                 if (ret)
11561                         return ret;
11562         }
11563
11564         /*
11565          * Disabling a plane is always okay; we just need to update
11566          * fb tracking in a special way since cleanup_fb() won't
11567          * get called by the plane helpers.
11568          */
11569         if (old_plane_state->base.fb && !fb)
11570                 intel_crtc->atomic.disabled_planes |= 1 << i;
11571
11572         was_visible = old_plane_state->visible;
11573         visible = to_intel_plane_state(plane_state)->visible;
11574
11575         if (!was_crtc_enabled && WARN_ON(was_visible))
11576                 was_visible = false;
11577
11578         if (!is_crtc_enabled && WARN_ON(visible))
11579                 visible = false;
11580
11581         if (!was_visible && !visible)
11582                 return 0;
11583
11584         turn_off = was_visible && (!visible || mode_changed);
11585         turn_on = visible && (!was_visible || mode_changed);
11586
11587         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11588                          plane->base.id, fb ? fb->base.id : -1);
11589
11590         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11591                          plane->base.id, was_visible, visible,
11592                          turn_off, turn_on, mode_changed);
11593
11594         if (turn_on) {
11595                 intel_crtc->atomic.update_wm_pre = true;
11596                 /* must disable cxsr around plane enable/disable */
11597                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11598                         intel_crtc->atomic.disable_cxsr = true;
11599                         /* to potentially re-enable cxsr */
11600                         intel_crtc->atomic.wait_vblank = true;
11601                         intel_crtc->atomic.update_wm_post = true;
11602                 }
11603         } else if (turn_off) {
11604                 intel_crtc->atomic.update_wm_post = true;
11605                 /* must disable cxsr around plane enable/disable */
11606                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11607                         if (is_crtc_enabled)
11608                                 intel_crtc->atomic.wait_vblank = true;
11609                         intel_crtc->atomic.disable_cxsr = true;
11610                 }
11611         } else if (intel_wm_need_update(plane, plane_state)) {
11612                 intel_crtc->atomic.update_wm_pre = true;
11613         }
11614
11615         if (visible || was_visible)
11616                 intel_crtc->atomic.fb_bits |=
11617                         to_intel_plane(plane)->frontbuffer_bit;
11618
11619         switch (plane->type) {
11620         case DRM_PLANE_TYPE_PRIMARY:
11621                 intel_crtc->atomic.wait_for_flips = true;
11622                 intel_crtc->atomic.pre_disable_primary = turn_off;
11623                 intel_crtc->atomic.post_enable_primary = turn_on;
11624
11625                 if (turn_off) {
11626                         /*
11627                          * FIXME: Actually if we will still have any other
11628                          * plane enabled on the pipe we could let IPS enabled
11629                          * still, but for now lets consider that when we make
11630                          * primary invisible by setting DSPCNTR to 0 on
11631                          * update_primary_plane function IPS needs to be
11632                          * disable.
11633                          */
11634                         intel_crtc->atomic.disable_ips = true;
11635
11636                         intel_crtc->atomic.disable_fbc = true;
11637                 }
11638
11639                 /*
11640                  * FBC does not work on some platforms for rotated
11641                  * planes, so disable it when rotation is not 0 and
11642                  * update it when rotation is set back to 0.
11643                  *
11644                  * FIXME: This is redundant with the fbc update done in
11645                  * the primary plane enable function except that that
11646                  * one is done too late. We eventually need to unify
11647                  * this.
11648                  */
11649
11650                 if (visible &&
11651                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11652                     dev_priv->fbc.crtc == intel_crtc &&
11653                     plane_state->rotation != BIT(DRM_ROTATE_0))
11654                         intel_crtc->atomic.disable_fbc = true;
11655
11656                 /*
11657                  * BDW signals flip done immediately if the plane
11658                  * is disabled, even if the plane enable is already
11659                  * armed to occur at the next vblank :(
11660                  */
11661                 if (turn_on && IS_BROADWELL(dev))
11662                         intel_crtc->atomic.wait_vblank = true;
11663
11664                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11665                 break;
11666         case DRM_PLANE_TYPE_CURSOR:
11667                 break;
11668         case DRM_PLANE_TYPE_OVERLAY:
11669                 if (turn_off && !mode_changed) {
11670                         intel_crtc->atomic.wait_vblank = true;
11671                         intel_crtc->atomic.update_sprite_watermarks |=
11672                                 1 << i;
11673                 }
11674         }
11675         return 0;
11676 }
11677
11678 static bool encoders_cloneable(const struct intel_encoder *a,
11679                                const struct intel_encoder *b)
11680 {
11681         /* masks could be asymmetric, so check both ways */
11682         return a == b || (a->cloneable & (1 << b->type) &&
11683                           b->cloneable & (1 << a->type));
11684 }
11685
11686 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11687                                          struct intel_crtc *crtc,
11688                                          struct intel_encoder *encoder)
11689 {
11690         struct intel_encoder *source_encoder;
11691         struct drm_connector *connector;
11692         struct drm_connector_state *connector_state;
11693         int i;
11694
11695         for_each_connector_in_state(state, connector, connector_state, i) {
11696                 if (connector_state->crtc != &crtc->base)
11697                         continue;
11698
11699                 source_encoder =
11700                         to_intel_encoder(connector_state->best_encoder);
11701                 if (!encoders_cloneable(encoder, source_encoder))
11702                         return false;
11703         }
11704
11705         return true;
11706 }
11707
11708 static bool check_encoder_cloning(struct drm_atomic_state *state,
11709                                   struct intel_crtc *crtc)
11710 {
11711         struct intel_encoder *encoder;
11712         struct drm_connector *connector;
11713         struct drm_connector_state *connector_state;
11714         int i;
11715
11716         for_each_connector_in_state(state, connector, connector_state, i) {
11717                 if (connector_state->crtc != &crtc->base)
11718                         continue;
11719
11720                 encoder = to_intel_encoder(connector_state->best_encoder);
11721                 if (!check_single_encoder_cloning(state, crtc, encoder))
11722                         return false;
11723         }
11724
11725         return true;
11726 }
11727
11728 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11729                                    struct drm_crtc_state *crtc_state)
11730 {
11731         struct drm_device *dev = crtc->dev;
11732         struct drm_i915_private *dev_priv = dev->dev_private;
11733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11734         struct intel_crtc_state *pipe_config =
11735                 to_intel_crtc_state(crtc_state);
11736         struct drm_atomic_state *state = crtc_state->state;
11737         int ret;
11738         bool mode_changed = needs_modeset(crtc_state);
11739
11740         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11741                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11742                 return -EINVAL;
11743         }
11744
11745         if (mode_changed && !crtc_state->active)
11746                 intel_crtc->atomic.update_wm_post = true;
11747
11748         if (mode_changed && crtc_state->enable &&
11749             dev_priv->display.crtc_compute_clock &&
11750             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11751                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11752                                                            pipe_config);
11753                 if (ret)
11754                         return ret;
11755         }
11756
11757         ret = 0;
11758         if (INTEL_INFO(dev)->gen >= 9) {
11759                 if (mode_changed)
11760                         ret = skl_update_scaler_crtc(pipe_config);
11761
11762                 if (!ret)
11763                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11764                                                          pipe_config);
11765         }
11766
11767         return ret;
11768 }
11769
11770 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11771         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11772         .load_lut = intel_crtc_load_lut,
11773         .atomic_begin = intel_begin_crtc_commit,
11774         .atomic_flush = intel_finish_crtc_commit,
11775         .atomic_check = intel_crtc_atomic_check,
11776 };
11777
11778 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11779 {
11780         struct intel_connector *connector;
11781
11782         for_each_intel_connector(dev, connector) {
11783                 if (connector->base.encoder) {
11784                         connector->base.state->best_encoder =
11785                                 connector->base.encoder;
11786                         connector->base.state->crtc =
11787                                 connector->base.encoder->crtc;
11788                 } else {
11789                         connector->base.state->best_encoder = NULL;
11790                         connector->base.state->crtc = NULL;
11791                 }
11792         }
11793 }
11794
11795 static void
11796 connected_sink_compute_bpp(struct intel_connector *connector,
11797                            struct intel_crtc_state *pipe_config)
11798 {
11799         int bpp = pipe_config->pipe_bpp;
11800
11801         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11802                 connector->base.base.id,
11803                 connector->base.name);
11804
11805         /* Don't use an invalid EDID bpc value */
11806         if (connector->base.display_info.bpc &&
11807             connector->base.display_info.bpc * 3 < bpp) {
11808                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11809                               bpp, connector->base.display_info.bpc*3);
11810                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11811         }
11812
11813         /* Clamp bpp to 8 on screens without EDID 1.4 */
11814         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11815                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11816                               bpp);
11817                 pipe_config->pipe_bpp = 24;
11818         }
11819 }
11820
11821 static int
11822 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11823                           struct intel_crtc_state *pipe_config)
11824 {
11825         struct drm_device *dev = crtc->base.dev;
11826         struct drm_atomic_state *state;
11827         struct drm_connector *connector;
11828         struct drm_connector_state *connector_state;
11829         int bpp, i;
11830
11831         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11832                 bpp = 10*3;
11833         else if (INTEL_INFO(dev)->gen >= 5)
11834                 bpp = 12*3;
11835         else
11836                 bpp = 8*3;
11837
11838
11839         pipe_config->pipe_bpp = bpp;
11840
11841         state = pipe_config->base.state;
11842
11843         /* Clamp display bpp to EDID value */
11844         for_each_connector_in_state(state, connector, connector_state, i) {
11845                 if (connector_state->crtc != &crtc->base)
11846                         continue;
11847
11848                 connected_sink_compute_bpp(to_intel_connector(connector),
11849                                            pipe_config);
11850         }
11851
11852         return bpp;
11853 }
11854
11855 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11856 {
11857         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11858                         "type: 0x%x flags: 0x%x\n",
11859                 mode->crtc_clock,
11860                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11861                 mode->crtc_hsync_end, mode->crtc_htotal,
11862                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11863                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11864 }
11865
11866 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11867                                    struct intel_crtc_state *pipe_config,
11868                                    const char *context)
11869 {
11870         struct drm_device *dev = crtc->base.dev;
11871         struct drm_plane *plane;
11872         struct intel_plane *intel_plane;
11873         struct intel_plane_state *state;
11874         struct drm_framebuffer *fb;
11875
11876         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11877                       context, pipe_config, pipe_name(crtc->pipe));
11878
11879         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11880         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11881                       pipe_config->pipe_bpp, pipe_config->dither);
11882         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11883                       pipe_config->has_pch_encoder,
11884                       pipe_config->fdi_lanes,
11885                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11886                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11887                       pipe_config->fdi_m_n.tu);
11888         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11889                       pipe_config->has_dp_encoder,
11890                       pipe_config->lane_count,
11891                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11892                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11893                       pipe_config->dp_m_n.tu);
11894
11895         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11896                       pipe_config->has_dp_encoder,
11897                       pipe_config->lane_count,
11898                       pipe_config->dp_m2_n2.gmch_m,
11899                       pipe_config->dp_m2_n2.gmch_n,
11900                       pipe_config->dp_m2_n2.link_m,
11901                       pipe_config->dp_m2_n2.link_n,
11902                       pipe_config->dp_m2_n2.tu);
11903
11904         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11905                       pipe_config->has_audio,
11906                       pipe_config->has_infoframe);
11907
11908         DRM_DEBUG_KMS("requested mode:\n");
11909         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11910         DRM_DEBUG_KMS("adjusted mode:\n");
11911         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11912         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11913         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11914         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11915                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11916         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11917                       crtc->num_scalers,
11918                       pipe_config->scaler_state.scaler_users,
11919                       pipe_config->scaler_state.scaler_id);
11920         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11921                       pipe_config->gmch_pfit.control,
11922                       pipe_config->gmch_pfit.pgm_ratios,
11923                       pipe_config->gmch_pfit.lvds_border_bits);
11924         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11925                       pipe_config->pch_pfit.pos,
11926                       pipe_config->pch_pfit.size,
11927                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11928         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11929         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11930
11931         if (IS_BROXTON(dev)) {
11932                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11933                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11934                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11935                               pipe_config->ddi_pll_sel,
11936                               pipe_config->dpll_hw_state.ebb0,
11937                               pipe_config->dpll_hw_state.ebb4,
11938                               pipe_config->dpll_hw_state.pll0,
11939                               pipe_config->dpll_hw_state.pll1,
11940                               pipe_config->dpll_hw_state.pll2,
11941                               pipe_config->dpll_hw_state.pll3,
11942                               pipe_config->dpll_hw_state.pll6,
11943                               pipe_config->dpll_hw_state.pll8,
11944                               pipe_config->dpll_hw_state.pll9,
11945                               pipe_config->dpll_hw_state.pll10,
11946                               pipe_config->dpll_hw_state.pcsdw12);
11947         } else if (IS_SKYLAKE(dev)) {
11948                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11949                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11950                               pipe_config->ddi_pll_sel,
11951                               pipe_config->dpll_hw_state.ctrl1,
11952                               pipe_config->dpll_hw_state.cfgcr1,
11953                               pipe_config->dpll_hw_state.cfgcr2);
11954         } else if (HAS_DDI(dev)) {
11955                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11956                               pipe_config->ddi_pll_sel,
11957                               pipe_config->dpll_hw_state.wrpll);
11958         } else {
11959                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11960                               "fp0: 0x%x, fp1: 0x%x\n",
11961                               pipe_config->dpll_hw_state.dpll,
11962                               pipe_config->dpll_hw_state.dpll_md,
11963                               pipe_config->dpll_hw_state.fp0,
11964                               pipe_config->dpll_hw_state.fp1);
11965         }
11966
11967         DRM_DEBUG_KMS("planes on this crtc\n");
11968         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11969                 intel_plane = to_intel_plane(plane);
11970                 if (intel_plane->pipe != crtc->pipe)
11971                         continue;
11972
11973                 state = to_intel_plane_state(plane->state);
11974                 fb = state->base.fb;
11975                 if (!fb) {
11976                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11977                                 "disabled, scaler_id = %d\n",
11978                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11979                                 plane->base.id, intel_plane->pipe,
11980                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11981                                 drm_plane_index(plane), state->scaler_id);
11982                         continue;
11983                 }
11984
11985                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11986                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11987                         plane->base.id, intel_plane->pipe,
11988                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11989                         drm_plane_index(plane));
11990                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11991                         fb->base.id, fb->width, fb->height, fb->pixel_format);
11992                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11993                         state->scaler_id,
11994                         state->src.x1 >> 16, state->src.y1 >> 16,
11995                         drm_rect_width(&state->src) >> 16,
11996                         drm_rect_height(&state->src) >> 16,
11997                         state->dst.x1, state->dst.y1,
11998                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11999         }
12000 }
12001
12002 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12003 {
12004         struct drm_device *dev = state->dev;
12005         struct intel_encoder *encoder;
12006         struct drm_connector *connector;
12007         struct drm_connector_state *connector_state;
12008         unsigned int used_ports = 0;
12009         int i;
12010
12011         /*
12012          * Walk the connector list instead of the encoder
12013          * list to detect the problem on ddi platforms
12014          * where there's just one encoder per digital port.
12015          */
12016         for_each_connector_in_state(state, connector, connector_state, i) {
12017                 if (!connector_state->best_encoder)
12018                         continue;
12019
12020                 encoder = to_intel_encoder(connector_state->best_encoder);
12021
12022                 WARN_ON(!connector_state->crtc);
12023
12024                 switch (encoder->type) {
12025                         unsigned int port_mask;
12026                 case INTEL_OUTPUT_UNKNOWN:
12027                         if (WARN_ON(!HAS_DDI(dev)))
12028                                 break;
12029                 case INTEL_OUTPUT_DISPLAYPORT:
12030                 case INTEL_OUTPUT_HDMI:
12031                 case INTEL_OUTPUT_EDP:
12032                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12033
12034                         /* the same port mustn't appear more than once */
12035                         if (used_ports & port_mask)
12036                                 return false;
12037
12038                         used_ports |= port_mask;
12039                 default:
12040                         break;
12041                 }
12042         }
12043
12044         return true;
12045 }
12046
12047 static void
12048 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12049 {
12050         struct drm_crtc_state tmp_state;
12051         struct intel_crtc_scaler_state scaler_state;
12052         struct intel_dpll_hw_state dpll_hw_state;
12053         enum intel_dpll_id shared_dpll;
12054         uint32_t ddi_pll_sel;
12055         bool force_thru;
12056
12057         /* FIXME: before the switch to atomic started, a new pipe_config was
12058          * kzalloc'd. Code that depends on any field being zero should be
12059          * fixed, so that the crtc_state can be safely duplicated. For now,
12060          * only fields that are know to not cause problems are preserved. */
12061
12062         tmp_state = crtc_state->base;
12063         scaler_state = crtc_state->scaler_state;
12064         shared_dpll = crtc_state->shared_dpll;
12065         dpll_hw_state = crtc_state->dpll_hw_state;
12066         ddi_pll_sel = crtc_state->ddi_pll_sel;
12067         force_thru = crtc_state->pch_pfit.force_thru;
12068
12069         memset(crtc_state, 0, sizeof *crtc_state);
12070
12071         crtc_state->base = tmp_state;
12072         crtc_state->scaler_state = scaler_state;
12073         crtc_state->shared_dpll = shared_dpll;
12074         crtc_state->dpll_hw_state = dpll_hw_state;
12075         crtc_state->ddi_pll_sel = ddi_pll_sel;
12076         crtc_state->pch_pfit.force_thru = force_thru;
12077 }
12078
12079 static int
12080 intel_modeset_pipe_config(struct drm_crtc *crtc,
12081                           struct intel_crtc_state *pipe_config)
12082 {
12083         struct drm_atomic_state *state = pipe_config->base.state;
12084         struct intel_encoder *encoder;
12085         struct drm_connector *connector;
12086         struct drm_connector_state *connector_state;
12087         int base_bpp, ret = -EINVAL;
12088         int i;
12089         bool retry = true;
12090
12091         clear_intel_crtc_state(pipe_config);
12092
12093         pipe_config->cpu_transcoder =
12094                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12095
12096         /*
12097          * Sanitize sync polarity flags based on requested ones. If neither
12098          * positive or negative polarity is requested, treat this as meaning
12099          * negative polarity.
12100          */
12101         if (!(pipe_config->base.adjusted_mode.flags &
12102               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12103                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12104
12105         if (!(pipe_config->base.adjusted_mode.flags &
12106               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12107                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12108
12109         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12110                                              pipe_config);
12111         if (base_bpp < 0)
12112                 goto fail;
12113
12114         /*
12115          * Determine the real pipe dimensions. Note that stereo modes can
12116          * increase the actual pipe size due to the frame doubling and
12117          * insertion of additional space for blanks between the frame. This
12118          * is stored in the crtc timings. We use the requested mode to do this
12119          * computation to clearly distinguish it from the adjusted mode, which
12120          * can be changed by the connectors in the below retry loop.
12121          */
12122         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12123                                &pipe_config->pipe_src_w,
12124                                &pipe_config->pipe_src_h);
12125
12126 encoder_retry:
12127         /* Ensure the port clock defaults are reset when retrying. */
12128         pipe_config->port_clock = 0;
12129         pipe_config->pixel_multiplier = 1;
12130
12131         /* Fill in default crtc timings, allow encoders to overwrite them. */
12132         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12133                               CRTC_STEREO_DOUBLE);
12134
12135         /* Pass our mode to the connectors and the CRTC to give them a chance to
12136          * adjust it according to limitations or connector properties, and also
12137          * a chance to reject the mode entirely.
12138          */
12139         for_each_connector_in_state(state, connector, connector_state, i) {
12140                 if (connector_state->crtc != crtc)
12141                         continue;
12142
12143                 encoder = to_intel_encoder(connector_state->best_encoder);
12144
12145                 if (!(encoder->compute_config(encoder, pipe_config))) {
12146                         DRM_DEBUG_KMS("Encoder config failure\n");
12147                         goto fail;
12148                 }
12149         }
12150
12151         /* Set default port clock if not overwritten by the encoder. Needs to be
12152          * done afterwards in case the encoder adjusts the mode. */
12153         if (!pipe_config->port_clock)
12154                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12155                         * pipe_config->pixel_multiplier;
12156
12157         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12158         if (ret < 0) {
12159                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12160                 goto fail;
12161         }
12162
12163         if (ret == RETRY) {
12164                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12165                         ret = -EINVAL;
12166                         goto fail;
12167                 }
12168
12169                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12170                 retry = false;
12171                 goto encoder_retry;
12172         }
12173
12174         /* Dithering seems to not pass-through bits correctly when it should, so
12175          * only enable it on 6bpc panels. */
12176         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12177         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12178                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12179
12180 fail:
12181         return ret;
12182 }
12183
12184 static void
12185 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12186 {
12187         struct drm_crtc *crtc;
12188         struct drm_crtc_state *crtc_state;
12189         int i;
12190
12191         /* Double check state. */
12192         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12193                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12194
12195                 /* Update hwmode for vblank functions */
12196                 if (crtc->state->active)
12197                         crtc->hwmode = crtc->state->adjusted_mode;
12198                 else
12199                         crtc->hwmode.crtc_clock = 0;
12200         }
12201 }
12202
12203 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12204 {
12205         int diff;
12206
12207         if (clock1 == clock2)
12208                 return true;
12209
12210         if (!clock1 || !clock2)
12211                 return false;
12212
12213         diff = abs(clock1 - clock2);
12214
12215         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12216                 return true;
12217
12218         return false;
12219 }
12220
12221 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12222         list_for_each_entry((intel_crtc), \
12223                             &(dev)->mode_config.crtc_list, \
12224                             base.head) \
12225                 if (mask & (1 <<(intel_crtc)->pipe))
12226
12227 static bool
12228 intel_compare_m_n(unsigned int m, unsigned int n,
12229                   unsigned int m2, unsigned int n2,
12230                   bool exact)
12231 {
12232         if (m == m2 && n == n2)
12233                 return true;
12234
12235         if (exact || !m || !n || !m2 || !n2)
12236                 return false;
12237
12238         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12239
12240         if (m > m2) {
12241                 while (m > m2) {
12242                         m2 <<= 1;
12243                         n2 <<= 1;
12244                 }
12245         } else if (m < m2) {
12246                 while (m < m2) {
12247                         m <<= 1;
12248                         n <<= 1;
12249                 }
12250         }
12251
12252         return m == m2 && n == n2;
12253 }
12254
12255 static bool
12256 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12257                        struct intel_link_m_n *m2_n2,
12258                        bool adjust)
12259 {
12260         if (m_n->tu == m2_n2->tu &&
12261             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12262                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12263             intel_compare_m_n(m_n->link_m, m_n->link_n,
12264                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12265                 if (adjust)
12266                         *m2_n2 = *m_n;
12267
12268                 return true;
12269         }
12270
12271         return false;
12272 }
12273
12274 static bool
12275 intel_pipe_config_compare(struct drm_device *dev,
12276                           struct intel_crtc_state *current_config,
12277                           struct intel_crtc_state *pipe_config,
12278                           bool adjust)
12279 {
12280         bool ret = true;
12281
12282 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12283         do { \
12284                 if (!adjust) \
12285                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12286                 else \
12287                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12288         } while (0)
12289
12290 #define PIPE_CONF_CHECK_X(name) \
12291         if (current_config->name != pipe_config->name) { \
12292                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12293                           "(expected 0x%08x, found 0x%08x)\n", \
12294                           current_config->name, \
12295                           pipe_config->name); \
12296                 ret = false; \
12297         }
12298
12299 #define PIPE_CONF_CHECK_I(name) \
12300         if (current_config->name != pipe_config->name) { \
12301                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12302                           "(expected %i, found %i)\n", \
12303                           current_config->name, \
12304                           pipe_config->name); \
12305                 ret = false; \
12306         }
12307
12308 #define PIPE_CONF_CHECK_M_N(name) \
12309         if (!intel_compare_link_m_n(&current_config->name, \
12310                                     &pipe_config->name,\
12311                                     adjust)) { \
12312                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12313                           "(expected tu %i gmch %i/%i link %i/%i, " \
12314                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12315                           current_config->name.tu, \
12316                           current_config->name.gmch_m, \
12317                           current_config->name.gmch_n, \
12318                           current_config->name.link_m, \
12319                           current_config->name.link_n, \
12320                           pipe_config->name.tu, \
12321                           pipe_config->name.gmch_m, \
12322                           pipe_config->name.gmch_n, \
12323                           pipe_config->name.link_m, \
12324                           pipe_config->name.link_n); \
12325                 ret = false; \
12326         }
12327
12328 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12329         if (!intel_compare_link_m_n(&current_config->name, \
12330                                     &pipe_config->name, adjust) && \
12331             !intel_compare_link_m_n(&current_config->alt_name, \
12332                                     &pipe_config->name, adjust)) { \
12333                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12334                           "(expected tu %i gmch %i/%i link %i/%i, " \
12335                           "or tu %i gmch %i/%i link %i/%i, " \
12336                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12337                           current_config->name.tu, \
12338                           current_config->name.gmch_m, \
12339                           current_config->name.gmch_n, \
12340                           current_config->name.link_m, \
12341                           current_config->name.link_n, \
12342                           current_config->alt_name.tu, \
12343                           current_config->alt_name.gmch_m, \
12344                           current_config->alt_name.gmch_n, \
12345                           current_config->alt_name.link_m, \
12346                           current_config->alt_name.link_n, \
12347                           pipe_config->name.tu, \
12348                           pipe_config->name.gmch_m, \
12349                           pipe_config->name.gmch_n, \
12350                           pipe_config->name.link_m, \
12351                           pipe_config->name.link_n); \
12352                 ret = false; \
12353         }
12354
12355 /* This is required for BDW+ where there is only one set of registers for
12356  * switching between high and low RR.
12357  * This macro can be used whenever a comparison has to be made between one
12358  * hw state and multiple sw state variables.
12359  */
12360 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12361         if ((current_config->name != pipe_config->name) && \
12362                 (current_config->alt_name != pipe_config->name)) { \
12363                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12364                                   "(expected %i or %i, found %i)\n", \
12365                                   current_config->name, \
12366                                   current_config->alt_name, \
12367                                   pipe_config->name); \
12368                         ret = false; \
12369         }
12370
12371 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12372         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12373                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12374                           "(expected %i, found %i)\n", \
12375                           current_config->name & (mask), \
12376                           pipe_config->name & (mask)); \
12377                 ret = false; \
12378         }
12379
12380 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12381         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12382                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12383                           "(expected %i, found %i)\n", \
12384                           current_config->name, \
12385                           pipe_config->name); \
12386                 ret = false; \
12387         }
12388
12389 #define PIPE_CONF_QUIRK(quirk)  \
12390         ((current_config->quirks | pipe_config->quirks) & (quirk))
12391
12392         PIPE_CONF_CHECK_I(cpu_transcoder);
12393
12394         PIPE_CONF_CHECK_I(has_pch_encoder);
12395         PIPE_CONF_CHECK_I(fdi_lanes);
12396         PIPE_CONF_CHECK_M_N(fdi_m_n);
12397
12398         PIPE_CONF_CHECK_I(has_dp_encoder);
12399         PIPE_CONF_CHECK_I(lane_count);
12400
12401         if (INTEL_INFO(dev)->gen < 8) {
12402                 PIPE_CONF_CHECK_M_N(dp_m_n);
12403
12404                 PIPE_CONF_CHECK_I(has_drrs);
12405                 if (current_config->has_drrs)
12406                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12407         } else
12408                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12409
12410         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12411         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12412         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12413         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12414         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12415         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12416
12417         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12418         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12419         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12420         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12421         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12422         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12423
12424         PIPE_CONF_CHECK_I(pixel_multiplier);
12425         PIPE_CONF_CHECK_I(has_hdmi_sink);
12426         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12427             IS_VALLEYVIEW(dev))
12428                 PIPE_CONF_CHECK_I(limited_color_range);
12429         PIPE_CONF_CHECK_I(has_infoframe);
12430
12431         PIPE_CONF_CHECK_I(has_audio);
12432
12433         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12434                               DRM_MODE_FLAG_INTERLACE);
12435
12436         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12437                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12438                                       DRM_MODE_FLAG_PHSYNC);
12439                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12440                                       DRM_MODE_FLAG_NHSYNC);
12441                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12442                                       DRM_MODE_FLAG_PVSYNC);
12443                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12444                                       DRM_MODE_FLAG_NVSYNC);
12445         }
12446
12447         PIPE_CONF_CHECK_X(gmch_pfit.control);
12448         /* pfit ratios are autocomputed by the hw on gen4+ */
12449         if (INTEL_INFO(dev)->gen < 4)
12450                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12451         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12452
12453         if (!adjust) {
12454                 PIPE_CONF_CHECK_I(pipe_src_w);
12455                 PIPE_CONF_CHECK_I(pipe_src_h);
12456
12457                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12458                 if (current_config->pch_pfit.enabled) {
12459                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12460                         PIPE_CONF_CHECK_X(pch_pfit.size);
12461                 }
12462         }
12463
12464         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12465
12466         /* BDW+ don't expose a synchronous way to read the state */
12467         if (IS_HASWELL(dev))
12468                 PIPE_CONF_CHECK_I(ips_enabled);
12469
12470         PIPE_CONF_CHECK_I(double_wide);
12471
12472         PIPE_CONF_CHECK_X(ddi_pll_sel);
12473
12474         PIPE_CONF_CHECK_I(shared_dpll);
12475         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12476         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12477         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12478         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12479         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12480         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12481         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12482         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12483
12484         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12485                 PIPE_CONF_CHECK_I(pipe_bpp);
12486
12487         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12488         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12489
12490 #undef PIPE_CONF_CHECK_X
12491 #undef PIPE_CONF_CHECK_I
12492 #undef PIPE_CONF_CHECK_I_ALT
12493 #undef PIPE_CONF_CHECK_FLAGS
12494 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12495 #undef PIPE_CONF_QUIRK
12496 #undef INTEL_ERR_OR_DBG_KMS
12497
12498         return ret;
12499 }
12500
12501 static void check_wm_state(struct drm_device *dev)
12502 {
12503         struct drm_i915_private *dev_priv = dev->dev_private;
12504         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12505         struct intel_crtc *intel_crtc;
12506         int plane;
12507
12508         if (INTEL_INFO(dev)->gen < 9)
12509                 return;
12510
12511         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12512         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12513
12514         for_each_intel_crtc(dev, intel_crtc) {
12515                 struct skl_ddb_entry *hw_entry, *sw_entry;
12516                 const enum pipe pipe = intel_crtc->pipe;
12517
12518                 if (!intel_crtc->active)
12519                         continue;
12520
12521                 /* planes */
12522                 for_each_plane(dev_priv, pipe, plane) {
12523                         hw_entry = &hw_ddb.plane[pipe][plane];
12524                         sw_entry = &sw_ddb->plane[pipe][plane];
12525
12526                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12527                                 continue;
12528
12529                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12530                                   "(expected (%u,%u), found (%u,%u))\n",
12531                                   pipe_name(pipe), plane + 1,
12532                                   sw_entry->start, sw_entry->end,
12533                                   hw_entry->start, hw_entry->end);
12534                 }
12535
12536                 /* cursor */
12537                 hw_entry = &hw_ddb.cursor[pipe];
12538                 sw_entry = &sw_ddb->cursor[pipe];
12539
12540                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12541                         continue;
12542
12543                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12544                           "(expected (%u,%u), found (%u,%u))\n",
12545                           pipe_name(pipe),
12546                           sw_entry->start, sw_entry->end,
12547                           hw_entry->start, hw_entry->end);
12548         }
12549 }
12550
12551 static void
12552 check_connector_state(struct drm_device *dev,
12553                       struct drm_atomic_state *old_state)
12554 {
12555         struct drm_connector_state *old_conn_state;
12556         struct drm_connector *connector;
12557         int i;
12558
12559         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12560                 struct drm_encoder *encoder = connector->encoder;
12561                 struct drm_connector_state *state = connector->state;
12562
12563                 /* This also checks the encoder/connector hw state with the
12564                  * ->get_hw_state callbacks. */
12565                 intel_connector_check_state(to_intel_connector(connector));
12566
12567                 I915_STATE_WARN(state->best_encoder != encoder,
12568                      "connector's atomic encoder doesn't match legacy encoder\n");
12569         }
12570 }
12571
12572 static void
12573 check_encoder_state(struct drm_device *dev)
12574 {
12575         struct intel_encoder *encoder;
12576         struct intel_connector *connector;
12577
12578         for_each_intel_encoder(dev, encoder) {
12579                 bool enabled = false;
12580                 enum pipe pipe;
12581
12582                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12583                               encoder->base.base.id,
12584                               encoder->base.name);
12585
12586                 for_each_intel_connector(dev, connector) {
12587                         if (connector->base.state->best_encoder != &encoder->base)
12588                                 continue;
12589                         enabled = true;
12590
12591                         I915_STATE_WARN(connector->base.state->crtc !=
12592                                         encoder->base.crtc,
12593                              "connector's crtc doesn't match encoder crtc\n");
12594                 }
12595
12596                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12597                      "encoder's enabled state mismatch "
12598                      "(expected %i, found %i)\n",
12599                      !!encoder->base.crtc, enabled);
12600
12601                 if (!encoder->base.crtc) {
12602                         bool active;
12603
12604                         active = encoder->get_hw_state(encoder, &pipe);
12605                         I915_STATE_WARN(active,
12606                              "encoder detached but still enabled on pipe %c.\n",
12607                              pipe_name(pipe));
12608                 }
12609         }
12610 }
12611
12612 static void
12613 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12614 {
12615         struct drm_i915_private *dev_priv = dev->dev_private;
12616         struct intel_encoder *encoder;
12617         struct drm_crtc_state *old_crtc_state;
12618         struct drm_crtc *crtc;
12619         int i;
12620
12621         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12622                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12623                 struct intel_crtc_state *pipe_config, *sw_config;
12624                 bool active;
12625
12626                 if (!needs_modeset(crtc->state) &&
12627                     !to_intel_crtc_state(crtc->state)->update_pipe)
12628                         continue;
12629
12630                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12631                 pipe_config = to_intel_crtc_state(old_crtc_state);
12632                 memset(pipe_config, 0, sizeof(*pipe_config));
12633                 pipe_config->base.crtc = crtc;
12634                 pipe_config->base.state = old_state;
12635
12636                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12637                               crtc->base.id);
12638
12639                 active = dev_priv->display.get_pipe_config(intel_crtc,
12640                                                            pipe_config);
12641
12642                 /* hw state is inconsistent with the pipe quirk */
12643                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12644                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12645                         active = crtc->state->active;
12646
12647                 I915_STATE_WARN(crtc->state->active != active,
12648                      "crtc active state doesn't match with hw state "
12649                      "(expected %i, found %i)\n", crtc->state->active, active);
12650
12651                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12652                      "transitional active state does not match atomic hw state "
12653                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12654
12655                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12656                         enum pipe pipe;
12657
12658                         active = encoder->get_hw_state(encoder, &pipe);
12659                         I915_STATE_WARN(active != crtc->state->active,
12660                                 "[ENCODER:%i] active %i with crtc active %i\n",
12661                                 encoder->base.base.id, active, crtc->state->active);
12662
12663                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12664                                         "Encoder connected to wrong pipe %c\n",
12665                                         pipe_name(pipe));
12666
12667                         if (active)
12668                                 encoder->get_config(encoder, pipe_config);
12669                 }
12670
12671                 if (!crtc->state->active)
12672                         continue;
12673
12674                 sw_config = to_intel_crtc_state(crtc->state);
12675                 if (!intel_pipe_config_compare(dev, sw_config,
12676                                                pipe_config, false)) {
12677                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12678                         intel_dump_pipe_config(intel_crtc, pipe_config,
12679                                                "[hw state]");
12680                         intel_dump_pipe_config(intel_crtc, sw_config,
12681                                                "[sw state]");
12682                 }
12683         }
12684 }
12685
12686 static void
12687 check_shared_dpll_state(struct drm_device *dev)
12688 {
12689         struct drm_i915_private *dev_priv = dev->dev_private;
12690         struct intel_crtc *crtc;
12691         struct intel_dpll_hw_state dpll_hw_state;
12692         int i;
12693
12694         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12695                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12696                 int enabled_crtcs = 0, active_crtcs = 0;
12697                 bool active;
12698
12699                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12700
12701                 DRM_DEBUG_KMS("%s\n", pll->name);
12702
12703                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12704
12705                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12706                      "more active pll users than references: %i vs %i\n",
12707                      pll->active, hweight32(pll->config.crtc_mask));
12708                 I915_STATE_WARN(pll->active && !pll->on,
12709                      "pll in active use but not on in sw tracking\n");
12710                 I915_STATE_WARN(pll->on && !pll->active,
12711                      "pll in on but not on in use in sw tracking\n");
12712                 I915_STATE_WARN(pll->on != active,
12713                      "pll on state mismatch (expected %i, found %i)\n",
12714                      pll->on, active);
12715
12716                 for_each_intel_crtc(dev, crtc) {
12717                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12718                                 enabled_crtcs++;
12719                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12720                                 active_crtcs++;
12721                 }
12722                 I915_STATE_WARN(pll->active != active_crtcs,
12723                      "pll active crtcs mismatch (expected %i, found %i)\n",
12724                      pll->active, active_crtcs);
12725                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12726                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12727                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12728
12729                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12730                                        sizeof(dpll_hw_state)),
12731                      "pll hw state mismatch\n");
12732         }
12733 }
12734
12735 static void
12736 intel_modeset_check_state(struct drm_device *dev,
12737                           struct drm_atomic_state *old_state)
12738 {
12739         check_wm_state(dev);
12740         check_connector_state(dev, old_state);
12741         check_encoder_state(dev);
12742         check_crtc_state(dev, old_state);
12743         check_shared_dpll_state(dev);
12744 }
12745
12746 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12747                                      int dotclock)
12748 {
12749         /*
12750          * FDI already provided one idea for the dotclock.
12751          * Yell if the encoder disagrees.
12752          */
12753         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12754              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12755              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12756 }
12757
12758 static void update_scanline_offset(struct intel_crtc *crtc)
12759 {
12760         struct drm_device *dev = crtc->base.dev;
12761
12762         /*
12763          * The scanline counter increments at the leading edge of hsync.
12764          *
12765          * On most platforms it starts counting from vtotal-1 on the
12766          * first active line. That means the scanline counter value is
12767          * always one less than what we would expect. Ie. just after
12768          * start of vblank, which also occurs at start of hsync (on the
12769          * last active line), the scanline counter will read vblank_start-1.
12770          *
12771          * On gen2 the scanline counter starts counting from 1 instead
12772          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12773          * to keep the value positive), instead of adding one.
12774          *
12775          * On HSW+ the behaviour of the scanline counter depends on the output
12776          * type. For DP ports it behaves like most other platforms, but on HDMI
12777          * there's an extra 1 line difference. So we need to add two instead of
12778          * one to the value.
12779          */
12780         if (IS_GEN2(dev)) {
12781                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12782                 int vtotal;
12783
12784                 vtotal = mode->crtc_vtotal;
12785                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12786                         vtotal /= 2;
12787
12788                 crtc->scanline_offset = vtotal - 1;
12789         } else if (HAS_DDI(dev) &&
12790                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12791                 crtc->scanline_offset = 2;
12792         } else
12793                 crtc->scanline_offset = 1;
12794 }
12795
12796 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12797 {
12798         struct drm_device *dev = state->dev;
12799         struct drm_i915_private *dev_priv = to_i915(dev);
12800         struct intel_shared_dpll_config *shared_dpll = NULL;
12801         struct intel_crtc *intel_crtc;
12802         struct intel_crtc_state *intel_crtc_state;
12803         struct drm_crtc *crtc;
12804         struct drm_crtc_state *crtc_state;
12805         int i;
12806
12807         if (!dev_priv->display.crtc_compute_clock)
12808                 return;
12809
12810         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12811                 int dpll;
12812
12813                 intel_crtc = to_intel_crtc(crtc);
12814                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12815                 dpll = intel_crtc_state->shared_dpll;
12816
12817                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12818                         continue;
12819
12820                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12821
12822                 if (!shared_dpll)
12823                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12824
12825                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12826         }
12827 }
12828
12829 /*
12830  * This implements the workaround described in the "notes" section of the mode
12831  * set sequence documentation. When going from no pipes or single pipe to
12832  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12833  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12834  */
12835 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12836 {
12837         struct drm_crtc_state *crtc_state;
12838         struct intel_crtc *intel_crtc;
12839         struct drm_crtc *crtc;
12840         struct intel_crtc_state *first_crtc_state = NULL;
12841         struct intel_crtc_state *other_crtc_state = NULL;
12842         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12843         int i;
12844
12845         /* look at all crtc's that are going to be enabled in during modeset */
12846         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12847                 intel_crtc = to_intel_crtc(crtc);
12848
12849                 if (!crtc_state->active || !needs_modeset(crtc_state))
12850                         continue;
12851
12852                 if (first_crtc_state) {
12853                         other_crtc_state = to_intel_crtc_state(crtc_state);
12854                         break;
12855                 } else {
12856                         first_crtc_state = to_intel_crtc_state(crtc_state);
12857                         first_pipe = intel_crtc->pipe;
12858                 }
12859         }
12860
12861         /* No workaround needed? */
12862         if (!first_crtc_state)
12863                 return 0;
12864
12865         /* w/a possibly needed, check how many crtc's are already enabled. */
12866         for_each_intel_crtc(state->dev, intel_crtc) {
12867                 struct intel_crtc_state *pipe_config;
12868
12869                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12870                 if (IS_ERR(pipe_config))
12871                         return PTR_ERR(pipe_config);
12872
12873                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12874
12875                 if (!pipe_config->base.active ||
12876                     needs_modeset(&pipe_config->base))
12877                         continue;
12878
12879                 /* 2 or more enabled crtcs means no need for w/a */
12880                 if (enabled_pipe != INVALID_PIPE)
12881                         return 0;
12882
12883                 enabled_pipe = intel_crtc->pipe;
12884         }
12885
12886         if (enabled_pipe != INVALID_PIPE)
12887                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12888         else if (other_crtc_state)
12889                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12890
12891         return 0;
12892 }
12893
12894 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12895 {
12896         struct drm_crtc *crtc;
12897         struct drm_crtc_state *crtc_state;
12898         int ret = 0;
12899
12900         /* add all active pipes to the state */
12901         for_each_crtc(state->dev, crtc) {
12902                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12903                 if (IS_ERR(crtc_state))
12904                         return PTR_ERR(crtc_state);
12905
12906                 if (!crtc_state->active || needs_modeset(crtc_state))
12907                         continue;
12908
12909                 crtc_state->mode_changed = true;
12910
12911                 ret = drm_atomic_add_affected_connectors(state, crtc);
12912                 if (ret)
12913                         break;
12914
12915                 ret = drm_atomic_add_affected_planes(state, crtc);
12916                 if (ret)
12917                         break;
12918         }
12919
12920         return ret;
12921 }
12922
12923 static int intel_modeset_checks(struct drm_atomic_state *state)
12924 {
12925         struct drm_device *dev = state->dev;
12926         struct drm_i915_private *dev_priv = dev->dev_private;
12927         int ret;
12928
12929         if (!check_digital_port_conflicts(state)) {
12930                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12931                 return -EINVAL;
12932         }
12933
12934         /*
12935          * See if the config requires any additional preparation, e.g.
12936          * to adjust global state with pipes off.  We need to do this
12937          * here so we can get the modeset_pipe updated config for the new
12938          * mode set on this crtc.  For other crtcs we need to use the
12939          * adjusted_mode bits in the crtc directly.
12940          */
12941         if (dev_priv->display.modeset_calc_cdclk) {
12942                 unsigned int cdclk;
12943
12944                 ret = dev_priv->display.modeset_calc_cdclk(state);
12945
12946                 cdclk = to_intel_atomic_state(state)->cdclk;
12947                 if (!ret && cdclk != dev_priv->cdclk_freq)
12948                         ret = intel_modeset_all_pipes(state);
12949
12950                 if (ret < 0)
12951                         return ret;
12952         } else
12953                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
12954
12955         intel_modeset_clear_plls(state);
12956
12957         if (IS_HASWELL(dev))
12958                 return haswell_mode_set_planes_workaround(state);
12959
12960         return 0;
12961 }
12962
12963 /**
12964  * intel_atomic_check - validate state object
12965  * @dev: drm device
12966  * @state: state to validate
12967  */
12968 static int intel_atomic_check(struct drm_device *dev,
12969                               struct drm_atomic_state *state)
12970 {
12971         struct drm_crtc *crtc;
12972         struct drm_crtc_state *crtc_state;
12973         int ret, i;
12974         bool any_ms = false;
12975
12976         ret = drm_atomic_helper_check_modeset(dev, state);
12977         if (ret)
12978                 return ret;
12979
12980         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12981                 struct intel_crtc_state *pipe_config =
12982                         to_intel_crtc_state(crtc_state);
12983
12984                 /* Catch I915_MODE_FLAG_INHERITED */
12985                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
12986                         crtc_state->mode_changed = true;
12987
12988                 if (!crtc_state->enable) {
12989                         if (needs_modeset(crtc_state))
12990                                 any_ms = true;
12991                         continue;
12992                 }
12993
12994                 if (!needs_modeset(crtc_state))
12995                         continue;
12996
12997                 /* FIXME: For only active_changed we shouldn't need to do any
12998                  * state recomputation at all. */
12999
13000                 ret = drm_atomic_add_affected_connectors(state, crtc);
13001                 if (ret)
13002                         return ret;
13003
13004                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13005                 if (ret)
13006                         return ret;
13007
13008                 if (intel_pipe_config_compare(state->dev,
13009                                         to_intel_crtc_state(crtc->state),
13010                                         pipe_config, true)) {
13011                         crtc_state->mode_changed = false;
13012                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13013                 }
13014
13015                 if (needs_modeset(crtc_state)) {
13016                         any_ms = true;
13017
13018                         ret = drm_atomic_add_affected_planes(state, crtc);
13019                         if (ret)
13020                                 return ret;
13021                 }
13022
13023                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13024                                        needs_modeset(crtc_state) ?
13025                                        "[modeset]" : "[fastset]");
13026         }
13027
13028         if (any_ms) {
13029                 ret = intel_modeset_checks(state);
13030
13031                 if (ret)
13032                         return ret;
13033         } else
13034                 to_intel_atomic_state(state)->cdclk =
13035                         to_i915(state->dev)->cdclk_freq;
13036
13037         return drm_atomic_helper_check_planes(state->dev, state);
13038 }
13039
13040 /**
13041  * intel_atomic_commit - commit validated state object
13042  * @dev: DRM device
13043  * @state: the top-level driver state object
13044  * @async: asynchronous commit
13045  *
13046  * This function commits a top-level state object that has been validated
13047  * with drm_atomic_helper_check().
13048  *
13049  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13050  * we can only handle plane-related operations and do not yet support
13051  * asynchronous commit.
13052  *
13053  * RETURNS
13054  * Zero for success or -errno.
13055  */
13056 static int intel_atomic_commit(struct drm_device *dev,
13057                                struct drm_atomic_state *state,
13058                                bool async)
13059 {
13060         struct drm_i915_private *dev_priv = dev->dev_private;
13061         struct drm_crtc *crtc;
13062         struct drm_crtc_state *crtc_state;
13063         int ret = 0;
13064         int i;
13065         bool any_ms = false;
13066
13067         if (async) {
13068                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13069                 return -EINVAL;
13070         }
13071
13072         ret = drm_atomic_helper_prepare_planes(dev, state);
13073         if (ret)
13074                 return ret;
13075
13076         drm_atomic_helper_swap_state(dev, state);
13077
13078         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13079                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13080
13081                 if (!needs_modeset(crtc->state))
13082                         continue;
13083
13084                 any_ms = true;
13085                 intel_pre_plane_update(intel_crtc);
13086
13087                 if (crtc_state->active) {
13088                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13089                         dev_priv->display.crtc_disable(crtc);
13090                         intel_crtc->active = false;
13091                         intel_disable_shared_dpll(intel_crtc);
13092                 }
13093         }
13094
13095         /* Only after disabling all output pipelines that will be changed can we
13096          * update the the output configuration. */
13097         intel_modeset_update_crtc_state(state);
13098
13099         if (any_ms) {
13100                 intel_shared_dpll_commit(state);
13101
13102                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13103                 modeset_update_crtc_power_domains(state);
13104         }
13105
13106         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13107         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13108                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13109                 bool modeset = needs_modeset(crtc->state);
13110                 bool update_pipe = !modeset &&
13111                         to_intel_crtc_state(crtc->state)->update_pipe;
13112                 unsigned long put_domains = 0;
13113
13114                 if (modeset && crtc->state->active) {
13115                         update_scanline_offset(to_intel_crtc(crtc));
13116                         dev_priv->display.crtc_enable(crtc);
13117                 }
13118
13119                 if (update_pipe) {
13120                         put_domains = modeset_get_crtc_power_domains(crtc);
13121
13122                         /* make sure intel_modeset_check_state runs */
13123                         any_ms = true;
13124                 }
13125
13126                 if (!modeset)
13127                         intel_pre_plane_update(intel_crtc);
13128
13129                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13130
13131                 if (put_domains)
13132                         modeset_put_power_domains(dev_priv, put_domains);
13133
13134                 intel_post_plane_update(intel_crtc);
13135         }
13136
13137         /* FIXME: add subpixel order */
13138
13139         drm_atomic_helper_wait_for_vblanks(dev, state);
13140         drm_atomic_helper_cleanup_planes(dev, state);
13141
13142         if (any_ms)
13143                 intel_modeset_check_state(dev, state);
13144
13145         drm_atomic_state_free(state);
13146
13147         return 0;
13148 }
13149
13150 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13151 {
13152         struct drm_device *dev = crtc->dev;
13153         struct drm_atomic_state *state;
13154         struct drm_crtc_state *crtc_state;
13155         int ret;
13156
13157         state = drm_atomic_state_alloc(dev);
13158         if (!state) {
13159                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13160                               crtc->base.id);
13161                 return;
13162         }
13163
13164         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13165
13166 retry:
13167         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13168         ret = PTR_ERR_OR_ZERO(crtc_state);
13169         if (!ret) {
13170                 if (!crtc_state->active)
13171                         goto out;
13172
13173                 crtc_state->mode_changed = true;
13174                 ret = drm_atomic_commit(state);
13175         }
13176
13177         if (ret == -EDEADLK) {
13178                 drm_atomic_state_clear(state);
13179                 drm_modeset_backoff(state->acquire_ctx);
13180                 goto retry;
13181         }
13182
13183         if (ret)
13184 out:
13185                 drm_atomic_state_free(state);
13186 }
13187
13188 #undef for_each_intel_crtc_masked
13189
13190 static const struct drm_crtc_funcs intel_crtc_funcs = {
13191         .gamma_set = intel_crtc_gamma_set,
13192         .set_config = drm_atomic_helper_set_config,
13193         .destroy = intel_crtc_destroy,
13194         .page_flip = intel_crtc_page_flip,
13195         .atomic_duplicate_state = intel_crtc_duplicate_state,
13196         .atomic_destroy_state = intel_crtc_destroy_state,
13197 };
13198
13199 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13200                                       struct intel_shared_dpll *pll,
13201                                       struct intel_dpll_hw_state *hw_state)
13202 {
13203         uint32_t val;
13204
13205         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13206                 return false;
13207
13208         val = I915_READ(PCH_DPLL(pll->id));
13209         hw_state->dpll = val;
13210         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13211         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13212
13213         return val & DPLL_VCO_ENABLE;
13214 }
13215
13216 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13217                                   struct intel_shared_dpll *pll)
13218 {
13219         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13220         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13221 }
13222
13223 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13224                                 struct intel_shared_dpll *pll)
13225 {
13226         /* PCH refclock must be enabled first */
13227         ibx_assert_pch_refclk_enabled(dev_priv);
13228
13229         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13230
13231         /* Wait for the clocks to stabilize. */
13232         POSTING_READ(PCH_DPLL(pll->id));
13233         udelay(150);
13234
13235         /* The pixel multiplier can only be updated once the
13236          * DPLL is enabled and the clocks are stable.
13237          *
13238          * So write it again.
13239          */
13240         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13241         POSTING_READ(PCH_DPLL(pll->id));
13242         udelay(200);
13243 }
13244
13245 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13246                                  struct intel_shared_dpll *pll)
13247 {
13248         struct drm_device *dev = dev_priv->dev;
13249         struct intel_crtc *crtc;
13250
13251         /* Make sure no transcoder isn't still depending on us. */
13252         for_each_intel_crtc(dev, crtc) {
13253                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13254                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13255         }
13256
13257         I915_WRITE(PCH_DPLL(pll->id), 0);
13258         POSTING_READ(PCH_DPLL(pll->id));
13259         udelay(200);
13260 }
13261
13262 static char *ibx_pch_dpll_names[] = {
13263         "PCH DPLL A",
13264         "PCH DPLL B",
13265 };
13266
13267 static void ibx_pch_dpll_init(struct drm_device *dev)
13268 {
13269         struct drm_i915_private *dev_priv = dev->dev_private;
13270         int i;
13271
13272         dev_priv->num_shared_dpll = 2;
13273
13274         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13275                 dev_priv->shared_dplls[i].id = i;
13276                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13277                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13278                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13279                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13280                 dev_priv->shared_dplls[i].get_hw_state =
13281                         ibx_pch_dpll_get_hw_state;
13282         }
13283 }
13284
13285 static void intel_shared_dpll_init(struct drm_device *dev)
13286 {
13287         struct drm_i915_private *dev_priv = dev->dev_private;
13288
13289         intel_update_cdclk(dev);
13290
13291         if (HAS_DDI(dev))
13292                 intel_ddi_pll_init(dev);
13293         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13294                 ibx_pch_dpll_init(dev);
13295         else
13296                 dev_priv->num_shared_dpll = 0;
13297
13298         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13299 }
13300
13301 /**
13302  * intel_prepare_plane_fb - Prepare fb for usage on plane
13303  * @plane: drm plane to prepare for
13304  * @fb: framebuffer to prepare for presentation
13305  *
13306  * Prepares a framebuffer for usage on a display plane.  Generally this
13307  * involves pinning the underlying object and updating the frontbuffer tracking
13308  * bits.  Some older platforms need special physical address handling for
13309  * cursor planes.
13310  *
13311  * Returns 0 on success, negative error code on failure.
13312  */
13313 int
13314 intel_prepare_plane_fb(struct drm_plane *plane,
13315                        struct drm_framebuffer *fb,
13316                        const struct drm_plane_state *new_state)
13317 {
13318         struct drm_device *dev = plane->dev;
13319         struct intel_plane *intel_plane = to_intel_plane(plane);
13320         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13321         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13322         int ret = 0;
13323
13324         if (!obj)
13325                 return 0;
13326
13327         mutex_lock(&dev->struct_mutex);
13328
13329         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13330             INTEL_INFO(dev)->cursor_needs_physical) {
13331                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13332                 ret = i915_gem_object_attach_phys(obj, align);
13333                 if (ret)
13334                         DRM_DEBUG_KMS("failed to attach phys object\n");
13335         } else {
13336                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13337         }
13338
13339         if (ret == 0)
13340                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13341
13342         mutex_unlock(&dev->struct_mutex);
13343
13344         return ret;
13345 }
13346
13347 /**
13348  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13349  * @plane: drm plane to clean up for
13350  * @fb: old framebuffer that was on plane
13351  *
13352  * Cleans up a framebuffer that has just been removed from a plane.
13353  */
13354 void
13355 intel_cleanup_plane_fb(struct drm_plane *plane,
13356                        struct drm_framebuffer *fb,
13357                        const struct drm_plane_state *old_state)
13358 {
13359         struct drm_device *dev = plane->dev;
13360         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13361
13362         if (WARN_ON(!obj))
13363                 return;
13364
13365         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13366             !INTEL_INFO(dev)->cursor_needs_physical) {
13367                 mutex_lock(&dev->struct_mutex);
13368                 intel_unpin_fb_obj(fb, old_state);
13369                 mutex_unlock(&dev->struct_mutex);
13370         }
13371 }
13372
13373 int
13374 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13375 {
13376         int max_scale;
13377         struct drm_device *dev;
13378         struct drm_i915_private *dev_priv;
13379         int crtc_clock, cdclk;
13380
13381         if (!intel_crtc || !crtc_state)
13382                 return DRM_PLANE_HELPER_NO_SCALING;
13383
13384         dev = intel_crtc->base.dev;
13385         dev_priv = dev->dev_private;
13386         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13387         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13388
13389         if (!crtc_clock || !cdclk)
13390                 return DRM_PLANE_HELPER_NO_SCALING;
13391
13392         /*
13393          * skl max scale is lower of:
13394          *    close to 3 but not 3, -1 is for that purpose
13395          *            or
13396          *    cdclk/crtc_clock
13397          */
13398         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13399
13400         return max_scale;
13401 }
13402
13403 static int
13404 intel_check_primary_plane(struct drm_plane *plane,
13405                           struct intel_crtc_state *crtc_state,
13406                           struct intel_plane_state *state)
13407 {
13408         struct drm_crtc *crtc = state->base.crtc;
13409         struct drm_framebuffer *fb = state->base.fb;
13410         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13411         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13412         bool can_position = false;
13413
13414         /* use scaler when colorkey is not required */
13415         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13416             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13417                 min_scale = 1;
13418                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13419                 can_position = true;
13420         }
13421
13422         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13423                                              &state->dst, &state->clip,
13424                                              min_scale, max_scale,
13425                                              can_position, true,
13426                                              &state->visible);
13427 }
13428
13429 static void
13430 intel_commit_primary_plane(struct drm_plane *plane,
13431                            struct intel_plane_state *state)
13432 {
13433         struct drm_crtc *crtc = state->base.crtc;
13434         struct drm_framebuffer *fb = state->base.fb;
13435         struct drm_device *dev = plane->dev;
13436         struct drm_i915_private *dev_priv = dev->dev_private;
13437         struct intel_crtc *intel_crtc;
13438         struct drm_rect *src = &state->src;
13439
13440         crtc = crtc ? crtc : plane->crtc;
13441         intel_crtc = to_intel_crtc(crtc);
13442
13443         plane->fb = fb;
13444         crtc->x = src->x1 >> 16;
13445         crtc->y = src->y1 >> 16;
13446
13447         if (!crtc->state->active)
13448                 return;
13449
13450         dev_priv->display.update_primary_plane(crtc, fb,
13451                                                state->src.x1 >> 16,
13452                                                state->src.y1 >> 16);
13453 }
13454
13455 static void
13456 intel_disable_primary_plane(struct drm_plane *plane,
13457                             struct drm_crtc *crtc)
13458 {
13459         struct drm_device *dev = plane->dev;
13460         struct drm_i915_private *dev_priv = dev->dev_private;
13461
13462         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13463 }
13464
13465 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13466                                     struct drm_crtc_state *old_crtc_state)
13467 {
13468         struct drm_device *dev = crtc->dev;
13469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13470         struct intel_crtc_state *old_intel_state =
13471                 to_intel_crtc_state(old_crtc_state);
13472         bool modeset = needs_modeset(crtc->state);
13473
13474         if (intel_crtc->atomic.update_wm_pre)
13475                 intel_update_watermarks(crtc);
13476
13477         /* Perform vblank evasion around commit operation */
13478         if (crtc->state->active)
13479                 intel_pipe_update_start(intel_crtc);
13480
13481         if (modeset)
13482                 return;
13483
13484         if (to_intel_crtc_state(crtc->state)->update_pipe)
13485                 intel_update_pipe_config(intel_crtc, old_intel_state);
13486         else if (INTEL_INFO(dev)->gen >= 9)
13487                 skl_detach_scalers(intel_crtc);
13488 }
13489
13490 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13491                                      struct drm_crtc_state *old_crtc_state)
13492 {
13493         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13494
13495         if (crtc->state->active)
13496                 intel_pipe_update_end(intel_crtc);
13497 }
13498
13499 /**
13500  * intel_plane_destroy - destroy a plane
13501  * @plane: plane to destroy
13502  *
13503  * Common destruction function for all types of planes (primary, cursor,
13504  * sprite).
13505  */
13506 void intel_plane_destroy(struct drm_plane *plane)
13507 {
13508         struct intel_plane *intel_plane = to_intel_plane(plane);
13509         drm_plane_cleanup(plane);
13510         kfree(intel_plane);
13511 }
13512
13513 const struct drm_plane_funcs intel_plane_funcs = {
13514         .update_plane = drm_atomic_helper_update_plane,
13515         .disable_plane = drm_atomic_helper_disable_plane,
13516         .destroy = intel_plane_destroy,
13517         .set_property = drm_atomic_helper_plane_set_property,
13518         .atomic_get_property = intel_plane_atomic_get_property,
13519         .atomic_set_property = intel_plane_atomic_set_property,
13520         .atomic_duplicate_state = intel_plane_duplicate_state,
13521         .atomic_destroy_state = intel_plane_destroy_state,
13522
13523 };
13524
13525 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13526                                                     int pipe)
13527 {
13528         struct intel_plane *primary;
13529         struct intel_plane_state *state;
13530         const uint32_t *intel_primary_formats;
13531         unsigned int num_formats;
13532
13533         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13534         if (primary == NULL)
13535                 return NULL;
13536
13537         state = intel_create_plane_state(&primary->base);
13538         if (!state) {
13539                 kfree(primary);
13540                 return NULL;
13541         }
13542         primary->base.state = &state->base;
13543
13544         primary->can_scale = false;
13545         primary->max_downscale = 1;
13546         if (INTEL_INFO(dev)->gen >= 9) {
13547                 primary->can_scale = true;
13548                 state->scaler_id = -1;
13549         }
13550         primary->pipe = pipe;
13551         primary->plane = pipe;
13552         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13553         primary->check_plane = intel_check_primary_plane;
13554         primary->commit_plane = intel_commit_primary_plane;
13555         primary->disable_plane = intel_disable_primary_plane;
13556         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13557                 primary->plane = !pipe;
13558
13559         if (INTEL_INFO(dev)->gen >= 9) {
13560                 intel_primary_formats = skl_primary_formats;
13561                 num_formats = ARRAY_SIZE(skl_primary_formats);
13562         } else if (INTEL_INFO(dev)->gen >= 4) {
13563                 intel_primary_formats = i965_primary_formats;
13564                 num_formats = ARRAY_SIZE(i965_primary_formats);
13565         } else {
13566                 intel_primary_formats = i8xx_primary_formats;
13567                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13568         }
13569
13570         drm_universal_plane_init(dev, &primary->base, 0,
13571                                  &intel_plane_funcs,
13572                                  intel_primary_formats, num_formats,
13573                                  DRM_PLANE_TYPE_PRIMARY);
13574
13575         if (INTEL_INFO(dev)->gen >= 4)
13576                 intel_create_rotation_property(dev, primary);
13577
13578         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13579
13580         return &primary->base;
13581 }
13582
13583 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13584 {
13585         if (!dev->mode_config.rotation_property) {
13586                 unsigned long flags = BIT(DRM_ROTATE_0) |
13587                         BIT(DRM_ROTATE_180);
13588
13589                 if (INTEL_INFO(dev)->gen >= 9)
13590                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13591
13592                 dev->mode_config.rotation_property =
13593                         drm_mode_create_rotation_property(dev, flags);
13594         }
13595         if (dev->mode_config.rotation_property)
13596                 drm_object_attach_property(&plane->base.base,
13597                                 dev->mode_config.rotation_property,
13598                                 plane->base.state->rotation);
13599 }
13600
13601 static int
13602 intel_check_cursor_plane(struct drm_plane *plane,
13603                          struct intel_crtc_state *crtc_state,
13604                          struct intel_plane_state *state)
13605 {
13606         struct drm_crtc *crtc = crtc_state->base.crtc;
13607         struct drm_framebuffer *fb = state->base.fb;
13608         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13609         unsigned stride;
13610         int ret;
13611
13612         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13613                                             &state->dst, &state->clip,
13614                                             DRM_PLANE_HELPER_NO_SCALING,
13615                                             DRM_PLANE_HELPER_NO_SCALING,
13616                                             true, true, &state->visible);
13617         if (ret)
13618                 return ret;
13619
13620         /* if we want to turn off the cursor ignore width and height */
13621         if (!obj)
13622                 return 0;
13623
13624         /* Check for which cursor types we support */
13625         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13626                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13627                           state->base.crtc_w, state->base.crtc_h);
13628                 return -EINVAL;
13629         }
13630
13631         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13632         if (obj->base.size < stride * state->base.crtc_h) {
13633                 DRM_DEBUG_KMS("buffer is too small\n");
13634                 return -ENOMEM;
13635         }
13636
13637         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13638                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13639                 return -EINVAL;
13640         }
13641
13642         return 0;
13643 }
13644
13645 static void
13646 intel_disable_cursor_plane(struct drm_plane *plane,
13647                            struct drm_crtc *crtc)
13648 {
13649         intel_crtc_update_cursor(crtc, false);
13650 }
13651
13652 static void
13653 intel_commit_cursor_plane(struct drm_plane *plane,
13654                           struct intel_plane_state *state)
13655 {
13656         struct drm_crtc *crtc = state->base.crtc;
13657         struct drm_device *dev = plane->dev;
13658         struct intel_crtc *intel_crtc;
13659         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13660         uint32_t addr;
13661
13662         crtc = crtc ? crtc : plane->crtc;
13663         intel_crtc = to_intel_crtc(crtc);
13664
13665         if (intel_crtc->cursor_bo == obj)
13666                 goto update;
13667
13668         if (!obj)
13669                 addr = 0;
13670         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13671                 addr = i915_gem_obj_ggtt_offset(obj);
13672         else
13673                 addr = obj->phys_handle->busaddr;
13674
13675         intel_crtc->cursor_addr = addr;
13676         intel_crtc->cursor_bo = obj;
13677
13678 update:
13679         if (crtc->state->active)
13680                 intel_crtc_update_cursor(crtc, state->visible);
13681 }
13682
13683 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13684                                                    int pipe)
13685 {
13686         struct intel_plane *cursor;
13687         struct intel_plane_state *state;
13688
13689         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13690         if (cursor == NULL)
13691                 return NULL;
13692
13693         state = intel_create_plane_state(&cursor->base);
13694         if (!state) {
13695                 kfree(cursor);
13696                 return NULL;
13697         }
13698         cursor->base.state = &state->base;
13699
13700         cursor->can_scale = false;
13701         cursor->max_downscale = 1;
13702         cursor->pipe = pipe;
13703         cursor->plane = pipe;
13704         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13705         cursor->check_plane = intel_check_cursor_plane;
13706         cursor->commit_plane = intel_commit_cursor_plane;
13707         cursor->disable_plane = intel_disable_cursor_plane;
13708
13709         drm_universal_plane_init(dev, &cursor->base, 0,
13710                                  &intel_plane_funcs,
13711                                  intel_cursor_formats,
13712                                  ARRAY_SIZE(intel_cursor_formats),
13713                                  DRM_PLANE_TYPE_CURSOR);
13714
13715         if (INTEL_INFO(dev)->gen >= 4) {
13716                 if (!dev->mode_config.rotation_property)
13717                         dev->mode_config.rotation_property =
13718                                 drm_mode_create_rotation_property(dev,
13719                                                         BIT(DRM_ROTATE_0) |
13720                                                         BIT(DRM_ROTATE_180));
13721                 if (dev->mode_config.rotation_property)
13722                         drm_object_attach_property(&cursor->base.base,
13723                                 dev->mode_config.rotation_property,
13724                                 state->base.rotation);
13725         }
13726
13727         if (INTEL_INFO(dev)->gen >=9)
13728                 state->scaler_id = -1;
13729
13730         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13731
13732         return &cursor->base;
13733 }
13734
13735 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13736         struct intel_crtc_state *crtc_state)
13737 {
13738         int i;
13739         struct intel_scaler *intel_scaler;
13740         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13741
13742         for (i = 0; i < intel_crtc->num_scalers; i++) {
13743                 intel_scaler = &scaler_state->scalers[i];
13744                 intel_scaler->in_use = 0;
13745                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13746         }
13747
13748         scaler_state->scaler_id = -1;
13749 }
13750
13751 static void intel_crtc_init(struct drm_device *dev, int pipe)
13752 {
13753         struct drm_i915_private *dev_priv = dev->dev_private;
13754         struct intel_crtc *intel_crtc;
13755         struct intel_crtc_state *crtc_state = NULL;
13756         struct drm_plane *primary = NULL;
13757         struct drm_plane *cursor = NULL;
13758         int i, ret;
13759
13760         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13761         if (intel_crtc == NULL)
13762                 return;
13763
13764         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13765         if (!crtc_state)
13766                 goto fail;
13767         intel_crtc->config = crtc_state;
13768         intel_crtc->base.state = &crtc_state->base;
13769         crtc_state->base.crtc = &intel_crtc->base;
13770
13771         /* initialize shared scalers */
13772         if (INTEL_INFO(dev)->gen >= 9) {
13773                 if (pipe == PIPE_C)
13774                         intel_crtc->num_scalers = 1;
13775                 else
13776                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13777
13778                 skl_init_scalers(dev, intel_crtc, crtc_state);
13779         }
13780
13781         primary = intel_primary_plane_create(dev, pipe);
13782         if (!primary)
13783                 goto fail;
13784
13785         cursor = intel_cursor_plane_create(dev, pipe);
13786         if (!cursor)
13787                 goto fail;
13788
13789         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13790                                         cursor, &intel_crtc_funcs);
13791         if (ret)
13792                 goto fail;
13793
13794         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13795         for (i = 0; i < 256; i++) {
13796                 intel_crtc->lut_r[i] = i;
13797                 intel_crtc->lut_g[i] = i;
13798                 intel_crtc->lut_b[i] = i;
13799         }
13800
13801         /*
13802          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13803          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13804          */
13805         intel_crtc->pipe = pipe;
13806         intel_crtc->plane = pipe;
13807         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13808                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13809                 intel_crtc->plane = !pipe;
13810         }
13811
13812         intel_crtc->cursor_base = ~0;
13813         intel_crtc->cursor_cntl = ~0;
13814         intel_crtc->cursor_size = ~0;
13815
13816         intel_crtc->wm.cxsr_allowed = true;
13817
13818         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13819                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13820         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13821         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13822
13823         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13824
13825         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13826         return;
13827
13828 fail:
13829         if (primary)
13830                 drm_plane_cleanup(primary);
13831         if (cursor)
13832                 drm_plane_cleanup(cursor);
13833         kfree(crtc_state);
13834         kfree(intel_crtc);
13835 }
13836
13837 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13838 {
13839         struct drm_encoder *encoder = connector->base.encoder;
13840         struct drm_device *dev = connector->base.dev;
13841
13842         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13843
13844         if (!encoder || WARN_ON(!encoder->crtc))
13845                 return INVALID_PIPE;
13846
13847         return to_intel_crtc(encoder->crtc)->pipe;
13848 }
13849
13850 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13851                                 struct drm_file *file)
13852 {
13853         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13854         struct drm_crtc *drmmode_crtc;
13855         struct intel_crtc *crtc;
13856
13857         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13858
13859         if (!drmmode_crtc) {
13860                 DRM_ERROR("no such CRTC id\n");
13861                 return -ENOENT;
13862         }
13863
13864         crtc = to_intel_crtc(drmmode_crtc);
13865         pipe_from_crtc_id->pipe = crtc->pipe;
13866
13867         return 0;
13868 }
13869
13870 static int intel_encoder_clones(struct intel_encoder *encoder)
13871 {
13872         struct drm_device *dev = encoder->base.dev;
13873         struct intel_encoder *source_encoder;
13874         int index_mask = 0;
13875         int entry = 0;
13876
13877         for_each_intel_encoder(dev, source_encoder) {
13878                 if (encoders_cloneable(encoder, source_encoder))
13879                         index_mask |= (1 << entry);
13880
13881                 entry++;
13882         }
13883
13884         return index_mask;
13885 }
13886
13887 static bool has_edp_a(struct drm_device *dev)
13888 {
13889         struct drm_i915_private *dev_priv = dev->dev_private;
13890
13891         if (!IS_MOBILE(dev))
13892                 return false;
13893
13894         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13895                 return false;
13896
13897         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13898                 return false;
13899
13900         return true;
13901 }
13902
13903 static bool intel_crt_present(struct drm_device *dev)
13904 {
13905         struct drm_i915_private *dev_priv = dev->dev_private;
13906
13907         if (INTEL_INFO(dev)->gen >= 9)
13908                 return false;
13909
13910         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13911                 return false;
13912
13913         if (IS_CHERRYVIEW(dev))
13914                 return false;
13915
13916         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13917                 return false;
13918
13919         return true;
13920 }
13921
13922 static void intel_setup_outputs(struct drm_device *dev)
13923 {
13924         struct drm_i915_private *dev_priv = dev->dev_private;
13925         struct intel_encoder *encoder;
13926         bool dpd_is_edp = false;
13927
13928         intel_lvds_init(dev);
13929
13930         if (intel_crt_present(dev))
13931                 intel_crt_init(dev);
13932
13933         if (IS_BROXTON(dev)) {
13934                 /*
13935                  * FIXME: Broxton doesn't support port detection via the
13936                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13937                  * detect the ports.
13938                  */
13939                 intel_ddi_init(dev, PORT_A);
13940                 intel_ddi_init(dev, PORT_B);
13941                 intel_ddi_init(dev, PORT_C);
13942         } else if (HAS_DDI(dev)) {
13943                 int found;
13944
13945                 /*
13946                  * Haswell uses DDI functions to detect digital outputs.
13947                  * On SKL pre-D0 the strap isn't connected, so we assume
13948                  * it's there.
13949                  */
13950                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13951                 /* WaIgnoreDDIAStrap: skl */
13952                 if (found || IS_SKYLAKE(dev))
13953                         intel_ddi_init(dev, PORT_A);
13954
13955                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13956                  * register */
13957                 found = I915_READ(SFUSE_STRAP);
13958
13959                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13960                         intel_ddi_init(dev, PORT_B);
13961                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13962                         intel_ddi_init(dev, PORT_C);
13963                 if (found & SFUSE_STRAP_DDID_DETECTED)
13964                         intel_ddi_init(dev, PORT_D);
13965                 /*
13966                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
13967                  */
13968                 if (IS_SKYLAKE(dev) &&
13969                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
13970                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
13971                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
13972                         intel_ddi_init(dev, PORT_E);
13973
13974         } else if (HAS_PCH_SPLIT(dev)) {
13975                 int found;
13976                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13977
13978                 if (has_edp_a(dev))
13979                         intel_dp_init(dev, DP_A, PORT_A);
13980
13981                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13982                         /* PCH SDVOB multiplex with HDMIB */
13983                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
13984                         if (!found)
13985                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13986                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13987                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
13988                 }
13989
13990                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13991                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13992
13993                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13994                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13995
13996                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13997                         intel_dp_init(dev, PCH_DP_C, PORT_C);
13998
13999                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14000                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14001         } else if (IS_VALLEYVIEW(dev)) {
14002                 /*
14003                  * The DP_DETECTED bit is the latched state of the DDC
14004                  * SDA pin at boot. However since eDP doesn't require DDC
14005                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14006                  * eDP ports may have been muxed to an alternate function.
14007                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14008                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14009                  * detect eDP ports.
14010                  */
14011                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14012                     !intel_dp_is_edp(dev, PORT_B))
14013                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14014                                         PORT_B);
14015                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14016                     intel_dp_is_edp(dev, PORT_B))
14017                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14018
14019                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14020                     !intel_dp_is_edp(dev, PORT_C))
14021                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14022                                         PORT_C);
14023                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14024                     intel_dp_is_edp(dev, PORT_C))
14025                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14026
14027                 if (IS_CHERRYVIEW(dev)) {
14028                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14029                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14030                                                 PORT_D);
14031                         /* eDP not supported on port D, so don't check VBT */
14032                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14033                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14034                 }
14035
14036                 intel_dsi_init(dev);
14037         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14038                 bool found = false;
14039
14040                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14041                         DRM_DEBUG_KMS("probing SDVOB\n");
14042                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14043                         if (!found && IS_G4X(dev)) {
14044                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14045                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14046                         }
14047
14048                         if (!found && IS_G4X(dev))
14049                                 intel_dp_init(dev, DP_B, PORT_B);
14050                 }
14051
14052                 /* Before G4X SDVOC doesn't have its own detect register */
14053
14054                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14055                         DRM_DEBUG_KMS("probing SDVOC\n");
14056                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14057                 }
14058
14059                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14060
14061                         if (IS_G4X(dev)) {
14062                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14063                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14064                         }
14065                         if (IS_G4X(dev))
14066                                 intel_dp_init(dev, DP_C, PORT_C);
14067                 }
14068
14069                 if (IS_G4X(dev) &&
14070                     (I915_READ(DP_D) & DP_DETECTED))
14071                         intel_dp_init(dev, DP_D, PORT_D);
14072         } else if (IS_GEN2(dev))
14073                 intel_dvo_init(dev);
14074
14075         if (SUPPORTS_TV(dev))
14076                 intel_tv_init(dev);
14077
14078         intel_psr_init(dev);
14079
14080         for_each_intel_encoder(dev, encoder) {
14081                 encoder->base.possible_crtcs = encoder->crtc_mask;
14082                 encoder->base.possible_clones =
14083                         intel_encoder_clones(encoder);
14084         }
14085
14086         intel_init_pch_refclk(dev);
14087
14088         drm_helper_move_panel_connectors_to_head(dev);
14089 }
14090
14091 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14092 {
14093         struct drm_device *dev = fb->dev;
14094         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14095
14096         drm_framebuffer_cleanup(fb);
14097         mutex_lock(&dev->struct_mutex);
14098         WARN_ON(!intel_fb->obj->framebuffer_references--);
14099         drm_gem_object_unreference(&intel_fb->obj->base);
14100         mutex_unlock(&dev->struct_mutex);
14101         kfree(intel_fb);
14102 }
14103
14104 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14105                                                 struct drm_file *file,
14106                                                 unsigned int *handle)
14107 {
14108         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14109         struct drm_i915_gem_object *obj = intel_fb->obj;
14110
14111         return drm_gem_handle_create(file, &obj->base, handle);
14112 }
14113
14114 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14115                                         struct drm_file *file,
14116                                         unsigned flags, unsigned color,
14117                                         struct drm_clip_rect *clips,
14118                                         unsigned num_clips)
14119 {
14120         struct drm_device *dev = fb->dev;
14121         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14122         struct drm_i915_gem_object *obj = intel_fb->obj;
14123
14124         mutex_lock(&dev->struct_mutex);
14125         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14126         mutex_unlock(&dev->struct_mutex);
14127
14128         return 0;
14129 }
14130
14131 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14132         .destroy = intel_user_framebuffer_destroy,
14133         .create_handle = intel_user_framebuffer_create_handle,
14134         .dirty = intel_user_framebuffer_dirty,
14135 };
14136
14137 static
14138 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14139                          uint32_t pixel_format)
14140 {
14141         u32 gen = INTEL_INFO(dev)->gen;
14142
14143         if (gen >= 9) {
14144                 /* "The stride in bytes must not exceed the of the size of 8K
14145                  *  pixels and 32K bytes."
14146                  */
14147                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14148         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14149                 return 32*1024;
14150         } else if (gen >= 4) {
14151                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14152                         return 16*1024;
14153                 else
14154                         return 32*1024;
14155         } else if (gen >= 3) {
14156                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14157                         return 8*1024;
14158                 else
14159                         return 16*1024;
14160         } else {
14161                 /* XXX DSPC is limited to 4k tiled */
14162                 return 8*1024;
14163         }
14164 }
14165
14166 static int intel_framebuffer_init(struct drm_device *dev,
14167                                   struct intel_framebuffer *intel_fb,
14168                                   struct drm_mode_fb_cmd2 *mode_cmd,
14169                                   struct drm_i915_gem_object *obj)
14170 {
14171         unsigned int aligned_height;
14172         int ret;
14173         u32 pitch_limit, stride_alignment;
14174
14175         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14176
14177         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14178                 /* Enforce that fb modifier and tiling mode match, but only for
14179                  * X-tiled. This is needed for FBC. */
14180                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14181                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14182                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14183                         return -EINVAL;
14184                 }
14185         } else {
14186                 if (obj->tiling_mode == I915_TILING_X)
14187                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14188                 else if (obj->tiling_mode == I915_TILING_Y) {
14189                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14190                         return -EINVAL;
14191                 }
14192         }
14193
14194         /* Passed in modifier sanity checking. */
14195         switch (mode_cmd->modifier[0]) {
14196         case I915_FORMAT_MOD_Y_TILED:
14197         case I915_FORMAT_MOD_Yf_TILED:
14198                 if (INTEL_INFO(dev)->gen < 9) {
14199                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14200                                   mode_cmd->modifier[0]);
14201                         return -EINVAL;
14202                 }
14203         case DRM_FORMAT_MOD_NONE:
14204         case I915_FORMAT_MOD_X_TILED:
14205                 break;
14206         default:
14207                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14208                           mode_cmd->modifier[0]);
14209                 return -EINVAL;
14210         }
14211
14212         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14213                                                      mode_cmd->pixel_format);
14214         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14215                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14216                           mode_cmd->pitches[0], stride_alignment);
14217                 return -EINVAL;
14218         }
14219
14220         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14221                                            mode_cmd->pixel_format);
14222         if (mode_cmd->pitches[0] > pitch_limit) {
14223                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14224                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14225                           "tiled" : "linear",
14226                           mode_cmd->pitches[0], pitch_limit);
14227                 return -EINVAL;
14228         }
14229
14230         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14231             mode_cmd->pitches[0] != obj->stride) {
14232                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14233                           mode_cmd->pitches[0], obj->stride);
14234                 return -EINVAL;
14235         }
14236
14237         /* Reject formats not supported by any plane early. */
14238         switch (mode_cmd->pixel_format) {
14239         case DRM_FORMAT_C8:
14240         case DRM_FORMAT_RGB565:
14241         case DRM_FORMAT_XRGB8888:
14242         case DRM_FORMAT_ARGB8888:
14243                 break;
14244         case DRM_FORMAT_XRGB1555:
14245                 if (INTEL_INFO(dev)->gen > 3) {
14246                         DRM_DEBUG("unsupported pixel format: %s\n",
14247                                   drm_get_format_name(mode_cmd->pixel_format));
14248                         return -EINVAL;
14249                 }
14250                 break;
14251         case DRM_FORMAT_ABGR8888:
14252                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14253                         DRM_DEBUG("unsupported pixel format: %s\n",
14254                                   drm_get_format_name(mode_cmd->pixel_format));
14255                         return -EINVAL;
14256                 }
14257                 break;
14258         case DRM_FORMAT_XBGR8888:
14259         case DRM_FORMAT_XRGB2101010:
14260         case DRM_FORMAT_XBGR2101010:
14261                 if (INTEL_INFO(dev)->gen < 4) {
14262                         DRM_DEBUG("unsupported pixel format: %s\n",
14263                                   drm_get_format_name(mode_cmd->pixel_format));
14264                         return -EINVAL;
14265                 }
14266                 break;
14267         case DRM_FORMAT_ABGR2101010:
14268                 if (!IS_VALLEYVIEW(dev)) {
14269                         DRM_DEBUG("unsupported pixel format: %s\n",
14270                                   drm_get_format_name(mode_cmd->pixel_format));
14271                         return -EINVAL;
14272                 }
14273                 break;
14274         case DRM_FORMAT_YUYV:
14275         case DRM_FORMAT_UYVY:
14276         case DRM_FORMAT_YVYU:
14277         case DRM_FORMAT_VYUY:
14278                 if (INTEL_INFO(dev)->gen < 5) {
14279                         DRM_DEBUG("unsupported pixel format: %s\n",
14280                                   drm_get_format_name(mode_cmd->pixel_format));
14281                         return -EINVAL;
14282                 }
14283                 break;
14284         default:
14285                 DRM_DEBUG("unsupported pixel format: %s\n",
14286                           drm_get_format_name(mode_cmd->pixel_format));
14287                 return -EINVAL;
14288         }
14289
14290         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14291         if (mode_cmd->offsets[0] != 0)
14292                 return -EINVAL;
14293
14294         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14295                                                mode_cmd->pixel_format,
14296                                                mode_cmd->modifier[0]);
14297         /* FIXME drm helper for size checks (especially planar formats)? */
14298         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14299                 return -EINVAL;
14300
14301         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14302         intel_fb->obj = obj;
14303         intel_fb->obj->framebuffer_references++;
14304
14305         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14306         if (ret) {
14307                 DRM_ERROR("framebuffer init failed %d\n", ret);
14308                 return ret;
14309         }
14310
14311         return 0;
14312 }
14313
14314 static struct drm_framebuffer *
14315 intel_user_framebuffer_create(struct drm_device *dev,
14316                               struct drm_file *filp,
14317                               struct drm_mode_fb_cmd2 *mode_cmd)
14318 {
14319         struct drm_i915_gem_object *obj;
14320
14321         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14322                                                 mode_cmd->handles[0]));
14323         if (&obj->base == NULL)
14324                 return ERR_PTR(-ENOENT);
14325
14326         return intel_framebuffer_create(dev, mode_cmd, obj);
14327 }
14328
14329 #ifndef CONFIG_DRM_FBDEV_EMULATION
14330 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14331 {
14332 }
14333 #endif
14334
14335 static const struct drm_mode_config_funcs intel_mode_funcs = {
14336         .fb_create = intel_user_framebuffer_create,
14337         .output_poll_changed = intel_fbdev_output_poll_changed,
14338         .atomic_check = intel_atomic_check,
14339         .atomic_commit = intel_atomic_commit,
14340         .atomic_state_alloc = intel_atomic_state_alloc,
14341         .atomic_state_clear = intel_atomic_state_clear,
14342 };
14343
14344 /* Set up chip specific display functions */
14345 static void intel_init_display(struct drm_device *dev)
14346 {
14347         struct drm_i915_private *dev_priv = dev->dev_private;
14348
14349         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14350                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14351         else if (IS_CHERRYVIEW(dev))
14352                 dev_priv->display.find_dpll = chv_find_best_dpll;
14353         else if (IS_VALLEYVIEW(dev))
14354                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14355         else if (IS_PINEVIEW(dev))
14356                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14357         else
14358                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14359
14360         if (INTEL_INFO(dev)->gen >= 9) {
14361                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14362                 dev_priv->display.get_initial_plane_config =
14363                         skylake_get_initial_plane_config;
14364                 dev_priv->display.crtc_compute_clock =
14365                         haswell_crtc_compute_clock;
14366                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14367                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14368                 dev_priv->display.update_primary_plane =
14369                         skylake_update_primary_plane;
14370         } else if (HAS_DDI(dev)) {
14371                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14372                 dev_priv->display.get_initial_plane_config =
14373                         ironlake_get_initial_plane_config;
14374                 dev_priv->display.crtc_compute_clock =
14375                         haswell_crtc_compute_clock;
14376                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14377                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14378                 dev_priv->display.update_primary_plane =
14379                         ironlake_update_primary_plane;
14380         } else if (HAS_PCH_SPLIT(dev)) {
14381                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14382                 dev_priv->display.get_initial_plane_config =
14383                         ironlake_get_initial_plane_config;
14384                 dev_priv->display.crtc_compute_clock =
14385                         ironlake_crtc_compute_clock;
14386                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14387                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14388                 dev_priv->display.update_primary_plane =
14389                         ironlake_update_primary_plane;
14390         } else if (IS_VALLEYVIEW(dev)) {
14391                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14392                 dev_priv->display.get_initial_plane_config =
14393                         i9xx_get_initial_plane_config;
14394                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14395                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14396                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14397                 dev_priv->display.update_primary_plane =
14398                         i9xx_update_primary_plane;
14399         } else {
14400                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14401                 dev_priv->display.get_initial_plane_config =
14402                         i9xx_get_initial_plane_config;
14403                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14404                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14405                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14406                 dev_priv->display.update_primary_plane =
14407                         i9xx_update_primary_plane;
14408         }
14409
14410         /* Returns the core display clock speed */
14411         if (IS_SKYLAKE(dev))
14412                 dev_priv->display.get_display_clock_speed =
14413                         skylake_get_display_clock_speed;
14414         else if (IS_BROXTON(dev))
14415                 dev_priv->display.get_display_clock_speed =
14416                         broxton_get_display_clock_speed;
14417         else if (IS_BROADWELL(dev))
14418                 dev_priv->display.get_display_clock_speed =
14419                         broadwell_get_display_clock_speed;
14420         else if (IS_HASWELL(dev))
14421                 dev_priv->display.get_display_clock_speed =
14422                         haswell_get_display_clock_speed;
14423         else if (IS_VALLEYVIEW(dev))
14424                 dev_priv->display.get_display_clock_speed =
14425                         valleyview_get_display_clock_speed;
14426         else if (IS_GEN5(dev))
14427                 dev_priv->display.get_display_clock_speed =
14428                         ilk_get_display_clock_speed;
14429         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14430                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14431                 dev_priv->display.get_display_clock_speed =
14432                         i945_get_display_clock_speed;
14433         else if (IS_GM45(dev))
14434                 dev_priv->display.get_display_clock_speed =
14435                         gm45_get_display_clock_speed;
14436         else if (IS_CRESTLINE(dev))
14437                 dev_priv->display.get_display_clock_speed =
14438                         i965gm_get_display_clock_speed;
14439         else if (IS_PINEVIEW(dev))
14440                 dev_priv->display.get_display_clock_speed =
14441                         pnv_get_display_clock_speed;
14442         else if (IS_G33(dev) || IS_G4X(dev))
14443                 dev_priv->display.get_display_clock_speed =
14444                         g33_get_display_clock_speed;
14445         else if (IS_I915G(dev))
14446                 dev_priv->display.get_display_clock_speed =
14447                         i915_get_display_clock_speed;
14448         else if (IS_I945GM(dev) || IS_845G(dev))
14449                 dev_priv->display.get_display_clock_speed =
14450                         i9xx_misc_get_display_clock_speed;
14451         else if (IS_PINEVIEW(dev))
14452                 dev_priv->display.get_display_clock_speed =
14453                         pnv_get_display_clock_speed;
14454         else if (IS_I915GM(dev))
14455                 dev_priv->display.get_display_clock_speed =
14456                         i915gm_get_display_clock_speed;
14457         else if (IS_I865G(dev))
14458                 dev_priv->display.get_display_clock_speed =
14459                         i865_get_display_clock_speed;
14460         else if (IS_I85X(dev))
14461                 dev_priv->display.get_display_clock_speed =
14462                         i85x_get_display_clock_speed;
14463         else { /* 830 */
14464                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14465                 dev_priv->display.get_display_clock_speed =
14466                         i830_get_display_clock_speed;
14467         }
14468
14469         if (IS_GEN5(dev)) {
14470                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14471         } else if (IS_GEN6(dev)) {
14472                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14473         } else if (IS_IVYBRIDGE(dev)) {
14474                 /* FIXME: detect B0+ stepping and use auto training */
14475                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14476         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14477                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14478                 if (IS_BROADWELL(dev)) {
14479                         dev_priv->display.modeset_commit_cdclk =
14480                                 broadwell_modeset_commit_cdclk;
14481                         dev_priv->display.modeset_calc_cdclk =
14482                                 broadwell_modeset_calc_cdclk;
14483                 }
14484         } else if (IS_VALLEYVIEW(dev)) {
14485                 dev_priv->display.modeset_commit_cdclk =
14486                         valleyview_modeset_commit_cdclk;
14487                 dev_priv->display.modeset_calc_cdclk =
14488                         valleyview_modeset_calc_cdclk;
14489         } else if (IS_BROXTON(dev)) {
14490                 dev_priv->display.modeset_commit_cdclk =
14491                         broxton_modeset_commit_cdclk;
14492                 dev_priv->display.modeset_calc_cdclk =
14493                         broxton_modeset_calc_cdclk;
14494         }
14495
14496         switch (INTEL_INFO(dev)->gen) {
14497         case 2:
14498                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14499                 break;
14500
14501         case 3:
14502                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14503                 break;
14504
14505         case 4:
14506         case 5:
14507                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14508                 break;
14509
14510         case 6:
14511                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14512                 break;
14513         case 7:
14514         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14515                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14516                 break;
14517         case 9:
14518                 /* Drop through - unsupported since execlist only. */
14519         default:
14520                 /* Default just returns -ENODEV to indicate unsupported */
14521                 dev_priv->display.queue_flip = intel_default_queue_flip;
14522         }
14523
14524         intel_panel_init_backlight_funcs(dev);
14525
14526         mutex_init(&dev_priv->pps_mutex);
14527 }
14528
14529 /*
14530  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14531  * resume, or other times.  This quirk makes sure that's the case for
14532  * affected systems.
14533  */
14534 static void quirk_pipea_force(struct drm_device *dev)
14535 {
14536         struct drm_i915_private *dev_priv = dev->dev_private;
14537
14538         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14539         DRM_INFO("applying pipe a force quirk\n");
14540 }
14541
14542 static void quirk_pipeb_force(struct drm_device *dev)
14543 {
14544         struct drm_i915_private *dev_priv = dev->dev_private;
14545
14546         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14547         DRM_INFO("applying pipe b force quirk\n");
14548 }
14549
14550 /*
14551  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14552  */
14553 static void quirk_ssc_force_disable(struct drm_device *dev)
14554 {
14555         struct drm_i915_private *dev_priv = dev->dev_private;
14556         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14557         DRM_INFO("applying lvds SSC disable quirk\n");
14558 }
14559
14560 /*
14561  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14562  * brightness value
14563  */
14564 static void quirk_invert_brightness(struct drm_device *dev)
14565 {
14566         struct drm_i915_private *dev_priv = dev->dev_private;
14567         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14568         DRM_INFO("applying inverted panel brightness quirk\n");
14569 }
14570
14571 /* Some VBT's incorrectly indicate no backlight is present */
14572 static void quirk_backlight_present(struct drm_device *dev)
14573 {
14574         struct drm_i915_private *dev_priv = dev->dev_private;
14575         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14576         DRM_INFO("applying backlight present quirk\n");
14577 }
14578
14579 struct intel_quirk {
14580         int device;
14581         int subsystem_vendor;
14582         int subsystem_device;
14583         void (*hook)(struct drm_device *dev);
14584 };
14585
14586 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14587 struct intel_dmi_quirk {
14588         void (*hook)(struct drm_device *dev);
14589         const struct dmi_system_id (*dmi_id_list)[];
14590 };
14591
14592 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14593 {
14594         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14595         return 1;
14596 }
14597
14598 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14599         {
14600                 .dmi_id_list = &(const struct dmi_system_id[]) {
14601                         {
14602                                 .callback = intel_dmi_reverse_brightness,
14603                                 .ident = "NCR Corporation",
14604                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14605                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14606                                 },
14607                         },
14608                         { }  /* terminating entry */
14609                 },
14610                 .hook = quirk_invert_brightness,
14611         },
14612 };
14613
14614 static struct intel_quirk intel_quirks[] = {
14615         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14616         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14617
14618         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14619         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14620
14621         /* 830 needs to leave pipe A & dpll A up */
14622         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14623
14624         /* 830 needs to leave pipe B & dpll B up */
14625         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14626
14627         /* Lenovo U160 cannot use SSC on LVDS */
14628         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14629
14630         /* Sony Vaio Y cannot use SSC on LVDS */
14631         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14632
14633         /* Acer Aspire 5734Z must invert backlight brightness */
14634         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14635
14636         /* Acer/eMachines G725 */
14637         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14638
14639         /* Acer/eMachines e725 */
14640         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14641
14642         /* Acer/Packard Bell NCL20 */
14643         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14644
14645         /* Acer Aspire 4736Z */
14646         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14647
14648         /* Acer Aspire 5336 */
14649         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14650
14651         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14652         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14653
14654         /* Acer C720 Chromebook (Core i3 4005U) */
14655         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14656
14657         /* Apple Macbook 2,1 (Core 2 T7400) */
14658         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14659
14660         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14661         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14662
14663         /* HP Chromebook 14 (Celeron 2955U) */
14664         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14665
14666         /* Dell Chromebook 11 */
14667         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14668 };
14669
14670 static void intel_init_quirks(struct drm_device *dev)
14671 {
14672         struct pci_dev *d = dev->pdev;
14673         int i;
14674
14675         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14676                 struct intel_quirk *q = &intel_quirks[i];
14677
14678                 if (d->device == q->device &&
14679                     (d->subsystem_vendor == q->subsystem_vendor ||
14680                      q->subsystem_vendor == PCI_ANY_ID) &&
14681                     (d->subsystem_device == q->subsystem_device ||
14682                      q->subsystem_device == PCI_ANY_ID))
14683                         q->hook(dev);
14684         }
14685         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14686                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14687                         intel_dmi_quirks[i].hook(dev);
14688         }
14689 }
14690
14691 /* Disable the VGA plane that we never use */
14692 static void i915_disable_vga(struct drm_device *dev)
14693 {
14694         struct drm_i915_private *dev_priv = dev->dev_private;
14695         u8 sr1;
14696         u32 vga_reg = i915_vgacntrl_reg(dev);
14697
14698         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14699         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14700         outb(SR01, VGA_SR_INDEX);
14701         sr1 = inb(VGA_SR_DATA);
14702         outb(sr1 | 1<<5, VGA_SR_DATA);
14703         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14704         udelay(300);
14705
14706         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14707         POSTING_READ(vga_reg);
14708 }
14709
14710 void intel_modeset_init_hw(struct drm_device *dev)
14711 {
14712         intel_update_cdclk(dev);
14713         intel_prepare_ddi(dev);
14714         intel_init_clock_gating(dev);
14715         intel_enable_gt_powersave(dev);
14716 }
14717
14718 void intel_modeset_init(struct drm_device *dev)
14719 {
14720         struct drm_i915_private *dev_priv = dev->dev_private;
14721         int sprite, ret;
14722         enum pipe pipe;
14723         struct intel_crtc *crtc;
14724
14725         drm_mode_config_init(dev);
14726
14727         dev->mode_config.min_width = 0;
14728         dev->mode_config.min_height = 0;
14729
14730         dev->mode_config.preferred_depth = 24;
14731         dev->mode_config.prefer_shadow = 1;
14732
14733         dev->mode_config.allow_fb_modifiers = true;
14734
14735         dev->mode_config.funcs = &intel_mode_funcs;
14736
14737         intel_init_quirks(dev);
14738
14739         intel_init_pm(dev);
14740
14741         if (INTEL_INFO(dev)->num_pipes == 0)
14742                 return;
14743
14744         /*
14745          * There may be no VBT; and if the BIOS enabled SSC we can
14746          * just keep using it to avoid unnecessary flicker.  Whereas if the
14747          * BIOS isn't using it, don't assume it will work even if the VBT
14748          * indicates as much.
14749          */
14750         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14751                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14752                                             DREF_SSC1_ENABLE);
14753
14754                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14755                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14756                                      bios_lvds_use_ssc ? "en" : "dis",
14757                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14758                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14759                 }
14760         }
14761
14762         intel_init_display(dev);
14763         intel_init_audio(dev);
14764
14765         if (IS_GEN2(dev)) {
14766                 dev->mode_config.max_width = 2048;
14767                 dev->mode_config.max_height = 2048;
14768         } else if (IS_GEN3(dev)) {
14769                 dev->mode_config.max_width = 4096;
14770                 dev->mode_config.max_height = 4096;
14771         } else {
14772                 dev->mode_config.max_width = 8192;
14773                 dev->mode_config.max_height = 8192;
14774         }
14775
14776         if (IS_845G(dev) || IS_I865G(dev)) {
14777                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14778                 dev->mode_config.cursor_height = 1023;
14779         } else if (IS_GEN2(dev)) {
14780                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14781                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14782         } else {
14783                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14784                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14785         }
14786
14787         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14788
14789         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14790                       INTEL_INFO(dev)->num_pipes,
14791                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14792
14793         for_each_pipe(dev_priv, pipe) {
14794                 intel_crtc_init(dev, pipe);
14795                 for_each_sprite(dev_priv, pipe, sprite) {
14796                         ret = intel_plane_init(dev, pipe, sprite);
14797                         if (ret)
14798                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14799                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14800                 }
14801         }
14802
14803         intel_shared_dpll_init(dev);
14804
14805         /* Just disable it once at startup */
14806         i915_disable_vga(dev);
14807         intel_setup_outputs(dev);
14808
14809         /* Just in case the BIOS is doing something questionable. */
14810         intel_fbc_disable(dev_priv);
14811
14812         drm_modeset_lock_all(dev);
14813         intel_modeset_setup_hw_state(dev);
14814         drm_modeset_unlock_all(dev);
14815
14816         for_each_intel_crtc(dev, crtc) {
14817                 struct intel_initial_plane_config plane_config = {};
14818
14819                 if (!crtc->active)
14820                         continue;
14821
14822                 /*
14823                  * Note that reserving the BIOS fb up front prevents us
14824                  * from stuffing other stolen allocations like the ring
14825                  * on top.  This prevents some ugliness at boot time, and
14826                  * can even allow for smooth boot transitions if the BIOS
14827                  * fb is large enough for the active pipe configuration.
14828                  */
14829                 dev_priv->display.get_initial_plane_config(crtc,
14830                                                            &plane_config);
14831
14832                 /*
14833                  * If the fb is shared between multiple heads, we'll
14834                  * just get the first one.
14835                  */
14836                 intel_find_initial_plane_obj(crtc, &plane_config);
14837         }
14838 }
14839
14840 static void intel_enable_pipe_a(struct drm_device *dev)
14841 {
14842         struct intel_connector *connector;
14843         struct drm_connector *crt = NULL;
14844         struct intel_load_detect_pipe load_detect_temp;
14845         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14846
14847         /* We can't just switch on the pipe A, we need to set things up with a
14848          * proper mode and output configuration. As a gross hack, enable pipe A
14849          * by enabling the load detect pipe once. */
14850         for_each_intel_connector(dev, connector) {
14851                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14852                         crt = &connector->base;
14853                         break;
14854                 }
14855         }
14856
14857         if (!crt)
14858                 return;
14859
14860         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14861                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14862 }
14863
14864 static bool
14865 intel_check_plane_mapping(struct intel_crtc *crtc)
14866 {
14867         struct drm_device *dev = crtc->base.dev;
14868         struct drm_i915_private *dev_priv = dev->dev_private;
14869         u32 reg, val;
14870
14871         if (INTEL_INFO(dev)->num_pipes == 1)
14872                 return true;
14873
14874         reg = DSPCNTR(!crtc->plane);
14875         val = I915_READ(reg);
14876
14877         if ((val & DISPLAY_PLANE_ENABLE) &&
14878             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14879                 return false;
14880
14881         return true;
14882 }
14883
14884 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14885 {
14886         struct drm_device *dev = crtc->base.dev;
14887         struct intel_encoder *encoder;
14888
14889         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14890                 return true;
14891
14892         return false;
14893 }
14894
14895 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14896 {
14897         struct drm_device *dev = crtc->base.dev;
14898         struct drm_i915_private *dev_priv = dev->dev_private;
14899         u32 reg;
14900
14901         /* Clear any frame start delays used for debugging left by the BIOS */
14902         reg = PIPECONF(crtc->config->cpu_transcoder);
14903         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14904
14905         /* restore vblank interrupts to correct state */
14906         drm_crtc_vblank_reset(&crtc->base);
14907         if (crtc->active) {
14908                 struct intel_plane *plane;
14909
14910                 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
14911                 update_scanline_offset(crtc);
14912                 drm_crtc_vblank_on(&crtc->base);
14913
14914                 /* Disable everything but the primary plane */
14915                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14916                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
14917                                 continue;
14918
14919                         plane->disable_plane(&plane->base, &crtc->base);
14920                 }
14921         }
14922
14923         /* We need to sanitize the plane -> pipe mapping first because this will
14924          * disable the crtc (and hence change the state) if it is wrong. Note
14925          * that gen4+ has a fixed plane -> pipe mapping.  */
14926         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14927                 bool plane;
14928
14929                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14930                               crtc->base.base.id);
14931
14932                 /* Pipe has the wrong plane attached and the plane is active.
14933                  * Temporarily change the plane mapping and disable everything
14934                  * ...  */
14935                 plane = crtc->plane;
14936                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14937                 crtc->plane = !plane;
14938                 intel_crtc_disable_noatomic(&crtc->base);
14939                 crtc->plane = plane;
14940         }
14941
14942         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14943             crtc->pipe == PIPE_A && !crtc->active) {
14944                 /* BIOS forgot to enable pipe A, this mostly happens after
14945                  * resume. Force-enable the pipe to fix this, the update_dpms
14946                  * call below we restore the pipe to the right state, but leave
14947                  * the required bits on. */
14948                 intel_enable_pipe_a(dev);
14949         }
14950
14951         /* Adjust the state of the output pipe according to whether we
14952          * have active connectors/encoders. */
14953         if (!intel_crtc_has_encoders(crtc))
14954                 intel_crtc_disable_noatomic(&crtc->base);
14955
14956         if (crtc->active != crtc->base.state->active) {
14957                 struct intel_encoder *encoder;
14958
14959                 /* This can happen either due to bugs in the get_hw_state
14960                  * functions or because of calls to intel_crtc_disable_noatomic,
14961                  * or because the pipe is force-enabled due to the
14962                  * pipe A quirk. */
14963                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14964                               crtc->base.base.id,
14965                               crtc->base.state->enable ? "enabled" : "disabled",
14966                               crtc->active ? "enabled" : "disabled");
14967
14968                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
14969                 crtc->base.state->active = crtc->active;
14970                 crtc->base.enabled = crtc->active;
14971
14972                 /* Because we only establish the connector -> encoder ->
14973                  * crtc links if something is active, this means the
14974                  * crtc is now deactivated. Break the links. connector
14975                  * -> encoder links are only establish when things are
14976                  *  actually up, hence no need to break them. */
14977                 WARN_ON(crtc->active);
14978
14979                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14980                         encoder->base.crtc = NULL;
14981         }
14982
14983         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14984                 /*
14985                  * We start out with underrun reporting disabled to avoid races.
14986                  * For correct bookkeeping mark this on active crtcs.
14987                  *
14988                  * Also on gmch platforms we dont have any hardware bits to
14989                  * disable the underrun reporting. Which means we need to start
14990                  * out with underrun reporting disabled also on inactive pipes,
14991                  * since otherwise we'll complain about the garbage we read when
14992                  * e.g. coming up after runtime pm.
14993                  *
14994                  * No protection against concurrent access is required - at
14995                  * worst a fifo underrun happens which also sets this to false.
14996                  */
14997                 crtc->cpu_fifo_underrun_disabled = true;
14998                 crtc->pch_fifo_underrun_disabled = true;
14999         }
15000 }
15001
15002 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15003 {
15004         struct intel_connector *connector;
15005         struct drm_device *dev = encoder->base.dev;
15006         bool active = false;
15007
15008         /* We need to check both for a crtc link (meaning that the
15009          * encoder is active and trying to read from a pipe) and the
15010          * pipe itself being active. */
15011         bool has_active_crtc = encoder->base.crtc &&
15012                 to_intel_crtc(encoder->base.crtc)->active;
15013
15014         for_each_intel_connector(dev, connector) {
15015                 if (connector->base.encoder != &encoder->base)
15016                         continue;
15017
15018                 active = true;
15019                 break;
15020         }
15021
15022         if (active && !has_active_crtc) {
15023                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15024                               encoder->base.base.id,
15025                               encoder->base.name);
15026
15027                 /* Connector is active, but has no active pipe. This is
15028                  * fallout from our resume register restoring. Disable
15029                  * the encoder manually again. */
15030                 if (encoder->base.crtc) {
15031                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15032                                       encoder->base.base.id,
15033                                       encoder->base.name);
15034                         encoder->disable(encoder);
15035                         if (encoder->post_disable)
15036                                 encoder->post_disable(encoder);
15037                 }
15038                 encoder->base.crtc = NULL;
15039
15040                 /* Inconsistent output/port/pipe state happens presumably due to
15041                  * a bug in one of the get_hw_state functions. Or someplace else
15042                  * in our code, like the register restore mess on resume. Clamp
15043                  * things to off as a safer default. */
15044                 for_each_intel_connector(dev, connector) {
15045                         if (connector->encoder != encoder)
15046                                 continue;
15047                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15048                         connector->base.encoder = NULL;
15049                 }
15050         }
15051         /* Enabled encoders without active connectors will be fixed in
15052          * the crtc fixup. */
15053 }
15054
15055 void i915_redisable_vga_power_on(struct drm_device *dev)
15056 {
15057         struct drm_i915_private *dev_priv = dev->dev_private;
15058         u32 vga_reg = i915_vgacntrl_reg(dev);
15059
15060         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15061                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15062                 i915_disable_vga(dev);
15063         }
15064 }
15065
15066 void i915_redisable_vga(struct drm_device *dev)
15067 {
15068         struct drm_i915_private *dev_priv = dev->dev_private;
15069
15070         /* This function can be called both from intel_modeset_setup_hw_state or
15071          * at a very early point in our resume sequence, where the power well
15072          * structures are not yet restored. Since this function is at a very
15073          * paranoid "someone might have enabled VGA while we were not looking"
15074          * level, just check if the power well is enabled instead of trying to
15075          * follow the "don't touch the power well if we don't need it" policy
15076          * the rest of the driver uses. */
15077         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15078                 return;
15079
15080         i915_redisable_vga_power_on(dev);
15081 }
15082
15083 static bool primary_get_hw_state(struct intel_plane *plane)
15084 {
15085         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15086
15087         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15088 }
15089
15090 /* FIXME read out full plane state for all planes */
15091 static void readout_plane_state(struct intel_crtc *crtc)
15092 {
15093         struct intel_plane_state *plane_state =
15094                 to_intel_plane_state(crtc->base.primary->state);
15095
15096         plane_state->visible =
15097                 primary_get_hw_state(to_intel_plane(crtc->base.primary));
15098 }
15099
15100 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15101 {
15102         struct drm_i915_private *dev_priv = dev->dev_private;
15103         enum pipe pipe;
15104         struct intel_crtc *crtc;
15105         struct intel_encoder *encoder;
15106         struct intel_connector *connector;
15107         int i;
15108
15109         for_each_intel_crtc(dev, crtc) {
15110                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15111                 memset(crtc->config, 0, sizeof(*crtc->config));
15112                 crtc->config->base.crtc = &crtc->base;
15113
15114                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15115                                                                  crtc->config);
15116
15117                 crtc->base.state->active = crtc->active;
15118                 crtc->base.enabled = crtc->active;
15119
15120                 readout_plane_state(crtc);
15121
15122                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15123                               crtc->base.base.id,
15124                               crtc->active ? "enabled" : "disabled");
15125         }
15126
15127         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15128                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15129
15130                 pll->on = pll->get_hw_state(dev_priv, pll,
15131                                             &pll->config.hw_state);
15132                 pll->active = 0;
15133                 pll->config.crtc_mask = 0;
15134                 for_each_intel_crtc(dev, crtc) {
15135                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15136                                 pll->active++;
15137                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15138                         }
15139                 }
15140
15141                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15142                               pll->name, pll->config.crtc_mask, pll->on);
15143
15144                 if (pll->config.crtc_mask)
15145                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15146         }
15147
15148         for_each_intel_encoder(dev, encoder) {
15149                 pipe = 0;
15150
15151                 if (encoder->get_hw_state(encoder, &pipe)) {
15152                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15153                         encoder->base.crtc = &crtc->base;
15154                         encoder->get_config(encoder, crtc->config);
15155                 } else {
15156                         encoder->base.crtc = NULL;
15157                 }
15158
15159                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15160                               encoder->base.base.id,
15161                               encoder->base.name,
15162                               encoder->base.crtc ? "enabled" : "disabled",
15163                               pipe_name(pipe));
15164         }
15165
15166         for_each_intel_connector(dev, connector) {
15167                 if (connector->get_hw_state(connector)) {
15168                         connector->base.dpms = DRM_MODE_DPMS_ON;
15169                         connector->base.encoder = &connector->encoder->base;
15170                 } else {
15171                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15172                         connector->base.encoder = NULL;
15173                 }
15174                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15175                               connector->base.base.id,
15176                               connector->base.name,
15177                               connector->base.encoder ? "enabled" : "disabled");
15178         }
15179
15180         for_each_intel_crtc(dev, crtc) {
15181                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15182
15183                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15184                 if (crtc->base.state->active) {
15185                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15186                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15187                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15188
15189                         /*
15190                          * The initial mode needs to be set in order to keep
15191                          * the atomic core happy. It wants a valid mode if the
15192                          * crtc's enabled, so we do the above call.
15193                          *
15194                          * At this point some state updated by the connectors
15195                          * in their ->detect() callback has not run yet, so
15196                          * no recalculation can be done yet.
15197                          *
15198                          * Even if we could do a recalculation and modeset
15199                          * right now it would cause a double modeset if
15200                          * fbdev or userspace chooses a different initial mode.
15201                          *
15202                          * If that happens, someone indicated they wanted a
15203                          * mode change, which means it's safe to do a full
15204                          * recalculation.
15205                          */
15206                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15207                 }
15208         }
15209 }
15210
15211 /* Scan out the current hw modeset state,
15212  * and sanitizes it to the current state
15213  */
15214 static void
15215 intel_modeset_setup_hw_state(struct drm_device *dev)
15216 {
15217         struct drm_i915_private *dev_priv = dev->dev_private;
15218         enum pipe pipe;
15219         struct intel_crtc *crtc;
15220         struct intel_encoder *encoder;
15221         int i;
15222
15223         intel_modeset_readout_hw_state(dev);
15224
15225         /* HW state is read out, now we need to sanitize this mess. */
15226         for_each_intel_encoder(dev, encoder) {
15227                 intel_sanitize_encoder(encoder);
15228         }
15229
15230         for_each_pipe(dev_priv, pipe) {
15231                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15232                 intel_sanitize_crtc(crtc);
15233                 intel_dump_pipe_config(crtc, crtc->config,
15234                                        "[setup_hw_state]");
15235         }
15236
15237         intel_modeset_update_connector_atomic_state(dev);
15238
15239         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15240                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15241
15242                 if (!pll->on || pll->active)
15243                         continue;
15244
15245                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15246
15247                 pll->disable(dev_priv, pll);
15248                 pll->on = false;
15249         }
15250
15251         if (IS_VALLEYVIEW(dev))
15252                 vlv_wm_get_hw_state(dev);
15253         else if (IS_GEN9(dev))
15254                 skl_wm_get_hw_state(dev);
15255         else if (HAS_PCH_SPLIT(dev))
15256                 ilk_wm_get_hw_state(dev);
15257
15258         for_each_intel_crtc(dev, crtc) {
15259                 unsigned long put_domains;
15260
15261                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15262                 if (WARN_ON(put_domains))
15263                         modeset_put_power_domains(dev_priv, put_domains);
15264         }
15265         intel_display_set_init_power(dev_priv, false);
15266 }
15267
15268 void intel_display_resume(struct drm_device *dev)
15269 {
15270         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15271         struct intel_connector *conn;
15272         struct intel_plane *plane;
15273         struct drm_crtc *crtc;
15274         int ret;
15275
15276         if (!state)
15277                 return;
15278
15279         state->acquire_ctx = dev->mode_config.acquire_ctx;
15280
15281         /* preserve complete old state, including dpll */
15282         intel_atomic_get_shared_dpll_state(state);
15283
15284         for_each_crtc(dev, crtc) {
15285                 struct drm_crtc_state *crtc_state =
15286                         drm_atomic_get_crtc_state(state, crtc);
15287
15288                 ret = PTR_ERR_OR_ZERO(crtc_state);
15289                 if (ret)
15290                         goto err;
15291
15292                 /* force a restore */
15293                 crtc_state->mode_changed = true;
15294         }
15295
15296         for_each_intel_plane(dev, plane) {
15297                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15298                 if (ret)
15299                         goto err;
15300         }
15301
15302         for_each_intel_connector(dev, conn) {
15303                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15304                 if (ret)
15305                         goto err;
15306         }
15307
15308         intel_modeset_setup_hw_state(dev);
15309
15310         i915_redisable_vga(dev);
15311         ret = drm_atomic_commit(state);
15312         if (!ret)
15313                 return;
15314
15315 err:
15316         DRM_ERROR("Restoring old state failed with %i\n", ret);
15317         drm_atomic_state_free(state);
15318 }
15319
15320 void intel_modeset_gem_init(struct drm_device *dev)
15321 {
15322         struct drm_crtc *c;
15323         struct drm_i915_gem_object *obj;
15324         int ret;
15325
15326         mutex_lock(&dev->struct_mutex);
15327         intel_init_gt_powersave(dev);
15328         mutex_unlock(&dev->struct_mutex);
15329
15330         intel_modeset_init_hw(dev);
15331
15332         intel_setup_overlay(dev);
15333
15334         /*
15335          * Make sure any fbs we allocated at startup are properly
15336          * pinned & fenced.  When we do the allocation it's too early
15337          * for this.
15338          */
15339         for_each_crtc(dev, c) {
15340                 obj = intel_fb_obj(c->primary->fb);
15341                 if (obj == NULL)
15342                         continue;
15343
15344                 mutex_lock(&dev->struct_mutex);
15345                 ret = intel_pin_and_fence_fb_obj(c->primary,
15346                                                  c->primary->fb,
15347                                                  c->primary->state,
15348                                                  NULL, NULL);
15349                 mutex_unlock(&dev->struct_mutex);
15350                 if (ret) {
15351                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15352                                   to_intel_crtc(c)->pipe);
15353                         drm_framebuffer_unreference(c->primary->fb);
15354                         c->primary->fb = NULL;
15355                         c->primary->crtc = c->primary->state->crtc = NULL;
15356                         update_state_fb(c->primary);
15357                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15358                 }
15359         }
15360
15361         intel_backlight_register(dev);
15362 }
15363
15364 void intel_connector_unregister(struct intel_connector *intel_connector)
15365 {
15366         struct drm_connector *connector = &intel_connector->base;
15367
15368         intel_panel_destroy_backlight(connector);
15369         drm_connector_unregister(connector);
15370 }
15371
15372 void intel_modeset_cleanup(struct drm_device *dev)
15373 {
15374         struct drm_i915_private *dev_priv = dev->dev_private;
15375         struct drm_connector *connector;
15376
15377         intel_disable_gt_powersave(dev);
15378
15379         intel_backlight_unregister(dev);
15380
15381         /*
15382          * Interrupts and polling as the first thing to avoid creating havoc.
15383          * Too much stuff here (turning of connectors, ...) would
15384          * experience fancy races otherwise.
15385          */
15386         intel_irq_uninstall(dev_priv);
15387
15388         /*
15389          * Due to the hpd irq storm handling the hotplug work can re-arm the
15390          * poll handlers. Hence disable polling after hpd handling is shut down.
15391          */
15392         drm_kms_helper_poll_fini(dev);
15393
15394         intel_unregister_dsm_handler();
15395
15396         intel_fbc_disable(dev_priv);
15397
15398         /* flush any delayed tasks or pending work */
15399         flush_scheduled_work();
15400
15401         /* destroy the backlight and sysfs files before encoders/connectors */
15402         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15403                 struct intel_connector *intel_connector;
15404
15405                 intel_connector = to_intel_connector(connector);
15406                 intel_connector->unregister(intel_connector);
15407         }
15408
15409         drm_mode_config_cleanup(dev);
15410
15411         intel_cleanup_overlay(dev);
15412
15413         mutex_lock(&dev->struct_mutex);
15414         intel_cleanup_gt_powersave(dev);
15415         mutex_unlock(&dev->struct_mutex);
15416 }
15417
15418 /*
15419  * Return which encoder is currently attached for connector.
15420  */
15421 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15422 {
15423         return &intel_attached_encoder(connector)->base;
15424 }
15425
15426 void intel_connector_attach_encoder(struct intel_connector *connector,
15427                                     struct intel_encoder *encoder)
15428 {
15429         connector->encoder = encoder;
15430         drm_mode_connector_attach_encoder(&connector->base,
15431                                           &encoder->base);
15432 }
15433
15434 /*
15435  * set vga decode state - true == enable VGA decode
15436  */
15437 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15438 {
15439         struct drm_i915_private *dev_priv = dev->dev_private;
15440         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15441         u16 gmch_ctrl;
15442
15443         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15444                 DRM_ERROR("failed to read control word\n");
15445                 return -EIO;
15446         }
15447
15448         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15449                 return 0;
15450
15451         if (state)
15452                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15453         else
15454                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15455
15456         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15457                 DRM_ERROR("failed to write control word\n");
15458                 return -EIO;
15459         }
15460
15461         return 0;
15462 }
15463
15464 struct intel_display_error_state {
15465
15466         u32 power_well_driver;
15467
15468         int num_transcoders;
15469
15470         struct intel_cursor_error_state {
15471                 u32 control;
15472                 u32 position;
15473                 u32 base;
15474                 u32 size;
15475         } cursor[I915_MAX_PIPES];
15476
15477         struct intel_pipe_error_state {
15478                 bool power_domain_on;
15479                 u32 source;
15480                 u32 stat;
15481         } pipe[I915_MAX_PIPES];
15482
15483         struct intel_plane_error_state {
15484                 u32 control;
15485                 u32 stride;
15486                 u32 size;
15487                 u32 pos;
15488                 u32 addr;
15489                 u32 surface;
15490                 u32 tile_offset;
15491         } plane[I915_MAX_PIPES];
15492
15493         struct intel_transcoder_error_state {
15494                 bool power_domain_on;
15495                 enum transcoder cpu_transcoder;
15496
15497                 u32 conf;
15498
15499                 u32 htotal;
15500                 u32 hblank;
15501                 u32 hsync;
15502                 u32 vtotal;
15503                 u32 vblank;
15504                 u32 vsync;
15505         } transcoder[4];
15506 };
15507
15508 struct intel_display_error_state *
15509 intel_display_capture_error_state(struct drm_device *dev)
15510 {
15511         struct drm_i915_private *dev_priv = dev->dev_private;
15512         struct intel_display_error_state *error;
15513         int transcoders[] = {
15514                 TRANSCODER_A,
15515                 TRANSCODER_B,
15516                 TRANSCODER_C,
15517                 TRANSCODER_EDP,
15518         };
15519         int i;
15520
15521         if (INTEL_INFO(dev)->num_pipes == 0)
15522                 return NULL;
15523
15524         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15525         if (error == NULL)
15526                 return NULL;
15527
15528         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15529                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15530
15531         for_each_pipe(dev_priv, i) {
15532                 error->pipe[i].power_domain_on =
15533                         __intel_display_power_is_enabled(dev_priv,
15534                                                          POWER_DOMAIN_PIPE(i));
15535                 if (!error->pipe[i].power_domain_on)
15536                         continue;
15537
15538                 error->cursor[i].control = I915_READ(CURCNTR(i));
15539                 error->cursor[i].position = I915_READ(CURPOS(i));
15540                 error->cursor[i].base = I915_READ(CURBASE(i));
15541
15542                 error->plane[i].control = I915_READ(DSPCNTR(i));
15543                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15544                 if (INTEL_INFO(dev)->gen <= 3) {
15545                         error->plane[i].size = I915_READ(DSPSIZE(i));
15546                         error->plane[i].pos = I915_READ(DSPPOS(i));
15547                 }
15548                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15549                         error->plane[i].addr = I915_READ(DSPADDR(i));
15550                 if (INTEL_INFO(dev)->gen >= 4) {
15551                         error->plane[i].surface = I915_READ(DSPSURF(i));
15552                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15553                 }
15554
15555                 error->pipe[i].source = I915_READ(PIPESRC(i));
15556
15557                 if (HAS_GMCH_DISPLAY(dev))
15558                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15559         }
15560
15561         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15562         if (HAS_DDI(dev_priv->dev))
15563                 error->num_transcoders++; /* Account for eDP. */
15564
15565         for (i = 0; i < error->num_transcoders; i++) {
15566                 enum transcoder cpu_transcoder = transcoders[i];
15567
15568                 error->transcoder[i].power_domain_on =
15569                         __intel_display_power_is_enabled(dev_priv,
15570                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15571                 if (!error->transcoder[i].power_domain_on)
15572                         continue;
15573
15574                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15575
15576                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15577                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15578                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15579                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15580                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15581                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15582                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15583         }
15584
15585         return error;
15586 }
15587
15588 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15589
15590 void
15591 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15592                                 struct drm_device *dev,
15593                                 struct intel_display_error_state *error)
15594 {
15595         struct drm_i915_private *dev_priv = dev->dev_private;
15596         int i;
15597
15598         if (!error)
15599                 return;
15600
15601         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15602         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15603                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15604                            error->power_well_driver);
15605         for_each_pipe(dev_priv, i) {
15606                 err_printf(m, "Pipe [%d]:\n", i);
15607                 err_printf(m, "  Power: %s\n",
15608                            error->pipe[i].power_domain_on ? "on" : "off");
15609                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15610                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15611
15612                 err_printf(m, "Plane [%d]:\n", i);
15613                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15614                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15615                 if (INTEL_INFO(dev)->gen <= 3) {
15616                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15617                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15618                 }
15619                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15620                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15621                 if (INTEL_INFO(dev)->gen >= 4) {
15622                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15623                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15624                 }
15625
15626                 err_printf(m, "Cursor [%d]:\n", i);
15627                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15628                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15629                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15630         }
15631
15632         for (i = 0; i < error->num_transcoders; i++) {
15633                 err_printf(m, "CPU transcoder: %c\n",
15634                            transcoder_name(error->transcoder[i].cpu_transcoder));
15635                 err_printf(m, "  Power: %s\n",
15636                            error->transcoder[i].power_domain_on ? "on" : "off");
15637                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15638                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15639                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15640                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15641                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15642                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15643                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15644         }
15645 }
15646
15647 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15648 {
15649         struct intel_crtc *crtc;
15650
15651         for_each_intel_crtc(dev, crtc) {
15652                 struct intel_unpin_work *work;
15653
15654                 spin_lock_irq(&dev->event_lock);
15655
15656                 work = crtc->unpin_work;
15657
15658                 if (work && work->event &&
15659                     work->event->base.file_priv == file) {
15660                         kfree(work->event);
15661                         work->event = NULL;
15662                 }
15663
15664                 spin_unlock_irq(&dev->event_lock);
15665         }
15666 }