drm/i915: De-magic the VLV p2 divider step size
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
68         intel_p2_t          p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74         struct drm_i915_private *dev_priv = dev->dev_private;
75
76         WARN_ON(!HAS_PCH_SPLIT(dev));
77
78         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84         if (IS_GEN5(dev)) {
85                 struct drm_i915_private *dev_priv = dev->dev_private;
86                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87         } else
88                 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92         .dot = { .min = 25000, .max = 350000 },
93         .vco = { .min = 930000, .max = 1400000 },
94         .n = { .min = 3, .max = 16 },
95         .m = { .min = 96, .max = 140 },
96         .m1 = { .min = 18, .max = 26 },
97         .m2 = { .min = 6, .max = 16 },
98         .p = { .min = 4, .max = 128 },
99         .p1 = { .min = 2, .max = 33 },
100         .p2 = { .dot_limit = 165000,
101                 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105         .dot = { .min = 25000, .max = 350000 },
106         .vco = { .min = 930000, .max = 1400000 },
107         .n = { .min = 3, .max = 16 },
108         .m = { .min = 96, .max = 140 },
109         .m1 = { .min = 18, .max = 26 },
110         .m2 = { .min = 6, .max = 16 },
111         .p = { .min = 4, .max = 128 },
112         .p1 = { .min = 2, .max = 33 },
113         .p2 = { .dot_limit = 165000,
114                 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118         .dot = { .min = 25000, .max = 350000 },
119         .vco = { .min = 930000, .max = 1400000 },
120         .n = { .min = 3, .max = 16 },
121         .m = { .min = 96, .max = 140 },
122         .m1 = { .min = 18, .max = 26 },
123         .m2 = { .min = 6, .max = 16 },
124         .p = { .min = 4, .max = 128 },
125         .p1 = { .min = 1, .max = 6 },
126         .p2 = { .dot_limit = 165000,
127                 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131         .dot = { .min = 20000, .max = 400000 },
132         .vco = { .min = 1400000, .max = 2800000 },
133         .n = { .min = 1, .max = 6 },
134         .m = { .min = 70, .max = 120 },
135         .m1 = { .min = 8, .max = 18 },
136         .m2 = { .min = 3, .max = 7 },
137         .p = { .min = 5, .max = 80 },
138         .p1 = { .min = 1, .max = 8 },
139         .p2 = { .dot_limit = 200000,
140                 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144         .dot = { .min = 20000, .max = 400000 },
145         .vco = { .min = 1400000, .max = 2800000 },
146         .n = { .min = 1, .max = 6 },
147         .m = { .min = 70, .max = 120 },
148         .m1 = { .min = 8, .max = 18 },
149         .m2 = { .min = 3, .max = 7 },
150         .p = { .min = 7, .max = 98 },
151         .p1 = { .min = 1, .max = 8 },
152         .p2 = { .dot_limit = 112000,
153                 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158         .dot = { .min = 25000, .max = 270000 },
159         .vco = { .min = 1750000, .max = 3500000},
160         .n = { .min = 1, .max = 4 },
161         .m = { .min = 104, .max = 138 },
162         .m1 = { .min = 17, .max = 23 },
163         .m2 = { .min = 5, .max = 11 },
164         .p = { .min = 10, .max = 30 },
165         .p1 = { .min = 1, .max = 3},
166         .p2 = { .dot_limit = 270000,
167                 .p2_slow = 10,
168                 .p2_fast = 10
169         },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173         .dot = { .min = 22000, .max = 400000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 16, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 5, .max = 80 },
180         .p1 = { .min = 1, .max = 8},
181         .p2 = { .dot_limit = 165000,
182                 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186         .dot = { .min = 20000, .max = 115000 },
187         .vco = { .min = 1750000, .max = 3500000 },
188         .n = { .min = 1, .max = 3 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 17, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 28, .max = 112 },
193         .p1 = { .min = 2, .max = 8 },
194         .p2 = { .dot_limit = 0,
195                 .p2_slow = 14, .p2_fast = 14
196         },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200         .dot = { .min = 80000, .max = 224000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 14, .max = 42 },
207         .p1 = { .min = 2, .max = 6 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 7, .p2_fast = 7
210         },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214         .dot = { .min = 20000, .max = 400000},
215         .vco = { .min = 1700000, .max = 3500000 },
216         /* Pineview's Ncounter is a ring counter */
217         .n = { .min = 3, .max = 6 },
218         .m = { .min = 2, .max = 256 },
219         /* Pineview only has one combined m divider, which we treat as m2. */
220         .m1 = { .min = 0, .max = 0 },
221         .m2 = { .min = 0, .max = 254 },
222         .p = { .min = 5, .max = 80 },
223         .p1 = { .min = 1, .max = 8 },
224         .p2 = { .dot_limit = 200000,
225                 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229         .dot = { .min = 20000, .max = 400000 },
230         .vco = { .min = 1700000, .max = 3500000 },
231         .n = { .min = 3, .max = 6 },
232         .m = { .min = 2, .max = 256 },
233         .m1 = { .min = 0, .max = 0 },
234         .m2 = { .min = 0, .max = 254 },
235         .p = { .min = 7, .max = 112 },
236         .p1 = { .min = 1, .max = 8 },
237         .p2 = { .dot_limit = 112000,
238                 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242  *
243  * We calculate clock using (register_value + 2) for N/M1/M2, so here
244  * the range value for them is (actual_value - 2).
245  */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247         .dot = { .min = 25000, .max = 350000 },
248         .vco = { .min = 1760000, .max = 3510000 },
249         .n = { .min = 1, .max = 5 },
250         .m = { .min = 79, .max = 127 },
251         .m1 = { .min = 12, .max = 22 },
252         .m2 = { .min = 5, .max = 9 },
253         .p = { .min = 5, .max = 80 },
254         .p1 = { .min = 1, .max = 8 },
255         .p2 = { .dot_limit = 225000,
256                 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 1760000, .max = 3510000 },
262         .n = { .min = 1, .max = 3 },
263         .m = { .min = 79, .max = 118 },
264         .m1 = { .min = 12, .max = 22 },
265         .m2 = { .min = 5, .max = 9 },
266         .p = { .min = 28, .max = 112 },
267         .p1 = { .min = 2, .max = 8 },
268         .p2 = { .dot_limit = 225000,
269                 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 3 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 14, .max = 56 },
280         .p1 = { .min = 2, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 2 },
290         .m = { .min = 79, .max = 126 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 126 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 42 },
307         .p1 = { .min = 2, .max = 6 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv_dac = {
313         .dot = { .min = 25000, .max = 270000 },
314         .vco = { .min = 4000000, .max = 6000000 },
315         .n = { .min = 1, .max = 7 },
316         .m = { .min = 22, .max = 450 }, /* guess */
317         .m1 = { .min = 2, .max = 3 },
318         .m2 = { .min = 11, .max = 156 },
319         .p = { .min = 10, .max = 30 },
320         .p1 = { .min = 1, .max = 3 },
321         .p2 = { .dot_limit = 270000,
322                 .p2_slow = 2, .p2_fast = 20 },
323 };
324
325 static const intel_limit_t intel_limits_vlv_hdmi = {
326         .dot = { .min = 25000, .max = 270000 },
327         .vco = { .min = 4000000, .max = 6000000 },
328         .n = { .min = 1, .max = 7 },
329         .m = { .min = 60, .max = 300 }, /* guess */
330         .m1 = { .min = 2, .max = 3 },
331         .m2 = { .min = 11, .max = 156 },
332         .p = { .min = 10, .max = 30 },
333         .p1 = { .min = 2, .max = 3 },
334         .p2 = { .dot_limit = 270000,
335                 .p2_slow = 2, .p2_fast = 20 },
336 };
337
338 static void vlv_clock(int refclk, intel_clock_t *clock)
339 {
340         clock->m = clock->m1 * clock->m2;
341         clock->p = clock->p1 * clock->p2;
342         clock->vco = refclk * clock->m / clock->n;
343         clock->dot = clock->vco / clock->p;
344 }
345
346 /**
347  * Returns whether any output on the specified pipe is of the specified type
348  */
349 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
350 {
351         struct drm_device *dev = crtc->dev;
352         struct intel_encoder *encoder;
353
354         for_each_encoder_on_crtc(dev, crtc, encoder)
355                 if (encoder->type == type)
356                         return true;
357
358         return false;
359 }
360
361 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
362                                                 int refclk)
363 {
364         struct drm_device *dev = crtc->dev;
365         const intel_limit_t *limit;
366
367         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
368                 if (intel_is_dual_link_lvds(dev)) {
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_dual_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_dual_lvds;
373                 } else {
374                         if (refclk == 100000)
375                                 limit = &intel_limits_ironlake_single_lvds_100m;
376                         else
377                                 limit = &intel_limits_ironlake_single_lvds;
378                 }
379         } else
380                 limit = &intel_limits_ironlake_dac;
381
382         return limit;
383 }
384
385 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
386 {
387         struct drm_device *dev = crtc->dev;
388         const intel_limit_t *limit;
389
390         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
391                 if (intel_is_dual_link_lvds(dev))
392                         limit = &intel_limits_g4x_dual_channel_lvds;
393                 else
394                         limit = &intel_limits_g4x_single_channel_lvds;
395         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
396                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
397                 limit = &intel_limits_g4x_hdmi;
398         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
399                 limit = &intel_limits_g4x_sdvo;
400         } else /* The option is for other outputs */
401                 limit = &intel_limits_i9xx_sdvo;
402
403         return limit;
404 }
405
406 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
407 {
408         struct drm_device *dev = crtc->dev;
409         const intel_limit_t *limit;
410
411         if (HAS_PCH_SPLIT(dev))
412                 limit = intel_ironlake_limit(crtc, refclk);
413         else if (IS_G4X(dev)) {
414                 limit = intel_g4x_limit(crtc);
415         } else if (IS_PINEVIEW(dev)) {
416                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
417                         limit = &intel_limits_pineview_lvds;
418                 else
419                         limit = &intel_limits_pineview_sdvo;
420         } else if (IS_VALLEYVIEW(dev)) {
421                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
422                         limit = &intel_limits_vlv_dac;
423                 else
424                         limit = &intel_limits_vlv_hdmi;
425         } else if (!IS_GEN2(dev)) {
426                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427                         limit = &intel_limits_i9xx_lvds;
428                 else
429                         limit = &intel_limits_i9xx_sdvo;
430         } else {
431                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432                         limit = &intel_limits_i8xx_lvds;
433                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
434                         limit = &intel_limits_i8xx_dvo;
435                 else
436                         limit = &intel_limits_i8xx_dac;
437         }
438         return limit;
439 }
440
441 /* m1 is reserved as 0 in Pineview, n is a ring counter */
442 static void pineview_clock(int refclk, intel_clock_t *clock)
443 {
444         clock->m = clock->m2 + 2;
445         clock->p = clock->p1 * clock->p2;
446         clock->vco = refclk * clock->m / clock->n;
447         clock->dot = clock->vco / clock->p;
448 }
449
450 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
451 {
452         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
453 }
454
455 static void i9xx_clock(int refclk, intel_clock_t *clock)
456 {
457         clock->m = i9xx_dpll_compute_m(clock);
458         clock->p = clock->p1 * clock->p2;
459         clock->vco = refclk * clock->m / (clock->n + 2);
460         clock->dot = clock->vco / clock->p;
461 }
462
463 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
464 /**
465  * Returns whether the given set of divisors are valid for a given refclk with
466  * the given connectors.
467  */
468
469 static bool intel_PLL_is_valid(struct drm_device *dev,
470                                const intel_limit_t *limit,
471                                const intel_clock_t *clock)
472 {
473         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
474                 INTELPllInvalid("p1 out of range\n");
475         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
476                 INTELPllInvalid("p out of range\n");
477         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
478                 INTELPllInvalid("m2 out of range\n");
479         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
480                 INTELPllInvalid("m1 out of range\n");
481         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
482                 INTELPllInvalid("m1 <= m2\n");
483         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
484                 INTELPllInvalid("m out of range\n");
485         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
486                 INTELPllInvalid("n out of range\n");
487         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
488                 INTELPllInvalid("vco out of range\n");
489         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
490          * connector, etc., rather than just a single range.
491          */
492         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
493                 INTELPllInvalid("dot out of range\n");
494
495         return true;
496 }
497
498 static bool
499 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
500                     int target, int refclk, intel_clock_t *match_clock,
501                     intel_clock_t *best_clock)
502 {
503         struct drm_device *dev = crtc->dev;
504         intel_clock_t clock;
505         int err = target;
506
507         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
508                 /*
509                  * For LVDS just rely on its current settings for dual-channel.
510                  * We haven't figured out how to reliably set up different
511                  * single/dual channel state, if we even can.
512                  */
513                 if (intel_is_dual_link_lvds(dev))
514                         clock.p2 = limit->p2.p2_fast;
515                 else
516                         clock.p2 = limit->p2.p2_slow;
517         } else {
518                 if (target < limit->p2.dot_limit)
519                         clock.p2 = limit->p2.p2_slow;
520                 else
521                         clock.p2 = limit->p2.p2_fast;
522         }
523
524         memset(best_clock, 0, sizeof(*best_clock));
525
526         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
527              clock.m1++) {
528                 for (clock.m2 = limit->m2.min;
529                      clock.m2 <= limit->m2.max; clock.m2++) {
530                         if (clock.m2 >= clock.m1)
531                                 break;
532                         for (clock.n = limit->n.min;
533                              clock.n <= limit->n.max; clock.n++) {
534                                 for (clock.p1 = limit->p1.min;
535                                         clock.p1 <= limit->p1.max; clock.p1++) {
536                                         int this_err;
537
538                                         i9xx_clock(refclk, &clock);
539                                         if (!intel_PLL_is_valid(dev, limit,
540                                                                 &clock))
541                                                 continue;
542                                         if (match_clock &&
543                                             clock.p != match_clock->p)
544                                                 continue;
545
546                                         this_err = abs(clock.dot - target);
547                                         if (this_err < err) {
548                                                 *best_clock = clock;
549                                                 err = this_err;
550                                         }
551                                 }
552                         }
553                 }
554         }
555
556         return (err != target);
557 }
558
559 static bool
560 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
561                    int target, int refclk, intel_clock_t *match_clock,
562                    intel_clock_t *best_clock)
563 {
564         struct drm_device *dev = crtc->dev;
565         intel_clock_t clock;
566         int err = target;
567
568         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
569                 /*
570                  * For LVDS just rely on its current settings for dual-channel.
571                  * We haven't figured out how to reliably set up different
572                  * single/dual channel state, if we even can.
573                  */
574                 if (intel_is_dual_link_lvds(dev))
575                         clock.p2 = limit->p2.p2_fast;
576                 else
577                         clock.p2 = limit->p2.p2_slow;
578         } else {
579                 if (target < limit->p2.dot_limit)
580                         clock.p2 = limit->p2.p2_slow;
581                 else
582                         clock.p2 = limit->p2.p2_fast;
583         }
584
585         memset(best_clock, 0, sizeof(*best_clock));
586
587         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
588              clock.m1++) {
589                 for (clock.m2 = limit->m2.min;
590                      clock.m2 <= limit->m2.max; clock.m2++) {
591                         for (clock.n = limit->n.min;
592                              clock.n <= limit->n.max; clock.n++) {
593                                 for (clock.p1 = limit->p1.min;
594                                         clock.p1 <= limit->p1.max; clock.p1++) {
595                                         int this_err;
596
597                                         pineview_clock(refclk, &clock);
598                                         if (!intel_PLL_is_valid(dev, limit,
599                                                                 &clock))
600                                                 continue;
601                                         if (match_clock &&
602                                             clock.p != match_clock->p)
603                                                 continue;
604
605                                         this_err = abs(clock.dot - target);
606                                         if (this_err < err) {
607                                                 *best_clock = clock;
608                                                 err = this_err;
609                                         }
610                                 }
611                         }
612                 }
613         }
614
615         return (err != target);
616 }
617
618 static bool
619 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
620                    int target, int refclk, intel_clock_t *match_clock,
621                    intel_clock_t *best_clock)
622 {
623         struct drm_device *dev = crtc->dev;
624         intel_clock_t clock;
625         int max_n;
626         bool found;
627         /* approximately equals target * 0.00585 */
628         int err_most = (target >> 8) + (target >> 9);
629         found = false;
630
631         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
632                 if (intel_is_dual_link_lvds(dev))
633                         clock.p2 = limit->p2.p2_fast;
634                 else
635                         clock.p2 = limit->p2.p2_slow;
636         } else {
637                 if (target < limit->p2.dot_limit)
638                         clock.p2 = limit->p2.p2_slow;
639                 else
640                         clock.p2 = limit->p2.p2_fast;
641         }
642
643         memset(best_clock, 0, sizeof(*best_clock));
644         max_n = limit->n.max;
645         /* based on hardware requirement, prefer smaller n to precision */
646         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
647                 /* based on hardware requirement, prefere larger m1,m2 */
648                 for (clock.m1 = limit->m1.max;
649                      clock.m1 >= limit->m1.min; clock.m1--) {
650                         for (clock.m2 = limit->m2.max;
651                              clock.m2 >= limit->m2.min; clock.m2--) {
652                                 for (clock.p1 = limit->p1.max;
653                                      clock.p1 >= limit->p1.min; clock.p1--) {
654                                         int this_err;
655
656                                         i9xx_clock(refclk, &clock);
657                                         if (!intel_PLL_is_valid(dev, limit,
658                                                                 &clock))
659                                                 continue;
660
661                                         this_err = abs(clock.dot - target);
662                                         if (this_err < err_most) {
663                                                 *best_clock = clock;
664                                                 err_most = this_err;
665                                                 max_n = clock.n;
666                                                 found = true;
667                                         }
668                                 }
669                         }
670                 }
671         }
672         return found;
673 }
674
675 static bool
676 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
677                    int target, int refclk, intel_clock_t *match_clock,
678                    intel_clock_t *best_clock)
679 {
680         intel_clock_t clock;
681         u32 minupdate = 19200;
682         unsigned int bestppm = 1000000;
683
684         target *= 5; /* fast clock */
685
686         memset(best_clock, 0, sizeof(*best_clock));
687
688         /* based on hardware requirement, prefer smaller n to precision */
689         for (clock.n = limit->n.min; clock.n <= ((refclk) / minupdate); clock.n++) {
690                 for (clock.p1 = limit->p1.max; clock.p1 > limit->p1.min; clock.p1--) {
691                         for (clock.p2 = limit->p2.p2_fast; clock.p2 > 0;
692                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
693                                 clock.p = clock.p1 * clock.p2;
694                                 /* based on hardware requirement, prefer bigger m1,m2 values */
695                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
696                                         unsigned int ppm, diff;
697
698                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
699                                                                      refclk * clock.m1);
700
701                                         vlv_clock(refclk, &clock);
702
703                                         if (clock.vco < limit->vco.min ||
704                                             clock.vco >= limit->vco.max)
705                                                 continue;
706
707                                         diff = abs(clock.dot - target);
708                                         ppm = div_u64(1000000ULL * diff, target);
709
710                                         if (ppm < 100 && clock.p > best_clock->p) {
711                                                 bestppm = 0;
712                                                 *best_clock = clock;
713                                         }
714
715                                         if (bestppm >= 10 && ppm < bestppm - 10) {
716                                                 bestppm = ppm;
717                                                 *best_clock = clock;
718                                         }
719                                 }
720                         }
721                 }
722         }
723
724         return true;
725 }
726
727 bool intel_crtc_active(struct drm_crtc *crtc)
728 {
729         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731         /* Be paranoid as we can arrive here with only partial
732          * state retrieved from the hardware during setup.
733          *
734          * We can ditch the adjusted_mode.crtc_clock check as soon
735          * as Haswell has gained clock readout/fastboot support.
736          *
737          * We can ditch the crtc->fb check as soon as we can
738          * properly reconstruct framebuffers.
739          */
740         return intel_crtc->active && crtc->fb &&
741                 intel_crtc->config.adjusted_mode.crtc_clock;
742 }
743
744 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
745                                              enum pipe pipe)
746 {
747         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
748         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
749
750         return intel_crtc->config.cpu_transcoder;
751 }
752
753 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
754 {
755         struct drm_i915_private *dev_priv = dev->dev_private;
756         u32 frame, frame_reg = PIPEFRAME(pipe);
757
758         frame = I915_READ(frame_reg);
759
760         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
761                 DRM_DEBUG_KMS("vblank wait timed out\n");
762 }
763
764 /**
765  * intel_wait_for_vblank - wait for vblank on a given pipe
766  * @dev: drm device
767  * @pipe: pipe to wait for
768  *
769  * Wait for vblank to occur on a given pipe.  Needed for various bits of
770  * mode setting code.
771  */
772 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
773 {
774         struct drm_i915_private *dev_priv = dev->dev_private;
775         int pipestat_reg = PIPESTAT(pipe);
776
777         if (INTEL_INFO(dev)->gen >= 5) {
778                 ironlake_wait_for_vblank(dev, pipe);
779                 return;
780         }
781
782         /* Clear existing vblank status. Note this will clear any other
783          * sticky status fields as well.
784          *
785          * This races with i915_driver_irq_handler() with the result
786          * that either function could miss a vblank event.  Here it is not
787          * fatal, as we will either wait upon the next vblank interrupt or
788          * timeout.  Generally speaking intel_wait_for_vblank() is only
789          * called during modeset at which time the GPU should be idle and
790          * should *not* be performing page flips and thus not waiting on
791          * vblanks...
792          * Currently, the result of us stealing a vblank from the irq
793          * handler is that a single frame will be skipped during swapbuffers.
794          */
795         I915_WRITE(pipestat_reg,
796                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
797
798         /* Wait for vblank interrupt bit to set */
799         if (wait_for(I915_READ(pipestat_reg) &
800                      PIPE_VBLANK_INTERRUPT_STATUS,
801                      50))
802                 DRM_DEBUG_KMS("vblank wait timed out\n");
803 }
804
805 /*
806  * intel_wait_for_pipe_off - wait for pipe to turn off
807  * @dev: drm device
808  * @pipe: pipe to wait for
809  *
810  * After disabling a pipe, we can't wait for vblank in the usual way,
811  * spinning on the vblank interrupt status bit, since we won't actually
812  * see an interrupt when the pipe is disabled.
813  *
814  * On Gen4 and above:
815  *   wait for the pipe register state bit to turn off
816  *
817  * Otherwise:
818  *   wait for the display line value to settle (it usually
819  *   ends up stopping at the start of the next frame).
820  *
821  */
822 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
823 {
824         struct drm_i915_private *dev_priv = dev->dev_private;
825         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
826                                                                       pipe);
827
828         if (INTEL_INFO(dev)->gen >= 4) {
829                 int reg = PIPECONF(cpu_transcoder);
830
831                 /* Wait for the Pipe State to go off */
832                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
833                              100))
834                         WARN(1, "pipe_off wait timed out\n");
835         } else {
836                 u32 last_line, line_mask;
837                 int reg = PIPEDSL(pipe);
838                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
839
840                 if (IS_GEN2(dev))
841                         line_mask = DSL_LINEMASK_GEN2;
842                 else
843                         line_mask = DSL_LINEMASK_GEN3;
844
845                 /* Wait for the display line to settle */
846                 do {
847                         last_line = I915_READ(reg) & line_mask;
848                         mdelay(5);
849                 } while (((I915_READ(reg) & line_mask) != last_line) &&
850                          time_after(timeout, jiffies));
851                 if (time_after(jiffies, timeout))
852                         WARN(1, "pipe_off wait timed out\n");
853         }
854 }
855
856 /*
857  * ibx_digital_port_connected - is the specified port connected?
858  * @dev_priv: i915 private structure
859  * @port: the port to test
860  *
861  * Returns true if @port is connected, false otherwise.
862  */
863 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
864                                 struct intel_digital_port *port)
865 {
866         u32 bit;
867
868         if (HAS_PCH_IBX(dev_priv->dev)) {
869                 switch(port->port) {
870                 case PORT_B:
871                         bit = SDE_PORTB_HOTPLUG;
872                         break;
873                 case PORT_C:
874                         bit = SDE_PORTC_HOTPLUG;
875                         break;
876                 case PORT_D:
877                         bit = SDE_PORTD_HOTPLUG;
878                         break;
879                 default:
880                         return true;
881                 }
882         } else {
883                 switch(port->port) {
884                 case PORT_B:
885                         bit = SDE_PORTB_HOTPLUG_CPT;
886                         break;
887                 case PORT_C:
888                         bit = SDE_PORTC_HOTPLUG_CPT;
889                         break;
890                 case PORT_D:
891                         bit = SDE_PORTD_HOTPLUG_CPT;
892                         break;
893                 default:
894                         return true;
895                 }
896         }
897
898         return I915_READ(SDEISR) & bit;
899 }
900
901 static const char *state_string(bool enabled)
902 {
903         return enabled ? "on" : "off";
904 }
905
906 /* Only for pre-ILK configs */
907 void assert_pll(struct drm_i915_private *dev_priv,
908                 enum pipe pipe, bool state)
909 {
910         int reg;
911         u32 val;
912         bool cur_state;
913
914         reg = DPLL(pipe);
915         val = I915_READ(reg);
916         cur_state = !!(val & DPLL_VCO_ENABLE);
917         WARN(cur_state != state,
918              "PLL state assertion failure (expected %s, current %s)\n",
919              state_string(state), state_string(cur_state));
920 }
921
922 /* XXX: the dsi pll is shared between MIPI DSI ports */
923 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
924 {
925         u32 val;
926         bool cur_state;
927
928         mutex_lock(&dev_priv->dpio_lock);
929         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
930         mutex_unlock(&dev_priv->dpio_lock);
931
932         cur_state = val & DSI_PLL_VCO_EN;
933         WARN(cur_state != state,
934              "DSI PLL state assertion failure (expected %s, current %s)\n",
935              state_string(state), state_string(cur_state));
936 }
937 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
938 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
939
940 struct intel_shared_dpll *
941 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
942 {
943         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
944
945         if (crtc->config.shared_dpll < 0)
946                 return NULL;
947
948         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
949 }
950
951 /* For ILK+ */
952 void assert_shared_dpll(struct drm_i915_private *dev_priv,
953                         struct intel_shared_dpll *pll,
954                         bool state)
955 {
956         bool cur_state;
957         struct intel_dpll_hw_state hw_state;
958
959         if (HAS_PCH_LPT(dev_priv->dev)) {
960                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
961                 return;
962         }
963
964         if (WARN (!pll,
965                   "asserting DPLL %s with no DPLL\n", state_string(state)))
966                 return;
967
968         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
969         WARN(cur_state != state,
970              "%s assertion failure (expected %s, current %s)\n",
971              pll->name, state_string(state), state_string(cur_state));
972 }
973
974 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
975                           enum pipe pipe, bool state)
976 {
977         int reg;
978         u32 val;
979         bool cur_state;
980         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
981                                                                       pipe);
982
983         if (HAS_DDI(dev_priv->dev)) {
984                 /* DDI does not have a specific FDI_TX register */
985                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
986                 val = I915_READ(reg);
987                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
988         } else {
989                 reg = FDI_TX_CTL(pipe);
990                 val = I915_READ(reg);
991                 cur_state = !!(val & FDI_TX_ENABLE);
992         }
993         WARN(cur_state != state,
994              "FDI TX state assertion failure (expected %s, current %s)\n",
995              state_string(state), state_string(cur_state));
996 }
997 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
998 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
999
1000 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1001                           enum pipe pipe, bool state)
1002 {
1003         int reg;
1004         u32 val;
1005         bool cur_state;
1006
1007         reg = FDI_RX_CTL(pipe);
1008         val = I915_READ(reg);
1009         cur_state = !!(val & FDI_RX_ENABLE);
1010         WARN(cur_state != state,
1011              "FDI RX state assertion failure (expected %s, current %s)\n",
1012              state_string(state), state_string(cur_state));
1013 }
1014 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1015 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1016
1017 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1018                                       enum pipe pipe)
1019 {
1020         int reg;
1021         u32 val;
1022
1023         /* ILK FDI PLL is always enabled */
1024         if (dev_priv->info->gen == 5)
1025                 return;
1026
1027         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1028         if (HAS_DDI(dev_priv->dev))
1029                 return;
1030
1031         reg = FDI_TX_CTL(pipe);
1032         val = I915_READ(reg);
1033         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1034 }
1035
1036 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1037                        enum pipe pipe, bool state)
1038 {
1039         int reg;
1040         u32 val;
1041         bool cur_state;
1042
1043         reg = FDI_RX_CTL(pipe);
1044         val = I915_READ(reg);
1045         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1046         WARN(cur_state != state,
1047              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1048              state_string(state), state_string(cur_state));
1049 }
1050
1051 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1052                                   enum pipe pipe)
1053 {
1054         int pp_reg, lvds_reg;
1055         u32 val;
1056         enum pipe panel_pipe = PIPE_A;
1057         bool locked = true;
1058
1059         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1060                 pp_reg = PCH_PP_CONTROL;
1061                 lvds_reg = PCH_LVDS;
1062         } else {
1063                 pp_reg = PP_CONTROL;
1064                 lvds_reg = LVDS;
1065         }
1066
1067         val = I915_READ(pp_reg);
1068         if (!(val & PANEL_POWER_ON) ||
1069             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1070                 locked = false;
1071
1072         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1073                 panel_pipe = PIPE_B;
1074
1075         WARN(panel_pipe == pipe && locked,
1076              "panel assertion failure, pipe %c regs locked\n",
1077              pipe_name(pipe));
1078 }
1079
1080 static void assert_cursor(struct drm_i915_private *dev_priv,
1081                           enum pipe pipe, bool state)
1082 {
1083         struct drm_device *dev = dev_priv->dev;
1084         bool cur_state;
1085
1086         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1087                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1088         else if (IS_845G(dev) || IS_I865G(dev))
1089                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1090         else
1091                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1092
1093         WARN(cur_state != state,
1094              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1095              pipe_name(pipe), state_string(state), state_string(cur_state));
1096 }
1097 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1098 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1099
1100 void assert_pipe(struct drm_i915_private *dev_priv,
1101                  enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1107                                                                       pipe);
1108
1109         /* if we need the pipe A quirk it must be always on */
1110         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1111                 state = true;
1112
1113         if (!intel_display_power_enabled(dev_priv->dev,
1114                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1115                 cur_state = false;
1116         } else {
1117                 reg = PIPECONF(cpu_transcoder);
1118                 val = I915_READ(reg);
1119                 cur_state = !!(val & PIPECONF_ENABLE);
1120         }
1121
1122         WARN(cur_state != state,
1123              "pipe %c assertion failure (expected %s, current %s)\n",
1124              pipe_name(pipe), state_string(state), state_string(cur_state));
1125 }
1126
1127 static void assert_plane(struct drm_i915_private *dev_priv,
1128                          enum plane plane, bool state)
1129 {
1130         int reg;
1131         u32 val;
1132         bool cur_state;
1133
1134         reg = DSPCNTR(plane);
1135         val = I915_READ(reg);
1136         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1137         WARN(cur_state != state,
1138              "plane %c assertion failure (expected %s, current %s)\n",
1139              plane_name(plane), state_string(state), state_string(cur_state));
1140 }
1141
1142 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1143 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1144
1145 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1146                                    enum pipe pipe)
1147 {
1148         struct drm_device *dev = dev_priv->dev;
1149         int reg, i;
1150         u32 val;
1151         int cur_pipe;
1152
1153         /* Primary planes are fixed to pipes on gen4+ */
1154         if (INTEL_INFO(dev)->gen >= 4) {
1155                 reg = DSPCNTR(pipe);
1156                 val = I915_READ(reg);
1157                 WARN((val & DISPLAY_PLANE_ENABLE),
1158                      "plane %c assertion failure, should be disabled but not\n",
1159                      plane_name(pipe));
1160                 return;
1161         }
1162
1163         /* Need to check both planes against the pipe */
1164         for_each_pipe(i) {
1165                 reg = DSPCNTR(i);
1166                 val = I915_READ(reg);
1167                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1168                         DISPPLANE_SEL_PIPE_SHIFT;
1169                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1170                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1171                      plane_name(i), pipe_name(pipe));
1172         }
1173 }
1174
1175 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1176                                     enum pipe pipe)
1177 {
1178         struct drm_device *dev = dev_priv->dev;
1179         int reg, i;
1180         u32 val;
1181
1182         if (IS_VALLEYVIEW(dev)) {
1183                 for (i = 0; i < dev_priv->num_plane; i++) {
1184                         reg = SPCNTR(pipe, i);
1185                         val = I915_READ(reg);
1186                         WARN((val & SP_ENABLE),
1187                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1188                              sprite_name(pipe, i), pipe_name(pipe));
1189                 }
1190         } else if (INTEL_INFO(dev)->gen >= 7) {
1191                 reg = SPRCTL(pipe);
1192                 val = I915_READ(reg);
1193                 WARN((val & SPRITE_ENABLE),
1194                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1195                      plane_name(pipe), pipe_name(pipe));
1196         } else if (INTEL_INFO(dev)->gen >= 5) {
1197                 reg = DVSCNTR(pipe);
1198                 val = I915_READ(reg);
1199                 WARN((val & DVS_ENABLE),
1200                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1201                      plane_name(pipe), pipe_name(pipe));
1202         }
1203 }
1204
1205 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1206 {
1207         u32 val;
1208         bool enabled;
1209
1210         if (HAS_PCH_LPT(dev_priv->dev)) {
1211                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1212                 return;
1213         }
1214
1215         val = I915_READ(PCH_DREF_CONTROL);
1216         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1217                             DREF_SUPERSPREAD_SOURCE_MASK));
1218         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1219 }
1220
1221 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1222                                            enum pipe pipe)
1223 {
1224         int reg;
1225         u32 val;
1226         bool enabled;
1227
1228         reg = PCH_TRANSCONF(pipe);
1229         val = I915_READ(reg);
1230         enabled = !!(val & TRANS_ENABLE);
1231         WARN(enabled,
1232              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1233              pipe_name(pipe));
1234 }
1235
1236 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1237                             enum pipe pipe, u32 port_sel, u32 val)
1238 {
1239         if ((val & DP_PORT_EN) == 0)
1240                 return false;
1241
1242         if (HAS_PCH_CPT(dev_priv->dev)) {
1243                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1244                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1245                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1246                         return false;
1247         } else {
1248                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1249                         return false;
1250         }
1251         return true;
1252 }
1253
1254 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1255                               enum pipe pipe, u32 val)
1256 {
1257         if ((val & SDVO_ENABLE) == 0)
1258                 return false;
1259
1260         if (HAS_PCH_CPT(dev_priv->dev)) {
1261                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1262                         return false;
1263         } else {
1264                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1265                         return false;
1266         }
1267         return true;
1268 }
1269
1270 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1271                               enum pipe pipe, u32 val)
1272 {
1273         if ((val & LVDS_PORT_EN) == 0)
1274                 return false;
1275
1276         if (HAS_PCH_CPT(dev_priv->dev)) {
1277                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1278                         return false;
1279         } else {
1280                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1281                         return false;
1282         }
1283         return true;
1284 }
1285
1286 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1287                               enum pipe pipe, u32 val)
1288 {
1289         if ((val & ADPA_DAC_ENABLE) == 0)
1290                 return false;
1291         if (HAS_PCH_CPT(dev_priv->dev)) {
1292                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1293                         return false;
1294         } else {
1295                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1296                         return false;
1297         }
1298         return true;
1299 }
1300
1301 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1302                                    enum pipe pipe, int reg, u32 port_sel)
1303 {
1304         u32 val = I915_READ(reg);
1305         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1306              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1307              reg, pipe_name(pipe));
1308
1309         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1310              && (val & DP_PIPEB_SELECT),
1311              "IBX PCH dp port still using transcoder B\n");
1312 }
1313
1314 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1315                                      enum pipe pipe, int reg)
1316 {
1317         u32 val = I915_READ(reg);
1318         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1319              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1320              reg, pipe_name(pipe));
1321
1322         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1323              && (val & SDVO_PIPE_B_SELECT),
1324              "IBX PCH hdmi port still using transcoder B\n");
1325 }
1326
1327 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1328                                       enum pipe pipe)
1329 {
1330         int reg;
1331         u32 val;
1332
1333         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1334         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1335         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1336
1337         reg = PCH_ADPA;
1338         val = I915_READ(reg);
1339         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1340              "PCH VGA enabled on transcoder %c, should be disabled\n",
1341              pipe_name(pipe));
1342
1343         reg = PCH_LVDS;
1344         val = I915_READ(reg);
1345         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1346              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1347              pipe_name(pipe));
1348
1349         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1350         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1351         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1352 }
1353
1354 static void intel_init_dpio(struct drm_device *dev)
1355 {
1356         struct drm_i915_private *dev_priv = dev->dev_private;
1357
1358         if (!IS_VALLEYVIEW(dev))
1359                 return;
1360
1361         /*
1362          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1363          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1364          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1365          *   b. The other bits such as sfr settings / modesel may all be set
1366          *      to 0.
1367          *
1368          * This should only be done on init and resume from S3 with both
1369          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1370          */
1371         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1372 }
1373
1374 static void vlv_enable_pll(struct intel_crtc *crtc)
1375 {
1376         struct drm_device *dev = crtc->base.dev;
1377         struct drm_i915_private *dev_priv = dev->dev_private;
1378         int reg = DPLL(crtc->pipe);
1379         u32 dpll = crtc->config.dpll_hw_state.dpll;
1380
1381         assert_pipe_disabled(dev_priv, crtc->pipe);
1382
1383         /* No really, not for ILK+ */
1384         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1385
1386         /* PLL is protected by panel, make sure we can write it */
1387         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1388                 assert_panel_unlocked(dev_priv, crtc->pipe);
1389
1390         I915_WRITE(reg, dpll);
1391         POSTING_READ(reg);
1392         udelay(150);
1393
1394         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1395                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1396
1397         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1398         POSTING_READ(DPLL_MD(crtc->pipe));
1399
1400         /* We do this three times for luck */
1401         I915_WRITE(reg, dpll);
1402         POSTING_READ(reg);
1403         udelay(150); /* wait for warmup */
1404         I915_WRITE(reg, dpll);
1405         POSTING_READ(reg);
1406         udelay(150); /* wait for warmup */
1407         I915_WRITE(reg, dpll);
1408         POSTING_READ(reg);
1409         udelay(150); /* wait for warmup */
1410 }
1411
1412 static void i9xx_enable_pll(struct intel_crtc *crtc)
1413 {
1414         struct drm_device *dev = crtc->base.dev;
1415         struct drm_i915_private *dev_priv = dev->dev_private;
1416         int reg = DPLL(crtc->pipe);
1417         u32 dpll = crtc->config.dpll_hw_state.dpll;
1418
1419         assert_pipe_disabled(dev_priv, crtc->pipe);
1420
1421         /* No really, not for ILK+ */
1422         BUG_ON(dev_priv->info->gen >= 5);
1423
1424         /* PLL is protected by panel, make sure we can write it */
1425         if (IS_MOBILE(dev) && !IS_I830(dev))
1426                 assert_panel_unlocked(dev_priv, crtc->pipe);
1427
1428         I915_WRITE(reg, dpll);
1429
1430         /* Wait for the clocks to stabilize. */
1431         POSTING_READ(reg);
1432         udelay(150);
1433
1434         if (INTEL_INFO(dev)->gen >= 4) {
1435                 I915_WRITE(DPLL_MD(crtc->pipe),
1436                            crtc->config.dpll_hw_state.dpll_md);
1437         } else {
1438                 /* The pixel multiplier can only be updated once the
1439                  * DPLL is enabled and the clocks are stable.
1440                  *
1441                  * So write it again.
1442                  */
1443                 I915_WRITE(reg, dpll);
1444         }
1445
1446         /* We do this three times for luck */
1447         I915_WRITE(reg, dpll);
1448         POSTING_READ(reg);
1449         udelay(150); /* wait for warmup */
1450         I915_WRITE(reg, dpll);
1451         POSTING_READ(reg);
1452         udelay(150); /* wait for warmup */
1453         I915_WRITE(reg, dpll);
1454         POSTING_READ(reg);
1455         udelay(150); /* wait for warmup */
1456 }
1457
1458 /**
1459  * i9xx_disable_pll - disable a PLL
1460  * @dev_priv: i915 private structure
1461  * @pipe: pipe PLL to disable
1462  *
1463  * Disable the PLL for @pipe, making sure the pipe is off first.
1464  *
1465  * Note!  This is for pre-ILK only.
1466  */
1467 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1468 {
1469         /* Don't disable pipe A or pipe A PLLs if needed */
1470         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1471                 return;
1472
1473         /* Make sure the pipe isn't still relying on us */
1474         assert_pipe_disabled(dev_priv, pipe);
1475
1476         I915_WRITE(DPLL(pipe), 0);
1477         POSTING_READ(DPLL(pipe));
1478 }
1479
1480 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1481 {
1482         u32 val = 0;
1483
1484         /* Make sure the pipe isn't still relying on us */
1485         assert_pipe_disabled(dev_priv, pipe);
1486
1487         /* Leave integrated clock source enabled */
1488         if (pipe == PIPE_B)
1489                 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1490         I915_WRITE(DPLL(pipe), val);
1491         POSTING_READ(DPLL(pipe));
1492 }
1493
1494 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1495 {
1496         u32 port_mask;
1497
1498         if (!port)
1499                 port_mask = DPLL_PORTB_READY_MASK;
1500         else
1501                 port_mask = DPLL_PORTC_READY_MASK;
1502
1503         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1504                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1505                      'B' + port, I915_READ(DPLL(0)));
1506 }
1507
1508 /**
1509  * ironlake_enable_shared_dpll - enable PCH PLL
1510  * @dev_priv: i915 private structure
1511  * @pipe: pipe PLL to enable
1512  *
1513  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1514  * drives the transcoder clock.
1515  */
1516 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1517 {
1518         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1519         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1520
1521         /* PCH PLLs only available on ILK, SNB and IVB */
1522         BUG_ON(dev_priv->info->gen < 5);
1523         if (WARN_ON(pll == NULL))
1524                 return;
1525
1526         if (WARN_ON(pll->refcount == 0))
1527                 return;
1528
1529         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1530                       pll->name, pll->active, pll->on,
1531                       crtc->base.base.id);
1532
1533         if (pll->active++) {
1534                 WARN_ON(!pll->on);
1535                 assert_shared_dpll_enabled(dev_priv, pll);
1536                 return;
1537         }
1538         WARN_ON(pll->on);
1539
1540         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1541         pll->enable(dev_priv, pll);
1542         pll->on = true;
1543 }
1544
1545 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1546 {
1547         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1548         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1549
1550         /* PCH only available on ILK+ */
1551         BUG_ON(dev_priv->info->gen < 5);
1552         if (WARN_ON(pll == NULL))
1553                return;
1554
1555         if (WARN_ON(pll->refcount == 0))
1556                 return;
1557
1558         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1559                       pll->name, pll->active, pll->on,
1560                       crtc->base.base.id);
1561
1562         if (WARN_ON(pll->active == 0)) {
1563                 assert_shared_dpll_disabled(dev_priv, pll);
1564                 return;
1565         }
1566
1567         assert_shared_dpll_enabled(dev_priv, pll);
1568         WARN_ON(!pll->on);
1569         if (--pll->active)
1570                 return;
1571
1572         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1573         pll->disable(dev_priv, pll);
1574         pll->on = false;
1575 }
1576
1577 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1578                                            enum pipe pipe)
1579 {
1580         struct drm_device *dev = dev_priv->dev;
1581         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1582         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1583         uint32_t reg, val, pipeconf_val;
1584
1585         /* PCH only available on ILK+ */
1586         BUG_ON(dev_priv->info->gen < 5);
1587
1588         /* Make sure PCH DPLL is enabled */
1589         assert_shared_dpll_enabled(dev_priv,
1590                                    intel_crtc_to_shared_dpll(intel_crtc));
1591
1592         /* FDI must be feeding us bits for PCH ports */
1593         assert_fdi_tx_enabled(dev_priv, pipe);
1594         assert_fdi_rx_enabled(dev_priv, pipe);
1595
1596         if (HAS_PCH_CPT(dev)) {
1597                 /* Workaround: Set the timing override bit before enabling the
1598                  * pch transcoder. */
1599                 reg = TRANS_CHICKEN2(pipe);
1600                 val = I915_READ(reg);
1601                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1602                 I915_WRITE(reg, val);
1603         }
1604
1605         reg = PCH_TRANSCONF(pipe);
1606         val = I915_READ(reg);
1607         pipeconf_val = I915_READ(PIPECONF(pipe));
1608
1609         if (HAS_PCH_IBX(dev_priv->dev)) {
1610                 /*
1611                  * make the BPC in transcoder be consistent with
1612                  * that in pipeconf reg.
1613                  */
1614                 val &= ~PIPECONF_BPC_MASK;
1615                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1616         }
1617
1618         val &= ~TRANS_INTERLACE_MASK;
1619         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1620                 if (HAS_PCH_IBX(dev_priv->dev) &&
1621                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1622                         val |= TRANS_LEGACY_INTERLACED_ILK;
1623                 else
1624                         val |= TRANS_INTERLACED;
1625         else
1626                 val |= TRANS_PROGRESSIVE;
1627
1628         I915_WRITE(reg, val | TRANS_ENABLE);
1629         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1630                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1631 }
1632
1633 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1634                                       enum transcoder cpu_transcoder)
1635 {
1636         u32 val, pipeconf_val;
1637
1638         /* PCH only available on ILK+ */
1639         BUG_ON(dev_priv->info->gen < 5);
1640
1641         /* FDI must be feeding us bits for PCH ports */
1642         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1643         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1644
1645         /* Workaround: set timing override bit. */
1646         val = I915_READ(_TRANSA_CHICKEN2);
1647         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1648         I915_WRITE(_TRANSA_CHICKEN2, val);
1649
1650         val = TRANS_ENABLE;
1651         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1652
1653         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1654             PIPECONF_INTERLACED_ILK)
1655                 val |= TRANS_INTERLACED;
1656         else
1657                 val |= TRANS_PROGRESSIVE;
1658
1659         I915_WRITE(LPT_TRANSCONF, val);
1660         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1661                 DRM_ERROR("Failed to enable PCH transcoder\n");
1662 }
1663
1664 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1665                                             enum pipe pipe)
1666 {
1667         struct drm_device *dev = dev_priv->dev;
1668         uint32_t reg, val;
1669
1670         /* FDI relies on the transcoder */
1671         assert_fdi_tx_disabled(dev_priv, pipe);
1672         assert_fdi_rx_disabled(dev_priv, pipe);
1673
1674         /* Ports must be off as well */
1675         assert_pch_ports_disabled(dev_priv, pipe);
1676
1677         reg = PCH_TRANSCONF(pipe);
1678         val = I915_READ(reg);
1679         val &= ~TRANS_ENABLE;
1680         I915_WRITE(reg, val);
1681         /* wait for PCH transcoder off, transcoder state */
1682         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1683                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1684
1685         if (!HAS_PCH_IBX(dev)) {
1686                 /* Workaround: Clear the timing override chicken bit again. */
1687                 reg = TRANS_CHICKEN2(pipe);
1688                 val = I915_READ(reg);
1689                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1690                 I915_WRITE(reg, val);
1691         }
1692 }
1693
1694 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1695 {
1696         u32 val;
1697
1698         val = I915_READ(LPT_TRANSCONF);
1699         val &= ~TRANS_ENABLE;
1700         I915_WRITE(LPT_TRANSCONF, val);
1701         /* wait for PCH transcoder off, transcoder state */
1702         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1703                 DRM_ERROR("Failed to disable PCH transcoder\n");
1704
1705         /* Workaround: clear timing override bit. */
1706         val = I915_READ(_TRANSA_CHICKEN2);
1707         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1708         I915_WRITE(_TRANSA_CHICKEN2, val);
1709 }
1710
1711 /**
1712  * intel_enable_pipe - enable a pipe, asserting requirements
1713  * @dev_priv: i915 private structure
1714  * @pipe: pipe to enable
1715  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1716  *
1717  * Enable @pipe, making sure that various hardware specific requirements
1718  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1719  *
1720  * @pipe should be %PIPE_A or %PIPE_B.
1721  *
1722  * Will wait until the pipe is actually running (i.e. first vblank) before
1723  * returning.
1724  */
1725 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1726                               bool pch_port, bool dsi)
1727 {
1728         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1729                                                                       pipe);
1730         enum pipe pch_transcoder;
1731         int reg;
1732         u32 val;
1733
1734         assert_planes_disabled(dev_priv, pipe);
1735         assert_cursor_disabled(dev_priv, pipe);
1736         assert_sprites_disabled(dev_priv, pipe);
1737
1738         if (HAS_PCH_LPT(dev_priv->dev))
1739                 pch_transcoder = TRANSCODER_A;
1740         else
1741                 pch_transcoder = pipe;
1742
1743         /*
1744          * A pipe without a PLL won't actually be able to drive bits from
1745          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1746          * need the check.
1747          */
1748         if (!HAS_PCH_SPLIT(dev_priv->dev))
1749                 if (dsi)
1750                         assert_dsi_pll_enabled(dev_priv);
1751                 else
1752                         assert_pll_enabled(dev_priv, pipe);
1753         else {
1754                 if (pch_port) {
1755                         /* if driving the PCH, we need FDI enabled */
1756                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1757                         assert_fdi_tx_pll_enabled(dev_priv,
1758                                                   (enum pipe) cpu_transcoder);
1759                 }
1760                 /* FIXME: assert CPU port conditions for SNB+ */
1761         }
1762
1763         reg = PIPECONF(cpu_transcoder);
1764         val = I915_READ(reg);
1765         if (val & PIPECONF_ENABLE)
1766                 return;
1767
1768         I915_WRITE(reg, val | PIPECONF_ENABLE);
1769         intel_wait_for_vblank(dev_priv->dev, pipe);
1770 }
1771
1772 /**
1773  * intel_disable_pipe - disable a pipe, asserting requirements
1774  * @dev_priv: i915 private structure
1775  * @pipe: pipe to disable
1776  *
1777  * Disable @pipe, making sure that various hardware specific requirements
1778  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1779  *
1780  * @pipe should be %PIPE_A or %PIPE_B.
1781  *
1782  * Will wait until the pipe has shut down before returning.
1783  */
1784 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1785                                enum pipe pipe)
1786 {
1787         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1788                                                                       pipe);
1789         int reg;
1790         u32 val;
1791
1792         /*
1793          * Make sure planes won't keep trying to pump pixels to us,
1794          * or we might hang the display.
1795          */
1796         assert_planes_disabled(dev_priv, pipe);
1797         assert_cursor_disabled(dev_priv, pipe);
1798         assert_sprites_disabled(dev_priv, pipe);
1799
1800         /* Don't disable pipe A or pipe A PLLs if needed */
1801         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1802                 return;
1803
1804         reg = PIPECONF(cpu_transcoder);
1805         val = I915_READ(reg);
1806         if ((val & PIPECONF_ENABLE) == 0)
1807                 return;
1808
1809         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1810         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1811 }
1812
1813 /*
1814  * Plane regs are double buffered, going from enabled->disabled needs a
1815  * trigger in order to latch.  The display address reg provides this.
1816  */
1817 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1818                                       enum plane plane)
1819 {
1820         if (dev_priv->info->gen >= 4)
1821                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1822         else
1823                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1824 }
1825
1826 /**
1827  * intel_enable_plane - enable a display plane on a given pipe
1828  * @dev_priv: i915 private structure
1829  * @plane: plane to enable
1830  * @pipe: pipe being fed
1831  *
1832  * Enable @plane on @pipe, making sure that @pipe is running first.
1833  */
1834 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1835                                enum plane plane, enum pipe pipe)
1836 {
1837         int reg;
1838         u32 val;
1839
1840         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1841         assert_pipe_enabled(dev_priv, pipe);
1842
1843         reg = DSPCNTR(plane);
1844         val = I915_READ(reg);
1845         if (val & DISPLAY_PLANE_ENABLE)
1846                 return;
1847
1848         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1849         intel_flush_display_plane(dev_priv, plane);
1850         intel_wait_for_vblank(dev_priv->dev, pipe);
1851 }
1852
1853 /**
1854  * intel_disable_plane - disable a display plane
1855  * @dev_priv: i915 private structure
1856  * @plane: plane to disable
1857  * @pipe: pipe consuming the data
1858  *
1859  * Disable @plane; should be an independent operation.
1860  */
1861 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1862                                 enum plane plane, enum pipe pipe)
1863 {
1864         int reg;
1865         u32 val;
1866
1867         reg = DSPCNTR(plane);
1868         val = I915_READ(reg);
1869         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1870                 return;
1871
1872         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1873         intel_flush_display_plane(dev_priv, plane);
1874         intel_wait_for_vblank(dev_priv->dev, pipe);
1875 }
1876
1877 static bool need_vtd_wa(struct drm_device *dev)
1878 {
1879 #ifdef CONFIG_INTEL_IOMMU
1880         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1881                 return true;
1882 #endif
1883         return false;
1884 }
1885
1886 int
1887 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1888                            struct drm_i915_gem_object *obj,
1889                            struct intel_ring_buffer *pipelined)
1890 {
1891         struct drm_i915_private *dev_priv = dev->dev_private;
1892         u32 alignment;
1893         int ret;
1894
1895         switch (obj->tiling_mode) {
1896         case I915_TILING_NONE:
1897                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1898                         alignment = 128 * 1024;
1899                 else if (INTEL_INFO(dev)->gen >= 4)
1900                         alignment = 4 * 1024;
1901                 else
1902                         alignment = 64 * 1024;
1903                 break;
1904         case I915_TILING_X:
1905                 /* pin() will align the object as required by fence */
1906                 alignment = 0;
1907                 break;
1908         case I915_TILING_Y:
1909                 /* Despite that we check this in framebuffer_init userspace can
1910                  * screw us over and change the tiling after the fact. Only
1911                  * pinned buffers can't change their tiling. */
1912                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1913                 return -EINVAL;
1914         default:
1915                 BUG();
1916         }
1917
1918         /* Note that the w/a also requires 64 PTE of padding following the
1919          * bo. We currently fill all unused PTE with the shadow page and so
1920          * we should always have valid PTE following the scanout preventing
1921          * the VT-d warning.
1922          */
1923         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1924                 alignment = 256 * 1024;
1925
1926         dev_priv->mm.interruptible = false;
1927         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1928         if (ret)
1929                 goto err_interruptible;
1930
1931         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1932          * fence, whereas 965+ only requires a fence if using
1933          * framebuffer compression.  For simplicity, we always install
1934          * a fence as the cost is not that onerous.
1935          */
1936         ret = i915_gem_object_get_fence(obj);
1937         if (ret)
1938                 goto err_unpin;
1939
1940         i915_gem_object_pin_fence(obj);
1941
1942         dev_priv->mm.interruptible = true;
1943         return 0;
1944
1945 err_unpin:
1946         i915_gem_object_unpin_from_display_plane(obj);
1947 err_interruptible:
1948         dev_priv->mm.interruptible = true;
1949         return ret;
1950 }
1951
1952 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1953 {
1954         i915_gem_object_unpin_fence(obj);
1955         i915_gem_object_unpin_from_display_plane(obj);
1956 }
1957
1958 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1959  * is assumed to be a power-of-two. */
1960 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1961                                              unsigned int tiling_mode,
1962                                              unsigned int cpp,
1963                                              unsigned int pitch)
1964 {
1965         if (tiling_mode != I915_TILING_NONE) {
1966                 unsigned int tile_rows, tiles;
1967
1968                 tile_rows = *y / 8;
1969                 *y %= 8;
1970
1971                 tiles = *x / (512/cpp);
1972                 *x %= 512/cpp;
1973
1974                 return tile_rows * pitch * 8 + tiles * 4096;
1975         } else {
1976                 unsigned int offset;
1977
1978                 offset = *y * pitch + *x * cpp;
1979                 *y = 0;
1980                 *x = (offset & 4095) / cpp;
1981                 return offset & -4096;
1982         }
1983 }
1984
1985 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1986                              int x, int y)
1987 {
1988         struct drm_device *dev = crtc->dev;
1989         struct drm_i915_private *dev_priv = dev->dev_private;
1990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1991         struct intel_framebuffer *intel_fb;
1992         struct drm_i915_gem_object *obj;
1993         int plane = intel_crtc->plane;
1994         unsigned long linear_offset;
1995         u32 dspcntr;
1996         u32 reg;
1997
1998         switch (plane) {
1999         case 0:
2000         case 1:
2001                 break;
2002         default:
2003                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2004                 return -EINVAL;
2005         }
2006
2007         intel_fb = to_intel_framebuffer(fb);
2008         obj = intel_fb->obj;
2009
2010         reg = DSPCNTR(plane);
2011         dspcntr = I915_READ(reg);
2012         /* Mask out pixel format bits in case we change it */
2013         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2014         switch (fb->pixel_format) {
2015         case DRM_FORMAT_C8:
2016                 dspcntr |= DISPPLANE_8BPP;
2017                 break;
2018         case DRM_FORMAT_XRGB1555:
2019         case DRM_FORMAT_ARGB1555:
2020                 dspcntr |= DISPPLANE_BGRX555;
2021                 break;
2022         case DRM_FORMAT_RGB565:
2023                 dspcntr |= DISPPLANE_BGRX565;
2024                 break;
2025         case DRM_FORMAT_XRGB8888:
2026         case DRM_FORMAT_ARGB8888:
2027                 dspcntr |= DISPPLANE_BGRX888;
2028                 break;
2029         case DRM_FORMAT_XBGR8888:
2030         case DRM_FORMAT_ABGR8888:
2031                 dspcntr |= DISPPLANE_RGBX888;
2032                 break;
2033         case DRM_FORMAT_XRGB2101010:
2034         case DRM_FORMAT_ARGB2101010:
2035                 dspcntr |= DISPPLANE_BGRX101010;
2036                 break;
2037         case DRM_FORMAT_XBGR2101010:
2038         case DRM_FORMAT_ABGR2101010:
2039                 dspcntr |= DISPPLANE_RGBX101010;
2040                 break;
2041         default:
2042                 BUG();
2043         }
2044
2045         if (INTEL_INFO(dev)->gen >= 4) {
2046                 if (obj->tiling_mode != I915_TILING_NONE)
2047                         dspcntr |= DISPPLANE_TILED;
2048                 else
2049                         dspcntr &= ~DISPPLANE_TILED;
2050         }
2051
2052         if (IS_G4X(dev))
2053                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2054
2055         I915_WRITE(reg, dspcntr);
2056
2057         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2058
2059         if (INTEL_INFO(dev)->gen >= 4) {
2060                 intel_crtc->dspaddr_offset =
2061                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2062                                                        fb->bits_per_pixel / 8,
2063                                                        fb->pitches[0]);
2064                 linear_offset -= intel_crtc->dspaddr_offset;
2065         } else {
2066                 intel_crtc->dspaddr_offset = linear_offset;
2067         }
2068
2069         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2070                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2071                       fb->pitches[0]);
2072         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2073         if (INTEL_INFO(dev)->gen >= 4) {
2074                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2075                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2076                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2077                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2078         } else
2079                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2080         POSTING_READ(reg);
2081
2082         return 0;
2083 }
2084
2085 static int ironlake_update_plane(struct drm_crtc *crtc,
2086                                  struct drm_framebuffer *fb, int x, int y)
2087 {
2088         struct drm_device *dev = crtc->dev;
2089         struct drm_i915_private *dev_priv = dev->dev_private;
2090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2091         struct intel_framebuffer *intel_fb;
2092         struct drm_i915_gem_object *obj;
2093         int plane = intel_crtc->plane;
2094         unsigned long linear_offset;
2095         u32 dspcntr;
2096         u32 reg;
2097
2098         switch (plane) {
2099         case 0:
2100         case 1:
2101         case 2:
2102                 break;
2103         default:
2104                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2105                 return -EINVAL;
2106         }
2107
2108         intel_fb = to_intel_framebuffer(fb);
2109         obj = intel_fb->obj;
2110
2111         reg = DSPCNTR(plane);
2112         dspcntr = I915_READ(reg);
2113         /* Mask out pixel format bits in case we change it */
2114         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2115         switch (fb->pixel_format) {
2116         case DRM_FORMAT_C8:
2117                 dspcntr |= DISPPLANE_8BPP;
2118                 break;
2119         case DRM_FORMAT_RGB565:
2120                 dspcntr |= DISPPLANE_BGRX565;
2121                 break;
2122         case DRM_FORMAT_XRGB8888:
2123         case DRM_FORMAT_ARGB8888:
2124                 dspcntr |= DISPPLANE_BGRX888;
2125                 break;
2126         case DRM_FORMAT_XBGR8888:
2127         case DRM_FORMAT_ABGR8888:
2128                 dspcntr |= DISPPLANE_RGBX888;
2129                 break;
2130         case DRM_FORMAT_XRGB2101010:
2131         case DRM_FORMAT_ARGB2101010:
2132                 dspcntr |= DISPPLANE_BGRX101010;
2133                 break;
2134         case DRM_FORMAT_XBGR2101010:
2135         case DRM_FORMAT_ABGR2101010:
2136                 dspcntr |= DISPPLANE_RGBX101010;
2137                 break;
2138         default:
2139                 BUG();
2140         }
2141
2142         if (obj->tiling_mode != I915_TILING_NONE)
2143                 dspcntr |= DISPPLANE_TILED;
2144         else
2145                 dspcntr &= ~DISPPLANE_TILED;
2146
2147         if (IS_HASWELL(dev))
2148                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2149         else
2150                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2151
2152         I915_WRITE(reg, dspcntr);
2153
2154         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2155         intel_crtc->dspaddr_offset =
2156                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2157                                                fb->bits_per_pixel / 8,
2158                                                fb->pitches[0]);
2159         linear_offset -= intel_crtc->dspaddr_offset;
2160
2161         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2162                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2163                       fb->pitches[0]);
2164         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2165         I915_MODIFY_DISPBASE(DSPSURF(plane),
2166                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2167         if (IS_HASWELL(dev)) {
2168                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2169         } else {
2170                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2171                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2172         }
2173         POSTING_READ(reg);
2174
2175         return 0;
2176 }
2177
2178 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2179 static int
2180 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2181                            int x, int y, enum mode_set_atomic state)
2182 {
2183         struct drm_device *dev = crtc->dev;
2184         struct drm_i915_private *dev_priv = dev->dev_private;
2185
2186         if (dev_priv->display.disable_fbc)
2187                 dev_priv->display.disable_fbc(dev);
2188         intel_increase_pllclock(crtc);
2189
2190         return dev_priv->display.update_plane(crtc, fb, x, y);
2191 }
2192
2193 void intel_display_handle_reset(struct drm_device *dev)
2194 {
2195         struct drm_i915_private *dev_priv = dev->dev_private;
2196         struct drm_crtc *crtc;
2197
2198         /*
2199          * Flips in the rings have been nuked by the reset,
2200          * so complete all pending flips so that user space
2201          * will get its events and not get stuck.
2202          *
2203          * Also update the base address of all primary
2204          * planes to the the last fb to make sure we're
2205          * showing the correct fb after a reset.
2206          *
2207          * Need to make two loops over the crtcs so that we
2208          * don't try to grab a crtc mutex before the
2209          * pending_flip_queue really got woken up.
2210          */
2211
2212         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2213                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2214                 enum plane plane = intel_crtc->plane;
2215
2216                 intel_prepare_page_flip(dev, plane);
2217                 intel_finish_page_flip_plane(dev, plane);
2218         }
2219
2220         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2221                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2222
2223                 mutex_lock(&crtc->mutex);
2224                 if (intel_crtc->active)
2225                         dev_priv->display.update_plane(crtc, crtc->fb,
2226                                                        crtc->x, crtc->y);
2227                 mutex_unlock(&crtc->mutex);
2228         }
2229 }
2230
2231 static int
2232 intel_finish_fb(struct drm_framebuffer *old_fb)
2233 {
2234         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2235         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2236         bool was_interruptible = dev_priv->mm.interruptible;
2237         int ret;
2238
2239         /* Big Hammer, we also need to ensure that any pending
2240          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2241          * current scanout is retired before unpinning the old
2242          * framebuffer.
2243          *
2244          * This should only fail upon a hung GPU, in which case we
2245          * can safely continue.
2246          */
2247         dev_priv->mm.interruptible = false;
2248         ret = i915_gem_object_finish_gpu(obj);
2249         dev_priv->mm.interruptible = was_interruptible;
2250
2251         return ret;
2252 }
2253
2254 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2255 {
2256         struct drm_device *dev = crtc->dev;
2257         struct drm_i915_master_private *master_priv;
2258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2259
2260         if (!dev->primary->master)
2261                 return;
2262
2263         master_priv = dev->primary->master->driver_priv;
2264         if (!master_priv->sarea_priv)
2265                 return;
2266
2267         switch (intel_crtc->pipe) {
2268         case 0:
2269                 master_priv->sarea_priv->pipeA_x = x;
2270                 master_priv->sarea_priv->pipeA_y = y;
2271                 break;
2272         case 1:
2273                 master_priv->sarea_priv->pipeB_x = x;
2274                 master_priv->sarea_priv->pipeB_y = y;
2275                 break;
2276         default:
2277                 break;
2278         }
2279 }
2280
2281 static int
2282 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2283                     struct drm_framebuffer *fb)
2284 {
2285         struct drm_device *dev = crtc->dev;
2286         struct drm_i915_private *dev_priv = dev->dev_private;
2287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2288         struct drm_framebuffer *old_fb;
2289         int ret;
2290
2291         /* no fb bound */
2292         if (!fb) {
2293                 DRM_ERROR("No FB bound\n");
2294                 return 0;
2295         }
2296
2297         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2298                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2299                           plane_name(intel_crtc->plane),
2300                           INTEL_INFO(dev)->num_pipes);
2301                 return -EINVAL;
2302         }
2303
2304         mutex_lock(&dev->struct_mutex);
2305         ret = intel_pin_and_fence_fb_obj(dev,
2306                                          to_intel_framebuffer(fb)->obj,
2307                                          NULL);
2308         if (ret != 0) {
2309                 mutex_unlock(&dev->struct_mutex);
2310                 DRM_ERROR("pin & fence failed\n");
2311                 return ret;
2312         }
2313
2314         /*
2315          * Update pipe size and adjust fitter if needed: the reason for this is
2316          * that in compute_mode_changes we check the native mode (not the pfit
2317          * mode) to see if we can flip rather than do a full mode set. In the
2318          * fastboot case, we'll flip, but if we don't update the pipesrc and
2319          * pfit state, we'll end up with a big fb scanned out into the wrong
2320          * sized surface.
2321          *
2322          * To fix this properly, we need to hoist the checks up into
2323          * compute_mode_changes (or above), check the actual pfit state and
2324          * whether the platform allows pfit disable with pipe active, and only
2325          * then update the pipesrc and pfit state, even on the flip path.
2326          */
2327         if (i915_fastboot) {
2328                 const struct drm_display_mode *adjusted_mode =
2329                         &intel_crtc->config.adjusted_mode;
2330
2331                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2332                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2333                            (adjusted_mode->crtc_vdisplay - 1));
2334                 if (!intel_crtc->config.pch_pfit.enabled &&
2335                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2336                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2337                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2338                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2339                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2340                 }
2341         }
2342
2343         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2344         if (ret) {
2345                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2346                 mutex_unlock(&dev->struct_mutex);
2347                 DRM_ERROR("failed to update base address\n");
2348                 return ret;
2349         }
2350
2351         old_fb = crtc->fb;
2352         crtc->fb = fb;
2353         crtc->x = x;
2354         crtc->y = y;
2355
2356         if (old_fb) {
2357                 if (intel_crtc->active && old_fb != fb)
2358                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2359                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2360         }
2361
2362         intel_update_fbc(dev);
2363         intel_edp_psr_update(dev);
2364         mutex_unlock(&dev->struct_mutex);
2365
2366         intel_crtc_update_sarea_pos(crtc, x, y);
2367
2368         return 0;
2369 }
2370
2371 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2372 {
2373         struct drm_device *dev = crtc->dev;
2374         struct drm_i915_private *dev_priv = dev->dev_private;
2375         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2376         int pipe = intel_crtc->pipe;
2377         u32 reg, temp;
2378
2379         /* enable normal train */
2380         reg = FDI_TX_CTL(pipe);
2381         temp = I915_READ(reg);
2382         if (IS_IVYBRIDGE(dev)) {
2383                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2384                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2385         } else {
2386                 temp &= ~FDI_LINK_TRAIN_NONE;
2387                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2388         }
2389         I915_WRITE(reg, temp);
2390
2391         reg = FDI_RX_CTL(pipe);
2392         temp = I915_READ(reg);
2393         if (HAS_PCH_CPT(dev)) {
2394                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2395                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2396         } else {
2397                 temp &= ~FDI_LINK_TRAIN_NONE;
2398                 temp |= FDI_LINK_TRAIN_NONE;
2399         }
2400         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2401
2402         /* wait one idle pattern time */
2403         POSTING_READ(reg);
2404         udelay(1000);
2405
2406         /* IVB wants error correction enabled */
2407         if (IS_IVYBRIDGE(dev))
2408                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2409                            FDI_FE_ERRC_ENABLE);
2410 }
2411
2412 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2413 {
2414         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2415 }
2416
2417 static void ivb_modeset_global_resources(struct drm_device *dev)
2418 {
2419         struct drm_i915_private *dev_priv = dev->dev_private;
2420         struct intel_crtc *pipe_B_crtc =
2421                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2422         struct intel_crtc *pipe_C_crtc =
2423                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2424         uint32_t temp;
2425
2426         /*
2427          * When everything is off disable fdi C so that we could enable fdi B
2428          * with all lanes. Note that we don't care about enabled pipes without
2429          * an enabled pch encoder.
2430          */
2431         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2432             !pipe_has_enabled_pch(pipe_C_crtc)) {
2433                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2434                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2435
2436                 temp = I915_READ(SOUTH_CHICKEN1);
2437                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2438                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2439                 I915_WRITE(SOUTH_CHICKEN1, temp);
2440         }
2441 }
2442
2443 /* The FDI link training functions for ILK/Ibexpeak. */
2444 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2445 {
2446         struct drm_device *dev = crtc->dev;
2447         struct drm_i915_private *dev_priv = dev->dev_private;
2448         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2449         int pipe = intel_crtc->pipe;
2450         int plane = intel_crtc->plane;
2451         u32 reg, temp, tries;
2452
2453         /* FDI needs bits from pipe & plane first */
2454         assert_pipe_enabled(dev_priv, pipe);
2455         assert_plane_enabled(dev_priv, plane);
2456
2457         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2458            for train result */
2459         reg = FDI_RX_IMR(pipe);
2460         temp = I915_READ(reg);
2461         temp &= ~FDI_RX_SYMBOL_LOCK;
2462         temp &= ~FDI_RX_BIT_LOCK;
2463         I915_WRITE(reg, temp);
2464         I915_READ(reg);
2465         udelay(150);
2466
2467         /* enable CPU FDI TX and PCH FDI RX */
2468         reg = FDI_TX_CTL(pipe);
2469         temp = I915_READ(reg);
2470         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2471         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2472         temp &= ~FDI_LINK_TRAIN_NONE;
2473         temp |= FDI_LINK_TRAIN_PATTERN_1;
2474         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2475
2476         reg = FDI_RX_CTL(pipe);
2477         temp = I915_READ(reg);
2478         temp &= ~FDI_LINK_TRAIN_NONE;
2479         temp |= FDI_LINK_TRAIN_PATTERN_1;
2480         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2481
2482         POSTING_READ(reg);
2483         udelay(150);
2484
2485         /* Ironlake workaround, enable clock pointer after FDI enable*/
2486         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2487         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2488                    FDI_RX_PHASE_SYNC_POINTER_EN);
2489
2490         reg = FDI_RX_IIR(pipe);
2491         for (tries = 0; tries < 5; tries++) {
2492                 temp = I915_READ(reg);
2493                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2494
2495                 if ((temp & FDI_RX_BIT_LOCK)) {
2496                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2497                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2498                         break;
2499                 }
2500         }
2501         if (tries == 5)
2502                 DRM_ERROR("FDI train 1 fail!\n");
2503
2504         /* Train 2 */
2505         reg = FDI_TX_CTL(pipe);
2506         temp = I915_READ(reg);
2507         temp &= ~FDI_LINK_TRAIN_NONE;
2508         temp |= FDI_LINK_TRAIN_PATTERN_2;
2509         I915_WRITE(reg, temp);
2510
2511         reg = FDI_RX_CTL(pipe);
2512         temp = I915_READ(reg);
2513         temp &= ~FDI_LINK_TRAIN_NONE;
2514         temp |= FDI_LINK_TRAIN_PATTERN_2;
2515         I915_WRITE(reg, temp);
2516
2517         POSTING_READ(reg);
2518         udelay(150);
2519
2520         reg = FDI_RX_IIR(pipe);
2521         for (tries = 0; tries < 5; tries++) {
2522                 temp = I915_READ(reg);
2523                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2524
2525                 if (temp & FDI_RX_SYMBOL_LOCK) {
2526                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2527                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2528                         break;
2529                 }
2530         }
2531         if (tries == 5)
2532                 DRM_ERROR("FDI train 2 fail!\n");
2533
2534         DRM_DEBUG_KMS("FDI train done\n");
2535
2536 }
2537
2538 static const int snb_b_fdi_train_param[] = {
2539         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2540         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2541         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2542         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2543 };
2544
2545 /* The FDI link training functions for SNB/Cougarpoint. */
2546 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2547 {
2548         struct drm_device *dev = crtc->dev;
2549         struct drm_i915_private *dev_priv = dev->dev_private;
2550         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2551         int pipe = intel_crtc->pipe;
2552         u32 reg, temp, i, retry;
2553
2554         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2555            for train result */
2556         reg = FDI_RX_IMR(pipe);
2557         temp = I915_READ(reg);
2558         temp &= ~FDI_RX_SYMBOL_LOCK;
2559         temp &= ~FDI_RX_BIT_LOCK;
2560         I915_WRITE(reg, temp);
2561
2562         POSTING_READ(reg);
2563         udelay(150);
2564
2565         /* enable CPU FDI TX and PCH FDI RX */
2566         reg = FDI_TX_CTL(pipe);
2567         temp = I915_READ(reg);
2568         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2569         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2570         temp &= ~FDI_LINK_TRAIN_NONE;
2571         temp |= FDI_LINK_TRAIN_PATTERN_1;
2572         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2573         /* SNB-B */
2574         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2575         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2576
2577         I915_WRITE(FDI_RX_MISC(pipe),
2578                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2579
2580         reg = FDI_RX_CTL(pipe);
2581         temp = I915_READ(reg);
2582         if (HAS_PCH_CPT(dev)) {
2583                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2584                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2585         } else {
2586                 temp &= ~FDI_LINK_TRAIN_NONE;
2587                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2588         }
2589         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2590
2591         POSTING_READ(reg);
2592         udelay(150);
2593
2594         for (i = 0; i < 4; i++) {
2595                 reg = FDI_TX_CTL(pipe);
2596                 temp = I915_READ(reg);
2597                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2598                 temp |= snb_b_fdi_train_param[i];
2599                 I915_WRITE(reg, temp);
2600
2601                 POSTING_READ(reg);
2602                 udelay(500);
2603
2604                 for (retry = 0; retry < 5; retry++) {
2605                         reg = FDI_RX_IIR(pipe);
2606                         temp = I915_READ(reg);
2607                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2608                         if (temp & FDI_RX_BIT_LOCK) {
2609                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2610                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2611                                 break;
2612                         }
2613                         udelay(50);
2614                 }
2615                 if (retry < 5)
2616                         break;
2617         }
2618         if (i == 4)
2619                 DRM_ERROR("FDI train 1 fail!\n");
2620
2621         /* Train 2 */
2622         reg = FDI_TX_CTL(pipe);
2623         temp = I915_READ(reg);
2624         temp &= ~FDI_LINK_TRAIN_NONE;
2625         temp |= FDI_LINK_TRAIN_PATTERN_2;
2626         if (IS_GEN6(dev)) {
2627                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2628                 /* SNB-B */
2629                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630         }
2631         I915_WRITE(reg, temp);
2632
2633         reg = FDI_RX_CTL(pipe);
2634         temp = I915_READ(reg);
2635         if (HAS_PCH_CPT(dev)) {
2636                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2637                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2638         } else {
2639                 temp &= ~FDI_LINK_TRAIN_NONE;
2640                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2641         }
2642         I915_WRITE(reg, temp);
2643
2644         POSTING_READ(reg);
2645         udelay(150);
2646
2647         for (i = 0; i < 4; i++) {
2648                 reg = FDI_TX_CTL(pipe);
2649                 temp = I915_READ(reg);
2650                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2651                 temp |= snb_b_fdi_train_param[i];
2652                 I915_WRITE(reg, temp);
2653
2654                 POSTING_READ(reg);
2655                 udelay(500);
2656
2657                 for (retry = 0; retry < 5; retry++) {
2658                         reg = FDI_RX_IIR(pipe);
2659                         temp = I915_READ(reg);
2660                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2661                         if (temp & FDI_RX_SYMBOL_LOCK) {
2662                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2663                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2664                                 break;
2665                         }
2666                         udelay(50);
2667                 }
2668                 if (retry < 5)
2669                         break;
2670         }
2671         if (i == 4)
2672                 DRM_ERROR("FDI train 2 fail!\n");
2673
2674         DRM_DEBUG_KMS("FDI train done.\n");
2675 }
2676
2677 /* Manual link training for Ivy Bridge A0 parts */
2678 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2679 {
2680         struct drm_device *dev = crtc->dev;
2681         struct drm_i915_private *dev_priv = dev->dev_private;
2682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2683         int pipe = intel_crtc->pipe;
2684         u32 reg, temp, i, j;
2685
2686         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2687            for train result */
2688         reg = FDI_RX_IMR(pipe);
2689         temp = I915_READ(reg);
2690         temp &= ~FDI_RX_SYMBOL_LOCK;
2691         temp &= ~FDI_RX_BIT_LOCK;
2692         I915_WRITE(reg, temp);
2693
2694         POSTING_READ(reg);
2695         udelay(150);
2696
2697         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2698                       I915_READ(FDI_RX_IIR(pipe)));
2699
2700         /* Try each vswing and preemphasis setting twice before moving on */
2701         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2702                 /* disable first in case we need to retry */
2703                 reg = FDI_TX_CTL(pipe);
2704                 temp = I915_READ(reg);
2705                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2706                 temp &= ~FDI_TX_ENABLE;
2707                 I915_WRITE(reg, temp);
2708
2709                 reg = FDI_RX_CTL(pipe);
2710                 temp = I915_READ(reg);
2711                 temp &= ~FDI_LINK_TRAIN_AUTO;
2712                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2713                 temp &= ~FDI_RX_ENABLE;
2714                 I915_WRITE(reg, temp);
2715
2716                 /* enable CPU FDI TX and PCH FDI RX */
2717                 reg = FDI_TX_CTL(pipe);
2718                 temp = I915_READ(reg);
2719                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2720                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2721                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2722                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2723                 temp |= snb_b_fdi_train_param[j/2];
2724                 temp |= FDI_COMPOSITE_SYNC;
2725                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2726
2727                 I915_WRITE(FDI_RX_MISC(pipe),
2728                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2729
2730                 reg = FDI_RX_CTL(pipe);
2731                 temp = I915_READ(reg);
2732                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2733                 temp |= FDI_COMPOSITE_SYNC;
2734                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2735
2736                 POSTING_READ(reg);
2737                 udelay(1); /* should be 0.5us */
2738
2739                 for (i = 0; i < 4; i++) {
2740                         reg = FDI_RX_IIR(pipe);
2741                         temp = I915_READ(reg);
2742                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2743
2744                         if (temp & FDI_RX_BIT_LOCK ||
2745                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2746                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2747                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2748                                               i);
2749                                 break;
2750                         }
2751                         udelay(1); /* should be 0.5us */
2752                 }
2753                 if (i == 4) {
2754                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2755                         continue;
2756                 }
2757
2758                 /* Train 2 */
2759                 reg = FDI_TX_CTL(pipe);
2760                 temp = I915_READ(reg);
2761                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2762                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2763                 I915_WRITE(reg, temp);
2764
2765                 reg = FDI_RX_CTL(pipe);
2766                 temp = I915_READ(reg);
2767                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2768                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2769                 I915_WRITE(reg, temp);
2770
2771                 POSTING_READ(reg);
2772                 udelay(2); /* should be 1.5us */
2773
2774                 for (i = 0; i < 4; i++) {
2775                         reg = FDI_RX_IIR(pipe);
2776                         temp = I915_READ(reg);
2777                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2778
2779                         if (temp & FDI_RX_SYMBOL_LOCK ||
2780                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2781                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2782                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2783                                               i);
2784                                 goto train_done;
2785                         }
2786                         udelay(2); /* should be 1.5us */
2787                 }
2788                 if (i == 4)
2789                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2790         }
2791
2792 train_done:
2793         DRM_DEBUG_KMS("FDI train done.\n");
2794 }
2795
2796 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2797 {
2798         struct drm_device *dev = intel_crtc->base.dev;
2799         struct drm_i915_private *dev_priv = dev->dev_private;
2800         int pipe = intel_crtc->pipe;
2801         u32 reg, temp;
2802
2803
2804         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2808         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2809         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2810         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2811
2812         POSTING_READ(reg);
2813         udelay(200);
2814
2815         /* Switch from Rawclk to PCDclk */
2816         temp = I915_READ(reg);
2817         I915_WRITE(reg, temp | FDI_PCDCLK);
2818
2819         POSTING_READ(reg);
2820         udelay(200);
2821
2822         /* Enable CPU FDI TX PLL, always on for Ironlake */
2823         reg = FDI_TX_CTL(pipe);
2824         temp = I915_READ(reg);
2825         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2826                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2827
2828                 POSTING_READ(reg);
2829                 udelay(100);
2830         }
2831 }
2832
2833 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2834 {
2835         struct drm_device *dev = intel_crtc->base.dev;
2836         struct drm_i915_private *dev_priv = dev->dev_private;
2837         int pipe = intel_crtc->pipe;
2838         u32 reg, temp;
2839
2840         /* Switch from PCDclk to Rawclk */
2841         reg = FDI_RX_CTL(pipe);
2842         temp = I915_READ(reg);
2843         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2844
2845         /* Disable CPU FDI TX PLL */
2846         reg = FDI_TX_CTL(pipe);
2847         temp = I915_READ(reg);
2848         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2849
2850         POSTING_READ(reg);
2851         udelay(100);
2852
2853         reg = FDI_RX_CTL(pipe);
2854         temp = I915_READ(reg);
2855         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2856
2857         /* Wait for the clocks to turn off. */
2858         POSTING_READ(reg);
2859         udelay(100);
2860 }
2861
2862 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2863 {
2864         struct drm_device *dev = crtc->dev;
2865         struct drm_i915_private *dev_priv = dev->dev_private;
2866         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2867         int pipe = intel_crtc->pipe;
2868         u32 reg, temp;
2869
2870         /* disable CPU FDI tx and PCH FDI rx */
2871         reg = FDI_TX_CTL(pipe);
2872         temp = I915_READ(reg);
2873         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2874         POSTING_READ(reg);
2875
2876         reg = FDI_RX_CTL(pipe);
2877         temp = I915_READ(reg);
2878         temp &= ~(0x7 << 16);
2879         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2880         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2881
2882         POSTING_READ(reg);
2883         udelay(100);
2884
2885         /* Ironlake workaround, disable clock pointer after downing FDI */
2886         if (HAS_PCH_IBX(dev)) {
2887                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2888         }
2889
2890         /* still set train pattern 1 */
2891         reg = FDI_TX_CTL(pipe);
2892         temp = I915_READ(reg);
2893         temp &= ~FDI_LINK_TRAIN_NONE;
2894         temp |= FDI_LINK_TRAIN_PATTERN_1;
2895         I915_WRITE(reg, temp);
2896
2897         reg = FDI_RX_CTL(pipe);
2898         temp = I915_READ(reg);
2899         if (HAS_PCH_CPT(dev)) {
2900                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2901                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2902         } else {
2903                 temp &= ~FDI_LINK_TRAIN_NONE;
2904                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2905         }
2906         /* BPC in FDI rx is consistent with that in PIPECONF */
2907         temp &= ~(0x07 << 16);
2908         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2909         I915_WRITE(reg, temp);
2910
2911         POSTING_READ(reg);
2912         udelay(100);
2913 }
2914
2915 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2916 {
2917         struct drm_device *dev = crtc->dev;
2918         struct drm_i915_private *dev_priv = dev->dev_private;
2919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2920         unsigned long flags;
2921         bool pending;
2922
2923         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2924             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2925                 return false;
2926
2927         spin_lock_irqsave(&dev->event_lock, flags);
2928         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2929         spin_unlock_irqrestore(&dev->event_lock, flags);
2930
2931         return pending;
2932 }
2933
2934 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2935 {
2936         struct drm_device *dev = crtc->dev;
2937         struct drm_i915_private *dev_priv = dev->dev_private;
2938
2939         if (crtc->fb == NULL)
2940                 return;
2941
2942         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2943
2944         wait_event(dev_priv->pending_flip_queue,
2945                    !intel_crtc_has_pending_flip(crtc));
2946
2947         mutex_lock(&dev->struct_mutex);
2948         intel_finish_fb(crtc->fb);
2949         mutex_unlock(&dev->struct_mutex);
2950 }
2951
2952 /* Program iCLKIP clock to the desired frequency */
2953 static void lpt_program_iclkip(struct drm_crtc *crtc)
2954 {
2955         struct drm_device *dev = crtc->dev;
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2958         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2959         u32 temp;
2960
2961         mutex_lock(&dev_priv->dpio_lock);
2962
2963         /* It is necessary to ungate the pixclk gate prior to programming
2964          * the divisors, and gate it back when it is done.
2965          */
2966         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2967
2968         /* Disable SSCCTL */
2969         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2970                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2971                                 SBI_SSCCTL_DISABLE,
2972                         SBI_ICLK);
2973
2974         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2975         if (clock == 20000) {
2976                 auxdiv = 1;
2977                 divsel = 0x41;
2978                 phaseinc = 0x20;
2979         } else {
2980                 /* The iCLK virtual clock root frequency is in MHz,
2981                  * but the adjusted_mode->crtc_clock in in KHz. To get the
2982                  * divisors, it is necessary to divide one by another, so we
2983                  * convert the virtual clock precision to KHz here for higher
2984                  * precision.
2985                  */
2986                 u32 iclk_virtual_root_freq = 172800 * 1000;
2987                 u32 iclk_pi_range = 64;
2988                 u32 desired_divisor, msb_divisor_value, pi_value;
2989
2990                 desired_divisor = (iclk_virtual_root_freq / clock);
2991                 msb_divisor_value = desired_divisor / iclk_pi_range;
2992                 pi_value = desired_divisor % iclk_pi_range;
2993
2994                 auxdiv = 0;
2995                 divsel = msb_divisor_value - 2;
2996                 phaseinc = pi_value;
2997         }
2998
2999         /* This should not happen with any sane values */
3000         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3001                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3002         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3003                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3004
3005         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3006                         clock,
3007                         auxdiv,
3008                         divsel,
3009                         phasedir,
3010                         phaseinc);
3011
3012         /* Program SSCDIVINTPHASE6 */
3013         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3014         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3015         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3016         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3017         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3018         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3019         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3020         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3021
3022         /* Program SSCAUXDIV */
3023         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3024         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3025         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3026         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3027
3028         /* Enable modulator and associated divider */
3029         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3030         temp &= ~SBI_SSCCTL_DISABLE;
3031         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3032
3033         /* Wait for initialization time */
3034         udelay(24);
3035
3036         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3037
3038         mutex_unlock(&dev_priv->dpio_lock);
3039 }
3040
3041 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3042                                                 enum pipe pch_transcoder)
3043 {
3044         struct drm_device *dev = crtc->base.dev;
3045         struct drm_i915_private *dev_priv = dev->dev_private;
3046         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3047
3048         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3049                    I915_READ(HTOTAL(cpu_transcoder)));
3050         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3051                    I915_READ(HBLANK(cpu_transcoder)));
3052         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3053                    I915_READ(HSYNC(cpu_transcoder)));
3054
3055         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3056                    I915_READ(VTOTAL(cpu_transcoder)));
3057         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3058                    I915_READ(VBLANK(cpu_transcoder)));
3059         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3060                    I915_READ(VSYNC(cpu_transcoder)));
3061         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3062                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3063 }
3064
3065 /*
3066  * Enable PCH resources required for PCH ports:
3067  *   - PCH PLLs
3068  *   - FDI training & RX/TX
3069  *   - update transcoder timings
3070  *   - DP transcoding bits
3071  *   - transcoder
3072  */
3073 static void ironlake_pch_enable(struct drm_crtc *crtc)
3074 {
3075         struct drm_device *dev = crtc->dev;
3076         struct drm_i915_private *dev_priv = dev->dev_private;
3077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3078         int pipe = intel_crtc->pipe;
3079         u32 reg, temp;
3080
3081         assert_pch_transcoder_disabled(dev_priv, pipe);
3082
3083         /* Write the TU size bits before fdi link training, so that error
3084          * detection works. */
3085         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3086                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3087
3088         /* For PCH output, training FDI link */
3089         dev_priv->display.fdi_link_train(crtc);
3090
3091         /* We need to program the right clock selection before writing the pixel
3092          * mutliplier into the DPLL. */
3093         if (HAS_PCH_CPT(dev)) {
3094                 u32 sel;
3095
3096                 temp = I915_READ(PCH_DPLL_SEL);
3097                 temp |= TRANS_DPLL_ENABLE(pipe);
3098                 sel = TRANS_DPLLB_SEL(pipe);
3099                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3100                         temp |= sel;
3101                 else
3102                         temp &= ~sel;
3103                 I915_WRITE(PCH_DPLL_SEL, temp);
3104         }
3105
3106         /* XXX: pch pll's can be enabled any time before we enable the PCH
3107          * transcoder, and we actually should do this to not upset any PCH
3108          * transcoder that already use the clock when we share it.
3109          *
3110          * Note that enable_shared_dpll tries to do the right thing, but
3111          * get_shared_dpll unconditionally resets the pll - we need that to have
3112          * the right LVDS enable sequence. */
3113         ironlake_enable_shared_dpll(intel_crtc);
3114
3115         /* set transcoder timing, panel must allow it */
3116         assert_panel_unlocked(dev_priv, pipe);
3117         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3118
3119         intel_fdi_normal_train(crtc);
3120
3121         /* For PCH DP, enable TRANS_DP_CTL */
3122         if (HAS_PCH_CPT(dev) &&
3123             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3124              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3125                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3126                 reg = TRANS_DP_CTL(pipe);
3127                 temp = I915_READ(reg);
3128                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3129                           TRANS_DP_SYNC_MASK |
3130                           TRANS_DP_BPC_MASK);
3131                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3132                          TRANS_DP_ENH_FRAMING);
3133                 temp |= bpc << 9; /* same format but at 11:9 */
3134
3135                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3136                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3137                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3138                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3139
3140                 switch (intel_trans_dp_port_sel(crtc)) {
3141                 case PCH_DP_B:
3142                         temp |= TRANS_DP_PORT_SEL_B;
3143                         break;
3144                 case PCH_DP_C:
3145                         temp |= TRANS_DP_PORT_SEL_C;
3146                         break;
3147                 case PCH_DP_D:
3148                         temp |= TRANS_DP_PORT_SEL_D;
3149                         break;
3150                 default:
3151                         BUG();
3152                 }
3153
3154                 I915_WRITE(reg, temp);
3155         }
3156
3157         ironlake_enable_pch_transcoder(dev_priv, pipe);
3158 }
3159
3160 static void lpt_pch_enable(struct drm_crtc *crtc)
3161 {
3162         struct drm_device *dev = crtc->dev;
3163         struct drm_i915_private *dev_priv = dev->dev_private;
3164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3165         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3166
3167         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3168
3169         lpt_program_iclkip(crtc);
3170
3171         /* Set transcoder timing. */
3172         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3173
3174         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3175 }
3176
3177 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3178 {
3179         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3180
3181         if (pll == NULL)
3182                 return;
3183
3184         if (pll->refcount == 0) {
3185                 WARN(1, "bad %s refcount\n", pll->name);
3186                 return;
3187         }
3188
3189         if (--pll->refcount == 0) {
3190                 WARN_ON(pll->on);
3191                 WARN_ON(pll->active);
3192         }
3193
3194         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3195 }
3196
3197 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3198 {
3199         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3200         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3201         enum intel_dpll_id i;
3202
3203         if (pll) {
3204                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3205                               crtc->base.base.id, pll->name);
3206                 intel_put_shared_dpll(crtc);
3207         }
3208
3209         if (HAS_PCH_IBX(dev_priv->dev)) {
3210                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3211                 i = (enum intel_dpll_id) crtc->pipe;
3212                 pll = &dev_priv->shared_dplls[i];
3213
3214                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3215                               crtc->base.base.id, pll->name);
3216
3217                 goto found;
3218         }
3219
3220         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3221                 pll = &dev_priv->shared_dplls[i];
3222
3223                 /* Only want to check enabled timings first */
3224                 if (pll->refcount == 0)
3225                         continue;
3226
3227                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3228                            sizeof(pll->hw_state)) == 0) {
3229                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3230                                       crtc->base.base.id,
3231                                       pll->name, pll->refcount, pll->active);
3232
3233                         goto found;
3234                 }
3235         }
3236
3237         /* Ok no matching timings, maybe there's a free one? */
3238         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3239                 pll = &dev_priv->shared_dplls[i];
3240                 if (pll->refcount == 0) {
3241                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3242                                       crtc->base.base.id, pll->name);
3243                         goto found;
3244                 }
3245         }
3246
3247         return NULL;
3248
3249 found:
3250         crtc->config.shared_dpll = i;
3251         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3252                          pipe_name(crtc->pipe));
3253
3254         if (pll->active == 0) {
3255                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3256                        sizeof(pll->hw_state));
3257
3258                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3259                 WARN_ON(pll->on);
3260                 assert_shared_dpll_disabled(dev_priv, pll);
3261
3262                 pll->mode_set(dev_priv, pll);
3263         }
3264         pll->refcount++;
3265
3266         return pll;
3267 }
3268
3269 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3270 {
3271         struct drm_i915_private *dev_priv = dev->dev_private;
3272         int dslreg = PIPEDSL(pipe);
3273         u32 temp;
3274
3275         temp = I915_READ(dslreg);
3276         udelay(500);
3277         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3278                 if (wait_for(I915_READ(dslreg) != temp, 5))
3279                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3280         }
3281 }
3282
3283 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3284 {
3285         struct drm_device *dev = crtc->base.dev;
3286         struct drm_i915_private *dev_priv = dev->dev_private;
3287         int pipe = crtc->pipe;
3288
3289         if (crtc->config.pch_pfit.enabled) {
3290                 /* Force use of hard-coded filter coefficients
3291                  * as some pre-programmed values are broken,
3292                  * e.g. x201.
3293                  */
3294                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3295                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3296                                                  PF_PIPE_SEL_IVB(pipe));
3297                 else
3298                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3299                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3300                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3301         }
3302 }
3303
3304 static void intel_enable_planes(struct drm_crtc *crtc)
3305 {
3306         struct drm_device *dev = crtc->dev;
3307         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3308         struct intel_plane *intel_plane;
3309
3310         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3311                 if (intel_plane->pipe == pipe)
3312                         intel_plane_restore(&intel_plane->base);
3313 }
3314
3315 static void intel_disable_planes(struct drm_crtc *crtc)
3316 {
3317         struct drm_device *dev = crtc->dev;
3318         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3319         struct intel_plane *intel_plane;
3320
3321         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3322                 if (intel_plane->pipe == pipe)
3323                         intel_plane_disable(&intel_plane->base);
3324 }
3325
3326 static void hsw_enable_ips(struct intel_crtc *crtc)
3327 {
3328         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3329
3330         if (!crtc->config.ips_enabled)
3331                 return;
3332
3333         /* We can only enable IPS after we enable a plane and wait for a vblank.
3334          * We guarantee that the plane is enabled by calling intel_enable_ips
3335          * only after intel_enable_plane. And intel_enable_plane already waits
3336          * for a vblank, so all we need to do here is to enable the IPS bit. */
3337         assert_plane_enabled(dev_priv, crtc->plane);
3338         I915_WRITE(IPS_CTL, IPS_ENABLE);
3339 }
3340
3341 static void hsw_disable_ips(struct intel_crtc *crtc)
3342 {
3343         struct drm_device *dev = crtc->base.dev;
3344         struct drm_i915_private *dev_priv = dev->dev_private;
3345
3346         if (!crtc->config.ips_enabled)
3347                 return;
3348
3349         assert_plane_enabled(dev_priv, crtc->plane);
3350         I915_WRITE(IPS_CTL, 0);
3351         POSTING_READ(IPS_CTL);
3352
3353         /* We need to wait for a vblank before we can disable the plane. */
3354         intel_wait_for_vblank(dev, crtc->pipe);
3355 }
3356
3357 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3358 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3359 {
3360         struct drm_device *dev = crtc->dev;
3361         struct drm_i915_private *dev_priv = dev->dev_private;
3362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3363         enum pipe pipe = intel_crtc->pipe;
3364         int palreg = PALETTE(pipe);
3365         int i;
3366         bool reenable_ips = false;
3367
3368         /* The clocks have to be on to load the palette. */
3369         if (!crtc->enabled || !intel_crtc->active)
3370                 return;
3371
3372         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3373                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3374                         assert_dsi_pll_enabled(dev_priv);
3375                 else
3376                         assert_pll_enabled(dev_priv, pipe);
3377         }
3378
3379         /* use legacy palette for Ironlake */
3380         if (HAS_PCH_SPLIT(dev))
3381                 palreg = LGC_PALETTE(pipe);
3382
3383         /* Workaround : Do not read or write the pipe palette/gamma data while
3384          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3385          */
3386         if (intel_crtc->config.ips_enabled &&
3387             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3388              GAMMA_MODE_MODE_SPLIT)) {
3389                 hsw_disable_ips(intel_crtc);
3390                 reenable_ips = true;
3391         }
3392
3393         for (i = 0; i < 256; i++) {
3394                 I915_WRITE(palreg + 4 * i,
3395                            (intel_crtc->lut_r[i] << 16) |
3396                            (intel_crtc->lut_g[i] << 8) |
3397                            intel_crtc->lut_b[i]);
3398         }
3399
3400         if (reenable_ips)
3401                 hsw_enable_ips(intel_crtc);
3402 }
3403
3404 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3405 {
3406         struct drm_device *dev = crtc->dev;
3407         struct drm_i915_private *dev_priv = dev->dev_private;
3408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3409         struct intel_encoder *encoder;
3410         int pipe = intel_crtc->pipe;
3411         int plane = intel_crtc->plane;
3412
3413         WARN_ON(!crtc->enabled);
3414
3415         if (intel_crtc->active)
3416                 return;
3417
3418         intel_crtc->active = true;
3419
3420         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3421         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3422
3423         for_each_encoder_on_crtc(dev, crtc, encoder)
3424                 if (encoder->pre_enable)
3425                         encoder->pre_enable(encoder);
3426
3427         if (intel_crtc->config.has_pch_encoder) {
3428                 /* Note: FDI PLL enabling _must_ be done before we enable the
3429                  * cpu pipes, hence this is separate from all the other fdi/pch
3430                  * enabling. */
3431                 ironlake_fdi_pll_enable(intel_crtc);
3432         } else {
3433                 assert_fdi_tx_disabled(dev_priv, pipe);
3434                 assert_fdi_rx_disabled(dev_priv, pipe);
3435         }
3436
3437         ironlake_pfit_enable(intel_crtc);
3438
3439         /*
3440          * On ILK+ LUT must be loaded before the pipe is running but with
3441          * clocks enabled
3442          */
3443         intel_crtc_load_lut(crtc);
3444
3445         intel_update_watermarks(crtc);
3446         intel_enable_pipe(dev_priv, pipe,
3447                           intel_crtc->config.has_pch_encoder, false);
3448         intel_enable_plane(dev_priv, plane, pipe);
3449         intel_enable_planes(crtc);
3450         intel_crtc_update_cursor(crtc, true);
3451
3452         if (intel_crtc->config.has_pch_encoder)
3453                 ironlake_pch_enable(crtc);
3454
3455         mutex_lock(&dev->struct_mutex);
3456         intel_update_fbc(dev);
3457         mutex_unlock(&dev->struct_mutex);
3458
3459         for_each_encoder_on_crtc(dev, crtc, encoder)
3460                 encoder->enable(encoder);
3461
3462         if (HAS_PCH_CPT(dev))
3463                 cpt_verify_modeset(dev, intel_crtc->pipe);
3464
3465         /*
3466          * There seems to be a race in PCH platform hw (at least on some
3467          * outputs) where an enabled pipe still completes any pageflip right
3468          * away (as if the pipe is off) instead of waiting for vblank. As soon
3469          * as the first vblank happend, everything works as expected. Hence just
3470          * wait for one vblank before returning to avoid strange things
3471          * happening.
3472          */
3473         intel_wait_for_vblank(dev, intel_crtc->pipe);
3474 }
3475
3476 /* IPS only exists on ULT machines and is tied to pipe A. */
3477 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3478 {
3479         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3480 }
3481
3482 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3483 {
3484         struct drm_device *dev = crtc->dev;
3485         struct drm_i915_private *dev_priv = dev->dev_private;
3486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3487         int pipe = intel_crtc->pipe;
3488         int plane = intel_crtc->plane;
3489
3490         intel_enable_plane(dev_priv, plane, pipe);
3491         intel_enable_planes(crtc);
3492         intel_crtc_update_cursor(crtc, true);
3493
3494         hsw_enable_ips(intel_crtc);
3495
3496         mutex_lock(&dev->struct_mutex);
3497         intel_update_fbc(dev);
3498         mutex_unlock(&dev->struct_mutex);
3499 }
3500
3501 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3502 {
3503         struct drm_device *dev = crtc->dev;
3504         struct drm_i915_private *dev_priv = dev->dev_private;
3505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3506         int pipe = intel_crtc->pipe;
3507         int plane = intel_crtc->plane;
3508
3509         intel_crtc_wait_for_pending_flips(crtc);
3510         drm_vblank_off(dev, pipe);
3511
3512         /* FBC must be disabled before disabling the plane on HSW. */
3513         if (dev_priv->fbc.plane == plane)
3514                 intel_disable_fbc(dev);
3515
3516         hsw_disable_ips(intel_crtc);
3517
3518         intel_crtc_update_cursor(crtc, false);
3519         intel_disable_planes(crtc);
3520         intel_disable_plane(dev_priv, plane, pipe);
3521 }
3522
3523 /*
3524  * This implements the workaround described in the "notes" section of the mode
3525  * set sequence documentation. When going from no pipes or single pipe to
3526  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3527  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3528  */
3529 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3530 {
3531         struct drm_device *dev = crtc->base.dev;
3532         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3533
3534         /* We want to get the other_active_crtc only if there's only 1 other
3535          * active crtc. */
3536         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3537                 if (!crtc_it->active || crtc_it == crtc)
3538                         continue;
3539
3540                 if (other_active_crtc)
3541                         return;
3542
3543                 other_active_crtc = crtc_it;
3544         }
3545         if (!other_active_crtc)
3546                 return;
3547
3548         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3549         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3550 }
3551
3552 static void haswell_crtc_enable(struct drm_crtc *crtc)
3553 {
3554         struct drm_device *dev = crtc->dev;
3555         struct drm_i915_private *dev_priv = dev->dev_private;
3556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3557         struct intel_encoder *encoder;
3558         int pipe = intel_crtc->pipe;
3559
3560         WARN_ON(!crtc->enabled);
3561
3562         if (intel_crtc->active)
3563                 return;
3564
3565         intel_crtc->active = true;
3566
3567         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3568         if (intel_crtc->config.has_pch_encoder)
3569                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3570
3571         if (intel_crtc->config.has_pch_encoder)
3572                 dev_priv->display.fdi_link_train(crtc);
3573
3574         for_each_encoder_on_crtc(dev, crtc, encoder)
3575                 if (encoder->pre_enable)
3576                         encoder->pre_enable(encoder);
3577
3578         intel_ddi_enable_pipe_clock(intel_crtc);
3579
3580         ironlake_pfit_enable(intel_crtc);
3581
3582         /*
3583          * On ILK+ LUT must be loaded before the pipe is running but with
3584          * clocks enabled
3585          */
3586         intel_crtc_load_lut(crtc);
3587
3588         intel_ddi_set_pipe_settings(crtc);
3589         intel_ddi_enable_transcoder_func(crtc);
3590
3591         intel_update_watermarks(crtc);
3592         intel_enable_pipe(dev_priv, pipe,
3593                           intel_crtc->config.has_pch_encoder, false);
3594
3595         if (intel_crtc->config.has_pch_encoder)
3596                 lpt_pch_enable(crtc);
3597
3598         for_each_encoder_on_crtc(dev, crtc, encoder) {
3599                 encoder->enable(encoder);
3600                 intel_opregion_notify_encoder(encoder, true);
3601         }
3602
3603         /* If we change the relative order between pipe/planes enabling, we need
3604          * to change the workaround. */
3605         haswell_mode_set_planes_workaround(intel_crtc);
3606         haswell_crtc_enable_planes(crtc);
3607
3608         /*
3609          * There seems to be a race in PCH platform hw (at least on some
3610          * outputs) where an enabled pipe still completes any pageflip right
3611          * away (as if the pipe is off) instead of waiting for vblank. As soon
3612          * as the first vblank happend, everything works as expected. Hence just
3613          * wait for one vblank before returning to avoid strange things
3614          * happening.
3615          */
3616         intel_wait_for_vblank(dev, intel_crtc->pipe);
3617 }
3618
3619 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3620 {
3621         struct drm_device *dev = crtc->base.dev;
3622         struct drm_i915_private *dev_priv = dev->dev_private;
3623         int pipe = crtc->pipe;
3624
3625         /* To avoid upsetting the power well on haswell only disable the pfit if
3626          * it's in use. The hw state code will make sure we get this right. */
3627         if (crtc->config.pch_pfit.enabled) {
3628                 I915_WRITE(PF_CTL(pipe), 0);
3629                 I915_WRITE(PF_WIN_POS(pipe), 0);
3630                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3631         }
3632 }
3633
3634 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3635 {
3636         struct drm_device *dev = crtc->dev;
3637         struct drm_i915_private *dev_priv = dev->dev_private;
3638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3639         struct intel_encoder *encoder;
3640         int pipe = intel_crtc->pipe;
3641         int plane = intel_crtc->plane;
3642         u32 reg, temp;
3643
3644
3645         if (!intel_crtc->active)
3646                 return;
3647
3648         for_each_encoder_on_crtc(dev, crtc, encoder)
3649                 encoder->disable(encoder);
3650
3651         intel_crtc_wait_for_pending_flips(crtc);
3652         drm_vblank_off(dev, pipe);
3653
3654         if (dev_priv->fbc.plane == plane)
3655                 intel_disable_fbc(dev);
3656
3657         intel_crtc_update_cursor(crtc, false);
3658         intel_disable_planes(crtc);
3659         intel_disable_plane(dev_priv, plane, pipe);
3660
3661         if (intel_crtc->config.has_pch_encoder)
3662                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3663
3664         intel_disable_pipe(dev_priv, pipe);
3665
3666         ironlake_pfit_disable(intel_crtc);
3667
3668         for_each_encoder_on_crtc(dev, crtc, encoder)
3669                 if (encoder->post_disable)
3670                         encoder->post_disable(encoder);
3671
3672         if (intel_crtc->config.has_pch_encoder) {
3673                 ironlake_fdi_disable(crtc);
3674
3675                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3676                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3677
3678                 if (HAS_PCH_CPT(dev)) {
3679                         /* disable TRANS_DP_CTL */
3680                         reg = TRANS_DP_CTL(pipe);
3681                         temp = I915_READ(reg);
3682                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3683                                   TRANS_DP_PORT_SEL_MASK);
3684                         temp |= TRANS_DP_PORT_SEL_NONE;
3685                         I915_WRITE(reg, temp);
3686
3687                         /* disable DPLL_SEL */
3688                         temp = I915_READ(PCH_DPLL_SEL);
3689                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3690                         I915_WRITE(PCH_DPLL_SEL, temp);
3691                 }
3692
3693                 /* disable PCH DPLL */
3694                 intel_disable_shared_dpll(intel_crtc);
3695
3696                 ironlake_fdi_pll_disable(intel_crtc);
3697         }
3698
3699         intel_crtc->active = false;
3700         intel_update_watermarks(crtc);
3701
3702         mutex_lock(&dev->struct_mutex);
3703         intel_update_fbc(dev);
3704         mutex_unlock(&dev->struct_mutex);
3705 }
3706
3707 static void haswell_crtc_disable(struct drm_crtc *crtc)
3708 {
3709         struct drm_device *dev = crtc->dev;
3710         struct drm_i915_private *dev_priv = dev->dev_private;
3711         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3712         struct intel_encoder *encoder;
3713         int pipe = intel_crtc->pipe;
3714         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3715
3716         if (!intel_crtc->active)
3717                 return;
3718
3719         haswell_crtc_disable_planes(crtc);
3720
3721         for_each_encoder_on_crtc(dev, crtc, encoder) {
3722                 intel_opregion_notify_encoder(encoder, false);
3723                 encoder->disable(encoder);
3724         }
3725
3726         if (intel_crtc->config.has_pch_encoder)
3727                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3728         intel_disable_pipe(dev_priv, pipe);
3729
3730         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3731
3732         ironlake_pfit_disable(intel_crtc);
3733
3734         intel_ddi_disable_pipe_clock(intel_crtc);
3735
3736         for_each_encoder_on_crtc(dev, crtc, encoder)
3737                 if (encoder->post_disable)
3738                         encoder->post_disable(encoder);
3739
3740         if (intel_crtc->config.has_pch_encoder) {
3741                 lpt_disable_pch_transcoder(dev_priv);
3742                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3743                 intel_ddi_fdi_disable(crtc);
3744         }
3745
3746         intel_crtc->active = false;
3747         intel_update_watermarks(crtc);
3748
3749         mutex_lock(&dev->struct_mutex);
3750         intel_update_fbc(dev);
3751         mutex_unlock(&dev->struct_mutex);
3752 }
3753
3754 static void ironlake_crtc_off(struct drm_crtc *crtc)
3755 {
3756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3757         intel_put_shared_dpll(intel_crtc);
3758 }
3759
3760 static void haswell_crtc_off(struct drm_crtc *crtc)
3761 {
3762         intel_ddi_put_crtc_pll(crtc);
3763 }
3764
3765 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3766 {
3767         if (!enable && intel_crtc->overlay) {
3768                 struct drm_device *dev = intel_crtc->base.dev;
3769                 struct drm_i915_private *dev_priv = dev->dev_private;
3770
3771                 mutex_lock(&dev->struct_mutex);
3772                 dev_priv->mm.interruptible = false;
3773                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3774                 dev_priv->mm.interruptible = true;
3775                 mutex_unlock(&dev->struct_mutex);
3776         }
3777
3778         /* Let userspace switch the overlay on again. In most cases userspace
3779          * has to recompute where to put it anyway.
3780          */
3781 }
3782
3783 /**
3784  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3785  * cursor plane briefly if not already running after enabling the display
3786  * plane.
3787  * This workaround avoids occasional blank screens when self refresh is
3788  * enabled.
3789  */
3790 static void
3791 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3792 {
3793         u32 cntl = I915_READ(CURCNTR(pipe));
3794
3795         if ((cntl & CURSOR_MODE) == 0) {
3796                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3797
3798                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3799                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3800                 intel_wait_for_vblank(dev_priv->dev, pipe);
3801                 I915_WRITE(CURCNTR(pipe), cntl);
3802                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3803                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3804         }
3805 }
3806
3807 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3808 {
3809         struct drm_device *dev = crtc->base.dev;
3810         struct drm_i915_private *dev_priv = dev->dev_private;
3811         struct intel_crtc_config *pipe_config = &crtc->config;
3812
3813         if (!crtc->config.gmch_pfit.control)
3814                 return;
3815
3816         /*
3817          * The panel fitter should only be adjusted whilst the pipe is disabled,
3818          * according to register description and PRM.
3819          */
3820         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3821         assert_pipe_disabled(dev_priv, crtc->pipe);
3822
3823         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3824         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3825
3826         /* Border color in case we don't scale up to the full screen. Black by
3827          * default, change to something else for debugging. */
3828         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3829 }
3830
3831 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3832 {
3833         struct drm_device *dev = crtc->dev;
3834         struct drm_i915_private *dev_priv = dev->dev_private;
3835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3836         struct intel_encoder *encoder;
3837         int pipe = intel_crtc->pipe;
3838         int plane = intel_crtc->plane;
3839         bool is_dsi;
3840
3841         WARN_ON(!crtc->enabled);
3842
3843         if (intel_crtc->active)
3844                 return;
3845
3846         intel_crtc->active = true;
3847
3848         for_each_encoder_on_crtc(dev, crtc, encoder)
3849                 if (encoder->pre_pll_enable)
3850                         encoder->pre_pll_enable(encoder);
3851
3852         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3853
3854         if (!is_dsi)
3855                 vlv_enable_pll(intel_crtc);
3856
3857         for_each_encoder_on_crtc(dev, crtc, encoder)
3858                 if (encoder->pre_enable)
3859                         encoder->pre_enable(encoder);
3860
3861         i9xx_pfit_enable(intel_crtc);
3862
3863         intel_crtc_load_lut(crtc);
3864
3865         intel_update_watermarks(crtc);
3866         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3867         intel_enable_plane(dev_priv, plane, pipe);
3868         intel_enable_planes(crtc);
3869         intel_crtc_update_cursor(crtc, true);
3870
3871         intel_update_fbc(dev);
3872
3873         for_each_encoder_on_crtc(dev, crtc, encoder)
3874                 encoder->enable(encoder);
3875 }
3876
3877 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3878 {
3879         struct drm_device *dev = crtc->dev;
3880         struct drm_i915_private *dev_priv = dev->dev_private;
3881         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3882         struct intel_encoder *encoder;
3883         int pipe = intel_crtc->pipe;
3884         int plane = intel_crtc->plane;
3885
3886         WARN_ON(!crtc->enabled);
3887
3888         if (intel_crtc->active)
3889                 return;
3890
3891         intel_crtc->active = true;
3892
3893         for_each_encoder_on_crtc(dev, crtc, encoder)
3894                 if (encoder->pre_enable)
3895                         encoder->pre_enable(encoder);
3896
3897         i9xx_enable_pll(intel_crtc);
3898
3899         i9xx_pfit_enable(intel_crtc);
3900
3901         intel_crtc_load_lut(crtc);
3902
3903         intel_update_watermarks(crtc);
3904         intel_enable_pipe(dev_priv, pipe, false, false);
3905         intel_enable_plane(dev_priv, plane, pipe);
3906         intel_enable_planes(crtc);
3907         /* The fixup needs to happen before cursor is enabled */
3908         if (IS_G4X(dev))
3909                 g4x_fixup_plane(dev_priv, pipe);
3910         intel_crtc_update_cursor(crtc, true);
3911
3912         /* Give the overlay scaler a chance to enable if it's on this pipe */
3913         intel_crtc_dpms_overlay(intel_crtc, true);
3914
3915         intel_update_fbc(dev);
3916
3917         for_each_encoder_on_crtc(dev, crtc, encoder)
3918                 encoder->enable(encoder);
3919 }
3920
3921 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3922 {
3923         struct drm_device *dev = crtc->base.dev;
3924         struct drm_i915_private *dev_priv = dev->dev_private;
3925
3926         if (!crtc->config.gmch_pfit.control)
3927                 return;
3928
3929         assert_pipe_disabled(dev_priv, crtc->pipe);
3930
3931         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3932                          I915_READ(PFIT_CONTROL));
3933         I915_WRITE(PFIT_CONTROL, 0);
3934 }
3935
3936 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3937 {
3938         struct drm_device *dev = crtc->dev;
3939         struct drm_i915_private *dev_priv = dev->dev_private;
3940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3941         struct intel_encoder *encoder;
3942         int pipe = intel_crtc->pipe;
3943         int plane = intel_crtc->plane;
3944
3945         if (!intel_crtc->active)
3946                 return;
3947
3948         for_each_encoder_on_crtc(dev, crtc, encoder)
3949                 encoder->disable(encoder);
3950
3951         /* Give the overlay scaler a chance to disable if it's on this pipe */
3952         intel_crtc_wait_for_pending_flips(crtc);
3953         drm_vblank_off(dev, pipe);
3954
3955         if (dev_priv->fbc.plane == plane)
3956                 intel_disable_fbc(dev);
3957
3958         intel_crtc_dpms_overlay(intel_crtc, false);
3959         intel_crtc_update_cursor(crtc, false);
3960         intel_disable_planes(crtc);
3961         intel_disable_plane(dev_priv, plane, pipe);
3962
3963         intel_disable_pipe(dev_priv, pipe);
3964
3965         i9xx_pfit_disable(intel_crtc);
3966
3967         for_each_encoder_on_crtc(dev, crtc, encoder)
3968                 if (encoder->post_disable)
3969                         encoder->post_disable(encoder);
3970
3971         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3972                 vlv_disable_pll(dev_priv, pipe);
3973         else if (!IS_VALLEYVIEW(dev))
3974                 i9xx_disable_pll(dev_priv, pipe);
3975
3976         intel_crtc->active = false;
3977         intel_update_watermarks(crtc);
3978
3979         intel_update_fbc(dev);
3980 }
3981
3982 static void i9xx_crtc_off(struct drm_crtc *crtc)
3983 {
3984 }
3985
3986 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3987                                     bool enabled)
3988 {
3989         struct drm_device *dev = crtc->dev;
3990         struct drm_i915_master_private *master_priv;
3991         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3992         int pipe = intel_crtc->pipe;
3993
3994         if (!dev->primary->master)
3995                 return;
3996
3997         master_priv = dev->primary->master->driver_priv;
3998         if (!master_priv->sarea_priv)
3999                 return;
4000
4001         switch (pipe) {
4002         case 0:
4003                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4004                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4005                 break;
4006         case 1:
4007                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4008                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4009                 break;
4010         default:
4011                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4012                 break;
4013         }
4014 }
4015
4016 /**
4017  * Sets the power management mode of the pipe and plane.
4018  */
4019 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4020 {
4021         struct drm_device *dev = crtc->dev;
4022         struct drm_i915_private *dev_priv = dev->dev_private;
4023         struct intel_encoder *intel_encoder;
4024         bool enable = false;
4025
4026         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4027                 enable |= intel_encoder->connectors_active;
4028
4029         if (enable)
4030                 dev_priv->display.crtc_enable(crtc);
4031         else
4032                 dev_priv->display.crtc_disable(crtc);
4033
4034         intel_crtc_update_sarea(crtc, enable);
4035 }
4036
4037 static void intel_crtc_disable(struct drm_crtc *crtc)
4038 {
4039         struct drm_device *dev = crtc->dev;
4040         struct drm_connector *connector;
4041         struct drm_i915_private *dev_priv = dev->dev_private;
4042         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4043
4044         /* crtc should still be enabled when we disable it. */
4045         WARN_ON(!crtc->enabled);
4046
4047         dev_priv->display.crtc_disable(crtc);
4048         intel_crtc->eld_vld = false;
4049         intel_crtc_update_sarea(crtc, false);
4050         dev_priv->display.off(crtc);
4051
4052         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4053         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4054         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4055
4056         if (crtc->fb) {
4057                 mutex_lock(&dev->struct_mutex);
4058                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4059                 mutex_unlock(&dev->struct_mutex);
4060                 crtc->fb = NULL;
4061         }
4062
4063         /* Update computed state. */
4064         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4065                 if (!connector->encoder || !connector->encoder->crtc)
4066                         continue;
4067
4068                 if (connector->encoder->crtc != crtc)
4069                         continue;
4070
4071                 connector->dpms = DRM_MODE_DPMS_OFF;
4072                 to_intel_encoder(connector->encoder)->connectors_active = false;
4073         }
4074 }
4075
4076 void intel_encoder_destroy(struct drm_encoder *encoder)
4077 {
4078         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4079
4080         drm_encoder_cleanup(encoder);
4081         kfree(intel_encoder);
4082 }
4083
4084 /* Simple dpms helper for encoders with just one connector, no cloning and only
4085  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4086  * state of the entire output pipe. */
4087 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4088 {
4089         if (mode == DRM_MODE_DPMS_ON) {
4090                 encoder->connectors_active = true;
4091
4092                 intel_crtc_update_dpms(encoder->base.crtc);
4093         } else {
4094                 encoder->connectors_active = false;
4095
4096                 intel_crtc_update_dpms(encoder->base.crtc);
4097         }
4098 }
4099
4100 /* Cross check the actual hw state with our own modeset state tracking (and it's
4101  * internal consistency). */
4102 static void intel_connector_check_state(struct intel_connector *connector)
4103 {
4104         if (connector->get_hw_state(connector)) {
4105                 struct intel_encoder *encoder = connector->encoder;
4106                 struct drm_crtc *crtc;
4107                 bool encoder_enabled;
4108                 enum pipe pipe;
4109
4110                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4111                               connector->base.base.id,
4112                               drm_get_connector_name(&connector->base));
4113
4114                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4115                      "wrong connector dpms state\n");
4116                 WARN(connector->base.encoder != &encoder->base,
4117                      "active connector not linked to encoder\n");
4118                 WARN(!encoder->connectors_active,
4119                      "encoder->connectors_active not set\n");
4120
4121                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4122                 WARN(!encoder_enabled, "encoder not enabled\n");
4123                 if (WARN_ON(!encoder->base.crtc))
4124                         return;
4125
4126                 crtc = encoder->base.crtc;
4127
4128                 WARN(!crtc->enabled, "crtc not enabled\n");
4129                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4130                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4131                      "encoder active on the wrong pipe\n");
4132         }
4133 }
4134
4135 /* Even simpler default implementation, if there's really no special case to
4136  * consider. */
4137 void intel_connector_dpms(struct drm_connector *connector, int mode)
4138 {
4139         struct intel_encoder *encoder = intel_attached_encoder(connector);
4140
4141         /* All the simple cases only support two dpms states. */
4142         if (mode != DRM_MODE_DPMS_ON)
4143                 mode = DRM_MODE_DPMS_OFF;
4144
4145         if (mode == connector->dpms)
4146                 return;
4147
4148         connector->dpms = mode;
4149
4150         /* Only need to change hw state when actually enabled */
4151         if (encoder->base.crtc)
4152                 intel_encoder_dpms(encoder, mode);
4153         else
4154                 WARN_ON(encoder->connectors_active != false);
4155
4156         intel_modeset_check_state(connector->dev);
4157 }
4158
4159 /* Simple connector->get_hw_state implementation for encoders that support only
4160  * one connector and no cloning and hence the encoder state determines the state
4161  * of the connector. */
4162 bool intel_connector_get_hw_state(struct intel_connector *connector)
4163 {
4164         enum pipe pipe = 0;
4165         struct intel_encoder *encoder = connector->encoder;
4166
4167         return encoder->get_hw_state(encoder, &pipe);
4168 }
4169
4170 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4171                                      struct intel_crtc_config *pipe_config)
4172 {
4173         struct drm_i915_private *dev_priv = dev->dev_private;
4174         struct intel_crtc *pipe_B_crtc =
4175                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4176
4177         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4178                       pipe_name(pipe), pipe_config->fdi_lanes);
4179         if (pipe_config->fdi_lanes > 4) {
4180                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4181                               pipe_name(pipe), pipe_config->fdi_lanes);
4182                 return false;
4183         }
4184
4185         if (IS_HASWELL(dev)) {
4186                 if (pipe_config->fdi_lanes > 2) {
4187                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4188                                       pipe_config->fdi_lanes);
4189                         return false;
4190                 } else {
4191                         return true;
4192                 }
4193         }
4194
4195         if (INTEL_INFO(dev)->num_pipes == 2)
4196                 return true;
4197
4198         /* Ivybridge 3 pipe is really complicated */
4199         switch (pipe) {
4200         case PIPE_A:
4201                 return true;
4202         case PIPE_B:
4203                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4204                     pipe_config->fdi_lanes > 2) {
4205                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4206                                       pipe_name(pipe), pipe_config->fdi_lanes);
4207                         return false;
4208                 }
4209                 return true;
4210         case PIPE_C:
4211                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4212                     pipe_B_crtc->config.fdi_lanes <= 2) {
4213                         if (pipe_config->fdi_lanes > 2) {
4214                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4215                                               pipe_name(pipe), pipe_config->fdi_lanes);
4216                                 return false;
4217                         }
4218                 } else {
4219                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4220                         return false;
4221                 }
4222                 return true;
4223         default:
4224                 BUG();
4225         }
4226 }
4227
4228 #define RETRY 1
4229 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4230                                        struct intel_crtc_config *pipe_config)
4231 {
4232         struct drm_device *dev = intel_crtc->base.dev;
4233         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4234         int lane, link_bw, fdi_dotclock;
4235         bool setup_ok, needs_recompute = false;
4236
4237 retry:
4238         /* FDI is a binary signal running at ~2.7GHz, encoding
4239          * each output octet as 10 bits. The actual frequency
4240          * is stored as a divider into a 100MHz clock, and the
4241          * mode pixel clock is stored in units of 1KHz.
4242          * Hence the bw of each lane in terms of the mode signal
4243          * is:
4244          */
4245         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4246
4247         fdi_dotclock = adjusted_mode->crtc_clock;
4248
4249         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4250                                            pipe_config->pipe_bpp);
4251
4252         pipe_config->fdi_lanes = lane;
4253
4254         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4255                                link_bw, &pipe_config->fdi_m_n);
4256
4257         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4258                                             intel_crtc->pipe, pipe_config);
4259         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4260                 pipe_config->pipe_bpp -= 2*3;
4261                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4262                               pipe_config->pipe_bpp);
4263                 needs_recompute = true;
4264                 pipe_config->bw_constrained = true;
4265
4266                 goto retry;
4267         }
4268
4269         if (needs_recompute)
4270                 return RETRY;
4271
4272         return setup_ok ? 0 : -EINVAL;
4273 }
4274
4275 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4276                                    struct intel_crtc_config *pipe_config)
4277 {
4278         pipe_config->ips_enabled = i915_enable_ips &&
4279                                    hsw_crtc_supports_ips(crtc) &&
4280                                    pipe_config->pipe_bpp <= 24;
4281 }
4282
4283 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4284                                      struct intel_crtc_config *pipe_config)
4285 {
4286         struct drm_device *dev = crtc->base.dev;
4287         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4288
4289         /* FIXME should check pixel clock limits on all platforms */
4290         if (INTEL_INFO(dev)->gen < 4) {
4291                 struct drm_i915_private *dev_priv = dev->dev_private;
4292                 int clock_limit =
4293                         dev_priv->display.get_display_clock_speed(dev);
4294
4295                 /*
4296                  * Enable pixel doubling when the dot clock
4297                  * is > 90% of the (display) core speed.
4298                  *
4299                  * GDG double wide on either pipe,
4300                  * otherwise pipe A only.
4301                  */
4302                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4303                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4304                         clock_limit *= 2;
4305                         pipe_config->double_wide = true;
4306                 }
4307
4308                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4309                         return -EINVAL;
4310         }
4311
4312         /*
4313          * Pipe horizontal size must be even in:
4314          * - DVO ganged mode
4315          * - LVDS dual channel mode
4316          * - Double wide pipe
4317          */
4318         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4319              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4320                 pipe_config->pipe_src_w &= ~1;
4321
4322         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4323          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4324          */
4325         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4326                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4327                 return -EINVAL;
4328
4329         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4330                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4331         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4332                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4333                  * for lvds. */
4334                 pipe_config->pipe_bpp = 8*3;
4335         }
4336
4337         if (HAS_IPS(dev))
4338                 hsw_compute_ips_config(crtc, pipe_config);
4339
4340         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4341          * clock survives for now. */
4342         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4343                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4344
4345         if (pipe_config->has_pch_encoder)
4346                 return ironlake_fdi_compute_config(crtc, pipe_config);
4347
4348         return 0;
4349 }
4350
4351 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4352 {
4353         return 400000; /* FIXME */
4354 }
4355
4356 static int i945_get_display_clock_speed(struct drm_device *dev)
4357 {
4358         return 400000;
4359 }
4360
4361 static int i915_get_display_clock_speed(struct drm_device *dev)
4362 {
4363         return 333000;
4364 }
4365
4366 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4367 {
4368         return 200000;
4369 }
4370
4371 static int pnv_get_display_clock_speed(struct drm_device *dev)
4372 {
4373         u16 gcfgc = 0;
4374
4375         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4376
4377         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4378         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4379                 return 267000;
4380         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4381                 return 333000;
4382         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4383                 return 444000;
4384         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4385                 return 200000;
4386         default:
4387                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4388         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4389                 return 133000;
4390         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4391                 return 167000;
4392         }
4393 }
4394
4395 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4396 {
4397         u16 gcfgc = 0;
4398
4399         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4400
4401         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4402                 return 133000;
4403         else {
4404                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4405                 case GC_DISPLAY_CLOCK_333_MHZ:
4406                         return 333000;
4407                 default:
4408                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4409                         return 190000;
4410                 }
4411         }
4412 }
4413
4414 static int i865_get_display_clock_speed(struct drm_device *dev)
4415 {
4416         return 266000;
4417 }
4418
4419 static int i855_get_display_clock_speed(struct drm_device *dev)
4420 {
4421         u16 hpllcc = 0;
4422         /* Assume that the hardware is in the high speed state.  This
4423          * should be the default.
4424          */
4425         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4426         case GC_CLOCK_133_200:
4427         case GC_CLOCK_100_200:
4428                 return 200000;
4429         case GC_CLOCK_166_250:
4430                 return 250000;
4431         case GC_CLOCK_100_133:
4432                 return 133000;
4433         }
4434
4435         /* Shouldn't happen */
4436         return 0;
4437 }
4438
4439 static int i830_get_display_clock_speed(struct drm_device *dev)
4440 {
4441         return 133000;
4442 }
4443
4444 static void
4445 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4446 {
4447         while (*num > DATA_LINK_M_N_MASK ||
4448                *den > DATA_LINK_M_N_MASK) {
4449                 *num >>= 1;
4450                 *den >>= 1;
4451         }
4452 }
4453
4454 static void compute_m_n(unsigned int m, unsigned int n,
4455                         uint32_t *ret_m, uint32_t *ret_n)
4456 {
4457         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4458         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4459         intel_reduce_m_n_ratio(ret_m, ret_n);
4460 }
4461
4462 void
4463 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4464                        int pixel_clock, int link_clock,
4465                        struct intel_link_m_n *m_n)
4466 {
4467         m_n->tu = 64;
4468
4469         compute_m_n(bits_per_pixel * pixel_clock,
4470                     link_clock * nlanes * 8,
4471                     &m_n->gmch_m, &m_n->gmch_n);
4472
4473         compute_m_n(pixel_clock, link_clock,
4474                     &m_n->link_m, &m_n->link_n);
4475 }
4476
4477 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4478 {
4479         if (i915_panel_use_ssc >= 0)
4480                 return i915_panel_use_ssc != 0;
4481         return dev_priv->vbt.lvds_use_ssc
4482                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4483 }
4484
4485 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4486 {
4487         struct drm_device *dev = crtc->dev;
4488         struct drm_i915_private *dev_priv = dev->dev_private;
4489         int refclk;
4490
4491         if (IS_VALLEYVIEW(dev)) {
4492                 refclk = 100000;
4493         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4494             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4495                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4496                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4497                               refclk / 1000);
4498         } else if (!IS_GEN2(dev)) {
4499                 refclk = 96000;
4500         } else {
4501                 refclk = 48000;
4502         }
4503
4504         return refclk;
4505 }
4506
4507 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4508 {
4509         return (1 << dpll->n) << 16 | dpll->m2;
4510 }
4511
4512 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4513 {
4514         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4515 }
4516
4517 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4518                                      intel_clock_t *reduced_clock)
4519 {
4520         struct drm_device *dev = crtc->base.dev;
4521         struct drm_i915_private *dev_priv = dev->dev_private;
4522         int pipe = crtc->pipe;
4523         u32 fp, fp2 = 0;
4524
4525         if (IS_PINEVIEW(dev)) {
4526                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4527                 if (reduced_clock)
4528                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4529         } else {
4530                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4531                 if (reduced_clock)
4532                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4533         }
4534
4535         I915_WRITE(FP0(pipe), fp);
4536         crtc->config.dpll_hw_state.fp0 = fp;
4537
4538         crtc->lowfreq_avail = false;
4539         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4540             reduced_clock && i915_powersave) {
4541                 I915_WRITE(FP1(pipe), fp2);
4542                 crtc->config.dpll_hw_state.fp1 = fp2;
4543                 crtc->lowfreq_avail = true;
4544         } else {
4545                 I915_WRITE(FP1(pipe), fp);
4546                 crtc->config.dpll_hw_state.fp1 = fp;
4547         }
4548 }
4549
4550 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4551                 pipe)
4552 {
4553         u32 reg_val;
4554
4555         /*
4556          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4557          * and set it to a reasonable value instead.
4558          */
4559         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4560         reg_val &= 0xffffff00;
4561         reg_val |= 0x00000030;
4562         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4563
4564         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4565         reg_val &= 0x8cffffff;
4566         reg_val = 0x8c000000;
4567         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4568
4569         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4570         reg_val &= 0xffffff00;
4571         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4572
4573         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4574         reg_val &= 0x00ffffff;
4575         reg_val |= 0xb0000000;
4576         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4577 }
4578
4579 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4580                                          struct intel_link_m_n *m_n)
4581 {
4582         struct drm_device *dev = crtc->base.dev;
4583         struct drm_i915_private *dev_priv = dev->dev_private;
4584         int pipe = crtc->pipe;
4585
4586         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4587         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4588         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4589         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4590 }
4591
4592 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4593                                          struct intel_link_m_n *m_n)
4594 {
4595         struct drm_device *dev = crtc->base.dev;
4596         struct drm_i915_private *dev_priv = dev->dev_private;
4597         int pipe = crtc->pipe;
4598         enum transcoder transcoder = crtc->config.cpu_transcoder;
4599
4600         if (INTEL_INFO(dev)->gen >= 5) {
4601                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4602                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4603                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4604                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4605         } else {
4606                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4607                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4608                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4609                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4610         }
4611 }
4612
4613 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4614 {
4615         if (crtc->config.has_pch_encoder)
4616                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4617         else
4618                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4619 }
4620
4621 static void vlv_update_pll(struct intel_crtc *crtc)
4622 {
4623         struct drm_device *dev = crtc->base.dev;
4624         struct drm_i915_private *dev_priv = dev->dev_private;
4625         int pipe = crtc->pipe;
4626         u32 dpll, mdiv;
4627         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4628         u32 coreclk, reg_val, dpll_md;
4629
4630         mutex_lock(&dev_priv->dpio_lock);
4631
4632         bestn = crtc->config.dpll.n;
4633         bestm1 = crtc->config.dpll.m1;
4634         bestm2 = crtc->config.dpll.m2;
4635         bestp1 = crtc->config.dpll.p1;
4636         bestp2 = crtc->config.dpll.p2;
4637
4638         /* See eDP HDMI DPIO driver vbios notes doc */
4639
4640         /* PLL B needs special handling */
4641         if (pipe)
4642                 vlv_pllb_recal_opamp(dev_priv, pipe);
4643
4644         /* Set up Tx target for periodic Rcomp update */
4645         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4646
4647         /* Disable target IRef on PLL */
4648         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4649         reg_val &= 0x00ffffff;
4650         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4651
4652         /* Disable fast lock */
4653         vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4654
4655         /* Set idtafcrecal before PLL is enabled */
4656         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4657         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4658         mdiv |= ((bestn << DPIO_N_SHIFT));
4659         mdiv |= (1 << DPIO_K_SHIFT);
4660
4661         /*
4662          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4663          * but we don't support that).
4664          * Note: don't use the DAC post divider as it seems unstable.
4665          */
4666         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4667         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4668
4669         mdiv |= DPIO_ENABLE_CALIBRATION;
4670         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4671
4672         /* Set HBR and RBR LPF coefficients */
4673         if (crtc->config.port_clock == 162000 ||
4674             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4675             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4676                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4677                                  0x009f0003);
4678         else
4679                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4680                                  0x00d0000f);
4681
4682         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4683             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4684                 /* Use SSC source */
4685                 if (!pipe)
4686                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4687                                          0x0df40000);
4688                 else
4689                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4690                                          0x0df70000);
4691         } else { /* HDMI or VGA */
4692                 /* Use bend source */
4693                 if (!pipe)
4694                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4695                                          0x0df70000);
4696                 else
4697                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4698                                          0x0df40000);
4699         }
4700
4701         coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4702         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4703         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4704             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4705                 coreclk |= 0x01000000;
4706         vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4707
4708         vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4709
4710         /* Enable DPIO clock input */
4711         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4712                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4713         /* We should never disable this, set it here for state tracking */
4714         if (pipe == PIPE_B)
4715                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4716         dpll |= DPLL_VCO_ENABLE;
4717         crtc->config.dpll_hw_state.dpll = dpll;
4718
4719         dpll_md = (crtc->config.pixel_multiplier - 1)
4720                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4721         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4722
4723         if (crtc->config.has_dp_encoder)
4724                 intel_dp_set_m_n(crtc);
4725
4726         mutex_unlock(&dev_priv->dpio_lock);
4727 }
4728
4729 static void i9xx_update_pll(struct intel_crtc *crtc,
4730                             intel_clock_t *reduced_clock,
4731                             int num_connectors)
4732 {
4733         struct drm_device *dev = crtc->base.dev;
4734         struct drm_i915_private *dev_priv = dev->dev_private;
4735         u32 dpll;
4736         bool is_sdvo;
4737         struct dpll *clock = &crtc->config.dpll;
4738
4739         i9xx_update_pll_dividers(crtc, reduced_clock);
4740
4741         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4742                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4743
4744         dpll = DPLL_VGA_MODE_DIS;
4745
4746         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4747                 dpll |= DPLLB_MODE_LVDS;
4748         else
4749                 dpll |= DPLLB_MODE_DAC_SERIAL;
4750
4751         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4752                 dpll |= (crtc->config.pixel_multiplier - 1)
4753                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4754         }
4755
4756         if (is_sdvo)
4757                 dpll |= DPLL_SDVO_HIGH_SPEED;
4758
4759         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4760                 dpll |= DPLL_SDVO_HIGH_SPEED;
4761
4762         /* compute bitmask from p1 value */
4763         if (IS_PINEVIEW(dev))
4764                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4765         else {
4766                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4767                 if (IS_G4X(dev) && reduced_clock)
4768                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4769         }
4770         switch (clock->p2) {
4771         case 5:
4772                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4773                 break;
4774         case 7:
4775                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4776                 break;
4777         case 10:
4778                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4779                 break;
4780         case 14:
4781                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4782                 break;
4783         }
4784         if (INTEL_INFO(dev)->gen >= 4)
4785                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4786
4787         if (crtc->config.sdvo_tv_clock)
4788                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4789         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4790                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4791                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4792         else
4793                 dpll |= PLL_REF_INPUT_DREFCLK;
4794
4795         dpll |= DPLL_VCO_ENABLE;
4796         crtc->config.dpll_hw_state.dpll = dpll;
4797
4798         if (INTEL_INFO(dev)->gen >= 4) {
4799                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4800                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4801                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4802         }
4803
4804         if (crtc->config.has_dp_encoder)
4805                 intel_dp_set_m_n(crtc);
4806 }
4807
4808 static void i8xx_update_pll(struct intel_crtc *crtc,
4809                             intel_clock_t *reduced_clock,
4810                             int num_connectors)
4811 {
4812         struct drm_device *dev = crtc->base.dev;
4813         struct drm_i915_private *dev_priv = dev->dev_private;
4814         u32 dpll;
4815         struct dpll *clock = &crtc->config.dpll;
4816
4817         i9xx_update_pll_dividers(crtc, reduced_clock);
4818
4819         dpll = DPLL_VGA_MODE_DIS;
4820
4821         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4822                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4823         } else {
4824                 if (clock->p1 == 2)
4825                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4826                 else
4827                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4828                 if (clock->p2 == 4)
4829                         dpll |= PLL_P2_DIVIDE_BY_4;
4830         }
4831
4832         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4833                 dpll |= DPLL_DVO_2X_MODE;
4834
4835         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4836                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4837                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4838         else
4839                 dpll |= PLL_REF_INPUT_DREFCLK;
4840
4841         dpll |= DPLL_VCO_ENABLE;
4842         crtc->config.dpll_hw_state.dpll = dpll;
4843 }
4844
4845 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4846 {
4847         struct drm_device *dev = intel_crtc->base.dev;
4848         struct drm_i915_private *dev_priv = dev->dev_private;
4849         enum pipe pipe = intel_crtc->pipe;
4850         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4851         struct drm_display_mode *adjusted_mode =
4852                 &intel_crtc->config.adjusted_mode;
4853         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4854
4855         /* We need to be careful not to changed the adjusted mode, for otherwise
4856          * the hw state checker will get angry at the mismatch. */
4857         crtc_vtotal = adjusted_mode->crtc_vtotal;
4858         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4859
4860         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4861                 /* the chip adds 2 halflines automatically */
4862                 crtc_vtotal -= 1;
4863                 crtc_vblank_end -= 1;
4864                 vsyncshift = adjusted_mode->crtc_hsync_start
4865                              - adjusted_mode->crtc_htotal / 2;
4866         } else {
4867                 vsyncshift = 0;
4868         }
4869
4870         if (INTEL_INFO(dev)->gen > 3)
4871                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4872
4873         I915_WRITE(HTOTAL(cpu_transcoder),
4874                    (adjusted_mode->crtc_hdisplay - 1) |
4875                    ((adjusted_mode->crtc_htotal - 1) << 16));
4876         I915_WRITE(HBLANK(cpu_transcoder),
4877                    (adjusted_mode->crtc_hblank_start - 1) |
4878                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4879         I915_WRITE(HSYNC(cpu_transcoder),
4880                    (adjusted_mode->crtc_hsync_start - 1) |
4881                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4882
4883         I915_WRITE(VTOTAL(cpu_transcoder),
4884                    (adjusted_mode->crtc_vdisplay - 1) |
4885                    ((crtc_vtotal - 1) << 16));
4886         I915_WRITE(VBLANK(cpu_transcoder),
4887                    (adjusted_mode->crtc_vblank_start - 1) |
4888                    ((crtc_vblank_end - 1) << 16));
4889         I915_WRITE(VSYNC(cpu_transcoder),
4890                    (adjusted_mode->crtc_vsync_start - 1) |
4891                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4892
4893         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4894          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4895          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4896          * bits. */
4897         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4898             (pipe == PIPE_B || pipe == PIPE_C))
4899                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4900
4901         /* pipesrc controls the size that is scaled from, which should
4902          * always be the user's requested size.
4903          */
4904         I915_WRITE(PIPESRC(pipe),
4905                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
4906                    (intel_crtc->config.pipe_src_h - 1));
4907 }
4908
4909 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4910                                    struct intel_crtc_config *pipe_config)
4911 {
4912         struct drm_device *dev = crtc->base.dev;
4913         struct drm_i915_private *dev_priv = dev->dev_private;
4914         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4915         uint32_t tmp;
4916
4917         tmp = I915_READ(HTOTAL(cpu_transcoder));
4918         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4919         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4920         tmp = I915_READ(HBLANK(cpu_transcoder));
4921         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4922         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4923         tmp = I915_READ(HSYNC(cpu_transcoder));
4924         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4925         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4926
4927         tmp = I915_READ(VTOTAL(cpu_transcoder));
4928         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4929         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4930         tmp = I915_READ(VBLANK(cpu_transcoder));
4931         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4932         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4933         tmp = I915_READ(VSYNC(cpu_transcoder));
4934         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4935         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4936
4937         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4938                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4939                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4940                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4941         }
4942
4943         tmp = I915_READ(PIPESRC(crtc->pipe));
4944         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
4945         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
4946
4947         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
4948         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4949 }
4950
4951 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4952                                              struct intel_crtc_config *pipe_config)
4953 {
4954         struct drm_crtc *crtc = &intel_crtc->base;
4955
4956         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4957         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4958         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4959         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4960
4961         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4962         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4963         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4964         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4965
4966         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4967
4968         crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
4969         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4970 }
4971
4972 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4973 {
4974         struct drm_device *dev = intel_crtc->base.dev;
4975         struct drm_i915_private *dev_priv = dev->dev_private;
4976         uint32_t pipeconf;
4977
4978         pipeconf = 0;
4979
4980         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
4981             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
4982                 pipeconf |= PIPECONF_ENABLE;
4983
4984         if (intel_crtc->config.double_wide)
4985                 pipeconf |= PIPECONF_DOUBLE_WIDE;
4986
4987         /* only g4x and later have fancy bpc/dither controls */
4988         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4989                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4990                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4991                         pipeconf |= PIPECONF_DITHER_EN |
4992                                     PIPECONF_DITHER_TYPE_SP;
4993
4994                 switch (intel_crtc->config.pipe_bpp) {
4995                 case 18:
4996                         pipeconf |= PIPECONF_6BPC;
4997                         break;
4998                 case 24:
4999                         pipeconf |= PIPECONF_8BPC;
5000                         break;
5001                 case 30:
5002                         pipeconf |= PIPECONF_10BPC;
5003                         break;
5004                 default:
5005                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5006                         BUG();
5007                 }
5008         }
5009
5010         if (HAS_PIPE_CXSR(dev)) {
5011                 if (intel_crtc->lowfreq_avail) {
5012                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5013                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5014                 } else {
5015                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5016                 }
5017         }
5018
5019         if (!IS_GEN2(dev) &&
5020             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5021                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5022         else
5023                 pipeconf |= PIPECONF_PROGRESSIVE;
5024
5025         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5026                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5027
5028         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5029         POSTING_READ(PIPECONF(intel_crtc->pipe));
5030 }
5031
5032 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5033                               int x, int y,
5034                               struct drm_framebuffer *fb)
5035 {
5036         struct drm_device *dev = crtc->dev;
5037         struct drm_i915_private *dev_priv = dev->dev_private;
5038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5039         int pipe = intel_crtc->pipe;
5040         int plane = intel_crtc->plane;
5041         int refclk, num_connectors = 0;
5042         intel_clock_t clock, reduced_clock;
5043         u32 dspcntr;
5044         bool ok, has_reduced_clock = false;
5045         bool is_lvds = false, is_dsi = false;
5046         struct intel_encoder *encoder;
5047         const intel_limit_t *limit;
5048         int ret;
5049
5050         for_each_encoder_on_crtc(dev, crtc, encoder) {
5051                 switch (encoder->type) {
5052                 case INTEL_OUTPUT_LVDS:
5053                         is_lvds = true;
5054                         break;
5055                 case INTEL_OUTPUT_DSI:
5056                         is_dsi = true;
5057                         break;
5058                 }
5059
5060                 num_connectors++;
5061         }
5062
5063         if (is_dsi)
5064                 goto skip_dpll;
5065
5066         if (!intel_crtc->config.clock_set) {
5067                 refclk = i9xx_get_refclk(crtc, num_connectors);
5068
5069                 /*
5070                  * Returns a set of divisors for the desired target clock with
5071                  * the given refclk, or FALSE.  The returned values represent
5072                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5073                  * 2) / p1 / p2.
5074                  */
5075                 limit = intel_limit(crtc, refclk);
5076                 ok = dev_priv->display.find_dpll(limit, crtc,
5077                                                  intel_crtc->config.port_clock,
5078                                                  refclk, NULL, &clock);
5079                 if (!ok) {
5080                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5081                         return -EINVAL;
5082                 }
5083
5084                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5085                         /*
5086                          * Ensure we match the reduced clock's P to the target
5087                          * clock.  If the clocks don't match, we can't switch
5088                          * the display clock by using the FP0/FP1. In such case
5089                          * we will disable the LVDS downclock feature.
5090                          */
5091                         has_reduced_clock =
5092                                 dev_priv->display.find_dpll(limit, crtc,
5093                                                             dev_priv->lvds_downclock,
5094                                                             refclk, &clock,
5095                                                             &reduced_clock);
5096                 }
5097                 /* Compat-code for transition, will disappear. */
5098                 intel_crtc->config.dpll.n = clock.n;
5099                 intel_crtc->config.dpll.m1 = clock.m1;
5100                 intel_crtc->config.dpll.m2 = clock.m2;
5101                 intel_crtc->config.dpll.p1 = clock.p1;
5102                 intel_crtc->config.dpll.p2 = clock.p2;
5103         }
5104
5105         if (IS_GEN2(dev)) {
5106                 i8xx_update_pll(intel_crtc,
5107                                 has_reduced_clock ? &reduced_clock : NULL,
5108                                 num_connectors);
5109         } else if (IS_VALLEYVIEW(dev)) {
5110                 vlv_update_pll(intel_crtc);
5111         } else {
5112                 i9xx_update_pll(intel_crtc,
5113                                 has_reduced_clock ? &reduced_clock : NULL,
5114                                 num_connectors);
5115         }
5116
5117 skip_dpll:
5118         /* Set up the display plane register */
5119         dspcntr = DISPPLANE_GAMMA_ENABLE;
5120
5121         if (!IS_VALLEYVIEW(dev)) {
5122                 if (pipe == 0)
5123                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5124                 else
5125                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5126         }
5127
5128         intel_set_pipe_timings(intel_crtc);
5129
5130         /* pipesrc and dspsize control the size that is scaled from,
5131          * which should always be the user's requested size.
5132          */
5133         I915_WRITE(DSPSIZE(plane),
5134                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5135                    (intel_crtc->config.pipe_src_w - 1));
5136         I915_WRITE(DSPPOS(plane), 0);
5137
5138         i9xx_set_pipeconf(intel_crtc);
5139
5140         I915_WRITE(DSPCNTR(plane), dspcntr);
5141         POSTING_READ(DSPCNTR(plane));
5142
5143         ret = intel_pipe_set_base(crtc, x, y, fb);
5144
5145         return ret;
5146 }
5147
5148 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5149                                  struct intel_crtc_config *pipe_config)
5150 {
5151         struct drm_device *dev = crtc->base.dev;
5152         struct drm_i915_private *dev_priv = dev->dev_private;
5153         uint32_t tmp;
5154
5155         tmp = I915_READ(PFIT_CONTROL);
5156         if (!(tmp & PFIT_ENABLE))
5157                 return;
5158
5159         /* Check whether the pfit is attached to our pipe. */
5160         if (INTEL_INFO(dev)->gen < 4) {
5161                 if (crtc->pipe != PIPE_B)
5162                         return;
5163         } else {
5164                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5165                         return;
5166         }
5167
5168         pipe_config->gmch_pfit.control = tmp;
5169         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5170         if (INTEL_INFO(dev)->gen < 5)
5171                 pipe_config->gmch_pfit.lvds_border_bits =
5172                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5173 }
5174
5175 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5176                                struct intel_crtc_config *pipe_config)
5177 {
5178         struct drm_device *dev = crtc->base.dev;
5179         struct drm_i915_private *dev_priv = dev->dev_private;
5180         int pipe = pipe_config->cpu_transcoder;
5181         intel_clock_t clock;
5182         u32 mdiv;
5183         int refclk = 100000;
5184
5185         mutex_lock(&dev_priv->dpio_lock);
5186         mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
5187         mutex_unlock(&dev_priv->dpio_lock);
5188
5189         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5190         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5191         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5192         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5193         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5194
5195         clock.vco = refclk * clock.m1 * clock.m2 / clock.n;
5196         clock.dot = 2 * clock.vco / (clock.p1 * clock.p2);
5197
5198         pipe_config->port_clock = clock.dot / 10;
5199 }
5200
5201 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5202                                  struct intel_crtc_config *pipe_config)
5203 {
5204         struct drm_device *dev = crtc->base.dev;
5205         struct drm_i915_private *dev_priv = dev->dev_private;
5206         uint32_t tmp;
5207
5208         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5209         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5210
5211         tmp = I915_READ(PIPECONF(crtc->pipe));
5212         if (!(tmp & PIPECONF_ENABLE))
5213                 return false;
5214
5215         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5216                 switch (tmp & PIPECONF_BPC_MASK) {
5217                 case PIPECONF_6BPC:
5218                         pipe_config->pipe_bpp = 18;
5219                         break;
5220                 case PIPECONF_8BPC:
5221                         pipe_config->pipe_bpp = 24;
5222                         break;
5223                 case PIPECONF_10BPC:
5224                         pipe_config->pipe_bpp = 30;
5225                         break;
5226                 default:
5227                         break;
5228                 }
5229         }
5230
5231         if (INTEL_INFO(dev)->gen < 4)
5232                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5233
5234         intel_get_pipe_timings(crtc, pipe_config);
5235
5236         i9xx_get_pfit_config(crtc, pipe_config);
5237
5238         if (INTEL_INFO(dev)->gen >= 4) {
5239                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5240                 pipe_config->pixel_multiplier =
5241                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5242                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5243                 pipe_config->dpll_hw_state.dpll_md = tmp;
5244         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5245                 tmp = I915_READ(DPLL(crtc->pipe));
5246                 pipe_config->pixel_multiplier =
5247                         ((tmp & SDVO_MULTIPLIER_MASK)
5248                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5249         } else {
5250                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5251                  * port and will be fixed up in the encoder->get_config
5252                  * function. */
5253                 pipe_config->pixel_multiplier = 1;
5254         }
5255         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5256         if (!IS_VALLEYVIEW(dev)) {
5257                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5258                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5259         } else {
5260                 /* Mask out read-only status bits. */
5261                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5262                                                      DPLL_PORTC_READY_MASK |
5263                                                      DPLL_PORTB_READY_MASK);
5264         }
5265
5266         if (IS_VALLEYVIEW(dev))
5267                 vlv_crtc_clock_get(crtc, pipe_config);
5268         else
5269                 i9xx_crtc_clock_get(crtc, pipe_config);
5270
5271         return true;
5272 }
5273
5274 static void ironlake_init_pch_refclk(struct drm_device *dev)
5275 {
5276         struct drm_i915_private *dev_priv = dev->dev_private;
5277         struct drm_mode_config *mode_config = &dev->mode_config;
5278         struct intel_encoder *encoder;
5279         u32 val, final;
5280         bool has_lvds = false;
5281         bool has_cpu_edp = false;
5282         bool has_panel = false;
5283         bool has_ck505 = false;
5284         bool can_ssc = false;
5285
5286         /* We need to take the global config into account */
5287         list_for_each_entry(encoder, &mode_config->encoder_list,
5288                             base.head) {
5289                 switch (encoder->type) {
5290                 case INTEL_OUTPUT_LVDS:
5291                         has_panel = true;
5292                         has_lvds = true;
5293                         break;
5294                 case INTEL_OUTPUT_EDP:
5295                         has_panel = true;
5296                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5297                                 has_cpu_edp = true;
5298                         break;
5299                 }
5300         }
5301
5302         if (HAS_PCH_IBX(dev)) {
5303                 has_ck505 = dev_priv->vbt.display_clock_mode;
5304                 can_ssc = has_ck505;
5305         } else {
5306                 has_ck505 = false;
5307                 can_ssc = true;
5308         }
5309
5310         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5311                       has_panel, has_lvds, has_ck505);
5312
5313         /* Ironlake: try to setup display ref clock before DPLL
5314          * enabling. This is only under driver's control after
5315          * PCH B stepping, previous chipset stepping should be
5316          * ignoring this setting.
5317          */
5318         val = I915_READ(PCH_DREF_CONTROL);
5319
5320         /* As we must carefully and slowly disable/enable each source in turn,
5321          * compute the final state we want first and check if we need to
5322          * make any changes at all.
5323          */
5324         final = val;
5325         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5326         if (has_ck505)
5327                 final |= DREF_NONSPREAD_CK505_ENABLE;
5328         else
5329                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5330
5331         final &= ~DREF_SSC_SOURCE_MASK;
5332         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5333         final &= ~DREF_SSC1_ENABLE;
5334
5335         if (has_panel) {
5336                 final |= DREF_SSC_SOURCE_ENABLE;
5337
5338                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5339                         final |= DREF_SSC1_ENABLE;
5340
5341                 if (has_cpu_edp) {
5342                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5343                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5344                         else
5345                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5346                 } else
5347                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5348         } else {
5349                 final |= DREF_SSC_SOURCE_DISABLE;
5350                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5351         }
5352
5353         if (final == val)
5354                 return;
5355
5356         /* Always enable nonspread source */
5357         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5358
5359         if (has_ck505)
5360                 val |= DREF_NONSPREAD_CK505_ENABLE;
5361         else
5362                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5363
5364         if (has_panel) {
5365                 val &= ~DREF_SSC_SOURCE_MASK;
5366                 val |= DREF_SSC_SOURCE_ENABLE;
5367
5368                 /* SSC must be turned on before enabling the CPU output  */
5369                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5370                         DRM_DEBUG_KMS("Using SSC on panel\n");
5371                         val |= DREF_SSC1_ENABLE;
5372                 } else
5373                         val &= ~DREF_SSC1_ENABLE;
5374
5375                 /* Get SSC going before enabling the outputs */
5376                 I915_WRITE(PCH_DREF_CONTROL, val);
5377                 POSTING_READ(PCH_DREF_CONTROL);
5378                 udelay(200);
5379
5380                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5381
5382                 /* Enable CPU source on CPU attached eDP */
5383                 if (has_cpu_edp) {
5384                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5385                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5386                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5387                         }
5388                         else
5389                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5390                 } else
5391                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5392
5393                 I915_WRITE(PCH_DREF_CONTROL, val);
5394                 POSTING_READ(PCH_DREF_CONTROL);
5395                 udelay(200);
5396         } else {
5397                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5398
5399                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5400
5401                 /* Turn off CPU output */
5402                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5403
5404                 I915_WRITE(PCH_DREF_CONTROL, val);
5405                 POSTING_READ(PCH_DREF_CONTROL);
5406                 udelay(200);
5407
5408                 /* Turn off the SSC source */
5409                 val &= ~DREF_SSC_SOURCE_MASK;
5410                 val |= DREF_SSC_SOURCE_DISABLE;
5411
5412                 /* Turn off SSC1 */
5413                 val &= ~DREF_SSC1_ENABLE;
5414
5415                 I915_WRITE(PCH_DREF_CONTROL, val);
5416                 POSTING_READ(PCH_DREF_CONTROL);
5417                 udelay(200);
5418         }
5419
5420         BUG_ON(val != final);
5421 }
5422
5423 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5424 {
5425         uint32_t tmp;
5426
5427         tmp = I915_READ(SOUTH_CHICKEN2);
5428         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5429         I915_WRITE(SOUTH_CHICKEN2, tmp);
5430
5431         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5432                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5433                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5434
5435         tmp = I915_READ(SOUTH_CHICKEN2);
5436         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5437         I915_WRITE(SOUTH_CHICKEN2, tmp);
5438
5439         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5440                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5441                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5442 }
5443
5444 /* WaMPhyProgramming:hsw */
5445 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5446 {
5447         uint32_t tmp;
5448
5449         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5450         tmp &= ~(0xFF << 24);
5451         tmp |= (0x12 << 24);
5452         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5453
5454         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5455         tmp |= (1 << 11);
5456         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5457
5458         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5459         tmp |= (1 << 11);
5460         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5461
5462         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5463         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5464         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5465
5466         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5467         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5468         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5469
5470         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5471         tmp &= ~(7 << 13);
5472         tmp |= (5 << 13);
5473         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5474
5475         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5476         tmp &= ~(7 << 13);
5477         tmp |= (5 << 13);
5478         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5479
5480         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5481         tmp &= ~0xFF;
5482         tmp |= 0x1C;
5483         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5484
5485         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5486         tmp &= ~0xFF;
5487         tmp |= 0x1C;
5488         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5489
5490         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5491         tmp &= ~(0xFF << 16);
5492         tmp |= (0x1C << 16);
5493         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5494
5495         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5496         tmp &= ~(0xFF << 16);
5497         tmp |= (0x1C << 16);
5498         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5499
5500         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5501         tmp |= (1 << 27);
5502         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5503
5504         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5505         tmp |= (1 << 27);
5506         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5507
5508         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5509         tmp &= ~(0xF << 28);
5510         tmp |= (4 << 28);
5511         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5512
5513         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5514         tmp &= ~(0xF << 28);
5515         tmp |= (4 << 28);
5516         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5517 }
5518
5519 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5520  * Programming" based on the parameters passed:
5521  * - Sequence to enable CLKOUT_DP
5522  * - Sequence to enable CLKOUT_DP without spread
5523  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5524  */
5525 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5526                                  bool with_fdi)
5527 {
5528         struct drm_i915_private *dev_priv = dev->dev_private;
5529         uint32_t reg, tmp;
5530
5531         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5532                 with_spread = true;
5533         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5534                  with_fdi, "LP PCH doesn't have FDI\n"))
5535                 with_fdi = false;
5536
5537         mutex_lock(&dev_priv->dpio_lock);
5538
5539         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5540         tmp &= ~SBI_SSCCTL_DISABLE;
5541         tmp |= SBI_SSCCTL_PATHALT;
5542         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5543
5544         udelay(24);
5545
5546         if (with_spread) {
5547                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5548                 tmp &= ~SBI_SSCCTL_PATHALT;
5549                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5550
5551                 if (with_fdi) {
5552                         lpt_reset_fdi_mphy(dev_priv);
5553                         lpt_program_fdi_mphy(dev_priv);
5554                 }
5555         }
5556
5557         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5558                SBI_GEN0 : SBI_DBUFF0;
5559         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5560         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5561         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5562
5563         mutex_unlock(&dev_priv->dpio_lock);
5564 }
5565
5566 /* Sequence to disable CLKOUT_DP */
5567 static void lpt_disable_clkout_dp(struct drm_device *dev)
5568 {
5569         struct drm_i915_private *dev_priv = dev->dev_private;
5570         uint32_t reg, tmp;
5571
5572         mutex_lock(&dev_priv->dpio_lock);
5573
5574         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5575                SBI_GEN0 : SBI_DBUFF0;
5576         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5577         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5578         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5579
5580         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5581         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5582                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5583                         tmp |= SBI_SSCCTL_PATHALT;
5584                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5585                         udelay(32);
5586                 }
5587                 tmp |= SBI_SSCCTL_DISABLE;
5588                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5589         }
5590
5591         mutex_unlock(&dev_priv->dpio_lock);
5592 }
5593
5594 static void lpt_init_pch_refclk(struct drm_device *dev)
5595 {
5596         struct drm_mode_config *mode_config = &dev->mode_config;
5597         struct intel_encoder *encoder;
5598         bool has_vga = false;
5599
5600         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5601                 switch (encoder->type) {
5602                 case INTEL_OUTPUT_ANALOG:
5603                         has_vga = true;
5604                         break;
5605                 }
5606         }
5607
5608         if (has_vga)
5609                 lpt_enable_clkout_dp(dev, true, true);
5610         else
5611                 lpt_disable_clkout_dp(dev);
5612 }
5613
5614 /*
5615  * Initialize reference clocks when the driver loads
5616  */
5617 void intel_init_pch_refclk(struct drm_device *dev)
5618 {
5619         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5620                 ironlake_init_pch_refclk(dev);
5621         else if (HAS_PCH_LPT(dev))
5622                 lpt_init_pch_refclk(dev);
5623 }
5624
5625 static int ironlake_get_refclk(struct drm_crtc *crtc)
5626 {
5627         struct drm_device *dev = crtc->dev;
5628         struct drm_i915_private *dev_priv = dev->dev_private;
5629         struct intel_encoder *encoder;
5630         int num_connectors = 0;
5631         bool is_lvds = false;
5632
5633         for_each_encoder_on_crtc(dev, crtc, encoder) {
5634                 switch (encoder->type) {
5635                 case INTEL_OUTPUT_LVDS:
5636                         is_lvds = true;
5637                         break;
5638                 }
5639                 num_connectors++;
5640         }
5641
5642         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5643                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5644                               dev_priv->vbt.lvds_ssc_freq);
5645                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5646         }
5647
5648         return 120000;
5649 }
5650
5651 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5652 {
5653         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5655         int pipe = intel_crtc->pipe;
5656         uint32_t val;
5657
5658         val = 0;
5659
5660         switch (intel_crtc->config.pipe_bpp) {
5661         case 18:
5662                 val |= PIPECONF_6BPC;
5663                 break;
5664         case 24:
5665                 val |= PIPECONF_8BPC;
5666                 break;
5667         case 30:
5668                 val |= PIPECONF_10BPC;
5669                 break;
5670         case 36:
5671                 val |= PIPECONF_12BPC;
5672                 break;
5673         default:
5674                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5675                 BUG();
5676         }
5677
5678         if (intel_crtc->config.dither)
5679                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5680
5681         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5682                 val |= PIPECONF_INTERLACED_ILK;
5683         else
5684                 val |= PIPECONF_PROGRESSIVE;
5685
5686         if (intel_crtc->config.limited_color_range)
5687                 val |= PIPECONF_COLOR_RANGE_SELECT;
5688
5689         I915_WRITE(PIPECONF(pipe), val);
5690         POSTING_READ(PIPECONF(pipe));
5691 }
5692
5693 /*
5694  * Set up the pipe CSC unit.
5695  *
5696  * Currently only full range RGB to limited range RGB conversion
5697  * is supported, but eventually this should handle various
5698  * RGB<->YCbCr scenarios as well.
5699  */
5700 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5701 {
5702         struct drm_device *dev = crtc->dev;
5703         struct drm_i915_private *dev_priv = dev->dev_private;
5704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5705         int pipe = intel_crtc->pipe;
5706         uint16_t coeff = 0x7800; /* 1.0 */
5707
5708         /*
5709          * TODO: Check what kind of values actually come out of the pipe
5710          * with these coeff/postoff values and adjust to get the best
5711          * accuracy. Perhaps we even need to take the bpc value into
5712          * consideration.
5713          */
5714
5715         if (intel_crtc->config.limited_color_range)
5716                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5717
5718         /*
5719          * GY/GU and RY/RU should be the other way around according
5720          * to BSpec, but reality doesn't agree. Just set them up in
5721          * a way that results in the correct picture.
5722          */
5723         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5724         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5725
5726         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5727         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5728
5729         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5730         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5731
5732         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5733         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5734         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5735
5736         if (INTEL_INFO(dev)->gen > 6) {
5737                 uint16_t postoff = 0;
5738
5739                 if (intel_crtc->config.limited_color_range)
5740                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5741
5742                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5743                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5744                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5745
5746                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5747         } else {
5748                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5749
5750                 if (intel_crtc->config.limited_color_range)
5751                         mode |= CSC_BLACK_SCREEN_OFFSET;
5752
5753                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5754         }
5755 }
5756
5757 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5758 {
5759         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5761         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5762         uint32_t val;
5763
5764         val = 0;
5765
5766         if (intel_crtc->config.dither)
5767                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5768
5769         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5770                 val |= PIPECONF_INTERLACED_ILK;
5771         else
5772                 val |= PIPECONF_PROGRESSIVE;
5773
5774         I915_WRITE(PIPECONF(cpu_transcoder), val);
5775         POSTING_READ(PIPECONF(cpu_transcoder));
5776
5777         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5778         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5779 }
5780
5781 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5782                                     intel_clock_t *clock,
5783                                     bool *has_reduced_clock,
5784                                     intel_clock_t *reduced_clock)
5785 {
5786         struct drm_device *dev = crtc->dev;
5787         struct drm_i915_private *dev_priv = dev->dev_private;
5788         struct intel_encoder *intel_encoder;
5789         int refclk;
5790         const intel_limit_t *limit;
5791         bool ret, is_lvds = false;
5792
5793         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5794                 switch (intel_encoder->type) {
5795                 case INTEL_OUTPUT_LVDS:
5796                         is_lvds = true;
5797                         break;
5798                 }
5799         }
5800
5801         refclk = ironlake_get_refclk(crtc);
5802
5803         /*
5804          * Returns a set of divisors for the desired target clock with the given
5805          * refclk, or FALSE.  The returned values represent the clock equation:
5806          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5807          */
5808         limit = intel_limit(crtc, refclk);
5809         ret = dev_priv->display.find_dpll(limit, crtc,
5810                                           to_intel_crtc(crtc)->config.port_clock,
5811                                           refclk, NULL, clock);
5812         if (!ret)
5813                 return false;
5814
5815         if (is_lvds && dev_priv->lvds_downclock_avail) {
5816                 /*
5817                  * Ensure we match the reduced clock's P to the target clock.
5818                  * If the clocks don't match, we can't switch the display clock
5819                  * by using the FP0/FP1. In such case we will disable the LVDS
5820                  * downclock feature.
5821                 */
5822                 *has_reduced_clock =
5823                         dev_priv->display.find_dpll(limit, crtc,
5824                                                     dev_priv->lvds_downclock,
5825                                                     refclk, clock,
5826                                                     reduced_clock);
5827         }
5828
5829         return true;
5830 }
5831
5832 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5833 {
5834         struct drm_i915_private *dev_priv = dev->dev_private;
5835         uint32_t temp;
5836
5837         temp = I915_READ(SOUTH_CHICKEN1);
5838         if (temp & FDI_BC_BIFURCATION_SELECT)
5839                 return;
5840
5841         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5842         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5843
5844         temp |= FDI_BC_BIFURCATION_SELECT;
5845         DRM_DEBUG_KMS("enabling fdi C rx\n");
5846         I915_WRITE(SOUTH_CHICKEN1, temp);
5847         POSTING_READ(SOUTH_CHICKEN1);
5848 }
5849
5850 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5851 {
5852         struct drm_device *dev = intel_crtc->base.dev;
5853         struct drm_i915_private *dev_priv = dev->dev_private;
5854
5855         switch (intel_crtc->pipe) {
5856         case PIPE_A:
5857                 break;
5858         case PIPE_B:
5859                 if (intel_crtc->config.fdi_lanes > 2)
5860                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5861                 else
5862                         cpt_enable_fdi_bc_bifurcation(dev);
5863
5864                 break;
5865         case PIPE_C:
5866                 cpt_enable_fdi_bc_bifurcation(dev);
5867
5868                 break;
5869         default:
5870                 BUG();
5871         }
5872 }
5873
5874 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5875 {
5876         /*
5877          * Account for spread spectrum to avoid
5878          * oversubscribing the link. Max center spread
5879          * is 2.5%; use 5% for safety's sake.
5880          */
5881         u32 bps = target_clock * bpp * 21 / 20;
5882         return bps / (link_bw * 8) + 1;
5883 }
5884
5885 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5886 {
5887         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5888 }
5889
5890 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5891                                       u32 *fp,
5892                                       intel_clock_t *reduced_clock, u32 *fp2)
5893 {
5894         struct drm_crtc *crtc = &intel_crtc->base;
5895         struct drm_device *dev = crtc->dev;
5896         struct drm_i915_private *dev_priv = dev->dev_private;
5897         struct intel_encoder *intel_encoder;
5898         uint32_t dpll;
5899         int factor, num_connectors = 0;
5900         bool is_lvds = false, is_sdvo = false;
5901
5902         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5903                 switch (intel_encoder->type) {
5904                 case INTEL_OUTPUT_LVDS:
5905                         is_lvds = true;
5906                         break;
5907                 case INTEL_OUTPUT_SDVO:
5908                 case INTEL_OUTPUT_HDMI:
5909                         is_sdvo = true;
5910                         break;
5911                 }
5912
5913                 num_connectors++;
5914         }
5915
5916         /* Enable autotuning of the PLL clock (if permissible) */
5917         factor = 21;
5918         if (is_lvds) {
5919                 if ((intel_panel_use_ssc(dev_priv) &&
5920                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5921                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5922                         factor = 25;
5923         } else if (intel_crtc->config.sdvo_tv_clock)
5924                 factor = 20;
5925
5926         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5927                 *fp |= FP_CB_TUNE;
5928
5929         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5930                 *fp2 |= FP_CB_TUNE;
5931
5932         dpll = 0;
5933
5934         if (is_lvds)
5935                 dpll |= DPLLB_MODE_LVDS;
5936         else
5937                 dpll |= DPLLB_MODE_DAC_SERIAL;
5938
5939         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5940                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5941
5942         if (is_sdvo)
5943                 dpll |= DPLL_SDVO_HIGH_SPEED;
5944         if (intel_crtc->config.has_dp_encoder)
5945                 dpll |= DPLL_SDVO_HIGH_SPEED;
5946
5947         /* compute bitmask from p1 value */
5948         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5949         /* also FPA1 */
5950         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5951
5952         switch (intel_crtc->config.dpll.p2) {
5953         case 5:
5954                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5955                 break;
5956         case 7:
5957                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5958                 break;
5959         case 10:
5960                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5961                 break;
5962         case 14:
5963                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5964                 break;
5965         }
5966
5967         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5968                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5969         else
5970                 dpll |= PLL_REF_INPUT_DREFCLK;
5971
5972         return dpll | DPLL_VCO_ENABLE;
5973 }
5974
5975 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5976                                   int x, int y,
5977                                   struct drm_framebuffer *fb)
5978 {
5979         struct drm_device *dev = crtc->dev;
5980         struct drm_i915_private *dev_priv = dev->dev_private;
5981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5982         int pipe = intel_crtc->pipe;
5983         int plane = intel_crtc->plane;
5984         int num_connectors = 0;
5985         intel_clock_t clock, reduced_clock;
5986         u32 dpll = 0, fp = 0, fp2 = 0;
5987         bool ok, has_reduced_clock = false;
5988         bool is_lvds = false;
5989         struct intel_encoder *encoder;
5990         struct intel_shared_dpll *pll;
5991         int ret;
5992
5993         for_each_encoder_on_crtc(dev, crtc, encoder) {
5994                 switch (encoder->type) {
5995                 case INTEL_OUTPUT_LVDS:
5996                         is_lvds = true;
5997                         break;
5998                 }
5999
6000                 num_connectors++;
6001         }
6002
6003         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6004              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6005
6006         ok = ironlake_compute_clocks(crtc, &clock,
6007                                      &has_reduced_clock, &reduced_clock);
6008         if (!ok && !intel_crtc->config.clock_set) {
6009                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6010                 return -EINVAL;
6011         }
6012         /* Compat-code for transition, will disappear. */
6013         if (!intel_crtc->config.clock_set) {
6014                 intel_crtc->config.dpll.n = clock.n;
6015                 intel_crtc->config.dpll.m1 = clock.m1;
6016                 intel_crtc->config.dpll.m2 = clock.m2;
6017                 intel_crtc->config.dpll.p1 = clock.p1;
6018                 intel_crtc->config.dpll.p2 = clock.p2;
6019         }
6020
6021         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6022         if (intel_crtc->config.has_pch_encoder) {
6023                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6024                 if (has_reduced_clock)
6025                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6026
6027                 dpll = ironlake_compute_dpll(intel_crtc,
6028                                              &fp, &reduced_clock,
6029                                              has_reduced_clock ? &fp2 : NULL);
6030
6031                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6032                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6033                 if (has_reduced_clock)
6034                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6035                 else
6036                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6037
6038                 pll = intel_get_shared_dpll(intel_crtc);
6039                 if (pll == NULL) {
6040                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6041                                          pipe_name(pipe));
6042                         return -EINVAL;
6043                 }
6044         } else
6045                 intel_put_shared_dpll(intel_crtc);
6046
6047         if (intel_crtc->config.has_dp_encoder)
6048                 intel_dp_set_m_n(intel_crtc);
6049
6050         if (is_lvds && has_reduced_clock && i915_powersave)
6051                 intel_crtc->lowfreq_avail = true;
6052         else
6053                 intel_crtc->lowfreq_avail = false;
6054
6055         if (intel_crtc->config.has_pch_encoder) {
6056                 pll = intel_crtc_to_shared_dpll(intel_crtc);
6057
6058         }
6059
6060         intel_set_pipe_timings(intel_crtc);
6061
6062         if (intel_crtc->config.has_pch_encoder) {
6063                 intel_cpu_transcoder_set_m_n(intel_crtc,
6064                                              &intel_crtc->config.fdi_m_n);
6065         }
6066
6067         if (IS_IVYBRIDGE(dev))
6068                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
6069
6070         ironlake_set_pipeconf(crtc);
6071
6072         /* Set up the display plane register */
6073         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6074         POSTING_READ(DSPCNTR(plane));
6075
6076         ret = intel_pipe_set_base(crtc, x, y, fb);
6077
6078         return ret;
6079 }
6080
6081 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6082                                          struct intel_link_m_n *m_n)
6083 {
6084         struct drm_device *dev = crtc->base.dev;
6085         struct drm_i915_private *dev_priv = dev->dev_private;
6086         enum pipe pipe = crtc->pipe;
6087
6088         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6089         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6090         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6091                 & ~TU_SIZE_MASK;
6092         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6093         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6094                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6095 }
6096
6097 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6098                                          enum transcoder transcoder,
6099                                          struct intel_link_m_n *m_n)
6100 {
6101         struct drm_device *dev = crtc->base.dev;
6102         struct drm_i915_private *dev_priv = dev->dev_private;
6103         enum pipe pipe = crtc->pipe;
6104
6105         if (INTEL_INFO(dev)->gen >= 5) {
6106                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6107                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6108                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6109                         & ~TU_SIZE_MASK;
6110                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6111                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6112                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6113         } else {
6114                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6115                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6116                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6117                         & ~TU_SIZE_MASK;
6118                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6119                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6120                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6121         }
6122 }
6123
6124 void intel_dp_get_m_n(struct intel_crtc *crtc,
6125                       struct intel_crtc_config *pipe_config)
6126 {
6127         if (crtc->config.has_pch_encoder)
6128                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6129         else
6130                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6131                                              &pipe_config->dp_m_n);
6132 }
6133
6134 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6135                                         struct intel_crtc_config *pipe_config)
6136 {
6137         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6138                                      &pipe_config->fdi_m_n);
6139 }
6140
6141 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6142                                      struct intel_crtc_config *pipe_config)
6143 {
6144         struct drm_device *dev = crtc->base.dev;
6145         struct drm_i915_private *dev_priv = dev->dev_private;
6146         uint32_t tmp;
6147
6148         tmp = I915_READ(PF_CTL(crtc->pipe));
6149
6150         if (tmp & PF_ENABLE) {
6151                 pipe_config->pch_pfit.enabled = true;
6152                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6153                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6154
6155                 /* We currently do not free assignements of panel fitters on
6156                  * ivb/hsw (since we don't use the higher upscaling modes which
6157                  * differentiates them) so just WARN about this case for now. */
6158                 if (IS_GEN7(dev)) {
6159                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6160                                 PF_PIPE_SEL_IVB(crtc->pipe));
6161                 }
6162         }
6163 }
6164
6165 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6166                                      struct intel_crtc_config *pipe_config)
6167 {
6168         struct drm_device *dev = crtc->base.dev;
6169         struct drm_i915_private *dev_priv = dev->dev_private;
6170         uint32_t tmp;
6171
6172         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6173         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6174
6175         tmp = I915_READ(PIPECONF(crtc->pipe));
6176         if (!(tmp & PIPECONF_ENABLE))
6177                 return false;
6178
6179         switch (tmp & PIPECONF_BPC_MASK) {
6180         case PIPECONF_6BPC:
6181                 pipe_config->pipe_bpp = 18;
6182                 break;
6183         case PIPECONF_8BPC:
6184                 pipe_config->pipe_bpp = 24;
6185                 break;
6186         case PIPECONF_10BPC:
6187                 pipe_config->pipe_bpp = 30;
6188                 break;
6189         case PIPECONF_12BPC:
6190                 pipe_config->pipe_bpp = 36;
6191                 break;
6192         default:
6193                 break;
6194         }
6195
6196         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6197                 struct intel_shared_dpll *pll;
6198
6199                 pipe_config->has_pch_encoder = true;
6200
6201                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6202                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6203                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6204
6205                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6206
6207                 if (HAS_PCH_IBX(dev_priv->dev)) {
6208                         pipe_config->shared_dpll =
6209                                 (enum intel_dpll_id) crtc->pipe;
6210                 } else {
6211                         tmp = I915_READ(PCH_DPLL_SEL);
6212                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6213                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6214                         else
6215                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6216                 }
6217
6218                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6219
6220                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6221                                            &pipe_config->dpll_hw_state));
6222
6223                 tmp = pipe_config->dpll_hw_state.dpll;
6224                 pipe_config->pixel_multiplier =
6225                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6226                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6227
6228                 ironlake_pch_clock_get(crtc, pipe_config);
6229         } else {
6230                 pipe_config->pixel_multiplier = 1;
6231         }
6232
6233         intel_get_pipe_timings(crtc, pipe_config);
6234
6235         ironlake_get_pfit_config(crtc, pipe_config);
6236
6237         return true;
6238 }
6239
6240 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6241 {
6242         struct drm_device *dev = dev_priv->dev;
6243         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6244         struct intel_crtc *crtc;
6245         unsigned long irqflags;
6246         uint32_t val;
6247
6248         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6249                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6250                      pipe_name(crtc->pipe));
6251
6252         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6253         WARN(plls->spll_refcount, "SPLL enabled\n");
6254         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6255         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6256         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6257         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6258              "CPU PWM1 enabled\n");
6259         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6260              "CPU PWM2 enabled\n");
6261         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6262              "PCH PWM1 enabled\n");
6263         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6264              "Utility pin enabled\n");
6265         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6266
6267         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6268         val = I915_READ(DEIMR);
6269         WARN((val & ~DE_PCH_EVENT_IVB) != val,
6270              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6271         val = I915_READ(SDEIMR);
6272         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6273              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6274         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6275 }
6276
6277 /*
6278  * This function implements pieces of two sequences from BSpec:
6279  * - Sequence for display software to disable LCPLL
6280  * - Sequence for display software to allow package C8+
6281  * The steps implemented here are just the steps that actually touch the LCPLL
6282  * register. Callers should take care of disabling all the display engine
6283  * functions, doing the mode unset, fixing interrupts, etc.
6284  */
6285 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6286                               bool switch_to_fclk, bool allow_power_down)
6287 {
6288         uint32_t val;
6289
6290         assert_can_disable_lcpll(dev_priv);
6291
6292         val = I915_READ(LCPLL_CTL);
6293
6294         if (switch_to_fclk) {
6295                 val |= LCPLL_CD_SOURCE_FCLK;
6296                 I915_WRITE(LCPLL_CTL, val);
6297
6298                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6299                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6300                         DRM_ERROR("Switching to FCLK failed\n");
6301
6302                 val = I915_READ(LCPLL_CTL);
6303         }
6304
6305         val |= LCPLL_PLL_DISABLE;
6306         I915_WRITE(LCPLL_CTL, val);
6307         POSTING_READ(LCPLL_CTL);
6308
6309         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6310                 DRM_ERROR("LCPLL still locked\n");
6311
6312         val = I915_READ(D_COMP);
6313         val |= D_COMP_COMP_DISABLE;
6314         mutex_lock(&dev_priv->rps.hw_lock);
6315         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6316                 DRM_ERROR("Failed to disable D_COMP\n");
6317         mutex_unlock(&dev_priv->rps.hw_lock);
6318         POSTING_READ(D_COMP);
6319         ndelay(100);
6320
6321         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6322                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6323
6324         if (allow_power_down) {
6325                 val = I915_READ(LCPLL_CTL);
6326                 val |= LCPLL_POWER_DOWN_ALLOW;
6327                 I915_WRITE(LCPLL_CTL, val);
6328                 POSTING_READ(LCPLL_CTL);
6329         }
6330 }
6331
6332 /*
6333  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6334  * source.
6335  */
6336 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6337 {
6338         uint32_t val;
6339
6340         val = I915_READ(LCPLL_CTL);
6341
6342         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6343                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6344                 return;
6345
6346         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6347          * we'll hang the machine! */
6348         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6349
6350         if (val & LCPLL_POWER_DOWN_ALLOW) {
6351                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6352                 I915_WRITE(LCPLL_CTL, val);
6353                 POSTING_READ(LCPLL_CTL);
6354         }
6355
6356         val = I915_READ(D_COMP);
6357         val |= D_COMP_COMP_FORCE;
6358         val &= ~D_COMP_COMP_DISABLE;
6359         mutex_lock(&dev_priv->rps.hw_lock);
6360         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6361                 DRM_ERROR("Failed to enable D_COMP\n");
6362         mutex_unlock(&dev_priv->rps.hw_lock);
6363         POSTING_READ(D_COMP);
6364
6365         val = I915_READ(LCPLL_CTL);
6366         val &= ~LCPLL_PLL_DISABLE;
6367         I915_WRITE(LCPLL_CTL, val);
6368
6369         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6370                 DRM_ERROR("LCPLL not locked yet\n");
6371
6372         if (val & LCPLL_CD_SOURCE_FCLK) {
6373                 val = I915_READ(LCPLL_CTL);
6374                 val &= ~LCPLL_CD_SOURCE_FCLK;
6375                 I915_WRITE(LCPLL_CTL, val);
6376
6377                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6378                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6379                         DRM_ERROR("Switching back to LCPLL failed\n");
6380         }
6381
6382         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6383 }
6384
6385 void hsw_enable_pc8_work(struct work_struct *__work)
6386 {
6387         struct drm_i915_private *dev_priv =
6388                 container_of(to_delayed_work(__work), struct drm_i915_private,
6389                              pc8.enable_work);
6390         struct drm_device *dev = dev_priv->dev;
6391         uint32_t val;
6392
6393         if (dev_priv->pc8.enabled)
6394                 return;
6395
6396         DRM_DEBUG_KMS("Enabling package C8+\n");
6397
6398         dev_priv->pc8.enabled = true;
6399
6400         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6401                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6402                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6403                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6404         }
6405
6406         lpt_disable_clkout_dp(dev);
6407         hsw_pc8_disable_interrupts(dev);
6408         hsw_disable_lcpll(dev_priv, true, true);
6409 }
6410
6411 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6412 {
6413         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6414         WARN(dev_priv->pc8.disable_count < 1,
6415              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6416
6417         dev_priv->pc8.disable_count--;
6418         if (dev_priv->pc8.disable_count != 0)
6419                 return;
6420
6421         schedule_delayed_work(&dev_priv->pc8.enable_work,
6422                               msecs_to_jiffies(i915_pc8_timeout));
6423 }
6424
6425 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6426 {
6427         struct drm_device *dev = dev_priv->dev;
6428         uint32_t val;
6429
6430         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6431         WARN(dev_priv->pc8.disable_count < 0,
6432              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6433
6434         dev_priv->pc8.disable_count++;
6435         if (dev_priv->pc8.disable_count != 1)
6436                 return;
6437
6438         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6439         if (!dev_priv->pc8.enabled)
6440                 return;
6441
6442         DRM_DEBUG_KMS("Disabling package C8+\n");
6443
6444         hsw_restore_lcpll(dev_priv);
6445         hsw_pc8_restore_interrupts(dev);
6446         lpt_init_pch_refclk(dev);
6447
6448         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6449                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6450                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6451                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6452         }
6453
6454         intel_prepare_ddi(dev);
6455         i915_gem_init_swizzling(dev);
6456         mutex_lock(&dev_priv->rps.hw_lock);
6457         gen6_update_ring_freq(dev);
6458         mutex_unlock(&dev_priv->rps.hw_lock);
6459         dev_priv->pc8.enabled = false;
6460 }
6461
6462 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6463 {
6464         mutex_lock(&dev_priv->pc8.lock);
6465         __hsw_enable_package_c8(dev_priv);
6466         mutex_unlock(&dev_priv->pc8.lock);
6467 }
6468
6469 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6470 {
6471         mutex_lock(&dev_priv->pc8.lock);
6472         __hsw_disable_package_c8(dev_priv);
6473         mutex_unlock(&dev_priv->pc8.lock);
6474 }
6475
6476 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6477 {
6478         struct drm_device *dev = dev_priv->dev;
6479         struct intel_crtc *crtc;
6480         uint32_t val;
6481
6482         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6483                 if (crtc->base.enabled)
6484                         return false;
6485
6486         /* This case is still possible since we have the i915.disable_power_well
6487          * parameter and also the KVMr or something else might be requesting the
6488          * power well. */
6489         val = I915_READ(HSW_PWR_WELL_DRIVER);
6490         if (val != 0) {
6491                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6492                 return false;
6493         }
6494
6495         return true;
6496 }
6497
6498 /* Since we're called from modeset_global_resources there's no way to
6499  * symmetrically increase and decrease the refcount, so we use
6500  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6501  * or not.
6502  */
6503 static void hsw_update_package_c8(struct drm_device *dev)
6504 {
6505         struct drm_i915_private *dev_priv = dev->dev_private;
6506         bool allow;
6507
6508         if (!i915_enable_pc8)
6509                 return;
6510
6511         mutex_lock(&dev_priv->pc8.lock);
6512
6513         allow = hsw_can_enable_package_c8(dev_priv);
6514
6515         if (allow == dev_priv->pc8.requirements_met)
6516                 goto done;
6517
6518         dev_priv->pc8.requirements_met = allow;
6519
6520         if (allow)
6521                 __hsw_enable_package_c8(dev_priv);
6522         else
6523                 __hsw_disable_package_c8(dev_priv);
6524
6525 done:
6526         mutex_unlock(&dev_priv->pc8.lock);
6527 }
6528
6529 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6530 {
6531         if (!dev_priv->pc8.gpu_idle) {
6532                 dev_priv->pc8.gpu_idle = true;
6533                 hsw_enable_package_c8(dev_priv);
6534         }
6535 }
6536
6537 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6538 {
6539         if (dev_priv->pc8.gpu_idle) {
6540                 dev_priv->pc8.gpu_idle = false;
6541                 hsw_disable_package_c8(dev_priv);
6542         }
6543 }
6544
6545 static void haswell_modeset_global_resources(struct drm_device *dev)
6546 {
6547         bool enable = false;
6548         struct intel_crtc *crtc;
6549
6550         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6551                 if (!crtc->base.enabled)
6552                         continue;
6553
6554                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6555                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6556                         enable = true;
6557         }
6558
6559         intel_set_power_well(dev, enable);
6560
6561         hsw_update_package_c8(dev);
6562 }
6563
6564 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6565                                  int x, int y,
6566                                  struct drm_framebuffer *fb)
6567 {
6568         struct drm_device *dev = crtc->dev;
6569         struct drm_i915_private *dev_priv = dev->dev_private;
6570         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6571         int plane = intel_crtc->plane;
6572         int ret;
6573
6574         if (!intel_ddi_pll_mode_set(crtc))
6575                 return -EINVAL;
6576
6577         if (intel_crtc->config.has_dp_encoder)
6578                 intel_dp_set_m_n(intel_crtc);
6579
6580         intel_crtc->lowfreq_avail = false;
6581
6582         intel_set_pipe_timings(intel_crtc);
6583
6584         if (intel_crtc->config.has_pch_encoder) {
6585                 intel_cpu_transcoder_set_m_n(intel_crtc,
6586                                              &intel_crtc->config.fdi_m_n);
6587         }
6588
6589         haswell_set_pipeconf(crtc);
6590
6591         intel_set_pipe_csc(crtc);
6592
6593         /* Set up the display plane register */
6594         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6595         POSTING_READ(DSPCNTR(plane));
6596
6597         ret = intel_pipe_set_base(crtc, x, y, fb);
6598
6599         return ret;
6600 }
6601
6602 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6603                                     struct intel_crtc_config *pipe_config)
6604 {
6605         struct drm_device *dev = crtc->base.dev;
6606         struct drm_i915_private *dev_priv = dev->dev_private;
6607         enum intel_display_power_domain pfit_domain;
6608         uint32_t tmp;
6609
6610         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6611         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6612
6613         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6614         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6615                 enum pipe trans_edp_pipe;
6616                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6617                 default:
6618                         WARN(1, "unknown pipe linked to edp transcoder\n");
6619                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6620                 case TRANS_DDI_EDP_INPUT_A_ON:
6621                         trans_edp_pipe = PIPE_A;
6622                         break;
6623                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6624                         trans_edp_pipe = PIPE_B;
6625                         break;
6626                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6627                         trans_edp_pipe = PIPE_C;
6628                         break;
6629                 }
6630
6631                 if (trans_edp_pipe == crtc->pipe)
6632                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6633         }
6634
6635         if (!intel_display_power_enabled(dev,
6636                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6637                 return false;
6638
6639         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6640         if (!(tmp & PIPECONF_ENABLE))
6641                 return false;
6642
6643         /*
6644          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6645          * DDI E. So just check whether this pipe is wired to DDI E and whether
6646          * the PCH transcoder is on.
6647          */
6648         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6649         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6650             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6651                 pipe_config->has_pch_encoder = true;
6652
6653                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6654                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6655                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6656
6657                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6658         }
6659
6660         intel_get_pipe_timings(crtc, pipe_config);
6661
6662         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6663         if (intel_display_power_enabled(dev, pfit_domain))
6664                 ironlake_get_pfit_config(crtc, pipe_config);
6665
6666         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6667                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6668
6669         pipe_config->pixel_multiplier = 1;
6670
6671         return true;
6672 }
6673
6674 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6675                                int x, int y,
6676                                struct drm_framebuffer *fb)
6677 {
6678         struct drm_device *dev = crtc->dev;
6679         struct drm_i915_private *dev_priv = dev->dev_private;
6680         struct intel_encoder *encoder;
6681         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6682         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6683         int pipe = intel_crtc->pipe;
6684         int ret;
6685
6686         drm_vblank_pre_modeset(dev, pipe);
6687
6688         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6689
6690         drm_vblank_post_modeset(dev, pipe);
6691
6692         if (ret != 0)
6693                 return ret;
6694
6695         for_each_encoder_on_crtc(dev, crtc, encoder) {
6696                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6697                         encoder->base.base.id,
6698                         drm_get_encoder_name(&encoder->base),
6699                         mode->base.id, mode->name);
6700                 encoder->mode_set(encoder);
6701         }
6702
6703         return 0;
6704 }
6705
6706 static bool intel_eld_uptodate(struct drm_connector *connector,
6707                                int reg_eldv, uint32_t bits_eldv,
6708                                int reg_elda, uint32_t bits_elda,
6709                                int reg_edid)
6710 {
6711         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6712         uint8_t *eld = connector->eld;
6713         uint32_t i;
6714
6715         i = I915_READ(reg_eldv);
6716         i &= bits_eldv;
6717
6718         if (!eld[0])
6719                 return !i;
6720
6721         if (!i)
6722                 return false;
6723
6724         i = I915_READ(reg_elda);
6725         i &= ~bits_elda;
6726         I915_WRITE(reg_elda, i);
6727
6728         for (i = 0; i < eld[2]; i++)
6729                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6730                         return false;
6731
6732         return true;
6733 }
6734
6735 static void g4x_write_eld(struct drm_connector *connector,
6736                           struct drm_crtc *crtc)
6737 {
6738         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6739         uint8_t *eld = connector->eld;
6740         uint32_t eldv;
6741         uint32_t len;
6742         uint32_t i;
6743
6744         i = I915_READ(G4X_AUD_VID_DID);
6745
6746         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6747                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6748         else
6749                 eldv = G4X_ELDV_DEVCTG;
6750
6751         if (intel_eld_uptodate(connector,
6752                                G4X_AUD_CNTL_ST, eldv,
6753                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6754                                G4X_HDMIW_HDMIEDID))
6755                 return;
6756
6757         i = I915_READ(G4X_AUD_CNTL_ST);
6758         i &= ~(eldv | G4X_ELD_ADDR);
6759         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6760         I915_WRITE(G4X_AUD_CNTL_ST, i);
6761
6762         if (!eld[0])
6763                 return;
6764
6765         len = min_t(uint8_t, eld[2], len);
6766         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6767         for (i = 0; i < len; i++)
6768                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6769
6770         i = I915_READ(G4X_AUD_CNTL_ST);
6771         i |= eldv;
6772         I915_WRITE(G4X_AUD_CNTL_ST, i);
6773 }
6774
6775 static void haswell_write_eld(struct drm_connector *connector,
6776                                      struct drm_crtc *crtc)
6777 {
6778         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6779         uint8_t *eld = connector->eld;
6780         struct drm_device *dev = crtc->dev;
6781         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6782         uint32_t eldv;
6783         uint32_t i;
6784         int len;
6785         int pipe = to_intel_crtc(crtc)->pipe;
6786         int tmp;
6787
6788         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6789         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6790         int aud_config = HSW_AUD_CFG(pipe);
6791         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6792
6793
6794         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6795
6796         /* Audio output enable */
6797         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6798         tmp = I915_READ(aud_cntrl_st2);
6799         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6800         I915_WRITE(aud_cntrl_st2, tmp);
6801
6802         /* Wait for 1 vertical blank */
6803         intel_wait_for_vblank(dev, pipe);
6804
6805         /* Set ELD valid state */
6806         tmp = I915_READ(aud_cntrl_st2);
6807         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6808         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6809         I915_WRITE(aud_cntrl_st2, tmp);
6810         tmp = I915_READ(aud_cntrl_st2);
6811         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6812
6813         /* Enable HDMI mode */
6814         tmp = I915_READ(aud_config);
6815         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6816         /* clear N_programing_enable and N_value_index */
6817         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6818         I915_WRITE(aud_config, tmp);
6819
6820         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6821
6822         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6823         intel_crtc->eld_vld = true;
6824
6825         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6826                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6827                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6828                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6829         } else
6830                 I915_WRITE(aud_config, 0);
6831
6832         if (intel_eld_uptodate(connector,
6833                                aud_cntrl_st2, eldv,
6834                                aud_cntl_st, IBX_ELD_ADDRESS,
6835                                hdmiw_hdmiedid))
6836                 return;
6837
6838         i = I915_READ(aud_cntrl_st2);
6839         i &= ~eldv;
6840         I915_WRITE(aud_cntrl_st2, i);
6841
6842         if (!eld[0])
6843                 return;
6844
6845         i = I915_READ(aud_cntl_st);
6846         i &= ~IBX_ELD_ADDRESS;
6847         I915_WRITE(aud_cntl_st, i);
6848         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6849         DRM_DEBUG_DRIVER("port num:%d\n", i);
6850
6851         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6852         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6853         for (i = 0; i < len; i++)
6854                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6855
6856         i = I915_READ(aud_cntrl_st2);
6857         i |= eldv;
6858         I915_WRITE(aud_cntrl_st2, i);
6859
6860 }
6861
6862 static void ironlake_write_eld(struct drm_connector *connector,
6863                                      struct drm_crtc *crtc)
6864 {
6865         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6866         uint8_t *eld = connector->eld;
6867         uint32_t eldv;
6868         uint32_t i;
6869         int len;
6870         int hdmiw_hdmiedid;
6871         int aud_config;
6872         int aud_cntl_st;
6873         int aud_cntrl_st2;
6874         int pipe = to_intel_crtc(crtc)->pipe;
6875
6876         if (HAS_PCH_IBX(connector->dev)) {
6877                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6878                 aud_config = IBX_AUD_CFG(pipe);
6879                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6880                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6881         } else {
6882                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6883                 aud_config = CPT_AUD_CFG(pipe);
6884                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6885                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6886         }
6887
6888         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6889
6890         i = I915_READ(aud_cntl_st);
6891         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6892         if (!i) {
6893                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6894                 /* operate blindly on all ports */
6895                 eldv = IBX_ELD_VALIDB;
6896                 eldv |= IBX_ELD_VALIDB << 4;
6897                 eldv |= IBX_ELD_VALIDB << 8;
6898         } else {
6899                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6900                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6901         }
6902
6903         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6904                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6905                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6906                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6907         } else
6908                 I915_WRITE(aud_config, 0);
6909
6910         if (intel_eld_uptodate(connector,
6911                                aud_cntrl_st2, eldv,
6912                                aud_cntl_st, IBX_ELD_ADDRESS,
6913                                hdmiw_hdmiedid))
6914                 return;
6915
6916         i = I915_READ(aud_cntrl_st2);
6917         i &= ~eldv;
6918         I915_WRITE(aud_cntrl_st2, i);
6919
6920         if (!eld[0])
6921                 return;
6922
6923         i = I915_READ(aud_cntl_st);
6924         i &= ~IBX_ELD_ADDRESS;
6925         I915_WRITE(aud_cntl_st, i);
6926
6927         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6928         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6929         for (i = 0; i < len; i++)
6930                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6931
6932         i = I915_READ(aud_cntrl_st2);
6933         i |= eldv;
6934         I915_WRITE(aud_cntrl_st2, i);
6935 }
6936
6937 void intel_write_eld(struct drm_encoder *encoder,
6938                      struct drm_display_mode *mode)
6939 {
6940         struct drm_crtc *crtc = encoder->crtc;
6941         struct drm_connector *connector;
6942         struct drm_device *dev = encoder->dev;
6943         struct drm_i915_private *dev_priv = dev->dev_private;
6944
6945         connector = drm_select_eld(encoder, mode);
6946         if (!connector)
6947                 return;
6948
6949         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6950                          connector->base.id,
6951                          drm_get_connector_name(connector),
6952                          connector->encoder->base.id,
6953                          drm_get_encoder_name(connector->encoder));
6954
6955         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6956
6957         if (dev_priv->display.write_eld)
6958                 dev_priv->display.write_eld(connector, crtc);
6959 }
6960
6961 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6962 {
6963         struct drm_device *dev = crtc->dev;
6964         struct drm_i915_private *dev_priv = dev->dev_private;
6965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6966         bool visible = base != 0;
6967         u32 cntl;
6968
6969         if (intel_crtc->cursor_visible == visible)
6970                 return;
6971
6972         cntl = I915_READ(_CURACNTR);
6973         if (visible) {
6974                 /* On these chipsets we can only modify the base whilst
6975                  * the cursor is disabled.
6976                  */
6977                 I915_WRITE(_CURABASE, base);
6978
6979                 cntl &= ~(CURSOR_FORMAT_MASK);
6980                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6981                 cntl |= CURSOR_ENABLE |
6982                         CURSOR_GAMMA_ENABLE |
6983                         CURSOR_FORMAT_ARGB;
6984         } else
6985                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6986         I915_WRITE(_CURACNTR, cntl);
6987
6988         intel_crtc->cursor_visible = visible;
6989 }
6990
6991 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6992 {
6993         struct drm_device *dev = crtc->dev;
6994         struct drm_i915_private *dev_priv = dev->dev_private;
6995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6996         int pipe = intel_crtc->pipe;
6997         bool visible = base != 0;
6998
6999         if (intel_crtc->cursor_visible != visible) {
7000                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7001                 if (base) {
7002                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7003                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7004                         cntl |= pipe << 28; /* Connect to correct pipe */
7005                 } else {
7006                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7007                         cntl |= CURSOR_MODE_DISABLE;
7008                 }
7009                 I915_WRITE(CURCNTR(pipe), cntl);
7010
7011                 intel_crtc->cursor_visible = visible;
7012         }
7013         /* and commit changes on next vblank */
7014         I915_WRITE(CURBASE(pipe), base);
7015 }
7016
7017 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7018 {
7019         struct drm_device *dev = crtc->dev;
7020         struct drm_i915_private *dev_priv = dev->dev_private;
7021         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7022         int pipe = intel_crtc->pipe;
7023         bool visible = base != 0;
7024
7025         if (intel_crtc->cursor_visible != visible) {
7026                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7027                 if (base) {
7028                         cntl &= ~CURSOR_MODE;
7029                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7030                 } else {
7031                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7032                         cntl |= CURSOR_MODE_DISABLE;
7033                 }
7034                 if (IS_HASWELL(dev)) {
7035                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7036                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7037                 }
7038                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7039
7040                 intel_crtc->cursor_visible = visible;
7041         }
7042         /* and commit changes on next vblank */
7043         I915_WRITE(CURBASE_IVB(pipe), base);
7044 }
7045
7046 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7047 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7048                                      bool on)
7049 {
7050         struct drm_device *dev = crtc->dev;
7051         struct drm_i915_private *dev_priv = dev->dev_private;
7052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7053         int pipe = intel_crtc->pipe;
7054         int x = intel_crtc->cursor_x;
7055         int y = intel_crtc->cursor_y;
7056         u32 base = 0, pos = 0;
7057         bool visible;
7058
7059         if (on)
7060                 base = intel_crtc->cursor_addr;
7061
7062         if (x >= intel_crtc->config.pipe_src_w)
7063                 base = 0;
7064
7065         if (y >= intel_crtc->config.pipe_src_h)
7066                 base = 0;
7067
7068         if (x < 0) {
7069                 if (x + intel_crtc->cursor_width <= 0)
7070                         base = 0;
7071
7072                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7073                 x = -x;
7074         }
7075         pos |= x << CURSOR_X_SHIFT;
7076
7077         if (y < 0) {
7078                 if (y + intel_crtc->cursor_height <= 0)
7079                         base = 0;
7080
7081                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7082                 y = -y;
7083         }
7084         pos |= y << CURSOR_Y_SHIFT;
7085
7086         visible = base != 0;
7087         if (!visible && !intel_crtc->cursor_visible)
7088                 return;
7089
7090         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
7091                 I915_WRITE(CURPOS_IVB(pipe), pos);
7092                 ivb_update_cursor(crtc, base);
7093         } else {
7094                 I915_WRITE(CURPOS(pipe), pos);
7095                 if (IS_845G(dev) || IS_I865G(dev))
7096                         i845_update_cursor(crtc, base);
7097                 else
7098                         i9xx_update_cursor(crtc, base);
7099         }
7100 }
7101
7102 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7103                                  struct drm_file *file,
7104                                  uint32_t handle,
7105                                  uint32_t width, uint32_t height)
7106 {
7107         struct drm_device *dev = crtc->dev;
7108         struct drm_i915_private *dev_priv = dev->dev_private;
7109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7110         struct drm_i915_gem_object *obj;
7111         uint32_t addr;
7112         int ret;
7113
7114         /* if we want to turn off the cursor ignore width and height */
7115         if (!handle) {
7116                 DRM_DEBUG_KMS("cursor off\n");
7117                 addr = 0;
7118                 obj = NULL;
7119                 mutex_lock(&dev->struct_mutex);
7120                 goto finish;
7121         }
7122
7123         /* Currently we only support 64x64 cursors */
7124         if (width != 64 || height != 64) {
7125                 DRM_ERROR("we currently only support 64x64 cursors\n");
7126                 return -EINVAL;
7127         }
7128
7129         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7130         if (&obj->base == NULL)
7131                 return -ENOENT;
7132
7133         if (obj->base.size < width * height * 4) {
7134                 DRM_ERROR("buffer is to small\n");
7135                 ret = -ENOMEM;
7136                 goto fail;
7137         }
7138
7139         /* we only need to pin inside GTT if cursor is non-phy */
7140         mutex_lock(&dev->struct_mutex);
7141         if (!dev_priv->info->cursor_needs_physical) {
7142                 unsigned alignment;
7143
7144                 if (obj->tiling_mode) {
7145                         DRM_ERROR("cursor cannot be tiled\n");
7146                         ret = -EINVAL;
7147                         goto fail_locked;
7148                 }
7149
7150                 /* Note that the w/a also requires 2 PTE of padding following
7151                  * the bo. We currently fill all unused PTE with the shadow
7152                  * page and so we should always have valid PTE following the
7153                  * cursor preventing the VT-d warning.
7154                  */
7155                 alignment = 0;
7156                 if (need_vtd_wa(dev))
7157                         alignment = 64*1024;
7158
7159                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7160                 if (ret) {
7161                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7162                         goto fail_locked;
7163                 }
7164
7165                 ret = i915_gem_object_put_fence(obj);
7166                 if (ret) {
7167                         DRM_ERROR("failed to release fence for cursor");
7168                         goto fail_unpin;
7169                 }
7170
7171                 addr = i915_gem_obj_ggtt_offset(obj);
7172         } else {
7173                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7174                 ret = i915_gem_attach_phys_object(dev, obj,
7175                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7176                                                   align);
7177                 if (ret) {
7178                         DRM_ERROR("failed to attach phys object\n");
7179                         goto fail_locked;
7180                 }
7181                 addr = obj->phys_obj->handle->busaddr;
7182         }
7183
7184         if (IS_GEN2(dev))
7185                 I915_WRITE(CURSIZE, (height << 12) | width);
7186
7187  finish:
7188         if (intel_crtc->cursor_bo) {
7189                 if (dev_priv->info->cursor_needs_physical) {
7190                         if (intel_crtc->cursor_bo != obj)
7191                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7192                 } else
7193                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7194                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7195         }
7196
7197         mutex_unlock(&dev->struct_mutex);
7198
7199         intel_crtc->cursor_addr = addr;
7200         intel_crtc->cursor_bo = obj;
7201         intel_crtc->cursor_width = width;
7202         intel_crtc->cursor_height = height;
7203
7204         if (intel_crtc->active)
7205                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7206
7207         return 0;
7208 fail_unpin:
7209         i915_gem_object_unpin_from_display_plane(obj);
7210 fail_locked:
7211         mutex_unlock(&dev->struct_mutex);
7212 fail:
7213         drm_gem_object_unreference_unlocked(&obj->base);
7214         return ret;
7215 }
7216
7217 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7218 {
7219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7220
7221         intel_crtc->cursor_x = x;
7222         intel_crtc->cursor_y = y;
7223
7224         if (intel_crtc->active)
7225                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7226
7227         return 0;
7228 }
7229
7230 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7231                                  u16 *blue, uint32_t start, uint32_t size)
7232 {
7233         int end = (start + size > 256) ? 256 : start + size, i;
7234         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7235
7236         for (i = start; i < end; i++) {
7237                 intel_crtc->lut_r[i] = red[i] >> 8;
7238                 intel_crtc->lut_g[i] = green[i] >> 8;
7239                 intel_crtc->lut_b[i] = blue[i] >> 8;
7240         }
7241
7242         intel_crtc_load_lut(crtc);
7243 }
7244
7245 /* VESA 640x480x72Hz mode to set on the pipe */
7246 static struct drm_display_mode load_detect_mode = {
7247         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7248                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7249 };
7250
7251 static struct drm_framebuffer *
7252 intel_framebuffer_create(struct drm_device *dev,
7253                          struct drm_mode_fb_cmd2 *mode_cmd,
7254                          struct drm_i915_gem_object *obj)
7255 {
7256         struct intel_framebuffer *intel_fb;
7257         int ret;
7258
7259         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7260         if (!intel_fb) {
7261                 drm_gem_object_unreference_unlocked(&obj->base);
7262                 return ERR_PTR(-ENOMEM);
7263         }
7264
7265         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7266         if (ret) {
7267                 drm_gem_object_unreference_unlocked(&obj->base);
7268                 kfree(intel_fb);
7269                 return ERR_PTR(ret);
7270         }
7271
7272         return &intel_fb->base;
7273 }
7274
7275 static u32
7276 intel_framebuffer_pitch_for_width(int width, int bpp)
7277 {
7278         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7279         return ALIGN(pitch, 64);
7280 }
7281
7282 static u32
7283 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7284 {
7285         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7286         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7287 }
7288
7289 static struct drm_framebuffer *
7290 intel_framebuffer_create_for_mode(struct drm_device *dev,
7291                                   struct drm_display_mode *mode,
7292                                   int depth, int bpp)
7293 {
7294         struct drm_i915_gem_object *obj;
7295         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7296
7297         obj = i915_gem_alloc_object(dev,
7298                                     intel_framebuffer_size_for_mode(mode, bpp));
7299         if (obj == NULL)
7300                 return ERR_PTR(-ENOMEM);
7301
7302         mode_cmd.width = mode->hdisplay;
7303         mode_cmd.height = mode->vdisplay;
7304         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7305                                                                 bpp);
7306         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7307
7308         return intel_framebuffer_create(dev, &mode_cmd, obj);
7309 }
7310
7311 static struct drm_framebuffer *
7312 mode_fits_in_fbdev(struct drm_device *dev,
7313                    struct drm_display_mode *mode)
7314 {
7315         struct drm_i915_private *dev_priv = dev->dev_private;
7316         struct drm_i915_gem_object *obj;
7317         struct drm_framebuffer *fb;
7318
7319         if (dev_priv->fbdev == NULL)
7320                 return NULL;
7321
7322         obj = dev_priv->fbdev->ifb.obj;
7323         if (obj == NULL)
7324                 return NULL;
7325
7326         fb = &dev_priv->fbdev->ifb.base;
7327         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7328                                                                fb->bits_per_pixel))
7329                 return NULL;
7330
7331         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7332                 return NULL;
7333
7334         return fb;
7335 }
7336
7337 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7338                                 struct drm_display_mode *mode,
7339                                 struct intel_load_detect_pipe *old)
7340 {
7341         struct intel_crtc *intel_crtc;
7342         struct intel_encoder *intel_encoder =
7343                 intel_attached_encoder(connector);
7344         struct drm_crtc *possible_crtc;
7345         struct drm_encoder *encoder = &intel_encoder->base;
7346         struct drm_crtc *crtc = NULL;
7347         struct drm_device *dev = encoder->dev;
7348         struct drm_framebuffer *fb;
7349         int i = -1;
7350
7351         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7352                       connector->base.id, drm_get_connector_name(connector),
7353                       encoder->base.id, drm_get_encoder_name(encoder));
7354
7355         /*
7356          * Algorithm gets a little messy:
7357          *
7358          *   - if the connector already has an assigned crtc, use it (but make
7359          *     sure it's on first)
7360          *
7361          *   - try to find the first unused crtc that can drive this connector,
7362          *     and use that if we find one
7363          */
7364
7365         /* See if we already have a CRTC for this connector */
7366         if (encoder->crtc) {
7367                 crtc = encoder->crtc;
7368
7369                 mutex_lock(&crtc->mutex);
7370
7371                 old->dpms_mode = connector->dpms;
7372                 old->load_detect_temp = false;
7373
7374                 /* Make sure the crtc and connector are running */
7375                 if (connector->dpms != DRM_MODE_DPMS_ON)
7376                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7377
7378                 return true;
7379         }
7380
7381         /* Find an unused one (if possible) */
7382         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7383                 i++;
7384                 if (!(encoder->possible_crtcs & (1 << i)))
7385                         continue;
7386                 if (!possible_crtc->enabled) {
7387                         crtc = possible_crtc;
7388                         break;
7389                 }
7390         }
7391
7392         /*
7393          * If we didn't find an unused CRTC, don't use any.
7394          */
7395         if (!crtc) {
7396                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7397                 return false;
7398         }
7399
7400         mutex_lock(&crtc->mutex);
7401         intel_encoder->new_crtc = to_intel_crtc(crtc);
7402         to_intel_connector(connector)->new_encoder = intel_encoder;
7403
7404         intel_crtc = to_intel_crtc(crtc);
7405         old->dpms_mode = connector->dpms;
7406         old->load_detect_temp = true;
7407         old->release_fb = NULL;
7408
7409         if (!mode)
7410                 mode = &load_detect_mode;
7411
7412         /* We need a framebuffer large enough to accommodate all accesses
7413          * that the plane may generate whilst we perform load detection.
7414          * We can not rely on the fbcon either being present (we get called
7415          * during its initialisation to detect all boot displays, or it may
7416          * not even exist) or that it is large enough to satisfy the
7417          * requested mode.
7418          */
7419         fb = mode_fits_in_fbdev(dev, mode);
7420         if (fb == NULL) {
7421                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7422                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7423                 old->release_fb = fb;
7424         } else
7425                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7426         if (IS_ERR(fb)) {
7427                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7428                 mutex_unlock(&crtc->mutex);
7429                 return false;
7430         }
7431
7432         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7433                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7434                 if (old->release_fb)
7435                         old->release_fb->funcs->destroy(old->release_fb);
7436                 mutex_unlock(&crtc->mutex);
7437                 return false;
7438         }
7439
7440         /* let the connector get through one full cycle before testing */
7441         intel_wait_for_vblank(dev, intel_crtc->pipe);
7442         return true;
7443 }
7444
7445 void intel_release_load_detect_pipe(struct drm_connector *connector,
7446                                     struct intel_load_detect_pipe *old)
7447 {
7448         struct intel_encoder *intel_encoder =
7449                 intel_attached_encoder(connector);
7450         struct drm_encoder *encoder = &intel_encoder->base;
7451         struct drm_crtc *crtc = encoder->crtc;
7452
7453         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7454                       connector->base.id, drm_get_connector_name(connector),
7455                       encoder->base.id, drm_get_encoder_name(encoder));
7456
7457         if (old->load_detect_temp) {
7458                 to_intel_connector(connector)->new_encoder = NULL;
7459                 intel_encoder->new_crtc = NULL;
7460                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7461
7462                 if (old->release_fb) {
7463                         drm_framebuffer_unregister_private(old->release_fb);
7464                         drm_framebuffer_unreference(old->release_fb);
7465                 }
7466
7467                 mutex_unlock(&crtc->mutex);
7468                 return;
7469         }
7470
7471         /* Switch crtc and encoder back off if necessary */
7472         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7473                 connector->funcs->dpms(connector, old->dpms_mode);
7474
7475         mutex_unlock(&crtc->mutex);
7476 }
7477
7478 static int i9xx_pll_refclk(struct drm_device *dev,
7479                            const struct intel_crtc_config *pipe_config)
7480 {
7481         struct drm_i915_private *dev_priv = dev->dev_private;
7482         u32 dpll = pipe_config->dpll_hw_state.dpll;
7483
7484         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7485                 return dev_priv->vbt.lvds_ssc_freq * 1000;
7486         else if (HAS_PCH_SPLIT(dev))
7487                 return 120000;
7488         else if (!IS_GEN2(dev))
7489                 return 96000;
7490         else
7491                 return 48000;
7492 }
7493
7494 /* Returns the clock of the currently programmed mode of the given pipe. */
7495 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7496                                 struct intel_crtc_config *pipe_config)
7497 {
7498         struct drm_device *dev = crtc->base.dev;
7499         struct drm_i915_private *dev_priv = dev->dev_private;
7500         int pipe = pipe_config->cpu_transcoder;
7501         u32 dpll = pipe_config->dpll_hw_state.dpll;
7502         u32 fp;
7503         intel_clock_t clock;
7504         int refclk = i9xx_pll_refclk(dev, pipe_config);
7505
7506         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7507                 fp = pipe_config->dpll_hw_state.fp0;
7508         else
7509                 fp = pipe_config->dpll_hw_state.fp1;
7510
7511         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7512         if (IS_PINEVIEW(dev)) {
7513                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7514                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7515         } else {
7516                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7517                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7518         }
7519
7520         if (!IS_GEN2(dev)) {
7521                 if (IS_PINEVIEW(dev))
7522                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7523                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7524                 else
7525                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7526                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7527
7528                 switch (dpll & DPLL_MODE_MASK) {
7529                 case DPLLB_MODE_DAC_SERIAL:
7530                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7531                                 5 : 10;
7532                         break;
7533                 case DPLLB_MODE_LVDS:
7534                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7535                                 7 : 14;
7536                         break;
7537                 default:
7538                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7539                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7540                         return;
7541                 }
7542
7543                 if (IS_PINEVIEW(dev))
7544                         pineview_clock(refclk, &clock);
7545                 else
7546                         i9xx_clock(refclk, &clock);
7547         } else {
7548                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7549
7550                 if (is_lvds) {
7551                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7552                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7553                         clock.p2 = 14;
7554                 } else {
7555                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7556                                 clock.p1 = 2;
7557                         else {
7558                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7559                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7560                         }
7561                         if (dpll & PLL_P2_DIVIDE_BY_4)
7562                                 clock.p2 = 4;
7563                         else
7564                                 clock.p2 = 2;
7565                 }
7566
7567                 i9xx_clock(refclk, &clock);
7568         }
7569
7570         /*
7571          * This value includes pixel_multiplier. We will use
7572          * port_clock to compute adjusted_mode.crtc_clock in the
7573          * encoder's get_config() function.
7574          */
7575         pipe_config->port_clock = clock.dot;
7576 }
7577
7578 int intel_dotclock_calculate(int link_freq,
7579                              const struct intel_link_m_n *m_n)
7580 {
7581         /*
7582          * The calculation for the data clock is:
7583          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7584          * But we want to avoid losing precison if possible, so:
7585          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7586          *
7587          * and the link clock is simpler:
7588          * link_clock = (m * link_clock) / n
7589          */
7590
7591         if (!m_n->link_n)
7592                 return 0;
7593
7594         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7595 }
7596
7597 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7598                                    struct intel_crtc_config *pipe_config)
7599 {
7600         struct drm_device *dev = crtc->base.dev;
7601
7602         /* read out port_clock from the DPLL */
7603         i9xx_crtc_clock_get(crtc, pipe_config);
7604
7605         /*
7606          * This value does not include pixel_multiplier.
7607          * We will check that port_clock and adjusted_mode.crtc_clock
7608          * agree once we know their relationship in the encoder's
7609          * get_config() function.
7610          */
7611         pipe_config->adjusted_mode.crtc_clock =
7612                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7613                                          &pipe_config->fdi_m_n);
7614 }
7615
7616 /** Returns the currently programmed mode of the given pipe. */
7617 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7618                                              struct drm_crtc *crtc)
7619 {
7620         struct drm_i915_private *dev_priv = dev->dev_private;
7621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7622         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7623         struct drm_display_mode *mode;
7624         struct intel_crtc_config pipe_config;
7625         int htot = I915_READ(HTOTAL(cpu_transcoder));
7626         int hsync = I915_READ(HSYNC(cpu_transcoder));
7627         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7628         int vsync = I915_READ(VSYNC(cpu_transcoder));
7629         enum pipe pipe = intel_crtc->pipe;
7630
7631         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7632         if (!mode)
7633                 return NULL;
7634
7635         /*
7636          * Construct a pipe_config sufficient for getting the clock info
7637          * back out of crtc_clock_get.
7638          *
7639          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7640          * to use a real value here instead.
7641          */
7642         pipe_config.cpu_transcoder = (enum transcoder) pipe;
7643         pipe_config.pixel_multiplier = 1;
7644         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7645         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7646         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7647         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7648
7649         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
7650         mode->hdisplay = (htot & 0xffff) + 1;
7651         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7652         mode->hsync_start = (hsync & 0xffff) + 1;
7653         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7654         mode->vdisplay = (vtot & 0xffff) + 1;
7655         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7656         mode->vsync_start = (vsync & 0xffff) + 1;
7657         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7658
7659         drm_mode_set_name(mode);
7660
7661         return mode;
7662 }
7663
7664 static void intel_increase_pllclock(struct drm_crtc *crtc)
7665 {
7666         struct drm_device *dev = crtc->dev;
7667         drm_i915_private_t *dev_priv = dev->dev_private;
7668         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7669         int pipe = intel_crtc->pipe;
7670         int dpll_reg = DPLL(pipe);
7671         int dpll;
7672
7673         if (HAS_PCH_SPLIT(dev))
7674                 return;
7675
7676         if (!dev_priv->lvds_downclock_avail)
7677                 return;
7678
7679         dpll = I915_READ(dpll_reg);
7680         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7681                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7682
7683                 assert_panel_unlocked(dev_priv, pipe);
7684
7685                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7686                 I915_WRITE(dpll_reg, dpll);
7687                 intel_wait_for_vblank(dev, pipe);
7688
7689                 dpll = I915_READ(dpll_reg);
7690                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7691                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7692         }
7693 }
7694
7695 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7696 {
7697         struct drm_device *dev = crtc->dev;
7698         drm_i915_private_t *dev_priv = dev->dev_private;
7699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7700
7701         if (HAS_PCH_SPLIT(dev))
7702                 return;
7703
7704         if (!dev_priv->lvds_downclock_avail)
7705                 return;
7706
7707         /*
7708          * Since this is called by a timer, we should never get here in
7709          * the manual case.
7710          */
7711         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7712                 int pipe = intel_crtc->pipe;
7713                 int dpll_reg = DPLL(pipe);
7714                 int dpll;
7715
7716                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7717
7718                 assert_panel_unlocked(dev_priv, pipe);
7719
7720                 dpll = I915_READ(dpll_reg);
7721                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7722                 I915_WRITE(dpll_reg, dpll);
7723                 intel_wait_for_vblank(dev, pipe);
7724                 dpll = I915_READ(dpll_reg);
7725                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7726                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7727         }
7728
7729 }
7730
7731 void intel_mark_busy(struct drm_device *dev)
7732 {
7733         struct drm_i915_private *dev_priv = dev->dev_private;
7734
7735         hsw_package_c8_gpu_busy(dev_priv);
7736         i915_update_gfx_val(dev_priv);
7737 }
7738
7739 void intel_mark_idle(struct drm_device *dev)
7740 {
7741         struct drm_i915_private *dev_priv = dev->dev_private;
7742         struct drm_crtc *crtc;
7743
7744         hsw_package_c8_gpu_idle(dev_priv);
7745
7746         if (!i915_powersave)
7747                 return;
7748
7749         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7750                 if (!crtc->fb)
7751                         continue;
7752
7753                 intel_decrease_pllclock(crtc);
7754         }
7755
7756         if (dev_priv->info->gen >= 6)
7757                 gen6_rps_idle(dev->dev_private);
7758 }
7759
7760 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7761                         struct intel_ring_buffer *ring)
7762 {
7763         struct drm_device *dev = obj->base.dev;
7764         struct drm_crtc *crtc;
7765
7766         if (!i915_powersave)
7767                 return;
7768
7769         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7770                 if (!crtc->fb)
7771                         continue;
7772
7773                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7774                         continue;
7775
7776                 intel_increase_pllclock(crtc);
7777                 if (ring && intel_fbc_enabled(dev))
7778                         ring->fbc_dirty = true;
7779         }
7780 }
7781
7782 static void intel_crtc_destroy(struct drm_crtc *crtc)
7783 {
7784         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7785         struct drm_device *dev = crtc->dev;
7786         struct intel_unpin_work *work;
7787         unsigned long flags;
7788
7789         spin_lock_irqsave(&dev->event_lock, flags);
7790         work = intel_crtc->unpin_work;
7791         intel_crtc->unpin_work = NULL;
7792         spin_unlock_irqrestore(&dev->event_lock, flags);
7793
7794         if (work) {
7795                 cancel_work_sync(&work->work);
7796                 kfree(work);
7797         }
7798
7799         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7800
7801         drm_crtc_cleanup(crtc);
7802
7803         kfree(intel_crtc);
7804 }
7805
7806 static void intel_unpin_work_fn(struct work_struct *__work)
7807 {
7808         struct intel_unpin_work *work =
7809                 container_of(__work, struct intel_unpin_work, work);
7810         struct drm_device *dev = work->crtc->dev;
7811
7812         mutex_lock(&dev->struct_mutex);
7813         intel_unpin_fb_obj(work->old_fb_obj);
7814         drm_gem_object_unreference(&work->pending_flip_obj->base);
7815         drm_gem_object_unreference(&work->old_fb_obj->base);
7816
7817         intel_update_fbc(dev);
7818         mutex_unlock(&dev->struct_mutex);
7819
7820         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7821         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7822
7823         kfree(work);
7824 }
7825
7826 static void do_intel_finish_page_flip(struct drm_device *dev,
7827                                       struct drm_crtc *crtc)
7828 {
7829         drm_i915_private_t *dev_priv = dev->dev_private;
7830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7831         struct intel_unpin_work *work;
7832         unsigned long flags;
7833
7834         /* Ignore early vblank irqs */
7835         if (intel_crtc == NULL)
7836                 return;
7837
7838         spin_lock_irqsave(&dev->event_lock, flags);
7839         work = intel_crtc->unpin_work;
7840
7841         /* Ensure we don't miss a work->pending update ... */
7842         smp_rmb();
7843
7844         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7845                 spin_unlock_irqrestore(&dev->event_lock, flags);
7846                 return;
7847         }
7848
7849         /* and that the unpin work is consistent wrt ->pending. */
7850         smp_rmb();
7851
7852         intel_crtc->unpin_work = NULL;
7853
7854         if (work->event)
7855                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7856
7857         drm_vblank_put(dev, intel_crtc->pipe);
7858
7859         spin_unlock_irqrestore(&dev->event_lock, flags);
7860
7861         wake_up_all(&dev_priv->pending_flip_queue);
7862
7863         queue_work(dev_priv->wq, &work->work);
7864
7865         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7866 }
7867
7868 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7869 {
7870         drm_i915_private_t *dev_priv = dev->dev_private;
7871         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7872
7873         do_intel_finish_page_flip(dev, crtc);
7874 }
7875
7876 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7877 {
7878         drm_i915_private_t *dev_priv = dev->dev_private;
7879         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7880
7881         do_intel_finish_page_flip(dev, crtc);
7882 }
7883
7884 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7885 {
7886         drm_i915_private_t *dev_priv = dev->dev_private;
7887         struct intel_crtc *intel_crtc =
7888                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7889         unsigned long flags;
7890
7891         /* NB: An MMIO update of the plane base pointer will also
7892          * generate a page-flip completion irq, i.e. every modeset
7893          * is also accompanied by a spurious intel_prepare_page_flip().
7894          */
7895         spin_lock_irqsave(&dev->event_lock, flags);
7896         if (intel_crtc->unpin_work)
7897                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7898         spin_unlock_irqrestore(&dev->event_lock, flags);
7899 }
7900
7901 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7902 {
7903         /* Ensure that the work item is consistent when activating it ... */
7904         smp_wmb();
7905         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7906         /* and that it is marked active as soon as the irq could fire. */
7907         smp_wmb();
7908 }
7909
7910 static int intel_gen2_queue_flip(struct drm_device *dev,
7911                                  struct drm_crtc *crtc,
7912                                  struct drm_framebuffer *fb,
7913                                  struct drm_i915_gem_object *obj,
7914                                  uint32_t flags)
7915 {
7916         struct drm_i915_private *dev_priv = dev->dev_private;
7917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7918         u32 flip_mask;
7919         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7920         int ret;
7921
7922         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7923         if (ret)
7924                 goto err;
7925
7926         ret = intel_ring_begin(ring, 6);
7927         if (ret)
7928                 goto err_unpin;
7929
7930         /* Can't queue multiple flips, so wait for the previous
7931          * one to finish before executing the next.
7932          */
7933         if (intel_crtc->plane)
7934                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7935         else
7936                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7937         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7938         intel_ring_emit(ring, MI_NOOP);
7939         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7940                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7941         intel_ring_emit(ring, fb->pitches[0]);
7942         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7943         intel_ring_emit(ring, 0); /* aux display base address, unused */
7944
7945         intel_mark_page_flip_active(intel_crtc);
7946         __intel_ring_advance(ring);
7947         return 0;
7948
7949 err_unpin:
7950         intel_unpin_fb_obj(obj);
7951 err:
7952         return ret;
7953 }
7954
7955 static int intel_gen3_queue_flip(struct drm_device *dev,
7956                                  struct drm_crtc *crtc,
7957                                  struct drm_framebuffer *fb,
7958                                  struct drm_i915_gem_object *obj,
7959                                  uint32_t flags)
7960 {
7961         struct drm_i915_private *dev_priv = dev->dev_private;
7962         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7963         u32 flip_mask;
7964         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7965         int ret;
7966
7967         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7968         if (ret)
7969                 goto err;
7970
7971         ret = intel_ring_begin(ring, 6);
7972         if (ret)
7973                 goto err_unpin;
7974
7975         if (intel_crtc->plane)
7976                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7977         else
7978                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7979         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7980         intel_ring_emit(ring, MI_NOOP);
7981         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7982                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7983         intel_ring_emit(ring, fb->pitches[0]);
7984         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7985         intel_ring_emit(ring, MI_NOOP);
7986
7987         intel_mark_page_flip_active(intel_crtc);
7988         __intel_ring_advance(ring);
7989         return 0;
7990
7991 err_unpin:
7992         intel_unpin_fb_obj(obj);
7993 err:
7994         return ret;
7995 }
7996
7997 static int intel_gen4_queue_flip(struct drm_device *dev,
7998                                  struct drm_crtc *crtc,
7999                                  struct drm_framebuffer *fb,
8000                                  struct drm_i915_gem_object *obj,
8001                                  uint32_t flags)
8002 {
8003         struct drm_i915_private *dev_priv = dev->dev_private;
8004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8005         uint32_t pf, pipesrc;
8006         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8007         int ret;
8008
8009         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8010         if (ret)
8011                 goto err;
8012
8013         ret = intel_ring_begin(ring, 4);
8014         if (ret)
8015                 goto err_unpin;
8016
8017         /* i965+ uses the linear or tiled offsets from the
8018          * Display Registers (which do not change across a page-flip)
8019          * so we need only reprogram the base address.
8020          */
8021         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8022                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8023         intel_ring_emit(ring, fb->pitches[0]);
8024         intel_ring_emit(ring,
8025                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8026                         obj->tiling_mode);
8027
8028         /* XXX Enabling the panel-fitter across page-flip is so far
8029          * untested on non-native modes, so ignore it for now.
8030          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8031          */
8032         pf = 0;
8033         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8034         intel_ring_emit(ring, pf | pipesrc);
8035
8036         intel_mark_page_flip_active(intel_crtc);
8037         __intel_ring_advance(ring);
8038         return 0;
8039
8040 err_unpin:
8041         intel_unpin_fb_obj(obj);
8042 err:
8043         return ret;
8044 }
8045
8046 static int intel_gen6_queue_flip(struct drm_device *dev,
8047                                  struct drm_crtc *crtc,
8048                                  struct drm_framebuffer *fb,
8049                                  struct drm_i915_gem_object *obj,
8050                                  uint32_t flags)
8051 {
8052         struct drm_i915_private *dev_priv = dev->dev_private;
8053         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8054         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8055         uint32_t pf, pipesrc;
8056         int ret;
8057
8058         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8059         if (ret)
8060                 goto err;
8061
8062         ret = intel_ring_begin(ring, 4);
8063         if (ret)
8064                 goto err_unpin;
8065
8066         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8067                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8068         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8069         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8070
8071         /* Contrary to the suggestions in the documentation,
8072          * "Enable Panel Fitter" does not seem to be required when page
8073          * flipping with a non-native mode, and worse causes a normal
8074          * modeset to fail.
8075          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8076          */
8077         pf = 0;
8078         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8079         intel_ring_emit(ring, pf | pipesrc);
8080
8081         intel_mark_page_flip_active(intel_crtc);
8082         __intel_ring_advance(ring);
8083         return 0;
8084
8085 err_unpin:
8086         intel_unpin_fb_obj(obj);
8087 err:
8088         return ret;
8089 }
8090
8091 static int intel_gen7_queue_flip(struct drm_device *dev,
8092                                  struct drm_crtc *crtc,
8093                                  struct drm_framebuffer *fb,
8094                                  struct drm_i915_gem_object *obj,
8095                                  uint32_t flags)
8096 {
8097         struct drm_i915_private *dev_priv = dev->dev_private;
8098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8099         struct intel_ring_buffer *ring;
8100         uint32_t plane_bit = 0;
8101         int len, ret;
8102
8103         ring = obj->ring;
8104         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8105                 ring = &dev_priv->ring[BCS];
8106
8107         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8108         if (ret)
8109                 goto err;
8110
8111         switch(intel_crtc->plane) {
8112         case PLANE_A:
8113                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8114                 break;
8115         case PLANE_B:
8116                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8117                 break;
8118         case PLANE_C:
8119                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8120                 break;
8121         default:
8122                 WARN_ONCE(1, "unknown plane in flip command\n");
8123                 ret = -ENODEV;
8124                 goto err_unpin;
8125         }
8126
8127         len = 4;
8128         if (ring->id == RCS)
8129                 len += 6;
8130
8131         ret = intel_ring_begin(ring, len);
8132         if (ret)
8133                 goto err_unpin;
8134
8135         /* Unmask the flip-done completion message. Note that the bspec says that
8136          * we should do this for both the BCS and RCS, and that we must not unmask
8137          * more than one flip event at any time (or ensure that one flip message
8138          * can be sent by waiting for flip-done prior to queueing new flips).
8139          * Experimentation says that BCS works despite DERRMR masking all
8140          * flip-done completion events and that unmasking all planes at once
8141          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8142          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8143          */
8144         if (ring->id == RCS) {
8145                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8146                 intel_ring_emit(ring, DERRMR);
8147                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8148                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8149                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8150                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8151                 intel_ring_emit(ring, DERRMR);
8152                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8153         }
8154
8155         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8156         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8157         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8158         intel_ring_emit(ring, (MI_NOOP));
8159
8160         intel_mark_page_flip_active(intel_crtc);
8161         __intel_ring_advance(ring);
8162         return 0;
8163
8164 err_unpin:
8165         intel_unpin_fb_obj(obj);
8166 err:
8167         return ret;
8168 }
8169
8170 static int intel_default_queue_flip(struct drm_device *dev,
8171                                     struct drm_crtc *crtc,
8172                                     struct drm_framebuffer *fb,
8173                                     struct drm_i915_gem_object *obj,
8174                                     uint32_t flags)
8175 {
8176         return -ENODEV;
8177 }
8178
8179 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8180                                 struct drm_framebuffer *fb,
8181                                 struct drm_pending_vblank_event *event,
8182                                 uint32_t page_flip_flags)
8183 {
8184         struct drm_device *dev = crtc->dev;
8185         struct drm_i915_private *dev_priv = dev->dev_private;
8186         struct drm_framebuffer *old_fb = crtc->fb;
8187         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8189         struct intel_unpin_work *work;
8190         unsigned long flags;
8191         int ret;
8192
8193         /* Can't change pixel format via MI display flips. */
8194         if (fb->pixel_format != crtc->fb->pixel_format)
8195                 return -EINVAL;
8196
8197         /*
8198          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8199          * Note that pitch changes could also affect these register.
8200          */
8201         if (INTEL_INFO(dev)->gen > 3 &&
8202             (fb->offsets[0] != crtc->fb->offsets[0] ||
8203              fb->pitches[0] != crtc->fb->pitches[0]))
8204                 return -EINVAL;
8205
8206         work = kzalloc(sizeof(*work), GFP_KERNEL);
8207         if (work == NULL)
8208                 return -ENOMEM;
8209
8210         work->event = event;
8211         work->crtc = crtc;
8212         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8213         INIT_WORK(&work->work, intel_unpin_work_fn);
8214
8215         ret = drm_vblank_get(dev, intel_crtc->pipe);
8216         if (ret)
8217                 goto free_work;
8218
8219         /* We borrow the event spin lock for protecting unpin_work */
8220         spin_lock_irqsave(&dev->event_lock, flags);
8221         if (intel_crtc->unpin_work) {
8222                 spin_unlock_irqrestore(&dev->event_lock, flags);
8223                 kfree(work);
8224                 drm_vblank_put(dev, intel_crtc->pipe);
8225
8226                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8227                 return -EBUSY;
8228         }
8229         intel_crtc->unpin_work = work;
8230         spin_unlock_irqrestore(&dev->event_lock, flags);
8231
8232         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8233                 flush_workqueue(dev_priv->wq);
8234
8235         ret = i915_mutex_lock_interruptible(dev);
8236         if (ret)
8237                 goto cleanup;
8238
8239         /* Reference the objects for the scheduled work. */
8240         drm_gem_object_reference(&work->old_fb_obj->base);
8241         drm_gem_object_reference(&obj->base);
8242
8243         crtc->fb = fb;
8244
8245         work->pending_flip_obj = obj;
8246
8247         work->enable_stall_check = true;
8248
8249         atomic_inc(&intel_crtc->unpin_work_count);
8250         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8251
8252         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8253         if (ret)
8254                 goto cleanup_pending;
8255
8256         intel_disable_fbc(dev);
8257         intel_mark_fb_busy(obj, NULL);
8258         mutex_unlock(&dev->struct_mutex);
8259
8260         trace_i915_flip_request(intel_crtc->plane, obj);
8261
8262         return 0;
8263
8264 cleanup_pending:
8265         atomic_dec(&intel_crtc->unpin_work_count);
8266         crtc->fb = old_fb;
8267         drm_gem_object_unreference(&work->old_fb_obj->base);
8268         drm_gem_object_unreference(&obj->base);
8269         mutex_unlock(&dev->struct_mutex);
8270
8271 cleanup:
8272         spin_lock_irqsave(&dev->event_lock, flags);
8273         intel_crtc->unpin_work = NULL;
8274         spin_unlock_irqrestore(&dev->event_lock, flags);
8275
8276         drm_vblank_put(dev, intel_crtc->pipe);
8277 free_work:
8278         kfree(work);
8279
8280         return ret;
8281 }
8282
8283 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8284         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8285         .load_lut = intel_crtc_load_lut,
8286 };
8287
8288 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8289                                   struct drm_crtc *crtc)
8290 {
8291         struct drm_device *dev;
8292         struct drm_crtc *tmp;
8293         int crtc_mask = 1;
8294
8295         WARN(!crtc, "checking null crtc?\n");
8296
8297         dev = crtc->dev;
8298
8299         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8300                 if (tmp == crtc)
8301                         break;
8302                 crtc_mask <<= 1;
8303         }
8304
8305         if (encoder->possible_crtcs & crtc_mask)
8306                 return true;
8307         return false;
8308 }
8309
8310 /**
8311  * intel_modeset_update_staged_output_state
8312  *
8313  * Updates the staged output configuration state, e.g. after we've read out the
8314  * current hw state.
8315  */
8316 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8317 {
8318         struct intel_encoder *encoder;
8319         struct intel_connector *connector;
8320
8321         list_for_each_entry(connector, &dev->mode_config.connector_list,
8322                             base.head) {
8323                 connector->new_encoder =
8324                         to_intel_encoder(connector->base.encoder);
8325         }
8326
8327         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8328                             base.head) {
8329                 encoder->new_crtc =
8330                         to_intel_crtc(encoder->base.crtc);
8331         }
8332 }
8333
8334 /**
8335  * intel_modeset_commit_output_state
8336  *
8337  * This function copies the stage display pipe configuration to the real one.
8338  */
8339 static void intel_modeset_commit_output_state(struct drm_device *dev)
8340 {
8341         struct intel_encoder *encoder;
8342         struct intel_connector *connector;
8343
8344         list_for_each_entry(connector, &dev->mode_config.connector_list,
8345                             base.head) {
8346                 connector->base.encoder = &connector->new_encoder->base;
8347         }
8348
8349         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8350                             base.head) {
8351                 encoder->base.crtc = &encoder->new_crtc->base;
8352         }
8353 }
8354
8355 static void
8356 connected_sink_compute_bpp(struct intel_connector * connector,
8357                            struct intel_crtc_config *pipe_config)
8358 {
8359         int bpp = pipe_config->pipe_bpp;
8360
8361         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8362                 connector->base.base.id,
8363                 drm_get_connector_name(&connector->base));
8364
8365         /* Don't use an invalid EDID bpc value */
8366         if (connector->base.display_info.bpc &&
8367             connector->base.display_info.bpc * 3 < bpp) {
8368                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8369                               bpp, connector->base.display_info.bpc*3);
8370                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8371         }
8372
8373         /* Clamp bpp to 8 on screens without EDID 1.4 */
8374         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8375                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8376                               bpp);
8377                 pipe_config->pipe_bpp = 24;
8378         }
8379 }
8380
8381 static int
8382 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8383                           struct drm_framebuffer *fb,
8384                           struct intel_crtc_config *pipe_config)
8385 {
8386         struct drm_device *dev = crtc->base.dev;
8387         struct intel_connector *connector;
8388         int bpp;
8389
8390         switch (fb->pixel_format) {
8391         case DRM_FORMAT_C8:
8392                 bpp = 8*3; /* since we go through a colormap */
8393                 break;
8394         case DRM_FORMAT_XRGB1555:
8395         case DRM_FORMAT_ARGB1555:
8396                 /* checked in intel_framebuffer_init already */
8397                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8398                         return -EINVAL;
8399         case DRM_FORMAT_RGB565:
8400                 bpp = 6*3; /* min is 18bpp */
8401                 break;
8402         case DRM_FORMAT_XBGR8888:
8403         case DRM_FORMAT_ABGR8888:
8404                 /* checked in intel_framebuffer_init already */
8405                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8406                         return -EINVAL;
8407         case DRM_FORMAT_XRGB8888:
8408         case DRM_FORMAT_ARGB8888:
8409                 bpp = 8*3;
8410                 break;
8411         case DRM_FORMAT_XRGB2101010:
8412         case DRM_FORMAT_ARGB2101010:
8413         case DRM_FORMAT_XBGR2101010:
8414         case DRM_FORMAT_ABGR2101010:
8415                 /* checked in intel_framebuffer_init already */
8416                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8417                         return -EINVAL;
8418                 bpp = 10*3;
8419                 break;
8420         /* TODO: gen4+ supports 16 bpc floating point, too. */
8421         default:
8422                 DRM_DEBUG_KMS("unsupported depth\n");
8423                 return -EINVAL;
8424         }
8425
8426         pipe_config->pipe_bpp = bpp;
8427
8428         /* Clamp display bpp to EDID value */
8429         list_for_each_entry(connector, &dev->mode_config.connector_list,
8430                             base.head) {
8431                 if (!connector->new_encoder ||
8432                     connector->new_encoder->new_crtc != crtc)
8433                         continue;
8434
8435                 connected_sink_compute_bpp(connector, pipe_config);
8436         }
8437
8438         return bpp;
8439 }
8440
8441 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8442 {
8443         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8444                         "type: 0x%x flags: 0x%x\n",
8445                 mode->crtc_clock,
8446                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8447                 mode->crtc_hsync_end, mode->crtc_htotal,
8448                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8449                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8450 }
8451
8452 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8453                                    struct intel_crtc_config *pipe_config,
8454                                    const char *context)
8455 {
8456         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8457                       context, pipe_name(crtc->pipe));
8458
8459         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8460         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8461                       pipe_config->pipe_bpp, pipe_config->dither);
8462         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8463                       pipe_config->has_pch_encoder,
8464                       pipe_config->fdi_lanes,
8465                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8466                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8467                       pipe_config->fdi_m_n.tu);
8468         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8469                       pipe_config->has_dp_encoder,
8470                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8471                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8472                       pipe_config->dp_m_n.tu);
8473         DRM_DEBUG_KMS("requested mode:\n");
8474         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8475         DRM_DEBUG_KMS("adjusted mode:\n");
8476         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8477         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8478         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8479         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8480                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8481         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8482                       pipe_config->gmch_pfit.control,
8483                       pipe_config->gmch_pfit.pgm_ratios,
8484                       pipe_config->gmch_pfit.lvds_border_bits);
8485         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8486                       pipe_config->pch_pfit.pos,
8487                       pipe_config->pch_pfit.size,
8488                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8489         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8490         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8491 }
8492
8493 static bool check_encoder_cloning(struct drm_crtc *crtc)
8494 {
8495         int num_encoders = 0;
8496         bool uncloneable_encoders = false;
8497         struct intel_encoder *encoder;
8498
8499         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8500                             base.head) {
8501                 if (&encoder->new_crtc->base != crtc)
8502                         continue;
8503
8504                 num_encoders++;
8505                 if (!encoder->cloneable)
8506                         uncloneable_encoders = true;
8507         }
8508
8509         return !(num_encoders > 1 && uncloneable_encoders);
8510 }
8511
8512 static struct intel_crtc_config *
8513 intel_modeset_pipe_config(struct drm_crtc *crtc,
8514                           struct drm_framebuffer *fb,
8515                           struct drm_display_mode *mode)
8516 {
8517         struct drm_device *dev = crtc->dev;
8518         struct intel_encoder *encoder;
8519         struct intel_crtc_config *pipe_config;
8520         int plane_bpp, ret = -EINVAL;
8521         bool retry = true;
8522
8523         if (!check_encoder_cloning(crtc)) {
8524                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8525                 return ERR_PTR(-EINVAL);
8526         }
8527
8528         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8529         if (!pipe_config)
8530                 return ERR_PTR(-ENOMEM);
8531
8532         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8533         drm_mode_copy(&pipe_config->requested_mode, mode);
8534
8535         pipe_config->cpu_transcoder =
8536                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8537         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8538
8539         /*
8540          * Sanitize sync polarity flags based on requested ones. If neither
8541          * positive or negative polarity is requested, treat this as meaning
8542          * negative polarity.
8543          */
8544         if (!(pipe_config->adjusted_mode.flags &
8545               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8546                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8547
8548         if (!(pipe_config->adjusted_mode.flags &
8549               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8550                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8551
8552         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8553          * plane pixel format and any sink constraints into account. Returns the
8554          * source plane bpp so that dithering can be selected on mismatches
8555          * after encoders and crtc also have had their say. */
8556         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8557                                               fb, pipe_config);
8558         if (plane_bpp < 0)
8559                 goto fail;
8560
8561         /*
8562          * Determine the real pipe dimensions. Note that stereo modes can
8563          * increase the actual pipe size due to the frame doubling and
8564          * insertion of additional space for blanks between the frame. This
8565          * is stored in the crtc timings. We use the requested mode to do this
8566          * computation to clearly distinguish it from the adjusted mode, which
8567          * can be changed by the connectors in the below retry loop.
8568          */
8569         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8570         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8571         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8572
8573 encoder_retry:
8574         /* Ensure the port clock defaults are reset when retrying. */
8575         pipe_config->port_clock = 0;
8576         pipe_config->pixel_multiplier = 1;
8577
8578         /* Fill in default crtc timings, allow encoders to overwrite them. */
8579         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8580
8581         /* Pass our mode to the connectors and the CRTC to give them a chance to
8582          * adjust it according to limitations or connector properties, and also
8583          * a chance to reject the mode entirely.
8584          */
8585         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8586                             base.head) {
8587
8588                 if (&encoder->new_crtc->base != crtc)
8589                         continue;
8590
8591                 if (!(encoder->compute_config(encoder, pipe_config))) {
8592                         DRM_DEBUG_KMS("Encoder config failure\n");
8593                         goto fail;
8594                 }
8595         }
8596
8597         /* Set default port clock if not overwritten by the encoder. Needs to be
8598          * done afterwards in case the encoder adjusts the mode. */
8599         if (!pipe_config->port_clock)
8600                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
8601                         * pipe_config->pixel_multiplier;
8602
8603         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8604         if (ret < 0) {
8605                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8606                 goto fail;
8607         }
8608
8609         if (ret == RETRY) {
8610                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8611                         ret = -EINVAL;
8612                         goto fail;
8613                 }
8614
8615                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8616                 retry = false;
8617                 goto encoder_retry;
8618         }
8619
8620         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8621         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8622                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8623
8624         return pipe_config;
8625 fail:
8626         kfree(pipe_config);
8627         return ERR_PTR(ret);
8628 }
8629
8630 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8631  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8632 static void
8633 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8634                              unsigned *prepare_pipes, unsigned *disable_pipes)
8635 {
8636         struct intel_crtc *intel_crtc;
8637         struct drm_device *dev = crtc->dev;
8638         struct intel_encoder *encoder;
8639         struct intel_connector *connector;
8640         struct drm_crtc *tmp_crtc;
8641
8642         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8643
8644         /* Check which crtcs have changed outputs connected to them, these need
8645          * to be part of the prepare_pipes mask. We don't (yet) support global
8646          * modeset across multiple crtcs, so modeset_pipes will only have one
8647          * bit set at most. */
8648         list_for_each_entry(connector, &dev->mode_config.connector_list,
8649                             base.head) {
8650                 if (connector->base.encoder == &connector->new_encoder->base)
8651                         continue;
8652
8653                 if (connector->base.encoder) {
8654                         tmp_crtc = connector->base.encoder->crtc;
8655
8656                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8657                 }
8658
8659                 if (connector->new_encoder)
8660                         *prepare_pipes |=
8661                                 1 << connector->new_encoder->new_crtc->pipe;
8662         }
8663
8664         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8665                             base.head) {
8666                 if (encoder->base.crtc == &encoder->new_crtc->base)
8667                         continue;
8668
8669                 if (encoder->base.crtc) {
8670                         tmp_crtc = encoder->base.crtc;
8671
8672                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8673                 }
8674
8675                 if (encoder->new_crtc)
8676                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8677         }
8678
8679         /* Check for any pipes that will be fully disabled ... */
8680         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8681                             base.head) {
8682                 bool used = false;
8683
8684                 /* Don't try to disable disabled crtcs. */
8685                 if (!intel_crtc->base.enabled)
8686                         continue;
8687
8688                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8689                                     base.head) {
8690                         if (encoder->new_crtc == intel_crtc)
8691                                 used = true;
8692                 }
8693
8694                 if (!used)
8695                         *disable_pipes |= 1 << intel_crtc->pipe;
8696         }
8697
8698
8699         /* set_mode is also used to update properties on life display pipes. */
8700         intel_crtc = to_intel_crtc(crtc);
8701         if (crtc->enabled)
8702                 *prepare_pipes |= 1 << intel_crtc->pipe;
8703
8704         /*
8705          * For simplicity do a full modeset on any pipe where the output routing
8706          * changed. We could be more clever, but that would require us to be
8707          * more careful with calling the relevant encoder->mode_set functions.
8708          */
8709         if (*prepare_pipes)
8710                 *modeset_pipes = *prepare_pipes;
8711
8712         /* ... and mask these out. */
8713         *modeset_pipes &= ~(*disable_pipes);
8714         *prepare_pipes &= ~(*disable_pipes);
8715
8716         /*
8717          * HACK: We don't (yet) fully support global modesets. intel_set_config
8718          * obies this rule, but the modeset restore mode of
8719          * intel_modeset_setup_hw_state does not.
8720          */
8721         *modeset_pipes &= 1 << intel_crtc->pipe;
8722         *prepare_pipes &= 1 << intel_crtc->pipe;
8723
8724         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8725                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8726 }
8727
8728 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8729 {
8730         struct drm_encoder *encoder;
8731         struct drm_device *dev = crtc->dev;
8732
8733         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8734                 if (encoder->crtc == crtc)
8735                         return true;
8736
8737         return false;
8738 }
8739
8740 static void
8741 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8742 {
8743         struct intel_encoder *intel_encoder;
8744         struct intel_crtc *intel_crtc;
8745         struct drm_connector *connector;
8746
8747         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8748                             base.head) {
8749                 if (!intel_encoder->base.crtc)
8750                         continue;
8751
8752                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8753
8754                 if (prepare_pipes & (1 << intel_crtc->pipe))
8755                         intel_encoder->connectors_active = false;
8756         }
8757
8758         intel_modeset_commit_output_state(dev);
8759
8760         /* Update computed state. */
8761         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8762                             base.head) {
8763                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8764         }
8765
8766         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8767                 if (!connector->encoder || !connector->encoder->crtc)
8768                         continue;
8769
8770                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8771
8772                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8773                         struct drm_property *dpms_property =
8774                                 dev->mode_config.dpms_property;
8775
8776                         connector->dpms = DRM_MODE_DPMS_ON;
8777                         drm_object_property_set_value(&connector->base,
8778                                                          dpms_property,
8779                                                          DRM_MODE_DPMS_ON);
8780
8781                         intel_encoder = to_intel_encoder(connector->encoder);
8782                         intel_encoder->connectors_active = true;
8783                 }
8784         }
8785
8786 }
8787
8788 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8789 {
8790         int diff;
8791
8792         if (clock1 == clock2)
8793                 return true;
8794
8795         if (!clock1 || !clock2)
8796                 return false;
8797
8798         diff = abs(clock1 - clock2);
8799
8800         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8801                 return true;
8802
8803         return false;
8804 }
8805
8806 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8807         list_for_each_entry((intel_crtc), \
8808                             &(dev)->mode_config.crtc_list, \
8809                             base.head) \
8810                 if (mask & (1 <<(intel_crtc)->pipe))
8811
8812 static bool
8813 intel_pipe_config_compare(struct drm_device *dev,
8814                           struct intel_crtc_config *current_config,
8815                           struct intel_crtc_config *pipe_config)
8816 {
8817 #define PIPE_CONF_CHECK_X(name) \
8818         if (current_config->name != pipe_config->name) { \
8819                 DRM_ERROR("mismatch in " #name " " \
8820                           "(expected 0x%08x, found 0x%08x)\n", \
8821                           current_config->name, \
8822                           pipe_config->name); \
8823                 return false; \
8824         }
8825
8826 #define PIPE_CONF_CHECK_I(name) \
8827         if (current_config->name != pipe_config->name) { \
8828                 DRM_ERROR("mismatch in " #name " " \
8829                           "(expected %i, found %i)\n", \
8830                           current_config->name, \
8831                           pipe_config->name); \
8832                 return false; \
8833         }
8834
8835 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8836         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8837                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8838                           "(expected %i, found %i)\n", \
8839                           current_config->name & (mask), \
8840                           pipe_config->name & (mask)); \
8841                 return false; \
8842         }
8843
8844 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8845         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8846                 DRM_ERROR("mismatch in " #name " " \
8847                           "(expected %i, found %i)\n", \
8848                           current_config->name, \
8849                           pipe_config->name); \
8850                 return false; \
8851         }
8852
8853 #define PIPE_CONF_QUIRK(quirk)  \
8854         ((current_config->quirks | pipe_config->quirks) & (quirk))
8855
8856         PIPE_CONF_CHECK_I(cpu_transcoder);
8857
8858         PIPE_CONF_CHECK_I(has_pch_encoder);
8859         PIPE_CONF_CHECK_I(fdi_lanes);
8860         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8861         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8862         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8863         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8864         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8865
8866         PIPE_CONF_CHECK_I(has_dp_encoder);
8867         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
8868         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
8869         PIPE_CONF_CHECK_I(dp_m_n.link_m);
8870         PIPE_CONF_CHECK_I(dp_m_n.link_n);
8871         PIPE_CONF_CHECK_I(dp_m_n.tu);
8872
8873         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8874         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8875         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8876         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8877         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8878         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8879
8880         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8881         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8882         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8883         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8884         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8885         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8886
8887         PIPE_CONF_CHECK_I(pixel_multiplier);
8888
8889         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8890                               DRM_MODE_FLAG_INTERLACE);
8891
8892         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8893                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8894                                       DRM_MODE_FLAG_PHSYNC);
8895                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8896                                       DRM_MODE_FLAG_NHSYNC);
8897                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8898                                       DRM_MODE_FLAG_PVSYNC);
8899                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8900                                       DRM_MODE_FLAG_NVSYNC);
8901         }
8902
8903         PIPE_CONF_CHECK_I(pipe_src_w);
8904         PIPE_CONF_CHECK_I(pipe_src_h);
8905
8906         PIPE_CONF_CHECK_I(gmch_pfit.control);
8907         /* pfit ratios are autocomputed by the hw on gen4+ */
8908         if (INTEL_INFO(dev)->gen < 4)
8909                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8910         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8911         PIPE_CONF_CHECK_I(pch_pfit.enabled);
8912         if (current_config->pch_pfit.enabled) {
8913                 PIPE_CONF_CHECK_I(pch_pfit.pos);
8914                 PIPE_CONF_CHECK_I(pch_pfit.size);
8915         }
8916
8917         PIPE_CONF_CHECK_I(ips_enabled);
8918
8919         PIPE_CONF_CHECK_I(double_wide);
8920
8921         PIPE_CONF_CHECK_I(shared_dpll);
8922         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8923         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8924         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8925         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8926
8927         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8928                 PIPE_CONF_CHECK_I(pipe_bpp);
8929
8930         if (!IS_HASWELL(dev)) {
8931                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
8932                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
8933         }
8934
8935 #undef PIPE_CONF_CHECK_X
8936 #undef PIPE_CONF_CHECK_I
8937 #undef PIPE_CONF_CHECK_FLAGS
8938 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
8939 #undef PIPE_CONF_QUIRK
8940
8941         return true;
8942 }
8943
8944 static void
8945 check_connector_state(struct drm_device *dev)
8946 {
8947         struct intel_connector *connector;
8948
8949         list_for_each_entry(connector, &dev->mode_config.connector_list,
8950                             base.head) {
8951                 /* This also checks the encoder/connector hw state with the
8952                  * ->get_hw_state callbacks. */
8953                 intel_connector_check_state(connector);
8954
8955                 WARN(&connector->new_encoder->base != connector->base.encoder,
8956                      "connector's staged encoder doesn't match current encoder\n");
8957         }
8958 }
8959
8960 static void
8961 check_encoder_state(struct drm_device *dev)
8962 {
8963         struct intel_encoder *encoder;
8964         struct intel_connector *connector;
8965
8966         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8967                             base.head) {
8968                 bool enabled = false;
8969                 bool active = false;
8970                 enum pipe pipe, tracked_pipe;
8971
8972                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8973                               encoder->base.base.id,
8974                               drm_get_encoder_name(&encoder->base));
8975
8976                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8977                      "encoder's stage crtc doesn't match current crtc\n");
8978                 WARN(encoder->connectors_active && !encoder->base.crtc,
8979                      "encoder's active_connectors set, but no crtc\n");
8980
8981                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8982                                     base.head) {
8983                         if (connector->base.encoder != &encoder->base)
8984                                 continue;
8985                         enabled = true;
8986                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8987                                 active = true;
8988                 }
8989                 WARN(!!encoder->base.crtc != enabled,
8990                      "encoder's enabled state mismatch "
8991                      "(expected %i, found %i)\n",
8992                      !!encoder->base.crtc, enabled);
8993                 WARN(active && !encoder->base.crtc,
8994                      "active encoder with no crtc\n");
8995
8996                 WARN(encoder->connectors_active != active,
8997                      "encoder's computed active state doesn't match tracked active state "
8998                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8999
9000                 active = encoder->get_hw_state(encoder, &pipe);
9001                 WARN(active != encoder->connectors_active,
9002                      "encoder's hw state doesn't match sw tracking "
9003                      "(expected %i, found %i)\n",
9004                      encoder->connectors_active, active);
9005
9006                 if (!encoder->base.crtc)
9007                         continue;
9008
9009                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9010                 WARN(active && pipe != tracked_pipe,
9011                      "active encoder's pipe doesn't match"
9012                      "(expected %i, found %i)\n",
9013                      tracked_pipe, pipe);
9014
9015         }
9016 }
9017
9018 static void
9019 check_crtc_state(struct drm_device *dev)
9020 {
9021         drm_i915_private_t *dev_priv = dev->dev_private;
9022         struct intel_crtc *crtc;
9023         struct intel_encoder *encoder;
9024         struct intel_crtc_config pipe_config;
9025
9026         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9027                             base.head) {
9028                 bool enabled = false;
9029                 bool active = false;
9030
9031                 memset(&pipe_config, 0, sizeof(pipe_config));
9032
9033                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9034                               crtc->base.base.id);
9035
9036                 WARN(crtc->active && !crtc->base.enabled,
9037                      "active crtc, but not enabled in sw tracking\n");
9038
9039                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9040                                     base.head) {
9041                         if (encoder->base.crtc != &crtc->base)
9042                                 continue;
9043                         enabled = true;
9044                         if (encoder->connectors_active)
9045                                 active = true;
9046                 }
9047
9048                 WARN(active != crtc->active,
9049                      "crtc's computed active state doesn't match tracked active state "
9050                      "(expected %i, found %i)\n", active, crtc->active);
9051                 WARN(enabled != crtc->base.enabled,
9052                      "crtc's computed enabled state doesn't match tracked enabled state "
9053                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9054
9055                 active = dev_priv->display.get_pipe_config(crtc,
9056                                                            &pipe_config);
9057
9058                 /* hw state is inconsistent with the pipe A quirk */
9059                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9060                         active = crtc->active;
9061
9062                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9063                                     base.head) {
9064                         enum pipe pipe;
9065                         if (encoder->base.crtc != &crtc->base)
9066                                 continue;
9067                         if (encoder->get_config &&
9068                             encoder->get_hw_state(encoder, &pipe))
9069                                 encoder->get_config(encoder, &pipe_config);
9070                 }
9071
9072                 WARN(crtc->active != active,
9073                      "crtc active state doesn't match with hw state "
9074                      "(expected %i, found %i)\n", crtc->active, active);
9075
9076                 if (active &&
9077                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9078                         WARN(1, "pipe state doesn't match!\n");
9079                         intel_dump_pipe_config(crtc, &pipe_config,
9080                                                "[hw state]");
9081                         intel_dump_pipe_config(crtc, &crtc->config,
9082                                                "[sw state]");
9083                 }
9084         }
9085 }
9086
9087 static void
9088 check_shared_dpll_state(struct drm_device *dev)
9089 {
9090         drm_i915_private_t *dev_priv = dev->dev_private;
9091         struct intel_crtc *crtc;
9092         struct intel_dpll_hw_state dpll_hw_state;
9093         int i;
9094
9095         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9096                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9097                 int enabled_crtcs = 0, active_crtcs = 0;
9098                 bool active;
9099
9100                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9101
9102                 DRM_DEBUG_KMS("%s\n", pll->name);
9103
9104                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9105
9106                 WARN(pll->active > pll->refcount,
9107                      "more active pll users than references: %i vs %i\n",
9108                      pll->active, pll->refcount);
9109                 WARN(pll->active && !pll->on,
9110                      "pll in active use but not on in sw tracking\n");
9111                 WARN(pll->on && !pll->active,
9112                      "pll in on but not on in use in sw tracking\n");
9113                 WARN(pll->on != active,
9114                      "pll on state mismatch (expected %i, found %i)\n",
9115                      pll->on, active);
9116
9117                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9118                                     base.head) {
9119                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9120                                 enabled_crtcs++;
9121                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9122                                 active_crtcs++;
9123                 }
9124                 WARN(pll->active != active_crtcs,
9125                      "pll active crtcs mismatch (expected %i, found %i)\n",
9126                      pll->active, active_crtcs);
9127                 WARN(pll->refcount != enabled_crtcs,
9128                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9129                      pll->refcount, enabled_crtcs);
9130
9131                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9132                                        sizeof(dpll_hw_state)),
9133                      "pll hw state mismatch\n");
9134         }
9135 }
9136
9137 void
9138 intel_modeset_check_state(struct drm_device *dev)
9139 {
9140         check_connector_state(dev);
9141         check_encoder_state(dev);
9142         check_crtc_state(dev);
9143         check_shared_dpll_state(dev);
9144 }
9145
9146 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9147                                      int dotclock)
9148 {
9149         /*
9150          * FDI already provided one idea for the dotclock.
9151          * Yell if the encoder disagrees.
9152          */
9153         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9154              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9155              pipe_config->adjusted_mode.crtc_clock, dotclock);
9156 }
9157
9158 static int __intel_set_mode(struct drm_crtc *crtc,
9159                             struct drm_display_mode *mode,
9160                             int x, int y, struct drm_framebuffer *fb)
9161 {
9162         struct drm_device *dev = crtc->dev;
9163         drm_i915_private_t *dev_priv = dev->dev_private;
9164         struct drm_display_mode *saved_mode, *saved_hwmode;
9165         struct intel_crtc_config *pipe_config = NULL;
9166         struct intel_crtc *intel_crtc;
9167         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9168         int ret = 0;
9169
9170         saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9171         if (!saved_mode)
9172                 return -ENOMEM;
9173         saved_hwmode = saved_mode + 1;
9174
9175         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9176                                      &prepare_pipes, &disable_pipes);
9177
9178         *saved_hwmode = crtc->hwmode;
9179         *saved_mode = crtc->mode;
9180
9181         /* Hack: Because we don't (yet) support global modeset on multiple
9182          * crtcs, we don't keep track of the new mode for more than one crtc.
9183          * Hence simply check whether any bit is set in modeset_pipes in all the
9184          * pieces of code that are not yet converted to deal with mutliple crtcs
9185          * changing their mode at the same time. */
9186         if (modeset_pipes) {
9187                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9188                 if (IS_ERR(pipe_config)) {
9189                         ret = PTR_ERR(pipe_config);
9190                         pipe_config = NULL;
9191
9192                         goto out;
9193                 }
9194                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9195                                        "[modeset]");
9196         }
9197
9198         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9199                 intel_crtc_disable(&intel_crtc->base);
9200
9201         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9202                 if (intel_crtc->base.enabled)
9203                         dev_priv->display.crtc_disable(&intel_crtc->base);
9204         }
9205
9206         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9207          * to set it here already despite that we pass it down the callchain.
9208          */
9209         if (modeset_pipes) {
9210                 crtc->mode = *mode;
9211                 /* mode_set/enable/disable functions rely on a correct pipe
9212                  * config. */
9213                 to_intel_crtc(crtc)->config = *pipe_config;
9214         }
9215
9216         /* Only after disabling all output pipelines that will be changed can we
9217          * update the the output configuration. */
9218         intel_modeset_update_state(dev, prepare_pipes);
9219
9220         if (dev_priv->display.modeset_global_resources)
9221                 dev_priv->display.modeset_global_resources(dev);
9222
9223         /* Set up the DPLL and any encoders state that needs to adjust or depend
9224          * on the DPLL.
9225          */
9226         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9227                 ret = intel_crtc_mode_set(&intel_crtc->base,
9228                                           x, y, fb);
9229                 if (ret)
9230                         goto done;
9231         }
9232
9233         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9234         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9235                 dev_priv->display.crtc_enable(&intel_crtc->base);
9236
9237         if (modeset_pipes) {
9238                 /* Store real post-adjustment hardware mode. */
9239                 crtc->hwmode = pipe_config->adjusted_mode;
9240
9241                 /* Calculate and store various constants which
9242                  * are later needed by vblank and swap-completion
9243                  * timestamping. They are derived from true hwmode.
9244                  */
9245                 drm_calc_timestamping_constants(crtc);
9246         }
9247
9248         /* FIXME: add subpixel order */
9249 done:
9250         if (ret && crtc->enabled) {
9251                 crtc->hwmode = *saved_hwmode;
9252                 crtc->mode = *saved_mode;
9253         }
9254
9255 out:
9256         kfree(pipe_config);
9257         kfree(saved_mode);
9258         return ret;
9259 }
9260
9261 static int intel_set_mode(struct drm_crtc *crtc,
9262                           struct drm_display_mode *mode,
9263                           int x, int y, struct drm_framebuffer *fb)
9264 {
9265         int ret;
9266
9267         ret = __intel_set_mode(crtc, mode, x, y, fb);
9268
9269         if (ret == 0)
9270                 intel_modeset_check_state(crtc->dev);
9271
9272         return ret;
9273 }
9274
9275 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9276 {
9277         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9278 }
9279
9280 #undef for_each_intel_crtc_masked
9281
9282 static void intel_set_config_free(struct intel_set_config *config)
9283 {
9284         if (!config)
9285                 return;
9286
9287         kfree(config->save_connector_encoders);
9288         kfree(config->save_encoder_crtcs);
9289         kfree(config);
9290 }
9291
9292 static int intel_set_config_save_state(struct drm_device *dev,
9293                                        struct intel_set_config *config)
9294 {
9295         struct drm_encoder *encoder;
9296         struct drm_connector *connector;
9297         int count;
9298
9299         config->save_encoder_crtcs =
9300                 kcalloc(dev->mode_config.num_encoder,
9301                         sizeof(struct drm_crtc *), GFP_KERNEL);
9302         if (!config->save_encoder_crtcs)
9303                 return -ENOMEM;
9304
9305         config->save_connector_encoders =
9306                 kcalloc(dev->mode_config.num_connector,
9307                         sizeof(struct drm_encoder *), GFP_KERNEL);
9308         if (!config->save_connector_encoders)
9309                 return -ENOMEM;
9310
9311         /* Copy data. Note that driver private data is not affected.
9312          * Should anything bad happen only the expected state is
9313          * restored, not the drivers personal bookkeeping.
9314          */
9315         count = 0;
9316         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9317                 config->save_encoder_crtcs[count++] = encoder->crtc;
9318         }
9319
9320         count = 0;
9321         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9322                 config->save_connector_encoders[count++] = connector->encoder;
9323         }
9324
9325         return 0;
9326 }
9327
9328 static void intel_set_config_restore_state(struct drm_device *dev,
9329                                            struct intel_set_config *config)
9330 {
9331         struct intel_encoder *encoder;
9332         struct intel_connector *connector;
9333         int count;
9334
9335         count = 0;
9336         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9337                 encoder->new_crtc =
9338                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9339         }
9340
9341         count = 0;
9342         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9343                 connector->new_encoder =
9344                         to_intel_encoder(config->save_connector_encoders[count++]);
9345         }
9346 }
9347
9348 static bool
9349 is_crtc_connector_off(struct drm_mode_set *set)
9350 {
9351         int i;
9352
9353         if (set->num_connectors == 0)
9354                 return false;
9355
9356         if (WARN_ON(set->connectors == NULL))
9357                 return false;
9358
9359         for (i = 0; i < set->num_connectors; i++)
9360                 if (set->connectors[i]->encoder &&
9361                     set->connectors[i]->encoder->crtc == set->crtc &&
9362                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9363                         return true;
9364
9365         return false;
9366 }
9367
9368 static void
9369 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9370                                       struct intel_set_config *config)
9371 {
9372
9373         /* We should be able to check here if the fb has the same properties
9374          * and then just flip_or_move it */
9375         if (is_crtc_connector_off(set)) {
9376                 config->mode_changed = true;
9377         } else if (set->crtc->fb != set->fb) {
9378                 /* If we have no fb then treat it as a full mode set */
9379                 if (set->crtc->fb == NULL) {
9380                         struct intel_crtc *intel_crtc =
9381                                 to_intel_crtc(set->crtc);
9382
9383                         if (intel_crtc->active && i915_fastboot) {
9384                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9385                                 config->fb_changed = true;
9386                         } else {
9387                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9388                                 config->mode_changed = true;
9389                         }
9390                 } else if (set->fb == NULL) {
9391                         config->mode_changed = true;
9392                 } else if (set->fb->pixel_format !=
9393                            set->crtc->fb->pixel_format) {
9394                         config->mode_changed = true;
9395                 } else {
9396                         config->fb_changed = true;
9397                 }
9398         }
9399
9400         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9401                 config->fb_changed = true;
9402
9403         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9404                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9405                 drm_mode_debug_printmodeline(&set->crtc->mode);
9406                 drm_mode_debug_printmodeline(set->mode);
9407                 config->mode_changed = true;
9408         }
9409
9410         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9411                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9412 }
9413
9414 static int
9415 intel_modeset_stage_output_state(struct drm_device *dev,
9416                                  struct drm_mode_set *set,
9417                                  struct intel_set_config *config)
9418 {
9419         struct drm_crtc *new_crtc;
9420         struct intel_connector *connector;
9421         struct intel_encoder *encoder;
9422         int ro;
9423
9424         /* The upper layers ensure that we either disable a crtc or have a list
9425          * of connectors. For paranoia, double-check this. */
9426         WARN_ON(!set->fb && (set->num_connectors != 0));
9427         WARN_ON(set->fb && (set->num_connectors == 0));
9428
9429         list_for_each_entry(connector, &dev->mode_config.connector_list,
9430                             base.head) {
9431                 /* Otherwise traverse passed in connector list and get encoders
9432                  * for them. */
9433                 for (ro = 0; ro < set->num_connectors; ro++) {
9434                         if (set->connectors[ro] == &connector->base) {
9435                                 connector->new_encoder = connector->encoder;
9436                                 break;
9437                         }
9438                 }
9439
9440                 /* If we disable the crtc, disable all its connectors. Also, if
9441                  * the connector is on the changing crtc but not on the new
9442                  * connector list, disable it. */
9443                 if ((!set->fb || ro == set->num_connectors) &&
9444                     connector->base.encoder &&
9445                     connector->base.encoder->crtc == set->crtc) {
9446                         connector->new_encoder = NULL;
9447
9448                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9449                                 connector->base.base.id,
9450                                 drm_get_connector_name(&connector->base));
9451                 }
9452
9453
9454                 if (&connector->new_encoder->base != connector->base.encoder) {
9455                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9456                         config->mode_changed = true;
9457                 }
9458         }
9459         /* connector->new_encoder is now updated for all connectors. */
9460
9461         /* Update crtc of enabled connectors. */
9462         list_for_each_entry(connector, &dev->mode_config.connector_list,
9463                             base.head) {
9464                 if (!connector->new_encoder)
9465                         continue;
9466
9467                 new_crtc = connector->new_encoder->base.crtc;
9468
9469                 for (ro = 0; ro < set->num_connectors; ro++) {
9470                         if (set->connectors[ro] == &connector->base)
9471                                 new_crtc = set->crtc;
9472                 }
9473
9474                 /* Make sure the new CRTC will work with the encoder */
9475                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9476                                            new_crtc)) {
9477                         return -EINVAL;
9478                 }
9479                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9480
9481                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9482                         connector->base.base.id,
9483                         drm_get_connector_name(&connector->base),
9484                         new_crtc->base.id);
9485         }
9486
9487         /* Check for any encoders that needs to be disabled. */
9488         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9489                             base.head) {
9490                 list_for_each_entry(connector,
9491                                     &dev->mode_config.connector_list,
9492                                     base.head) {
9493                         if (connector->new_encoder == encoder) {
9494                                 WARN_ON(!connector->new_encoder->new_crtc);
9495
9496                                 goto next_encoder;
9497                         }
9498                 }
9499                 encoder->new_crtc = NULL;
9500 next_encoder:
9501                 /* Only now check for crtc changes so we don't miss encoders
9502                  * that will be disabled. */
9503                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9504                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9505                         config->mode_changed = true;
9506                 }
9507         }
9508         /* Now we've also updated encoder->new_crtc for all encoders. */
9509
9510         return 0;
9511 }
9512
9513 static int intel_crtc_set_config(struct drm_mode_set *set)
9514 {
9515         struct drm_device *dev;
9516         struct drm_mode_set save_set;
9517         struct intel_set_config *config;
9518         int ret;
9519
9520         BUG_ON(!set);
9521         BUG_ON(!set->crtc);
9522         BUG_ON(!set->crtc->helper_private);
9523
9524         /* Enforce sane interface api - has been abused by the fb helper. */
9525         BUG_ON(!set->mode && set->fb);
9526         BUG_ON(set->fb && set->num_connectors == 0);
9527
9528         if (set->fb) {
9529                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9530                                 set->crtc->base.id, set->fb->base.id,
9531                                 (int)set->num_connectors, set->x, set->y);
9532         } else {
9533                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9534         }
9535
9536         dev = set->crtc->dev;
9537
9538         ret = -ENOMEM;
9539         config = kzalloc(sizeof(*config), GFP_KERNEL);
9540         if (!config)
9541                 goto out_config;
9542
9543         ret = intel_set_config_save_state(dev, config);
9544         if (ret)
9545                 goto out_config;
9546
9547         save_set.crtc = set->crtc;
9548         save_set.mode = &set->crtc->mode;
9549         save_set.x = set->crtc->x;
9550         save_set.y = set->crtc->y;
9551         save_set.fb = set->crtc->fb;
9552
9553         /* Compute whether we need a full modeset, only an fb base update or no
9554          * change at all. In the future we might also check whether only the
9555          * mode changed, e.g. for LVDS where we only change the panel fitter in
9556          * such cases. */
9557         intel_set_config_compute_mode_changes(set, config);
9558
9559         ret = intel_modeset_stage_output_state(dev, set, config);
9560         if (ret)
9561                 goto fail;
9562
9563         if (config->mode_changed) {
9564                 ret = intel_set_mode(set->crtc, set->mode,
9565                                      set->x, set->y, set->fb);
9566         } else if (config->fb_changed) {
9567                 intel_crtc_wait_for_pending_flips(set->crtc);
9568
9569                 ret = intel_pipe_set_base(set->crtc,
9570                                           set->x, set->y, set->fb);
9571         }
9572
9573         if (ret) {
9574                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9575                               set->crtc->base.id, ret);
9576 fail:
9577                 intel_set_config_restore_state(dev, config);
9578
9579                 /* Try to restore the config */
9580                 if (config->mode_changed &&
9581                     intel_set_mode(save_set.crtc, save_set.mode,
9582                                    save_set.x, save_set.y, save_set.fb))
9583                         DRM_ERROR("failed to restore config after modeset failure\n");
9584         }
9585
9586 out_config:
9587         intel_set_config_free(config);
9588         return ret;
9589 }
9590
9591 static const struct drm_crtc_funcs intel_crtc_funcs = {
9592         .cursor_set = intel_crtc_cursor_set,
9593         .cursor_move = intel_crtc_cursor_move,
9594         .gamma_set = intel_crtc_gamma_set,
9595         .set_config = intel_crtc_set_config,
9596         .destroy = intel_crtc_destroy,
9597         .page_flip = intel_crtc_page_flip,
9598 };
9599
9600 static void intel_cpu_pll_init(struct drm_device *dev)
9601 {
9602         if (HAS_DDI(dev))
9603                 intel_ddi_pll_init(dev);
9604 }
9605
9606 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9607                                       struct intel_shared_dpll *pll,
9608                                       struct intel_dpll_hw_state *hw_state)
9609 {
9610         uint32_t val;
9611
9612         val = I915_READ(PCH_DPLL(pll->id));
9613         hw_state->dpll = val;
9614         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9615         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9616
9617         return val & DPLL_VCO_ENABLE;
9618 }
9619
9620 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9621                                   struct intel_shared_dpll *pll)
9622 {
9623         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9624         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9625 }
9626
9627 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9628                                 struct intel_shared_dpll *pll)
9629 {
9630         /* PCH refclock must be enabled first */
9631         assert_pch_refclk_enabled(dev_priv);
9632
9633         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9634
9635         /* Wait for the clocks to stabilize. */
9636         POSTING_READ(PCH_DPLL(pll->id));
9637         udelay(150);
9638
9639         /* The pixel multiplier can only be updated once the
9640          * DPLL is enabled and the clocks are stable.
9641          *
9642          * So write it again.
9643          */
9644         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9645         POSTING_READ(PCH_DPLL(pll->id));
9646         udelay(200);
9647 }
9648
9649 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9650                                  struct intel_shared_dpll *pll)
9651 {
9652         struct drm_device *dev = dev_priv->dev;
9653         struct intel_crtc *crtc;
9654
9655         /* Make sure no transcoder isn't still depending on us. */
9656         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9657                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9658                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9659         }
9660
9661         I915_WRITE(PCH_DPLL(pll->id), 0);
9662         POSTING_READ(PCH_DPLL(pll->id));
9663         udelay(200);
9664 }
9665
9666 static char *ibx_pch_dpll_names[] = {
9667         "PCH DPLL A",
9668         "PCH DPLL B",
9669 };
9670
9671 static void ibx_pch_dpll_init(struct drm_device *dev)
9672 {
9673         struct drm_i915_private *dev_priv = dev->dev_private;
9674         int i;
9675
9676         dev_priv->num_shared_dpll = 2;
9677
9678         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9679                 dev_priv->shared_dplls[i].id = i;
9680                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9681                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9682                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9683                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9684                 dev_priv->shared_dplls[i].get_hw_state =
9685                         ibx_pch_dpll_get_hw_state;
9686         }
9687 }
9688
9689 static void intel_shared_dpll_init(struct drm_device *dev)
9690 {
9691         struct drm_i915_private *dev_priv = dev->dev_private;
9692
9693         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9694                 ibx_pch_dpll_init(dev);
9695         else
9696                 dev_priv->num_shared_dpll = 0;
9697
9698         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9699         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9700                       dev_priv->num_shared_dpll);
9701 }
9702
9703 static void intel_crtc_init(struct drm_device *dev, int pipe)
9704 {
9705         drm_i915_private_t *dev_priv = dev->dev_private;
9706         struct intel_crtc *intel_crtc;
9707         int i;
9708
9709         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
9710         if (intel_crtc == NULL)
9711                 return;
9712
9713         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9714
9715         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9716         for (i = 0; i < 256; i++) {
9717                 intel_crtc->lut_r[i] = i;
9718                 intel_crtc->lut_g[i] = i;
9719                 intel_crtc->lut_b[i] = i;
9720         }
9721
9722         /* Swap pipes & planes for FBC on pre-965 */
9723         intel_crtc->pipe = pipe;
9724         intel_crtc->plane = pipe;
9725         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9726                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9727                 intel_crtc->plane = !pipe;
9728         }
9729
9730         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9731                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9732         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9733         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9734
9735         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9736 }
9737
9738 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9739                                 struct drm_file *file)
9740 {
9741         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9742         struct drm_mode_object *drmmode_obj;
9743         struct intel_crtc *crtc;
9744
9745         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9746                 return -ENODEV;
9747
9748         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9749                         DRM_MODE_OBJECT_CRTC);
9750
9751         if (!drmmode_obj) {
9752                 DRM_ERROR("no such CRTC id\n");
9753                 return -EINVAL;
9754         }
9755
9756         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9757         pipe_from_crtc_id->pipe = crtc->pipe;
9758
9759         return 0;
9760 }
9761
9762 static int intel_encoder_clones(struct intel_encoder *encoder)
9763 {
9764         struct drm_device *dev = encoder->base.dev;
9765         struct intel_encoder *source_encoder;
9766         int index_mask = 0;
9767         int entry = 0;
9768
9769         list_for_each_entry(source_encoder,
9770                             &dev->mode_config.encoder_list, base.head) {
9771
9772                 if (encoder == source_encoder)
9773                         index_mask |= (1 << entry);
9774
9775                 /* Intel hw has only one MUX where enocoders could be cloned. */
9776                 if (encoder->cloneable && source_encoder->cloneable)
9777                         index_mask |= (1 << entry);
9778
9779                 entry++;
9780         }
9781
9782         return index_mask;
9783 }
9784
9785 static bool has_edp_a(struct drm_device *dev)
9786 {
9787         struct drm_i915_private *dev_priv = dev->dev_private;
9788
9789         if (!IS_MOBILE(dev))
9790                 return false;
9791
9792         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9793                 return false;
9794
9795         if (IS_GEN5(dev) &&
9796             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9797                 return false;
9798
9799         return true;
9800 }
9801
9802 static void intel_setup_outputs(struct drm_device *dev)
9803 {
9804         struct drm_i915_private *dev_priv = dev->dev_private;
9805         struct intel_encoder *encoder;
9806         bool dpd_is_edp = false;
9807
9808         intel_lvds_init(dev);
9809
9810         if (!IS_ULT(dev))
9811                 intel_crt_init(dev);
9812
9813         if (HAS_DDI(dev)) {
9814                 int found;
9815
9816                 /* Haswell uses DDI functions to detect digital outputs */
9817                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9818                 /* DDI A only supports eDP */
9819                 if (found)
9820                         intel_ddi_init(dev, PORT_A);
9821
9822                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9823                  * register */
9824                 found = I915_READ(SFUSE_STRAP);
9825
9826                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9827                         intel_ddi_init(dev, PORT_B);
9828                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9829                         intel_ddi_init(dev, PORT_C);
9830                 if (found & SFUSE_STRAP_DDID_DETECTED)
9831                         intel_ddi_init(dev, PORT_D);
9832         } else if (HAS_PCH_SPLIT(dev)) {
9833                 int found;
9834                 dpd_is_edp = intel_dpd_is_edp(dev);
9835
9836                 if (has_edp_a(dev))
9837                         intel_dp_init(dev, DP_A, PORT_A);
9838
9839                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9840                         /* PCH SDVOB multiplex with HDMIB */
9841                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9842                         if (!found)
9843                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9844                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9845                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9846                 }
9847
9848                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9849                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9850
9851                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9852                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9853
9854                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9855                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9856
9857                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9858                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9859         } else if (IS_VALLEYVIEW(dev)) {
9860                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9861                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9862                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9863                                         PORT_C);
9864                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9865                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9866                                               PORT_C);
9867                 }
9868
9869                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9870                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9871                                         PORT_B);
9872                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9873                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9874                 }
9875
9876                 intel_dsi_init(dev);
9877         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9878                 bool found = false;
9879
9880                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9881                         DRM_DEBUG_KMS("probing SDVOB\n");
9882                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9883                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9884                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9885                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9886                         }
9887
9888                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9889                                 intel_dp_init(dev, DP_B, PORT_B);
9890                 }
9891
9892                 /* Before G4X SDVOC doesn't have its own detect register */
9893
9894                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9895                         DRM_DEBUG_KMS("probing SDVOC\n");
9896                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9897                 }
9898
9899                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9900
9901                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9902                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9903                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9904                         }
9905                         if (SUPPORTS_INTEGRATED_DP(dev))
9906                                 intel_dp_init(dev, DP_C, PORT_C);
9907                 }
9908
9909                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9910                     (I915_READ(DP_D) & DP_DETECTED))
9911                         intel_dp_init(dev, DP_D, PORT_D);
9912         } else if (IS_GEN2(dev))
9913                 intel_dvo_init(dev);
9914
9915         if (SUPPORTS_TV(dev))
9916                 intel_tv_init(dev);
9917
9918         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9919                 encoder->base.possible_crtcs = encoder->crtc_mask;
9920                 encoder->base.possible_clones =
9921                         intel_encoder_clones(encoder);
9922         }
9923
9924         intel_init_pch_refclk(dev);
9925
9926         drm_helper_move_panel_connectors_to_head(dev);
9927 }
9928
9929 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9930 {
9931         drm_framebuffer_cleanup(&fb->base);
9932         drm_gem_object_unreference_unlocked(&fb->obj->base);
9933 }
9934
9935 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9936 {
9937         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9938
9939         intel_framebuffer_fini(intel_fb);
9940         kfree(intel_fb);
9941 }
9942
9943 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9944                                                 struct drm_file *file,
9945                                                 unsigned int *handle)
9946 {
9947         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9948         struct drm_i915_gem_object *obj = intel_fb->obj;
9949
9950         return drm_gem_handle_create(file, &obj->base, handle);
9951 }
9952
9953 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9954         .destroy = intel_user_framebuffer_destroy,
9955         .create_handle = intel_user_framebuffer_create_handle,
9956 };
9957
9958 int intel_framebuffer_init(struct drm_device *dev,
9959                            struct intel_framebuffer *intel_fb,
9960                            struct drm_mode_fb_cmd2 *mode_cmd,
9961                            struct drm_i915_gem_object *obj)
9962 {
9963         int pitch_limit;
9964         int ret;
9965
9966         if (obj->tiling_mode == I915_TILING_Y) {
9967                 DRM_DEBUG("hardware does not support tiling Y\n");
9968                 return -EINVAL;
9969         }
9970
9971         if (mode_cmd->pitches[0] & 63) {
9972                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9973                           mode_cmd->pitches[0]);
9974                 return -EINVAL;
9975         }
9976
9977         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9978                 pitch_limit = 32*1024;
9979         } else if (INTEL_INFO(dev)->gen >= 4) {
9980                 if (obj->tiling_mode)
9981                         pitch_limit = 16*1024;
9982                 else
9983                         pitch_limit = 32*1024;
9984         } else if (INTEL_INFO(dev)->gen >= 3) {
9985                 if (obj->tiling_mode)
9986                         pitch_limit = 8*1024;
9987                 else
9988                         pitch_limit = 16*1024;
9989         } else
9990                 /* XXX DSPC is limited to 4k tiled */
9991                 pitch_limit = 8*1024;
9992
9993         if (mode_cmd->pitches[0] > pitch_limit) {
9994                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9995                           obj->tiling_mode ? "tiled" : "linear",
9996                           mode_cmd->pitches[0], pitch_limit);
9997                 return -EINVAL;
9998         }
9999
10000         if (obj->tiling_mode != I915_TILING_NONE &&
10001             mode_cmd->pitches[0] != obj->stride) {
10002                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10003                           mode_cmd->pitches[0], obj->stride);
10004                 return -EINVAL;
10005         }
10006
10007         /* Reject formats not supported by any plane early. */
10008         switch (mode_cmd->pixel_format) {
10009         case DRM_FORMAT_C8:
10010         case DRM_FORMAT_RGB565:
10011         case DRM_FORMAT_XRGB8888:
10012         case DRM_FORMAT_ARGB8888:
10013                 break;
10014         case DRM_FORMAT_XRGB1555:
10015         case DRM_FORMAT_ARGB1555:
10016                 if (INTEL_INFO(dev)->gen > 3) {
10017                         DRM_DEBUG("unsupported pixel format: %s\n",
10018                                   drm_get_format_name(mode_cmd->pixel_format));
10019                         return -EINVAL;
10020                 }
10021                 break;
10022         case DRM_FORMAT_XBGR8888:
10023         case DRM_FORMAT_ABGR8888:
10024         case DRM_FORMAT_XRGB2101010:
10025         case DRM_FORMAT_ARGB2101010:
10026         case DRM_FORMAT_XBGR2101010:
10027         case DRM_FORMAT_ABGR2101010:
10028                 if (INTEL_INFO(dev)->gen < 4) {
10029                         DRM_DEBUG("unsupported pixel format: %s\n",
10030                                   drm_get_format_name(mode_cmd->pixel_format));
10031                         return -EINVAL;
10032                 }
10033                 break;
10034         case DRM_FORMAT_YUYV:
10035         case DRM_FORMAT_UYVY:
10036         case DRM_FORMAT_YVYU:
10037         case DRM_FORMAT_VYUY:
10038                 if (INTEL_INFO(dev)->gen < 5) {
10039                         DRM_DEBUG("unsupported pixel format: %s\n",
10040                                   drm_get_format_name(mode_cmd->pixel_format));
10041                         return -EINVAL;
10042                 }
10043                 break;
10044         default:
10045                 DRM_DEBUG("unsupported pixel format: %s\n",
10046                           drm_get_format_name(mode_cmd->pixel_format));
10047                 return -EINVAL;
10048         }
10049
10050         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10051         if (mode_cmd->offsets[0] != 0)
10052                 return -EINVAL;
10053
10054         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10055         intel_fb->obj = obj;
10056
10057         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10058         if (ret) {
10059                 DRM_ERROR("framebuffer init failed %d\n", ret);
10060                 return ret;
10061         }
10062
10063         return 0;
10064 }
10065
10066 static struct drm_framebuffer *
10067 intel_user_framebuffer_create(struct drm_device *dev,
10068                               struct drm_file *filp,
10069                               struct drm_mode_fb_cmd2 *mode_cmd)
10070 {
10071         struct drm_i915_gem_object *obj;
10072
10073         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10074                                                 mode_cmd->handles[0]));
10075         if (&obj->base == NULL)
10076                 return ERR_PTR(-ENOENT);
10077
10078         return intel_framebuffer_create(dev, mode_cmd, obj);
10079 }
10080
10081 static const struct drm_mode_config_funcs intel_mode_funcs = {
10082         .fb_create = intel_user_framebuffer_create,
10083         .output_poll_changed = intel_fb_output_poll_changed,
10084 };
10085
10086 /* Set up chip specific display functions */
10087 static void intel_init_display(struct drm_device *dev)
10088 {
10089         struct drm_i915_private *dev_priv = dev->dev_private;
10090
10091         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10092                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10093         else if (IS_VALLEYVIEW(dev))
10094                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10095         else if (IS_PINEVIEW(dev))
10096                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10097         else
10098                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10099
10100         if (HAS_DDI(dev)) {
10101                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10102                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10103                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10104                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10105                 dev_priv->display.off = haswell_crtc_off;
10106                 dev_priv->display.update_plane = ironlake_update_plane;
10107         } else if (HAS_PCH_SPLIT(dev)) {
10108                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10109                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10110                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10111                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10112                 dev_priv->display.off = ironlake_crtc_off;
10113                 dev_priv->display.update_plane = ironlake_update_plane;
10114         } else if (IS_VALLEYVIEW(dev)) {
10115                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10116                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10117                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10118                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10119                 dev_priv->display.off = i9xx_crtc_off;
10120                 dev_priv->display.update_plane = i9xx_update_plane;
10121         } else {
10122                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10123                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10124                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10125                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10126                 dev_priv->display.off = i9xx_crtc_off;
10127                 dev_priv->display.update_plane = i9xx_update_plane;
10128         }
10129
10130         /* Returns the core display clock speed */
10131         if (IS_VALLEYVIEW(dev))
10132                 dev_priv->display.get_display_clock_speed =
10133                         valleyview_get_display_clock_speed;
10134         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10135                 dev_priv->display.get_display_clock_speed =
10136                         i945_get_display_clock_speed;
10137         else if (IS_I915G(dev))
10138                 dev_priv->display.get_display_clock_speed =
10139                         i915_get_display_clock_speed;
10140         else if (IS_I945GM(dev) || IS_845G(dev))
10141                 dev_priv->display.get_display_clock_speed =
10142                         i9xx_misc_get_display_clock_speed;
10143         else if (IS_PINEVIEW(dev))
10144                 dev_priv->display.get_display_clock_speed =
10145                         pnv_get_display_clock_speed;
10146         else if (IS_I915GM(dev))
10147                 dev_priv->display.get_display_clock_speed =
10148                         i915gm_get_display_clock_speed;
10149         else if (IS_I865G(dev))
10150                 dev_priv->display.get_display_clock_speed =
10151                         i865_get_display_clock_speed;
10152         else if (IS_I85X(dev))
10153                 dev_priv->display.get_display_clock_speed =
10154                         i855_get_display_clock_speed;
10155         else /* 852, 830 */
10156                 dev_priv->display.get_display_clock_speed =
10157                         i830_get_display_clock_speed;
10158
10159         if (HAS_PCH_SPLIT(dev)) {
10160                 if (IS_GEN5(dev)) {
10161                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10162                         dev_priv->display.write_eld = ironlake_write_eld;
10163                 } else if (IS_GEN6(dev)) {
10164                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10165                         dev_priv->display.write_eld = ironlake_write_eld;
10166                 } else if (IS_IVYBRIDGE(dev)) {
10167                         /* FIXME: detect B0+ stepping and use auto training */
10168                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10169                         dev_priv->display.write_eld = ironlake_write_eld;
10170                         dev_priv->display.modeset_global_resources =
10171                                 ivb_modeset_global_resources;
10172                 } else if (IS_HASWELL(dev)) {
10173                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10174                         dev_priv->display.write_eld = haswell_write_eld;
10175                         dev_priv->display.modeset_global_resources =
10176                                 haswell_modeset_global_resources;
10177                 }
10178         } else if (IS_G4X(dev)) {
10179                 dev_priv->display.write_eld = g4x_write_eld;
10180         }
10181
10182         /* Default just returns -ENODEV to indicate unsupported */
10183         dev_priv->display.queue_flip = intel_default_queue_flip;
10184
10185         switch (INTEL_INFO(dev)->gen) {
10186         case 2:
10187                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10188                 break;
10189
10190         case 3:
10191                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10192                 break;
10193
10194         case 4:
10195         case 5:
10196                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10197                 break;
10198
10199         case 6:
10200                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10201                 break;
10202         case 7:
10203                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10204                 break;
10205         }
10206 }
10207
10208 /*
10209  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10210  * resume, or other times.  This quirk makes sure that's the case for
10211  * affected systems.
10212  */
10213 static void quirk_pipea_force(struct drm_device *dev)
10214 {
10215         struct drm_i915_private *dev_priv = dev->dev_private;
10216
10217         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10218         DRM_INFO("applying pipe a force quirk\n");
10219 }
10220
10221 /*
10222  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10223  */
10224 static void quirk_ssc_force_disable(struct drm_device *dev)
10225 {
10226         struct drm_i915_private *dev_priv = dev->dev_private;
10227         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10228         DRM_INFO("applying lvds SSC disable quirk\n");
10229 }
10230
10231 /*
10232  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10233  * brightness value
10234  */
10235 static void quirk_invert_brightness(struct drm_device *dev)
10236 {
10237         struct drm_i915_private *dev_priv = dev->dev_private;
10238         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10239         DRM_INFO("applying inverted panel brightness quirk\n");
10240 }
10241
10242 /*
10243  * Some machines (Dell XPS13) suffer broken backlight controls if
10244  * BLM_PCH_PWM_ENABLE is set.
10245  */
10246 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10247 {
10248         struct drm_i915_private *dev_priv = dev->dev_private;
10249         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10250         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10251 }
10252
10253 struct intel_quirk {
10254         int device;
10255         int subsystem_vendor;
10256         int subsystem_device;
10257         void (*hook)(struct drm_device *dev);
10258 };
10259
10260 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10261 struct intel_dmi_quirk {
10262         void (*hook)(struct drm_device *dev);
10263         const struct dmi_system_id (*dmi_id_list)[];
10264 };
10265
10266 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10267 {
10268         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10269         return 1;
10270 }
10271
10272 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10273         {
10274                 .dmi_id_list = &(const struct dmi_system_id[]) {
10275                         {
10276                                 .callback = intel_dmi_reverse_brightness,
10277                                 .ident = "NCR Corporation",
10278                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10279                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10280                                 },
10281                         },
10282                         { }  /* terminating entry */
10283                 },
10284                 .hook = quirk_invert_brightness,
10285         },
10286 };
10287
10288 static struct intel_quirk intel_quirks[] = {
10289         /* HP Mini needs pipe A force quirk (LP: #322104) */
10290         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10291
10292         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10293         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10294
10295         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10296         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10297
10298         /* 830/845 need to leave pipe A & dpll A up */
10299         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10300         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10301
10302         /* Lenovo U160 cannot use SSC on LVDS */
10303         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10304
10305         /* Sony Vaio Y cannot use SSC on LVDS */
10306         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10307
10308         /*
10309          * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10310          * seem to use inverted backlight PWM.
10311          */
10312         { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10313
10314         /* Dell XPS13 HD Sandy Bridge */
10315         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10316         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10317         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10318 };
10319
10320 static void intel_init_quirks(struct drm_device *dev)
10321 {
10322         struct pci_dev *d = dev->pdev;
10323         int i;
10324
10325         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10326                 struct intel_quirk *q = &intel_quirks[i];
10327
10328                 if (d->device == q->device &&
10329                     (d->subsystem_vendor == q->subsystem_vendor ||
10330                      q->subsystem_vendor == PCI_ANY_ID) &&
10331                     (d->subsystem_device == q->subsystem_device ||
10332                      q->subsystem_device == PCI_ANY_ID))
10333                         q->hook(dev);
10334         }
10335         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10336                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10337                         intel_dmi_quirks[i].hook(dev);
10338         }
10339 }
10340
10341 /* Disable the VGA plane that we never use */
10342 static void i915_disable_vga(struct drm_device *dev)
10343 {
10344         struct drm_i915_private *dev_priv = dev->dev_private;
10345         u8 sr1;
10346         u32 vga_reg = i915_vgacntrl_reg(dev);
10347
10348         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10349         outb(SR01, VGA_SR_INDEX);
10350         sr1 = inb(VGA_SR_DATA);
10351         outb(sr1 | 1<<5, VGA_SR_DATA);
10352         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10353         udelay(300);
10354
10355         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10356         POSTING_READ(vga_reg);
10357 }
10358
10359 static void i915_enable_vga_mem(struct drm_device *dev)
10360 {
10361         /* Enable VGA memory on Intel HD */
10362         if (HAS_PCH_SPLIT(dev)) {
10363                 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10364                 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10365                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10366                                                    VGA_RSRC_LEGACY_MEM |
10367                                                    VGA_RSRC_NORMAL_IO |
10368                                                    VGA_RSRC_NORMAL_MEM);
10369                 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10370         }
10371 }
10372
10373 void i915_disable_vga_mem(struct drm_device *dev)
10374 {
10375         /* Disable VGA memory on Intel HD */
10376         if (HAS_PCH_SPLIT(dev)) {
10377                 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10378                 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10379                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10380                                                    VGA_RSRC_NORMAL_IO |
10381                                                    VGA_RSRC_NORMAL_MEM);
10382                 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10383         }
10384 }
10385
10386 void intel_modeset_init_hw(struct drm_device *dev)
10387 {
10388         struct drm_i915_private *dev_priv = dev->dev_private;
10389
10390         intel_prepare_ddi(dev);
10391
10392         intel_init_clock_gating(dev);
10393
10394         /* Enable the CRI clock source so we can get at the display */
10395         if (IS_VALLEYVIEW(dev))
10396                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10397                            DPLL_INTEGRATED_CRI_CLK_VLV);
10398
10399         intel_init_dpio(dev);
10400
10401         mutex_lock(&dev->struct_mutex);
10402         intel_enable_gt_powersave(dev);
10403         mutex_unlock(&dev->struct_mutex);
10404 }
10405
10406 void intel_modeset_suspend_hw(struct drm_device *dev)
10407 {
10408         intel_suspend_hw(dev);
10409 }
10410
10411 void intel_modeset_init(struct drm_device *dev)
10412 {
10413         struct drm_i915_private *dev_priv = dev->dev_private;
10414         int i, j, ret;
10415
10416         drm_mode_config_init(dev);
10417
10418         dev->mode_config.min_width = 0;
10419         dev->mode_config.min_height = 0;
10420
10421         dev->mode_config.preferred_depth = 24;
10422         dev->mode_config.prefer_shadow = 1;
10423
10424         dev->mode_config.funcs = &intel_mode_funcs;
10425
10426         intel_init_quirks(dev);
10427
10428         intel_init_pm(dev);
10429
10430         if (INTEL_INFO(dev)->num_pipes == 0)
10431                 return;
10432
10433         intel_init_display(dev);
10434
10435         if (IS_GEN2(dev)) {
10436                 dev->mode_config.max_width = 2048;
10437                 dev->mode_config.max_height = 2048;
10438         } else if (IS_GEN3(dev)) {
10439                 dev->mode_config.max_width = 4096;
10440                 dev->mode_config.max_height = 4096;
10441         } else {
10442                 dev->mode_config.max_width = 8192;
10443                 dev->mode_config.max_height = 8192;
10444         }
10445         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10446
10447         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10448                       INTEL_INFO(dev)->num_pipes,
10449                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10450
10451         for_each_pipe(i) {
10452                 intel_crtc_init(dev, i);
10453                 for (j = 0; j < dev_priv->num_plane; j++) {
10454                         ret = intel_plane_init(dev, i, j);
10455                         if (ret)
10456                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10457                                               pipe_name(i), sprite_name(i, j), ret);
10458                 }
10459         }
10460
10461         intel_cpu_pll_init(dev);
10462         intel_shared_dpll_init(dev);
10463
10464         /* Just disable it once at startup */
10465         i915_disable_vga(dev);
10466         intel_setup_outputs(dev);
10467
10468         /* Just in case the BIOS is doing something questionable. */
10469         intel_disable_fbc(dev);
10470 }
10471
10472 static void
10473 intel_connector_break_all_links(struct intel_connector *connector)
10474 {
10475         connector->base.dpms = DRM_MODE_DPMS_OFF;
10476         connector->base.encoder = NULL;
10477         connector->encoder->connectors_active = false;
10478         connector->encoder->base.crtc = NULL;
10479 }
10480
10481 static void intel_enable_pipe_a(struct drm_device *dev)
10482 {
10483         struct intel_connector *connector;
10484         struct drm_connector *crt = NULL;
10485         struct intel_load_detect_pipe load_detect_temp;
10486
10487         /* We can't just switch on the pipe A, we need to set things up with a
10488          * proper mode and output configuration. As a gross hack, enable pipe A
10489          * by enabling the load detect pipe once. */
10490         list_for_each_entry(connector,
10491                             &dev->mode_config.connector_list,
10492                             base.head) {
10493                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10494                         crt = &connector->base;
10495                         break;
10496                 }
10497         }
10498
10499         if (!crt)
10500                 return;
10501
10502         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10503                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10504
10505
10506 }
10507
10508 static bool
10509 intel_check_plane_mapping(struct intel_crtc *crtc)
10510 {
10511         struct drm_device *dev = crtc->base.dev;
10512         struct drm_i915_private *dev_priv = dev->dev_private;
10513         u32 reg, val;
10514
10515         if (INTEL_INFO(dev)->num_pipes == 1)
10516                 return true;
10517
10518         reg = DSPCNTR(!crtc->plane);
10519         val = I915_READ(reg);
10520
10521         if ((val & DISPLAY_PLANE_ENABLE) &&
10522             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10523                 return false;
10524
10525         return true;
10526 }
10527
10528 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10529 {
10530         struct drm_device *dev = crtc->base.dev;
10531         struct drm_i915_private *dev_priv = dev->dev_private;
10532         u32 reg;
10533
10534         /* Clear any frame start delays used for debugging left by the BIOS */
10535         reg = PIPECONF(crtc->config.cpu_transcoder);
10536         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10537
10538         /* We need to sanitize the plane -> pipe mapping first because this will
10539          * disable the crtc (and hence change the state) if it is wrong. Note
10540          * that gen4+ has a fixed plane -> pipe mapping.  */
10541         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10542                 struct intel_connector *connector;
10543                 bool plane;
10544
10545                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10546                               crtc->base.base.id);
10547
10548                 /* Pipe has the wrong plane attached and the plane is active.
10549                  * Temporarily change the plane mapping and disable everything
10550                  * ...  */
10551                 plane = crtc->plane;
10552                 crtc->plane = !plane;
10553                 dev_priv->display.crtc_disable(&crtc->base);
10554                 crtc->plane = plane;
10555
10556                 /* ... and break all links. */
10557                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10558                                     base.head) {
10559                         if (connector->encoder->base.crtc != &crtc->base)
10560                                 continue;
10561
10562                         intel_connector_break_all_links(connector);
10563                 }
10564
10565                 WARN_ON(crtc->active);
10566                 crtc->base.enabled = false;
10567         }
10568
10569         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10570             crtc->pipe == PIPE_A && !crtc->active) {
10571                 /* BIOS forgot to enable pipe A, this mostly happens after
10572                  * resume. Force-enable the pipe to fix this, the update_dpms
10573                  * call below we restore the pipe to the right state, but leave
10574                  * the required bits on. */
10575                 intel_enable_pipe_a(dev);
10576         }
10577
10578         /* Adjust the state of the output pipe according to whether we
10579          * have active connectors/encoders. */
10580         intel_crtc_update_dpms(&crtc->base);
10581
10582         if (crtc->active != crtc->base.enabled) {
10583                 struct intel_encoder *encoder;
10584
10585                 /* This can happen either due to bugs in the get_hw_state
10586                  * functions or because the pipe is force-enabled due to the
10587                  * pipe A quirk. */
10588                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10589                               crtc->base.base.id,
10590                               crtc->base.enabled ? "enabled" : "disabled",
10591                               crtc->active ? "enabled" : "disabled");
10592
10593                 crtc->base.enabled = crtc->active;
10594
10595                 /* Because we only establish the connector -> encoder ->
10596                  * crtc links if something is active, this means the
10597                  * crtc is now deactivated. Break the links. connector
10598                  * -> encoder links are only establish when things are
10599                  *  actually up, hence no need to break them. */
10600                 WARN_ON(crtc->active);
10601
10602                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10603                         WARN_ON(encoder->connectors_active);
10604                         encoder->base.crtc = NULL;
10605                 }
10606         }
10607 }
10608
10609 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10610 {
10611         struct intel_connector *connector;
10612         struct drm_device *dev = encoder->base.dev;
10613
10614         /* We need to check both for a crtc link (meaning that the
10615          * encoder is active and trying to read from a pipe) and the
10616          * pipe itself being active. */
10617         bool has_active_crtc = encoder->base.crtc &&
10618                 to_intel_crtc(encoder->base.crtc)->active;
10619
10620         if (encoder->connectors_active && !has_active_crtc) {
10621                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10622                               encoder->base.base.id,
10623                               drm_get_encoder_name(&encoder->base));
10624
10625                 /* Connector is active, but has no active pipe. This is
10626                  * fallout from our resume register restoring. Disable
10627                  * the encoder manually again. */
10628                 if (encoder->base.crtc) {
10629                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10630                                       encoder->base.base.id,
10631                                       drm_get_encoder_name(&encoder->base));
10632                         encoder->disable(encoder);
10633                 }
10634
10635                 /* Inconsistent output/port/pipe state happens presumably due to
10636                  * a bug in one of the get_hw_state functions. Or someplace else
10637                  * in our code, like the register restore mess on resume. Clamp
10638                  * things to off as a safer default. */
10639                 list_for_each_entry(connector,
10640                                     &dev->mode_config.connector_list,
10641                                     base.head) {
10642                         if (connector->encoder != encoder)
10643                                 continue;
10644
10645                         intel_connector_break_all_links(connector);
10646                 }
10647         }
10648         /* Enabled encoders without active connectors will be fixed in
10649          * the crtc fixup. */
10650 }
10651
10652 void i915_redisable_vga(struct drm_device *dev)
10653 {
10654         struct drm_i915_private *dev_priv = dev->dev_private;
10655         u32 vga_reg = i915_vgacntrl_reg(dev);
10656
10657         /* This function can be called both from intel_modeset_setup_hw_state or
10658          * at a very early point in our resume sequence, where the power well
10659          * structures are not yet restored. Since this function is at a very
10660          * paranoid "someone might have enabled VGA while we were not looking"
10661          * level, just check if the power well is enabled instead of trying to
10662          * follow the "don't touch the power well if we don't need it" policy
10663          * the rest of the driver uses. */
10664         if (HAS_POWER_WELL(dev) &&
10665             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10666                 return;
10667
10668         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10669                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10670                 i915_disable_vga(dev);
10671                 i915_disable_vga_mem(dev);
10672         }
10673 }
10674
10675 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10676 {
10677         struct drm_i915_private *dev_priv = dev->dev_private;
10678         enum pipe pipe;
10679         struct intel_crtc *crtc;
10680         struct intel_encoder *encoder;
10681         struct intel_connector *connector;
10682         int i;
10683
10684         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10685                             base.head) {
10686                 memset(&crtc->config, 0, sizeof(crtc->config));
10687
10688                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10689                                                                  &crtc->config);
10690
10691                 crtc->base.enabled = crtc->active;
10692
10693                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10694                               crtc->base.base.id,
10695                               crtc->active ? "enabled" : "disabled");
10696         }
10697
10698         /* FIXME: Smash this into the new shared dpll infrastructure. */
10699         if (HAS_DDI(dev))
10700                 intel_ddi_setup_hw_pll_state(dev);
10701
10702         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10703                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10704
10705                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10706                 pll->active = 0;
10707                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10708                                     base.head) {
10709                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10710                                 pll->active++;
10711                 }
10712                 pll->refcount = pll->active;
10713
10714                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10715                               pll->name, pll->refcount, pll->on);
10716         }
10717
10718         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10719                             base.head) {
10720                 pipe = 0;
10721
10722                 if (encoder->get_hw_state(encoder, &pipe)) {
10723                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10724                         encoder->base.crtc = &crtc->base;
10725                         if (encoder->get_config)
10726                                 encoder->get_config(encoder, &crtc->config);
10727                 } else {
10728                         encoder->base.crtc = NULL;
10729                 }
10730
10731                 encoder->connectors_active = false;
10732                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10733                               encoder->base.base.id,
10734                               drm_get_encoder_name(&encoder->base),
10735                               encoder->base.crtc ? "enabled" : "disabled",
10736                               pipe);
10737         }
10738
10739         list_for_each_entry(connector, &dev->mode_config.connector_list,
10740                             base.head) {
10741                 if (connector->get_hw_state(connector)) {
10742                         connector->base.dpms = DRM_MODE_DPMS_ON;
10743                         connector->encoder->connectors_active = true;
10744                         connector->base.encoder = &connector->encoder->base;
10745                 } else {
10746                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10747                         connector->base.encoder = NULL;
10748                 }
10749                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10750                               connector->base.base.id,
10751                               drm_get_connector_name(&connector->base),
10752                               connector->base.encoder ? "enabled" : "disabled");
10753         }
10754 }
10755
10756 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10757  * and i915 state tracking structures. */
10758 void intel_modeset_setup_hw_state(struct drm_device *dev,
10759                                   bool force_restore)
10760 {
10761         struct drm_i915_private *dev_priv = dev->dev_private;
10762         enum pipe pipe;
10763         struct intel_crtc *crtc;
10764         struct intel_encoder *encoder;
10765         int i;
10766
10767         intel_modeset_readout_hw_state(dev);
10768
10769         /*
10770          * Now that we have the config, copy it to each CRTC struct
10771          * Note that this could go away if we move to using crtc_config
10772          * checking everywhere.
10773          */
10774         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10775                             base.head) {
10776                 if (crtc->active && i915_fastboot) {
10777                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10778
10779                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10780                                       crtc->base.base.id);
10781                         drm_mode_debug_printmodeline(&crtc->base.mode);
10782                 }
10783         }
10784
10785         /* HW state is read out, now we need to sanitize this mess. */
10786         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10787                             base.head) {
10788                 intel_sanitize_encoder(encoder);
10789         }
10790
10791         for_each_pipe(pipe) {
10792                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10793                 intel_sanitize_crtc(crtc);
10794                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10795         }
10796
10797         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10798                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10799
10800                 if (!pll->on || pll->active)
10801                         continue;
10802
10803                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10804
10805                 pll->disable(dev_priv, pll);
10806                 pll->on = false;
10807         }
10808
10809         if (force_restore) {
10810                 i915_redisable_vga(dev);
10811
10812                 /*
10813                  * We need to use raw interfaces for restoring state to avoid
10814                  * checking (bogus) intermediate states.
10815                  */
10816                 for_each_pipe(pipe) {
10817                         struct drm_crtc *crtc =
10818                                 dev_priv->pipe_to_crtc_mapping[pipe];
10819
10820                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10821                                          crtc->fb);
10822                 }
10823         } else {
10824                 intel_modeset_update_staged_output_state(dev);
10825         }
10826
10827         intel_modeset_check_state(dev);
10828
10829         drm_mode_config_reset(dev);
10830 }
10831
10832 void intel_modeset_gem_init(struct drm_device *dev)
10833 {
10834         intel_modeset_init_hw(dev);
10835
10836         intel_setup_overlay(dev);
10837
10838         intel_modeset_setup_hw_state(dev, false);
10839 }
10840
10841 void intel_modeset_cleanup(struct drm_device *dev)
10842 {
10843         struct drm_i915_private *dev_priv = dev->dev_private;
10844         struct drm_crtc *crtc;
10845         struct drm_connector *connector;
10846
10847         /*
10848          * Interrupts and polling as the first thing to avoid creating havoc.
10849          * Too much stuff here (turning of rps, connectors, ...) would
10850          * experience fancy races otherwise.
10851          */
10852         drm_irq_uninstall(dev);
10853         cancel_work_sync(&dev_priv->hotplug_work);
10854         /*
10855          * Due to the hpd irq storm handling the hotplug work can re-arm the
10856          * poll handlers. Hence disable polling after hpd handling is shut down.
10857          */
10858         drm_kms_helper_poll_fini(dev);
10859
10860         mutex_lock(&dev->struct_mutex);
10861
10862         intel_unregister_dsm_handler();
10863
10864         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10865                 /* Skip inactive CRTCs */
10866                 if (!crtc->fb)
10867                         continue;
10868
10869                 intel_increase_pllclock(crtc);
10870         }
10871
10872         intel_disable_fbc(dev);
10873
10874         i915_enable_vga_mem(dev);
10875
10876         intel_disable_gt_powersave(dev);
10877
10878         ironlake_teardown_rc6(dev);
10879
10880         mutex_unlock(&dev->struct_mutex);
10881
10882         /* flush any delayed tasks or pending work */
10883         flush_scheduled_work();
10884
10885         /* destroy backlight, if any, before the connectors */
10886         intel_panel_destroy_backlight(dev);
10887
10888         /* destroy the sysfs files before encoders/connectors */
10889         list_for_each_entry(connector, &dev->mode_config.connector_list, head)
10890                 drm_sysfs_connector_remove(connector);
10891
10892         drm_mode_config_cleanup(dev);
10893
10894         intel_cleanup_overlay(dev);
10895 }
10896
10897 /*
10898  * Return which encoder is currently attached for connector.
10899  */
10900 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10901 {
10902         return &intel_attached_encoder(connector)->base;
10903 }
10904
10905 void intel_connector_attach_encoder(struct intel_connector *connector,
10906                                     struct intel_encoder *encoder)
10907 {
10908         connector->encoder = encoder;
10909         drm_mode_connector_attach_encoder(&connector->base,
10910                                           &encoder->base);
10911 }
10912
10913 /*
10914  * set vga decode state - true == enable VGA decode
10915  */
10916 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10917 {
10918         struct drm_i915_private *dev_priv = dev->dev_private;
10919         u16 gmch_ctrl;
10920
10921         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10922         if (state)
10923                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10924         else
10925                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10926         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10927         return 0;
10928 }
10929
10930 struct intel_display_error_state {
10931
10932         u32 power_well_driver;
10933
10934         int num_transcoders;
10935
10936         struct intel_cursor_error_state {
10937                 u32 control;
10938                 u32 position;
10939                 u32 base;
10940                 u32 size;
10941         } cursor[I915_MAX_PIPES];
10942
10943         struct intel_pipe_error_state {
10944                 u32 source;
10945         } pipe[I915_MAX_PIPES];
10946
10947         struct intel_plane_error_state {
10948                 u32 control;
10949                 u32 stride;
10950                 u32 size;
10951                 u32 pos;
10952                 u32 addr;
10953                 u32 surface;
10954                 u32 tile_offset;
10955         } plane[I915_MAX_PIPES];
10956
10957         struct intel_transcoder_error_state {
10958                 enum transcoder cpu_transcoder;
10959
10960                 u32 conf;
10961
10962                 u32 htotal;
10963                 u32 hblank;
10964                 u32 hsync;
10965                 u32 vtotal;
10966                 u32 vblank;
10967                 u32 vsync;
10968         } transcoder[4];
10969 };
10970
10971 struct intel_display_error_state *
10972 intel_display_capture_error_state(struct drm_device *dev)
10973 {
10974         drm_i915_private_t *dev_priv = dev->dev_private;
10975         struct intel_display_error_state *error;
10976         int transcoders[] = {
10977                 TRANSCODER_A,
10978                 TRANSCODER_B,
10979                 TRANSCODER_C,
10980                 TRANSCODER_EDP,
10981         };
10982         int i;
10983
10984         if (INTEL_INFO(dev)->num_pipes == 0)
10985                 return NULL;
10986
10987         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10988         if (error == NULL)
10989                 return NULL;
10990
10991         if (HAS_POWER_WELL(dev))
10992                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10993
10994         for_each_pipe(i) {
10995                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10996                         error->cursor[i].control = I915_READ(CURCNTR(i));
10997                         error->cursor[i].position = I915_READ(CURPOS(i));
10998                         error->cursor[i].base = I915_READ(CURBASE(i));
10999                 } else {
11000                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11001                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11002                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11003                 }
11004
11005                 error->plane[i].control = I915_READ(DSPCNTR(i));
11006                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11007                 if (INTEL_INFO(dev)->gen <= 3) {
11008                         error->plane[i].size = I915_READ(DSPSIZE(i));
11009                         error->plane[i].pos = I915_READ(DSPPOS(i));
11010                 }
11011                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11012                         error->plane[i].addr = I915_READ(DSPADDR(i));
11013                 if (INTEL_INFO(dev)->gen >= 4) {
11014                         error->plane[i].surface = I915_READ(DSPSURF(i));
11015                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11016                 }
11017
11018                 error->pipe[i].source = I915_READ(PIPESRC(i));
11019         }
11020
11021         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11022         if (HAS_DDI(dev_priv->dev))
11023                 error->num_transcoders++; /* Account for eDP. */
11024
11025         for (i = 0; i < error->num_transcoders; i++) {
11026                 enum transcoder cpu_transcoder = transcoders[i];
11027
11028                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11029
11030                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11031                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11032                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11033                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11034                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11035                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11036                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11037         }
11038
11039         /* In the code above we read the registers without checking if the power
11040          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
11041          * prevent the next I915_WRITE from detecting it and printing an error
11042          * message. */
11043         intel_uncore_clear_errors(dev);
11044
11045         return error;
11046 }
11047
11048 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11049
11050 void
11051 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11052                                 struct drm_device *dev,
11053                                 struct intel_display_error_state *error)
11054 {
11055         int i;
11056
11057         if (!error)
11058                 return;
11059
11060         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11061         if (HAS_POWER_WELL(dev))
11062                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11063                            error->power_well_driver);
11064         for_each_pipe(i) {
11065                 err_printf(m, "Pipe [%d]:\n", i);
11066                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11067
11068                 err_printf(m, "Plane [%d]:\n", i);
11069                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11070                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11071                 if (INTEL_INFO(dev)->gen <= 3) {
11072                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11073                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11074                 }
11075                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11076                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11077                 if (INTEL_INFO(dev)->gen >= 4) {
11078                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11079                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
11080                 }
11081
11082                 err_printf(m, "Cursor [%d]:\n", i);
11083                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
11084                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
11085                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
11086         }
11087
11088         for (i = 0; i < error->num_transcoders; i++) {
11089                 err_printf(m, "  CPU transcoder: %c\n",
11090                            transcoder_name(error->transcoder[i].cpu_transcoder));
11091                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
11092                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
11093                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
11094                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
11095                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
11096                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
11097                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
11098         }
11099 }