drm/i915: split out Ironlake pipe bpp picking code
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include "drmP.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
40
41 #include "drm_crtc_helper.h"
42
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44
45 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
46 static void intel_update_watermarks(struct drm_device *dev);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51     /* given values */
52     int n;
53     int m1, m2;
54     int p1, p2;
55     /* derived values */
56     int dot;
57     int vco;
58     int m;
59     int p;
60 } intel_clock_t;
61
62 typedef struct {
63     int min, max;
64 } intel_range_t;
65
66 typedef struct {
67     int dot_limit;
68     int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75     intel_p2_t      p2;
76     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                       int, int, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *best_clock);
86 static bool
87 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88                         int target, int refclk, intel_clock_t *best_clock);
89
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92                       int target, int refclk, intel_clock_t *best_clock);
93 static bool
94 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95                            int target, int refclk, intel_clock_t *best_clock);
96
97 static inline u32 /* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device *dev)
99 {
100         if (IS_GEN5(dev)) {
101                 struct drm_i915_private *dev_priv = dev->dev_private;
102                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103         } else
104                 return 27;
105 }
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108         .dot = { .min = 25000, .max = 350000 },
109         .vco = { .min = 930000, .max = 1400000 },
110         .n = { .min = 3, .max = 16 },
111         .m = { .min = 96, .max = 140 },
112         .m1 = { .min = 18, .max = 26 },
113         .m2 = { .min = 6, .max = 16 },
114         .p = { .min = 4, .max = 128 },
115         .p1 = { .min = 2, .max = 33 },
116         .p2 = { .dot_limit = 165000,
117                 .p2_slow = 4, .p2_fast = 2 },
118         .find_pll = intel_find_best_PLL,
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122         .dot = { .min = 25000, .max = 350000 },
123         .vco = { .min = 930000, .max = 1400000 },
124         .n = { .min = 3, .max = 16 },
125         .m = { .min = 96, .max = 140 },
126         .m1 = { .min = 18, .max = 26 },
127         .m2 = { .min = 6, .max = 16 },
128         .p = { .min = 4, .max = 128 },
129         .p1 = { .min = 1, .max = 6 },
130         .p2 = { .dot_limit = 165000,
131                 .p2_slow = 14, .p2_fast = 7 },
132         .find_pll = intel_find_best_PLL,
133 };
134
135 static const intel_limit_t intel_limits_i9xx_sdvo = {
136         .dot = { .min = 20000, .max = 400000 },
137         .vco = { .min = 1400000, .max = 2800000 },
138         .n = { .min = 1, .max = 6 },
139         .m = { .min = 70, .max = 120 },
140         .m1 = { .min = 10, .max = 22 },
141         .m2 = { .min = 5, .max = 9 },
142         .p = { .min = 5, .max = 80 },
143         .p1 = { .min = 1, .max = 8 },
144         .p2 = { .dot_limit = 200000,
145                 .p2_slow = 10, .p2_fast = 5 },
146         .find_pll = intel_find_best_PLL,
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150         .dot = { .min = 20000, .max = 400000 },
151         .vco = { .min = 1400000, .max = 2800000 },
152         .n = { .min = 1, .max = 6 },
153         .m = { .min = 70, .max = 120 },
154         .m1 = { .min = 10, .max = 22 },
155         .m2 = { .min = 5, .max = 9 },
156         .p = { .min = 7, .max = 98 },
157         .p1 = { .min = 1, .max = 8 },
158         .p2 = { .dot_limit = 112000,
159                 .p2_slow = 14, .p2_fast = 7 },
160         .find_pll = intel_find_best_PLL,
161 };
162
163
164 static const intel_limit_t intel_limits_g4x_sdvo = {
165         .dot = { .min = 25000, .max = 270000 },
166         .vco = { .min = 1750000, .max = 3500000},
167         .n = { .min = 1, .max = 4 },
168         .m = { .min = 104, .max = 138 },
169         .m1 = { .min = 17, .max = 23 },
170         .m2 = { .min = 5, .max = 11 },
171         .p = { .min = 10, .max = 30 },
172         .p1 = { .min = 1, .max = 3},
173         .p2 = { .dot_limit = 270000,
174                 .p2_slow = 10,
175                 .p2_fast = 10
176         },
177         .find_pll = intel_g4x_find_best_PLL,
178 };
179
180 static const intel_limit_t intel_limits_g4x_hdmi = {
181         .dot = { .min = 22000, .max = 400000 },
182         .vco = { .min = 1750000, .max = 3500000},
183         .n = { .min = 1, .max = 4 },
184         .m = { .min = 104, .max = 138 },
185         .m1 = { .min = 16, .max = 23 },
186         .m2 = { .min = 5, .max = 11 },
187         .p = { .min = 5, .max = 80 },
188         .p1 = { .min = 1, .max = 8},
189         .p2 = { .dot_limit = 165000,
190                 .p2_slow = 10, .p2_fast = 5 },
191         .find_pll = intel_g4x_find_best_PLL,
192 };
193
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
195         .dot = { .min = 20000, .max = 115000 },
196         .vco = { .min = 1750000, .max = 3500000 },
197         .n = { .min = 1, .max = 3 },
198         .m = { .min = 104, .max = 138 },
199         .m1 = { .min = 17, .max = 23 },
200         .m2 = { .min = 5, .max = 11 },
201         .p = { .min = 28, .max = 112 },
202         .p1 = { .min = 2, .max = 8 },
203         .p2 = { .dot_limit = 0,
204                 .p2_slow = 14, .p2_fast = 14
205         },
206         .find_pll = intel_g4x_find_best_PLL,
207 };
208
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
210         .dot = { .min = 80000, .max = 224000 },
211         .vco = { .min = 1750000, .max = 3500000 },
212         .n = { .min = 1, .max = 3 },
213         .m = { .min = 104, .max = 138 },
214         .m1 = { .min = 17, .max = 23 },
215         .m2 = { .min = 5, .max = 11 },
216         .p = { .min = 14, .max = 42 },
217         .p1 = { .min = 2, .max = 6 },
218         .p2 = { .dot_limit = 0,
219                 .p2_slow = 7, .p2_fast = 7
220         },
221         .find_pll = intel_g4x_find_best_PLL,
222 };
223
224 static const intel_limit_t intel_limits_g4x_display_port = {
225         .dot = { .min = 161670, .max = 227000 },
226         .vco = { .min = 1750000, .max = 3500000},
227         .n = { .min = 1, .max = 2 },
228         .m = { .min = 97, .max = 108 },
229         .m1 = { .min = 0x10, .max = 0x12 },
230         .m2 = { .min = 0x05, .max = 0x06 },
231         .p = { .min = 10, .max = 20 },
232         .p1 = { .min = 1, .max = 2},
233         .p2 = { .dot_limit = 0,
234                 .p2_slow = 10, .p2_fast = 10 },
235         .find_pll = intel_find_pll_g4x_dp,
236 };
237
238 static const intel_limit_t intel_limits_pineview_sdvo = {
239         .dot = { .min = 20000, .max = 400000},
240         .vco = { .min = 1700000, .max = 3500000 },
241         /* Pineview's Ncounter is a ring counter */
242         .n = { .min = 3, .max = 6 },
243         .m = { .min = 2, .max = 256 },
244         /* Pineview only has one combined m divider, which we treat as m2. */
245         .m1 = { .min = 0, .max = 0 },
246         .m2 = { .min = 0, .max = 254 },
247         .p = { .min = 5, .max = 80 },
248         .p1 = { .min = 1, .max = 8 },
249         .p2 = { .dot_limit = 200000,
250                 .p2_slow = 10, .p2_fast = 5 },
251         .find_pll = intel_find_best_PLL,
252 };
253
254 static const intel_limit_t intel_limits_pineview_lvds = {
255         .dot = { .min = 20000, .max = 400000 },
256         .vco = { .min = 1700000, .max = 3500000 },
257         .n = { .min = 3, .max = 6 },
258         .m = { .min = 2, .max = 256 },
259         .m1 = { .min = 0, .max = 0 },
260         .m2 = { .min = 0, .max = 254 },
261         .p = { .min = 7, .max = 112 },
262         .p1 = { .min = 1, .max = 8 },
263         .p2 = { .dot_limit = 112000,
264                 .p2_slow = 14, .p2_fast = 14 },
265         .find_pll = intel_find_best_PLL,
266 };
267
268 /* Ironlake / Sandybridge
269  *
270  * We calculate clock using (register_value + 2) for N/M1/M2, so here
271  * the range value for them is (actual_value - 2).
272  */
273 static const intel_limit_t intel_limits_ironlake_dac = {
274         .dot = { .min = 25000, .max = 350000 },
275         .vco = { .min = 1760000, .max = 3510000 },
276         .n = { .min = 1, .max = 5 },
277         .m = { .min = 79, .max = 127 },
278         .m1 = { .min = 12, .max = 22 },
279         .m2 = { .min = 5, .max = 9 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 225000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_g4x_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_ironlake_single_lvds = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 3 },
291         .m = { .min = 79, .max = 118 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 28, .max = 112 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_g4x_find_best_PLL,
299 };
300
301 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
302         .dot = { .min = 25000, .max = 350000 },
303         .vco = { .min = 1760000, .max = 3510000 },
304         .n = { .min = 1, .max = 3 },
305         .m = { .min = 79, .max = 127 },
306         .m1 = { .min = 12, .max = 22 },
307         .m2 = { .min = 5, .max = 9 },
308         .p = { .min = 14, .max = 56 },
309         .p1 = { .min = 2, .max = 8 },
310         .p2 = { .dot_limit = 225000,
311                 .p2_slow = 7, .p2_fast = 7 },
312         .find_pll = intel_g4x_find_best_PLL,
313 };
314
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 2 },
320         .m = { .min = 79, .max = 126 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2,.max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327         .find_pll = intel_g4x_find_best_PLL,
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
331         .dot = { .min = 25000, .max = 350000 },
332         .vco = { .min = 1760000, .max = 3510000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 79, .max = 126 },
335         .m1 = { .min = 12, .max = 22 },
336         .m2 = { .min = 5, .max = 9 },
337         .p = { .min = 14, .max = 42 },
338         .p1 = { .min = 2,.max = 6 },
339         .p2 = { .dot_limit = 225000,
340                 .p2_slow = 7, .p2_fast = 7 },
341         .find_pll = intel_g4x_find_best_PLL,
342 };
343
344 static const intel_limit_t intel_limits_ironlake_display_port = {
345         .dot = { .min = 25000, .max = 350000 },
346         .vco = { .min = 1760000, .max = 3510000},
347         .n = { .min = 1, .max = 2 },
348         .m = { .min = 81, .max = 90 },
349         .m1 = { .min = 12, .max = 22 },
350         .m2 = { .min = 5, .max = 9 },
351         .p = { .min = 10, .max = 20 },
352         .p1 = { .min = 1, .max = 2},
353         .p2 = { .dot_limit = 0,
354                 .p2_slow = 10, .p2_fast = 10 },
355         .find_pll = intel_find_pll_ironlake_dp,
356 };
357
358 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359                                                 int refclk)
360 {
361         struct drm_device *dev = crtc->dev;
362         struct drm_i915_private *dev_priv = dev->dev_private;
363         const intel_limit_t *limit;
364
365         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367                     LVDS_CLKB_POWER_UP) {
368                         /* LVDS dual channel */
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_dual_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_dual_lvds;
373                 } else {
374                         if (refclk == 100000)
375                                 limit = &intel_limits_ironlake_single_lvds_100m;
376                         else
377                                 limit = &intel_limits_ironlake_single_lvds;
378                 }
379         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
380                         HAS_eDP)
381                 limit = &intel_limits_ironlake_display_port;
382         else
383                 limit = &intel_limits_ironlake_dac;
384
385         return limit;
386 }
387
388 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389 {
390         struct drm_device *dev = crtc->dev;
391         struct drm_i915_private *dev_priv = dev->dev_private;
392         const intel_limit_t *limit;
393
394         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396                     LVDS_CLKB_POWER_UP)
397                         /* LVDS with dual channel */
398                         limit = &intel_limits_g4x_dual_channel_lvds;
399                 else
400                         /* LVDS with dual channel */
401                         limit = &intel_limits_g4x_single_channel_lvds;
402         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
404                 limit = &intel_limits_g4x_hdmi;
405         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
406                 limit = &intel_limits_g4x_sdvo;
407         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
408                 limit = &intel_limits_g4x_display_port;
409         } else /* The option is for other outputs */
410                 limit = &intel_limits_i9xx_sdvo;
411
412         return limit;
413 }
414
415 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
416 {
417         struct drm_device *dev = crtc->dev;
418         const intel_limit_t *limit;
419
420         if (HAS_PCH_SPLIT(dev))
421                 limit = intel_ironlake_limit(crtc, refclk);
422         else if (IS_G4X(dev)) {
423                 limit = intel_g4x_limit(crtc);
424         } else if (IS_PINEVIEW(dev)) {
425                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426                         limit = &intel_limits_pineview_lvds;
427                 else
428                         limit = &intel_limits_pineview_sdvo;
429         } else if (!IS_GEN2(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_i9xx_lvds;
432                 else
433                         limit = &intel_limits_i9xx_sdvo;
434         } else {
435                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436                         limit = &intel_limits_i8xx_lvds;
437                 else
438                         limit = &intel_limits_i8xx_dvo;
439         }
440         return limit;
441 }
442
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk, intel_clock_t *clock)
445 {
446         clock->m = clock->m2 + 2;
447         clock->p = clock->p1 * clock->p2;
448         clock->vco = refclk * clock->m / clock->n;
449         clock->dot = clock->vco / clock->p;
450 }
451
452 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453 {
454         if (IS_PINEVIEW(dev)) {
455                 pineview_clock(refclk, clock);
456                 return;
457         }
458         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459         clock->p = clock->p1 * clock->p2;
460         clock->vco = refclk * clock->m / (clock->n + 2);
461         clock->dot = clock->vco / clock->p;
462 }
463
464 /**
465  * Returns whether any output on the specified pipe is of the specified type
466  */
467 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
468 {
469         struct drm_device *dev = crtc->dev;
470         struct drm_mode_config *mode_config = &dev->mode_config;
471         struct intel_encoder *encoder;
472
473         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474                 if (encoder->base.crtc == crtc && encoder->type == type)
475                         return true;
476
477         return false;
478 }
479
480 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
481 /**
482  * Returns whether the given set of divisors are valid for a given refclk with
483  * the given connectors.
484  */
485
486 static bool intel_PLL_is_valid(struct drm_device *dev,
487                                const intel_limit_t *limit,
488                                const intel_clock_t *clock)
489 {
490         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
491                 INTELPllInvalid ("p1 out of range\n");
492         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
493                 INTELPllInvalid ("p out of range\n");
494         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
495                 INTELPllInvalid ("m2 out of range\n");
496         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
497                 INTELPllInvalid ("m1 out of range\n");
498         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
499                 INTELPllInvalid ("m1 <= m2\n");
500         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
501                 INTELPllInvalid ("m out of range\n");
502         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
503                 INTELPllInvalid ("n out of range\n");
504         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505                 INTELPllInvalid ("vco out of range\n");
506         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507          * connector, etc., rather than just a single range.
508          */
509         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510                 INTELPllInvalid ("dot out of range\n");
511
512         return true;
513 }
514
515 static bool
516 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517                     int target, int refclk, intel_clock_t *best_clock)
518
519 {
520         struct drm_device *dev = crtc->dev;
521         struct drm_i915_private *dev_priv = dev->dev_private;
522         intel_clock_t clock;
523         int err = target;
524
525         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
526             (I915_READ(LVDS)) != 0) {
527                 /*
528                  * For LVDS, if the panel is on, just rely on its current
529                  * settings for dual-channel.  We haven't figured out how to
530                  * reliably set up different single/dual channel state, if we
531                  * even can.
532                  */
533                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534                     LVDS_CLKB_POWER_UP)
535                         clock.p2 = limit->p2.p2_fast;
536                 else
537                         clock.p2 = limit->p2.p2_slow;
538         } else {
539                 if (target < limit->p2.dot_limit)
540                         clock.p2 = limit->p2.p2_slow;
541                 else
542                         clock.p2 = limit->p2.p2_fast;
543         }
544
545         memset (best_clock, 0, sizeof (*best_clock));
546
547         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548              clock.m1++) {
549                 for (clock.m2 = limit->m2.min;
550                      clock.m2 <= limit->m2.max; clock.m2++) {
551                         /* m1 is always 0 in Pineview */
552                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
553                                 break;
554                         for (clock.n = limit->n.min;
555                              clock.n <= limit->n.max; clock.n++) {
556                                 for (clock.p1 = limit->p1.min;
557                                         clock.p1 <= limit->p1.max; clock.p1++) {
558                                         int this_err;
559
560                                         intel_clock(dev, refclk, &clock);
561                                         if (!intel_PLL_is_valid(dev, limit,
562                                                                 &clock))
563                                                 continue;
564
565                                         this_err = abs(clock.dot - target);
566                                         if (this_err < err) {
567                                                 *best_clock = clock;
568                                                 err = this_err;
569                                         }
570                                 }
571                         }
572                 }
573         }
574
575         return (err != target);
576 }
577
578 static bool
579 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580                         int target, int refclk, intel_clock_t *best_clock)
581 {
582         struct drm_device *dev = crtc->dev;
583         struct drm_i915_private *dev_priv = dev->dev_private;
584         intel_clock_t clock;
585         int max_n;
586         bool found;
587         /* approximately equals target * 0.00585 */
588         int err_most = (target >> 8) + (target >> 9);
589         found = false;
590
591         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592                 int lvds_reg;
593
594                 if (HAS_PCH_SPLIT(dev))
595                         lvds_reg = PCH_LVDS;
596                 else
597                         lvds_reg = LVDS;
598                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
599                     LVDS_CLKB_POWER_UP)
600                         clock.p2 = limit->p2.p2_fast;
601                 else
602                         clock.p2 = limit->p2.p2_slow;
603         } else {
604                 if (target < limit->p2.dot_limit)
605                         clock.p2 = limit->p2.p2_slow;
606                 else
607                         clock.p2 = limit->p2.p2_fast;
608         }
609
610         memset(best_clock, 0, sizeof(*best_clock));
611         max_n = limit->n.max;
612         /* based on hardware requirement, prefer smaller n to precision */
613         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
614                 /* based on hardware requirement, prefere larger m1,m2 */
615                 for (clock.m1 = limit->m1.max;
616                      clock.m1 >= limit->m1.min; clock.m1--) {
617                         for (clock.m2 = limit->m2.max;
618                              clock.m2 >= limit->m2.min; clock.m2--) {
619                                 for (clock.p1 = limit->p1.max;
620                                      clock.p1 >= limit->p1.min; clock.p1--) {
621                                         int this_err;
622
623                                         intel_clock(dev, refclk, &clock);
624                                         if (!intel_PLL_is_valid(dev, limit,
625                                                                 &clock))
626                                                 continue;
627
628                                         this_err = abs(clock.dot - target);
629                                         if (this_err < err_most) {
630                                                 *best_clock = clock;
631                                                 err_most = this_err;
632                                                 max_n = clock.n;
633                                                 found = true;
634                                         }
635                                 }
636                         }
637                 }
638         }
639         return found;
640 }
641
642 static bool
643 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644                            int target, int refclk, intel_clock_t *best_clock)
645 {
646         struct drm_device *dev = crtc->dev;
647         intel_clock_t clock;
648
649         if (target < 200000) {
650                 clock.n = 1;
651                 clock.p1 = 2;
652                 clock.p2 = 10;
653                 clock.m1 = 12;
654                 clock.m2 = 9;
655         } else {
656                 clock.n = 2;
657                 clock.p1 = 1;
658                 clock.p2 = 10;
659                 clock.m1 = 14;
660                 clock.m2 = 8;
661         }
662         intel_clock(dev, refclk, &clock);
663         memcpy(best_clock, &clock, sizeof(intel_clock_t));
664         return true;
665 }
666
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
668 static bool
669 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670                       int target, int refclk, intel_clock_t *best_clock)
671 {
672         intel_clock_t clock;
673         if (target < 200000) {
674                 clock.p1 = 2;
675                 clock.p2 = 10;
676                 clock.n = 2;
677                 clock.m1 = 23;
678                 clock.m2 = 8;
679         } else {
680                 clock.p1 = 1;
681                 clock.p2 = 10;
682                 clock.n = 1;
683                 clock.m1 = 14;
684                 clock.m2 = 2;
685         }
686         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687         clock.p = (clock.p1 * clock.p2);
688         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689         clock.vco = 0;
690         memcpy(best_clock, &clock, sizeof(intel_clock_t));
691         return true;
692 }
693
694 /**
695  * intel_wait_for_vblank - wait for vblank on a given pipe
696  * @dev: drm device
697  * @pipe: pipe to wait for
698  *
699  * Wait for vblank to occur on a given pipe.  Needed for various bits of
700  * mode setting code.
701  */
702 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
703 {
704         struct drm_i915_private *dev_priv = dev->dev_private;
705         int pipestat_reg = PIPESTAT(pipe);
706
707         /* Clear existing vblank status. Note this will clear any other
708          * sticky status fields as well.
709          *
710          * This races with i915_driver_irq_handler() with the result
711          * that either function could miss a vblank event.  Here it is not
712          * fatal, as we will either wait upon the next vblank interrupt or
713          * timeout.  Generally speaking intel_wait_for_vblank() is only
714          * called during modeset at which time the GPU should be idle and
715          * should *not* be performing page flips and thus not waiting on
716          * vblanks...
717          * Currently, the result of us stealing a vblank from the irq
718          * handler is that a single frame will be skipped during swapbuffers.
719          */
720         I915_WRITE(pipestat_reg,
721                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
722
723         /* Wait for vblank interrupt bit to set */
724         if (wait_for(I915_READ(pipestat_reg) &
725                      PIPE_VBLANK_INTERRUPT_STATUS,
726                      50))
727                 DRM_DEBUG_KMS("vblank wait timed out\n");
728 }
729
730 /*
731  * intel_wait_for_pipe_off - wait for pipe to turn off
732  * @dev: drm device
733  * @pipe: pipe to wait for
734  *
735  * After disabling a pipe, we can't wait for vblank in the usual way,
736  * spinning on the vblank interrupt status bit, since we won't actually
737  * see an interrupt when the pipe is disabled.
738  *
739  * On Gen4 and above:
740  *   wait for the pipe register state bit to turn off
741  *
742  * Otherwise:
743  *   wait for the display line value to settle (it usually
744  *   ends up stopping at the start of the next frame).
745  *
746  */
747 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
748 {
749         struct drm_i915_private *dev_priv = dev->dev_private;
750
751         if (INTEL_INFO(dev)->gen >= 4) {
752                 int reg = PIPECONF(pipe);
753
754                 /* Wait for the Pipe State to go off */
755                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756                              100))
757                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
758         } else {
759                 u32 last_line;
760                 int reg = PIPEDSL(pipe);
761                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
762
763                 /* Wait for the display line to settle */
764                 do {
765                         last_line = I915_READ(reg) & DSL_LINEMASK;
766                         mdelay(5);
767                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
768                          time_after(timeout, jiffies));
769                 if (time_after(jiffies, timeout))
770                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
771         }
772 }
773
774 static const char *state_string(bool enabled)
775 {
776         return enabled ? "on" : "off";
777 }
778
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private *dev_priv,
781                        enum pipe pipe, bool state)
782 {
783         int reg;
784         u32 val;
785         bool cur_state;
786
787         reg = DPLL(pipe);
788         val = I915_READ(reg);
789         cur_state = !!(val & DPLL_VCO_ENABLE);
790         WARN(cur_state != state,
791              "PLL state assertion failure (expected %s, current %s)\n",
792              state_string(state), state_string(cur_state));
793 }
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
796
797 /* For ILK+ */
798 static void assert_pch_pll(struct drm_i915_private *dev_priv,
799                            enum pipe pipe, bool state)
800 {
801         int reg;
802         u32 val;
803         bool cur_state;
804
805         reg = PCH_DPLL(pipe);
806         val = I915_READ(reg);
807         cur_state = !!(val & DPLL_VCO_ENABLE);
808         WARN(cur_state != state,
809              "PCH PLL state assertion failure (expected %s, current %s)\n",
810              state_string(state), state_string(cur_state));
811 }
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
814
815 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816                           enum pipe pipe, bool state)
817 {
818         int reg;
819         u32 val;
820         bool cur_state;
821
822         reg = FDI_TX_CTL(pipe);
823         val = I915_READ(reg);
824         cur_state = !!(val & FDI_TX_ENABLE);
825         WARN(cur_state != state,
826              "FDI TX state assertion failure (expected %s, current %s)\n",
827              state_string(state), state_string(cur_state));
828 }
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
831
832 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833                           enum pipe pipe, bool state)
834 {
835         int reg;
836         u32 val;
837         bool cur_state;
838
839         reg = FDI_RX_CTL(pipe);
840         val = I915_READ(reg);
841         cur_state = !!(val & FDI_RX_ENABLE);
842         WARN(cur_state != state,
843              "FDI RX state assertion failure (expected %s, current %s)\n",
844              state_string(state), state_string(cur_state));
845 }
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
848
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850                                       enum pipe pipe)
851 {
852         int reg;
853         u32 val;
854
855         /* ILK FDI PLL is always enabled */
856         if (dev_priv->info->gen == 5)
857                 return;
858
859         reg = FDI_TX_CTL(pipe);
860         val = I915_READ(reg);
861         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
862 }
863
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865                                       enum pipe pipe)
866 {
867         int reg;
868         u32 val;
869
870         reg = FDI_RX_CTL(pipe);
871         val = I915_READ(reg);
872         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
873 }
874
875 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876                                   enum pipe pipe)
877 {
878         int pp_reg, lvds_reg;
879         u32 val;
880         enum pipe panel_pipe = PIPE_A;
881         bool locked = locked;
882
883         if (HAS_PCH_SPLIT(dev_priv->dev)) {
884                 pp_reg = PCH_PP_CONTROL;
885                 lvds_reg = PCH_LVDS;
886         } else {
887                 pp_reg = PP_CONTROL;
888                 lvds_reg = LVDS;
889         }
890
891         val = I915_READ(pp_reg);
892         if (!(val & PANEL_POWER_ON) ||
893             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894                 locked = false;
895
896         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897                 panel_pipe = PIPE_B;
898
899         WARN(panel_pipe == pipe && locked,
900              "panel assertion failure, pipe %c regs locked\n",
901              pipe_name(pipe));
902 }
903
904 static void assert_pipe(struct drm_i915_private *dev_priv,
905                         enum pipe pipe, bool state)
906 {
907         int reg;
908         u32 val;
909         bool cur_state;
910
911         reg = PIPECONF(pipe);
912         val = I915_READ(reg);
913         cur_state = !!(val & PIPECONF_ENABLE);
914         WARN(cur_state != state,
915              "pipe %c assertion failure (expected %s, current %s)\n",
916              pipe_name(pipe), state_string(state), state_string(cur_state));
917 }
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
920
921 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922                                  enum plane plane)
923 {
924         int reg;
925         u32 val;
926
927         reg = DSPCNTR(plane);
928         val = I915_READ(reg);
929         WARN(!(val & DISPLAY_PLANE_ENABLE),
930              "plane %c assertion failure, should be active but is disabled\n",
931              plane_name(plane));
932 }
933
934 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935                                    enum pipe pipe)
936 {
937         int reg, i;
938         u32 val;
939         int cur_pipe;
940
941         /* Planes are fixed to pipes on ILK+ */
942         if (HAS_PCH_SPLIT(dev_priv->dev))
943                 return;
944
945         /* Need to check both planes against the pipe */
946         for (i = 0; i < 2; i++) {
947                 reg = DSPCNTR(i);
948                 val = I915_READ(reg);
949                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950                         DISPPLANE_SEL_PIPE_SHIFT;
951                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
952                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
953                      plane_name(i), pipe_name(pipe));
954         }
955 }
956
957 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
958 {
959         u32 val;
960         bool enabled;
961
962         val = I915_READ(PCH_DREF_CONTROL);
963         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964                             DREF_SUPERSPREAD_SOURCE_MASK));
965         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
966 }
967
968 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969                                        enum pipe pipe)
970 {
971         int reg;
972         u32 val;
973         bool enabled;
974
975         reg = TRANSCONF(pipe);
976         val = I915_READ(reg);
977         enabled = !!(val & TRANS_ENABLE);
978         WARN(enabled,
979              "transcoder assertion failed, should be off on pipe %c but is still active\n",
980              pipe_name(pipe));
981 }
982
983 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
984                                    enum pipe pipe, int reg)
985 {
986         u32 val = I915_READ(reg);
987         WARN(DP_PIPE_ENABLED(val, pipe),
988              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
989              reg, pipe_name(pipe));
990 }
991
992 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
993                                      enum pipe pipe, int reg)
994 {
995         u32 val = I915_READ(reg);
996         WARN(HDMI_PIPE_ENABLED(val, pipe),
997              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
998              reg, pipe_name(pipe));
999 }
1000
1001 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1002                                       enum pipe pipe)
1003 {
1004         int reg;
1005         u32 val;
1006
1007         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1008         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1009         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1010
1011         reg = PCH_ADPA;
1012         val = I915_READ(reg);
1013         WARN(ADPA_PIPE_ENABLED(val, pipe),
1014              "PCH VGA enabled on transcoder %c, should be disabled\n",
1015              pipe_name(pipe));
1016
1017         reg = PCH_LVDS;
1018         val = I915_READ(reg);
1019         WARN(LVDS_PIPE_ENABLED(val, pipe),
1020              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1021              pipe_name(pipe));
1022
1023         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1024         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1025         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1026 }
1027
1028 /**
1029  * intel_enable_pll - enable a PLL
1030  * @dev_priv: i915 private structure
1031  * @pipe: pipe PLL to enable
1032  *
1033  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1034  * make sure the PLL reg is writable first though, since the panel write
1035  * protect mechanism may be enabled.
1036  *
1037  * Note!  This is for pre-ILK only.
1038  */
1039 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1040 {
1041         int reg;
1042         u32 val;
1043
1044         /* No really, not for ILK+ */
1045         BUG_ON(dev_priv->info->gen >= 5);
1046
1047         /* PLL is protected by panel, make sure we can write it */
1048         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1049                 assert_panel_unlocked(dev_priv, pipe);
1050
1051         reg = DPLL(pipe);
1052         val = I915_READ(reg);
1053         val |= DPLL_VCO_ENABLE;
1054
1055         /* We do this three times for luck */
1056         I915_WRITE(reg, val);
1057         POSTING_READ(reg);
1058         udelay(150); /* wait for warmup */
1059         I915_WRITE(reg, val);
1060         POSTING_READ(reg);
1061         udelay(150); /* wait for warmup */
1062         I915_WRITE(reg, val);
1063         POSTING_READ(reg);
1064         udelay(150); /* wait for warmup */
1065 }
1066
1067 /**
1068  * intel_disable_pll - disable a PLL
1069  * @dev_priv: i915 private structure
1070  * @pipe: pipe PLL to disable
1071  *
1072  * Disable the PLL for @pipe, making sure the pipe is off first.
1073  *
1074  * Note!  This is for pre-ILK only.
1075  */
1076 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1077 {
1078         int reg;
1079         u32 val;
1080
1081         /* Don't disable pipe A or pipe A PLLs if needed */
1082         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1083                 return;
1084
1085         /* Make sure the pipe isn't still relying on us */
1086         assert_pipe_disabled(dev_priv, pipe);
1087
1088         reg = DPLL(pipe);
1089         val = I915_READ(reg);
1090         val &= ~DPLL_VCO_ENABLE;
1091         I915_WRITE(reg, val);
1092         POSTING_READ(reg);
1093 }
1094
1095 /**
1096  * intel_enable_pch_pll - enable PCH PLL
1097  * @dev_priv: i915 private structure
1098  * @pipe: pipe PLL to enable
1099  *
1100  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1101  * drives the transcoder clock.
1102  */
1103 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1104                                  enum pipe pipe)
1105 {
1106         int reg;
1107         u32 val;
1108
1109         /* PCH only available on ILK+ */
1110         BUG_ON(dev_priv->info->gen < 5);
1111
1112         /* PCH refclock must be enabled first */
1113         assert_pch_refclk_enabled(dev_priv);
1114
1115         reg = PCH_DPLL(pipe);
1116         val = I915_READ(reg);
1117         val |= DPLL_VCO_ENABLE;
1118         I915_WRITE(reg, val);
1119         POSTING_READ(reg);
1120         udelay(200);
1121 }
1122
1123 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1124                                   enum pipe pipe)
1125 {
1126         int reg;
1127         u32 val;
1128
1129         /* PCH only available on ILK+ */
1130         BUG_ON(dev_priv->info->gen < 5);
1131
1132         /* Make sure transcoder isn't still depending on us */
1133         assert_transcoder_disabled(dev_priv, pipe);
1134
1135         reg = PCH_DPLL(pipe);
1136         val = I915_READ(reg);
1137         val &= ~DPLL_VCO_ENABLE;
1138         I915_WRITE(reg, val);
1139         POSTING_READ(reg);
1140         udelay(200);
1141 }
1142
1143 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1144                                     enum pipe pipe)
1145 {
1146         int reg;
1147         u32 val;
1148
1149         /* PCH only available on ILK+ */
1150         BUG_ON(dev_priv->info->gen < 5);
1151
1152         /* Make sure PCH DPLL is enabled */
1153         assert_pch_pll_enabled(dev_priv, pipe);
1154
1155         /* FDI must be feeding us bits for PCH ports */
1156         assert_fdi_tx_enabled(dev_priv, pipe);
1157         assert_fdi_rx_enabled(dev_priv, pipe);
1158
1159         reg = TRANSCONF(pipe);
1160         val = I915_READ(reg);
1161
1162         if (HAS_PCH_IBX(dev_priv->dev)) {
1163                 /*
1164                  * make the BPC in transcoder be consistent with
1165                  * that in pipeconf reg.
1166                  */
1167                 val &= ~PIPE_BPC_MASK;
1168                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1169         }
1170         I915_WRITE(reg, val | TRANS_ENABLE);
1171         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1172                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1173 }
1174
1175 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1176                                      enum pipe pipe)
1177 {
1178         int reg;
1179         u32 val;
1180
1181         /* FDI relies on the transcoder */
1182         assert_fdi_tx_disabled(dev_priv, pipe);
1183         assert_fdi_rx_disabled(dev_priv, pipe);
1184
1185         /* Ports must be off as well */
1186         assert_pch_ports_disabled(dev_priv, pipe);
1187
1188         reg = TRANSCONF(pipe);
1189         val = I915_READ(reg);
1190         val &= ~TRANS_ENABLE;
1191         I915_WRITE(reg, val);
1192         /* wait for PCH transcoder off, transcoder state */
1193         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1194                 DRM_ERROR("failed to disable transcoder\n");
1195 }
1196
1197 /**
1198  * intel_enable_pipe - enable a pipe, asserting requirements
1199  * @dev_priv: i915 private structure
1200  * @pipe: pipe to enable
1201  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1202  *
1203  * Enable @pipe, making sure that various hardware specific requirements
1204  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1205  *
1206  * @pipe should be %PIPE_A or %PIPE_B.
1207  *
1208  * Will wait until the pipe is actually running (i.e. first vblank) before
1209  * returning.
1210  */
1211 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1212                               bool pch_port)
1213 {
1214         int reg;
1215         u32 val;
1216
1217         /*
1218          * A pipe without a PLL won't actually be able to drive bits from
1219          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1220          * need the check.
1221          */
1222         if (!HAS_PCH_SPLIT(dev_priv->dev))
1223                 assert_pll_enabled(dev_priv, pipe);
1224         else {
1225                 if (pch_port) {
1226                         /* if driving the PCH, we need FDI enabled */
1227                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1228                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1229                 }
1230                 /* FIXME: assert CPU port conditions for SNB+ */
1231         }
1232
1233         reg = PIPECONF(pipe);
1234         val = I915_READ(reg);
1235         if (val & PIPECONF_ENABLE)
1236                 return;
1237
1238         I915_WRITE(reg, val | PIPECONF_ENABLE);
1239         intel_wait_for_vblank(dev_priv->dev, pipe);
1240 }
1241
1242 /**
1243  * intel_disable_pipe - disable a pipe, asserting requirements
1244  * @dev_priv: i915 private structure
1245  * @pipe: pipe to disable
1246  *
1247  * Disable @pipe, making sure that various hardware specific requirements
1248  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1249  *
1250  * @pipe should be %PIPE_A or %PIPE_B.
1251  *
1252  * Will wait until the pipe has shut down before returning.
1253  */
1254 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1255                                enum pipe pipe)
1256 {
1257         int reg;
1258         u32 val;
1259
1260         /*
1261          * Make sure planes won't keep trying to pump pixels to us,
1262          * or we might hang the display.
1263          */
1264         assert_planes_disabled(dev_priv, pipe);
1265
1266         /* Don't disable pipe A or pipe A PLLs if needed */
1267         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1268                 return;
1269
1270         reg = PIPECONF(pipe);
1271         val = I915_READ(reg);
1272         if ((val & PIPECONF_ENABLE) == 0)
1273                 return;
1274
1275         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1276         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1277 }
1278
1279 /**
1280  * intel_enable_plane - enable a display plane on a given pipe
1281  * @dev_priv: i915 private structure
1282  * @plane: plane to enable
1283  * @pipe: pipe being fed
1284  *
1285  * Enable @plane on @pipe, making sure that @pipe is running first.
1286  */
1287 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1288                                enum plane plane, enum pipe pipe)
1289 {
1290         int reg;
1291         u32 val;
1292
1293         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1294         assert_pipe_enabled(dev_priv, pipe);
1295
1296         reg = DSPCNTR(plane);
1297         val = I915_READ(reg);
1298         if (val & DISPLAY_PLANE_ENABLE)
1299                 return;
1300
1301         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1302         intel_wait_for_vblank(dev_priv->dev, pipe);
1303 }
1304
1305 /*
1306  * Plane regs are double buffered, going from enabled->disabled needs a
1307  * trigger in order to latch.  The display address reg provides this.
1308  */
1309 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1310                                       enum plane plane)
1311 {
1312         u32 reg = DSPADDR(plane);
1313         I915_WRITE(reg, I915_READ(reg));
1314 }
1315
1316 /**
1317  * intel_disable_plane - disable a display plane
1318  * @dev_priv: i915 private structure
1319  * @plane: plane to disable
1320  * @pipe: pipe consuming the data
1321  *
1322  * Disable @plane; should be an independent operation.
1323  */
1324 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1325                                 enum plane plane, enum pipe pipe)
1326 {
1327         int reg;
1328         u32 val;
1329
1330         reg = DSPCNTR(plane);
1331         val = I915_READ(reg);
1332         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1333                 return;
1334
1335         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1336         intel_flush_display_plane(dev_priv, plane);
1337         intel_wait_for_vblank(dev_priv->dev, pipe);
1338 }
1339
1340 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1341                            enum pipe pipe, int reg)
1342 {
1343         u32 val = I915_READ(reg);
1344         if (DP_PIPE_ENABLED(val, pipe))
1345                 I915_WRITE(reg, val & ~DP_PORT_EN);
1346 }
1347
1348 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1349                              enum pipe pipe, int reg)
1350 {
1351         u32 val = I915_READ(reg);
1352         if (HDMI_PIPE_ENABLED(val, pipe))
1353                 I915_WRITE(reg, val & ~PORT_ENABLE);
1354 }
1355
1356 /* Disable any ports connected to this transcoder */
1357 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1358                                     enum pipe pipe)
1359 {
1360         u32 reg, val;
1361
1362         val = I915_READ(PCH_PP_CONTROL);
1363         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1364
1365         disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1366         disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1367         disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1368
1369         reg = PCH_ADPA;
1370         val = I915_READ(reg);
1371         if (ADPA_PIPE_ENABLED(val, pipe))
1372                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1373
1374         reg = PCH_LVDS;
1375         val = I915_READ(reg);
1376         if (LVDS_PIPE_ENABLED(val, pipe)) {
1377                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1378                 POSTING_READ(reg);
1379                 udelay(100);
1380         }
1381
1382         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1383         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1384         disable_pch_hdmi(dev_priv, pipe, HDMID);
1385 }
1386
1387 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1388 {
1389         struct drm_device *dev = crtc->dev;
1390         struct drm_i915_private *dev_priv = dev->dev_private;
1391         struct drm_framebuffer *fb = crtc->fb;
1392         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1393         struct drm_i915_gem_object *obj = intel_fb->obj;
1394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1395         int plane, i;
1396         u32 fbc_ctl, fbc_ctl2;
1397
1398         if (fb->pitch == dev_priv->cfb_pitch &&
1399             obj->fence_reg == dev_priv->cfb_fence &&
1400             intel_crtc->plane == dev_priv->cfb_plane &&
1401             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1402                 return;
1403
1404         i8xx_disable_fbc(dev);
1405
1406         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1407
1408         if (fb->pitch < dev_priv->cfb_pitch)
1409                 dev_priv->cfb_pitch = fb->pitch;
1410
1411         /* FBC_CTL wants 64B units */
1412         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1413         dev_priv->cfb_fence = obj->fence_reg;
1414         dev_priv->cfb_plane = intel_crtc->plane;
1415         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1416
1417         /* Clear old tags */
1418         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1419                 I915_WRITE(FBC_TAG + (i * 4), 0);
1420
1421         /* Set it up... */
1422         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1423         if (obj->tiling_mode != I915_TILING_NONE)
1424                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1425         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1426         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1427
1428         /* enable it... */
1429         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1430         if (IS_I945GM(dev))
1431                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1432         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1433         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1434         if (obj->tiling_mode != I915_TILING_NONE)
1435                 fbc_ctl |= dev_priv->cfb_fence;
1436         I915_WRITE(FBC_CONTROL, fbc_ctl);
1437
1438         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1439                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1440 }
1441
1442 void i8xx_disable_fbc(struct drm_device *dev)
1443 {
1444         struct drm_i915_private *dev_priv = dev->dev_private;
1445         u32 fbc_ctl;
1446
1447         /* Disable compression */
1448         fbc_ctl = I915_READ(FBC_CONTROL);
1449         if ((fbc_ctl & FBC_CTL_EN) == 0)
1450                 return;
1451
1452         fbc_ctl &= ~FBC_CTL_EN;
1453         I915_WRITE(FBC_CONTROL, fbc_ctl);
1454
1455         /* Wait for compressing bit to clear */
1456         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1457                 DRM_DEBUG_KMS("FBC idle timed out\n");
1458                 return;
1459         }
1460
1461         DRM_DEBUG_KMS("disabled FBC\n");
1462 }
1463
1464 static bool i8xx_fbc_enabled(struct drm_device *dev)
1465 {
1466         struct drm_i915_private *dev_priv = dev->dev_private;
1467
1468         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1469 }
1470
1471 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1472 {
1473         struct drm_device *dev = crtc->dev;
1474         struct drm_i915_private *dev_priv = dev->dev_private;
1475         struct drm_framebuffer *fb = crtc->fb;
1476         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1477         struct drm_i915_gem_object *obj = intel_fb->obj;
1478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1479         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1480         unsigned long stall_watermark = 200;
1481         u32 dpfc_ctl;
1482
1483         dpfc_ctl = I915_READ(DPFC_CONTROL);
1484         if (dpfc_ctl & DPFC_CTL_EN) {
1485                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1486                     dev_priv->cfb_fence == obj->fence_reg &&
1487                     dev_priv->cfb_plane == intel_crtc->plane &&
1488                     dev_priv->cfb_y == crtc->y)
1489                         return;
1490
1491                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1492                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1493         }
1494
1495         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1496         dev_priv->cfb_fence = obj->fence_reg;
1497         dev_priv->cfb_plane = intel_crtc->plane;
1498         dev_priv->cfb_y = crtc->y;
1499
1500         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1501         if (obj->tiling_mode != I915_TILING_NONE) {
1502                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1503                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1504         } else {
1505                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1506         }
1507
1508         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1509                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1510                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1511         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1512
1513         /* enable it... */
1514         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1515
1516         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1517 }
1518
1519 void g4x_disable_fbc(struct drm_device *dev)
1520 {
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         u32 dpfc_ctl;
1523
1524         /* Disable compression */
1525         dpfc_ctl = I915_READ(DPFC_CONTROL);
1526         if (dpfc_ctl & DPFC_CTL_EN) {
1527                 dpfc_ctl &= ~DPFC_CTL_EN;
1528                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1529
1530                 DRM_DEBUG_KMS("disabled FBC\n");
1531         }
1532 }
1533
1534 static bool g4x_fbc_enabled(struct drm_device *dev)
1535 {
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537
1538         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1539 }
1540
1541 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1542 {
1543         struct drm_i915_private *dev_priv = dev->dev_private;
1544         u32 blt_ecoskpd;
1545
1546         /* Make sure blitter notifies FBC of writes */
1547         gen6_gt_force_wake_get(dev_priv);
1548         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1549         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1550                 GEN6_BLITTER_LOCK_SHIFT;
1551         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1552         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1553         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1554         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1555                          GEN6_BLITTER_LOCK_SHIFT);
1556         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1557         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1558         gen6_gt_force_wake_put(dev_priv);
1559 }
1560
1561 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1562 {
1563         struct drm_device *dev = crtc->dev;
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565         struct drm_framebuffer *fb = crtc->fb;
1566         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1567         struct drm_i915_gem_object *obj = intel_fb->obj;
1568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1569         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1570         unsigned long stall_watermark = 200;
1571         u32 dpfc_ctl;
1572
1573         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1574         if (dpfc_ctl & DPFC_CTL_EN) {
1575                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1576                     dev_priv->cfb_fence == obj->fence_reg &&
1577                     dev_priv->cfb_plane == intel_crtc->plane &&
1578                     dev_priv->cfb_offset == obj->gtt_offset &&
1579                     dev_priv->cfb_y == crtc->y)
1580                         return;
1581
1582                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1583                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1584         }
1585
1586         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1587         dev_priv->cfb_fence = obj->fence_reg;
1588         dev_priv->cfb_plane = intel_crtc->plane;
1589         dev_priv->cfb_offset = obj->gtt_offset;
1590         dev_priv->cfb_y = crtc->y;
1591
1592         dpfc_ctl &= DPFC_RESERVED;
1593         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1594         if (obj->tiling_mode != I915_TILING_NONE) {
1595                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1596                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1597         } else {
1598                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1599         }
1600
1601         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1602                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1603                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1604         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1605         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1606         /* enable it... */
1607         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1608
1609         if (IS_GEN6(dev)) {
1610                 I915_WRITE(SNB_DPFC_CTL_SA,
1611                            SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1612                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1613                 sandybridge_blit_fbc_update(dev);
1614         }
1615
1616         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1617 }
1618
1619 void ironlake_disable_fbc(struct drm_device *dev)
1620 {
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622         u32 dpfc_ctl;
1623
1624         /* Disable compression */
1625         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1626         if (dpfc_ctl & DPFC_CTL_EN) {
1627                 dpfc_ctl &= ~DPFC_CTL_EN;
1628                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1629
1630                 DRM_DEBUG_KMS("disabled FBC\n");
1631         }
1632 }
1633
1634 static bool ironlake_fbc_enabled(struct drm_device *dev)
1635 {
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637
1638         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1639 }
1640
1641 bool intel_fbc_enabled(struct drm_device *dev)
1642 {
1643         struct drm_i915_private *dev_priv = dev->dev_private;
1644
1645         if (!dev_priv->display.fbc_enabled)
1646                 return false;
1647
1648         return dev_priv->display.fbc_enabled(dev);
1649 }
1650
1651 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1652 {
1653         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1654
1655         if (!dev_priv->display.enable_fbc)
1656                 return;
1657
1658         dev_priv->display.enable_fbc(crtc, interval);
1659 }
1660
1661 void intel_disable_fbc(struct drm_device *dev)
1662 {
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664
1665         if (!dev_priv->display.disable_fbc)
1666                 return;
1667
1668         dev_priv->display.disable_fbc(dev);
1669 }
1670
1671 /**
1672  * intel_update_fbc - enable/disable FBC as needed
1673  * @dev: the drm_device
1674  *
1675  * Set up the framebuffer compression hardware at mode set time.  We
1676  * enable it if possible:
1677  *   - plane A only (on pre-965)
1678  *   - no pixel mulitply/line duplication
1679  *   - no alpha buffer discard
1680  *   - no dual wide
1681  *   - framebuffer <= 2048 in width, 1536 in height
1682  *
1683  * We can't assume that any compression will take place (worst case),
1684  * so the compressed buffer has to be the same size as the uncompressed
1685  * one.  It also must reside (along with the line length buffer) in
1686  * stolen memory.
1687  *
1688  * We need to enable/disable FBC on a global basis.
1689  */
1690 static void intel_update_fbc(struct drm_device *dev)
1691 {
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         struct drm_crtc *crtc = NULL, *tmp_crtc;
1694         struct intel_crtc *intel_crtc;
1695         struct drm_framebuffer *fb;
1696         struct intel_framebuffer *intel_fb;
1697         struct drm_i915_gem_object *obj;
1698
1699         DRM_DEBUG_KMS("\n");
1700
1701         if (!i915_powersave)
1702                 return;
1703
1704         if (!I915_HAS_FBC(dev))
1705                 return;
1706
1707         /*
1708          * If FBC is already on, we just have to verify that we can
1709          * keep it that way...
1710          * Need to disable if:
1711          *   - more than one pipe is active
1712          *   - changing FBC params (stride, fence, mode)
1713          *   - new fb is too large to fit in compressed buffer
1714          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1715          */
1716         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1717                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1718                         if (crtc) {
1719                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1720                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1721                                 goto out_disable;
1722                         }
1723                         crtc = tmp_crtc;
1724                 }
1725         }
1726
1727         if (!crtc || crtc->fb == NULL) {
1728                 DRM_DEBUG_KMS("no output, disabling\n");
1729                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1730                 goto out_disable;
1731         }
1732
1733         intel_crtc = to_intel_crtc(crtc);
1734         fb = crtc->fb;
1735         intel_fb = to_intel_framebuffer(fb);
1736         obj = intel_fb->obj;
1737
1738         if (!i915_enable_fbc) {
1739                 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1740                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1741                 goto out_disable;
1742         }
1743         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1744                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1745                               "compression\n");
1746                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1747                 goto out_disable;
1748         }
1749         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1750             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1751                 DRM_DEBUG_KMS("mode incompatible with compression, "
1752                               "disabling\n");
1753                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1754                 goto out_disable;
1755         }
1756         if ((crtc->mode.hdisplay > 2048) ||
1757             (crtc->mode.vdisplay > 1536)) {
1758                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1759                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1760                 goto out_disable;
1761         }
1762         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1763                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1764                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1765                 goto out_disable;
1766         }
1767         if (obj->tiling_mode != I915_TILING_X) {
1768                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1769                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1770                 goto out_disable;
1771         }
1772
1773         /* If the kernel debugger is active, always disable compression */
1774         if (in_dbg_master())
1775                 goto out_disable;
1776
1777         intel_enable_fbc(crtc, 500);
1778         return;
1779
1780 out_disable:
1781         /* Multiple disables should be harmless */
1782         if (intel_fbc_enabled(dev)) {
1783                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1784                 intel_disable_fbc(dev);
1785         }
1786 }
1787
1788 int
1789 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1790                            struct drm_i915_gem_object *obj,
1791                            struct intel_ring_buffer *pipelined)
1792 {
1793         struct drm_i915_private *dev_priv = dev->dev_private;
1794         u32 alignment;
1795         int ret;
1796
1797         switch (obj->tiling_mode) {
1798         case I915_TILING_NONE:
1799                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1800                         alignment = 128 * 1024;
1801                 else if (INTEL_INFO(dev)->gen >= 4)
1802                         alignment = 4 * 1024;
1803                 else
1804                         alignment = 64 * 1024;
1805                 break;
1806         case I915_TILING_X:
1807                 /* pin() will align the object as required by fence */
1808                 alignment = 0;
1809                 break;
1810         case I915_TILING_Y:
1811                 /* FIXME: Is this true? */
1812                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1813                 return -EINVAL;
1814         default:
1815                 BUG();
1816         }
1817
1818         dev_priv->mm.interruptible = false;
1819         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1820         if (ret)
1821                 goto err_interruptible;
1822
1823         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1824          * fence, whereas 965+ only requires a fence if using
1825          * framebuffer compression.  For simplicity, we always install
1826          * a fence as the cost is not that onerous.
1827          */
1828         if (obj->tiling_mode != I915_TILING_NONE) {
1829                 ret = i915_gem_object_get_fence(obj, pipelined);
1830                 if (ret)
1831                         goto err_unpin;
1832         }
1833
1834         dev_priv->mm.interruptible = true;
1835         return 0;
1836
1837 err_unpin:
1838         i915_gem_object_unpin(obj);
1839 err_interruptible:
1840         dev_priv->mm.interruptible = true;
1841         return ret;
1842 }
1843
1844 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1845 static int
1846 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1847                            int x, int y, enum mode_set_atomic state)
1848 {
1849         struct drm_device *dev = crtc->dev;
1850         struct drm_i915_private *dev_priv = dev->dev_private;
1851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1852         struct intel_framebuffer *intel_fb;
1853         struct drm_i915_gem_object *obj;
1854         int plane = intel_crtc->plane;
1855         unsigned long Start, Offset;
1856         u32 dspcntr;
1857         u32 reg;
1858
1859         switch (plane) {
1860         case 0:
1861         case 1:
1862                 break;
1863         default:
1864                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1865                 return -EINVAL;
1866         }
1867
1868         intel_fb = to_intel_framebuffer(fb);
1869         obj = intel_fb->obj;
1870
1871         reg = DSPCNTR(plane);
1872         dspcntr = I915_READ(reg);
1873         /* Mask out pixel format bits in case we change it */
1874         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1875         switch (fb->bits_per_pixel) {
1876         case 8:
1877                 dspcntr |= DISPPLANE_8BPP;
1878                 break;
1879         case 16:
1880                 if (fb->depth == 15)
1881                         dspcntr |= DISPPLANE_15_16BPP;
1882                 else
1883                         dspcntr |= DISPPLANE_16BPP;
1884                 break;
1885         case 24:
1886         case 32:
1887                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1888                 break;
1889         default:
1890                 DRM_ERROR("Unknown color depth\n");
1891                 return -EINVAL;
1892         }
1893         if (INTEL_INFO(dev)->gen >= 4) {
1894                 if (obj->tiling_mode != I915_TILING_NONE)
1895                         dspcntr |= DISPPLANE_TILED;
1896                 else
1897                         dspcntr &= ~DISPPLANE_TILED;
1898         }
1899
1900         if (HAS_PCH_SPLIT(dev))
1901                 /* must disable */
1902                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1903
1904         I915_WRITE(reg, dspcntr);
1905
1906         Start = obj->gtt_offset;
1907         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1908
1909         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1910                       Start, Offset, x, y, fb->pitch);
1911         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1912         if (INTEL_INFO(dev)->gen >= 4) {
1913                 I915_WRITE(DSPSURF(plane), Start);
1914                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1915                 I915_WRITE(DSPADDR(plane), Offset);
1916         } else
1917                 I915_WRITE(DSPADDR(plane), Start + Offset);
1918         POSTING_READ(reg);
1919
1920         intel_update_fbc(dev);
1921         intel_increase_pllclock(crtc);
1922
1923         return 0;
1924 }
1925
1926 static int
1927 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1928                     struct drm_framebuffer *old_fb)
1929 {
1930         struct drm_device *dev = crtc->dev;
1931         struct drm_i915_master_private *master_priv;
1932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1933         int ret;
1934
1935         /* no fb bound */
1936         if (!crtc->fb) {
1937                 DRM_DEBUG_KMS("No FB bound\n");
1938                 return 0;
1939         }
1940
1941         switch (intel_crtc->plane) {
1942         case 0:
1943         case 1:
1944                 break;
1945         default:
1946                 return -EINVAL;
1947         }
1948
1949         mutex_lock(&dev->struct_mutex);
1950         ret = intel_pin_and_fence_fb_obj(dev,
1951                                          to_intel_framebuffer(crtc->fb)->obj,
1952                                          NULL);
1953         if (ret != 0) {
1954                 mutex_unlock(&dev->struct_mutex);
1955                 return ret;
1956         }
1957
1958         if (old_fb) {
1959                 struct drm_i915_private *dev_priv = dev->dev_private;
1960                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1961
1962                 wait_event(dev_priv->pending_flip_queue,
1963                            atomic_read(&dev_priv->mm.wedged) ||
1964                            atomic_read(&obj->pending_flip) == 0);
1965
1966                 /* Big Hammer, we also need to ensure that any pending
1967                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1968                  * current scanout is retired before unpinning the old
1969                  * framebuffer.
1970                  *
1971                  * This should only fail upon a hung GPU, in which case we
1972                  * can safely continue.
1973                  */
1974                 ret = i915_gem_object_finish_gpu(obj);
1975                 (void) ret;
1976         }
1977
1978         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1979                                          LEAVE_ATOMIC_MODE_SET);
1980         if (ret) {
1981                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1982                 mutex_unlock(&dev->struct_mutex);
1983                 return ret;
1984         }
1985
1986         if (old_fb) {
1987                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1988                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1989         }
1990
1991         mutex_unlock(&dev->struct_mutex);
1992
1993         if (!dev->primary->master)
1994                 return 0;
1995
1996         master_priv = dev->primary->master->driver_priv;
1997         if (!master_priv->sarea_priv)
1998                 return 0;
1999
2000         if (intel_crtc->pipe) {
2001                 master_priv->sarea_priv->pipeB_x = x;
2002                 master_priv->sarea_priv->pipeB_y = y;
2003         } else {
2004                 master_priv->sarea_priv->pipeA_x = x;
2005                 master_priv->sarea_priv->pipeA_y = y;
2006         }
2007
2008         return 0;
2009 }
2010
2011 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2012 {
2013         struct drm_device *dev = crtc->dev;
2014         struct drm_i915_private *dev_priv = dev->dev_private;
2015         u32 dpa_ctl;
2016
2017         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2018         dpa_ctl = I915_READ(DP_A);
2019         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2020
2021         if (clock < 200000) {
2022                 u32 temp;
2023                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2024                 /* workaround for 160Mhz:
2025                    1) program 0x4600c bits 15:0 = 0x8124
2026                    2) program 0x46010 bit 0 = 1
2027                    3) program 0x46034 bit 24 = 1
2028                    4) program 0x64000 bit 14 = 1
2029                    */
2030                 temp = I915_READ(0x4600c);
2031                 temp &= 0xffff0000;
2032                 I915_WRITE(0x4600c, temp | 0x8124);
2033
2034                 temp = I915_READ(0x46010);
2035                 I915_WRITE(0x46010, temp | 1);
2036
2037                 temp = I915_READ(0x46034);
2038                 I915_WRITE(0x46034, temp | (1 << 24));
2039         } else {
2040                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2041         }
2042         I915_WRITE(DP_A, dpa_ctl);
2043
2044         POSTING_READ(DP_A);
2045         udelay(500);
2046 }
2047
2048 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2049 {
2050         struct drm_device *dev = crtc->dev;
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2053         int pipe = intel_crtc->pipe;
2054         u32 reg, temp;
2055
2056         /* enable normal train */
2057         reg = FDI_TX_CTL(pipe);
2058         temp = I915_READ(reg);
2059         if (IS_IVYBRIDGE(dev)) {
2060                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2061                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2062         } else {
2063                 temp &= ~FDI_LINK_TRAIN_NONE;
2064                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2065         }
2066         I915_WRITE(reg, temp);
2067
2068         reg = FDI_RX_CTL(pipe);
2069         temp = I915_READ(reg);
2070         if (HAS_PCH_CPT(dev)) {
2071                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2072                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2073         } else {
2074                 temp &= ~FDI_LINK_TRAIN_NONE;
2075                 temp |= FDI_LINK_TRAIN_NONE;
2076         }
2077         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2078
2079         /* wait one idle pattern time */
2080         POSTING_READ(reg);
2081         udelay(1000);
2082
2083         /* IVB wants error correction enabled */
2084         if (IS_IVYBRIDGE(dev))
2085                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2086                            FDI_FE_ERRC_ENABLE);
2087 }
2088
2089 /* The FDI link training functions for ILK/Ibexpeak. */
2090 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2091 {
2092         struct drm_device *dev = crtc->dev;
2093         struct drm_i915_private *dev_priv = dev->dev_private;
2094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2095         int pipe = intel_crtc->pipe;
2096         int plane = intel_crtc->plane;
2097         u32 reg, temp, tries;
2098
2099         /* FDI needs bits from pipe & plane first */
2100         assert_pipe_enabled(dev_priv, pipe);
2101         assert_plane_enabled(dev_priv, plane);
2102
2103         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2104            for train result */
2105         reg = FDI_RX_IMR(pipe);
2106         temp = I915_READ(reg);
2107         temp &= ~FDI_RX_SYMBOL_LOCK;
2108         temp &= ~FDI_RX_BIT_LOCK;
2109         I915_WRITE(reg, temp);
2110         I915_READ(reg);
2111         udelay(150);
2112
2113         /* enable CPU FDI TX and PCH FDI RX */
2114         reg = FDI_TX_CTL(pipe);
2115         temp = I915_READ(reg);
2116         temp &= ~(7 << 19);
2117         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2118         temp &= ~FDI_LINK_TRAIN_NONE;
2119         temp |= FDI_LINK_TRAIN_PATTERN_1;
2120         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2121
2122         reg = FDI_RX_CTL(pipe);
2123         temp = I915_READ(reg);
2124         temp &= ~FDI_LINK_TRAIN_NONE;
2125         temp |= FDI_LINK_TRAIN_PATTERN_1;
2126         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2127
2128         POSTING_READ(reg);
2129         udelay(150);
2130
2131         /* Ironlake workaround, enable clock pointer after FDI enable*/
2132         if (HAS_PCH_IBX(dev)) {
2133                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2134                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2135                            FDI_RX_PHASE_SYNC_POINTER_EN);
2136         }
2137
2138         reg = FDI_RX_IIR(pipe);
2139         for (tries = 0; tries < 5; tries++) {
2140                 temp = I915_READ(reg);
2141                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2142
2143                 if ((temp & FDI_RX_BIT_LOCK)) {
2144                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2145                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2146                         break;
2147                 }
2148         }
2149         if (tries == 5)
2150                 DRM_ERROR("FDI train 1 fail!\n");
2151
2152         /* Train 2 */
2153         reg = FDI_TX_CTL(pipe);
2154         temp = I915_READ(reg);
2155         temp &= ~FDI_LINK_TRAIN_NONE;
2156         temp |= FDI_LINK_TRAIN_PATTERN_2;
2157         I915_WRITE(reg, temp);
2158
2159         reg = FDI_RX_CTL(pipe);
2160         temp = I915_READ(reg);
2161         temp &= ~FDI_LINK_TRAIN_NONE;
2162         temp |= FDI_LINK_TRAIN_PATTERN_2;
2163         I915_WRITE(reg, temp);
2164
2165         POSTING_READ(reg);
2166         udelay(150);
2167
2168         reg = FDI_RX_IIR(pipe);
2169         for (tries = 0; tries < 5; tries++) {
2170                 temp = I915_READ(reg);
2171                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2172
2173                 if (temp & FDI_RX_SYMBOL_LOCK) {
2174                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2175                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2176                         break;
2177                 }
2178         }
2179         if (tries == 5)
2180                 DRM_ERROR("FDI train 2 fail!\n");
2181
2182         DRM_DEBUG_KMS("FDI train done\n");
2183
2184 }
2185
2186 static const int snb_b_fdi_train_param [] = {
2187         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2188         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2189         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2190         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2191 };
2192
2193 /* The FDI link training functions for SNB/Cougarpoint. */
2194 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2195 {
2196         struct drm_device *dev = crtc->dev;
2197         struct drm_i915_private *dev_priv = dev->dev_private;
2198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2199         int pipe = intel_crtc->pipe;
2200         u32 reg, temp, i;
2201
2202         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2203            for train result */
2204         reg = FDI_RX_IMR(pipe);
2205         temp = I915_READ(reg);
2206         temp &= ~FDI_RX_SYMBOL_LOCK;
2207         temp &= ~FDI_RX_BIT_LOCK;
2208         I915_WRITE(reg, temp);
2209
2210         POSTING_READ(reg);
2211         udelay(150);
2212
2213         /* enable CPU FDI TX and PCH FDI RX */
2214         reg = FDI_TX_CTL(pipe);
2215         temp = I915_READ(reg);
2216         temp &= ~(7 << 19);
2217         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2218         temp &= ~FDI_LINK_TRAIN_NONE;
2219         temp |= FDI_LINK_TRAIN_PATTERN_1;
2220         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2221         /* SNB-B */
2222         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2223         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2224
2225         reg = FDI_RX_CTL(pipe);
2226         temp = I915_READ(reg);
2227         if (HAS_PCH_CPT(dev)) {
2228                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2229                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2230         } else {
2231                 temp &= ~FDI_LINK_TRAIN_NONE;
2232                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2233         }
2234         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2235
2236         POSTING_READ(reg);
2237         udelay(150);
2238
2239         for (i = 0; i < 4; i++ ) {
2240                 reg = FDI_TX_CTL(pipe);
2241                 temp = I915_READ(reg);
2242                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2243                 temp |= snb_b_fdi_train_param[i];
2244                 I915_WRITE(reg, temp);
2245
2246                 POSTING_READ(reg);
2247                 udelay(500);
2248
2249                 reg = FDI_RX_IIR(pipe);
2250                 temp = I915_READ(reg);
2251                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2252
2253                 if (temp & FDI_RX_BIT_LOCK) {
2254                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2255                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2256                         break;
2257                 }
2258         }
2259         if (i == 4)
2260                 DRM_ERROR("FDI train 1 fail!\n");
2261
2262         /* Train 2 */
2263         reg = FDI_TX_CTL(pipe);
2264         temp = I915_READ(reg);
2265         temp &= ~FDI_LINK_TRAIN_NONE;
2266         temp |= FDI_LINK_TRAIN_PATTERN_2;
2267         if (IS_GEN6(dev)) {
2268                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2269                 /* SNB-B */
2270                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2271         }
2272         I915_WRITE(reg, temp);
2273
2274         reg = FDI_RX_CTL(pipe);
2275         temp = I915_READ(reg);
2276         if (HAS_PCH_CPT(dev)) {
2277                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2278                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2279         } else {
2280                 temp &= ~FDI_LINK_TRAIN_NONE;
2281                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2282         }
2283         I915_WRITE(reg, temp);
2284
2285         POSTING_READ(reg);
2286         udelay(150);
2287
2288         for (i = 0; i < 4; i++ ) {
2289                 reg = FDI_TX_CTL(pipe);
2290                 temp = I915_READ(reg);
2291                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2292                 temp |= snb_b_fdi_train_param[i];
2293                 I915_WRITE(reg, temp);
2294
2295                 POSTING_READ(reg);
2296                 udelay(500);
2297
2298                 reg = FDI_RX_IIR(pipe);
2299                 temp = I915_READ(reg);
2300                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2301
2302                 if (temp & FDI_RX_SYMBOL_LOCK) {
2303                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2304                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2305                         break;
2306                 }
2307         }
2308         if (i == 4)
2309                 DRM_ERROR("FDI train 2 fail!\n");
2310
2311         DRM_DEBUG_KMS("FDI train done.\n");
2312 }
2313
2314 /* Manual link training for Ivy Bridge A0 parts */
2315 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2316 {
2317         struct drm_device *dev = crtc->dev;
2318         struct drm_i915_private *dev_priv = dev->dev_private;
2319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2320         int pipe = intel_crtc->pipe;
2321         u32 reg, temp, i;
2322
2323         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2324            for train result */
2325         reg = FDI_RX_IMR(pipe);
2326         temp = I915_READ(reg);
2327         temp &= ~FDI_RX_SYMBOL_LOCK;
2328         temp &= ~FDI_RX_BIT_LOCK;
2329         I915_WRITE(reg, temp);
2330
2331         POSTING_READ(reg);
2332         udelay(150);
2333
2334         /* enable CPU FDI TX and PCH FDI RX */
2335         reg = FDI_TX_CTL(pipe);
2336         temp = I915_READ(reg);
2337         temp &= ~(7 << 19);
2338         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2339         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2340         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2341         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2342         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2343         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2344
2345         reg = FDI_RX_CTL(pipe);
2346         temp = I915_READ(reg);
2347         temp &= ~FDI_LINK_TRAIN_AUTO;
2348         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2349         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2350         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2351
2352         POSTING_READ(reg);
2353         udelay(150);
2354
2355         for (i = 0; i < 4; i++ ) {
2356                 reg = FDI_TX_CTL(pipe);
2357                 temp = I915_READ(reg);
2358                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2359                 temp |= snb_b_fdi_train_param[i];
2360                 I915_WRITE(reg, temp);
2361
2362                 POSTING_READ(reg);
2363                 udelay(500);
2364
2365                 reg = FDI_RX_IIR(pipe);
2366                 temp = I915_READ(reg);
2367                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2368
2369                 if (temp & FDI_RX_BIT_LOCK ||
2370                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2371                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2372                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2373                         break;
2374                 }
2375         }
2376         if (i == 4)
2377                 DRM_ERROR("FDI train 1 fail!\n");
2378
2379         /* Train 2 */
2380         reg = FDI_TX_CTL(pipe);
2381         temp = I915_READ(reg);
2382         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2383         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2384         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2385         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2386         I915_WRITE(reg, temp);
2387
2388         reg = FDI_RX_CTL(pipe);
2389         temp = I915_READ(reg);
2390         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2391         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2392         I915_WRITE(reg, temp);
2393
2394         POSTING_READ(reg);
2395         udelay(150);
2396
2397         for (i = 0; i < 4; i++ ) {
2398                 reg = FDI_TX_CTL(pipe);
2399                 temp = I915_READ(reg);
2400                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2401                 temp |= snb_b_fdi_train_param[i];
2402                 I915_WRITE(reg, temp);
2403
2404                 POSTING_READ(reg);
2405                 udelay(500);
2406
2407                 reg = FDI_RX_IIR(pipe);
2408                 temp = I915_READ(reg);
2409                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411                 if (temp & FDI_RX_SYMBOL_LOCK) {
2412                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2413                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2414                         break;
2415                 }
2416         }
2417         if (i == 4)
2418                 DRM_ERROR("FDI train 2 fail!\n");
2419
2420         DRM_DEBUG_KMS("FDI train done.\n");
2421 }
2422
2423 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2424 {
2425         struct drm_device *dev = crtc->dev;
2426         struct drm_i915_private *dev_priv = dev->dev_private;
2427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2428         int pipe = intel_crtc->pipe;
2429         u32 reg, temp;
2430
2431         /* Write the TU size bits so error detection works */
2432         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2433                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2434
2435         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         temp &= ~((0x7 << 19) | (0x7 << 16));
2439         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2440         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2441         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2442
2443         POSTING_READ(reg);
2444         udelay(200);
2445
2446         /* Switch from Rawclk to PCDclk */
2447         temp = I915_READ(reg);
2448         I915_WRITE(reg, temp | FDI_PCDCLK);
2449
2450         POSTING_READ(reg);
2451         udelay(200);
2452
2453         /* Enable CPU FDI TX PLL, always on for Ironlake */
2454         reg = FDI_TX_CTL(pipe);
2455         temp = I915_READ(reg);
2456         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2457                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2458
2459                 POSTING_READ(reg);
2460                 udelay(100);
2461         }
2462 }
2463
2464 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2465 {
2466         struct drm_device *dev = crtc->dev;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469         int pipe = intel_crtc->pipe;
2470         u32 reg, temp;
2471
2472         /* disable CPU FDI tx and PCH FDI rx */
2473         reg = FDI_TX_CTL(pipe);
2474         temp = I915_READ(reg);
2475         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2476         POSTING_READ(reg);
2477
2478         reg = FDI_RX_CTL(pipe);
2479         temp = I915_READ(reg);
2480         temp &= ~(0x7 << 16);
2481         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2482         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2483
2484         POSTING_READ(reg);
2485         udelay(100);
2486
2487         /* Ironlake workaround, disable clock pointer after downing FDI */
2488         if (HAS_PCH_IBX(dev)) {
2489                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2490                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2491                            I915_READ(FDI_RX_CHICKEN(pipe) &
2492                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2493         }
2494
2495         /* still set train pattern 1 */
2496         reg = FDI_TX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         temp &= ~FDI_LINK_TRAIN_NONE;
2499         temp |= FDI_LINK_TRAIN_PATTERN_1;
2500         I915_WRITE(reg, temp);
2501
2502         reg = FDI_RX_CTL(pipe);
2503         temp = I915_READ(reg);
2504         if (HAS_PCH_CPT(dev)) {
2505                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2506                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2507         } else {
2508                 temp &= ~FDI_LINK_TRAIN_NONE;
2509                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2510         }
2511         /* BPC in FDI rx is consistent with that in PIPECONF */
2512         temp &= ~(0x07 << 16);
2513         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2514         I915_WRITE(reg, temp);
2515
2516         POSTING_READ(reg);
2517         udelay(100);
2518 }
2519
2520 /*
2521  * When we disable a pipe, we need to clear any pending scanline wait events
2522  * to avoid hanging the ring, which we assume we are waiting on.
2523  */
2524 static void intel_clear_scanline_wait(struct drm_device *dev)
2525 {
2526         struct drm_i915_private *dev_priv = dev->dev_private;
2527         struct intel_ring_buffer *ring;
2528         u32 tmp;
2529
2530         if (IS_GEN2(dev))
2531                 /* Can't break the hang on i8xx */
2532                 return;
2533
2534         ring = LP_RING(dev_priv);
2535         tmp = I915_READ_CTL(ring);
2536         if (tmp & RING_WAIT)
2537                 I915_WRITE_CTL(ring, tmp);
2538 }
2539
2540 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2541 {
2542         struct drm_i915_gem_object *obj;
2543         struct drm_i915_private *dev_priv;
2544
2545         if (crtc->fb == NULL)
2546                 return;
2547
2548         obj = to_intel_framebuffer(crtc->fb)->obj;
2549         dev_priv = crtc->dev->dev_private;
2550         wait_event(dev_priv->pending_flip_queue,
2551                    atomic_read(&obj->pending_flip) == 0);
2552 }
2553
2554 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2555 {
2556         struct drm_device *dev = crtc->dev;
2557         struct drm_mode_config *mode_config = &dev->mode_config;
2558         struct intel_encoder *encoder;
2559
2560         /*
2561          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2562          * must be driven by its own crtc; no sharing is possible.
2563          */
2564         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2565                 if (encoder->base.crtc != crtc)
2566                         continue;
2567
2568                 switch (encoder->type) {
2569                 case INTEL_OUTPUT_EDP:
2570                         if (!intel_encoder_is_pch_edp(&encoder->base))
2571                                 return false;
2572                         continue;
2573                 }
2574         }
2575
2576         return true;
2577 }
2578
2579 /*
2580  * Enable PCH resources required for PCH ports:
2581  *   - PCH PLLs
2582  *   - FDI training & RX/TX
2583  *   - update transcoder timings
2584  *   - DP transcoding bits
2585  *   - transcoder
2586  */
2587 static void ironlake_pch_enable(struct drm_crtc *crtc)
2588 {
2589         struct drm_device *dev = crtc->dev;
2590         struct drm_i915_private *dev_priv = dev->dev_private;
2591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2592         int pipe = intel_crtc->pipe;
2593         u32 reg, temp;
2594
2595         /* For PCH output, training FDI link */
2596         dev_priv->display.fdi_link_train(crtc);
2597
2598         intel_enable_pch_pll(dev_priv, pipe);
2599
2600         if (HAS_PCH_CPT(dev)) {
2601                 /* Be sure PCH DPLL SEL is set */
2602                 temp = I915_READ(PCH_DPLL_SEL);
2603                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2604                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2605                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2606                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2607                 I915_WRITE(PCH_DPLL_SEL, temp);
2608         }
2609
2610         /* set transcoder timing, panel must allow it */
2611         assert_panel_unlocked(dev_priv, pipe);
2612         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2613         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2614         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2615
2616         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2617         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2618         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2619
2620         intel_fdi_normal_train(crtc);
2621
2622         /* For PCH DP, enable TRANS_DP_CTL */
2623         if (HAS_PCH_CPT(dev) &&
2624             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2625                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2626                 reg = TRANS_DP_CTL(pipe);
2627                 temp = I915_READ(reg);
2628                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2629                           TRANS_DP_SYNC_MASK |
2630                           TRANS_DP_BPC_MASK);
2631                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2632                          TRANS_DP_ENH_FRAMING);
2633                 temp |= bpc << 9; /* same format but at 11:9 */
2634
2635                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2636                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2637                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2638                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2639
2640                 switch (intel_trans_dp_port_sel(crtc)) {
2641                 case PCH_DP_B:
2642                         temp |= TRANS_DP_PORT_SEL_B;
2643                         break;
2644                 case PCH_DP_C:
2645                         temp |= TRANS_DP_PORT_SEL_C;
2646                         break;
2647                 case PCH_DP_D:
2648                         temp |= TRANS_DP_PORT_SEL_D;
2649                         break;
2650                 default:
2651                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2652                         temp |= TRANS_DP_PORT_SEL_B;
2653                         break;
2654                 }
2655
2656                 I915_WRITE(reg, temp);
2657         }
2658
2659         intel_enable_transcoder(dev_priv, pipe);
2660 }
2661
2662 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2663 {
2664         struct drm_device *dev = crtc->dev;
2665         struct drm_i915_private *dev_priv = dev->dev_private;
2666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2667         int pipe = intel_crtc->pipe;
2668         int plane = intel_crtc->plane;
2669         u32 temp;
2670         bool is_pch_port;
2671
2672         if (intel_crtc->active)
2673                 return;
2674
2675         intel_crtc->active = true;
2676         intel_update_watermarks(dev);
2677
2678         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2679                 temp = I915_READ(PCH_LVDS);
2680                 if ((temp & LVDS_PORT_EN) == 0)
2681                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2682         }
2683
2684         is_pch_port = intel_crtc_driving_pch(crtc);
2685
2686         if (is_pch_port)
2687                 ironlake_fdi_pll_enable(crtc);
2688         else
2689                 ironlake_fdi_disable(crtc);
2690
2691         /* Enable panel fitting for LVDS */
2692         if (dev_priv->pch_pf_size &&
2693             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2694                 /* Force use of hard-coded filter coefficients
2695                  * as some pre-programmed values are broken,
2696                  * e.g. x201.
2697                  */
2698                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2699                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2700                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2701         }
2702
2703         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2704         intel_enable_plane(dev_priv, plane, pipe);
2705
2706         if (is_pch_port)
2707                 ironlake_pch_enable(crtc);
2708
2709         intel_crtc_load_lut(crtc);
2710
2711         mutex_lock(&dev->struct_mutex);
2712         intel_update_fbc(dev);
2713         mutex_unlock(&dev->struct_mutex);
2714
2715         intel_crtc_update_cursor(crtc, true);
2716 }
2717
2718 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2719 {
2720         struct drm_device *dev = crtc->dev;
2721         struct drm_i915_private *dev_priv = dev->dev_private;
2722         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2723         int pipe = intel_crtc->pipe;
2724         int plane = intel_crtc->plane;
2725         u32 reg, temp;
2726
2727         if (!intel_crtc->active)
2728                 return;
2729
2730         intel_crtc_wait_for_pending_flips(crtc);
2731         drm_vblank_off(dev, pipe);
2732         intel_crtc_update_cursor(crtc, false);
2733
2734         intel_disable_plane(dev_priv, plane, pipe);
2735
2736         if (dev_priv->cfb_plane == plane &&
2737             dev_priv->display.disable_fbc)
2738                 dev_priv->display.disable_fbc(dev);
2739
2740         intel_disable_pipe(dev_priv, pipe);
2741
2742         /* Disable PF */
2743         I915_WRITE(PF_CTL(pipe), 0);
2744         I915_WRITE(PF_WIN_SZ(pipe), 0);
2745
2746         ironlake_fdi_disable(crtc);
2747
2748         /* This is a horrible layering violation; we should be doing this in
2749          * the connector/encoder ->prepare instead, but we don't always have
2750          * enough information there about the config to know whether it will
2751          * actually be necessary or just cause undesired flicker.
2752          */
2753         intel_disable_pch_ports(dev_priv, pipe);
2754
2755         intel_disable_transcoder(dev_priv, pipe);
2756
2757         if (HAS_PCH_CPT(dev)) {
2758                 /* disable TRANS_DP_CTL */
2759                 reg = TRANS_DP_CTL(pipe);
2760                 temp = I915_READ(reg);
2761                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2762                 temp |= TRANS_DP_PORT_SEL_NONE;
2763                 I915_WRITE(reg, temp);
2764
2765                 /* disable DPLL_SEL */
2766                 temp = I915_READ(PCH_DPLL_SEL);
2767                 switch (pipe) {
2768                 case 0:
2769                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2770                         break;
2771                 case 1:
2772                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2773                         break;
2774                 case 2:
2775                         /* FIXME: manage transcoder PLLs? */
2776                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2777                         break;
2778                 default:
2779                         BUG(); /* wtf */
2780                 }
2781                 I915_WRITE(PCH_DPLL_SEL, temp);
2782         }
2783
2784         /* disable PCH DPLL */
2785         intel_disable_pch_pll(dev_priv, pipe);
2786
2787         /* Switch from PCDclk to Rawclk */
2788         reg = FDI_RX_CTL(pipe);
2789         temp = I915_READ(reg);
2790         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2791
2792         /* Disable CPU FDI TX PLL */
2793         reg = FDI_TX_CTL(pipe);
2794         temp = I915_READ(reg);
2795         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2796
2797         POSTING_READ(reg);
2798         udelay(100);
2799
2800         reg = FDI_RX_CTL(pipe);
2801         temp = I915_READ(reg);
2802         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2803
2804         /* Wait for the clocks to turn off. */
2805         POSTING_READ(reg);
2806         udelay(100);
2807
2808         intel_crtc->active = false;
2809         intel_update_watermarks(dev);
2810
2811         mutex_lock(&dev->struct_mutex);
2812         intel_update_fbc(dev);
2813         intel_clear_scanline_wait(dev);
2814         mutex_unlock(&dev->struct_mutex);
2815 }
2816
2817 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2818 {
2819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2820         int pipe = intel_crtc->pipe;
2821         int plane = intel_crtc->plane;
2822
2823         /* XXX: When our outputs are all unaware of DPMS modes other than off
2824          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2825          */
2826         switch (mode) {
2827         case DRM_MODE_DPMS_ON:
2828         case DRM_MODE_DPMS_STANDBY:
2829         case DRM_MODE_DPMS_SUSPEND:
2830                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2831                 ironlake_crtc_enable(crtc);
2832                 break;
2833
2834         case DRM_MODE_DPMS_OFF:
2835                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2836                 ironlake_crtc_disable(crtc);
2837                 break;
2838         }
2839 }
2840
2841 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2842 {
2843         if (!enable && intel_crtc->overlay) {
2844                 struct drm_device *dev = intel_crtc->base.dev;
2845                 struct drm_i915_private *dev_priv = dev->dev_private;
2846
2847                 mutex_lock(&dev->struct_mutex);
2848                 dev_priv->mm.interruptible = false;
2849                 (void) intel_overlay_switch_off(intel_crtc->overlay);
2850                 dev_priv->mm.interruptible = true;
2851                 mutex_unlock(&dev->struct_mutex);
2852         }
2853
2854         /* Let userspace switch the overlay on again. In most cases userspace
2855          * has to recompute where to put it anyway.
2856          */
2857 }
2858
2859 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2860 {
2861         struct drm_device *dev = crtc->dev;
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2864         int pipe = intel_crtc->pipe;
2865         int plane = intel_crtc->plane;
2866
2867         if (intel_crtc->active)
2868                 return;
2869
2870         intel_crtc->active = true;
2871         intel_update_watermarks(dev);
2872
2873         intel_enable_pll(dev_priv, pipe);
2874         intel_enable_pipe(dev_priv, pipe, false);
2875         intel_enable_plane(dev_priv, plane, pipe);
2876
2877         intel_crtc_load_lut(crtc);
2878         intel_update_fbc(dev);
2879
2880         /* Give the overlay scaler a chance to enable if it's on this pipe */
2881         intel_crtc_dpms_overlay(intel_crtc, true);
2882         intel_crtc_update_cursor(crtc, true);
2883 }
2884
2885 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2886 {
2887         struct drm_device *dev = crtc->dev;
2888         struct drm_i915_private *dev_priv = dev->dev_private;
2889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2890         int pipe = intel_crtc->pipe;
2891         int plane = intel_crtc->plane;
2892
2893         if (!intel_crtc->active)
2894                 return;
2895
2896         /* Give the overlay scaler a chance to disable if it's on this pipe */
2897         intel_crtc_wait_for_pending_flips(crtc);
2898         drm_vblank_off(dev, pipe);
2899         intel_crtc_dpms_overlay(intel_crtc, false);
2900         intel_crtc_update_cursor(crtc, false);
2901
2902         if (dev_priv->cfb_plane == plane &&
2903             dev_priv->display.disable_fbc)
2904                 dev_priv->display.disable_fbc(dev);
2905
2906         intel_disable_plane(dev_priv, plane, pipe);
2907         intel_disable_pipe(dev_priv, pipe);
2908         intel_disable_pll(dev_priv, pipe);
2909
2910         intel_crtc->active = false;
2911         intel_update_fbc(dev);
2912         intel_update_watermarks(dev);
2913         intel_clear_scanline_wait(dev);
2914 }
2915
2916 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2917 {
2918         /* XXX: When our outputs are all unaware of DPMS modes other than off
2919          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2920          */
2921         switch (mode) {
2922         case DRM_MODE_DPMS_ON:
2923         case DRM_MODE_DPMS_STANDBY:
2924         case DRM_MODE_DPMS_SUSPEND:
2925                 i9xx_crtc_enable(crtc);
2926                 break;
2927         case DRM_MODE_DPMS_OFF:
2928                 i9xx_crtc_disable(crtc);
2929                 break;
2930         }
2931 }
2932
2933 /**
2934  * Sets the power management mode of the pipe and plane.
2935  */
2936 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2937 {
2938         struct drm_device *dev = crtc->dev;
2939         struct drm_i915_private *dev_priv = dev->dev_private;
2940         struct drm_i915_master_private *master_priv;
2941         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2942         int pipe = intel_crtc->pipe;
2943         bool enabled;
2944
2945         if (intel_crtc->dpms_mode == mode)
2946                 return;
2947
2948         intel_crtc->dpms_mode = mode;
2949
2950         dev_priv->display.dpms(crtc, mode);
2951
2952         if (!dev->primary->master)
2953                 return;
2954
2955         master_priv = dev->primary->master->driver_priv;
2956         if (!master_priv->sarea_priv)
2957                 return;
2958
2959         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2960
2961         switch (pipe) {
2962         case 0:
2963                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2964                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2965                 break;
2966         case 1:
2967                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2968                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2969                 break;
2970         default:
2971                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2972                 break;
2973         }
2974 }
2975
2976 static void intel_crtc_disable(struct drm_crtc *crtc)
2977 {
2978         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2979         struct drm_device *dev = crtc->dev;
2980
2981         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2982
2983         if (crtc->fb) {
2984                 mutex_lock(&dev->struct_mutex);
2985                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2986                 mutex_unlock(&dev->struct_mutex);
2987         }
2988 }
2989
2990 /* Prepare for a mode set.
2991  *
2992  * Note we could be a lot smarter here.  We need to figure out which outputs
2993  * will be enabled, which disabled (in short, how the config will changes)
2994  * and perform the minimum necessary steps to accomplish that, e.g. updating
2995  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2996  * panel fitting is in the proper state, etc.
2997  */
2998 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2999 {
3000         i9xx_crtc_disable(crtc);
3001 }
3002
3003 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3004 {
3005         i9xx_crtc_enable(crtc);
3006 }
3007
3008 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3009 {
3010         ironlake_crtc_disable(crtc);
3011 }
3012
3013 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3014 {
3015         ironlake_crtc_enable(crtc);
3016 }
3017
3018 void intel_encoder_prepare (struct drm_encoder *encoder)
3019 {
3020         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3021         /* lvds has its own version of prepare see intel_lvds_prepare */
3022         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3023 }
3024
3025 void intel_encoder_commit (struct drm_encoder *encoder)
3026 {
3027         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3028         /* lvds has its own version of commit see intel_lvds_commit */
3029         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3030 }
3031
3032 void intel_encoder_destroy(struct drm_encoder *encoder)
3033 {
3034         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3035
3036         drm_encoder_cleanup(encoder);
3037         kfree(intel_encoder);
3038 }
3039
3040 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3041                                   struct drm_display_mode *mode,
3042                                   struct drm_display_mode *adjusted_mode)
3043 {
3044         struct drm_device *dev = crtc->dev;
3045
3046         if (HAS_PCH_SPLIT(dev)) {
3047                 /* FDI link clock is fixed at 2.7G */
3048                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3049                         return false;
3050         }
3051
3052         /* XXX some encoders set the crtcinfo, others don't.
3053          * Obviously we need some form of conflict resolution here...
3054          */
3055         if (adjusted_mode->crtc_htotal == 0)
3056                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3057
3058         return true;
3059 }
3060
3061 static int i945_get_display_clock_speed(struct drm_device *dev)
3062 {
3063         return 400000;
3064 }
3065
3066 static int i915_get_display_clock_speed(struct drm_device *dev)
3067 {
3068         return 333000;
3069 }
3070
3071 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3072 {
3073         return 200000;
3074 }
3075
3076 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3077 {
3078         u16 gcfgc = 0;
3079
3080         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3081
3082         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3083                 return 133000;
3084         else {
3085                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3086                 case GC_DISPLAY_CLOCK_333_MHZ:
3087                         return 333000;
3088                 default:
3089                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3090                         return 190000;
3091                 }
3092         }
3093 }
3094
3095 static int i865_get_display_clock_speed(struct drm_device *dev)
3096 {
3097         return 266000;
3098 }
3099
3100 static int i855_get_display_clock_speed(struct drm_device *dev)
3101 {
3102         u16 hpllcc = 0;
3103         /* Assume that the hardware is in the high speed state.  This
3104          * should be the default.
3105          */
3106         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3107         case GC_CLOCK_133_200:
3108         case GC_CLOCK_100_200:
3109                 return 200000;
3110         case GC_CLOCK_166_250:
3111                 return 250000;
3112         case GC_CLOCK_100_133:
3113                 return 133000;
3114         }
3115
3116         /* Shouldn't happen */
3117         return 0;
3118 }
3119
3120 static int i830_get_display_clock_speed(struct drm_device *dev)
3121 {
3122         return 133000;
3123 }
3124
3125 struct fdi_m_n {
3126         u32        tu;
3127         u32        gmch_m;
3128         u32        gmch_n;
3129         u32        link_m;
3130         u32        link_n;
3131 };
3132
3133 static void
3134 fdi_reduce_ratio(u32 *num, u32 *den)
3135 {
3136         while (*num > 0xffffff || *den > 0xffffff) {
3137                 *num >>= 1;
3138                 *den >>= 1;
3139         }
3140 }
3141
3142 static void
3143 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3144                      int link_clock, struct fdi_m_n *m_n)
3145 {
3146         m_n->tu = 64; /* default size */
3147
3148         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3149         m_n->gmch_m = bits_per_pixel * pixel_clock;
3150         m_n->gmch_n = link_clock * nlanes * 8;
3151         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3152
3153         m_n->link_m = pixel_clock;
3154         m_n->link_n = link_clock;
3155         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3156 }
3157
3158
3159 struct intel_watermark_params {
3160         unsigned long fifo_size;
3161         unsigned long max_wm;
3162         unsigned long default_wm;
3163         unsigned long guard_size;
3164         unsigned long cacheline_size;
3165 };
3166
3167 /* Pineview has different values for various configs */
3168 static const struct intel_watermark_params pineview_display_wm = {
3169         PINEVIEW_DISPLAY_FIFO,
3170         PINEVIEW_MAX_WM,
3171         PINEVIEW_DFT_WM,
3172         PINEVIEW_GUARD_WM,
3173         PINEVIEW_FIFO_LINE_SIZE
3174 };
3175 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3176         PINEVIEW_DISPLAY_FIFO,
3177         PINEVIEW_MAX_WM,
3178         PINEVIEW_DFT_HPLLOFF_WM,
3179         PINEVIEW_GUARD_WM,
3180         PINEVIEW_FIFO_LINE_SIZE
3181 };
3182 static const struct intel_watermark_params pineview_cursor_wm = {
3183         PINEVIEW_CURSOR_FIFO,
3184         PINEVIEW_CURSOR_MAX_WM,
3185         PINEVIEW_CURSOR_DFT_WM,
3186         PINEVIEW_CURSOR_GUARD_WM,
3187         PINEVIEW_FIFO_LINE_SIZE,
3188 };
3189 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3190         PINEVIEW_CURSOR_FIFO,
3191         PINEVIEW_CURSOR_MAX_WM,
3192         PINEVIEW_CURSOR_DFT_WM,
3193         PINEVIEW_CURSOR_GUARD_WM,
3194         PINEVIEW_FIFO_LINE_SIZE
3195 };
3196 static const struct intel_watermark_params g4x_wm_info = {
3197         G4X_FIFO_SIZE,
3198         G4X_MAX_WM,
3199         G4X_MAX_WM,
3200         2,
3201         G4X_FIFO_LINE_SIZE,
3202 };
3203 static const struct intel_watermark_params g4x_cursor_wm_info = {
3204         I965_CURSOR_FIFO,
3205         I965_CURSOR_MAX_WM,
3206         I965_CURSOR_DFT_WM,
3207         2,
3208         G4X_FIFO_LINE_SIZE,
3209 };
3210 static const struct intel_watermark_params i965_cursor_wm_info = {
3211         I965_CURSOR_FIFO,
3212         I965_CURSOR_MAX_WM,
3213         I965_CURSOR_DFT_WM,
3214         2,
3215         I915_FIFO_LINE_SIZE,
3216 };
3217 static const struct intel_watermark_params i945_wm_info = {
3218         I945_FIFO_SIZE,
3219         I915_MAX_WM,
3220         1,
3221         2,
3222         I915_FIFO_LINE_SIZE
3223 };
3224 static const struct intel_watermark_params i915_wm_info = {
3225         I915_FIFO_SIZE,
3226         I915_MAX_WM,
3227         1,
3228         2,
3229         I915_FIFO_LINE_SIZE
3230 };
3231 static const struct intel_watermark_params i855_wm_info = {
3232         I855GM_FIFO_SIZE,
3233         I915_MAX_WM,
3234         1,
3235         2,
3236         I830_FIFO_LINE_SIZE
3237 };
3238 static const struct intel_watermark_params i830_wm_info = {
3239         I830_FIFO_SIZE,
3240         I915_MAX_WM,
3241         1,
3242         2,
3243         I830_FIFO_LINE_SIZE
3244 };
3245
3246 static const struct intel_watermark_params ironlake_display_wm_info = {
3247         ILK_DISPLAY_FIFO,
3248         ILK_DISPLAY_MAXWM,
3249         ILK_DISPLAY_DFTWM,
3250         2,
3251         ILK_FIFO_LINE_SIZE
3252 };
3253 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3254         ILK_CURSOR_FIFO,
3255         ILK_CURSOR_MAXWM,
3256         ILK_CURSOR_DFTWM,
3257         2,
3258         ILK_FIFO_LINE_SIZE
3259 };
3260 static const struct intel_watermark_params ironlake_display_srwm_info = {
3261         ILK_DISPLAY_SR_FIFO,
3262         ILK_DISPLAY_MAX_SRWM,
3263         ILK_DISPLAY_DFT_SRWM,
3264         2,
3265         ILK_FIFO_LINE_SIZE
3266 };
3267 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3268         ILK_CURSOR_SR_FIFO,
3269         ILK_CURSOR_MAX_SRWM,
3270         ILK_CURSOR_DFT_SRWM,
3271         2,
3272         ILK_FIFO_LINE_SIZE
3273 };
3274
3275 static const struct intel_watermark_params sandybridge_display_wm_info = {
3276         SNB_DISPLAY_FIFO,
3277         SNB_DISPLAY_MAXWM,
3278         SNB_DISPLAY_DFTWM,
3279         2,
3280         SNB_FIFO_LINE_SIZE
3281 };
3282 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3283         SNB_CURSOR_FIFO,
3284         SNB_CURSOR_MAXWM,
3285         SNB_CURSOR_DFTWM,
3286         2,
3287         SNB_FIFO_LINE_SIZE
3288 };
3289 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3290         SNB_DISPLAY_SR_FIFO,
3291         SNB_DISPLAY_MAX_SRWM,
3292         SNB_DISPLAY_DFT_SRWM,
3293         2,
3294         SNB_FIFO_LINE_SIZE
3295 };
3296 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3297         SNB_CURSOR_SR_FIFO,
3298         SNB_CURSOR_MAX_SRWM,
3299         SNB_CURSOR_DFT_SRWM,
3300         2,
3301         SNB_FIFO_LINE_SIZE
3302 };
3303
3304
3305 /**
3306  * intel_calculate_wm - calculate watermark level
3307  * @clock_in_khz: pixel clock
3308  * @wm: chip FIFO params
3309  * @pixel_size: display pixel size
3310  * @latency_ns: memory latency for the platform
3311  *
3312  * Calculate the watermark level (the level at which the display plane will
3313  * start fetching from memory again).  Each chip has a different display
3314  * FIFO size and allocation, so the caller needs to figure that out and pass
3315  * in the correct intel_watermark_params structure.
3316  *
3317  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3318  * on the pixel size.  When it reaches the watermark level, it'll start
3319  * fetching FIFO line sized based chunks from memory until the FIFO fills
3320  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3321  * will occur, and a display engine hang could result.
3322  */
3323 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3324                                         const struct intel_watermark_params *wm,
3325                                         int fifo_size,
3326                                         int pixel_size,
3327                                         unsigned long latency_ns)
3328 {
3329         long entries_required, wm_size;
3330
3331         /*
3332          * Note: we need to make sure we don't overflow for various clock &
3333          * latency values.
3334          * clocks go from a few thousand to several hundred thousand.
3335          * latency is usually a few thousand
3336          */
3337         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3338                 1000;
3339         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3340
3341         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3342
3343         wm_size = fifo_size - (entries_required + wm->guard_size);
3344
3345         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3346
3347         /* Don't promote wm_size to unsigned... */
3348         if (wm_size > (long)wm->max_wm)
3349                 wm_size = wm->max_wm;
3350         if (wm_size <= 0)
3351                 wm_size = wm->default_wm;
3352         return wm_size;
3353 }
3354
3355 struct cxsr_latency {
3356         int is_desktop;
3357         int is_ddr3;
3358         unsigned long fsb_freq;
3359         unsigned long mem_freq;
3360         unsigned long display_sr;
3361         unsigned long display_hpll_disable;
3362         unsigned long cursor_sr;
3363         unsigned long cursor_hpll_disable;
3364 };
3365
3366 static const struct cxsr_latency cxsr_latency_table[] = {
3367         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3368         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3369         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3370         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3371         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3372
3373         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3374         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3375         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3376         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3377         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3378
3379         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3380         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3381         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3382         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3383         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3384
3385         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3386         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3387         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3388         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3389         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3390
3391         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3392         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3393         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3394         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3395         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3396
3397         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3398         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3399         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3400         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3401         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3402 };
3403
3404 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3405                                                          int is_ddr3,
3406                                                          int fsb,
3407                                                          int mem)
3408 {
3409         const struct cxsr_latency *latency;
3410         int i;
3411
3412         if (fsb == 0 || mem == 0)
3413                 return NULL;
3414
3415         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3416                 latency = &cxsr_latency_table[i];
3417                 if (is_desktop == latency->is_desktop &&
3418                     is_ddr3 == latency->is_ddr3 &&
3419                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3420                         return latency;
3421         }
3422
3423         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3424
3425         return NULL;
3426 }
3427
3428 static void pineview_disable_cxsr(struct drm_device *dev)
3429 {
3430         struct drm_i915_private *dev_priv = dev->dev_private;
3431
3432         /* deactivate cxsr */
3433         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3434 }
3435
3436 /*
3437  * Latency for FIFO fetches is dependent on several factors:
3438  *   - memory configuration (speed, channels)
3439  *   - chipset
3440  *   - current MCH state
3441  * It can be fairly high in some situations, so here we assume a fairly
3442  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3443  * set this value too high, the FIFO will fetch frequently to stay full)
3444  * and power consumption (set it too low to save power and we might see
3445  * FIFO underruns and display "flicker").
3446  *
3447  * A value of 5us seems to be a good balance; safe for very low end
3448  * platforms but not overly aggressive on lower latency configs.
3449  */
3450 static const int latency_ns = 5000;
3451
3452 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3453 {
3454         struct drm_i915_private *dev_priv = dev->dev_private;
3455         uint32_t dsparb = I915_READ(DSPARB);
3456         int size;
3457
3458         size = dsparb & 0x7f;
3459         if (plane)
3460                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3461
3462         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3463                       plane ? "B" : "A", size);
3464
3465         return size;
3466 }
3467
3468 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3469 {
3470         struct drm_i915_private *dev_priv = dev->dev_private;
3471         uint32_t dsparb = I915_READ(DSPARB);
3472         int size;
3473
3474         size = dsparb & 0x1ff;
3475         if (plane)
3476                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3477         size >>= 1; /* Convert to cachelines */
3478
3479         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3480                       plane ? "B" : "A", size);
3481
3482         return size;
3483 }
3484
3485 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3486 {
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488         uint32_t dsparb = I915_READ(DSPARB);
3489         int size;
3490
3491         size = dsparb & 0x7f;
3492         size >>= 2; /* Convert to cachelines */
3493
3494         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3495                       plane ? "B" : "A",
3496                       size);
3497
3498         return size;
3499 }
3500
3501 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3502 {
3503         struct drm_i915_private *dev_priv = dev->dev_private;
3504         uint32_t dsparb = I915_READ(DSPARB);
3505         int size;
3506
3507         size = dsparb & 0x7f;
3508         size >>= 1; /* Convert to cachelines */
3509
3510         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3511                       plane ? "B" : "A", size);
3512
3513         return size;
3514 }
3515
3516 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3517 {
3518         struct drm_crtc *crtc, *enabled = NULL;
3519
3520         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3521                 if (crtc->enabled && crtc->fb) {
3522                         if (enabled)
3523                                 return NULL;
3524                         enabled = crtc;
3525                 }
3526         }
3527
3528         return enabled;
3529 }
3530
3531 static void pineview_update_wm(struct drm_device *dev)
3532 {
3533         struct drm_i915_private *dev_priv = dev->dev_private;
3534         struct drm_crtc *crtc;
3535         const struct cxsr_latency *latency;
3536         u32 reg;
3537         unsigned long wm;
3538
3539         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3540                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3541         if (!latency) {
3542                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3543                 pineview_disable_cxsr(dev);
3544                 return;
3545         }
3546
3547         crtc = single_enabled_crtc(dev);
3548         if (crtc) {
3549                 int clock = crtc->mode.clock;
3550                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3551
3552                 /* Display SR */
3553                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3554                                         pineview_display_wm.fifo_size,
3555                                         pixel_size, latency->display_sr);
3556                 reg = I915_READ(DSPFW1);
3557                 reg &= ~DSPFW_SR_MASK;
3558                 reg |= wm << DSPFW_SR_SHIFT;
3559                 I915_WRITE(DSPFW1, reg);
3560                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3561
3562                 /* cursor SR */
3563                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3564                                         pineview_display_wm.fifo_size,
3565                                         pixel_size, latency->cursor_sr);
3566                 reg = I915_READ(DSPFW3);
3567                 reg &= ~DSPFW_CURSOR_SR_MASK;
3568                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3569                 I915_WRITE(DSPFW3, reg);
3570
3571                 /* Display HPLL off SR */
3572                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3573                                         pineview_display_hplloff_wm.fifo_size,
3574                                         pixel_size, latency->display_hpll_disable);
3575                 reg = I915_READ(DSPFW3);
3576                 reg &= ~DSPFW_HPLL_SR_MASK;
3577                 reg |= wm & DSPFW_HPLL_SR_MASK;
3578                 I915_WRITE(DSPFW3, reg);
3579
3580                 /* cursor HPLL off SR */
3581                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3582                                         pineview_display_hplloff_wm.fifo_size,
3583                                         pixel_size, latency->cursor_hpll_disable);
3584                 reg = I915_READ(DSPFW3);
3585                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3586                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3587                 I915_WRITE(DSPFW3, reg);
3588                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3589
3590                 /* activate cxsr */
3591                 I915_WRITE(DSPFW3,
3592                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3593                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3594         } else {
3595                 pineview_disable_cxsr(dev);
3596                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3597         }
3598 }
3599
3600 static bool g4x_compute_wm0(struct drm_device *dev,
3601                             int plane,
3602                             const struct intel_watermark_params *display,
3603                             int display_latency_ns,
3604                             const struct intel_watermark_params *cursor,
3605                             int cursor_latency_ns,
3606                             int *plane_wm,
3607                             int *cursor_wm)
3608 {
3609         struct drm_crtc *crtc;
3610         int htotal, hdisplay, clock, pixel_size;
3611         int line_time_us, line_count;
3612         int entries, tlb_miss;
3613
3614         crtc = intel_get_crtc_for_plane(dev, plane);
3615         if (crtc->fb == NULL || !crtc->enabled) {
3616                 *cursor_wm = cursor->guard_size;
3617                 *plane_wm = display->guard_size;
3618                 return false;
3619         }
3620
3621         htotal = crtc->mode.htotal;
3622         hdisplay = crtc->mode.hdisplay;
3623         clock = crtc->mode.clock;
3624         pixel_size = crtc->fb->bits_per_pixel / 8;
3625
3626         /* Use the small buffer method to calculate plane watermark */
3627         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3628         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3629         if (tlb_miss > 0)
3630                 entries += tlb_miss;
3631         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3632         *plane_wm = entries + display->guard_size;
3633         if (*plane_wm > (int)display->max_wm)
3634                 *plane_wm = display->max_wm;
3635
3636         /* Use the large buffer method to calculate cursor watermark */
3637         line_time_us = ((htotal * 1000) / clock);
3638         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3639         entries = line_count * 64 * pixel_size;
3640         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3641         if (tlb_miss > 0)
3642                 entries += tlb_miss;
3643         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3644         *cursor_wm = entries + cursor->guard_size;
3645         if (*cursor_wm > (int)cursor->max_wm)
3646                 *cursor_wm = (int)cursor->max_wm;
3647
3648         return true;
3649 }
3650
3651 /*
3652  * Check the wm result.
3653  *
3654  * If any calculated watermark values is larger than the maximum value that
3655  * can be programmed into the associated watermark register, that watermark
3656  * must be disabled.
3657  */
3658 static bool g4x_check_srwm(struct drm_device *dev,
3659                            int display_wm, int cursor_wm,
3660                            const struct intel_watermark_params *display,
3661                            const struct intel_watermark_params *cursor)
3662 {
3663         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3664                       display_wm, cursor_wm);
3665
3666         if (display_wm > display->max_wm) {
3667                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3668                               display_wm, display->max_wm);
3669                 return false;
3670         }
3671
3672         if (cursor_wm > cursor->max_wm) {
3673                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3674                               cursor_wm, cursor->max_wm);
3675                 return false;
3676         }
3677
3678         if (!(display_wm || cursor_wm)) {
3679                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3680                 return false;
3681         }
3682
3683         return true;
3684 }
3685
3686 static bool g4x_compute_srwm(struct drm_device *dev,
3687                              int plane,
3688                              int latency_ns,
3689                              const struct intel_watermark_params *display,
3690                              const struct intel_watermark_params *cursor,
3691                              int *display_wm, int *cursor_wm)
3692 {
3693         struct drm_crtc *crtc;
3694         int hdisplay, htotal, pixel_size, clock;
3695         unsigned long line_time_us;
3696         int line_count, line_size;
3697         int small, large;
3698         int entries;
3699
3700         if (!latency_ns) {
3701                 *display_wm = *cursor_wm = 0;
3702                 return false;
3703         }
3704
3705         crtc = intel_get_crtc_for_plane(dev, plane);
3706         hdisplay = crtc->mode.hdisplay;
3707         htotal = crtc->mode.htotal;
3708         clock = crtc->mode.clock;
3709         pixel_size = crtc->fb->bits_per_pixel / 8;
3710
3711         line_time_us = (htotal * 1000) / clock;
3712         line_count = (latency_ns / line_time_us + 1000) / 1000;
3713         line_size = hdisplay * pixel_size;
3714
3715         /* Use the minimum of the small and large buffer method for primary */
3716         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3717         large = line_count * line_size;
3718
3719         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3720         *display_wm = entries + display->guard_size;
3721
3722         /* calculate the self-refresh watermark for display cursor */
3723         entries = line_count * pixel_size * 64;
3724         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3725         *cursor_wm = entries + cursor->guard_size;
3726
3727         return g4x_check_srwm(dev,
3728                               *display_wm, *cursor_wm,
3729                               display, cursor);
3730 }
3731
3732 #define single_plane_enabled(mask) is_power_of_2(mask)
3733
3734 static void g4x_update_wm(struct drm_device *dev)
3735 {
3736         static const int sr_latency_ns = 12000;
3737         struct drm_i915_private *dev_priv = dev->dev_private;
3738         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3739         int plane_sr, cursor_sr;
3740         unsigned int enabled = 0;
3741
3742         if (g4x_compute_wm0(dev, 0,
3743                             &g4x_wm_info, latency_ns,
3744                             &g4x_cursor_wm_info, latency_ns,
3745                             &planea_wm, &cursora_wm))
3746                 enabled |= 1;
3747
3748         if (g4x_compute_wm0(dev, 1,
3749                             &g4x_wm_info, latency_ns,
3750                             &g4x_cursor_wm_info, latency_ns,
3751                             &planeb_wm, &cursorb_wm))
3752                 enabled |= 2;
3753
3754         plane_sr = cursor_sr = 0;
3755         if (single_plane_enabled(enabled) &&
3756             g4x_compute_srwm(dev, ffs(enabled) - 1,
3757                              sr_latency_ns,
3758                              &g4x_wm_info,
3759                              &g4x_cursor_wm_info,
3760                              &plane_sr, &cursor_sr))
3761                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3762         else
3763                 I915_WRITE(FW_BLC_SELF,
3764                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3765
3766         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3767                       planea_wm, cursora_wm,
3768                       planeb_wm, cursorb_wm,
3769                       plane_sr, cursor_sr);
3770
3771         I915_WRITE(DSPFW1,
3772                    (plane_sr << DSPFW_SR_SHIFT) |
3773                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3774                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
3775                    planea_wm);
3776         I915_WRITE(DSPFW2,
3777                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3778                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3779         /* HPLL off in SR has some issues on G4x... disable it */
3780         I915_WRITE(DSPFW3,
3781                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3782                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3783 }
3784
3785 static void i965_update_wm(struct drm_device *dev)
3786 {
3787         struct drm_i915_private *dev_priv = dev->dev_private;
3788         struct drm_crtc *crtc;
3789         int srwm = 1;
3790         int cursor_sr = 16;
3791
3792         /* Calc sr entries for one plane configs */
3793         crtc = single_enabled_crtc(dev);
3794         if (crtc) {
3795                 /* self-refresh has much higher latency */
3796                 static const int sr_latency_ns = 12000;
3797                 int clock = crtc->mode.clock;
3798                 int htotal = crtc->mode.htotal;
3799                 int hdisplay = crtc->mode.hdisplay;
3800                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3801                 unsigned long line_time_us;
3802                 int entries;
3803
3804                 line_time_us = ((htotal * 1000) / clock);
3805
3806                 /* Use ns/us then divide to preserve precision */
3807                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3808                         pixel_size * hdisplay;
3809                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3810                 srwm = I965_FIFO_SIZE - entries;
3811                 if (srwm < 0)
3812                         srwm = 1;
3813                 srwm &= 0x1ff;
3814                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3815                               entries, srwm);
3816
3817                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3818                         pixel_size * 64;
3819                 entries = DIV_ROUND_UP(entries,
3820                                           i965_cursor_wm_info.cacheline_size);
3821                 cursor_sr = i965_cursor_wm_info.fifo_size -
3822                         (entries + i965_cursor_wm_info.guard_size);
3823
3824                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3825                         cursor_sr = i965_cursor_wm_info.max_wm;
3826
3827                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3828                               "cursor %d\n", srwm, cursor_sr);
3829
3830                 if (IS_CRESTLINE(dev))
3831                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3832         } else {
3833                 /* Turn off self refresh if both pipes are enabled */
3834                 if (IS_CRESTLINE(dev))
3835                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3836                                    & ~FW_BLC_SELF_EN);
3837         }
3838
3839         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3840                       srwm);
3841
3842         /* 965 has limitations... */
3843         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
3844                    (8 << 16) | (8 << 8) | (8 << 0));
3845         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3846         /* update cursor SR watermark */
3847         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3848 }
3849
3850 static void i9xx_update_wm(struct drm_device *dev)
3851 {
3852         struct drm_i915_private *dev_priv = dev->dev_private;
3853         const struct intel_watermark_params *wm_info;
3854         uint32_t fwater_lo;
3855         uint32_t fwater_hi;
3856         int cwm, srwm = 1;
3857         int fifo_size;
3858         int planea_wm, planeb_wm;
3859         struct drm_crtc *crtc, *enabled = NULL;
3860
3861         if (IS_I945GM(dev))
3862                 wm_info = &i945_wm_info;
3863         else if (!IS_GEN2(dev))
3864                 wm_info = &i915_wm_info;
3865         else
3866                 wm_info = &i855_wm_info;
3867
3868         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3869         crtc = intel_get_crtc_for_plane(dev, 0);
3870         if (crtc->enabled && crtc->fb) {
3871                 planea_wm = intel_calculate_wm(crtc->mode.clock,
3872                                                wm_info, fifo_size,
3873                                                crtc->fb->bits_per_pixel / 8,
3874                                                latency_ns);
3875                 enabled = crtc;
3876         } else
3877                 planea_wm = fifo_size - wm_info->guard_size;
3878
3879         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3880         crtc = intel_get_crtc_for_plane(dev, 1);
3881         if (crtc->enabled && crtc->fb) {
3882                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
3883                                                wm_info, fifo_size,
3884                                                crtc->fb->bits_per_pixel / 8,
3885                                                latency_ns);
3886                 if (enabled == NULL)
3887                         enabled = crtc;
3888                 else
3889                         enabled = NULL;
3890         } else
3891                 planeb_wm = fifo_size - wm_info->guard_size;
3892
3893         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3894
3895         /*
3896          * Overlay gets an aggressive default since video jitter is bad.
3897          */
3898         cwm = 2;
3899
3900         /* Play safe and disable self-refresh before adjusting watermarks. */
3901         if (IS_I945G(dev) || IS_I945GM(dev))
3902                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
3903         else if (IS_I915GM(dev))
3904                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3905
3906         /* Calc sr entries for one plane configs */
3907         if (HAS_FW_BLC(dev) && enabled) {
3908                 /* self-refresh has much higher latency */
3909                 static const int sr_latency_ns = 6000;
3910                 int clock = enabled->mode.clock;
3911                 int htotal = enabled->mode.htotal;
3912                 int hdisplay = enabled->mode.hdisplay;
3913                 int pixel_size = enabled->fb->bits_per_pixel / 8;
3914                 unsigned long line_time_us;
3915                 int entries;
3916
3917                 line_time_us = (htotal * 1000) / clock;
3918
3919                 /* Use ns/us then divide to preserve precision */
3920                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3921                         pixel_size * hdisplay;
3922                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
3923                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
3924                 srwm = wm_info->fifo_size - entries;
3925                 if (srwm < 0)
3926                         srwm = 1;
3927
3928                 if (IS_I945G(dev) || IS_I945GM(dev))
3929                         I915_WRITE(FW_BLC_SELF,
3930                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3931                 else if (IS_I915GM(dev))
3932                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3933         }
3934
3935         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3936                       planea_wm, planeb_wm, cwm, srwm);
3937
3938         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3939         fwater_hi = (cwm & 0x1f);
3940
3941         /* Set request length to 8 cachelines per fetch */
3942         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3943         fwater_hi = fwater_hi | (1 << 8);
3944
3945         I915_WRITE(FW_BLC, fwater_lo);
3946         I915_WRITE(FW_BLC2, fwater_hi);
3947
3948         if (HAS_FW_BLC(dev)) {
3949                 if (enabled) {
3950                         if (IS_I945G(dev) || IS_I945GM(dev))
3951                                 I915_WRITE(FW_BLC_SELF,
3952                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
3953                         else if (IS_I915GM(dev))
3954                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3955                         DRM_DEBUG_KMS("memory self refresh enabled\n");
3956                 } else
3957                         DRM_DEBUG_KMS("memory self refresh disabled\n");
3958         }
3959 }
3960
3961 static void i830_update_wm(struct drm_device *dev)
3962 {
3963         struct drm_i915_private *dev_priv = dev->dev_private;
3964         struct drm_crtc *crtc;
3965         uint32_t fwater_lo;
3966         int planea_wm;
3967
3968         crtc = single_enabled_crtc(dev);
3969         if (crtc == NULL)
3970                 return;
3971
3972         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
3973                                        dev_priv->display.get_fifo_size(dev, 0),
3974                                        crtc->fb->bits_per_pixel / 8,
3975                                        latency_ns);
3976         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3977         fwater_lo |= (3<<8) | planea_wm;
3978
3979         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3980
3981         I915_WRITE(FW_BLC, fwater_lo);
3982 }
3983
3984 #define ILK_LP0_PLANE_LATENCY           700
3985 #define ILK_LP0_CURSOR_LATENCY          1300
3986
3987 /*
3988  * Check the wm result.
3989  *
3990  * If any calculated watermark values is larger than the maximum value that
3991  * can be programmed into the associated watermark register, that watermark
3992  * must be disabled.
3993  */
3994 static bool ironlake_check_srwm(struct drm_device *dev, int level,
3995                                 int fbc_wm, int display_wm, int cursor_wm,
3996                                 const struct intel_watermark_params *display,
3997                                 const struct intel_watermark_params *cursor)
3998 {
3999         struct drm_i915_private *dev_priv = dev->dev_private;
4000
4001         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4002                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4003
4004         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4005                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4006                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4007
4008                 /* fbc has it's own way to disable FBC WM */
4009                 I915_WRITE(DISP_ARB_CTL,
4010                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4011                 return false;
4012         }
4013
4014         if (display_wm > display->max_wm) {
4015                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4016                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4017                 return false;
4018         }
4019
4020         if (cursor_wm > cursor->max_wm) {
4021                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4022                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4023                 return false;
4024         }
4025
4026         if (!(fbc_wm || display_wm || cursor_wm)) {
4027                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4028                 return false;
4029         }
4030
4031         return true;
4032 }
4033
4034 /*
4035  * Compute watermark values of WM[1-3],
4036  */
4037 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4038                                   int latency_ns,
4039                                   const struct intel_watermark_params *display,
4040                                   const struct intel_watermark_params *cursor,
4041                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4042 {
4043         struct drm_crtc *crtc;
4044         unsigned long line_time_us;
4045         int hdisplay, htotal, pixel_size, clock;
4046         int line_count, line_size;
4047         int small, large;
4048         int entries;
4049
4050         if (!latency_ns) {
4051                 *fbc_wm = *display_wm = *cursor_wm = 0;
4052                 return false;
4053         }
4054
4055         crtc = intel_get_crtc_for_plane(dev, plane);
4056         hdisplay = crtc->mode.hdisplay;
4057         htotal = crtc->mode.htotal;
4058         clock = crtc->mode.clock;
4059         pixel_size = crtc->fb->bits_per_pixel / 8;
4060
4061         line_time_us = (htotal * 1000) / clock;
4062         line_count = (latency_ns / line_time_us + 1000) / 1000;
4063         line_size = hdisplay * pixel_size;
4064
4065         /* Use the minimum of the small and large buffer method for primary */
4066         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4067         large = line_count * line_size;
4068
4069         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4070         *display_wm = entries + display->guard_size;
4071
4072         /*
4073          * Spec says:
4074          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4075          */
4076         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4077
4078         /* calculate the self-refresh watermark for display cursor */
4079         entries = line_count * pixel_size * 64;
4080         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4081         *cursor_wm = entries + cursor->guard_size;
4082
4083         return ironlake_check_srwm(dev, level,
4084                                    *fbc_wm, *display_wm, *cursor_wm,
4085                                    display, cursor);
4086 }
4087
4088 static void ironlake_update_wm(struct drm_device *dev)
4089 {
4090         struct drm_i915_private *dev_priv = dev->dev_private;
4091         int fbc_wm, plane_wm, cursor_wm;
4092         unsigned int enabled;
4093
4094         enabled = 0;
4095         if (g4x_compute_wm0(dev, 0,
4096                             &ironlake_display_wm_info,
4097                             ILK_LP0_PLANE_LATENCY,
4098                             &ironlake_cursor_wm_info,
4099                             ILK_LP0_CURSOR_LATENCY,
4100                             &plane_wm, &cursor_wm)) {
4101                 I915_WRITE(WM0_PIPEA_ILK,
4102                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4103                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4104                               " plane %d, " "cursor: %d\n",
4105                               plane_wm, cursor_wm);
4106                 enabled |= 1;
4107         }
4108
4109         if (g4x_compute_wm0(dev, 1,
4110                             &ironlake_display_wm_info,
4111                             ILK_LP0_PLANE_LATENCY,
4112                             &ironlake_cursor_wm_info,
4113                             ILK_LP0_CURSOR_LATENCY,
4114                             &plane_wm, &cursor_wm)) {
4115                 I915_WRITE(WM0_PIPEB_ILK,
4116                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4117                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4118                               " plane %d, cursor: %d\n",
4119                               plane_wm, cursor_wm);
4120                 enabled |= 2;
4121         }
4122
4123         /*
4124          * Calculate and update the self-refresh watermark only when one
4125          * display plane is used.
4126          */
4127         I915_WRITE(WM3_LP_ILK, 0);
4128         I915_WRITE(WM2_LP_ILK, 0);
4129         I915_WRITE(WM1_LP_ILK, 0);
4130
4131         if (!single_plane_enabled(enabled))
4132                 return;
4133         enabled = ffs(enabled) - 1;
4134
4135         /* WM1 */
4136         if (!ironlake_compute_srwm(dev, 1, enabled,
4137                                    ILK_READ_WM1_LATENCY() * 500,
4138                                    &ironlake_display_srwm_info,
4139                                    &ironlake_cursor_srwm_info,
4140                                    &fbc_wm, &plane_wm, &cursor_wm))
4141                 return;
4142
4143         I915_WRITE(WM1_LP_ILK,
4144                    WM1_LP_SR_EN |
4145                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4146                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4147                    (plane_wm << WM1_LP_SR_SHIFT) |
4148                    cursor_wm);
4149
4150         /* WM2 */
4151         if (!ironlake_compute_srwm(dev, 2, enabled,
4152                                    ILK_READ_WM2_LATENCY() * 500,
4153                                    &ironlake_display_srwm_info,
4154                                    &ironlake_cursor_srwm_info,
4155                                    &fbc_wm, &plane_wm, &cursor_wm))
4156                 return;
4157
4158         I915_WRITE(WM2_LP_ILK,
4159                    WM2_LP_EN |
4160                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4161                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4162                    (plane_wm << WM1_LP_SR_SHIFT) |
4163                    cursor_wm);
4164
4165         /*
4166          * WM3 is unsupported on ILK, probably because we don't have latency
4167          * data for that power state
4168          */
4169 }
4170
4171 static void sandybridge_update_wm(struct drm_device *dev)
4172 {
4173         struct drm_i915_private *dev_priv = dev->dev_private;
4174         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4175         int fbc_wm, plane_wm, cursor_wm;
4176         unsigned int enabled;
4177
4178         enabled = 0;
4179         if (g4x_compute_wm0(dev, 0,
4180                             &sandybridge_display_wm_info, latency,
4181                             &sandybridge_cursor_wm_info, latency,
4182                             &plane_wm, &cursor_wm)) {
4183                 I915_WRITE(WM0_PIPEA_ILK,
4184                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4185                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4186                               " plane %d, " "cursor: %d\n",
4187                               plane_wm, cursor_wm);
4188                 enabled |= 1;
4189         }
4190
4191         if (g4x_compute_wm0(dev, 1,
4192                             &sandybridge_display_wm_info, latency,
4193                             &sandybridge_cursor_wm_info, latency,
4194                             &plane_wm, &cursor_wm)) {
4195                 I915_WRITE(WM0_PIPEB_ILK,
4196                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4197                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4198                               " plane %d, cursor: %d\n",
4199                               plane_wm, cursor_wm);
4200                 enabled |= 2;
4201         }
4202
4203         /*
4204          * Calculate and update the self-refresh watermark only when one
4205          * display plane is used.
4206          *
4207          * SNB support 3 levels of watermark.
4208          *
4209          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4210          * and disabled in the descending order
4211          *
4212          */
4213         I915_WRITE(WM3_LP_ILK, 0);
4214         I915_WRITE(WM2_LP_ILK, 0);
4215         I915_WRITE(WM1_LP_ILK, 0);
4216
4217         if (!single_plane_enabled(enabled))
4218                 return;
4219         enabled = ffs(enabled) - 1;
4220
4221         /* WM1 */
4222         if (!ironlake_compute_srwm(dev, 1, enabled,
4223                                    SNB_READ_WM1_LATENCY() * 500,
4224                                    &sandybridge_display_srwm_info,
4225                                    &sandybridge_cursor_srwm_info,
4226                                    &fbc_wm, &plane_wm, &cursor_wm))
4227                 return;
4228
4229         I915_WRITE(WM1_LP_ILK,
4230                    WM1_LP_SR_EN |
4231                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4232                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4233                    (plane_wm << WM1_LP_SR_SHIFT) |
4234                    cursor_wm);
4235
4236         /* WM2 */
4237         if (!ironlake_compute_srwm(dev, 2, enabled,
4238                                    SNB_READ_WM2_LATENCY() * 500,
4239                                    &sandybridge_display_srwm_info,
4240                                    &sandybridge_cursor_srwm_info,
4241                                    &fbc_wm, &plane_wm, &cursor_wm))
4242                 return;
4243
4244         I915_WRITE(WM2_LP_ILK,
4245                    WM2_LP_EN |
4246                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4247                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4248                    (plane_wm << WM1_LP_SR_SHIFT) |
4249                    cursor_wm);
4250
4251         /* WM3 */
4252         if (!ironlake_compute_srwm(dev, 3, enabled,
4253                                    SNB_READ_WM3_LATENCY() * 500,
4254                                    &sandybridge_display_srwm_info,
4255                                    &sandybridge_cursor_srwm_info,
4256                                    &fbc_wm, &plane_wm, &cursor_wm))
4257                 return;
4258
4259         I915_WRITE(WM3_LP_ILK,
4260                    WM3_LP_EN |
4261                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4262                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4263                    (plane_wm << WM1_LP_SR_SHIFT) |
4264                    cursor_wm);
4265 }
4266
4267 /**
4268  * intel_update_watermarks - update FIFO watermark values based on current modes
4269  *
4270  * Calculate watermark values for the various WM regs based on current mode
4271  * and plane configuration.
4272  *
4273  * There are several cases to deal with here:
4274  *   - normal (i.e. non-self-refresh)
4275  *   - self-refresh (SR) mode
4276  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4277  *   - lines are small relative to FIFO size (buffer can hold more than 2
4278  *     lines), so need to account for TLB latency
4279  *
4280  *   The normal calculation is:
4281  *     watermark = dotclock * bytes per pixel * latency
4282  *   where latency is platform & configuration dependent (we assume pessimal
4283  *   values here).
4284  *
4285  *   The SR calculation is:
4286  *     watermark = (trunc(latency/line time)+1) * surface width *
4287  *       bytes per pixel
4288  *   where
4289  *     line time = htotal / dotclock
4290  *     surface width = hdisplay for normal plane and 64 for cursor
4291  *   and latency is assumed to be high, as above.
4292  *
4293  * The final value programmed to the register should always be rounded up,
4294  * and include an extra 2 entries to account for clock crossings.
4295  *
4296  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4297  * to set the non-SR watermarks to 8.
4298  */
4299 static void intel_update_watermarks(struct drm_device *dev)
4300 {
4301         struct drm_i915_private *dev_priv = dev->dev_private;
4302
4303         if (dev_priv->display.update_wm)
4304                 dev_priv->display.update_wm(dev);
4305 }
4306
4307 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4308 {
4309         return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4310 }
4311
4312 /**
4313  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4314  * @crtc: CRTC structure
4315  *
4316  * A pipe may be connected to one or more outputs.  Based on the depth of the
4317  * attached framebuffer, choose a good color depth to use on the pipe.
4318  *
4319  * If possible, match the pipe depth to the fb depth.  In some cases, this
4320  * isn't ideal, because the connected output supports a lesser or restricted
4321  * set of depths.  Resolve that here:
4322  *    LVDS typically supports only 6bpc, so clamp down in that case
4323  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4324  *    Displays may support a restricted set as well, check EDID and clamp as
4325  *      appropriate.
4326  *
4327  * RETURNS:
4328  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4329  * true if they don't match).
4330  */
4331 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4332                                          unsigned int *pipe_bpp)
4333 {
4334         struct drm_device *dev = crtc->dev;
4335         struct drm_i915_private *dev_priv = dev->dev_private;
4336         struct drm_encoder *encoder;
4337         struct drm_connector *connector;
4338         unsigned int display_bpc = UINT_MAX, bpc;
4339
4340         /* Walk the encoders & connectors on this crtc, get min bpc */
4341         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4342                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4343
4344                 if (encoder->crtc != crtc)
4345                         continue;
4346
4347                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4348                         unsigned int lvds_bpc;
4349
4350                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4351                             LVDS_A3_POWER_UP)
4352                                 lvds_bpc = 8;
4353                         else
4354                                 lvds_bpc = 6;
4355
4356                         if (lvds_bpc < display_bpc) {
4357                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4358                                 display_bpc = lvds_bpc;
4359                         }
4360                         continue;
4361                 }
4362
4363                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4364                         /* Use VBT settings if we have an eDP panel */
4365                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4366
4367                         if (edp_bpc < display_bpc) {
4368                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4369                                 display_bpc = edp_bpc;
4370                         }
4371                         continue;
4372                 }
4373
4374                 /* Not one of the known troublemakers, check the EDID */
4375                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4376                                     head) {
4377                         if (connector->encoder != encoder)
4378                                 continue;
4379
4380                         if (connector->display_info.bpc < display_bpc) {
4381                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4382                                 display_bpc = connector->display_info.bpc;
4383                         }
4384                 }
4385
4386                 /*
4387                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4388                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4389                  */
4390                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4391                         if (display_bpc > 8 && display_bpc < 12) {
4392                                 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4393                                 display_bpc = 12;
4394                         } else {
4395                                 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4396                                 display_bpc = 8;
4397                         }
4398                 }
4399         }
4400
4401         /*
4402          * We could just drive the pipe at the highest bpc all the time and
4403          * enable dithering as needed, but that costs bandwidth.  So choose
4404          * the minimum value that expresses the full color range of the fb but
4405          * also stays within the max display bpc discovered above.
4406          */
4407
4408         switch (crtc->fb->depth) {
4409         case 8:
4410                 bpc = 8; /* since we go through a colormap */
4411                 break;
4412         case 15:
4413         case 16:
4414                 bpc = 6; /* min is 18bpp */
4415                 break;
4416         case 24:
4417                 bpc = min((unsigned int)8, display_bpc);
4418                 break;
4419         case 30:
4420                 bpc = min((unsigned int)10, display_bpc);
4421                 break;
4422         case 48:
4423                 bpc = min((unsigned int)12, display_bpc);
4424                 break;
4425         default:
4426                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4427                 bpc = min((unsigned int)8, display_bpc);
4428                 break;
4429         }
4430
4431         DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4432                          bpc, display_bpc);
4433
4434         *pipe_bpp = bpc * 3;
4435
4436         return display_bpc != bpc;
4437 }
4438
4439 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4440                               struct drm_display_mode *mode,
4441                               struct drm_display_mode *adjusted_mode,
4442                               int x, int y,
4443                               struct drm_framebuffer *old_fb)
4444 {
4445         struct drm_device *dev = crtc->dev;
4446         struct drm_i915_private *dev_priv = dev->dev_private;
4447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4448         int pipe = intel_crtc->pipe;
4449         int plane = intel_crtc->plane;
4450         int refclk, num_connectors = 0;
4451         intel_clock_t clock, reduced_clock;
4452         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4453         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4454         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4455         struct drm_mode_config *mode_config = &dev->mode_config;
4456         struct intel_encoder *encoder;
4457         const intel_limit_t *limit;
4458         int ret;
4459         u32 temp;
4460         u32 lvds_sync = 0;
4461
4462         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4463                 if (encoder->base.crtc != crtc)
4464                         continue;
4465
4466                 switch (encoder->type) {
4467                 case INTEL_OUTPUT_LVDS:
4468                         is_lvds = true;
4469                         break;
4470                 case INTEL_OUTPUT_SDVO:
4471                 case INTEL_OUTPUT_HDMI:
4472                         is_sdvo = true;
4473                         if (encoder->needs_tv_clock)
4474                                 is_tv = true;
4475                         break;
4476                 case INTEL_OUTPUT_DVO:
4477                         is_dvo = true;
4478                         break;
4479                 case INTEL_OUTPUT_TVOUT:
4480                         is_tv = true;
4481                         break;
4482                 case INTEL_OUTPUT_ANALOG:
4483                         is_crt = true;
4484                         break;
4485                 case INTEL_OUTPUT_DISPLAYPORT:
4486                         is_dp = true;
4487                         break;
4488                 }
4489
4490                 num_connectors++;
4491         }
4492
4493         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4494                 refclk = dev_priv->lvds_ssc_freq * 1000;
4495                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4496                               refclk / 1000);
4497         } else if (!IS_GEN2(dev)) {
4498                 refclk = 96000;
4499         } else {
4500                 refclk = 48000;
4501         }
4502
4503         /*
4504          * Returns a set of divisors for the desired target clock with the given
4505          * refclk, or FALSE.  The returned values represent the clock equation:
4506          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4507          */
4508         limit = intel_limit(crtc, refclk);
4509         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4510         if (!ok) {
4511                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4512                 return -EINVAL;
4513         }
4514
4515         /* Ensure that the cursor is valid for the new mode before changing... */
4516         intel_crtc_update_cursor(crtc, true);
4517
4518         if (is_lvds && dev_priv->lvds_downclock_avail) {
4519                 has_reduced_clock = limit->find_pll(limit, crtc,
4520                                                     dev_priv->lvds_downclock,
4521                                                     refclk,
4522                                                     &reduced_clock);
4523                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4524                         /*
4525                          * If the different P is found, it means that we can't
4526                          * switch the display clock by using the FP0/FP1.
4527                          * In such case we will disable the LVDS downclock
4528                          * feature.
4529                          */
4530                         DRM_DEBUG_KMS("Different P is found for "
4531                                       "LVDS clock/downclock\n");
4532                         has_reduced_clock = 0;
4533                 }
4534         }
4535         /* SDVO TV has fixed PLL values depend on its clock range,
4536            this mirrors vbios setting. */
4537         if (is_sdvo && is_tv) {
4538                 if (adjusted_mode->clock >= 100000
4539                     && adjusted_mode->clock < 140500) {
4540                         clock.p1 = 2;
4541                         clock.p2 = 10;
4542                         clock.n = 3;
4543                         clock.m1 = 16;
4544                         clock.m2 = 8;
4545                 } else if (adjusted_mode->clock >= 140500
4546                            && adjusted_mode->clock <= 200000) {
4547                         clock.p1 = 1;
4548                         clock.p2 = 10;
4549                         clock.n = 6;
4550                         clock.m1 = 12;
4551                         clock.m2 = 8;
4552                 }
4553         }
4554
4555         if (IS_PINEVIEW(dev)) {
4556                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4557                 if (has_reduced_clock)
4558                         fp2 = (1 << reduced_clock.n) << 16 |
4559                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4560         } else {
4561                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4562                 if (has_reduced_clock)
4563                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4564                                 reduced_clock.m2;
4565         }
4566
4567         dpll = DPLL_VGA_MODE_DIS;
4568
4569         if (!IS_GEN2(dev)) {
4570                 if (is_lvds)
4571                         dpll |= DPLLB_MODE_LVDS;
4572                 else
4573                         dpll |= DPLLB_MODE_DAC_SERIAL;
4574                 if (is_sdvo) {
4575                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4576                         if (pixel_multiplier > 1) {
4577                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4578                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4579                         }
4580                         dpll |= DPLL_DVO_HIGH_SPEED;
4581                 }
4582                 if (is_dp)
4583                         dpll |= DPLL_DVO_HIGH_SPEED;
4584
4585                 /* compute bitmask from p1 value */
4586                 if (IS_PINEVIEW(dev))
4587                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4588                 else {
4589                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4590                         if (IS_G4X(dev) && has_reduced_clock)
4591                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4592                 }
4593                 switch (clock.p2) {
4594                 case 5:
4595                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4596                         break;
4597                 case 7:
4598                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4599                         break;
4600                 case 10:
4601                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4602                         break;
4603                 case 14:
4604                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4605                         break;
4606                 }
4607                 if (INTEL_INFO(dev)->gen >= 4)
4608                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4609         } else {
4610                 if (is_lvds) {
4611                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4612                 } else {
4613                         if (clock.p1 == 2)
4614                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4615                         else
4616                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4617                         if (clock.p2 == 4)
4618                                 dpll |= PLL_P2_DIVIDE_BY_4;
4619                 }
4620         }
4621
4622         if (is_sdvo && is_tv)
4623                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4624         else if (is_tv)
4625                 /* XXX: just matching BIOS for now */
4626                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4627                 dpll |= 3;
4628         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4629                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4630         else
4631                 dpll |= PLL_REF_INPUT_DREFCLK;
4632
4633         /* setup pipeconf */
4634         pipeconf = I915_READ(PIPECONF(pipe));
4635
4636         /* Set up the display plane register */
4637         dspcntr = DISPPLANE_GAMMA_ENABLE;
4638
4639         /* Ironlake's plane is forced to pipe, bit 24 is to
4640            enable color space conversion */
4641         if (pipe == 0)
4642                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4643         else
4644                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4645
4646         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4647                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4648                  * core speed.
4649                  *
4650                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4651                  * pipe == 0 check?
4652                  */
4653                 if (mode->clock >
4654                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4655                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4656                 else
4657                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4658         }
4659
4660         dpll |= DPLL_VCO_ENABLE;
4661
4662         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4663         drm_mode_debug_printmodeline(mode);
4664
4665         I915_WRITE(FP0(pipe), fp);
4666         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4667
4668         POSTING_READ(DPLL(pipe));
4669         udelay(150);
4670
4671         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4672          * This is an exception to the general rule that mode_set doesn't turn
4673          * things on.
4674          */
4675         if (is_lvds) {
4676                 temp = I915_READ(LVDS);
4677                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4678                 if (pipe == 1) {
4679                         temp |= LVDS_PIPEB_SELECT;
4680                 } else {
4681                         temp &= ~LVDS_PIPEB_SELECT;
4682                 }
4683                 /* set the corresponsding LVDS_BORDER bit */
4684                 temp |= dev_priv->lvds_border_bits;
4685                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4686                  * set the DPLLs for dual-channel mode or not.
4687                  */
4688                 if (clock.p2 == 7)
4689                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4690                 else
4691                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4692
4693                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4694                  * appropriately here, but we need to look more thoroughly into how
4695                  * panels behave in the two modes.
4696                  */
4697                 /* set the dithering flag on LVDS as needed */
4698                 if (INTEL_INFO(dev)->gen >= 4) {
4699                         if (dev_priv->lvds_dither)
4700                                 temp |= LVDS_ENABLE_DITHER;
4701                         else
4702                                 temp &= ~LVDS_ENABLE_DITHER;
4703                 }
4704                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4705                         lvds_sync |= LVDS_HSYNC_POLARITY;
4706                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4707                         lvds_sync |= LVDS_VSYNC_POLARITY;
4708                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4709                     != lvds_sync) {
4710                         char flags[2] = "-+";
4711                         DRM_INFO("Changing LVDS panel from "
4712                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4713                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
4714                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
4715                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4716                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4717                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4718                         temp |= lvds_sync;
4719                 }
4720                 I915_WRITE(LVDS, temp);
4721         }
4722
4723         if (is_dp) {
4724                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4725         }
4726
4727         I915_WRITE(DPLL(pipe), dpll);
4728
4729         /* Wait for the clocks to stabilize. */
4730         POSTING_READ(DPLL(pipe));
4731         udelay(150);
4732
4733         if (INTEL_INFO(dev)->gen >= 4) {
4734                 temp = 0;
4735                 if (is_sdvo) {
4736                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4737                         if (temp > 1)
4738                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4739                         else
4740                                 temp = 0;
4741                 }
4742                 I915_WRITE(DPLL_MD(pipe), temp);
4743         } else {
4744                 /* The pixel multiplier can only be updated once the
4745                  * DPLL is enabled and the clocks are stable.
4746                  *
4747                  * So write it again.
4748                  */
4749                 I915_WRITE(DPLL(pipe), dpll);
4750         }
4751
4752         intel_crtc->lowfreq_avail = false;
4753         if (is_lvds && has_reduced_clock && i915_powersave) {
4754                 I915_WRITE(FP1(pipe), fp2);
4755                 intel_crtc->lowfreq_avail = true;
4756                 if (HAS_PIPE_CXSR(dev)) {
4757                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4758                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4759                 }
4760         } else {
4761                 I915_WRITE(FP1(pipe), fp);
4762                 if (HAS_PIPE_CXSR(dev)) {
4763                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4764                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4765                 }
4766         }
4767
4768         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4769                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4770                 /* the chip adds 2 halflines automatically */
4771                 adjusted_mode->crtc_vdisplay -= 1;
4772                 adjusted_mode->crtc_vtotal -= 1;
4773                 adjusted_mode->crtc_vblank_start -= 1;
4774                 adjusted_mode->crtc_vblank_end -= 1;
4775                 adjusted_mode->crtc_vsync_end -= 1;
4776                 adjusted_mode->crtc_vsync_start -= 1;
4777         } else
4778                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4779
4780         I915_WRITE(HTOTAL(pipe),
4781                    (adjusted_mode->crtc_hdisplay - 1) |
4782                    ((adjusted_mode->crtc_htotal - 1) << 16));
4783         I915_WRITE(HBLANK(pipe),
4784                    (adjusted_mode->crtc_hblank_start - 1) |
4785                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4786         I915_WRITE(HSYNC(pipe),
4787                    (adjusted_mode->crtc_hsync_start - 1) |
4788                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4789
4790         I915_WRITE(VTOTAL(pipe),
4791                    (adjusted_mode->crtc_vdisplay - 1) |
4792                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4793         I915_WRITE(VBLANK(pipe),
4794                    (adjusted_mode->crtc_vblank_start - 1) |
4795                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4796         I915_WRITE(VSYNC(pipe),
4797                    (adjusted_mode->crtc_vsync_start - 1) |
4798                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4799
4800         /* pipesrc and dspsize control the size that is scaled from,
4801          * which should always be the user's requested size.
4802          */
4803         I915_WRITE(DSPSIZE(plane),
4804                    ((mode->vdisplay - 1) << 16) |
4805                    (mode->hdisplay - 1));
4806         I915_WRITE(DSPPOS(plane), 0);
4807         I915_WRITE(PIPESRC(pipe),
4808                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4809
4810         I915_WRITE(PIPECONF(pipe), pipeconf);
4811         POSTING_READ(PIPECONF(pipe));
4812         intel_enable_pipe(dev_priv, pipe, false);
4813
4814         intel_wait_for_vblank(dev, pipe);
4815
4816         I915_WRITE(DSPCNTR(plane), dspcntr);
4817         POSTING_READ(DSPCNTR(plane));
4818         intel_enable_plane(dev_priv, plane, pipe);
4819
4820         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4821
4822         intel_update_watermarks(dev);
4823
4824         return ret;
4825 }
4826
4827 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4828                                   struct drm_display_mode *mode,
4829                                   struct drm_display_mode *adjusted_mode,
4830                                   int x, int y,
4831                                   struct drm_framebuffer *old_fb)
4832 {
4833         struct drm_device *dev = crtc->dev;
4834         struct drm_i915_private *dev_priv = dev->dev_private;
4835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4836         int pipe = intel_crtc->pipe;
4837         int plane = intel_crtc->plane;
4838         int refclk, num_connectors = 0;
4839         intel_clock_t clock, reduced_clock;
4840         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4841         bool ok, has_reduced_clock = false, is_sdvo = false;
4842         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4843         struct intel_encoder *has_edp_encoder = NULL;
4844         struct drm_mode_config *mode_config = &dev->mode_config;
4845         struct intel_encoder *encoder;
4846         const intel_limit_t *limit;
4847         int ret;
4848         struct fdi_m_n m_n = {0};
4849         u32 temp;
4850         u32 lvds_sync = 0;
4851         int target_clock, pixel_multiplier, lane, link_bw, factor;
4852         unsigned int pipe_bpp;
4853         bool dither;
4854
4855         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4856                 if (encoder->base.crtc != crtc)
4857                         continue;
4858
4859                 switch (encoder->type) {
4860                 case INTEL_OUTPUT_LVDS:
4861                         is_lvds = true;
4862                         break;
4863                 case INTEL_OUTPUT_SDVO:
4864                 case INTEL_OUTPUT_HDMI:
4865                         is_sdvo = true;
4866                         if (encoder->needs_tv_clock)
4867                                 is_tv = true;
4868                         break;
4869                 case INTEL_OUTPUT_TVOUT:
4870                         is_tv = true;
4871                         break;
4872                 case INTEL_OUTPUT_ANALOG:
4873                         is_crt = true;
4874                         break;
4875                 case INTEL_OUTPUT_DISPLAYPORT:
4876                         is_dp = true;
4877                         break;
4878                 case INTEL_OUTPUT_EDP:
4879                         has_edp_encoder = encoder;
4880                         break;
4881                 }
4882
4883                 num_connectors++;
4884         }
4885
4886         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4887                 refclk = dev_priv->lvds_ssc_freq * 1000;
4888                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4889                               refclk / 1000);
4890         } else {
4891                 refclk = 96000;
4892                 if (!has_edp_encoder ||
4893                     intel_encoder_is_pch_edp(&has_edp_encoder->base))
4894                         refclk = 120000; /* 120Mhz refclk */
4895         }
4896
4897         /*
4898          * Returns a set of divisors for the desired target clock with the given
4899          * refclk, or FALSE.  The returned values represent the clock equation:
4900          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4901          */
4902         limit = intel_limit(crtc, refclk);
4903         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4904         if (!ok) {
4905                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4906                 return -EINVAL;
4907         }
4908
4909         /* Ensure that the cursor is valid for the new mode before changing... */
4910         intel_crtc_update_cursor(crtc, true);
4911
4912         if (is_lvds && dev_priv->lvds_downclock_avail) {
4913                 has_reduced_clock = limit->find_pll(limit, crtc,
4914                                                     dev_priv->lvds_downclock,
4915                                                     refclk,
4916                                                     &reduced_clock);
4917                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4918                         /*
4919                          * If the different P is found, it means that we can't
4920                          * switch the display clock by using the FP0/FP1.
4921                          * In such case we will disable the LVDS downclock
4922                          * feature.
4923                          */
4924                         DRM_DEBUG_KMS("Different P is found for "
4925                                       "LVDS clock/downclock\n");
4926                         has_reduced_clock = 0;
4927                 }
4928         }
4929         /* SDVO TV has fixed PLL values depend on its clock range,
4930            this mirrors vbios setting. */
4931         if (is_sdvo && is_tv) {
4932                 if (adjusted_mode->clock >= 100000
4933                     && adjusted_mode->clock < 140500) {
4934                         clock.p1 = 2;
4935                         clock.p2 = 10;
4936                         clock.n = 3;
4937                         clock.m1 = 16;
4938                         clock.m2 = 8;
4939                 } else if (adjusted_mode->clock >= 140500
4940                            && adjusted_mode->clock <= 200000) {
4941                         clock.p1 = 1;
4942                         clock.p2 = 10;
4943                         clock.n = 6;
4944                         clock.m1 = 12;
4945                         clock.m2 = 8;
4946                 }
4947         }
4948
4949         /* FDI link */
4950         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4951         lane = 0;
4952         /* CPU eDP doesn't require FDI link, so just set DP M/N
4953            according to current link config */
4954         if (has_edp_encoder &&
4955             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4956                 target_clock = mode->clock;
4957                 intel_edp_link_config(has_edp_encoder,
4958                                       &lane, &link_bw);
4959         } else {
4960                 /* [e]DP over FDI requires target mode clock
4961                    instead of link clock */
4962                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4963                         target_clock = mode->clock;
4964                 else
4965                         target_clock = adjusted_mode->clock;
4966
4967                 /* FDI is a binary signal running at ~2.7GHz, encoding
4968                  * each output octet as 10 bits. The actual frequency
4969                  * is stored as a divider into a 100MHz clock, and the
4970                  * mode pixel clock is stored in units of 1KHz.
4971                  * Hence the bw of each lane in terms of the mode signal
4972                  * is:
4973                  */
4974                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4975         }
4976
4977         /* determine panel color depth */
4978         temp = I915_READ(PIPECONF(pipe));
4979         temp &= ~PIPE_BPC_MASK;
4980         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
4981         switch (pipe_bpp) {
4982         case 18:
4983                 temp |= PIPE_6BPC;
4984                 break;
4985         case 24:
4986                 temp |= PIPE_8BPC;
4987                 break;
4988         case 30:
4989                 temp |= PIPE_10BPC;
4990                 break;
4991         case 36:
4992                 temp |= PIPE_12BPC;
4993                 break;
4994         default:
4995                 WARN(1, "intel_choose_pipe_bpp returned invalid value\n");
4996                 temp |= PIPE_8BPC;
4997                 pipe_bpp = 24;
4998                 break;
4999         }
5000
5001         intel_crtc->bpp = pipe_bpp;
5002         I915_WRITE(PIPECONF(pipe), temp);
5003
5004         if (!lane) {
5005                 /*
5006                  * Account for spread spectrum to avoid
5007                  * oversubscribing the link. Max center spread
5008                  * is 2.5%; use 5% for safety's sake.
5009                  */
5010                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5011                 lane = bps / (link_bw * 8) + 1;
5012         }
5013
5014         intel_crtc->fdi_lanes = lane;
5015
5016         if (pixel_multiplier > 1)
5017                 link_bw *= pixel_multiplier;
5018         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5019                              &m_n);
5020
5021         /* Ironlake: try to setup display ref clock before DPLL
5022          * enabling. This is only under driver's control after
5023          * PCH B stepping, previous chipset stepping should be
5024          * ignoring this setting.
5025          */
5026         temp = I915_READ(PCH_DREF_CONTROL);
5027         /* Always enable nonspread source */
5028         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5029         temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5030         temp &= ~DREF_SSC_SOURCE_MASK;
5031         temp |= DREF_SSC_SOURCE_ENABLE;
5032         I915_WRITE(PCH_DREF_CONTROL, temp);
5033
5034         POSTING_READ(PCH_DREF_CONTROL);
5035         udelay(200);
5036
5037         if (has_edp_encoder) {
5038                 if (intel_panel_use_ssc(dev_priv)) {
5039                         temp |= DREF_SSC1_ENABLE;
5040                         I915_WRITE(PCH_DREF_CONTROL, temp);
5041
5042                         POSTING_READ(PCH_DREF_CONTROL);
5043                         udelay(200);
5044                 }
5045                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5046
5047                 /* Enable CPU source on CPU attached eDP */
5048                 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5049                         if (intel_panel_use_ssc(dev_priv))
5050                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5051                         else
5052                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5053                 } else {
5054                         /* Enable SSC on PCH eDP if needed */
5055                         if (intel_panel_use_ssc(dev_priv)) {
5056                                 DRM_ERROR("enabling SSC on PCH\n");
5057                                 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5058                         }
5059                 }
5060                 I915_WRITE(PCH_DREF_CONTROL, temp);
5061                 POSTING_READ(PCH_DREF_CONTROL);
5062                 udelay(200);
5063         }
5064
5065         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5066         if (has_reduced_clock)
5067                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5068                         reduced_clock.m2;
5069
5070         /* Enable autotuning of the PLL clock (if permissible) */
5071         factor = 21;
5072         if (is_lvds) {
5073                 if ((intel_panel_use_ssc(dev_priv) &&
5074                      dev_priv->lvds_ssc_freq == 100) ||
5075                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5076                         factor = 25;
5077         } else if (is_sdvo && is_tv)
5078                 factor = 20;
5079
5080         if (clock.m1 < factor * clock.n)
5081                 fp |= FP_CB_TUNE;
5082
5083         dpll = 0;
5084
5085         if (is_lvds)
5086                 dpll |= DPLLB_MODE_LVDS;
5087         else
5088                 dpll |= DPLLB_MODE_DAC_SERIAL;
5089         if (is_sdvo) {
5090                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5091                 if (pixel_multiplier > 1) {
5092                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5093                 }
5094                 dpll |= DPLL_DVO_HIGH_SPEED;
5095         }
5096         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5097                 dpll |= DPLL_DVO_HIGH_SPEED;
5098
5099         /* compute bitmask from p1 value */
5100         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5101         /* also FPA1 */
5102         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5103
5104         switch (clock.p2) {
5105         case 5:
5106                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5107                 break;
5108         case 7:
5109                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5110                 break;
5111         case 10:
5112                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5113                 break;
5114         case 14:
5115                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5116                 break;
5117         }
5118
5119         if (is_sdvo && is_tv)
5120                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5121         else if (is_tv)
5122                 /* XXX: just matching BIOS for now */
5123                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5124                 dpll |= 3;
5125         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5126                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5127         else
5128                 dpll |= PLL_REF_INPUT_DREFCLK;
5129
5130         /* setup pipeconf */
5131         pipeconf = I915_READ(PIPECONF(pipe));
5132
5133         /* Set up the display plane register */
5134         dspcntr = DISPPLANE_GAMMA_ENABLE;
5135
5136         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5137         drm_mode_debug_printmodeline(mode);
5138
5139         /* PCH eDP needs FDI, but CPU eDP does not */
5140         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5141                 I915_WRITE(PCH_FP0(pipe), fp);
5142                 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5143
5144                 POSTING_READ(PCH_DPLL(pipe));
5145                 udelay(150);
5146         }
5147
5148         /* enable transcoder DPLL */
5149         if (HAS_PCH_CPT(dev)) {
5150                 temp = I915_READ(PCH_DPLL_SEL);
5151                 switch (pipe) {
5152                 case 0:
5153                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5154                         break;
5155                 case 1:
5156                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5157                         break;
5158                 case 2:
5159                         /* FIXME: manage transcoder PLLs? */
5160                         temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5161                         break;
5162                 default:
5163                         BUG();
5164                 }
5165                 I915_WRITE(PCH_DPLL_SEL, temp);
5166
5167                 POSTING_READ(PCH_DPLL_SEL);
5168                 udelay(150);
5169         }
5170
5171         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5172          * This is an exception to the general rule that mode_set doesn't turn
5173          * things on.
5174          */
5175         if (is_lvds) {
5176                 temp = I915_READ(PCH_LVDS);
5177                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5178                 if (pipe == 1) {
5179                         if (HAS_PCH_CPT(dev))
5180                                 temp |= PORT_TRANS_B_SEL_CPT;
5181                         else
5182                                 temp |= LVDS_PIPEB_SELECT;
5183                 } else {
5184                         if (HAS_PCH_CPT(dev))
5185                                 temp &= ~PORT_TRANS_SEL_MASK;
5186                         else
5187                                 temp &= ~LVDS_PIPEB_SELECT;
5188                 }
5189                 /* set the corresponsding LVDS_BORDER bit */
5190                 temp |= dev_priv->lvds_border_bits;
5191                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5192                  * set the DPLLs for dual-channel mode or not.
5193                  */
5194                 if (clock.p2 == 7)
5195                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5196                 else
5197                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5198
5199                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5200                  * appropriately here, but we need to look more thoroughly into how
5201                  * panels behave in the two modes.
5202                  */
5203                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5204                         lvds_sync |= LVDS_HSYNC_POLARITY;
5205                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5206                         lvds_sync |= LVDS_VSYNC_POLARITY;
5207                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5208                     != lvds_sync) {
5209                         char flags[2] = "-+";
5210                         DRM_INFO("Changing LVDS panel from "
5211                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5212                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5213                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5214                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5215                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5216                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5217                         temp |= lvds_sync;
5218                 }
5219                 I915_WRITE(PCH_LVDS, temp);
5220         }
5221
5222         pipeconf &= ~PIPECONF_DITHER_EN;
5223         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5224         if ((is_lvds && dev_priv->lvds_dither) || dither) {
5225                 pipeconf |= PIPECONF_DITHER_EN;
5226                 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5227         }
5228         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5229                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5230         } else {
5231                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5232                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5233                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5234                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5235                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5236         }
5237
5238         if (!has_edp_encoder ||
5239             intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5240                 I915_WRITE(PCH_DPLL(pipe), dpll);
5241
5242                 /* Wait for the clocks to stabilize. */
5243                 POSTING_READ(PCH_DPLL(pipe));
5244                 udelay(150);
5245
5246                 /* The pixel multiplier can only be updated once the
5247                  * DPLL is enabled and the clocks are stable.
5248                  *
5249                  * So write it again.
5250                  */
5251                 I915_WRITE(PCH_DPLL(pipe), dpll);
5252         }
5253
5254         intel_crtc->lowfreq_avail = false;
5255         if (is_lvds && has_reduced_clock && i915_powersave) {
5256                 I915_WRITE(PCH_FP1(pipe), fp2);
5257                 intel_crtc->lowfreq_avail = true;
5258                 if (HAS_PIPE_CXSR(dev)) {
5259                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5260                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5261                 }
5262         } else {
5263                 I915_WRITE(PCH_FP1(pipe), fp);
5264                 if (HAS_PIPE_CXSR(dev)) {
5265                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5266                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5267                 }
5268         }
5269
5270         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5271                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5272                 /* the chip adds 2 halflines automatically */
5273                 adjusted_mode->crtc_vdisplay -= 1;
5274                 adjusted_mode->crtc_vtotal -= 1;
5275                 adjusted_mode->crtc_vblank_start -= 1;
5276                 adjusted_mode->crtc_vblank_end -= 1;
5277                 adjusted_mode->crtc_vsync_end -= 1;
5278                 adjusted_mode->crtc_vsync_start -= 1;
5279         } else
5280                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5281
5282         I915_WRITE(HTOTAL(pipe),
5283                    (adjusted_mode->crtc_hdisplay - 1) |
5284                    ((adjusted_mode->crtc_htotal - 1) << 16));
5285         I915_WRITE(HBLANK(pipe),
5286                    (adjusted_mode->crtc_hblank_start - 1) |
5287                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5288         I915_WRITE(HSYNC(pipe),
5289                    (adjusted_mode->crtc_hsync_start - 1) |
5290                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5291
5292         I915_WRITE(VTOTAL(pipe),
5293                    (adjusted_mode->crtc_vdisplay - 1) |
5294                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5295         I915_WRITE(VBLANK(pipe),
5296                    (adjusted_mode->crtc_vblank_start - 1) |
5297                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5298         I915_WRITE(VSYNC(pipe),
5299                    (adjusted_mode->crtc_vsync_start - 1) |
5300                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5301
5302         /* pipesrc controls the size that is scaled from, which should
5303          * always be the user's requested size.
5304          */
5305         I915_WRITE(PIPESRC(pipe),
5306                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5307
5308         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5309         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5310         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5311         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5312
5313         if (has_edp_encoder &&
5314             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5315                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5316         }
5317
5318         I915_WRITE(PIPECONF(pipe), pipeconf);
5319         POSTING_READ(PIPECONF(pipe));
5320
5321         intel_wait_for_vblank(dev, pipe);
5322
5323         if (IS_GEN5(dev)) {
5324                 /* enable address swizzle for tiling buffer */
5325                 temp = I915_READ(DISP_ARB_CTL);
5326                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5327         }
5328
5329         I915_WRITE(DSPCNTR(plane), dspcntr);
5330         POSTING_READ(DSPCNTR(plane));
5331
5332         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5333
5334         intel_update_watermarks(dev);
5335
5336         return ret;
5337 }
5338
5339 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5340                                struct drm_display_mode *mode,
5341                                struct drm_display_mode *adjusted_mode,
5342                                int x, int y,
5343                                struct drm_framebuffer *old_fb)
5344 {
5345         struct drm_device *dev = crtc->dev;
5346         struct drm_i915_private *dev_priv = dev->dev_private;
5347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5348         int pipe = intel_crtc->pipe;
5349         int ret;
5350
5351         drm_vblank_pre_modeset(dev, pipe);
5352
5353         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5354                                               x, y, old_fb);
5355
5356         drm_vblank_post_modeset(dev, pipe);
5357
5358         return ret;
5359 }
5360
5361 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5362 void intel_crtc_load_lut(struct drm_crtc *crtc)
5363 {
5364         struct drm_device *dev = crtc->dev;
5365         struct drm_i915_private *dev_priv = dev->dev_private;
5366         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5367         int palreg = PALETTE(intel_crtc->pipe);
5368         int i;
5369
5370         /* The clocks have to be on to load the palette. */
5371         if (!crtc->enabled)
5372                 return;
5373
5374         /* use legacy palette for Ironlake */
5375         if (HAS_PCH_SPLIT(dev))
5376                 palreg = LGC_PALETTE(intel_crtc->pipe);
5377
5378         for (i = 0; i < 256; i++) {
5379                 I915_WRITE(palreg + 4 * i,
5380                            (intel_crtc->lut_r[i] << 16) |
5381                            (intel_crtc->lut_g[i] << 8) |
5382                            intel_crtc->lut_b[i]);
5383         }
5384 }
5385
5386 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5387 {
5388         struct drm_device *dev = crtc->dev;
5389         struct drm_i915_private *dev_priv = dev->dev_private;
5390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5391         bool visible = base != 0;
5392         u32 cntl;
5393
5394         if (intel_crtc->cursor_visible == visible)
5395                 return;
5396
5397         cntl = I915_READ(_CURACNTR);
5398         if (visible) {
5399                 /* On these chipsets we can only modify the base whilst
5400                  * the cursor is disabled.
5401                  */
5402                 I915_WRITE(_CURABASE, base);
5403
5404                 cntl &= ~(CURSOR_FORMAT_MASK);
5405                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5406                 cntl |= CURSOR_ENABLE |
5407                         CURSOR_GAMMA_ENABLE |
5408                         CURSOR_FORMAT_ARGB;
5409         } else
5410                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5411         I915_WRITE(_CURACNTR, cntl);
5412
5413         intel_crtc->cursor_visible = visible;
5414 }
5415
5416 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5417 {
5418         struct drm_device *dev = crtc->dev;
5419         struct drm_i915_private *dev_priv = dev->dev_private;
5420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5421         int pipe = intel_crtc->pipe;
5422         bool visible = base != 0;
5423
5424         if (intel_crtc->cursor_visible != visible) {
5425                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5426                 if (base) {
5427                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5428                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5429                         cntl |= pipe << 28; /* Connect to correct pipe */
5430                 } else {
5431                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5432                         cntl |= CURSOR_MODE_DISABLE;
5433                 }
5434                 I915_WRITE(CURCNTR(pipe), cntl);
5435
5436                 intel_crtc->cursor_visible = visible;
5437         }
5438         /* and commit changes on next vblank */
5439         I915_WRITE(CURBASE(pipe), base);
5440 }
5441
5442 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5443 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5444                                      bool on)
5445 {
5446         struct drm_device *dev = crtc->dev;
5447         struct drm_i915_private *dev_priv = dev->dev_private;
5448         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5449         int pipe = intel_crtc->pipe;
5450         int x = intel_crtc->cursor_x;
5451         int y = intel_crtc->cursor_y;
5452         u32 base, pos;
5453         bool visible;
5454
5455         pos = 0;
5456
5457         if (on && crtc->enabled && crtc->fb) {
5458                 base = intel_crtc->cursor_addr;
5459                 if (x > (int) crtc->fb->width)
5460                         base = 0;
5461
5462                 if (y > (int) crtc->fb->height)
5463                         base = 0;
5464         } else
5465                 base = 0;
5466
5467         if (x < 0) {
5468                 if (x + intel_crtc->cursor_width < 0)
5469                         base = 0;
5470
5471                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5472                 x = -x;
5473         }
5474         pos |= x << CURSOR_X_SHIFT;
5475
5476         if (y < 0) {
5477                 if (y + intel_crtc->cursor_height < 0)
5478                         base = 0;
5479
5480                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5481                 y = -y;
5482         }
5483         pos |= y << CURSOR_Y_SHIFT;
5484
5485         visible = base != 0;
5486         if (!visible && !intel_crtc->cursor_visible)
5487                 return;
5488
5489         I915_WRITE(CURPOS(pipe), pos);
5490         if (IS_845G(dev) || IS_I865G(dev))
5491                 i845_update_cursor(crtc, base);
5492         else
5493                 i9xx_update_cursor(crtc, base);
5494
5495         if (visible)
5496                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5497 }
5498
5499 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5500                                  struct drm_file *file,
5501                                  uint32_t handle,
5502                                  uint32_t width, uint32_t height)
5503 {
5504         struct drm_device *dev = crtc->dev;
5505         struct drm_i915_private *dev_priv = dev->dev_private;
5506         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5507         struct drm_i915_gem_object *obj;
5508         uint32_t addr;
5509         int ret;
5510
5511         DRM_DEBUG_KMS("\n");
5512
5513         /* if we want to turn off the cursor ignore width and height */
5514         if (!handle) {
5515                 DRM_DEBUG_KMS("cursor off\n");
5516                 addr = 0;
5517                 obj = NULL;
5518                 mutex_lock(&dev->struct_mutex);
5519                 goto finish;
5520         }
5521
5522         /* Currently we only support 64x64 cursors */
5523         if (width != 64 || height != 64) {
5524                 DRM_ERROR("we currently only support 64x64 cursors\n");
5525                 return -EINVAL;
5526         }
5527
5528         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5529         if (&obj->base == NULL)
5530                 return -ENOENT;
5531
5532         if (obj->base.size < width * height * 4) {
5533                 DRM_ERROR("buffer is to small\n");
5534                 ret = -ENOMEM;
5535                 goto fail;
5536         }
5537
5538         /* we only need to pin inside GTT if cursor is non-phy */
5539         mutex_lock(&dev->struct_mutex);
5540         if (!dev_priv->info->cursor_needs_physical) {
5541                 if (obj->tiling_mode) {
5542                         DRM_ERROR("cursor cannot be tiled\n");
5543                         ret = -EINVAL;
5544                         goto fail_locked;
5545                 }
5546
5547                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5548                 if (ret) {
5549                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5550                         goto fail_locked;
5551                 }
5552
5553                 ret = i915_gem_object_put_fence(obj);
5554                 if (ret) {
5555                         DRM_ERROR("failed to release fence for cursor");
5556                         goto fail_unpin;
5557                 }
5558
5559                 addr = obj->gtt_offset;
5560         } else {
5561                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5562                 ret = i915_gem_attach_phys_object(dev, obj,
5563                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5564                                                   align);
5565                 if (ret) {
5566                         DRM_ERROR("failed to attach phys object\n");
5567                         goto fail_locked;
5568                 }
5569                 addr = obj->phys_obj->handle->busaddr;
5570         }
5571
5572         if (IS_GEN2(dev))
5573                 I915_WRITE(CURSIZE, (height << 12) | width);
5574
5575  finish:
5576         if (intel_crtc->cursor_bo) {
5577                 if (dev_priv->info->cursor_needs_physical) {
5578                         if (intel_crtc->cursor_bo != obj)
5579                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5580                 } else
5581                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5582                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5583         }
5584
5585         mutex_unlock(&dev->struct_mutex);
5586
5587         intel_crtc->cursor_addr = addr;
5588         intel_crtc->cursor_bo = obj;
5589         intel_crtc->cursor_width = width;
5590         intel_crtc->cursor_height = height;
5591
5592         intel_crtc_update_cursor(crtc, true);
5593
5594         return 0;
5595 fail_unpin:
5596         i915_gem_object_unpin(obj);
5597 fail_locked:
5598         mutex_unlock(&dev->struct_mutex);
5599 fail:
5600         drm_gem_object_unreference_unlocked(&obj->base);
5601         return ret;
5602 }
5603
5604 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5605 {
5606         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5607
5608         intel_crtc->cursor_x = x;
5609         intel_crtc->cursor_y = y;
5610
5611         intel_crtc_update_cursor(crtc, true);
5612
5613         return 0;
5614 }
5615
5616 /** Sets the color ramps on behalf of RandR */
5617 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5618                                  u16 blue, int regno)
5619 {
5620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5621
5622         intel_crtc->lut_r[regno] = red >> 8;
5623         intel_crtc->lut_g[regno] = green >> 8;
5624         intel_crtc->lut_b[regno] = blue >> 8;
5625 }
5626
5627 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5628                              u16 *blue, int regno)
5629 {
5630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5631
5632         *red = intel_crtc->lut_r[regno] << 8;
5633         *green = intel_crtc->lut_g[regno] << 8;
5634         *blue = intel_crtc->lut_b[regno] << 8;
5635 }
5636
5637 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5638                                  u16 *blue, uint32_t start, uint32_t size)
5639 {
5640         int end = (start + size > 256) ? 256 : start + size, i;
5641         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5642
5643         for (i = start; i < end; i++) {
5644                 intel_crtc->lut_r[i] = red[i] >> 8;
5645                 intel_crtc->lut_g[i] = green[i] >> 8;
5646                 intel_crtc->lut_b[i] = blue[i] >> 8;
5647         }
5648
5649         intel_crtc_load_lut(crtc);
5650 }
5651
5652 /**
5653  * Get a pipe with a simple mode set on it for doing load-based monitor
5654  * detection.
5655  *
5656  * It will be up to the load-detect code to adjust the pipe as appropriate for
5657  * its requirements.  The pipe will be connected to no other encoders.
5658  *
5659  * Currently this code will only succeed if there is a pipe with no encoders
5660  * configured for it.  In the future, it could choose to temporarily disable
5661  * some outputs to free up a pipe for its use.
5662  *
5663  * \return crtc, or NULL if no pipes are available.
5664  */
5665
5666 /* VESA 640x480x72Hz mode to set on the pipe */
5667 static struct drm_display_mode load_detect_mode = {
5668         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5669                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5670 };
5671
5672 static struct drm_framebuffer *
5673 intel_framebuffer_create(struct drm_device *dev,
5674                          struct drm_mode_fb_cmd *mode_cmd,
5675                          struct drm_i915_gem_object *obj)
5676 {
5677         struct intel_framebuffer *intel_fb;
5678         int ret;
5679
5680         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5681         if (!intel_fb) {
5682                 drm_gem_object_unreference_unlocked(&obj->base);
5683                 return ERR_PTR(-ENOMEM);
5684         }
5685
5686         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5687         if (ret) {
5688                 drm_gem_object_unreference_unlocked(&obj->base);
5689                 kfree(intel_fb);
5690                 return ERR_PTR(ret);
5691         }
5692
5693         return &intel_fb->base;
5694 }
5695
5696 static u32
5697 intel_framebuffer_pitch_for_width(int width, int bpp)
5698 {
5699         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5700         return ALIGN(pitch, 64);
5701 }
5702
5703 static u32
5704 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5705 {
5706         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5707         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5708 }
5709
5710 static struct drm_framebuffer *
5711 intel_framebuffer_create_for_mode(struct drm_device *dev,
5712                                   struct drm_display_mode *mode,
5713                                   int depth, int bpp)
5714 {
5715         struct drm_i915_gem_object *obj;
5716         struct drm_mode_fb_cmd mode_cmd;
5717
5718         obj = i915_gem_alloc_object(dev,
5719                                     intel_framebuffer_size_for_mode(mode, bpp));
5720         if (obj == NULL)
5721                 return ERR_PTR(-ENOMEM);
5722
5723         mode_cmd.width = mode->hdisplay;
5724         mode_cmd.height = mode->vdisplay;
5725         mode_cmd.depth = depth;
5726         mode_cmd.bpp = bpp;
5727         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5728
5729         return intel_framebuffer_create(dev, &mode_cmd, obj);
5730 }
5731
5732 static struct drm_framebuffer *
5733 mode_fits_in_fbdev(struct drm_device *dev,
5734                    struct drm_display_mode *mode)
5735 {
5736         struct drm_i915_private *dev_priv = dev->dev_private;
5737         struct drm_i915_gem_object *obj;
5738         struct drm_framebuffer *fb;
5739
5740         if (dev_priv->fbdev == NULL)
5741                 return NULL;
5742
5743         obj = dev_priv->fbdev->ifb.obj;
5744         if (obj == NULL)
5745                 return NULL;
5746
5747         fb = &dev_priv->fbdev->ifb.base;
5748         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5749                                                           fb->bits_per_pixel))
5750                 return NULL;
5751
5752         if (obj->base.size < mode->vdisplay * fb->pitch)
5753                 return NULL;
5754
5755         return fb;
5756 }
5757
5758 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5759                                 struct drm_connector *connector,
5760                                 struct drm_display_mode *mode,
5761                                 struct intel_load_detect_pipe *old)
5762 {
5763         struct intel_crtc *intel_crtc;
5764         struct drm_crtc *possible_crtc;
5765         struct drm_encoder *encoder = &intel_encoder->base;
5766         struct drm_crtc *crtc = NULL;
5767         struct drm_device *dev = encoder->dev;
5768         struct drm_framebuffer *old_fb;
5769         int i = -1;
5770
5771         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5772                       connector->base.id, drm_get_connector_name(connector),
5773                       encoder->base.id, drm_get_encoder_name(encoder));
5774
5775         /*
5776          * Algorithm gets a little messy:
5777          *
5778          *   - if the connector already has an assigned crtc, use it (but make
5779          *     sure it's on first)
5780          *
5781          *   - try to find the first unused crtc that can drive this connector,
5782          *     and use that if we find one
5783          */
5784
5785         /* See if we already have a CRTC for this connector */
5786         if (encoder->crtc) {
5787                 crtc = encoder->crtc;
5788
5789                 intel_crtc = to_intel_crtc(crtc);
5790                 old->dpms_mode = intel_crtc->dpms_mode;
5791                 old->load_detect_temp = false;
5792
5793                 /* Make sure the crtc and connector are running */
5794                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5795                         struct drm_encoder_helper_funcs *encoder_funcs;
5796                         struct drm_crtc_helper_funcs *crtc_funcs;
5797
5798                         crtc_funcs = crtc->helper_private;
5799                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5800
5801                         encoder_funcs = encoder->helper_private;
5802                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5803                 }
5804
5805                 return true;
5806         }
5807
5808         /* Find an unused one (if possible) */
5809         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5810                 i++;
5811                 if (!(encoder->possible_crtcs & (1 << i)))
5812                         continue;
5813                 if (!possible_crtc->enabled) {
5814                         crtc = possible_crtc;
5815                         break;
5816                 }
5817         }
5818
5819         /*
5820          * If we didn't find an unused CRTC, don't use any.
5821          */
5822         if (!crtc) {
5823                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5824                 return false;
5825         }
5826
5827         encoder->crtc = crtc;
5828         connector->encoder = encoder;
5829
5830         intel_crtc = to_intel_crtc(crtc);
5831         old->dpms_mode = intel_crtc->dpms_mode;
5832         old->load_detect_temp = true;
5833         old->release_fb = NULL;
5834
5835         if (!mode)
5836                 mode = &load_detect_mode;
5837
5838         old_fb = crtc->fb;
5839
5840         /* We need a framebuffer large enough to accommodate all accesses
5841          * that the plane may generate whilst we perform load detection.
5842          * We can not rely on the fbcon either being present (we get called
5843          * during its initialisation to detect all boot displays, or it may
5844          * not even exist) or that it is large enough to satisfy the
5845          * requested mode.
5846          */
5847         crtc->fb = mode_fits_in_fbdev(dev, mode);
5848         if (crtc->fb == NULL) {
5849                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5850                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5851                 old->release_fb = crtc->fb;
5852         } else
5853                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5854         if (IS_ERR(crtc->fb)) {
5855                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5856                 crtc->fb = old_fb;
5857                 return false;
5858         }
5859
5860         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5861                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5862                 if (old->release_fb)
5863                         old->release_fb->funcs->destroy(old->release_fb);
5864                 crtc->fb = old_fb;
5865                 return false;
5866         }
5867
5868         /* let the connector get through one full cycle before testing */
5869         intel_wait_for_vblank(dev, intel_crtc->pipe);
5870
5871         return true;
5872 }
5873
5874 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5875                                     struct drm_connector *connector,
5876                                     struct intel_load_detect_pipe *old)
5877 {
5878         struct drm_encoder *encoder = &intel_encoder->base;
5879         struct drm_device *dev = encoder->dev;
5880         struct drm_crtc *crtc = encoder->crtc;
5881         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5882         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5883
5884         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5885                       connector->base.id, drm_get_connector_name(connector),
5886                       encoder->base.id, drm_get_encoder_name(encoder));
5887
5888         if (old->load_detect_temp) {
5889                 connector->encoder = NULL;
5890                 drm_helper_disable_unused_functions(dev);
5891
5892                 if (old->release_fb)
5893                         old->release_fb->funcs->destroy(old->release_fb);
5894
5895                 return;
5896         }
5897
5898         /* Switch crtc and encoder back off if necessary */
5899         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5900                 encoder_funcs->dpms(encoder, old->dpms_mode);
5901                 crtc_funcs->dpms(crtc, old->dpms_mode);
5902         }
5903 }
5904
5905 /* Returns the clock of the currently programmed mode of the given pipe. */
5906 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5907 {
5908         struct drm_i915_private *dev_priv = dev->dev_private;
5909         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5910         int pipe = intel_crtc->pipe;
5911         u32 dpll = I915_READ(DPLL(pipe));
5912         u32 fp;
5913         intel_clock_t clock;
5914
5915         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5916                 fp = I915_READ(FP0(pipe));
5917         else
5918                 fp = I915_READ(FP1(pipe));
5919
5920         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5921         if (IS_PINEVIEW(dev)) {
5922                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5923                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5924         } else {
5925                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5926                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5927         }
5928
5929         if (!IS_GEN2(dev)) {
5930                 if (IS_PINEVIEW(dev))
5931                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5932                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5933                 else
5934                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5935                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5936
5937                 switch (dpll & DPLL_MODE_MASK) {
5938                 case DPLLB_MODE_DAC_SERIAL:
5939                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5940                                 5 : 10;
5941                         break;
5942                 case DPLLB_MODE_LVDS:
5943                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5944                                 7 : 14;
5945                         break;
5946                 default:
5947                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5948                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5949                         return 0;
5950                 }
5951
5952                 /* XXX: Handle the 100Mhz refclk */
5953                 intel_clock(dev, 96000, &clock);
5954         } else {
5955                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5956
5957                 if (is_lvds) {
5958                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5959                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5960                         clock.p2 = 14;
5961
5962                         if ((dpll & PLL_REF_INPUT_MASK) ==
5963                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5964                                 /* XXX: might not be 66MHz */
5965                                 intel_clock(dev, 66000, &clock);
5966                         } else
5967                                 intel_clock(dev, 48000, &clock);
5968                 } else {
5969                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5970                                 clock.p1 = 2;
5971                         else {
5972                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5973                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5974                         }
5975                         if (dpll & PLL_P2_DIVIDE_BY_4)
5976                                 clock.p2 = 4;
5977                         else
5978                                 clock.p2 = 2;
5979
5980                         intel_clock(dev, 48000, &clock);
5981                 }
5982         }
5983
5984         /* XXX: It would be nice to validate the clocks, but we can't reuse
5985          * i830PllIsValid() because it relies on the xf86_config connector
5986          * configuration being accurate, which it isn't necessarily.
5987          */
5988
5989         return clock.dot;
5990 }
5991
5992 /** Returns the currently programmed mode of the given pipe. */
5993 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5994                                              struct drm_crtc *crtc)
5995 {
5996         struct drm_i915_private *dev_priv = dev->dev_private;
5997         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5998         int pipe = intel_crtc->pipe;
5999         struct drm_display_mode *mode;
6000         int htot = I915_READ(HTOTAL(pipe));
6001         int hsync = I915_READ(HSYNC(pipe));
6002         int vtot = I915_READ(VTOTAL(pipe));
6003         int vsync = I915_READ(VSYNC(pipe));
6004
6005         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6006         if (!mode)
6007                 return NULL;
6008
6009         mode->clock = intel_crtc_clock_get(dev, crtc);
6010         mode->hdisplay = (htot & 0xffff) + 1;
6011         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6012         mode->hsync_start = (hsync & 0xffff) + 1;
6013         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6014         mode->vdisplay = (vtot & 0xffff) + 1;
6015         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6016         mode->vsync_start = (vsync & 0xffff) + 1;
6017         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6018
6019         drm_mode_set_name(mode);
6020         drm_mode_set_crtcinfo(mode, 0);
6021
6022         return mode;
6023 }
6024
6025 #define GPU_IDLE_TIMEOUT 500 /* ms */
6026
6027 /* When this timer fires, we've been idle for awhile */
6028 static void intel_gpu_idle_timer(unsigned long arg)
6029 {
6030         struct drm_device *dev = (struct drm_device *)arg;
6031         drm_i915_private_t *dev_priv = dev->dev_private;
6032
6033         if (!list_empty(&dev_priv->mm.active_list)) {
6034                 /* Still processing requests, so just re-arm the timer. */
6035                 mod_timer(&dev_priv->idle_timer, jiffies +
6036                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6037                 return;
6038         }
6039
6040         dev_priv->busy = false;
6041         queue_work(dev_priv->wq, &dev_priv->idle_work);
6042 }
6043
6044 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6045
6046 static void intel_crtc_idle_timer(unsigned long arg)
6047 {
6048         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6049         struct drm_crtc *crtc = &intel_crtc->base;
6050         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6051         struct intel_framebuffer *intel_fb;
6052
6053         intel_fb = to_intel_framebuffer(crtc->fb);
6054         if (intel_fb && intel_fb->obj->active) {
6055                 /* The framebuffer is still being accessed by the GPU. */
6056                 mod_timer(&intel_crtc->idle_timer, jiffies +
6057                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6058                 return;
6059         }
6060
6061         intel_crtc->busy = false;
6062         queue_work(dev_priv->wq, &dev_priv->idle_work);
6063 }
6064
6065 static void intel_increase_pllclock(struct drm_crtc *crtc)
6066 {
6067         struct drm_device *dev = crtc->dev;
6068         drm_i915_private_t *dev_priv = dev->dev_private;
6069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6070         int pipe = intel_crtc->pipe;
6071         int dpll_reg = DPLL(pipe);
6072         int dpll;
6073
6074         if (HAS_PCH_SPLIT(dev))
6075                 return;
6076
6077         if (!dev_priv->lvds_downclock_avail)
6078                 return;
6079
6080         dpll = I915_READ(dpll_reg);
6081         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6082                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6083
6084                 /* Unlock panel regs */
6085                 I915_WRITE(PP_CONTROL,
6086                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6087
6088                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6089                 I915_WRITE(dpll_reg, dpll);
6090                 intel_wait_for_vblank(dev, pipe);
6091
6092                 dpll = I915_READ(dpll_reg);
6093                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6094                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6095
6096                 /* ...and lock them again */
6097                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6098         }
6099
6100         /* Schedule downclock */
6101         mod_timer(&intel_crtc->idle_timer, jiffies +
6102                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6103 }
6104
6105 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6106 {
6107         struct drm_device *dev = crtc->dev;
6108         drm_i915_private_t *dev_priv = dev->dev_private;
6109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6110         int pipe = intel_crtc->pipe;
6111         int dpll_reg = DPLL(pipe);
6112         int dpll = I915_READ(dpll_reg);
6113
6114         if (HAS_PCH_SPLIT(dev))
6115                 return;
6116
6117         if (!dev_priv->lvds_downclock_avail)
6118                 return;
6119
6120         /*
6121          * Since this is called by a timer, we should never get here in
6122          * the manual case.
6123          */
6124         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6125                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6126
6127                 /* Unlock panel regs */
6128                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6129                            PANEL_UNLOCK_REGS);
6130
6131                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6132                 I915_WRITE(dpll_reg, dpll);
6133                 intel_wait_for_vblank(dev, pipe);
6134                 dpll = I915_READ(dpll_reg);
6135                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6136                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6137
6138                 /* ...and lock them again */
6139                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6140         }
6141
6142 }
6143
6144 /**
6145  * intel_idle_update - adjust clocks for idleness
6146  * @work: work struct
6147  *
6148  * Either the GPU or display (or both) went idle.  Check the busy status
6149  * here and adjust the CRTC and GPU clocks as necessary.
6150  */
6151 static void intel_idle_update(struct work_struct *work)
6152 {
6153         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6154                                                     idle_work);
6155         struct drm_device *dev = dev_priv->dev;
6156         struct drm_crtc *crtc;
6157         struct intel_crtc *intel_crtc;
6158
6159         if (!i915_powersave)
6160                 return;
6161
6162         mutex_lock(&dev->struct_mutex);
6163
6164         i915_update_gfx_val(dev_priv);
6165
6166         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6167                 /* Skip inactive CRTCs */
6168                 if (!crtc->fb)
6169                         continue;
6170
6171                 intel_crtc = to_intel_crtc(crtc);
6172                 if (!intel_crtc->busy)
6173                         intel_decrease_pllclock(crtc);
6174         }
6175
6176
6177         mutex_unlock(&dev->struct_mutex);
6178 }
6179
6180 /**
6181  * intel_mark_busy - mark the GPU and possibly the display busy
6182  * @dev: drm device
6183  * @obj: object we're operating on
6184  *
6185  * Callers can use this function to indicate that the GPU is busy processing
6186  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6187  * buffer), we'll also mark the display as busy, so we know to increase its
6188  * clock frequency.
6189  */
6190 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6191 {
6192         drm_i915_private_t *dev_priv = dev->dev_private;
6193         struct drm_crtc *crtc = NULL;
6194         struct intel_framebuffer *intel_fb;
6195         struct intel_crtc *intel_crtc;
6196
6197         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6198                 return;
6199
6200         if (!dev_priv->busy)
6201                 dev_priv->busy = true;
6202         else
6203                 mod_timer(&dev_priv->idle_timer, jiffies +
6204                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6205
6206         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6207                 if (!crtc->fb)
6208                         continue;
6209
6210                 intel_crtc = to_intel_crtc(crtc);
6211                 intel_fb = to_intel_framebuffer(crtc->fb);
6212                 if (intel_fb->obj == obj) {
6213                         if (!intel_crtc->busy) {
6214                                 /* Non-busy -> busy, upclock */
6215                                 intel_increase_pllclock(crtc);
6216                                 intel_crtc->busy = true;
6217                         } else {
6218                                 /* Busy -> busy, put off timer */
6219                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6220                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6221                         }
6222                 }
6223         }
6224 }
6225
6226 static void intel_crtc_destroy(struct drm_crtc *crtc)
6227 {
6228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6229         struct drm_device *dev = crtc->dev;
6230         struct intel_unpin_work *work;
6231         unsigned long flags;
6232
6233         spin_lock_irqsave(&dev->event_lock, flags);
6234         work = intel_crtc->unpin_work;
6235         intel_crtc->unpin_work = NULL;
6236         spin_unlock_irqrestore(&dev->event_lock, flags);
6237
6238         if (work) {
6239                 cancel_work_sync(&work->work);
6240                 kfree(work);
6241         }
6242
6243         drm_crtc_cleanup(crtc);
6244
6245         kfree(intel_crtc);
6246 }
6247
6248 static void intel_unpin_work_fn(struct work_struct *__work)
6249 {
6250         struct intel_unpin_work *work =
6251                 container_of(__work, struct intel_unpin_work, work);
6252
6253         mutex_lock(&work->dev->struct_mutex);
6254         i915_gem_object_unpin(work->old_fb_obj);
6255         drm_gem_object_unreference(&work->pending_flip_obj->base);
6256         drm_gem_object_unreference(&work->old_fb_obj->base);
6257
6258         mutex_unlock(&work->dev->struct_mutex);
6259         kfree(work);
6260 }
6261
6262 static void do_intel_finish_page_flip(struct drm_device *dev,
6263                                       struct drm_crtc *crtc)
6264 {
6265         drm_i915_private_t *dev_priv = dev->dev_private;
6266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6267         struct intel_unpin_work *work;
6268         struct drm_i915_gem_object *obj;
6269         struct drm_pending_vblank_event *e;
6270         struct timeval tnow, tvbl;
6271         unsigned long flags;
6272
6273         /* Ignore early vblank irqs */
6274         if (intel_crtc == NULL)
6275                 return;
6276
6277         do_gettimeofday(&tnow);
6278
6279         spin_lock_irqsave(&dev->event_lock, flags);
6280         work = intel_crtc->unpin_work;
6281         if (work == NULL || !work->pending) {
6282                 spin_unlock_irqrestore(&dev->event_lock, flags);
6283                 return;
6284         }
6285
6286         intel_crtc->unpin_work = NULL;
6287
6288         if (work->event) {
6289                 e = work->event;
6290                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6291
6292                 /* Called before vblank count and timestamps have
6293                  * been updated for the vblank interval of flip
6294                  * completion? Need to increment vblank count and
6295                  * add one videorefresh duration to returned timestamp
6296                  * to account for this. We assume this happened if we
6297                  * get called over 0.9 frame durations after the last
6298                  * timestamped vblank.
6299                  *
6300                  * This calculation can not be used with vrefresh rates
6301                  * below 5Hz (10Hz to be on the safe side) without
6302                  * promoting to 64 integers.
6303                  */
6304                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6305                     9 * crtc->framedur_ns) {
6306                         e->event.sequence++;
6307                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6308                                              crtc->framedur_ns);
6309                 }
6310
6311                 e->event.tv_sec = tvbl.tv_sec;
6312                 e->event.tv_usec = tvbl.tv_usec;
6313
6314                 list_add_tail(&e->base.link,
6315                               &e->base.file_priv->event_list);
6316                 wake_up_interruptible(&e->base.file_priv->event_wait);
6317         }
6318
6319         drm_vblank_put(dev, intel_crtc->pipe);
6320
6321         spin_unlock_irqrestore(&dev->event_lock, flags);
6322
6323         obj = work->old_fb_obj;
6324
6325         atomic_clear_mask(1 << intel_crtc->plane,
6326                           &obj->pending_flip.counter);
6327         if (atomic_read(&obj->pending_flip) == 0)
6328                 wake_up(&dev_priv->pending_flip_queue);
6329
6330         schedule_work(&work->work);
6331
6332         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6333 }
6334
6335 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6336 {
6337         drm_i915_private_t *dev_priv = dev->dev_private;
6338         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6339
6340         do_intel_finish_page_flip(dev, crtc);
6341 }
6342
6343 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6344 {
6345         drm_i915_private_t *dev_priv = dev->dev_private;
6346         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6347
6348         do_intel_finish_page_flip(dev, crtc);
6349 }
6350
6351 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6352 {
6353         drm_i915_private_t *dev_priv = dev->dev_private;
6354         struct intel_crtc *intel_crtc =
6355                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6356         unsigned long flags;
6357
6358         spin_lock_irqsave(&dev->event_lock, flags);
6359         if (intel_crtc->unpin_work) {
6360                 if ((++intel_crtc->unpin_work->pending) > 1)
6361                         DRM_ERROR("Prepared flip multiple times\n");
6362         } else {
6363                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6364         }
6365         spin_unlock_irqrestore(&dev->event_lock, flags);
6366 }
6367
6368 static int intel_gen2_queue_flip(struct drm_device *dev,
6369                                  struct drm_crtc *crtc,
6370                                  struct drm_framebuffer *fb,
6371                                  struct drm_i915_gem_object *obj)
6372 {
6373         struct drm_i915_private *dev_priv = dev->dev_private;
6374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6375         unsigned long offset;
6376         u32 flip_mask;
6377         int ret;
6378
6379         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6380         if (ret)
6381                 goto out;
6382
6383         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6384         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6385
6386         ret = BEGIN_LP_RING(6);
6387         if (ret)
6388                 goto out;
6389
6390         /* Can't queue multiple flips, so wait for the previous
6391          * one to finish before executing the next.
6392          */
6393         if (intel_crtc->plane)
6394                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6395         else
6396                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6397         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6398         OUT_RING(MI_NOOP);
6399         OUT_RING(MI_DISPLAY_FLIP |
6400                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6401         OUT_RING(fb->pitch);
6402         OUT_RING(obj->gtt_offset + offset);
6403         OUT_RING(MI_NOOP);
6404         ADVANCE_LP_RING();
6405 out:
6406         return ret;
6407 }
6408
6409 static int intel_gen3_queue_flip(struct drm_device *dev,
6410                                  struct drm_crtc *crtc,
6411                                  struct drm_framebuffer *fb,
6412                                  struct drm_i915_gem_object *obj)
6413 {
6414         struct drm_i915_private *dev_priv = dev->dev_private;
6415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6416         unsigned long offset;
6417         u32 flip_mask;
6418         int ret;
6419
6420         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6421         if (ret)
6422                 goto out;
6423
6424         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6425         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6426
6427         ret = BEGIN_LP_RING(6);
6428         if (ret)
6429                 goto out;
6430
6431         if (intel_crtc->plane)
6432                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6433         else
6434                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6435         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6436         OUT_RING(MI_NOOP);
6437         OUT_RING(MI_DISPLAY_FLIP_I915 |
6438                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6439         OUT_RING(fb->pitch);
6440         OUT_RING(obj->gtt_offset + offset);
6441         OUT_RING(MI_NOOP);
6442
6443         ADVANCE_LP_RING();
6444 out:
6445         return ret;
6446 }
6447
6448 static int intel_gen4_queue_flip(struct drm_device *dev,
6449                                  struct drm_crtc *crtc,
6450                                  struct drm_framebuffer *fb,
6451                                  struct drm_i915_gem_object *obj)
6452 {
6453         struct drm_i915_private *dev_priv = dev->dev_private;
6454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6455         uint32_t pf, pipesrc;
6456         int ret;
6457
6458         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6459         if (ret)
6460                 goto out;
6461
6462         ret = BEGIN_LP_RING(4);
6463         if (ret)
6464                 goto out;
6465
6466         /* i965+ uses the linear or tiled offsets from the
6467          * Display Registers (which do not change across a page-flip)
6468          * so we need only reprogram the base address.
6469          */
6470         OUT_RING(MI_DISPLAY_FLIP |
6471                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6472         OUT_RING(fb->pitch);
6473         OUT_RING(obj->gtt_offset | obj->tiling_mode);
6474
6475         /* XXX Enabling the panel-fitter across page-flip is so far
6476          * untested on non-native modes, so ignore it for now.
6477          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6478          */
6479         pf = 0;
6480         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6481         OUT_RING(pf | pipesrc);
6482         ADVANCE_LP_RING();
6483 out:
6484         return ret;
6485 }
6486
6487 static int intel_gen6_queue_flip(struct drm_device *dev,
6488                                  struct drm_crtc *crtc,
6489                                  struct drm_framebuffer *fb,
6490                                  struct drm_i915_gem_object *obj)
6491 {
6492         struct drm_i915_private *dev_priv = dev->dev_private;
6493         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6494         uint32_t pf, pipesrc;
6495         int ret;
6496
6497         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6498         if (ret)
6499                 goto out;
6500
6501         ret = BEGIN_LP_RING(4);
6502         if (ret)
6503                 goto out;
6504
6505         OUT_RING(MI_DISPLAY_FLIP |
6506                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6507         OUT_RING(fb->pitch | obj->tiling_mode);
6508         OUT_RING(obj->gtt_offset);
6509
6510         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6511         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6512         OUT_RING(pf | pipesrc);
6513         ADVANCE_LP_RING();
6514 out:
6515         return ret;
6516 }
6517
6518 /*
6519  * On gen7 we currently use the blit ring because (in early silicon at least)
6520  * the render ring doesn't give us interrpts for page flip completion, which
6521  * means clients will hang after the first flip is queued.  Fortunately the
6522  * blit ring generates interrupts properly, so use it instead.
6523  */
6524 static int intel_gen7_queue_flip(struct drm_device *dev,
6525                                  struct drm_crtc *crtc,
6526                                  struct drm_framebuffer *fb,
6527                                  struct drm_i915_gem_object *obj)
6528 {
6529         struct drm_i915_private *dev_priv = dev->dev_private;
6530         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6531         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6532         int ret;
6533
6534         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6535         if (ret)
6536                 goto out;
6537
6538         ret = intel_ring_begin(ring, 4);
6539         if (ret)
6540                 goto out;
6541
6542         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6543         intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6544         intel_ring_emit(ring, (obj->gtt_offset));
6545         intel_ring_emit(ring, (MI_NOOP));
6546         intel_ring_advance(ring);
6547 out:
6548         return ret;
6549 }
6550
6551 static int intel_default_queue_flip(struct drm_device *dev,
6552                                     struct drm_crtc *crtc,
6553                                     struct drm_framebuffer *fb,
6554                                     struct drm_i915_gem_object *obj)
6555 {
6556         return -ENODEV;
6557 }
6558
6559 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6560                                 struct drm_framebuffer *fb,
6561                                 struct drm_pending_vblank_event *event)
6562 {
6563         struct drm_device *dev = crtc->dev;
6564         struct drm_i915_private *dev_priv = dev->dev_private;
6565         struct intel_framebuffer *intel_fb;
6566         struct drm_i915_gem_object *obj;
6567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6568         struct intel_unpin_work *work;
6569         unsigned long flags;
6570         int ret;
6571
6572         work = kzalloc(sizeof *work, GFP_KERNEL);
6573         if (work == NULL)
6574                 return -ENOMEM;
6575
6576         work->event = event;
6577         work->dev = crtc->dev;
6578         intel_fb = to_intel_framebuffer(crtc->fb);
6579         work->old_fb_obj = intel_fb->obj;
6580         INIT_WORK(&work->work, intel_unpin_work_fn);
6581
6582         /* We borrow the event spin lock for protecting unpin_work */
6583         spin_lock_irqsave(&dev->event_lock, flags);
6584         if (intel_crtc->unpin_work) {
6585                 spin_unlock_irqrestore(&dev->event_lock, flags);
6586                 kfree(work);
6587
6588                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6589                 return -EBUSY;
6590         }
6591         intel_crtc->unpin_work = work;
6592         spin_unlock_irqrestore(&dev->event_lock, flags);
6593
6594         intel_fb = to_intel_framebuffer(fb);
6595         obj = intel_fb->obj;
6596
6597         mutex_lock(&dev->struct_mutex);
6598
6599         /* Reference the objects for the scheduled work. */
6600         drm_gem_object_reference(&work->old_fb_obj->base);
6601         drm_gem_object_reference(&obj->base);
6602
6603         crtc->fb = fb;
6604
6605         ret = drm_vblank_get(dev, intel_crtc->pipe);
6606         if (ret)
6607                 goto cleanup_objs;
6608
6609         work->pending_flip_obj = obj;
6610
6611         work->enable_stall_check = true;
6612
6613         /* Block clients from rendering to the new back buffer until
6614          * the flip occurs and the object is no longer visible.
6615          */
6616         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6617
6618         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6619         if (ret)
6620                 goto cleanup_pending;
6621
6622         mutex_unlock(&dev->struct_mutex);
6623
6624         trace_i915_flip_request(intel_crtc->plane, obj);
6625
6626         return 0;
6627
6628 cleanup_pending:
6629         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6630 cleanup_objs:
6631         drm_gem_object_unreference(&work->old_fb_obj->base);
6632         drm_gem_object_unreference(&obj->base);
6633         mutex_unlock(&dev->struct_mutex);
6634
6635         spin_lock_irqsave(&dev->event_lock, flags);
6636         intel_crtc->unpin_work = NULL;
6637         spin_unlock_irqrestore(&dev->event_lock, flags);
6638
6639         kfree(work);
6640
6641         return ret;
6642 }
6643
6644 static void intel_sanitize_modesetting(struct drm_device *dev,
6645                                        int pipe, int plane)
6646 {
6647         struct drm_i915_private *dev_priv = dev->dev_private;
6648         u32 reg, val;
6649
6650         if (HAS_PCH_SPLIT(dev))
6651                 return;
6652
6653         /* Who knows what state these registers were left in by the BIOS or
6654          * grub?
6655          *
6656          * If we leave the registers in a conflicting state (e.g. with the
6657          * display plane reading from the other pipe than the one we intend
6658          * to use) then when we attempt to teardown the active mode, we will
6659          * not disable the pipes and planes in the correct order -- leaving
6660          * a plane reading from a disabled pipe and possibly leading to
6661          * undefined behaviour.
6662          */
6663
6664         reg = DSPCNTR(plane);
6665         val = I915_READ(reg);
6666
6667         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6668                 return;
6669         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6670                 return;
6671
6672         /* This display plane is active and attached to the other CPU pipe. */
6673         pipe = !pipe;
6674
6675         /* Disable the plane and wait for it to stop reading from the pipe. */
6676         intel_disable_plane(dev_priv, plane, pipe);
6677         intel_disable_pipe(dev_priv, pipe);
6678 }
6679
6680 static void intel_crtc_reset(struct drm_crtc *crtc)
6681 {
6682         struct drm_device *dev = crtc->dev;
6683         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6684
6685         /* Reset flags back to the 'unknown' status so that they
6686          * will be correctly set on the initial modeset.
6687          */
6688         intel_crtc->dpms_mode = -1;
6689
6690         /* We need to fix up any BIOS configuration that conflicts with
6691          * our expectations.
6692          */
6693         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6694 }
6695
6696 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6697         .dpms = intel_crtc_dpms,
6698         .mode_fixup = intel_crtc_mode_fixup,
6699         .mode_set = intel_crtc_mode_set,
6700         .mode_set_base = intel_pipe_set_base,
6701         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6702         .load_lut = intel_crtc_load_lut,
6703         .disable = intel_crtc_disable,
6704 };
6705
6706 static const struct drm_crtc_funcs intel_crtc_funcs = {
6707         .reset = intel_crtc_reset,
6708         .cursor_set = intel_crtc_cursor_set,
6709         .cursor_move = intel_crtc_cursor_move,
6710         .gamma_set = intel_crtc_gamma_set,
6711         .set_config = drm_crtc_helper_set_config,
6712         .destroy = intel_crtc_destroy,
6713         .page_flip = intel_crtc_page_flip,
6714 };
6715
6716 static void intel_crtc_init(struct drm_device *dev, int pipe)
6717 {
6718         drm_i915_private_t *dev_priv = dev->dev_private;
6719         struct intel_crtc *intel_crtc;
6720         int i;
6721
6722         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6723         if (intel_crtc == NULL)
6724                 return;
6725
6726         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6727
6728         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6729         for (i = 0; i < 256; i++) {
6730                 intel_crtc->lut_r[i] = i;
6731                 intel_crtc->lut_g[i] = i;
6732                 intel_crtc->lut_b[i] = i;
6733         }
6734
6735         /* Swap pipes & planes for FBC on pre-965 */
6736         intel_crtc->pipe = pipe;
6737         intel_crtc->plane = pipe;
6738         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6739                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6740                 intel_crtc->plane = !pipe;
6741         }
6742
6743         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6744                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6745         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6746         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6747
6748         intel_crtc_reset(&intel_crtc->base);
6749         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6750         intel_crtc->bpp = 24; /* default for pre-Ironlake */
6751
6752         if (HAS_PCH_SPLIT(dev)) {
6753                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6754                 intel_helper_funcs.commit = ironlake_crtc_commit;
6755         } else {
6756                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6757                 intel_helper_funcs.commit = i9xx_crtc_commit;
6758         }
6759
6760         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6761
6762         intel_crtc->busy = false;
6763
6764         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6765                     (unsigned long)intel_crtc);
6766 }
6767
6768 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6769                                 struct drm_file *file)
6770 {
6771         drm_i915_private_t *dev_priv = dev->dev_private;
6772         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6773         struct drm_mode_object *drmmode_obj;
6774         struct intel_crtc *crtc;
6775
6776         if (!dev_priv) {
6777                 DRM_ERROR("called with no initialization\n");
6778                 return -EINVAL;
6779         }
6780
6781         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6782                         DRM_MODE_OBJECT_CRTC);
6783
6784         if (!drmmode_obj) {
6785                 DRM_ERROR("no such CRTC id\n");
6786                 return -EINVAL;
6787         }
6788
6789         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6790         pipe_from_crtc_id->pipe = crtc->pipe;
6791
6792         return 0;
6793 }
6794
6795 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6796 {
6797         struct intel_encoder *encoder;
6798         int index_mask = 0;
6799         int entry = 0;
6800
6801         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6802                 if (type_mask & encoder->clone_mask)
6803                         index_mask |= (1 << entry);
6804                 entry++;
6805         }
6806
6807         return index_mask;
6808 }
6809
6810 static bool has_edp_a(struct drm_device *dev)
6811 {
6812         struct drm_i915_private *dev_priv = dev->dev_private;
6813
6814         if (!IS_MOBILE(dev))
6815                 return false;
6816
6817         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6818                 return false;
6819
6820         if (IS_GEN5(dev) &&
6821             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6822                 return false;
6823
6824         return true;
6825 }
6826
6827 static void intel_setup_outputs(struct drm_device *dev)
6828 {
6829         struct drm_i915_private *dev_priv = dev->dev_private;
6830         struct intel_encoder *encoder;
6831         bool dpd_is_edp = false;
6832         bool has_lvds = false;
6833
6834         if (IS_MOBILE(dev) && !IS_I830(dev))
6835                 has_lvds = intel_lvds_init(dev);
6836         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6837                 /* disable the panel fitter on everything but LVDS */
6838                 I915_WRITE(PFIT_CONTROL, 0);
6839         }
6840
6841         if (HAS_PCH_SPLIT(dev)) {
6842                 dpd_is_edp = intel_dpd_is_edp(dev);
6843
6844                 if (has_edp_a(dev))
6845                         intel_dp_init(dev, DP_A);
6846
6847                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6848                         intel_dp_init(dev, PCH_DP_D);
6849         }
6850
6851         intel_crt_init(dev);
6852
6853         if (HAS_PCH_SPLIT(dev)) {
6854                 int found;
6855
6856                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6857                         /* PCH SDVOB multiplex with HDMIB */
6858                         found = intel_sdvo_init(dev, PCH_SDVOB);
6859                         if (!found)
6860                                 intel_hdmi_init(dev, HDMIB);
6861                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6862                                 intel_dp_init(dev, PCH_DP_B);
6863                 }
6864
6865                 if (I915_READ(HDMIC) & PORT_DETECTED)
6866                         intel_hdmi_init(dev, HDMIC);
6867
6868                 if (I915_READ(HDMID) & PORT_DETECTED)
6869                         intel_hdmi_init(dev, HDMID);
6870
6871                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6872                         intel_dp_init(dev, PCH_DP_C);
6873
6874                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6875                         intel_dp_init(dev, PCH_DP_D);
6876
6877         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6878                 bool found = false;
6879
6880                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6881                         DRM_DEBUG_KMS("probing SDVOB\n");
6882                         found = intel_sdvo_init(dev, SDVOB);
6883                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6884                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6885                                 intel_hdmi_init(dev, SDVOB);
6886                         }
6887
6888                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6889                                 DRM_DEBUG_KMS("probing DP_B\n");
6890                                 intel_dp_init(dev, DP_B);
6891                         }
6892                 }
6893
6894                 /* Before G4X SDVOC doesn't have its own detect register */
6895
6896                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6897                         DRM_DEBUG_KMS("probing SDVOC\n");
6898                         found = intel_sdvo_init(dev, SDVOC);
6899                 }
6900
6901                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6902
6903                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6904                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6905                                 intel_hdmi_init(dev, SDVOC);
6906                         }
6907                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6908                                 DRM_DEBUG_KMS("probing DP_C\n");
6909                                 intel_dp_init(dev, DP_C);
6910                         }
6911                 }
6912
6913                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6914                     (I915_READ(DP_D) & DP_DETECTED)) {
6915                         DRM_DEBUG_KMS("probing DP_D\n");
6916                         intel_dp_init(dev, DP_D);
6917                 }
6918         } else if (IS_GEN2(dev))
6919                 intel_dvo_init(dev);
6920
6921         if (SUPPORTS_TV(dev))
6922                 intel_tv_init(dev);
6923
6924         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6925                 encoder->base.possible_crtcs = encoder->crtc_mask;
6926                 encoder->base.possible_clones =
6927                         intel_encoder_clones(dev, encoder->clone_mask);
6928         }
6929
6930         intel_panel_setup_backlight(dev);
6931
6932         /* disable all the possible outputs/crtcs before entering KMS mode */
6933         drm_helper_disable_unused_functions(dev);
6934 }
6935
6936 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6937 {
6938         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6939
6940         drm_framebuffer_cleanup(fb);
6941         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6942
6943         kfree(intel_fb);
6944 }
6945
6946 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6947                                                 struct drm_file *file,
6948                                                 unsigned int *handle)
6949 {
6950         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6951         struct drm_i915_gem_object *obj = intel_fb->obj;
6952
6953         return drm_gem_handle_create(file, &obj->base, handle);
6954 }
6955
6956 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6957         .destroy = intel_user_framebuffer_destroy,
6958         .create_handle = intel_user_framebuffer_create_handle,
6959 };
6960
6961 int intel_framebuffer_init(struct drm_device *dev,
6962                            struct intel_framebuffer *intel_fb,
6963                            struct drm_mode_fb_cmd *mode_cmd,
6964                            struct drm_i915_gem_object *obj)
6965 {
6966         int ret;
6967
6968         if (obj->tiling_mode == I915_TILING_Y)
6969                 return -EINVAL;
6970
6971         if (mode_cmd->pitch & 63)
6972                 return -EINVAL;
6973
6974         switch (mode_cmd->bpp) {
6975         case 8:
6976         case 16:
6977         case 24:
6978         case 32:
6979                 break;
6980         default:
6981                 return -EINVAL;
6982         }
6983
6984         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6985         if (ret) {
6986                 DRM_ERROR("framebuffer init failed %d\n", ret);
6987                 return ret;
6988         }
6989
6990         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6991         intel_fb->obj = obj;
6992         return 0;
6993 }
6994
6995 static struct drm_framebuffer *
6996 intel_user_framebuffer_create(struct drm_device *dev,
6997                               struct drm_file *filp,
6998                               struct drm_mode_fb_cmd *mode_cmd)
6999 {
7000         struct drm_i915_gem_object *obj;
7001
7002         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7003         if (&obj->base == NULL)
7004                 return ERR_PTR(-ENOENT);
7005
7006         return intel_framebuffer_create(dev, mode_cmd, obj);
7007 }
7008
7009 static const struct drm_mode_config_funcs intel_mode_funcs = {
7010         .fb_create = intel_user_framebuffer_create,
7011         .output_poll_changed = intel_fb_output_poll_changed,
7012 };
7013
7014 static struct drm_i915_gem_object *
7015 intel_alloc_context_page(struct drm_device *dev)
7016 {
7017         struct drm_i915_gem_object *ctx;
7018         int ret;
7019
7020         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7021
7022         ctx = i915_gem_alloc_object(dev, 4096);
7023         if (!ctx) {
7024                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7025                 return NULL;
7026         }
7027
7028         ret = i915_gem_object_pin(ctx, 4096, true);
7029         if (ret) {
7030                 DRM_ERROR("failed to pin power context: %d\n", ret);
7031                 goto err_unref;
7032         }
7033
7034         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7035         if (ret) {
7036                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7037                 goto err_unpin;
7038         }
7039
7040         return ctx;
7041
7042 err_unpin:
7043         i915_gem_object_unpin(ctx);
7044 err_unref:
7045         drm_gem_object_unreference(&ctx->base);
7046         mutex_unlock(&dev->struct_mutex);
7047         return NULL;
7048 }
7049
7050 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7051 {
7052         struct drm_i915_private *dev_priv = dev->dev_private;
7053         u16 rgvswctl;
7054
7055         rgvswctl = I915_READ16(MEMSWCTL);
7056         if (rgvswctl & MEMCTL_CMD_STS) {
7057                 DRM_DEBUG("gpu busy, RCS change rejected\n");
7058                 return false; /* still busy with another command */
7059         }
7060
7061         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7062                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7063         I915_WRITE16(MEMSWCTL, rgvswctl);
7064         POSTING_READ16(MEMSWCTL);
7065
7066         rgvswctl |= MEMCTL_CMD_STS;
7067         I915_WRITE16(MEMSWCTL, rgvswctl);
7068
7069         return true;
7070 }
7071
7072 void ironlake_enable_drps(struct drm_device *dev)
7073 {
7074         struct drm_i915_private *dev_priv = dev->dev_private;
7075         u32 rgvmodectl = I915_READ(MEMMODECTL);
7076         u8 fmax, fmin, fstart, vstart;
7077
7078         /* Enable temp reporting */
7079         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7080         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7081
7082         /* 100ms RC evaluation intervals */
7083         I915_WRITE(RCUPEI, 100000);
7084         I915_WRITE(RCDNEI, 100000);
7085
7086         /* Set max/min thresholds to 90ms and 80ms respectively */
7087         I915_WRITE(RCBMAXAVG, 90000);
7088         I915_WRITE(RCBMINAVG, 80000);
7089
7090         I915_WRITE(MEMIHYST, 1);
7091
7092         /* Set up min, max, and cur for interrupt handling */
7093         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7094         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7095         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7096                 MEMMODE_FSTART_SHIFT;
7097
7098         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7099                 PXVFREQ_PX_SHIFT;
7100
7101         dev_priv->fmax = fmax; /* IPS callback will increase this */
7102         dev_priv->fstart = fstart;
7103
7104         dev_priv->max_delay = fstart;
7105         dev_priv->min_delay = fmin;
7106         dev_priv->cur_delay = fstart;
7107
7108         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7109                          fmax, fmin, fstart);
7110
7111         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7112
7113         /*
7114          * Interrupts will be enabled in ironlake_irq_postinstall
7115          */
7116
7117         I915_WRITE(VIDSTART, vstart);
7118         POSTING_READ(VIDSTART);
7119
7120         rgvmodectl |= MEMMODE_SWMODE_EN;
7121         I915_WRITE(MEMMODECTL, rgvmodectl);
7122
7123         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7124                 DRM_ERROR("stuck trying to change perf mode\n");
7125         msleep(1);
7126
7127         ironlake_set_drps(dev, fstart);
7128
7129         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7130                 I915_READ(0x112e0);
7131         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7132         dev_priv->last_count2 = I915_READ(0x112f4);
7133         getrawmonotonic(&dev_priv->last_time2);
7134 }
7135
7136 void ironlake_disable_drps(struct drm_device *dev)
7137 {
7138         struct drm_i915_private *dev_priv = dev->dev_private;
7139         u16 rgvswctl = I915_READ16(MEMSWCTL);
7140
7141         /* Ack interrupts, disable EFC interrupt */
7142         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7143         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7144         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7145         I915_WRITE(DEIIR, DE_PCU_EVENT);
7146         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7147
7148         /* Go back to the starting frequency */
7149         ironlake_set_drps(dev, dev_priv->fstart);
7150         msleep(1);
7151         rgvswctl |= MEMCTL_CMD_STS;
7152         I915_WRITE(MEMSWCTL, rgvswctl);
7153         msleep(1);
7154
7155 }
7156
7157 void gen6_set_rps(struct drm_device *dev, u8 val)
7158 {
7159         struct drm_i915_private *dev_priv = dev->dev_private;
7160         u32 swreq;
7161
7162         swreq = (val & 0x3ff) << 25;
7163         I915_WRITE(GEN6_RPNSWREQ, swreq);
7164 }
7165
7166 void gen6_disable_rps(struct drm_device *dev)
7167 {
7168         struct drm_i915_private *dev_priv = dev->dev_private;
7169
7170         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7171         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7172         I915_WRITE(GEN6_PMIER, 0);
7173
7174         spin_lock_irq(&dev_priv->rps_lock);
7175         dev_priv->pm_iir = 0;
7176         spin_unlock_irq(&dev_priv->rps_lock);
7177
7178         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7179 }
7180
7181 static unsigned long intel_pxfreq(u32 vidfreq)
7182 {
7183         unsigned long freq;
7184         int div = (vidfreq & 0x3f0000) >> 16;
7185         int post = (vidfreq & 0x3000) >> 12;
7186         int pre = (vidfreq & 0x7);
7187
7188         if (!pre)
7189                 return 0;
7190
7191         freq = ((div * 133333) / ((1<<post) * pre));
7192
7193         return freq;
7194 }
7195
7196 void intel_init_emon(struct drm_device *dev)
7197 {
7198         struct drm_i915_private *dev_priv = dev->dev_private;
7199         u32 lcfuse;
7200         u8 pxw[16];
7201         int i;
7202
7203         /* Disable to program */
7204         I915_WRITE(ECR, 0);
7205         POSTING_READ(ECR);
7206
7207         /* Program energy weights for various events */
7208         I915_WRITE(SDEW, 0x15040d00);
7209         I915_WRITE(CSIEW0, 0x007f0000);
7210         I915_WRITE(CSIEW1, 0x1e220004);
7211         I915_WRITE(CSIEW2, 0x04000004);
7212
7213         for (i = 0; i < 5; i++)
7214                 I915_WRITE(PEW + (i * 4), 0);
7215         for (i = 0; i < 3; i++)
7216                 I915_WRITE(DEW + (i * 4), 0);
7217
7218         /* Program P-state weights to account for frequency power adjustment */
7219         for (i = 0; i < 16; i++) {
7220                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7221                 unsigned long freq = intel_pxfreq(pxvidfreq);
7222                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7223                         PXVFREQ_PX_SHIFT;
7224                 unsigned long val;
7225
7226                 val = vid * vid;
7227                 val *= (freq / 1000);
7228                 val *= 255;
7229                 val /= (127*127*900);
7230                 if (val > 0xff)
7231                         DRM_ERROR("bad pxval: %ld\n", val);
7232                 pxw[i] = val;
7233         }
7234         /* Render standby states get 0 weight */
7235         pxw[14] = 0;
7236         pxw[15] = 0;
7237
7238         for (i = 0; i < 4; i++) {
7239                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7240                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7241                 I915_WRITE(PXW + (i * 4), val);
7242         }
7243
7244         /* Adjust magic regs to magic values (more experimental results) */
7245         I915_WRITE(OGW0, 0);
7246         I915_WRITE(OGW1, 0);
7247         I915_WRITE(EG0, 0x00007f00);
7248         I915_WRITE(EG1, 0x0000000e);
7249         I915_WRITE(EG2, 0x000e0000);
7250         I915_WRITE(EG3, 0x68000300);
7251         I915_WRITE(EG4, 0x42000000);
7252         I915_WRITE(EG5, 0x00140031);
7253         I915_WRITE(EG6, 0);
7254         I915_WRITE(EG7, 0);
7255
7256         for (i = 0; i < 8; i++)
7257                 I915_WRITE(PXWL + (i * 4), 0);
7258
7259         /* Enable PMON + select events */
7260         I915_WRITE(ECR, 0x80000019);
7261
7262         lcfuse = I915_READ(LCFUSE02);
7263
7264         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7265 }
7266
7267 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7268 {
7269         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7270         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7271         u32 pcu_mbox, rc6_mask = 0;
7272         int cur_freq, min_freq, max_freq;
7273         int i;
7274
7275         /* Here begins a magic sequence of register writes to enable
7276          * auto-downclocking.
7277          *
7278          * Perhaps there might be some value in exposing these to
7279          * userspace...
7280          */
7281         I915_WRITE(GEN6_RC_STATE, 0);
7282         mutex_lock(&dev_priv->dev->struct_mutex);
7283         gen6_gt_force_wake_get(dev_priv);
7284
7285         /* disable the counters and set deterministic thresholds */
7286         I915_WRITE(GEN6_RC_CONTROL, 0);
7287
7288         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7289         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7290         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7291         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7292         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7293
7294         for (i = 0; i < I915_NUM_RINGS; i++)
7295                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7296
7297         I915_WRITE(GEN6_RC_SLEEP, 0);
7298         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7299         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7300         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7301         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7302
7303         if (i915_enable_rc6)
7304                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7305                         GEN6_RC_CTL_RC6_ENABLE;
7306
7307         I915_WRITE(GEN6_RC_CONTROL,
7308                    rc6_mask |
7309                    GEN6_RC_CTL_EI_MODE(1) |
7310                    GEN6_RC_CTL_HW_ENABLE);
7311
7312         I915_WRITE(GEN6_RPNSWREQ,
7313                    GEN6_FREQUENCY(10) |
7314                    GEN6_OFFSET(0) |
7315                    GEN6_AGGRESSIVE_TURBO);
7316         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7317                    GEN6_FREQUENCY(12));
7318
7319         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7320         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7321                    18 << 24 |
7322                    6 << 16);
7323         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7324         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7325         I915_WRITE(GEN6_RP_UP_EI, 100000);
7326         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7327         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7328         I915_WRITE(GEN6_RP_CONTROL,
7329                    GEN6_RP_MEDIA_TURBO |
7330                    GEN6_RP_USE_NORMAL_FREQ |
7331                    GEN6_RP_MEDIA_IS_GFX |
7332                    GEN6_RP_ENABLE |
7333                    GEN6_RP_UP_BUSY_AVG |
7334                    GEN6_RP_DOWN_IDLE_CONT);
7335
7336         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7337                      500))
7338                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7339
7340         I915_WRITE(GEN6_PCODE_DATA, 0);
7341         I915_WRITE(GEN6_PCODE_MAILBOX,
7342                    GEN6_PCODE_READY |
7343                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7344         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7345                      500))
7346                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7347
7348         min_freq = (rp_state_cap & 0xff0000) >> 16;
7349         max_freq = rp_state_cap & 0xff;
7350         cur_freq = (gt_perf_status & 0xff00) >> 8;
7351
7352         /* Check for overclock support */
7353         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7354                      500))
7355                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7356         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7357         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7358         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7359                      500))
7360                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7361         if (pcu_mbox & (1<<31)) { /* OC supported */
7362                 max_freq = pcu_mbox & 0xff;
7363                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7364         }
7365
7366         /* In units of 100MHz */
7367         dev_priv->max_delay = max_freq;
7368         dev_priv->min_delay = min_freq;
7369         dev_priv->cur_delay = cur_freq;
7370
7371         /* requires MSI enabled */
7372         I915_WRITE(GEN6_PMIER,
7373                    GEN6_PM_MBOX_EVENT |
7374                    GEN6_PM_THERMAL_EVENT |
7375                    GEN6_PM_RP_DOWN_TIMEOUT |
7376                    GEN6_PM_RP_UP_THRESHOLD |
7377                    GEN6_PM_RP_DOWN_THRESHOLD |
7378                    GEN6_PM_RP_UP_EI_EXPIRED |
7379                    GEN6_PM_RP_DOWN_EI_EXPIRED);
7380         spin_lock_irq(&dev_priv->rps_lock);
7381         WARN_ON(dev_priv->pm_iir != 0);
7382         I915_WRITE(GEN6_PMIMR, 0);
7383         spin_unlock_irq(&dev_priv->rps_lock);
7384         /* enable all PM interrupts */
7385         I915_WRITE(GEN6_PMINTRMSK, 0);
7386
7387         gen6_gt_force_wake_put(dev_priv);
7388         mutex_unlock(&dev_priv->dev->struct_mutex);
7389 }
7390
7391 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7392 {
7393         int min_freq = 15;
7394         int gpu_freq, ia_freq, max_ia_freq;
7395         int scaling_factor = 180;
7396
7397         max_ia_freq = cpufreq_quick_get_max(0);
7398         /*
7399          * Default to measured freq if none found, PCU will ensure we don't go
7400          * over
7401          */
7402         if (!max_ia_freq)
7403                 max_ia_freq = tsc_khz;
7404
7405         /* Convert from kHz to MHz */
7406         max_ia_freq /= 1000;
7407
7408         mutex_lock(&dev_priv->dev->struct_mutex);
7409
7410         /*
7411          * For each potential GPU frequency, load a ring frequency we'd like
7412          * to use for memory access.  We do this by specifying the IA frequency
7413          * the PCU should use as a reference to determine the ring frequency.
7414          */
7415         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7416              gpu_freq--) {
7417                 int diff = dev_priv->max_delay - gpu_freq;
7418
7419                 /*
7420                  * For GPU frequencies less than 750MHz, just use the lowest
7421                  * ring freq.
7422                  */
7423                 if (gpu_freq < min_freq)
7424                         ia_freq = 800;
7425                 else
7426                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7427                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7428
7429                 I915_WRITE(GEN6_PCODE_DATA,
7430                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7431                            gpu_freq);
7432                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7433                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7434                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7435                               GEN6_PCODE_READY) == 0, 10)) {
7436                         DRM_ERROR("pcode write of freq table timed out\n");
7437                         continue;
7438                 }
7439         }
7440
7441         mutex_unlock(&dev_priv->dev->struct_mutex);
7442 }
7443
7444 static void ironlake_init_clock_gating(struct drm_device *dev)
7445 {
7446         struct drm_i915_private *dev_priv = dev->dev_private;
7447         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7448
7449         /* Required for FBC */
7450         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7451                 DPFCRUNIT_CLOCK_GATE_DISABLE |
7452                 DPFDUNIT_CLOCK_GATE_DISABLE;
7453         /* Required for CxSR */
7454         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7455
7456         I915_WRITE(PCH_3DCGDIS0,
7457                    MARIUNIT_CLOCK_GATE_DISABLE |
7458                    SVSMUNIT_CLOCK_GATE_DISABLE);
7459         I915_WRITE(PCH_3DCGDIS1,
7460                    VFMUNIT_CLOCK_GATE_DISABLE);
7461
7462         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7463
7464         /*
7465          * According to the spec the following bits should be set in
7466          * order to enable memory self-refresh
7467          * The bit 22/21 of 0x42004
7468          * The bit 5 of 0x42020
7469          * The bit 15 of 0x45000
7470          */
7471         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7472                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
7473                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7474         I915_WRITE(ILK_DSPCLK_GATE,
7475                    (I915_READ(ILK_DSPCLK_GATE) |
7476                     ILK_DPARB_CLK_GATE));
7477         I915_WRITE(DISP_ARB_CTL,
7478                    (I915_READ(DISP_ARB_CTL) |
7479                     DISP_FBC_WM_DIS));
7480         I915_WRITE(WM3_LP_ILK, 0);
7481         I915_WRITE(WM2_LP_ILK, 0);
7482         I915_WRITE(WM1_LP_ILK, 0);
7483
7484         /*
7485          * Based on the document from hardware guys the following bits
7486          * should be set unconditionally in order to enable FBC.
7487          * The bit 22 of 0x42000
7488          * The bit 22 of 0x42004
7489          * The bit 7,8,9 of 0x42020.
7490          */
7491         if (IS_IRONLAKE_M(dev)) {
7492                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7493                            I915_READ(ILK_DISPLAY_CHICKEN1) |
7494                            ILK_FBCQ_DIS);
7495                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7496                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7497                            ILK_DPARB_GATE);
7498                 I915_WRITE(ILK_DSPCLK_GATE,
7499                            I915_READ(ILK_DSPCLK_GATE) |
7500                            ILK_DPFC_DIS1 |
7501                            ILK_DPFC_DIS2 |
7502                            ILK_CLK_FBC);
7503         }
7504
7505         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7506                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7507                    ILK_ELPIN_409_SELECT);
7508         I915_WRITE(_3D_CHICKEN2,
7509                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7510                    _3D_CHICKEN2_WM_READ_PIPELINED);
7511 }
7512
7513 static void gen6_init_clock_gating(struct drm_device *dev)
7514 {
7515         struct drm_i915_private *dev_priv = dev->dev_private;
7516         int pipe;
7517         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7518
7519         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7520
7521         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7522                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7523                    ILK_ELPIN_409_SELECT);
7524
7525         I915_WRITE(WM3_LP_ILK, 0);
7526         I915_WRITE(WM2_LP_ILK, 0);
7527         I915_WRITE(WM1_LP_ILK, 0);
7528
7529         /*
7530          * According to the spec the following bits should be
7531          * set in order to enable memory self-refresh and fbc:
7532          * The bit21 and bit22 of 0x42000
7533          * The bit21 and bit22 of 0x42004
7534          * The bit5 and bit7 of 0x42020
7535          * The bit14 of 0x70180
7536          * The bit14 of 0x71180
7537          */
7538         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7539                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7540                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7541         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7542                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7543                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7544         I915_WRITE(ILK_DSPCLK_GATE,
7545                    I915_READ(ILK_DSPCLK_GATE) |
7546                    ILK_DPARB_CLK_GATE  |
7547                    ILK_DPFD_CLK_GATE);
7548
7549         for_each_pipe(pipe)
7550                 I915_WRITE(DSPCNTR(pipe),
7551                            I915_READ(DSPCNTR(pipe)) |
7552                            DISPPLANE_TRICKLE_FEED_DISABLE);
7553 }
7554
7555 static void ivybridge_init_clock_gating(struct drm_device *dev)
7556 {
7557         struct drm_i915_private *dev_priv = dev->dev_private;
7558         int pipe;
7559         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7560
7561         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7562
7563         I915_WRITE(WM3_LP_ILK, 0);
7564         I915_WRITE(WM2_LP_ILK, 0);
7565         I915_WRITE(WM1_LP_ILK, 0);
7566
7567         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7568
7569         for_each_pipe(pipe)
7570                 I915_WRITE(DSPCNTR(pipe),
7571                            I915_READ(DSPCNTR(pipe)) |
7572                            DISPPLANE_TRICKLE_FEED_DISABLE);
7573 }
7574
7575 static void g4x_init_clock_gating(struct drm_device *dev)
7576 {
7577         struct drm_i915_private *dev_priv = dev->dev_private;
7578         uint32_t dspclk_gate;
7579
7580         I915_WRITE(RENCLK_GATE_D1, 0);
7581         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7582                    GS_UNIT_CLOCK_GATE_DISABLE |
7583                    CL_UNIT_CLOCK_GATE_DISABLE);
7584         I915_WRITE(RAMCLK_GATE_D, 0);
7585         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7586                 OVRUNIT_CLOCK_GATE_DISABLE |
7587                 OVCUNIT_CLOCK_GATE_DISABLE;
7588         if (IS_GM45(dev))
7589                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7590         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7591 }
7592
7593 static void crestline_init_clock_gating(struct drm_device *dev)
7594 {
7595         struct drm_i915_private *dev_priv = dev->dev_private;
7596
7597         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7598         I915_WRITE(RENCLK_GATE_D2, 0);
7599         I915_WRITE(DSPCLK_GATE_D, 0);
7600         I915_WRITE(RAMCLK_GATE_D, 0);
7601         I915_WRITE16(DEUC, 0);
7602 }
7603
7604 static void broadwater_init_clock_gating(struct drm_device *dev)
7605 {
7606         struct drm_i915_private *dev_priv = dev->dev_private;
7607
7608         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7609                    I965_RCC_CLOCK_GATE_DISABLE |
7610                    I965_RCPB_CLOCK_GATE_DISABLE |
7611                    I965_ISC_CLOCK_GATE_DISABLE |
7612                    I965_FBC_CLOCK_GATE_DISABLE);
7613         I915_WRITE(RENCLK_GATE_D2, 0);
7614 }
7615
7616 static void gen3_init_clock_gating(struct drm_device *dev)
7617 {
7618         struct drm_i915_private *dev_priv = dev->dev_private;
7619         u32 dstate = I915_READ(D_STATE);
7620
7621         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7622                 DSTATE_DOT_CLOCK_GATING;
7623         I915_WRITE(D_STATE, dstate);
7624 }
7625
7626 static void i85x_init_clock_gating(struct drm_device *dev)
7627 {
7628         struct drm_i915_private *dev_priv = dev->dev_private;
7629
7630         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7631 }
7632
7633 static void i830_init_clock_gating(struct drm_device *dev)
7634 {
7635         struct drm_i915_private *dev_priv = dev->dev_private;
7636
7637         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7638 }
7639
7640 static void ibx_init_clock_gating(struct drm_device *dev)
7641 {
7642         struct drm_i915_private *dev_priv = dev->dev_private;
7643
7644         /*
7645          * On Ibex Peak and Cougar Point, we need to disable clock
7646          * gating for the panel power sequencer or it will fail to
7647          * start up when no ports are active.
7648          */
7649         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7650 }
7651
7652 static void cpt_init_clock_gating(struct drm_device *dev)
7653 {
7654         struct drm_i915_private *dev_priv = dev->dev_private;
7655
7656         /*
7657          * On Ibex Peak and Cougar Point, we need to disable clock
7658          * gating for the panel power sequencer or it will fail to
7659          * start up when no ports are active.
7660          */
7661         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7662         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7663                    DPLS_EDP_PPS_FIX_DIS);
7664 }
7665
7666 static void ironlake_teardown_rc6(struct drm_device *dev)
7667 {
7668         struct drm_i915_private *dev_priv = dev->dev_private;
7669
7670         if (dev_priv->renderctx) {
7671                 i915_gem_object_unpin(dev_priv->renderctx);
7672                 drm_gem_object_unreference(&dev_priv->renderctx->base);
7673                 dev_priv->renderctx = NULL;
7674         }
7675
7676         if (dev_priv->pwrctx) {
7677                 i915_gem_object_unpin(dev_priv->pwrctx);
7678                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7679                 dev_priv->pwrctx = NULL;
7680         }
7681 }
7682
7683 static void ironlake_disable_rc6(struct drm_device *dev)
7684 {
7685         struct drm_i915_private *dev_priv = dev->dev_private;
7686
7687         if (I915_READ(PWRCTXA)) {
7688                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7689                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7690                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7691                          50);
7692
7693                 I915_WRITE(PWRCTXA, 0);
7694                 POSTING_READ(PWRCTXA);
7695
7696                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7697                 POSTING_READ(RSTDBYCTL);
7698         }
7699
7700         ironlake_teardown_rc6(dev);
7701 }
7702
7703 static int ironlake_setup_rc6(struct drm_device *dev)
7704 {
7705         struct drm_i915_private *dev_priv = dev->dev_private;
7706
7707         if (dev_priv->renderctx == NULL)
7708                 dev_priv->renderctx = intel_alloc_context_page(dev);
7709         if (!dev_priv->renderctx)
7710                 return -ENOMEM;
7711
7712         if (dev_priv->pwrctx == NULL)
7713                 dev_priv->pwrctx = intel_alloc_context_page(dev);
7714         if (!dev_priv->pwrctx) {
7715                 ironlake_teardown_rc6(dev);
7716                 return -ENOMEM;
7717         }
7718
7719         return 0;
7720 }
7721
7722 void ironlake_enable_rc6(struct drm_device *dev)
7723 {
7724         struct drm_i915_private *dev_priv = dev->dev_private;
7725         int ret;
7726
7727         /* rc6 disabled by default due to repeated reports of hanging during
7728          * boot and resume.
7729          */
7730         if (!i915_enable_rc6)
7731                 return;
7732
7733         mutex_lock(&dev->struct_mutex);
7734         ret = ironlake_setup_rc6(dev);
7735         if (ret) {
7736                 mutex_unlock(&dev->struct_mutex);
7737                 return;
7738         }
7739
7740         /*
7741          * GPU can automatically power down the render unit if given a page
7742          * to save state.
7743          */
7744         ret = BEGIN_LP_RING(6);
7745         if (ret) {
7746                 ironlake_teardown_rc6(dev);
7747                 mutex_unlock(&dev->struct_mutex);
7748                 return;
7749         }
7750
7751         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7752         OUT_RING(MI_SET_CONTEXT);
7753         OUT_RING(dev_priv->renderctx->gtt_offset |
7754                  MI_MM_SPACE_GTT |
7755                  MI_SAVE_EXT_STATE_EN |
7756                  MI_RESTORE_EXT_STATE_EN |
7757                  MI_RESTORE_INHIBIT);
7758         OUT_RING(MI_SUSPEND_FLUSH);
7759         OUT_RING(MI_NOOP);
7760         OUT_RING(MI_FLUSH);
7761         ADVANCE_LP_RING();
7762
7763         /*
7764          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7765          * does an implicit flush, combined with MI_FLUSH above, it should be
7766          * safe to assume that renderctx is valid
7767          */
7768         ret = intel_wait_ring_idle(LP_RING(dev_priv));
7769         if (ret) {
7770                 DRM_ERROR("failed to enable ironlake power power savings\n");
7771                 ironlake_teardown_rc6(dev);
7772                 mutex_unlock(&dev->struct_mutex);
7773                 return;
7774         }
7775
7776         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7777         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7778         mutex_unlock(&dev->struct_mutex);
7779 }
7780
7781 void intel_init_clock_gating(struct drm_device *dev)
7782 {
7783         struct drm_i915_private *dev_priv = dev->dev_private;
7784
7785         dev_priv->display.init_clock_gating(dev);
7786
7787         if (dev_priv->display.init_pch_clock_gating)
7788                 dev_priv->display.init_pch_clock_gating(dev);
7789 }
7790
7791 /* Set up chip specific display functions */
7792 static void intel_init_display(struct drm_device *dev)
7793 {
7794         struct drm_i915_private *dev_priv = dev->dev_private;
7795
7796         /* We always want a DPMS function */
7797         if (HAS_PCH_SPLIT(dev)) {
7798                 dev_priv->display.dpms = ironlake_crtc_dpms;
7799                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7800         } else {
7801                 dev_priv->display.dpms = i9xx_crtc_dpms;
7802                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7803         }
7804
7805         if (I915_HAS_FBC(dev)) {
7806                 if (HAS_PCH_SPLIT(dev)) {
7807                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7808                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7809                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7810                 } else if (IS_GM45(dev)) {
7811                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7812                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7813                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7814                 } else if (IS_CRESTLINE(dev)) {
7815                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7816                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7817                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7818                 }
7819                 /* 855GM needs testing */
7820         }
7821
7822         /* Returns the core display clock speed */
7823         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7824                 dev_priv->display.get_display_clock_speed =
7825                         i945_get_display_clock_speed;
7826         else if (IS_I915G(dev))
7827                 dev_priv->display.get_display_clock_speed =
7828                         i915_get_display_clock_speed;
7829         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7830                 dev_priv->display.get_display_clock_speed =
7831                         i9xx_misc_get_display_clock_speed;
7832         else if (IS_I915GM(dev))
7833                 dev_priv->display.get_display_clock_speed =
7834                         i915gm_get_display_clock_speed;
7835         else if (IS_I865G(dev))
7836                 dev_priv->display.get_display_clock_speed =
7837                         i865_get_display_clock_speed;
7838         else if (IS_I85X(dev))
7839                 dev_priv->display.get_display_clock_speed =
7840                         i855_get_display_clock_speed;
7841         else /* 852, 830 */
7842                 dev_priv->display.get_display_clock_speed =
7843                         i830_get_display_clock_speed;
7844
7845         /* For FIFO watermark updates */
7846         if (HAS_PCH_SPLIT(dev)) {
7847                 if (HAS_PCH_IBX(dev))
7848                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
7849                 else if (HAS_PCH_CPT(dev))
7850                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
7851
7852                 if (IS_GEN5(dev)) {
7853                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7854                                 dev_priv->display.update_wm = ironlake_update_wm;
7855                         else {
7856                                 DRM_DEBUG_KMS("Failed to get proper latency. "
7857                                               "Disable CxSR\n");
7858                                 dev_priv->display.update_wm = NULL;
7859                         }
7860                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7861                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7862                 } else if (IS_GEN6(dev)) {
7863                         if (SNB_READ_WM0_LATENCY()) {
7864                                 dev_priv->display.update_wm = sandybridge_update_wm;
7865                         } else {
7866                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7867                                               "Disable CxSR\n");
7868                                 dev_priv->display.update_wm = NULL;
7869                         }
7870                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7871                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7872                 } else if (IS_IVYBRIDGE(dev)) {
7873                         /* FIXME: detect B0+ stepping and use auto training */
7874                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7875                         if (SNB_READ_WM0_LATENCY()) {
7876                                 dev_priv->display.update_wm = sandybridge_update_wm;
7877                         } else {
7878                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7879                                               "Disable CxSR\n");
7880                                 dev_priv->display.update_wm = NULL;
7881                         }
7882                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7883
7884                 } else
7885                         dev_priv->display.update_wm = NULL;
7886         } else if (IS_PINEVIEW(dev)) {
7887                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7888                                             dev_priv->is_ddr3,
7889                                             dev_priv->fsb_freq,
7890                                             dev_priv->mem_freq)) {
7891                         DRM_INFO("failed to find known CxSR latency "
7892                                  "(found ddr%s fsb freq %d, mem freq %d), "
7893                                  "disabling CxSR\n",
7894                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
7895                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7896                         /* Disable CxSR and never update its watermark again */
7897                         pineview_disable_cxsr(dev);
7898                         dev_priv->display.update_wm = NULL;
7899                 } else
7900                         dev_priv->display.update_wm = pineview_update_wm;
7901                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7902         } else if (IS_G4X(dev)) {
7903                 dev_priv->display.update_wm = g4x_update_wm;
7904                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7905         } else if (IS_GEN4(dev)) {
7906                 dev_priv->display.update_wm = i965_update_wm;
7907                 if (IS_CRESTLINE(dev))
7908                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7909                 else if (IS_BROADWATER(dev))
7910                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7911         } else if (IS_GEN3(dev)) {
7912                 dev_priv->display.update_wm = i9xx_update_wm;
7913                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7914                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7915         } else if (IS_I865G(dev)) {
7916                 dev_priv->display.update_wm = i830_update_wm;
7917                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7918                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7919         } else if (IS_I85X(dev)) {
7920                 dev_priv->display.update_wm = i9xx_update_wm;
7921                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7922                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7923         } else {
7924                 dev_priv->display.update_wm = i830_update_wm;
7925                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7926                 if (IS_845G(dev))
7927                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7928                 else
7929                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7930         }
7931
7932         /* Default just returns -ENODEV to indicate unsupported */
7933         dev_priv->display.queue_flip = intel_default_queue_flip;
7934
7935         switch (INTEL_INFO(dev)->gen) {
7936         case 2:
7937                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7938                 break;
7939
7940         case 3:
7941                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7942                 break;
7943
7944         case 4:
7945         case 5:
7946                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7947                 break;
7948
7949         case 6:
7950                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7951                 break;
7952         case 7:
7953                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7954                 break;
7955         }
7956 }
7957
7958 /*
7959  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7960  * resume, or other times.  This quirk makes sure that's the case for
7961  * affected systems.
7962  */
7963 static void quirk_pipea_force (struct drm_device *dev)
7964 {
7965         struct drm_i915_private *dev_priv = dev->dev_private;
7966
7967         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7968         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7969 }
7970
7971 struct intel_quirk {
7972         int device;
7973         int subsystem_vendor;
7974         int subsystem_device;
7975         void (*hook)(struct drm_device *dev);
7976 };
7977
7978 struct intel_quirk intel_quirks[] = {
7979         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7980         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7981         /* HP Mini needs pipe A force quirk (LP: #322104) */
7982         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7983
7984         /* Thinkpad R31 needs pipe A force quirk */
7985         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7986         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7987         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7988
7989         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7990         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
7991         /* ThinkPad X40 needs pipe A force quirk */
7992
7993         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7994         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7995
7996         /* 855 & before need to leave pipe A & dpll A up */
7997         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7998         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7999 };
8000
8001 static void intel_init_quirks(struct drm_device *dev)
8002 {
8003         struct pci_dev *d = dev->pdev;
8004         int i;
8005
8006         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8007                 struct intel_quirk *q = &intel_quirks[i];
8008
8009                 if (d->device == q->device &&
8010                     (d->subsystem_vendor == q->subsystem_vendor ||
8011                      q->subsystem_vendor == PCI_ANY_ID) &&
8012                     (d->subsystem_device == q->subsystem_device ||
8013                      q->subsystem_device == PCI_ANY_ID))
8014                         q->hook(dev);
8015         }
8016 }
8017
8018 /* Disable the VGA plane that we never use */
8019 static void i915_disable_vga(struct drm_device *dev)
8020 {
8021         struct drm_i915_private *dev_priv = dev->dev_private;
8022         u8 sr1;
8023         u32 vga_reg;
8024
8025         if (HAS_PCH_SPLIT(dev))
8026                 vga_reg = CPU_VGACNTRL;
8027         else
8028                 vga_reg = VGACNTRL;
8029
8030         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8031         outb(1, VGA_SR_INDEX);
8032         sr1 = inb(VGA_SR_DATA);
8033         outb(sr1 | 1<<5, VGA_SR_DATA);
8034         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8035         udelay(300);
8036
8037         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8038         POSTING_READ(vga_reg);
8039 }
8040
8041 void intel_modeset_init(struct drm_device *dev)
8042 {
8043         struct drm_i915_private *dev_priv = dev->dev_private;
8044         int i;
8045
8046         drm_mode_config_init(dev);
8047
8048         dev->mode_config.min_width = 0;
8049         dev->mode_config.min_height = 0;
8050
8051         dev->mode_config.funcs = (void *)&intel_mode_funcs;
8052
8053         intel_init_quirks(dev);
8054
8055         intel_init_display(dev);
8056
8057         if (IS_GEN2(dev)) {
8058                 dev->mode_config.max_width = 2048;
8059                 dev->mode_config.max_height = 2048;
8060         } else if (IS_GEN3(dev)) {
8061                 dev->mode_config.max_width = 4096;
8062                 dev->mode_config.max_height = 4096;
8063         } else {
8064                 dev->mode_config.max_width = 8192;
8065                 dev->mode_config.max_height = 8192;
8066         }
8067         dev->mode_config.fb_base = dev->agp->base;
8068
8069         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8070                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8071
8072         for (i = 0; i < dev_priv->num_pipe; i++) {
8073                 intel_crtc_init(dev, i);
8074         }
8075
8076         /* Just disable it once at startup */
8077         i915_disable_vga(dev);
8078         intel_setup_outputs(dev);
8079
8080         intel_init_clock_gating(dev);
8081
8082         if (IS_IRONLAKE_M(dev)) {
8083                 ironlake_enable_drps(dev);
8084                 intel_init_emon(dev);
8085         }
8086
8087         if (IS_GEN6(dev) || IS_GEN7(dev)) {
8088                 gen6_enable_rps(dev_priv);
8089                 gen6_update_ring_freq(dev_priv);
8090         }
8091
8092         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8093         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8094                     (unsigned long)dev);
8095 }
8096
8097 void intel_modeset_gem_init(struct drm_device *dev)
8098 {
8099         if (IS_IRONLAKE_M(dev))
8100                 ironlake_enable_rc6(dev);
8101
8102         intel_setup_overlay(dev);
8103 }
8104
8105 void intel_modeset_cleanup(struct drm_device *dev)
8106 {
8107         struct drm_i915_private *dev_priv = dev->dev_private;
8108         struct drm_crtc *crtc;
8109         struct intel_crtc *intel_crtc;
8110
8111         drm_kms_helper_poll_fini(dev);
8112         mutex_lock(&dev->struct_mutex);
8113
8114         intel_unregister_dsm_handler();
8115
8116
8117         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8118                 /* Skip inactive CRTCs */
8119                 if (!crtc->fb)
8120                         continue;
8121
8122                 intel_crtc = to_intel_crtc(crtc);
8123                 intel_increase_pllclock(crtc);
8124         }
8125
8126         if (dev_priv->display.disable_fbc)
8127                 dev_priv->display.disable_fbc(dev);
8128
8129         if (IS_IRONLAKE_M(dev))
8130                 ironlake_disable_drps(dev);
8131         if (IS_GEN6(dev) || IS_GEN7(dev))
8132                 gen6_disable_rps(dev);
8133
8134         if (IS_IRONLAKE_M(dev))
8135                 ironlake_disable_rc6(dev);
8136
8137         mutex_unlock(&dev->struct_mutex);
8138
8139         /* Disable the irq before mode object teardown, for the irq might
8140          * enqueue unpin/hotplug work. */
8141         drm_irq_uninstall(dev);
8142         cancel_work_sync(&dev_priv->hotplug_work);
8143
8144         /* Shut off idle work before the crtcs get freed. */
8145         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8146                 intel_crtc = to_intel_crtc(crtc);
8147                 del_timer_sync(&intel_crtc->idle_timer);
8148         }
8149         del_timer_sync(&dev_priv->idle_timer);
8150         cancel_work_sync(&dev_priv->idle_work);
8151
8152         drm_mode_config_cleanup(dev);
8153 }
8154
8155 /*
8156  * Return which encoder is currently attached for connector.
8157  */
8158 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8159 {
8160         return &intel_attached_encoder(connector)->base;
8161 }
8162
8163 void intel_connector_attach_encoder(struct intel_connector *connector,
8164                                     struct intel_encoder *encoder)
8165 {
8166         connector->encoder = encoder;
8167         drm_mode_connector_attach_encoder(&connector->base,
8168                                           &encoder->base);
8169 }
8170
8171 /*
8172  * set vga decode state - true == enable VGA decode
8173  */
8174 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8175 {
8176         struct drm_i915_private *dev_priv = dev->dev_private;
8177         u16 gmch_ctrl;
8178
8179         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8180         if (state)
8181                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8182         else
8183                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8184         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8185         return 0;
8186 }
8187
8188 #ifdef CONFIG_DEBUG_FS
8189 #include <linux/seq_file.h>
8190
8191 struct intel_display_error_state {
8192         struct intel_cursor_error_state {
8193                 u32 control;
8194                 u32 position;
8195                 u32 base;
8196                 u32 size;
8197         } cursor[2];
8198
8199         struct intel_pipe_error_state {
8200                 u32 conf;
8201                 u32 source;
8202
8203                 u32 htotal;
8204                 u32 hblank;
8205                 u32 hsync;
8206                 u32 vtotal;
8207                 u32 vblank;
8208                 u32 vsync;
8209         } pipe[2];
8210
8211         struct intel_plane_error_state {
8212                 u32 control;
8213                 u32 stride;
8214                 u32 size;
8215                 u32 pos;
8216                 u32 addr;
8217                 u32 surface;
8218                 u32 tile_offset;
8219         } plane[2];
8220 };
8221
8222 struct intel_display_error_state *
8223 intel_display_capture_error_state(struct drm_device *dev)
8224 {
8225         drm_i915_private_t *dev_priv = dev->dev_private;
8226         struct intel_display_error_state *error;
8227         int i;
8228
8229         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8230         if (error == NULL)
8231                 return NULL;
8232
8233         for (i = 0; i < 2; i++) {
8234                 error->cursor[i].control = I915_READ(CURCNTR(i));
8235                 error->cursor[i].position = I915_READ(CURPOS(i));
8236                 error->cursor[i].base = I915_READ(CURBASE(i));
8237
8238                 error->plane[i].control = I915_READ(DSPCNTR(i));
8239                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8240                 error->plane[i].size = I915_READ(DSPSIZE(i));
8241                 error->plane[i].pos= I915_READ(DSPPOS(i));
8242                 error->plane[i].addr = I915_READ(DSPADDR(i));
8243                 if (INTEL_INFO(dev)->gen >= 4) {
8244                         error->plane[i].surface = I915_READ(DSPSURF(i));
8245                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8246                 }
8247
8248                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8249                 error->pipe[i].source = I915_READ(PIPESRC(i));
8250                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8251                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8252                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8253                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8254                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8255                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8256         }
8257
8258         return error;
8259 }
8260
8261 void
8262 intel_display_print_error_state(struct seq_file *m,
8263                                 struct drm_device *dev,
8264                                 struct intel_display_error_state *error)
8265 {
8266         int i;
8267
8268         for (i = 0; i < 2; i++) {
8269                 seq_printf(m, "Pipe [%d]:\n", i);
8270                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8271                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8272                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8273                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8274                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8275                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8276                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8277                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8278
8279                 seq_printf(m, "Plane [%d]:\n", i);
8280                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8281                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8282                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8283                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8284                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8285                 if (INTEL_INFO(dev)->gen >= 4) {
8286                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8287                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8288                 }
8289
8290                 seq_printf(m, "Cursor [%d]:\n", i);
8291                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8292                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8293                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8294         }
8295 }
8296 #endif