drm/i915: Clarify uncore.lock locking
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80                                     enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84                                 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86                                    struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89                           int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97                                          struct intel_link_m_n *m_n,
98                                          struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103 static void chv_prepare_pll(struct intel_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107         if (!connector->mst_port)
108                 return connector->encoder;
109         else
110                 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114         int     min, max;
115 } intel_range_t;
116
117 typedef struct {
118         int     dot_limit;
119         int     p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
125         intel_p2_t          p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132
133         WARN_ON(!HAS_PCH_SPLIT(dev));
134
135         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141         if (IS_GEN5(dev)) {
142                 struct drm_i915_private *dev_priv = dev->dev_private;
143                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144         } else
145                 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149         .dot = { .min = 25000, .max = 350000 },
150         .vco = { .min = 908000, .max = 1512000 },
151         .n = { .min = 2, .max = 16 },
152         .m = { .min = 96, .max = 140 },
153         .m1 = { .min = 18, .max = 26 },
154         .m2 = { .min = 6, .max = 16 },
155         .p = { .min = 4, .max = 128 },
156         .p1 = { .min = 2, .max = 33 },
157         .p2 = { .dot_limit = 165000,
158                 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162         .dot = { .min = 25000, .max = 350000 },
163         .vco = { .min = 908000, .max = 1512000 },
164         .n = { .min = 2, .max = 16 },
165         .m = { .min = 96, .max = 140 },
166         .m1 = { .min = 18, .max = 26 },
167         .m2 = { .min = 6, .max = 16 },
168         .p = { .min = 4, .max = 128 },
169         .p1 = { .min = 2, .max = 33 },
170         .p2 = { .dot_limit = 165000,
171                 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175         .dot = { .min = 25000, .max = 350000 },
176         .vco = { .min = 908000, .max = 1512000 },
177         .n = { .min = 2, .max = 16 },
178         .m = { .min = 96, .max = 140 },
179         .m1 = { .min = 18, .max = 26 },
180         .m2 = { .min = 6, .max = 16 },
181         .p = { .min = 4, .max = 128 },
182         .p1 = { .min = 1, .max = 6 },
183         .p2 = { .dot_limit = 165000,
184                 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188         .dot = { .min = 20000, .max = 400000 },
189         .vco = { .min = 1400000, .max = 2800000 },
190         .n = { .min = 1, .max = 6 },
191         .m = { .min = 70, .max = 120 },
192         .m1 = { .min = 8, .max = 18 },
193         .m2 = { .min = 3, .max = 7 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8 },
196         .p2 = { .dot_limit = 200000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201         .dot = { .min = 20000, .max = 400000 },
202         .vco = { .min = 1400000, .max = 2800000 },
203         .n = { .min = 1, .max = 6 },
204         .m = { .min = 70, .max = 120 },
205         .m1 = { .min = 8, .max = 18 },
206         .m2 = { .min = 3, .max = 7 },
207         .p = { .min = 7, .max = 98 },
208         .p1 = { .min = 1, .max = 8 },
209         .p2 = { .dot_limit = 112000,
210                 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215         .dot = { .min = 25000, .max = 270000 },
216         .vco = { .min = 1750000, .max = 3500000},
217         .n = { .min = 1, .max = 4 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 10, .max = 30 },
222         .p1 = { .min = 1, .max = 3},
223         .p2 = { .dot_limit = 270000,
224                 .p2_slow = 10,
225                 .p2_fast = 10
226         },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230         .dot = { .min = 22000, .max = 400000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 4 },
233         .m = { .min = 104, .max = 138 },
234         .m1 = { .min = 16, .max = 23 },
235         .m2 = { .min = 5, .max = 11 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8},
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243         .dot = { .min = 20000, .max = 115000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 14, .p2_fast = 14
253         },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257         .dot = { .min = 80000, .max = 224000 },
258         .vco = { .min = 1750000, .max = 3500000 },
259         .n = { .min = 1, .max = 3 },
260         .m = { .min = 104, .max = 138 },
261         .m1 = { .min = 17, .max = 23 },
262         .m2 = { .min = 5, .max = 11 },
263         .p = { .min = 14, .max = 42 },
264         .p1 = { .min = 2, .max = 6 },
265         .p2 = { .dot_limit = 0,
266                 .p2_slow = 7, .p2_fast = 7
267         },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271         .dot = { .min = 20000, .max = 400000},
272         .vco = { .min = 1700000, .max = 3500000 },
273         /* Pineview's Ncounter is a ring counter */
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         /* Pineview only has one combined m divider, which we treat as m2. */
277         .m1 = { .min = 0, .max = 0 },
278         .m2 = { .min = 0, .max = 254 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 200000,
282                 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286         .dot = { .min = 20000, .max = 400000 },
287         .vco = { .min = 1700000, .max = 3500000 },
288         .n = { .min = 3, .max = 6 },
289         .m = { .min = 2, .max = 256 },
290         .m1 = { .min = 0, .max = 0 },
291         .m2 = { .min = 0, .max = 254 },
292         .p = { .min = 7, .max = 112 },
293         .p1 = { .min = 1, .max = 8 },
294         .p2 = { .dot_limit = 112000,
295                 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299  *
300  * We calculate clock using (register_value + 2) for N/M1/M2, so here
301  * the range value for them is (actual_value - 2).
302  */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 5 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 5, .max = 80 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 3 },
320         .m = { .min = 79, .max = 118 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2, .max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 127 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 56 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 28, .max = 112 },
351         .p1 = { .min = 2, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 126 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 14, .max = 42 },
364         .p1 = { .min = 2, .max = 6 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370          /*
371           * These are the data rate limits (measured in fast clocks)
372           * since those are the strictest limits we have. The fast
373           * clock and actual rate limits are more relaxed, so checking
374           * them would make no difference.
375           */
376         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m1 = { .min = 2, .max = 3 },
380         .m2 = { .min = 11, .max = 156 },
381         .p1 = { .min = 2, .max = 3 },
382         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386         /*
387          * These are the data rate limits (measured in fast clocks)
388          * since those are the strictest limits we have.  The fast
389          * clock and actual rate limits are more relaxed, so checking
390          * them would make no difference.
391          */
392         .dot = { .min = 25000 * 5, .max = 540000 * 5},
393         .vco = { .min = 4860000, .max = 6700000 },
394         .n = { .min = 1, .max = 1 },
395         .m1 = { .min = 2, .max = 2 },
396         .m2 = { .min = 24 << 22, .max = 175 << 22 },
397         .p1 = { .min = 2, .max = 4 },
398         .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403         clock->m = clock->m1 * clock->m2;
404         clock->p = clock->p1 * clock->p2;
405         if (WARN_ON(clock->n == 0 || clock->p == 0))
406                 return;
407         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412  * Returns whether any output on the specified pipe is of the specified type
413  */
414 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415 {
416         struct drm_device *dev = crtc->dev;
417         struct intel_encoder *encoder;
418
419         for_each_encoder_on_crtc(dev, crtc, encoder)
420                 if (encoder->type == type)
421                         return true;
422
423         return false;
424 }
425
426 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427                                                 int refclk)
428 {
429         struct drm_device *dev = crtc->dev;
430         const intel_limit_t *limit;
431
432         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
433                 if (intel_is_dual_link_lvds(dev)) {
434                         if (refclk == 100000)
435                                 limit = &intel_limits_ironlake_dual_lvds_100m;
436                         else
437                                 limit = &intel_limits_ironlake_dual_lvds;
438                 } else {
439                         if (refclk == 100000)
440                                 limit = &intel_limits_ironlake_single_lvds_100m;
441                         else
442                                 limit = &intel_limits_ironlake_single_lvds;
443                 }
444         } else
445                 limit = &intel_limits_ironlake_dac;
446
447         return limit;
448 }
449
450 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451 {
452         struct drm_device *dev = crtc->dev;
453         const intel_limit_t *limit;
454
455         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
456                 if (intel_is_dual_link_lvds(dev))
457                         limit = &intel_limits_g4x_dual_channel_lvds;
458                 else
459                         limit = &intel_limits_g4x_single_channel_lvds;
460         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
462                 limit = &intel_limits_g4x_hdmi;
463         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
464                 limit = &intel_limits_g4x_sdvo;
465         } else /* The option is for other outputs */
466                 limit = &intel_limits_i9xx_sdvo;
467
468         return limit;
469 }
470
471 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
472 {
473         struct drm_device *dev = crtc->dev;
474         const intel_limit_t *limit;
475
476         if (HAS_PCH_SPLIT(dev))
477                 limit = intel_ironlake_limit(crtc, refclk);
478         else if (IS_G4X(dev)) {
479                 limit = intel_g4x_limit(crtc);
480         } else if (IS_PINEVIEW(dev)) {
481                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482                         limit = &intel_limits_pineview_lvds;
483                 else
484                         limit = &intel_limits_pineview_sdvo;
485         } else if (IS_CHERRYVIEW(dev)) {
486                 limit = &intel_limits_chv;
487         } else if (IS_VALLEYVIEW(dev)) {
488                 limit = &intel_limits_vlv;
489         } else if (!IS_GEN2(dev)) {
490                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491                         limit = &intel_limits_i9xx_lvds;
492                 else
493                         limit = &intel_limits_i9xx_sdvo;
494         } else {
495                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
496                         limit = &intel_limits_i8xx_lvds;
497                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
498                         limit = &intel_limits_i8xx_dvo;
499                 else
500                         limit = &intel_limits_i8xx_dac;
501         }
502         return limit;
503 }
504
505 /* m1 is reserved as 0 in Pineview, n is a ring counter */
506 static void pineview_clock(int refclk, intel_clock_t *clock)
507 {
508         clock->m = clock->m2 + 2;
509         clock->p = clock->p1 * clock->p2;
510         if (WARN_ON(clock->n == 0 || clock->p == 0))
511                 return;
512         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
514 }
515
516 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517 {
518         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519 }
520
521 static void i9xx_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = i9xx_dpll_compute_m(clock);
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static void chv_clock(int refclk, intel_clock_t *clock)
532 {
533         clock->m = clock->m1 * clock->m2;
534         clock->p = clock->p1 * clock->p2;
535         if (WARN_ON(clock->n == 0 || clock->p == 0))
536                 return;
537         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538                         clock->n << 22);
539         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540 }
541
542 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544  * Returns whether the given set of divisors are valid for a given refclk with
545  * the given connectors.
546  */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549                                const intel_limit_t *limit,
550                                const intel_clock_t *clock)
551 {
552         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
553                 INTELPllInvalid("n out of range\n");
554         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
555                 INTELPllInvalid("p1 out of range\n");
556         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
557                 INTELPllInvalid("m2 out of range\n");
558         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
559                 INTELPllInvalid("m1 out of range\n");
560
561         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562                 if (clock->m1 <= clock->m2)
563                         INTELPllInvalid("m1 <= m2\n");
564
565         if (!IS_VALLEYVIEW(dev)) {
566                 if (clock->p < limit->p.min || limit->p.max < clock->p)
567                         INTELPllInvalid("p out of range\n");
568                 if (clock->m < limit->m.min || limit->m.max < clock->m)
569                         INTELPllInvalid("m out of range\n");
570         }
571
572         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
573                 INTELPllInvalid("vco out of range\n");
574         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575          * connector, etc., rather than just a single range.
576          */
577         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
578                 INTELPllInvalid("dot out of range\n");
579
580         return true;
581 }
582
583 static bool
584 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
585                     int target, int refclk, intel_clock_t *match_clock,
586                     intel_clock_t *best_clock)
587 {
588         struct drm_device *dev = crtc->dev;
589         intel_clock_t clock;
590         int err = target;
591
592         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593                 /*
594                  * For LVDS just rely on its current settings for dual-channel.
595                  * We haven't figured out how to reliably set up different
596                  * single/dual channel state, if we even can.
597                  */
598                 if (intel_is_dual_link_lvds(dev))
599                         clock.p2 = limit->p2.p2_fast;
600                 else
601                         clock.p2 = limit->p2.p2_slow;
602         } else {
603                 if (target < limit->p2.dot_limit)
604                         clock.p2 = limit->p2.p2_slow;
605                 else
606                         clock.p2 = limit->p2.p2_fast;
607         }
608
609         memset(best_clock, 0, sizeof(*best_clock));
610
611         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612              clock.m1++) {
613                 for (clock.m2 = limit->m2.min;
614                      clock.m2 <= limit->m2.max; clock.m2++) {
615                         if (clock.m2 >= clock.m1)
616                                 break;
617                         for (clock.n = limit->n.min;
618                              clock.n <= limit->n.max; clock.n++) {
619                                 for (clock.p1 = limit->p1.min;
620                                         clock.p1 <= limit->p1.max; clock.p1++) {
621                                         int this_err;
622
623                                         i9xx_clock(refclk, &clock);
624                                         if (!intel_PLL_is_valid(dev, limit,
625                                                                 &clock))
626                                                 continue;
627                                         if (match_clock &&
628                                             clock.p != match_clock->p)
629                                                 continue;
630
631                                         this_err = abs(clock.dot - target);
632                                         if (this_err < err) {
633                                                 *best_clock = clock;
634                                                 err = this_err;
635                                         }
636                                 }
637                         }
638                 }
639         }
640
641         return (err != target);
642 }
643
644 static bool
645 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646                    int target, int refclk, intel_clock_t *match_clock,
647                    intel_clock_t *best_clock)
648 {
649         struct drm_device *dev = crtc->dev;
650         intel_clock_t clock;
651         int err = target;
652
653         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654                 /*
655                  * For LVDS just rely on its current settings for dual-channel.
656                  * We haven't figured out how to reliably set up different
657                  * single/dual channel state, if we even can.
658                  */
659                 if (intel_is_dual_link_lvds(dev))
660                         clock.p2 = limit->p2.p2_fast;
661                 else
662                         clock.p2 = limit->p2.p2_slow;
663         } else {
664                 if (target < limit->p2.dot_limit)
665                         clock.p2 = limit->p2.p2_slow;
666                 else
667                         clock.p2 = limit->p2.p2_fast;
668         }
669
670         memset(best_clock, 0, sizeof(*best_clock));
671
672         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673              clock.m1++) {
674                 for (clock.m2 = limit->m2.min;
675                      clock.m2 <= limit->m2.max; clock.m2++) {
676                         for (clock.n = limit->n.min;
677                              clock.n <= limit->n.max; clock.n++) {
678                                 for (clock.p1 = limit->p1.min;
679                                         clock.p1 <= limit->p1.max; clock.p1++) {
680                                         int this_err;
681
682                                         pineview_clock(refclk, &clock);
683                                         if (!intel_PLL_is_valid(dev, limit,
684                                                                 &clock))
685                                                 continue;
686                                         if (match_clock &&
687                                             clock.p != match_clock->p)
688                                                 continue;
689
690                                         this_err = abs(clock.dot - target);
691                                         if (this_err < err) {
692                                                 *best_clock = clock;
693                                                 err = this_err;
694                                         }
695                                 }
696                         }
697                 }
698         }
699
700         return (err != target);
701 }
702
703 static bool
704 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705                    int target, int refclk, intel_clock_t *match_clock,
706                    intel_clock_t *best_clock)
707 {
708         struct drm_device *dev = crtc->dev;
709         intel_clock_t clock;
710         int max_n;
711         bool found;
712         /* approximately equals target * 0.00585 */
713         int err_most = (target >> 8) + (target >> 9);
714         found = false;
715
716         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
717                 if (intel_is_dual_link_lvds(dev))
718                         clock.p2 = limit->p2.p2_fast;
719                 else
720                         clock.p2 = limit->p2.p2_slow;
721         } else {
722                 if (target < limit->p2.dot_limit)
723                         clock.p2 = limit->p2.p2_slow;
724                 else
725                         clock.p2 = limit->p2.p2_fast;
726         }
727
728         memset(best_clock, 0, sizeof(*best_clock));
729         max_n = limit->n.max;
730         /* based on hardware requirement, prefer smaller n to precision */
731         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732                 /* based on hardware requirement, prefere larger m1,m2 */
733                 for (clock.m1 = limit->m1.max;
734                      clock.m1 >= limit->m1.min; clock.m1--) {
735                         for (clock.m2 = limit->m2.max;
736                              clock.m2 >= limit->m2.min; clock.m2--) {
737                                 for (clock.p1 = limit->p1.max;
738                                      clock.p1 >= limit->p1.min; clock.p1--) {
739                                         int this_err;
740
741                                         i9xx_clock(refclk, &clock);
742                                         if (!intel_PLL_is_valid(dev, limit,
743                                                                 &clock))
744                                                 continue;
745
746                                         this_err = abs(clock.dot - target);
747                                         if (this_err < err_most) {
748                                                 *best_clock = clock;
749                                                 err_most = this_err;
750                                                 max_n = clock.n;
751                                                 found = true;
752                                         }
753                                 }
754                         }
755                 }
756         }
757         return found;
758 }
759
760 static bool
761 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762                    int target, int refclk, intel_clock_t *match_clock,
763                    intel_clock_t *best_clock)
764 {
765         struct drm_device *dev = crtc->dev;
766         intel_clock_t clock;
767         unsigned int bestppm = 1000000;
768         /* min update 19.2 MHz */
769         int max_n = min(limit->n.max, refclk / 19200);
770         bool found = false;
771
772         target *= 5; /* fast clock */
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         /* based on hardware requirement, prefer smaller n to precision */
777         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
778                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
779                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
780                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
781                                 clock.p = clock.p1 * clock.p2;
782                                 /* based on hardware requirement, prefer bigger m1,m2 values */
783                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
784                                         unsigned int ppm, diff;
785
786                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787                                                                      refclk * clock.m1);
788
789                                         vlv_clock(refclk, &clock);
790
791                                         if (!intel_PLL_is_valid(dev, limit,
792                                                                 &clock))
793                                                 continue;
794
795                                         diff = abs(clock.dot - target);
796                                         ppm = div_u64(1000000ULL * diff, target);
797
798                                         if (ppm < 100 && clock.p > best_clock->p) {
799                                                 bestppm = 0;
800                                                 *best_clock = clock;
801                                                 found = true;
802                                         }
803
804                                         if (bestppm >= 10 && ppm < bestppm - 10) {
805                                                 bestppm = ppm;
806                                                 *best_clock = clock;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813
814         return found;
815 }
816
817 static bool
818 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819                    int target, int refclk, intel_clock_t *match_clock,
820                    intel_clock_t *best_clock)
821 {
822         struct drm_device *dev = crtc->dev;
823         intel_clock_t clock;
824         uint64_t m2;
825         int found = false;
826
827         memset(best_clock, 0, sizeof(*best_clock));
828
829         /*
830          * Based on hardware doc, the n always set to 1, and m1 always
831          * set to 2.  If requires to support 200Mhz refclk, we need to
832          * revisit this because n may not 1 anymore.
833          */
834         clock.n = 1, clock.m1 = 2;
835         target *= 5;    /* fast clock */
836
837         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838                 for (clock.p2 = limit->p2.p2_fast;
839                                 clock.p2 >= limit->p2.p2_slow;
840                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842                         clock.p = clock.p1 * clock.p2;
843
844                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845                                         clock.n) << 22, refclk * clock.m1);
846
847                         if (m2 > INT_MAX/clock.m1)
848                                 continue;
849
850                         clock.m2 = m2;
851
852                         chv_clock(refclk, &clock);
853
854                         if (!intel_PLL_is_valid(dev, limit, &clock))
855                                 continue;
856
857                         /* based on hardware requirement, prefer bigger p
858                          */
859                         if (clock.p > best_clock->p) {
860                                 *best_clock = clock;
861                                 found = true;
862                         }
863                 }
864         }
865
866         return found;
867 }
868
869 bool intel_crtc_active(struct drm_crtc *crtc)
870 {
871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873         /* Be paranoid as we can arrive here with only partial
874          * state retrieved from the hardware during setup.
875          *
876          * We can ditch the adjusted_mode.crtc_clock check as soon
877          * as Haswell has gained clock readout/fastboot support.
878          *
879          * We can ditch the crtc->primary->fb check as soon as we can
880          * properly reconstruct framebuffers.
881          */
882         return intel_crtc->active && crtc->primary->fb &&
883                 intel_crtc->config.adjusted_mode.crtc_clock;
884 }
885
886 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887                                              enum pipe pipe)
888 {
889         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
892         return intel_crtc->config.cpu_transcoder;
893 }
894
895 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
896 {
897         struct drm_i915_private *dev_priv = dev->dev_private;
898         u32 reg = PIPEDSL(pipe);
899         u32 line1, line2;
900         u32 line_mask;
901
902         if (IS_GEN2(dev))
903                 line_mask = DSL_LINEMASK_GEN2;
904         else
905                 line_mask = DSL_LINEMASK_GEN3;
906
907         line1 = I915_READ(reg) & line_mask;
908         mdelay(5);
909         line2 = I915_READ(reg) & line_mask;
910
911         return line1 == line2;
912 }
913
914 /*
915  * intel_wait_for_pipe_off - wait for pipe to turn off
916  * @crtc: crtc whose pipe to wait for
917  *
918  * After disabling a pipe, we can't wait for vblank in the usual way,
919  * spinning on the vblank interrupt status bit, since we won't actually
920  * see an interrupt when the pipe is disabled.
921  *
922  * On Gen4 and above:
923  *   wait for the pipe register state bit to turn off
924  *
925  * Otherwise:
926  *   wait for the display line value to settle (it usually
927  *   ends up stopping at the start of the next frame).
928  *
929  */
930 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
931 {
932         struct drm_device *dev = crtc->base.dev;
933         struct drm_i915_private *dev_priv = dev->dev_private;
934         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
935         enum pipe pipe = crtc->pipe;
936
937         if (INTEL_INFO(dev)->gen >= 4) {
938                 int reg = PIPECONF(cpu_transcoder);
939
940                 /* Wait for the Pipe State to go off */
941                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
942                              100))
943                         WARN(1, "pipe_off wait timed out\n");
944         } else {
945                 /* Wait for the display line to settle */
946                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
947                         WARN(1, "pipe_off wait timed out\n");
948         }
949 }
950
951 /*
952  * ibx_digital_port_connected - is the specified port connected?
953  * @dev_priv: i915 private structure
954  * @port: the port to test
955  *
956  * Returns true if @port is connected, false otherwise.
957  */
958 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
959                                 struct intel_digital_port *port)
960 {
961         u32 bit;
962
963         if (HAS_PCH_IBX(dev_priv->dev)) {
964                 switch (port->port) {
965                 case PORT_B:
966                         bit = SDE_PORTB_HOTPLUG;
967                         break;
968                 case PORT_C:
969                         bit = SDE_PORTC_HOTPLUG;
970                         break;
971                 case PORT_D:
972                         bit = SDE_PORTD_HOTPLUG;
973                         break;
974                 default:
975                         return true;
976                 }
977         } else {
978                 switch (port->port) {
979                 case PORT_B:
980                         bit = SDE_PORTB_HOTPLUG_CPT;
981                         break;
982                 case PORT_C:
983                         bit = SDE_PORTC_HOTPLUG_CPT;
984                         break;
985                 case PORT_D:
986                         bit = SDE_PORTD_HOTPLUG_CPT;
987                         break;
988                 default:
989                         return true;
990                 }
991         }
992
993         return I915_READ(SDEISR) & bit;
994 }
995
996 static const char *state_string(bool enabled)
997 {
998         return enabled ? "on" : "off";
999 }
1000
1001 /* Only for pre-ILK configs */
1002 void assert_pll(struct drm_i915_private *dev_priv,
1003                 enum pipe pipe, bool state)
1004 {
1005         int reg;
1006         u32 val;
1007         bool cur_state;
1008
1009         reg = DPLL(pipe);
1010         val = I915_READ(reg);
1011         cur_state = !!(val & DPLL_VCO_ENABLE);
1012         WARN(cur_state != state,
1013              "PLL state assertion failure (expected %s, current %s)\n",
1014              state_string(state), state_string(cur_state));
1015 }
1016
1017 /* XXX: the dsi pll is shared between MIPI DSI ports */
1018 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1019 {
1020         u32 val;
1021         bool cur_state;
1022
1023         mutex_lock(&dev_priv->dpio_lock);
1024         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1025         mutex_unlock(&dev_priv->dpio_lock);
1026
1027         cur_state = val & DSI_PLL_VCO_EN;
1028         WARN(cur_state != state,
1029              "DSI PLL state assertion failure (expected %s, current %s)\n",
1030              state_string(state), state_string(cur_state));
1031 }
1032 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1033 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1034
1035 struct intel_shared_dpll *
1036 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1037 {
1038         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1039
1040         if (crtc->config.shared_dpll < 0)
1041                 return NULL;
1042
1043         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1044 }
1045
1046 /* For ILK+ */
1047 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1048                         struct intel_shared_dpll *pll,
1049                         bool state)
1050 {
1051         bool cur_state;
1052         struct intel_dpll_hw_state hw_state;
1053
1054         if (WARN (!pll,
1055                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1056                 return;
1057
1058         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1059         WARN(cur_state != state,
1060              "%s assertion failure (expected %s, current %s)\n",
1061              pll->name, state_string(state), state_string(cur_state));
1062 }
1063
1064 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1065                           enum pipe pipe, bool state)
1066 {
1067         int reg;
1068         u32 val;
1069         bool cur_state;
1070         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1071                                                                       pipe);
1072
1073         if (HAS_DDI(dev_priv->dev)) {
1074                 /* DDI does not have a specific FDI_TX register */
1075                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1076                 val = I915_READ(reg);
1077                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1078         } else {
1079                 reg = FDI_TX_CTL(pipe);
1080                 val = I915_READ(reg);
1081                 cur_state = !!(val & FDI_TX_ENABLE);
1082         }
1083         WARN(cur_state != state,
1084              "FDI TX state assertion failure (expected %s, current %s)\n",
1085              state_string(state), state_string(cur_state));
1086 }
1087 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1088 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1089
1090 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1091                           enum pipe pipe, bool state)
1092 {
1093         int reg;
1094         u32 val;
1095         bool cur_state;
1096
1097         reg = FDI_RX_CTL(pipe);
1098         val = I915_READ(reg);
1099         cur_state = !!(val & FDI_RX_ENABLE);
1100         WARN(cur_state != state,
1101              "FDI RX state assertion failure (expected %s, current %s)\n",
1102              state_string(state), state_string(cur_state));
1103 }
1104 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1105 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1106
1107 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1108                                       enum pipe pipe)
1109 {
1110         int reg;
1111         u32 val;
1112
1113         /* ILK FDI PLL is always enabled */
1114         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1115                 return;
1116
1117         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1118         if (HAS_DDI(dev_priv->dev))
1119                 return;
1120
1121         reg = FDI_TX_CTL(pipe);
1122         val = I915_READ(reg);
1123         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1124 }
1125
1126 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1127                        enum pipe pipe, bool state)
1128 {
1129         int reg;
1130         u32 val;
1131         bool cur_state;
1132
1133         reg = FDI_RX_CTL(pipe);
1134         val = I915_READ(reg);
1135         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1136         WARN(cur_state != state,
1137              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1138              state_string(state), state_string(cur_state));
1139 }
1140
1141 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1142                                   enum pipe pipe)
1143 {
1144         struct drm_device *dev = dev_priv->dev;
1145         int pp_reg;
1146         u32 val;
1147         enum pipe panel_pipe = PIPE_A;
1148         bool locked = true;
1149
1150         if (WARN_ON(HAS_DDI(dev)))
1151                 return;
1152
1153         if (HAS_PCH_SPLIT(dev)) {
1154                 u32 port_sel;
1155
1156                 pp_reg = PCH_PP_CONTROL;
1157                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1158
1159                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1160                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1161                         panel_pipe = PIPE_B;
1162                 /* XXX: else fix for eDP */
1163         } else if (IS_VALLEYVIEW(dev)) {
1164                 /* presumably write lock depends on pipe, not port select */
1165                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1166                 panel_pipe = pipe;
1167         } else {
1168                 pp_reg = PP_CONTROL;
1169                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1170                         panel_pipe = PIPE_B;
1171         }
1172
1173         val = I915_READ(pp_reg);
1174         if (!(val & PANEL_POWER_ON) ||
1175             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1176                 locked = false;
1177
1178         WARN(panel_pipe == pipe && locked,
1179              "panel assertion failure, pipe %c regs locked\n",
1180              pipe_name(pipe));
1181 }
1182
1183 static void assert_cursor(struct drm_i915_private *dev_priv,
1184                           enum pipe pipe, bool state)
1185 {
1186         struct drm_device *dev = dev_priv->dev;
1187         bool cur_state;
1188
1189         if (IS_845G(dev) || IS_I865G(dev))
1190                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1191         else
1192                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1193
1194         WARN(cur_state != state,
1195              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1196              pipe_name(pipe), state_string(state), state_string(cur_state));
1197 }
1198 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1199 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1200
1201 void assert_pipe(struct drm_i915_private *dev_priv,
1202                  enum pipe pipe, bool state)
1203 {
1204         int reg;
1205         u32 val;
1206         bool cur_state;
1207         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1208                                                                       pipe);
1209
1210         /* if we need the pipe quirk it must be always on */
1211         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1212             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1213                 state = true;
1214
1215         if (!intel_display_power_enabled(dev_priv,
1216                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1217                 cur_state = false;
1218         } else {
1219                 reg = PIPECONF(cpu_transcoder);
1220                 val = I915_READ(reg);
1221                 cur_state = !!(val & PIPECONF_ENABLE);
1222         }
1223
1224         WARN(cur_state != state,
1225              "pipe %c assertion failure (expected %s, current %s)\n",
1226              pipe_name(pipe), state_string(state), state_string(cur_state));
1227 }
1228
1229 static void assert_plane(struct drm_i915_private *dev_priv,
1230                          enum plane plane, bool state)
1231 {
1232         int reg;
1233         u32 val;
1234         bool cur_state;
1235
1236         reg = DSPCNTR(plane);
1237         val = I915_READ(reg);
1238         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1239         WARN(cur_state != state,
1240              "plane %c assertion failure (expected %s, current %s)\n",
1241              plane_name(plane), state_string(state), state_string(cur_state));
1242 }
1243
1244 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1245 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1246
1247 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1248                                    enum pipe pipe)
1249 {
1250         struct drm_device *dev = dev_priv->dev;
1251         int reg, i;
1252         u32 val;
1253         int cur_pipe;
1254
1255         /* Primary planes are fixed to pipes on gen4+ */
1256         if (INTEL_INFO(dev)->gen >= 4) {
1257                 reg = DSPCNTR(pipe);
1258                 val = I915_READ(reg);
1259                 WARN(val & DISPLAY_PLANE_ENABLE,
1260                      "plane %c assertion failure, should be disabled but not\n",
1261                      plane_name(pipe));
1262                 return;
1263         }
1264
1265         /* Need to check both planes against the pipe */
1266         for_each_pipe(dev_priv, i) {
1267                 reg = DSPCNTR(i);
1268                 val = I915_READ(reg);
1269                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1270                         DISPPLANE_SEL_PIPE_SHIFT;
1271                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1272                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1273                      plane_name(i), pipe_name(pipe));
1274         }
1275 }
1276
1277 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1278                                     enum pipe pipe)
1279 {
1280         struct drm_device *dev = dev_priv->dev;
1281         int reg, sprite;
1282         u32 val;
1283
1284         if (IS_VALLEYVIEW(dev)) {
1285                 for_each_sprite(pipe, sprite) {
1286                         reg = SPCNTR(pipe, sprite);
1287                         val = I915_READ(reg);
1288                         WARN(val & SP_ENABLE,
1289                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1290                              sprite_name(pipe, sprite), pipe_name(pipe));
1291                 }
1292         } else if (INTEL_INFO(dev)->gen >= 7) {
1293                 reg = SPRCTL(pipe);
1294                 val = I915_READ(reg);
1295                 WARN(val & SPRITE_ENABLE,
1296                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1297                      plane_name(pipe), pipe_name(pipe));
1298         } else if (INTEL_INFO(dev)->gen >= 5) {
1299                 reg = DVSCNTR(pipe);
1300                 val = I915_READ(reg);
1301                 WARN(val & DVS_ENABLE,
1302                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1303                      plane_name(pipe), pipe_name(pipe));
1304         }
1305 }
1306
1307 static void assert_vblank_disabled(struct drm_crtc *crtc)
1308 {
1309         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1310                 drm_crtc_vblank_put(crtc);
1311 }
1312
1313 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1314 {
1315         u32 val;
1316         bool enabled;
1317
1318         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1319
1320         val = I915_READ(PCH_DREF_CONTROL);
1321         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1322                             DREF_SUPERSPREAD_SOURCE_MASK));
1323         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1324 }
1325
1326 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1327                                            enum pipe pipe)
1328 {
1329         int reg;
1330         u32 val;
1331         bool enabled;
1332
1333         reg = PCH_TRANSCONF(pipe);
1334         val = I915_READ(reg);
1335         enabled = !!(val & TRANS_ENABLE);
1336         WARN(enabled,
1337              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1338              pipe_name(pipe));
1339 }
1340
1341 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1342                             enum pipe pipe, u32 port_sel, u32 val)
1343 {
1344         if ((val & DP_PORT_EN) == 0)
1345                 return false;
1346
1347         if (HAS_PCH_CPT(dev_priv->dev)) {
1348                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1349                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1350                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1351                         return false;
1352         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1353                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1354                         return false;
1355         } else {
1356                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1357                         return false;
1358         }
1359         return true;
1360 }
1361
1362 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1363                               enum pipe pipe, u32 val)
1364 {
1365         if ((val & SDVO_ENABLE) == 0)
1366                 return false;
1367
1368         if (HAS_PCH_CPT(dev_priv->dev)) {
1369                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1370                         return false;
1371         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1372                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & LVDS_PORT_EN) == 0)
1385                 return false;
1386
1387         if (HAS_PCH_CPT(dev_priv->dev)) {
1388                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1389                         return false;
1390         } else {
1391                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1392                         return false;
1393         }
1394         return true;
1395 }
1396
1397 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1398                               enum pipe pipe, u32 val)
1399 {
1400         if ((val & ADPA_DAC_ENABLE) == 0)
1401                 return false;
1402         if (HAS_PCH_CPT(dev_priv->dev)) {
1403                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1404                         return false;
1405         } else {
1406                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1407                         return false;
1408         }
1409         return true;
1410 }
1411
1412 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1413                                    enum pipe pipe, int reg, u32 port_sel)
1414 {
1415         u32 val = I915_READ(reg);
1416         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1417              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1418              reg, pipe_name(pipe));
1419
1420         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1421              && (val & DP_PIPEB_SELECT),
1422              "IBX PCH dp port still using transcoder B\n");
1423 }
1424
1425 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1426                                      enum pipe pipe, int reg)
1427 {
1428         u32 val = I915_READ(reg);
1429         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1430              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1431              reg, pipe_name(pipe));
1432
1433         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1434              && (val & SDVO_PIPE_B_SELECT),
1435              "IBX PCH hdmi port still using transcoder B\n");
1436 }
1437
1438 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1439                                       enum pipe pipe)
1440 {
1441         int reg;
1442         u32 val;
1443
1444         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1445         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1446         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1447
1448         reg = PCH_ADPA;
1449         val = I915_READ(reg);
1450         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1451              "PCH VGA enabled on transcoder %c, should be disabled\n",
1452              pipe_name(pipe));
1453
1454         reg = PCH_LVDS;
1455         val = I915_READ(reg);
1456         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1457              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1458              pipe_name(pipe));
1459
1460         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1461         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1462         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1463 }
1464
1465 static void intel_init_dpio(struct drm_device *dev)
1466 {
1467         struct drm_i915_private *dev_priv = dev->dev_private;
1468
1469         if (!IS_VALLEYVIEW(dev))
1470                 return;
1471
1472         /*
1473          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1474          * CHV x1 PHY (DP/HDMI D)
1475          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1476          */
1477         if (IS_CHERRYVIEW(dev)) {
1478                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1479                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1480         } else {
1481                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1482         }
1483 }
1484
1485 static void vlv_enable_pll(struct intel_crtc *crtc)
1486 {
1487         struct drm_device *dev = crtc->base.dev;
1488         struct drm_i915_private *dev_priv = dev->dev_private;
1489         int reg = DPLL(crtc->pipe);
1490         u32 dpll = crtc->config.dpll_hw_state.dpll;
1491
1492         assert_pipe_disabled(dev_priv, crtc->pipe);
1493
1494         /* No really, not for ILK+ */
1495         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1496
1497         /* PLL is protected by panel, make sure we can write it */
1498         if (IS_MOBILE(dev_priv->dev))
1499                 assert_panel_unlocked(dev_priv, crtc->pipe);
1500
1501         I915_WRITE(reg, dpll);
1502         POSTING_READ(reg);
1503         udelay(150);
1504
1505         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1506                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1507
1508         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1509         POSTING_READ(DPLL_MD(crtc->pipe));
1510
1511         /* We do this three times for luck */
1512         I915_WRITE(reg, dpll);
1513         POSTING_READ(reg);
1514         udelay(150); /* wait for warmup */
1515         I915_WRITE(reg, dpll);
1516         POSTING_READ(reg);
1517         udelay(150); /* wait for warmup */
1518         I915_WRITE(reg, dpll);
1519         POSTING_READ(reg);
1520         udelay(150); /* wait for warmup */
1521 }
1522
1523 static void chv_enable_pll(struct intel_crtc *crtc)
1524 {
1525         struct drm_device *dev = crtc->base.dev;
1526         struct drm_i915_private *dev_priv = dev->dev_private;
1527         int pipe = crtc->pipe;
1528         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1529         u32 tmp;
1530
1531         assert_pipe_disabled(dev_priv, crtc->pipe);
1532
1533         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1534
1535         mutex_lock(&dev_priv->dpio_lock);
1536
1537         /* Enable back the 10bit clock to display controller */
1538         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1539         tmp |= DPIO_DCLKP_EN;
1540         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1541
1542         /*
1543          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1544          */
1545         udelay(1);
1546
1547         /* Enable PLL */
1548         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1549
1550         /* Check PLL is locked */
1551         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1552                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1553
1554         /* not sure when this should be written */
1555         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1556         POSTING_READ(DPLL_MD(pipe));
1557
1558         mutex_unlock(&dev_priv->dpio_lock);
1559 }
1560
1561 static int intel_num_dvo_pipes(struct drm_device *dev)
1562 {
1563         struct intel_crtc *crtc;
1564         int count = 0;
1565
1566         for_each_intel_crtc(dev, crtc)
1567                 count += crtc->active &&
1568                         intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO);
1569
1570         return count;
1571 }
1572
1573 static void i9xx_enable_pll(struct intel_crtc *crtc)
1574 {
1575         struct drm_device *dev = crtc->base.dev;
1576         struct drm_i915_private *dev_priv = dev->dev_private;
1577         int reg = DPLL(crtc->pipe);
1578         u32 dpll = crtc->config.dpll_hw_state.dpll;
1579
1580         assert_pipe_disabled(dev_priv, crtc->pipe);
1581
1582         /* No really, not for ILK+ */
1583         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1584
1585         /* PLL is protected by panel, make sure we can write it */
1586         if (IS_MOBILE(dev) && !IS_I830(dev))
1587                 assert_panel_unlocked(dev_priv, crtc->pipe);
1588
1589         /* Enable DVO 2x clock on both PLLs if necessary */
1590         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1591                 /*
1592                  * It appears to be important that we don't enable this
1593                  * for the current pipe before otherwise configuring the
1594                  * PLL. No idea how this should be handled if multiple
1595                  * DVO outputs are enabled simultaneosly.
1596                  */
1597                 dpll |= DPLL_DVO_2X_MODE;
1598                 I915_WRITE(DPLL(!crtc->pipe),
1599                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1600         }
1601
1602         /* Wait for the clocks to stabilize. */
1603         POSTING_READ(reg);
1604         udelay(150);
1605
1606         if (INTEL_INFO(dev)->gen >= 4) {
1607                 I915_WRITE(DPLL_MD(crtc->pipe),
1608                            crtc->config.dpll_hw_state.dpll_md);
1609         } else {
1610                 /* The pixel multiplier can only be updated once the
1611                  * DPLL is enabled and the clocks are stable.
1612                  *
1613                  * So write it again.
1614                  */
1615                 I915_WRITE(reg, dpll);
1616         }
1617
1618         /* We do this three times for luck */
1619         I915_WRITE(reg, dpll);
1620         POSTING_READ(reg);
1621         udelay(150); /* wait for warmup */
1622         I915_WRITE(reg, dpll);
1623         POSTING_READ(reg);
1624         udelay(150); /* wait for warmup */
1625         I915_WRITE(reg, dpll);
1626         POSTING_READ(reg);
1627         udelay(150); /* wait for warmup */
1628 }
1629
1630 /**
1631  * i9xx_disable_pll - disable a PLL
1632  * @dev_priv: i915 private structure
1633  * @pipe: pipe PLL to disable
1634  *
1635  * Disable the PLL for @pipe, making sure the pipe is off first.
1636  *
1637  * Note!  This is for pre-ILK only.
1638  */
1639 static void i9xx_disable_pll(struct intel_crtc *crtc)
1640 {
1641         struct drm_device *dev = crtc->base.dev;
1642         struct drm_i915_private *dev_priv = dev->dev_private;
1643         enum pipe pipe = crtc->pipe;
1644
1645         /* Disable DVO 2x clock on both PLLs if necessary */
1646         if (IS_I830(dev) &&
1647             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) &&
1648             intel_num_dvo_pipes(dev) == 1) {
1649                 I915_WRITE(DPLL(PIPE_B),
1650                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1651                 I915_WRITE(DPLL(PIPE_A),
1652                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1653         }
1654
1655         /* Don't disable pipe or pipe PLLs if needed */
1656         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1657             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1658                 return;
1659
1660         /* Make sure the pipe isn't still relying on us */
1661         assert_pipe_disabled(dev_priv, pipe);
1662
1663         I915_WRITE(DPLL(pipe), 0);
1664         POSTING_READ(DPLL(pipe));
1665 }
1666
1667 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1668 {
1669         u32 val = 0;
1670
1671         /* Make sure the pipe isn't still relying on us */
1672         assert_pipe_disabled(dev_priv, pipe);
1673
1674         /*
1675          * Leave integrated clock source and reference clock enabled for pipe B.
1676          * The latter is needed for VGA hotplug / manual detection.
1677          */
1678         if (pipe == PIPE_B)
1679                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1680         I915_WRITE(DPLL(pipe), val);
1681         POSTING_READ(DPLL(pipe));
1682
1683 }
1684
1685 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1686 {
1687         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1688         u32 val;
1689
1690         /* Make sure the pipe isn't still relying on us */
1691         assert_pipe_disabled(dev_priv, pipe);
1692
1693         /* Set PLL en = 0 */
1694         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1695         if (pipe != PIPE_A)
1696                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1697         I915_WRITE(DPLL(pipe), val);
1698         POSTING_READ(DPLL(pipe));
1699
1700         mutex_lock(&dev_priv->dpio_lock);
1701
1702         /* Disable 10bit clock to display controller */
1703         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1704         val &= ~DPIO_DCLKP_EN;
1705         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1706
1707         /* disable left/right clock distribution */
1708         if (pipe != PIPE_B) {
1709                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1710                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1711                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1712         } else {
1713                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1714                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1715                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1716         }
1717
1718         mutex_unlock(&dev_priv->dpio_lock);
1719 }
1720
1721 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1722                 struct intel_digital_port *dport)
1723 {
1724         u32 port_mask;
1725         int dpll_reg;
1726
1727         switch (dport->port) {
1728         case PORT_B:
1729                 port_mask = DPLL_PORTB_READY_MASK;
1730                 dpll_reg = DPLL(0);
1731                 break;
1732         case PORT_C:
1733                 port_mask = DPLL_PORTC_READY_MASK;
1734                 dpll_reg = DPLL(0);
1735                 break;
1736         case PORT_D:
1737                 port_mask = DPLL_PORTD_READY_MASK;
1738                 dpll_reg = DPIO_PHY_STATUS;
1739                 break;
1740         default:
1741                 BUG();
1742         }
1743
1744         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1745                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1746                      port_name(dport->port), I915_READ(dpll_reg));
1747 }
1748
1749 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1750 {
1751         struct drm_device *dev = crtc->base.dev;
1752         struct drm_i915_private *dev_priv = dev->dev_private;
1753         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1754
1755         if (WARN_ON(pll == NULL))
1756                 return;
1757
1758         WARN_ON(!pll->refcount);
1759         if (pll->active == 0) {
1760                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1761                 WARN_ON(pll->on);
1762                 assert_shared_dpll_disabled(dev_priv, pll);
1763
1764                 pll->mode_set(dev_priv, pll);
1765         }
1766 }
1767
1768 /**
1769  * intel_enable_shared_dpll - enable PCH PLL
1770  * @dev_priv: i915 private structure
1771  * @pipe: pipe PLL to enable
1772  *
1773  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1774  * drives the transcoder clock.
1775  */
1776 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1777 {
1778         struct drm_device *dev = crtc->base.dev;
1779         struct drm_i915_private *dev_priv = dev->dev_private;
1780         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
1782         if (WARN_ON(pll == NULL))
1783                 return;
1784
1785         if (WARN_ON(pll->refcount == 0))
1786                 return;
1787
1788         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1789                       pll->name, pll->active, pll->on,
1790                       crtc->base.base.id);
1791
1792         if (pll->active++) {
1793                 WARN_ON(!pll->on);
1794                 assert_shared_dpll_enabled(dev_priv, pll);
1795                 return;
1796         }
1797         WARN_ON(pll->on);
1798
1799         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1800
1801         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1802         pll->enable(dev_priv, pll);
1803         pll->on = true;
1804 }
1805
1806 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1807 {
1808         struct drm_device *dev = crtc->base.dev;
1809         struct drm_i915_private *dev_priv = dev->dev_private;
1810         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1811
1812         /* PCH only available on ILK+ */
1813         BUG_ON(INTEL_INFO(dev)->gen < 5);
1814         if (WARN_ON(pll == NULL))
1815                return;
1816
1817         if (WARN_ON(pll->refcount == 0))
1818                 return;
1819
1820         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1821                       pll->name, pll->active, pll->on,
1822                       crtc->base.base.id);
1823
1824         if (WARN_ON(pll->active == 0)) {
1825                 assert_shared_dpll_disabled(dev_priv, pll);
1826                 return;
1827         }
1828
1829         assert_shared_dpll_enabled(dev_priv, pll);
1830         WARN_ON(!pll->on);
1831         if (--pll->active)
1832                 return;
1833
1834         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1835         pll->disable(dev_priv, pll);
1836         pll->on = false;
1837
1838         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1839 }
1840
1841 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1842                                            enum pipe pipe)
1843 {
1844         struct drm_device *dev = dev_priv->dev;
1845         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1847         uint32_t reg, val, pipeconf_val;
1848
1849         /* PCH only available on ILK+ */
1850         BUG_ON(!HAS_PCH_SPLIT(dev));
1851
1852         /* Make sure PCH DPLL is enabled */
1853         assert_shared_dpll_enabled(dev_priv,
1854                                    intel_crtc_to_shared_dpll(intel_crtc));
1855
1856         /* FDI must be feeding us bits for PCH ports */
1857         assert_fdi_tx_enabled(dev_priv, pipe);
1858         assert_fdi_rx_enabled(dev_priv, pipe);
1859
1860         if (HAS_PCH_CPT(dev)) {
1861                 /* Workaround: Set the timing override bit before enabling the
1862                  * pch transcoder. */
1863                 reg = TRANS_CHICKEN2(pipe);
1864                 val = I915_READ(reg);
1865                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1866                 I915_WRITE(reg, val);
1867         }
1868
1869         reg = PCH_TRANSCONF(pipe);
1870         val = I915_READ(reg);
1871         pipeconf_val = I915_READ(PIPECONF(pipe));
1872
1873         if (HAS_PCH_IBX(dev_priv->dev)) {
1874                 /*
1875                  * make the BPC in transcoder be consistent with
1876                  * that in pipeconf reg.
1877                  */
1878                 val &= ~PIPECONF_BPC_MASK;
1879                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1880         }
1881
1882         val &= ~TRANS_INTERLACE_MASK;
1883         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1884                 if (HAS_PCH_IBX(dev_priv->dev) &&
1885                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1886                         val |= TRANS_LEGACY_INTERLACED_ILK;
1887                 else
1888                         val |= TRANS_INTERLACED;
1889         else
1890                 val |= TRANS_PROGRESSIVE;
1891
1892         I915_WRITE(reg, val | TRANS_ENABLE);
1893         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1894                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1895 }
1896
1897 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1898                                       enum transcoder cpu_transcoder)
1899 {
1900         u32 val, pipeconf_val;
1901
1902         /* PCH only available on ILK+ */
1903         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1904
1905         /* FDI must be feeding us bits for PCH ports */
1906         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1907         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1908
1909         /* Workaround: set timing override bit. */
1910         val = I915_READ(_TRANSA_CHICKEN2);
1911         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1912         I915_WRITE(_TRANSA_CHICKEN2, val);
1913
1914         val = TRANS_ENABLE;
1915         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1916
1917         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1918             PIPECONF_INTERLACED_ILK)
1919                 val |= TRANS_INTERLACED;
1920         else
1921                 val |= TRANS_PROGRESSIVE;
1922
1923         I915_WRITE(LPT_TRANSCONF, val);
1924         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1925                 DRM_ERROR("Failed to enable PCH transcoder\n");
1926 }
1927
1928 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1929                                             enum pipe pipe)
1930 {
1931         struct drm_device *dev = dev_priv->dev;
1932         uint32_t reg, val;
1933
1934         /* FDI relies on the transcoder */
1935         assert_fdi_tx_disabled(dev_priv, pipe);
1936         assert_fdi_rx_disabled(dev_priv, pipe);
1937
1938         /* Ports must be off as well */
1939         assert_pch_ports_disabled(dev_priv, pipe);
1940
1941         reg = PCH_TRANSCONF(pipe);
1942         val = I915_READ(reg);
1943         val &= ~TRANS_ENABLE;
1944         I915_WRITE(reg, val);
1945         /* wait for PCH transcoder off, transcoder state */
1946         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1947                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1948
1949         if (!HAS_PCH_IBX(dev)) {
1950                 /* Workaround: Clear the timing override chicken bit again. */
1951                 reg = TRANS_CHICKEN2(pipe);
1952                 val = I915_READ(reg);
1953                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1954                 I915_WRITE(reg, val);
1955         }
1956 }
1957
1958 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1959 {
1960         u32 val;
1961
1962         val = I915_READ(LPT_TRANSCONF);
1963         val &= ~TRANS_ENABLE;
1964         I915_WRITE(LPT_TRANSCONF, val);
1965         /* wait for PCH transcoder off, transcoder state */
1966         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1967                 DRM_ERROR("Failed to disable PCH transcoder\n");
1968
1969         /* Workaround: clear timing override bit. */
1970         val = I915_READ(_TRANSA_CHICKEN2);
1971         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1972         I915_WRITE(_TRANSA_CHICKEN2, val);
1973 }
1974
1975 /**
1976  * intel_enable_pipe - enable a pipe, asserting requirements
1977  * @crtc: crtc responsible for the pipe
1978  *
1979  * Enable @crtc's pipe, making sure that various hardware specific requirements
1980  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1981  */
1982 static void intel_enable_pipe(struct intel_crtc *crtc)
1983 {
1984         struct drm_device *dev = crtc->base.dev;
1985         struct drm_i915_private *dev_priv = dev->dev_private;
1986         enum pipe pipe = crtc->pipe;
1987         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1988                                                                       pipe);
1989         enum pipe pch_transcoder;
1990         int reg;
1991         u32 val;
1992
1993         assert_planes_disabled(dev_priv, pipe);
1994         assert_cursor_disabled(dev_priv, pipe);
1995         assert_sprites_disabled(dev_priv, pipe);
1996
1997         if (HAS_PCH_LPT(dev_priv->dev))
1998                 pch_transcoder = TRANSCODER_A;
1999         else
2000                 pch_transcoder = pipe;
2001
2002         /*
2003          * A pipe without a PLL won't actually be able to drive bits from
2004          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2005          * need the check.
2006          */
2007         if (!HAS_PCH_SPLIT(dev_priv->dev))
2008                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2009                         assert_dsi_pll_enabled(dev_priv);
2010                 else
2011                         assert_pll_enabled(dev_priv, pipe);
2012         else {
2013                 if (crtc->config.has_pch_encoder) {
2014                         /* if driving the PCH, we need FDI enabled */
2015                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2016                         assert_fdi_tx_pll_enabled(dev_priv,
2017                                                   (enum pipe) cpu_transcoder);
2018                 }
2019                 /* FIXME: assert CPU port conditions for SNB+ */
2020         }
2021
2022         reg = PIPECONF(cpu_transcoder);
2023         val = I915_READ(reg);
2024         if (val & PIPECONF_ENABLE) {
2025                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2026                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2027                 return;
2028         }
2029
2030         I915_WRITE(reg, val | PIPECONF_ENABLE);
2031         POSTING_READ(reg);
2032 }
2033
2034 /**
2035  * intel_disable_pipe - disable a pipe, asserting requirements
2036  * @crtc: crtc whose pipes is to be disabled
2037  *
2038  * Disable the pipe of @crtc, making sure that various hardware
2039  * specific requirements are met, if applicable, e.g. plane
2040  * disabled, panel fitter off, etc.
2041  *
2042  * Will wait until the pipe has shut down before returning.
2043  */
2044 static void intel_disable_pipe(struct intel_crtc *crtc)
2045 {
2046         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2047         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2048         enum pipe pipe = crtc->pipe;
2049         int reg;
2050         u32 val;
2051
2052         /*
2053          * Make sure planes won't keep trying to pump pixels to us,
2054          * or we might hang the display.
2055          */
2056         assert_planes_disabled(dev_priv, pipe);
2057         assert_cursor_disabled(dev_priv, pipe);
2058         assert_sprites_disabled(dev_priv, pipe);
2059
2060         reg = PIPECONF(cpu_transcoder);
2061         val = I915_READ(reg);
2062         if ((val & PIPECONF_ENABLE) == 0)
2063                 return;
2064
2065         /*
2066          * Double wide has implications for planes
2067          * so best keep it disabled when not needed.
2068          */
2069         if (crtc->config.double_wide)
2070                 val &= ~PIPECONF_DOUBLE_WIDE;
2071
2072         /* Don't disable pipe or pipe PLLs if needed */
2073         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2074             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2075                 val &= ~PIPECONF_ENABLE;
2076
2077         I915_WRITE(reg, val);
2078         if ((val & PIPECONF_ENABLE) == 0)
2079                 intel_wait_for_pipe_off(crtc);
2080 }
2081
2082 /*
2083  * Plane regs are double buffered, going from enabled->disabled needs a
2084  * trigger in order to latch.  The display address reg provides this.
2085  */
2086 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2087                                enum plane plane)
2088 {
2089         struct drm_device *dev = dev_priv->dev;
2090         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2091
2092         I915_WRITE(reg, I915_READ(reg));
2093         POSTING_READ(reg);
2094 }
2095
2096 /**
2097  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2098  * @plane:  plane to be enabled
2099  * @crtc: crtc for the plane
2100  *
2101  * Enable @plane on @crtc, making sure that the pipe is running first.
2102  */
2103 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2104                                           struct drm_crtc *crtc)
2105 {
2106         struct drm_device *dev = plane->dev;
2107         struct drm_i915_private *dev_priv = dev->dev_private;
2108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2109
2110         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2111         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2112
2113         if (intel_crtc->primary_enabled)
2114                 return;
2115
2116         intel_crtc->primary_enabled = true;
2117
2118         dev_priv->display.update_primary_plane(crtc, plane->fb,
2119                                                crtc->x, crtc->y);
2120
2121         /*
2122          * BDW signals flip done immediately if the plane
2123          * is disabled, even if the plane enable is already
2124          * armed to occur at the next vblank :(
2125          */
2126         if (IS_BROADWELL(dev))
2127                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2128 }
2129
2130 /**
2131  * intel_disable_primary_hw_plane - disable the primary hardware plane
2132  * @plane: plane to be disabled
2133  * @crtc: crtc for the plane
2134  *
2135  * Disable @plane on @crtc, making sure that the pipe is running first.
2136  */
2137 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2138                                            struct drm_crtc *crtc)
2139 {
2140         struct drm_device *dev = plane->dev;
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2143
2144         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2145
2146         if (!intel_crtc->primary_enabled)
2147                 return;
2148
2149         intel_crtc->primary_enabled = false;
2150
2151         dev_priv->display.update_primary_plane(crtc, plane->fb,
2152                                                crtc->x, crtc->y);
2153 }
2154
2155 static bool need_vtd_wa(struct drm_device *dev)
2156 {
2157 #ifdef CONFIG_INTEL_IOMMU
2158         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2159                 return true;
2160 #endif
2161         return false;
2162 }
2163
2164 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2165 {
2166         int tile_height;
2167
2168         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2169         return ALIGN(height, tile_height);
2170 }
2171
2172 int
2173 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2174                            struct drm_i915_gem_object *obj,
2175                            struct intel_engine_cs *pipelined)
2176 {
2177         struct drm_i915_private *dev_priv = dev->dev_private;
2178         u32 alignment;
2179         int ret;
2180
2181         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2182
2183         switch (obj->tiling_mode) {
2184         case I915_TILING_NONE:
2185                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2186                         alignment = 128 * 1024;
2187                 else if (INTEL_INFO(dev)->gen >= 4)
2188                         alignment = 4 * 1024;
2189                 else
2190                         alignment = 64 * 1024;
2191                 break;
2192         case I915_TILING_X:
2193                 /* pin() will align the object as required by fence */
2194                 alignment = 0;
2195                 break;
2196         case I915_TILING_Y:
2197                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2198                 return -EINVAL;
2199         default:
2200                 BUG();
2201         }
2202
2203         /* Note that the w/a also requires 64 PTE of padding following the
2204          * bo. We currently fill all unused PTE with the shadow page and so
2205          * we should always have valid PTE following the scanout preventing
2206          * the VT-d warning.
2207          */
2208         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2209                 alignment = 256 * 1024;
2210
2211         /*
2212          * Global gtt pte registers are special registers which actually forward
2213          * writes to a chunk of system memory. Which means that there is no risk
2214          * that the register values disappear as soon as we call
2215          * intel_runtime_pm_put(), so it is correct to wrap only the
2216          * pin/unpin/fence and not more.
2217          */
2218         intel_runtime_pm_get(dev_priv);
2219
2220         dev_priv->mm.interruptible = false;
2221         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2222         if (ret)
2223                 goto err_interruptible;
2224
2225         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2226          * fence, whereas 965+ only requires a fence if using
2227          * framebuffer compression.  For simplicity, we always install
2228          * a fence as the cost is not that onerous.
2229          */
2230         ret = i915_gem_object_get_fence(obj);
2231         if (ret)
2232                 goto err_unpin;
2233
2234         i915_gem_object_pin_fence(obj);
2235
2236         dev_priv->mm.interruptible = true;
2237         intel_runtime_pm_put(dev_priv);
2238         return 0;
2239
2240 err_unpin:
2241         i915_gem_object_unpin_from_display_plane(obj);
2242 err_interruptible:
2243         dev_priv->mm.interruptible = true;
2244         intel_runtime_pm_put(dev_priv);
2245         return ret;
2246 }
2247
2248 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2249 {
2250         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2251
2252         i915_gem_object_unpin_fence(obj);
2253         i915_gem_object_unpin_from_display_plane(obj);
2254 }
2255
2256 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2257  * is assumed to be a power-of-two. */
2258 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2259                                              unsigned int tiling_mode,
2260                                              unsigned int cpp,
2261                                              unsigned int pitch)
2262 {
2263         if (tiling_mode != I915_TILING_NONE) {
2264                 unsigned int tile_rows, tiles;
2265
2266                 tile_rows = *y / 8;
2267                 *y %= 8;
2268
2269                 tiles = *x / (512/cpp);
2270                 *x %= 512/cpp;
2271
2272                 return tile_rows * pitch * 8 + tiles * 4096;
2273         } else {
2274                 unsigned int offset;
2275
2276                 offset = *y * pitch + *x * cpp;
2277                 *y = 0;
2278                 *x = (offset & 4095) / cpp;
2279                 return offset & -4096;
2280         }
2281 }
2282
2283 int intel_format_to_fourcc(int format)
2284 {
2285         switch (format) {
2286         case DISPPLANE_8BPP:
2287                 return DRM_FORMAT_C8;
2288         case DISPPLANE_BGRX555:
2289                 return DRM_FORMAT_XRGB1555;
2290         case DISPPLANE_BGRX565:
2291                 return DRM_FORMAT_RGB565;
2292         default:
2293         case DISPPLANE_BGRX888:
2294                 return DRM_FORMAT_XRGB8888;
2295         case DISPPLANE_RGBX888:
2296                 return DRM_FORMAT_XBGR8888;
2297         case DISPPLANE_BGRX101010:
2298                 return DRM_FORMAT_XRGB2101010;
2299         case DISPPLANE_RGBX101010:
2300                 return DRM_FORMAT_XBGR2101010;
2301         }
2302 }
2303
2304 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2305                                   struct intel_plane_config *plane_config)
2306 {
2307         struct drm_device *dev = crtc->base.dev;
2308         struct drm_i915_gem_object *obj = NULL;
2309         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2310         u32 base = plane_config->base;
2311
2312         if (plane_config->size == 0)
2313                 return false;
2314
2315         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2316                                                              plane_config->size);
2317         if (!obj)
2318                 return false;
2319
2320         if (plane_config->tiled) {
2321                 obj->tiling_mode = I915_TILING_X;
2322                 obj->stride = crtc->base.primary->fb->pitches[0];
2323         }
2324
2325         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2326         mode_cmd.width = crtc->base.primary->fb->width;
2327         mode_cmd.height = crtc->base.primary->fb->height;
2328         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2329
2330         mutex_lock(&dev->struct_mutex);
2331
2332         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2333                                    &mode_cmd, obj)) {
2334                 DRM_DEBUG_KMS("intel fb init failed\n");
2335                 goto out_unref_obj;
2336         }
2337
2338         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2339         mutex_unlock(&dev->struct_mutex);
2340
2341         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2342         return true;
2343
2344 out_unref_obj:
2345         drm_gem_object_unreference(&obj->base);
2346         mutex_unlock(&dev->struct_mutex);
2347         return false;
2348 }
2349
2350 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2351                                  struct intel_plane_config *plane_config)
2352 {
2353         struct drm_device *dev = intel_crtc->base.dev;
2354         struct drm_crtc *c;
2355         struct intel_crtc *i;
2356         struct drm_i915_gem_object *obj;
2357
2358         if (!intel_crtc->base.primary->fb)
2359                 return;
2360
2361         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2362                 return;
2363
2364         kfree(intel_crtc->base.primary->fb);
2365         intel_crtc->base.primary->fb = NULL;
2366
2367         /*
2368          * Failed to alloc the obj, check to see if we should share
2369          * an fb with another CRTC instead
2370          */
2371         for_each_crtc(dev, c) {
2372                 i = to_intel_crtc(c);
2373
2374                 if (c == &intel_crtc->base)
2375                         continue;
2376
2377                 if (!i->active)
2378                         continue;
2379
2380                 obj = intel_fb_obj(c->primary->fb);
2381                 if (obj == NULL)
2382                         continue;
2383
2384                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2385                         drm_framebuffer_reference(c->primary->fb);
2386                         intel_crtc->base.primary->fb = c->primary->fb;
2387                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2388                         break;
2389                 }
2390         }
2391 }
2392
2393 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2394                                       struct drm_framebuffer *fb,
2395                                       int x, int y)
2396 {
2397         struct drm_device *dev = crtc->dev;
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2400         struct drm_i915_gem_object *obj;
2401         int plane = intel_crtc->plane;
2402         unsigned long linear_offset;
2403         u32 dspcntr;
2404         u32 reg = DSPCNTR(plane);
2405         int pixel_size;
2406
2407         if (!intel_crtc->primary_enabled) {
2408                 I915_WRITE(reg, 0);
2409                 if (INTEL_INFO(dev)->gen >= 4)
2410                         I915_WRITE(DSPSURF(plane), 0);
2411                 else
2412                         I915_WRITE(DSPADDR(plane), 0);
2413                 POSTING_READ(reg);
2414                 return;
2415         }
2416
2417         obj = intel_fb_obj(fb);
2418         if (WARN_ON(obj == NULL))
2419                 return;
2420
2421         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2422
2423         dspcntr = DISPPLANE_GAMMA_ENABLE;
2424
2425         dspcntr |= DISPLAY_PLANE_ENABLE;
2426
2427         if (INTEL_INFO(dev)->gen < 4) {
2428                 if (intel_crtc->pipe == PIPE_B)
2429                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2430
2431                 /* pipesrc and dspsize control the size that is scaled from,
2432                  * which should always be the user's requested size.
2433                  */
2434                 I915_WRITE(DSPSIZE(plane),
2435                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2436                            (intel_crtc->config.pipe_src_w - 1));
2437                 I915_WRITE(DSPPOS(plane), 0);
2438         }
2439
2440         switch (fb->pixel_format) {
2441         case DRM_FORMAT_C8:
2442                 dspcntr |= DISPPLANE_8BPP;
2443                 break;
2444         case DRM_FORMAT_XRGB1555:
2445         case DRM_FORMAT_ARGB1555:
2446                 dspcntr |= DISPPLANE_BGRX555;
2447                 break;
2448         case DRM_FORMAT_RGB565:
2449                 dspcntr |= DISPPLANE_BGRX565;
2450                 break;
2451         case DRM_FORMAT_XRGB8888:
2452         case DRM_FORMAT_ARGB8888:
2453                 dspcntr |= DISPPLANE_BGRX888;
2454                 break;
2455         case DRM_FORMAT_XBGR8888:
2456         case DRM_FORMAT_ABGR8888:
2457                 dspcntr |= DISPPLANE_RGBX888;
2458                 break;
2459         case DRM_FORMAT_XRGB2101010:
2460         case DRM_FORMAT_ARGB2101010:
2461                 dspcntr |= DISPPLANE_BGRX101010;
2462                 break;
2463         case DRM_FORMAT_XBGR2101010:
2464         case DRM_FORMAT_ABGR2101010:
2465                 dspcntr |= DISPPLANE_RGBX101010;
2466                 break;
2467         default:
2468                 BUG();
2469         }
2470
2471         if (INTEL_INFO(dev)->gen >= 4 &&
2472             obj->tiling_mode != I915_TILING_NONE)
2473                 dspcntr |= DISPPLANE_TILED;
2474
2475         if (IS_G4X(dev))
2476                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2477
2478         linear_offset = y * fb->pitches[0] + x * pixel_size;
2479
2480         if (INTEL_INFO(dev)->gen >= 4) {
2481                 intel_crtc->dspaddr_offset =
2482                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2483                                                        pixel_size,
2484                                                        fb->pitches[0]);
2485                 linear_offset -= intel_crtc->dspaddr_offset;
2486         } else {
2487                 intel_crtc->dspaddr_offset = linear_offset;
2488         }
2489
2490         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2491                 dspcntr |= DISPPLANE_ROTATE_180;
2492
2493                 x += (intel_crtc->config.pipe_src_w - 1);
2494                 y += (intel_crtc->config.pipe_src_h - 1);
2495
2496                 /* Finding the last pixel of the last line of the display
2497                 data and adding to linear_offset*/
2498                 linear_offset +=
2499                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2500                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2501         }
2502
2503         I915_WRITE(reg, dspcntr);
2504
2505         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2506                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2507                       fb->pitches[0]);
2508         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2509         if (INTEL_INFO(dev)->gen >= 4) {
2510                 I915_WRITE(DSPSURF(plane),
2511                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2512                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2513                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2514         } else
2515                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2516         POSTING_READ(reg);
2517 }
2518
2519 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2520                                           struct drm_framebuffer *fb,
2521                                           int x, int y)
2522 {
2523         struct drm_device *dev = crtc->dev;
2524         struct drm_i915_private *dev_priv = dev->dev_private;
2525         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2526         struct drm_i915_gem_object *obj;
2527         int plane = intel_crtc->plane;
2528         unsigned long linear_offset;
2529         u32 dspcntr;
2530         u32 reg = DSPCNTR(plane);
2531         int pixel_size;
2532
2533         if (!intel_crtc->primary_enabled) {
2534                 I915_WRITE(reg, 0);
2535                 I915_WRITE(DSPSURF(plane), 0);
2536                 POSTING_READ(reg);
2537                 return;
2538         }
2539
2540         obj = intel_fb_obj(fb);
2541         if (WARN_ON(obj == NULL))
2542                 return;
2543
2544         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2545
2546         dspcntr = DISPPLANE_GAMMA_ENABLE;
2547
2548         dspcntr |= DISPLAY_PLANE_ENABLE;
2549
2550         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2551                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2552
2553         switch (fb->pixel_format) {
2554         case DRM_FORMAT_C8:
2555                 dspcntr |= DISPPLANE_8BPP;
2556                 break;
2557         case DRM_FORMAT_RGB565:
2558                 dspcntr |= DISPPLANE_BGRX565;
2559                 break;
2560         case DRM_FORMAT_XRGB8888:
2561         case DRM_FORMAT_ARGB8888:
2562                 dspcntr |= DISPPLANE_BGRX888;
2563                 break;
2564         case DRM_FORMAT_XBGR8888:
2565         case DRM_FORMAT_ABGR8888:
2566                 dspcntr |= DISPPLANE_RGBX888;
2567                 break;
2568         case DRM_FORMAT_XRGB2101010:
2569         case DRM_FORMAT_ARGB2101010:
2570                 dspcntr |= DISPPLANE_BGRX101010;
2571                 break;
2572         case DRM_FORMAT_XBGR2101010:
2573         case DRM_FORMAT_ABGR2101010:
2574                 dspcntr |= DISPPLANE_RGBX101010;
2575                 break;
2576         default:
2577                 BUG();
2578         }
2579
2580         if (obj->tiling_mode != I915_TILING_NONE)
2581                 dspcntr |= DISPPLANE_TILED;
2582
2583         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2584                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2585
2586         linear_offset = y * fb->pitches[0] + x * pixel_size;
2587         intel_crtc->dspaddr_offset =
2588                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2589                                                pixel_size,
2590                                                fb->pitches[0]);
2591         linear_offset -= intel_crtc->dspaddr_offset;
2592         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2593                 dspcntr |= DISPPLANE_ROTATE_180;
2594
2595                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2596                         x += (intel_crtc->config.pipe_src_w - 1);
2597                         y += (intel_crtc->config.pipe_src_h - 1);
2598
2599                         /* Finding the last pixel of the last line of the display
2600                         data and adding to linear_offset*/
2601                         linear_offset +=
2602                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2603                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2604                 }
2605         }
2606
2607         I915_WRITE(reg, dspcntr);
2608
2609         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2610                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2611                       fb->pitches[0]);
2612         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2613         I915_WRITE(DSPSURF(plane),
2614                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2615         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2616                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2617         } else {
2618                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2619                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2620         }
2621         POSTING_READ(reg);
2622 }
2623
2624 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2625 static int
2626 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2627                            int x, int y, enum mode_set_atomic state)
2628 {
2629         struct drm_device *dev = crtc->dev;
2630         struct drm_i915_private *dev_priv = dev->dev_private;
2631
2632         if (dev_priv->display.disable_fbc)
2633                 dev_priv->display.disable_fbc(dev);
2634         intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2635
2636         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2637
2638         return 0;
2639 }
2640
2641 void intel_display_handle_reset(struct drm_device *dev)
2642 {
2643         struct drm_i915_private *dev_priv = dev->dev_private;
2644         struct drm_crtc *crtc;
2645
2646         /*
2647          * Flips in the rings have been nuked by the reset,
2648          * so complete all pending flips so that user space
2649          * will get its events and not get stuck.
2650          *
2651          * Also update the base address of all primary
2652          * planes to the the last fb to make sure we're
2653          * showing the correct fb after a reset.
2654          *
2655          * Need to make two loops over the crtcs so that we
2656          * don't try to grab a crtc mutex before the
2657          * pending_flip_queue really got woken up.
2658          */
2659
2660         for_each_crtc(dev, crtc) {
2661                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2662                 enum plane plane = intel_crtc->plane;
2663
2664                 intel_prepare_page_flip(dev, plane);
2665                 intel_finish_page_flip_plane(dev, plane);
2666         }
2667
2668         for_each_crtc(dev, crtc) {
2669                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2670
2671                 drm_modeset_lock(&crtc->mutex, NULL);
2672                 /*
2673                  * FIXME: Once we have proper support for primary planes (and
2674                  * disabling them without disabling the entire crtc) allow again
2675                  * a NULL crtc->primary->fb.
2676                  */
2677                 if (intel_crtc->active && crtc->primary->fb)
2678                         dev_priv->display.update_primary_plane(crtc,
2679                                                                crtc->primary->fb,
2680                                                                crtc->x,
2681                                                                crtc->y);
2682                 drm_modeset_unlock(&crtc->mutex);
2683         }
2684 }
2685
2686 static int
2687 intel_finish_fb(struct drm_framebuffer *old_fb)
2688 {
2689         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2690         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2691         bool was_interruptible = dev_priv->mm.interruptible;
2692         int ret;
2693
2694         /* Big Hammer, we also need to ensure that any pending
2695          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2696          * current scanout is retired before unpinning the old
2697          * framebuffer.
2698          *
2699          * This should only fail upon a hung GPU, in which case we
2700          * can safely continue.
2701          */
2702         dev_priv->mm.interruptible = false;
2703         ret = i915_gem_object_finish_gpu(obj);
2704         dev_priv->mm.interruptible = was_interruptible;
2705
2706         return ret;
2707 }
2708
2709 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2710 {
2711         struct drm_device *dev = crtc->dev;
2712         struct drm_i915_private *dev_priv = dev->dev_private;
2713         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2714         bool pending;
2715
2716         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2717             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2718                 return false;
2719
2720         spin_lock_irq(&dev->event_lock);
2721         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2722         spin_unlock_irq(&dev->event_lock);
2723
2724         return pending;
2725 }
2726
2727 static void intel_update_pipe_size(struct intel_crtc *crtc)
2728 {
2729         struct drm_device *dev = crtc->base.dev;
2730         struct drm_i915_private *dev_priv = dev->dev_private;
2731         const struct drm_display_mode *adjusted_mode;
2732
2733         if (!i915.fastboot)
2734                 return;
2735
2736         /*
2737          * Update pipe size and adjust fitter if needed: the reason for this is
2738          * that in compute_mode_changes we check the native mode (not the pfit
2739          * mode) to see if we can flip rather than do a full mode set. In the
2740          * fastboot case, we'll flip, but if we don't update the pipesrc and
2741          * pfit state, we'll end up with a big fb scanned out into the wrong
2742          * sized surface.
2743          *
2744          * To fix this properly, we need to hoist the checks up into
2745          * compute_mode_changes (or above), check the actual pfit state and
2746          * whether the platform allows pfit disable with pipe active, and only
2747          * then update the pipesrc and pfit state, even on the flip path.
2748          */
2749
2750         adjusted_mode = &crtc->config.adjusted_mode;
2751
2752         I915_WRITE(PIPESRC(crtc->pipe),
2753                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2754                    (adjusted_mode->crtc_vdisplay - 1));
2755         if (!crtc->config.pch_pfit.enabled &&
2756             (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) ||
2757              intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))) {
2758                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2759                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2760                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2761         }
2762         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2763         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2764 }
2765
2766 static int
2767 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2768                     struct drm_framebuffer *fb)
2769 {
2770         struct drm_device *dev = crtc->dev;
2771         struct drm_i915_private *dev_priv = dev->dev_private;
2772         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2773         enum pipe pipe = intel_crtc->pipe;
2774         struct drm_framebuffer *old_fb = crtc->primary->fb;
2775         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2776         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2777         int ret;
2778
2779         if (intel_crtc_has_pending_flip(crtc)) {
2780                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2781                 return -EBUSY;
2782         }
2783
2784         /* no fb bound */
2785         if (!fb) {
2786                 DRM_ERROR("No FB bound\n");
2787                 return 0;
2788         }
2789
2790         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2791                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2792                           plane_name(intel_crtc->plane),
2793                           INTEL_INFO(dev)->num_pipes);
2794                 return -EINVAL;
2795         }
2796
2797         mutex_lock(&dev->struct_mutex);
2798         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2799         if (ret == 0)
2800                 i915_gem_track_fb(old_obj, obj,
2801                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2802         mutex_unlock(&dev->struct_mutex);
2803         if (ret != 0) {
2804                 DRM_ERROR("pin & fence failed\n");
2805                 return ret;
2806         }
2807
2808         intel_update_pipe_size(intel_crtc);
2809
2810         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2811
2812         if (intel_crtc->active)
2813                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2814
2815         crtc->primary->fb = fb;
2816         crtc->x = x;
2817         crtc->y = y;
2818
2819         if (old_fb) {
2820                 if (intel_crtc->active && old_fb != fb)
2821                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2822                 mutex_lock(&dev->struct_mutex);
2823                 intel_unpin_fb_obj(old_obj);
2824                 mutex_unlock(&dev->struct_mutex);
2825         }
2826
2827         mutex_lock(&dev->struct_mutex);
2828         intel_update_fbc(dev);
2829         mutex_unlock(&dev->struct_mutex);
2830
2831         return 0;
2832 }
2833
2834 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2835 {
2836         struct drm_device *dev = crtc->dev;
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2839         int pipe = intel_crtc->pipe;
2840         u32 reg, temp;
2841
2842         /* enable normal train */
2843         reg = FDI_TX_CTL(pipe);
2844         temp = I915_READ(reg);
2845         if (IS_IVYBRIDGE(dev)) {
2846                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2847                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2848         } else {
2849                 temp &= ~FDI_LINK_TRAIN_NONE;
2850                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2851         }
2852         I915_WRITE(reg, temp);
2853
2854         reg = FDI_RX_CTL(pipe);
2855         temp = I915_READ(reg);
2856         if (HAS_PCH_CPT(dev)) {
2857                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2858                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2859         } else {
2860                 temp &= ~FDI_LINK_TRAIN_NONE;
2861                 temp |= FDI_LINK_TRAIN_NONE;
2862         }
2863         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2864
2865         /* wait one idle pattern time */
2866         POSTING_READ(reg);
2867         udelay(1000);
2868
2869         /* IVB wants error correction enabled */
2870         if (IS_IVYBRIDGE(dev))
2871                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2872                            FDI_FE_ERRC_ENABLE);
2873 }
2874
2875 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2876 {
2877         return crtc->base.enabled && crtc->active &&
2878                 crtc->config.has_pch_encoder;
2879 }
2880
2881 static void ivb_modeset_global_resources(struct drm_device *dev)
2882 {
2883         struct drm_i915_private *dev_priv = dev->dev_private;
2884         struct intel_crtc *pipe_B_crtc =
2885                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2886         struct intel_crtc *pipe_C_crtc =
2887                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2888         uint32_t temp;
2889
2890         /*
2891          * When everything is off disable fdi C so that we could enable fdi B
2892          * with all lanes. Note that we don't care about enabled pipes without
2893          * an enabled pch encoder.
2894          */
2895         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2896             !pipe_has_enabled_pch(pipe_C_crtc)) {
2897                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2898                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2899
2900                 temp = I915_READ(SOUTH_CHICKEN1);
2901                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2902                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2903                 I915_WRITE(SOUTH_CHICKEN1, temp);
2904         }
2905 }
2906
2907 /* The FDI link training functions for ILK/Ibexpeak. */
2908 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2909 {
2910         struct drm_device *dev = crtc->dev;
2911         struct drm_i915_private *dev_priv = dev->dev_private;
2912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2913         int pipe = intel_crtc->pipe;
2914         u32 reg, temp, tries;
2915
2916         /* FDI needs bits from pipe first */
2917         assert_pipe_enabled(dev_priv, pipe);
2918
2919         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2920            for train result */
2921         reg = FDI_RX_IMR(pipe);
2922         temp = I915_READ(reg);
2923         temp &= ~FDI_RX_SYMBOL_LOCK;
2924         temp &= ~FDI_RX_BIT_LOCK;
2925         I915_WRITE(reg, temp);
2926         I915_READ(reg);
2927         udelay(150);
2928
2929         /* enable CPU FDI TX and PCH FDI RX */
2930         reg = FDI_TX_CTL(pipe);
2931         temp = I915_READ(reg);
2932         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2933         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2934         temp &= ~FDI_LINK_TRAIN_NONE;
2935         temp |= FDI_LINK_TRAIN_PATTERN_1;
2936         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2937
2938         reg = FDI_RX_CTL(pipe);
2939         temp = I915_READ(reg);
2940         temp &= ~FDI_LINK_TRAIN_NONE;
2941         temp |= FDI_LINK_TRAIN_PATTERN_1;
2942         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2943
2944         POSTING_READ(reg);
2945         udelay(150);
2946
2947         /* Ironlake workaround, enable clock pointer after FDI enable*/
2948         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2949         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2950                    FDI_RX_PHASE_SYNC_POINTER_EN);
2951
2952         reg = FDI_RX_IIR(pipe);
2953         for (tries = 0; tries < 5; tries++) {
2954                 temp = I915_READ(reg);
2955                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2956
2957                 if ((temp & FDI_RX_BIT_LOCK)) {
2958                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2959                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2960                         break;
2961                 }
2962         }
2963         if (tries == 5)
2964                 DRM_ERROR("FDI train 1 fail!\n");
2965
2966         /* Train 2 */
2967         reg = FDI_TX_CTL(pipe);
2968         temp = I915_READ(reg);
2969         temp &= ~FDI_LINK_TRAIN_NONE;
2970         temp |= FDI_LINK_TRAIN_PATTERN_2;
2971         I915_WRITE(reg, temp);
2972
2973         reg = FDI_RX_CTL(pipe);
2974         temp = I915_READ(reg);
2975         temp &= ~FDI_LINK_TRAIN_NONE;
2976         temp |= FDI_LINK_TRAIN_PATTERN_2;
2977         I915_WRITE(reg, temp);
2978
2979         POSTING_READ(reg);
2980         udelay(150);
2981
2982         reg = FDI_RX_IIR(pipe);
2983         for (tries = 0; tries < 5; tries++) {
2984                 temp = I915_READ(reg);
2985                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2986
2987                 if (temp & FDI_RX_SYMBOL_LOCK) {
2988                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2989                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2990                         break;
2991                 }
2992         }
2993         if (tries == 5)
2994                 DRM_ERROR("FDI train 2 fail!\n");
2995
2996         DRM_DEBUG_KMS("FDI train done\n");
2997
2998 }
2999
3000 static const int snb_b_fdi_train_param[] = {
3001         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3002         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3003         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3004         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3005 };
3006
3007 /* The FDI link training functions for SNB/Cougarpoint. */
3008 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3009 {
3010         struct drm_device *dev = crtc->dev;
3011         struct drm_i915_private *dev_priv = dev->dev_private;
3012         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3013         int pipe = intel_crtc->pipe;
3014         u32 reg, temp, i, retry;
3015
3016         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3017            for train result */
3018         reg = FDI_RX_IMR(pipe);
3019         temp = I915_READ(reg);
3020         temp &= ~FDI_RX_SYMBOL_LOCK;
3021         temp &= ~FDI_RX_BIT_LOCK;
3022         I915_WRITE(reg, temp);
3023
3024         POSTING_READ(reg);
3025         udelay(150);
3026
3027         /* enable CPU FDI TX and PCH FDI RX */
3028         reg = FDI_TX_CTL(pipe);
3029         temp = I915_READ(reg);
3030         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3031         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3032         temp &= ~FDI_LINK_TRAIN_NONE;
3033         temp |= FDI_LINK_TRAIN_PATTERN_1;
3034         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3035         /* SNB-B */
3036         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3037         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3038
3039         I915_WRITE(FDI_RX_MISC(pipe),
3040                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3041
3042         reg = FDI_RX_CTL(pipe);
3043         temp = I915_READ(reg);
3044         if (HAS_PCH_CPT(dev)) {
3045                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3046                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3047         } else {
3048                 temp &= ~FDI_LINK_TRAIN_NONE;
3049                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3050         }
3051         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3052
3053         POSTING_READ(reg);
3054         udelay(150);
3055
3056         for (i = 0; i < 4; i++) {
3057                 reg = FDI_TX_CTL(pipe);
3058                 temp = I915_READ(reg);
3059                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3060                 temp |= snb_b_fdi_train_param[i];
3061                 I915_WRITE(reg, temp);
3062
3063                 POSTING_READ(reg);
3064                 udelay(500);
3065
3066                 for (retry = 0; retry < 5; retry++) {
3067                         reg = FDI_RX_IIR(pipe);
3068                         temp = I915_READ(reg);
3069                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3070                         if (temp & FDI_RX_BIT_LOCK) {
3071                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3072                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3073                                 break;
3074                         }
3075                         udelay(50);
3076                 }
3077                 if (retry < 5)
3078                         break;
3079         }
3080         if (i == 4)
3081                 DRM_ERROR("FDI train 1 fail!\n");
3082
3083         /* Train 2 */
3084         reg = FDI_TX_CTL(pipe);
3085         temp = I915_READ(reg);
3086         temp &= ~FDI_LINK_TRAIN_NONE;
3087         temp |= FDI_LINK_TRAIN_PATTERN_2;
3088         if (IS_GEN6(dev)) {
3089                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3090                 /* SNB-B */
3091                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3092         }
3093         I915_WRITE(reg, temp);
3094
3095         reg = FDI_RX_CTL(pipe);
3096         temp = I915_READ(reg);
3097         if (HAS_PCH_CPT(dev)) {
3098                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3099                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3100         } else {
3101                 temp &= ~FDI_LINK_TRAIN_NONE;
3102                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3103         }
3104         I915_WRITE(reg, temp);
3105
3106         POSTING_READ(reg);
3107         udelay(150);
3108
3109         for (i = 0; i < 4; i++) {
3110                 reg = FDI_TX_CTL(pipe);
3111                 temp = I915_READ(reg);
3112                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3113                 temp |= snb_b_fdi_train_param[i];
3114                 I915_WRITE(reg, temp);
3115
3116                 POSTING_READ(reg);
3117                 udelay(500);
3118
3119                 for (retry = 0; retry < 5; retry++) {
3120                         reg = FDI_RX_IIR(pipe);
3121                         temp = I915_READ(reg);
3122                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3123                         if (temp & FDI_RX_SYMBOL_LOCK) {
3124                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3125                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3126                                 break;
3127                         }
3128                         udelay(50);
3129                 }
3130                 if (retry < 5)
3131                         break;
3132         }
3133         if (i == 4)
3134                 DRM_ERROR("FDI train 2 fail!\n");
3135
3136         DRM_DEBUG_KMS("FDI train done.\n");
3137 }
3138
3139 /* Manual link training for Ivy Bridge A0 parts */
3140 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3141 {
3142         struct drm_device *dev = crtc->dev;
3143         struct drm_i915_private *dev_priv = dev->dev_private;
3144         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3145         int pipe = intel_crtc->pipe;
3146         u32 reg, temp, i, j;
3147
3148         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3149            for train result */
3150         reg = FDI_RX_IMR(pipe);
3151         temp = I915_READ(reg);
3152         temp &= ~FDI_RX_SYMBOL_LOCK;
3153         temp &= ~FDI_RX_BIT_LOCK;
3154         I915_WRITE(reg, temp);
3155
3156         POSTING_READ(reg);
3157         udelay(150);
3158
3159         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3160                       I915_READ(FDI_RX_IIR(pipe)));
3161
3162         /* Try each vswing and preemphasis setting twice before moving on */
3163         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3164                 /* disable first in case we need to retry */
3165                 reg = FDI_TX_CTL(pipe);
3166                 temp = I915_READ(reg);
3167                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3168                 temp &= ~FDI_TX_ENABLE;
3169                 I915_WRITE(reg, temp);
3170
3171                 reg = FDI_RX_CTL(pipe);
3172                 temp = I915_READ(reg);
3173                 temp &= ~FDI_LINK_TRAIN_AUTO;
3174                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3175                 temp &= ~FDI_RX_ENABLE;
3176                 I915_WRITE(reg, temp);
3177
3178                 /* enable CPU FDI TX and PCH FDI RX */
3179                 reg = FDI_TX_CTL(pipe);
3180                 temp = I915_READ(reg);
3181                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3182                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3183                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3184                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3185                 temp |= snb_b_fdi_train_param[j/2];
3186                 temp |= FDI_COMPOSITE_SYNC;
3187                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3188
3189                 I915_WRITE(FDI_RX_MISC(pipe),
3190                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3191
3192                 reg = FDI_RX_CTL(pipe);
3193                 temp = I915_READ(reg);
3194                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3195                 temp |= FDI_COMPOSITE_SYNC;
3196                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3197
3198                 POSTING_READ(reg);
3199                 udelay(1); /* should be 0.5us */
3200
3201                 for (i = 0; i < 4; i++) {
3202                         reg = FDI_RX_IIR(pipe);
3203                         temp = I915_READ(reg);
3204                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3205
3206                         if (temp & FDI_RX_BIT_LOCK ||
3207                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3208                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3209                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3210                                               i);
3211                                 break;
3212                         }
3213                         udelay(1); /* should be 0.5us */
3214                 }
3215                 if (i == 4) {
3216                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3217                         continue;
3218                 }
3219
3220                 /* Train 2 */
3221                 reg = FDI_TX_CTL(pipe);
3222                 temp = I915_READ(reg);
3223                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3224                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3225                 I915_WRITE(reg, temp);
3226
3227                 reg = FDI_RX_CTL(pipe);
3228                 temp = I915_READ(reg);
3229                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3230                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3231                 I915_WRITE(reg, temp);
3232
3233                 POSTING_READ(reg);
3234                 udelay(2); /* should be 1.5us */
3235
3236                 for (i = 0; i < 4; i++) {
3237                         reg = FDI_RX_IIR(pipe);
3238                         temp = I915_READ(reg);
3239                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3240
3241                         if (temp & FDI_RX_SYMBOL_LOCK ||
3242                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3243                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3244                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3245                                               i);
3246                                 goto train_done;
3247                         }
3248                         udelay(2); /* should be 1.5us */
3249                 }
3250                 if (i == 4)
3251                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3252         }
3253
3254 train_done:
3255         DRM_DEBUG_KMS("FDI train done.\n");
3256 }
3257
3258 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3259 {
3260         struct drm_device *dev = intel_crtc->base.dev;
3261         struct drm_i915_private *dev_priv = dev->dev_private;
3262         int pipe = intel_crtc->pipe;
3263         u32 reg, temp;
3264
3265
3266         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3267         reg = FDI_RX_CTL(pipe);
3268         temp = I915_READ(reg);
3269         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3270         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3271         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3272         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3273
3274         POSTING_READ(reg);
3275         udelay(200);
3276
3277         /* Switch from Rawclk to PCDclk */
3278         temp = I915_READ(reg);
3279         I915_WRITE(reg, temp | FDI_PCDCLK);
3280
3281         POSTING_READ(reg);
3282         udelay(200);
3283
3284         /* Enable CPU FDI TX PLL, always on for Ironlake */
3285         reg = FDI_TX_CTL(pipe);
3286         temp = I915_READ(reg);
3287         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3288                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3289
3290                 POSTING_READ(reg);
3291                 udelay(100);
3292         }
3293 }
3294
3295 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3296 {
3297         struct drm_device *dev = intel_crtc->base.dev;
3298         struct drm_i915_private *dev_priv = dev->dev_private;
3299         int pipe = intel_crtc->pipe;
3300         u32 reg, temp;
3301
3302         /* Switch from PCDclk to Rawclk */
3303         reg = FDI_RX_CTL(pipe);
3304         temp = I915_READ(reg);
3305         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3306
3307         /* Disable CPU FDI TX PLL */
3308         reg = FDI_TX_CTL(pipe);
3309         temp = I915_READ(reg);
3310         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3311
3312         POSTING_READ(reg);
3313         udelay(100);
3314
3315         reg = FDI_RX_CTL(pipe);
3316         temp = I915_READ(reg);
3317         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3318
3319         /* Wait for the clocks to turn off. */
3320         POSTING_READ(reg);
3321         udelay(100);
3322 }
3323
3324 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3325 {
3326         struct drm_device *dev = crtc->dev;
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3329         int pipe = intel_crtc->pipe;
3330         u32 reg, temp;
3331
3332         /* disable CPU FDI tx and PCH FDI rx */
3333         reg = FDI_TX_CTL(pipe);
3334         temp = I915_READ(reg);
3335         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3336         POSTING_READ(reg);
3337
3338         reg = FDI_RX_CTL(pipe);
3339         temp = I915_READ(reg);
3340         temp &= ~(0x7 << 16);
3341         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3342         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3343
3344         POSTING_READ(reg);
3345         udelay(100);
3346
3347         /* Ironlake workaround, disable clock pointer after downing FDI */
3348         if (HAS_PCH_IBX(dev))
3349                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3350
3351         /* still set train pattern 1 */
3352         reg = FDI_TX_CTL(pipe);
3353         temp = I915_READ(reg);
3354         temp &= ~FDI_LINK_TRAIN_NONE;
3355         temp |= FDI_LINK_TRAIN_PATTERN_1;
3356         I915_WRITE(reg, temp);
3357
3358         reg = FDI_RX_CTL(pipe);
3359         temp = I915_READ(reg);
3360         if (HAS_PCH_CPT(dev)) {
3361                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3362                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3363         } else {
3364                 temp &= ~FDI_LINK_TRAIN_NONE;
3365                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3366         }
3367         /* BPC in FDI rx is consistent with that in PIPECONF */
3368         temp &= ~(0x07 << 16);
3369         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3370         I915_WRITE(reg, temp);
3371
3372         POSTING_READ(reg);
3373         udelay(100);
3374 }
3375
3376 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3377 {
3378         struct intel_crtc *crtc;
3379
3380         /* Note that we don't need to be called with mode_config.lock here
3381          * as our list of CRTC objects is static for the lifetime of the
3382          * device and so cannot disappear as we iterate. Similarly, we can
3383          * happily treat the predicates as racy, atomic checks as userspace
3384          * cannot claim and pin a new fb without at least acquring the
3385          * struct_mutex and so serialising with us.
3386          */
3387         for_each_intel_crtc(dev, crtc) {
3388                 if (atomic_read(&crtc->unpin_work_count) == 0)
3389                         continue;
3390
3391                 if (crtc->unpin_work)
3392                         intel_wait_for_vblank(dev, crtc->pipe);
3393
3394                 return true;
3395         }
3396
3397         return false;
3398 }
3399
3400 static void page_flip_completed(struct intel_crtc *intel_crtc)
3401 {
3402         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3403         struct intel_unpin_work *work = intel_crtc->unpin_work;
3404
3405         /* ensure that the unpin work is consistent wrt ->pending. */
3406         smp_rmb();
3407         intel_crtc->unpin_work = NULL;
3408
3409         if (work->event)
3410                 drm_send_vblank_event(intel_crtc->base.dev,
3411                                       intel_crtc->pipe,
3412                                       work->event);
3413
3414         drm_crtc_vblank_put(&intel_crtc->base);
3415
3416         wake_up_all(&dev_priv->pending_flip_queue);
3417         queue_work(dev_priv->wq, &work->work);
3418
3419         trace_i915_flip_complete(intel_crtc->plane,
3420                                  work->pending_flip_obj);
3421 }
3422
3423 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3424 {
3425         struct drm_device *dev = crtc->dev;
3426         struct drm_i915_private *dev_priv = dev->dev_private;
3427
3428         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3429         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3430                                        !intel_crtc_has_pending_flip(crtc),
3431                                        60*HZ) == 0)) {
3432                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3433
3434                 spin_lock_irq(&dev->event_lock);
3435                 if (intel_crtc->unpin_work) {
3436                         WARN_ONCE(1, "Removing stuck page flip\n");
3437                         page_flip_completed(intel_crtc);
3438                 }
3439                 spin_unlock_irq(&dev->event_lock);
3440         }
3441
3442         if (crtc->primary->fb) {
3443                 mutex_lock(&dev->struct_mutex);
3444                 intel_finish_fb(crtc->primary->fb);
3445                 mutex_unlock(&dev->struct_mutex);
3446         }
3447 }
3448
3449 /* Program iCLKIP clock to the desired frequency */
3450 static void lpt_program_iclkip(struct drm_crtc *crtc)
3451 {
3452         struct drm_device *dev = crtc->dev;
3453         struct drm_i915_private *dev_priv = dev->dev_private;
3454         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3455         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3456         u32 temp;
3457
3458         mutex_lock(&dev_priv->dpio_lock);
3459
3460         /* It is necessary to ungate the pixclk gate prior to programming
3461          * the divisors, and gate it back when it is done.
3462          */
3463         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3464
3465         /* Disable SSCCTL */
3466         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3467                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3468                                 SBI_SSCCTL_DISABLE,
3469                         SBI_ICLK);
3470
3471         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3472         if (clock == 20000) {
3473                 auxdiv = 1;
3474                 divsel = 0x41;
3475                 phaseinc = 0x20;
3476         } else {
3477                 /* The iCLK virtual clock root frequency is in MHz,
3478                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3479                  * divisors, it is necessary to divide one by another, so we
3480                  * convert the virtual clock precision to KHz here for higher
3481                  * precision.
3482                  */
3483                 u32 iclk_virtual_root_freq = 172800 * 1000;
3484                 u32 iclk_pi_range = 64;
3485                 u32 desired_divisor, msb_divisor_value, pi_value;
3486
3487                 desired_divisor = (iclk_virtual_root_freq / clock);
3488                 msb_divisor_value = desired_divisor / iclk_pi_range;
3489                 pi_value = desired_divisor % iclk_pi_range;
3490
3491                 auxdiv = 0;
3492                 divsel = msb_divisor_value - 2;
3493                 phaseinc = pi_value;
3494         }
3495
3496         /* This should not happen with any sane values */
3497         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3498                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3499         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3500                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3501
3502         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3503                         clock,
3504                         auxdiv,
3505                         divsel,
3506                         phasedir,
3507                         phaseinc);
3508
3509         /* Program SSCDIVINTPHASE6 */
3510         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3511         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3512         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3513         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3514         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3515         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3516         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3517         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3518
3519         /* Program SSCAUXDIV */
3520         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3521         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3522         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3523         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3524
3525         /* Enable modulator and associated divider */
3526         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3527         temp &= ~SBI_SSCCTL_DISABLE;
3528         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3529
3530         /* Wait for initialization time */
3531         udelay(24);
3532
3533         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3534
3535         mutex_unlock(&dev_priv->dpio_lock);
3536 }
3537
3538 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3539                                                 enum pipe pch_transcoder)
3540 {
3541         struct drm_device *dev = crtc->base.dev;
3542         struct drm_i915_private *dev_priv = dev->dev_private;
3543         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3544
3545         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3546                    I915_READ(HTOTAL(cpu_transcoder)));
3547         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3548                    I915_READ(HBLANK(cpu_transcoder)));
3549         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3550                    I915_READ(HSYNC(cpu_transcoder)));
3551
3552         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3553                    I915_READ(VTOTAL(cpu_transcoder)));
3554         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3555                    I915_READ(VBLANK(cpu_transcoder)));
3556         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3557                    I915_READ(VSYNC(cpu_transcoder)));
3558         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3559                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3560 }
3561
3562 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3563 {
3564         struct drm_i915_private *dev_priv = dev->dev_private;
3565         uint32_t temp;
3566
3567         temp = I915_READ(SOUTH_CHICKEN1);
3568         if (temp & FDI_BC_BIFURCATION_SELECT)
3569                 return;
3570
3571         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3572         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3573
3574         temp |= FDI_BC_BIFURCATION_SELECT;
3575         DRM_DEBUG_KMS("enabling fdi C rx\n");
3576         I915_WRITE(SOUTH_CHICKEN1, temp);
3577         POSTING_READ(SOUTH_CHICKEN1);
3578 }
3579
3580 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3581 {
3582         struct drm_device *dev = intel_crtc->base.dev;
3583         struct drm_i915_private *dev_priv = dev->dev_private;
3584
3585         switch (intel_crtc->pipe) {
3586         case PIPE_A:
3587                 break;
3588         case PIPE_B:
3589                 if (intel_crtc->config.fdi_lanes > 2)
3590                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3591                 else
3592                         cpt_enable_fdi_bc_bifurcation(dev);
3593
3594                 break;
3595         case PIPE_C:
3596                 cpt_enable_fdi_bc_bifurcation(dev);
3597
3598                 break;
3599         default:
3600                 BUG();
3601         }
3602 }
3603
3604 /*
3605  * Enable PCH resources required for PCH ports:
3606  *   - PCH PLLs
3607  *   - FDI training & RX/TX
3608  *   - update transcoder timings
3609  *   - DP transcoding bits
3610  *   - transcoder
3611  */
3612 static void ironlake_pch_enable(struct drm_crtc *crtc)
3613 {
3614         struct drm_device *dev = crtc->dev;
3615         struct drm_i915_private *dev_priv = dev->dev_private;
3616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617         int pipe = intel_crtc->pipe;
3618         u32 reg, temp;
3619
3620         assert_pch_transcoder_disabled(dev_priv, pipe);
3621
3622         if (IS_IVYBRIDGE(dev))
3623                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3624
3625         /* Write the TU size bits before fdi link training, so that error
3626          * detection works. */
3627         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3628                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3629
3630         /* For PCH output, training FDI link */
3631         dev_priv->display.fdi_link_train(crtc);
3632
3633         /* We need to program the right clock selection before writing the pixel
3634          * mutliplier into the DPLL. */
3635         if (HAS_PCH_CPT(dev)) {
3636                 u32 sel;
3637
3638                 temp = I915_READ(PCH_DPLL_SEL);
3639                 temp |= TRANS_DPLL_ENABLE(pipe);
3640                 sel = TRANS_DPLLB_SEL(pipe);
3641                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3642                         temp |= sel;
3643                 else
3644                         temp &= ~sel;
3645                 I915_WRITE(PCH_DPLL_SEL, temp);
3646         }
3647
3648         /* XXX: pch pll's can be enabled any time before we enable the PCH
3649          * transcoder, and we actually should do this to not upset any PCH
3650          * transcoder that already use the clock when we share it.
3651          *
3652          * Note that enable_shared_dpll tries to do the right thing, but
3653          * get_shared_dpll unconditionally resets the pll - we need that to have
3654          * the right LVDS enable sequence. */
3655         intel_enable_shared_dpll(intel_crtc);
3656
3657         /* set transcoder timing, panel must allow it */
3658         assert_panel_unlocked(dev_priv, pipe);
3659         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3660
3661         intel_fdi_normal_train(crtc);
3662
3663         /* For PCH DP, enable TRANS_DP_CTL */
3664         if (HAS_PCH_CPT(dev) &&
3665             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3666              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3667                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3668                 reg = TRANS_DP_CTL(pipe);
3669                 temp = I915_READ(reg);
3670                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3671                           TRANS_DP_SYNC_MASK |
3672                           TRANS_DP_BPC_MASK);
3673                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3674                          TRANS_DP_ENH_FRAMING);
3675                 temp |= bpc << 9; /* same format but at 11:9 */
3676
3677                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3678                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3679                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3680                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3681
3682                 switch (intel_trans_dp_port_sel(crtc)) {
3683                 case PCH_DP_B:
3684                         temp |= TRANS_DP_PORT_SEL_B;
3685                         break;
3686                 case PCH_DP_C:
3687                         temp |= TRANS_DP_PORT_SEL_C;
3688                         break;
3689                 case PCH_DP_D:
3690                         temp |= TRANS_DP_PORT_SEL_D;
3691                         break;
3692                 default:
3693                         BUG();
3694                 }
3695
3696                 I915_WRITE(reg, temp);
3697         }
3698
3699         ironlake_enable_pch_transcoder(dev_priv, pipe);
3700 }
3701
3702 static void lpt_pch_enable(struct drm_crtc *crtc)
3703 {
3704         struct drm_device *dev = crtc->dev;
3705         struct drm_i915_private *dev_priv = dev->dev_private;
3706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3707         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3708
3709         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3710
3711         lpt_program_iclkip(crtc);
3712
3713         /* Set transcoder timing. */
3714         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3715
3716         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3717 }
3718
3719 void intel_put_shared_dpll(struct intel_crtc *crtc)
3720 {
3721         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3722
3723         if (pll == NULL)
3724                 return;
3725
3726         if (pll->refcount == 0) {
3727                 WARN(1, "bad %s refcount\n", pll->name);
3728                 return;
3729         }
3730
3731         if (--pll->refcount == 0) {
3732                 WARN_ON(pll->on);
3733                 WARN_ON(pll->active);
3734         }
3735
3736         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3737 }
3738
3739 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3740 {
3741         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3742         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3743         enum intel_dpll_id i;
3744
3745         if (pll) {
3746                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3747                               crtc->base.base.id, pll->name);
3748                 intel_put_shared_dpll(crtc);
3749         }
3750
3751         if (HAS_PCH_IBX(dev_priv->dev)) {
3752                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3753                 i = (enum intel_dpll_id) crtc->pipe;
3754                 pll = &dev_priv->shared_dplls[i];
3755
3756                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3757                               crtc->base.base.id, pll->name);
3758
3759                 WARN_ON(pll->refcount);
3760
3761                 goto found;
3762         }
3763
3764         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3765                 pll = &dev_priv->shared_dplls[i];
3766
3767                 /* Only want to check enabled timings first */
3768                 if (pll->refcount == 0)
3769                         continue;
3770
3771                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3772                            sizeof(pll->hw_state)) == 0) {
3773                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3774                                       crtc->base.base.id,
3775                                       pll->name, pll->refcount, pll->active);
3776
3777                         goto found;
3778                 }
3779         }
3780
3781         /* Ok no matching timings, maybe there's a free one? */
3782         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3783                 pll = &dev_priv->shared_dplls[i];
3784                 if (pll->refcount == 0) {
3785                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3786                                       crtc->base.base.id, pll->name);
3787                         goto found;
3788                 }
3789         }
3790
3791         return NULL;
3792
3793 found:
3794         if (pll->refcount == 0)
3795                 pll->hw_state = crtc->config.dpll_hw_state;
3796
3797         crtc->config.shared_dpll = i;
3798         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3799                          pipe_name(crtc->pipe));
3800
3801         pll->refcount++;
3802
3803         return pll;
3804 }
3805
3806 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3807 {
3808         struct drm_i915_private *dev_priv = dev->dev_private;
3809         int dslreg = PIPEDSL(pipe);
3810         u32 temp;
3811
3812         temp = I915_READ(dslreg);
3813         udelay(500);
3814         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3815                 if (wait_for(I915_READ(dslreg) != temp, 5))
3816                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3817         }
3818 }
3819
3820 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3821 {
3822         struct drm_device *dev = crtc->base.dev;
3823         struct drm_i915_private *dev_priv = dev->dev_private;
3824         int pipe = crtc->pipe;
3825
3826         if (crtc->config.pch_pfit.enabled) {
3827                 /* Force use of hard-coded filter coefficients
3828                  * as some pre-programmed values are broken,
3829                  * e.g. x201.
3830                  */
3831                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3832                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3833                                                  PF_PIPE_SEL_IVB(pipe));
3834                 else
3835                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3836                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3837                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3838         }
3839 }
3840
3841 static void intel_enable_planes(struct drm_crtc *crtc)
3842 {
3843         struct drm_device *dev = crtc->dev;
3844         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3845         struct drm_plane *plane;
3846         struct intel_plane *intel_plane;
3847
3848         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3849                 intel_plane = to_intel_plane(plane);
3850                 if (intel_plane->pipe == pipe)
3851                         intel_plane_restore(&intel_plane->base);
3852         }
3853 }
3854
3855 static void intel_disable_planes(struct drm_crtc *crtc)
3856 {
3857         struct drm_device *dev = crtc->dev;
3858         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3859         struct drm_plane *plane;
3860         struct intel_plane *intel_plane;
3861
3862         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3863                 intel_plane = to_intel_plane(plane);
3864                 if (intel_plane->pipe == pipe)
3865                         intel_plane_disable(&intel_plane->base);
3866         }
3867 }
3868
3869 void hsw_enable_ips(struct intel_crtc *crtc)
3870 {
3871         struct drm_device *dev = crtc->base.dev;
3872         struct drm_i915_private *dev_priv = dev->dev_private;
3873
3874         if (!crtc->config.ips_enabled)
3875                 return;
3876
3877         /* We can only enable IPS after we enable a plane and wait for a vblank */
3878         intel_wait_for_vblank(dev, crtc->pipe);
3879
3880         assert_plane_enabled(dev_priv, crtc->plane);
3881         if (IS_BROADWELL(dev)) {
3882                 mutex_lock(&dev_priv->rps.hw_lock);
3883                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3884                 mutex_unlock(&dev_priv->rps.hw_lock);
3885                 /* Quoting Art Runyan: "its not safe to expect any particular
3886                  * value in IPS_CTL bit 31 after enabling IPS through the
3887                  * mailbox." Moreover, the mailbox may return a bogus state,
3888                  * so we need to just enable it and continue on.
3889                  */
3890         } else {
3891                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3892                 /* The bit only becomes 1 in the next vblank, so this wait here
3893                  * is essentially intel_wait_for_vblank. If we don't have this
3894                  * and don't wait for vblanks until the end of crtc_enable, then
3895                  * the HW state readout code will complain that the expected
3896                  * IPS_CTL value is not the one we read. */
3897                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3898                         DRM_ERROR("Timed out waiting for IPS enable\n");
3899         }
3900 }
3901
3902 void hsw_disable_ips(struct intel_crtc *crtc)
3903 {
3904         struct drm_device *dev = crtc->base.dev;
3905         struct drm_i915_private *dev_priv = dev->dev_private;
3906
3907         if (!crtc->config.ips_enabled)
3908                 return;
3909
3910         assert_plane_enabled(dev_priv, crtc->plane);
3911         if (IS_BROADWELL(dev)) {
3912                 mutex_lock(&dev_priv->rps.hw_lock);
3913                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3914                 mutex_unlock(&dev_priv->rps.hw_lock);
3915                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3916                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3917                         DRM_ERROR("Timed out waiting for IPS disable\n");
3918         } else {
3919                 I915_WRITE(IPS_CTL, 0);
3920                 POSTING_READ(IPS_CTL);
3921         }
3922
3923         /* We need to wait for a vblank before we can disable the plane. */
3924         intel_wait_for_vblank(dev, crtc->pipe);
3925 }
3926
3927 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3928 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3929 {
3930         struct drm_device *dev = crtc->dev;
3931         struct drm_i915_private *dev_priv = dev->dev_private;
3932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3933         enum pipe pipe = intel_crtc->pipe;
3934         int palreg = PALETTE(pipe);
3935         int i;
3936         bool reenable_ips = false;
3937
3938         /* The clocks have to be on to load the palette. */
3939         if (!crtc->enabled || !intel_crtc->active)
3940                 return;
3941
3942         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3943                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3944                         assert_dsi_pll_enabled(dev_priv);
3945                 else
3946                         assert_pll_enabled(dev_priv, pipe);
3947         }
3948
3949         /* use legacy palette for Ironlake */
3950         if (!HAS_GMCH_DISPLAY(dev))
3951                 palreg = LGC_PALETTE(pipe);
3952
3953         /* Workaround : Do not read or write the pipe palette/gamma data while
3954          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3955          */
3956         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3957             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3958              GAMMA_MODE_MODE_SPLIT)) {
3959                 hsw_disable_ips(intel_crtc);
3960                 reenable_ips = true;
3961         }
3962
3963         for (i = 0; i < 256; i++) {
3964                 I915_WRITE(palreg + 4 * i,
3965                            (intel_crtc->lut_r[i] << 16) |
3966                            (intel_crtc->lut_g[i] << 8) |
3967                            intel_crtc->lut_b[i]);
3968         }
3969
3970         if (reenable_ips)
3971                 hsw_enable_ips(intel_crtc);
3972 }
3973
3974 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3975 {
3976         if (!enable && intel_crtc->overlay) {
3977                 struct drm_device *dev = intel_crtc->base.dev;
3978                 struct drm_i915_private *dev_priv = dev->dev_private;
3979
3980                 mutex_lock(&dev->struct_mutex);
3981                 dev_priv->mm.interruptible = false;
3982                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3983                 dev_priv->mm.interruptible = true;
3984                 mutex_unlock(&dev->struct_mutex);
3985         }
3986
3987         /* Let userspace switch the overlay on again. In most cases userspace
3988          * has to recompute where to put it anyway.
3989          */
3990 }
3991
3992 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3993 {
3994         struct drm_device *dev = crtc->dev;
3995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3996         int pipe = intel_crtc->pipe;
3997
3998         intel_enable_primary_hw_plane(crtc->primary, crtc);
3999         intel_enable_planes(crtc);
4000         intel_crtc_update_cursor(crtc, true);
4001         intel_crtc_dpms_overlay(intel_crtc, true);
4002
4003         hsw_enable_ips(intel_crtc);
4004
4005         mutex_lock(&dev->struct_mutex);
4006         intel_update_fbc(dev);
4007         mutex_unlock(&dev->struct_mutex);
4008
4009         /*
4010          * FIXME: Once we grow proper nuclear flip support out of this we need
4011          * to compute the mask of flip planes precisely. For the time being
4012          * consider this a flip from a NULL plane.
4013          */
4014         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4015 }
4016
4017 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4018 {
4019         struct drm_device *dev = crtc->dev;
4020         struct drm_i915_private *dev_priv = dev->dev_private;
4021         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4022         int pipe = intel_crtc->pipe;
4023         int plane = intel_crtc->plane;
4024
4025         intel_crtc_wait_for_pending_flips(crtc);
4026
4027         if (dev_priv->fbc.plane == plane)
4028                 intel_disable_fbc(dev);
4029
4030         hsw_disable_ips(intel_crtc);
4031
4032         intel_crtc_dpms_overlay(intel_crtc, false);
4033         intel_crtc_update_cursor(crtc, false);
4034         intel_disable_planes(crtc);
4035         intel_disable_primary_hw_plane(crtc->primary, crtc);
4036
4037         /*
4038          * FIXME: Once we grow proper nuclear flip support out of this we need
4039          * to compute the mask of flip planes precisely. For the time being
4040          * consider this a flip to a NULL plane.
4041          */
4042         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4043 }
4044
4045 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4046 {
4047         struct drm_device *dev = crtc->dev;
4048         struct drm_i915_private *dev_priv = dev->dev_private;
4049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4050         struct intel_encoder *encoder;
4051         int pipe = intel_crtc->pipe;
4052
4053         WARN_ON(!crtc->enabled);
4054
4055         if (intel_crtc->active)
4056                 return;
4057
4058         if (intel_crtc->config.has_pch_encoder)
4059                 intel_prepare_shared_dpll(intel_crtc);
4060
4061         if (intel_crtc->config.has_dp_encoder)
4062                 intel_dp_set_m_n(intel_crtc);
4063
4064         intel_set_pipe_timings(intel_crtc);
4065
4066         if (intel_crtc->config.has_pch_encoder) {
4067                 intel_cpu_transcoder_set_m_n(intel_crtc,
4068                                      &intel_crtc->config.fdi_m_n, NULL);
4069         }
4070
4071         ironlake_set_pipeconf(crtc);
4072
4073         intel_crtc->active = true;
4074
4075         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4076         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4077
4078         for_each_encoder_on_crtc(dev, crtc, encoder)
4079                 if (encoder->pre_enable)
4080                         encoder->pre_enable(encoder);
4081
4082         if (intel_crtc->config.has_pch_encoder) {
4083                 /* Note: FDI PLL enabling _must_ be done before we enable the
4084                  * cpu pipes, hence this is separate from all the other fdi/pch
4085                  * enabling. */
4086                 ironlake_fdi_pll_enable(intel_crtc);
4087         } else {
4088                 assert_fdi_tx_disabled(dev_priv, pipe);
4089                 assert_fdi_rx_disabled(dev_priv, pipe);
4090         }
4091
4092         ironlake_pfit_enable(intel_crtc);
4093
4094         /*
4095          * On ILK+ LUT must be loaded before the pipe is running but with
4096          * clocks enabled
4097          */
4098         intel_crtc_load_lut(crtc);
4099
4100         intel_update_watermarks(crtc);
4101         intel_enable_pipe(intel_crtc);
4102
4103         if (intel_crtc->config.has_pch_encoder)
4104                 ironlake_pch_enable(crtc);
4105
4106         for_each_encoder_on_crtc(dev, crtc, encoder)
4107                 encoder->enable(encoder);
4108
4109         if (HAS_PCH_CPT(dev))
4110                 cpt_verify_modeset(dev, intel_crtc->pipe);
4111
4112         assert_vblank_disabled(crtc);
4113         drm_crtc_vblank_on(crtc);
4114
4115         intel_crtc_enable_planes(crtc);
4116 }
4117
4118 /* IPS only exists on ULT machines and is tied to pipe A. */
4119 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4120 {
4121         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4122 }
4123
4124 /*
4125  * This implements the workaround described in the "notes" section of the mode
4126  * set sequence documentation. When going from no pipes or single pipe to
4127  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4128  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4129  */
4130 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4131 {
4132         struct drm_device *dev = crtc->base.dev;
4133         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4134
4135         /* We want to get the other_active_crtc only if there's only 1 other
4136          * active crtc. */
4137         for_each_intel_crtc(dev, crtc_it) {
4138                 if (!crtc_it->active || crtc_it == crtc)
4139                         continue;
4140
4141                 if (other_active_crtc)
4142                         return;
4143
4144                 other_active_crtc = crtc_it;
4145         }
4146         if (!other_active_crtc)
4147                 return;
4148
4149         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4150         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4151 }
4152
4153 static void haswell_crtc_enable(struct drm_crtc *crtc)
4154 {
4155         struct drm_device *dev = crtc->dev;
4156         struct drm_i915_private *dev_priv = dev->dev_private;
4157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4158         struct intel_encoder *encoder;
4159         int pipe = intel_crtc->pipe;
4160
4161         WARN_ON(!crtc->enabled);
4162
4163         if (intel_crtc->active)
4164                 return;
4165
4166         if (intel_crtc_to_shared_dpll(intel_crtc))
4167                 intel_enable_shared_dpll(intel_crtc);
4168
4169         if (intel_crtc->config.has_dp_encoder)
4170                 intel_dp_set_m_n(intel_crtc);
4171
4172         intel_set_pipe_timings(intel_crtc);
4173
4174         if (intel_crtc->config.has_pch_encoder) {
4175                 intel_cpu_transcoder_set_m_n(intel_crtc,
4176                                      &intel_crtc->config.fdi_m_n, NULL);
4177         }
4178
4179         haswell_set_pipeconf(crtc);
4180
4181         intel_set_pipe_csc(crtc);
4182
4183         intel_crtc->active = true;
4184
4185         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4186         for_each_encoder_on_crtc(dev, crtc, encoder)
4187                 if (encoder->pre_enable)
4188                         encoder->pre_enable(encoder);
4189
4190         if (intel_crtc->config.has_pch_encoder) {
4191                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4192                 dev_priv->display.fdi_link_train(crtc);
4193         }
4194
4195         intel_ddi_enable_pipe_clock(intel_crtc);
4196
4197         ironlake_pfit_enable(intel_crtc);
4198
4199         /*
4200          * On ILK+ LUT must be loaded before the pipe is running but with
4201          * clocks enabled
4202          */
4203         intel_crtc_load_lut(crtc);
4204
4205         intel_ddi_set_pipe_settings(crtc);
4206         intel_ddi_enable_transcoder_func(crtc);
4207
4208         intel_update_watermarks(crtc);
4209         intel_enable_pipe(intel_crtc);
4210
4211         if (intel_crtc->config.has_pch_encoder)
4212                 lpt_pch_enable(crtc);
4213
4214         if (intel_crtc->config.dp_encoder_is_mst)
4215                 intel_ddi_set_vc_payload_alloc(crtc, true);
4216
4217         for_each_encoder_on_crtc(dev, crtc, encoder) {
4218                 encoder->enable(encoder);
4219                 intel_opregion_notify_encoder(encoder, true);
4220         }
4221
4222         assert_vblank_disabled(crtc);
4223         drm_crtc_vblank_on(crtc);
4224
4225         /* If we change the relative order between pipe/planes enabling, we need
4226          * to change the workaround. */
4227         haswell_mode_set_planes_workaround(intel_crtc);
4228         intel_crtc_enable_planes(crtc);
4229 }
4230
4231 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4232 {
4233         struct drm_device *dev = crtc->base.dev;
4234         struct drm_i915_private *dev_priv = dev->dev_private;
4235         int pipe = crtc->pipe;
4236
4237         /* To avoid upsetting the power well on haswell only disable the pfit if
4238          * it's in use. The hw state code will make sure we get this right. */
4239         if (crtc->config.pch_pfit.enabled) {
4240                 I915_WRITE(PF_CTL(pipe), 0);
4241                 I915_WRITE(PF_WIN_POS(pipe), 0);
4242                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4243         }
4244 }
4245
4246 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4247 {
4248         struct drm_device *dev = crtc->dev;
4249         struct drm_i915_private *dev_priv = dev->dev_private;
4250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4251         struct intel_encoder *encoder;
4252         int pipe = intel_crtc->pipe;
4253         u32 reg, temp;
4254
4255         if (!intel_crtc->active)
4256                 return;
4257
4258         intel_crtc_disable_planes(crtc);
4259
4260         drm_crtc_vblank_off(crtc);
4261         assert_vblank_disabled(crtc);
4262
4263         for_each_encoder_on_crtc(dev, crtc, encoder)
4264                 encoder->disable(encoder);
4265
4266         if (intel_crtc->config.has_pch_encoder)
4267                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4268
4269         intel_disable_pipe(intel_crtc);
4270
4271         ironlake_pfit_disable(intel_crtc);
4272
4273         for_each_encoder_on_crtc(dev, crtc, encoder)
4274                 if (encoder->post_disable)
4275                         encoder->post_disable(encoder);
4276
4277         if (intel_crtc->config.has_pch_encoder) {
4278                 ironlake_fdi_disable(crtc);
4279
4280                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4281                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4282
4283                 if (HAS_PCH_CPT(dev)) {
4284                         /* disable TRANS_DP_CTL */
4285                         reg = TRANS_DP_CTL(pipe);
4286                         temp = I915_READ(reg);
4287                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4288                                   TRANS_DP_PORT_SEL_MASK);
4289                         temp |= TRANS_DP_PORT_SEL_NONE;
4290                         I915_WRITE(reg, temp);
4291
4292                         /* disable DPLL_SEL */
4293                         temp = I915_READ(PCH_DPLL_SEL);
4294                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4295                         I915_WRITE(PCH_DPLL_SEL, temp);
4296                 }
4297
4298                 /* disable PCH DPLL */
4299                 intel_disable_shared_dpll(intel_crtc);
4300
4301                 ironlake_fdi_pll_disable(intel_crtc);
4302         }
4303
4304         intel_crtc->active = false;
4305         intel_update_watermarks(crtc);
4306
4307         mutex_lock(&dev->struct_mutex);
4308         intel_update_fbc(dev);
4309         mutex_unlock(&dev->struct_mutex);
4310 }
4311
4312 static void haswell_crtc_disable(struct drm_crtc *crtc)
4313 {
4314         struct drm_device *dev = crtc->dev;
4315         struct drm_i915_private *dev_priv = dev->dev_private;
4316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4317         struct intel_encoder *encoder;
4318         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4319
4320         if (!intel_crtc->active)
4321                 return;
4322
4323         intel_crtc_disable_planes(crtc);
4324
4325         drm_crtc_vblank_off(crtc);
4326         assert_vblank_disabled(crtc);
4327
4328         for_each_encoder_on_crtc(dev, crtc, encoder) {
4329                 intel_opregion_notify_encoder(encoder, false);
4330                 encoder->disable(encoder);
4331         }
4332
4333         if (intel_crtc->config.has_pch_encoder)
4334                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4335         intel_disable_pipe(intel_crtc);
4336
4337         if (intel_crtc->config.dp_encoder_is_mst)
4338                 intel_ddi_set_vc_payload_alloc(crtc, false);
4339
4340         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4341
4342         ironlake_pfit_disable(intel_crtc);
4343
4344         intel_ddi_disable_pipe_clock(intel_crtc);
4345
4346         if (intel_crtc->config.has_pch_encoder) {
4347                 lpt_disable_pch_transcoder(dev_priv);
4348                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4349                 intel_ddi_fdi_disable(crtc);
4350         }
4351
4352         for_each_encoder_on_crtc(dev, crtc, encoder)
4353                 if (encoder->post_disable)
4354                         encoder->post_disable(encoder);
4355
4356         intel_crtc->active = false;
4357         intel_update_watermarks(crtc);
4358
4359         mutex_lock(&dev->struct_mutex);
4360         intel_update_fbc(dev);
4361         mutex_unlock(&dev->struct_mutex);
4362
4363         if (intel_crtc_to_shared_dpll(intel_crtc))
4364                 intel_disable_shared_dpll(intel_crtc);
4365 }
4366
4367 static void ironlake_crtc_off(struct drm_crtc *crtc)
4368 {
4369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4370         intel_put_shared_dpll(intel_crtc);
4371 }
4372
4373
4374 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4375 {
4376         struct drm_device *dev = crtc->base.dev;
4377         struct drm_i915_private *dev_priv = dev->dev_private;
4378         struct intel_crtc_config *pipe_config = &crtc->config;
4379
4380         if (!crtc->config.gmch_pfit.control)
4381                 return;
4382
4383         /*
4384          * The panel fitter should only be adjusted whilst the pipe is disabled,
4385          * according to register description and PRM.
4386          */
4387         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4388         assert_pipe_disabled(dev_priv, crtc->pipe);
4389
4390         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4391         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4392
4393         /* Border color in case we don't scale up to the full screen. Black by
4394          * default, change to something else for debugging. */
4395         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4396 }
4397
4398 static enum intel_display_power_domain port_to_power_domain(enum port port)
4399 {
4400         switch (port) {
4401         case PORT_A:
4402                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4403         case PORT_B:
4404                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4405         case PORT_C:
4406                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4407         case PORT_D:
4408                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4409         default:
4410                 WARN_ON_ONCE(1);
4411                 return POWER_DOMAIN_PORT_OTHER;
4412         }
4413 }
4414
4415 #define for_each_power_domain(domain, mask)                             \
4416         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4417                 if ((1 << (domain)) & (mask))
4418
4419 enum intel_display_power_domain
4420 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4421 {
4422         struct drm_device *dev = intel_encoder->base.dev;
4423         struct intel_digital_port *intel_dig_port;
4424
4425         switch (intel_encoder->type) {
4426         case INTEL_OUTPUT_UNKNOWN:
4427                 /* Only DDI platforms should ever use this output type */
4428                 WARN_ON_ONCE(!HAS_DDI(dev));
4429         case INTEL_OUTPUT_DISPLAYPORT:
4430         case INTEL_OUTPUT_HDMI:
4431         case INTEL_OUTPUT_EDP:
4432                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4433                 return port_to_power_domain(intel_dig_port->port);
4434         case INTEL_OUTPUT_DP_MST:
4435                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4436                 return port_to_power_domain(intel_dig_port->port);
4437         case INTEL_OUTPUT_ANALOG:
4438                 return POWER_DOMAIN_PORT_CRT;
4439         case INTEL_OUTPUT_DSI:
4440                 return POWER_DOMAIN_PORT_DSI;
4441         default:
4442                 return POWER_DOMAIN_PORT_OTHER;
4443         }
4444 }
4445
4446 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4447 {
4448         struct drm_device *dev = crtc->dev;
4449         struct intel_encoder *intel_encoder;
4450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4451         enum pipe pipe = intel_crtc->pipe;
4452         unsigned long mask;
4453         enum transcoder transcoder;
4454
4455         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4456
4457         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4458         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4459         if (intel_crtc->config.pch_pfit.enabled ||
4460             intel_crtc->config.pch_pfit.force_thru)
4461                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4462
4463         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4464                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4465
4466         return mask;
4467 }
4468
4469 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4470                                   bool enable)
4471 {
4472         if (dev_priv->power_domains.init_power_on == enable)
4473                 return;
4474
4475         if (enable)
4476                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4477         else
4478                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4479
4480         dev_priv->power_domains.init_power_on = enable;
4481 }
4482
4483 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4484 {
4485         struct drm_i915_private *dev_priv = dev->dev_private;
4486         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4487         struct intel_crtc *crtc;
4488
4489         /*
4490          * First get all needed power domains, then put all unneeded, to avoid
4491          * any unnecessary toggling of the power wells.
4492          */
4493         for_each_intel_crtc(dev, crtc) {
4494                 enum intel_display_power_domain domain;
4495
4496                 if (!crtc->base.enabled)
4497                         continue;
4498
4499                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4500
4501                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4502                         intel_display_power_get(dev_priv, domain);
4503         }
4504
4505         for_each_intel_crtc(dev, crtc) {
4506                 enum intel_display_power_domain domain;
4507
4508                 for_each_power_domain(domain, crtc->enabled_power_domains)
4509                         intel_display_power_put(dev_priv, domain);
4510
4511                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4512         }
4513
4514         intel_display_set_init_power(dev_priv, false);
4515 }
4516
4517 /* returns HPLL frequency in kHz */
4518 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4519 {
4520         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4521
4522         /* Obtain SKU information */
4523         mutex_lock(&dev_priv->dpio_lock);
4524         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4525                 CCK_FUSE_HPLL_FREQ_MASK;
4526         mutex_unlock(&dev_priv->dpio_lock);
4527
4528         return vco_freq[hpll_freq] * 1000;
4529 }
4530
4531 static void vlv_update_cdclk(struct drm_device *dev)
4532 {
4533         struct drm_i915_private *dev_priv = dev->dev_private;
4534
4535         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4536         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4537                          dev_priv->vlv_cdclk_freq);
4538
4539         /*
4540          * Program the gmbus_freq based on the cdclk frequency.
4541          * BSpec erroneously claims we should aim for 4MHz, but
4542          * in fact 1MHz is the correct frequency.
4543          */
4544         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4545 }
4546
4547 /* Adjust CDclk dividers to allow high res or save power if possible */
4548 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4549 {
4550         struct drm_i915_private *dev_priv = dev->dev_private;
4551         u32 val, cmd;
4552
4553         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4554
4555         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4556                 cmd = 2;
4557         else if (cdclk == 266667)
4558                 cmd = 1;
4559         else
4560                 cmd = 0;
4561
4562         mutex_lock(&dev_priv->rps.hw_lock);
4563         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4564         val &= ~DSPFREQGUAR_MASK;
4565         val |= (cmd << DSPFREQGUAR_SHIFT);
4566         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4567         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4568                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4569                      50)) {
4570                 DRM_ERROR("timed out waiting for CDclk change\n");
4571         }
4572         mutex_unlock(&dev_priv->rps.hw_lock);
4573
4574         if (cdclk == 400000) {
4575                 u32 divider, vco;
4576
4577                 vco = valleyview_get_vco(dev_priv);
4578                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4579
4580                 mutex_lock(&dev_priv->dpio_lock);
4581                 /* adjust cdclk divider */
4582                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4583                 val &= ~DISPLAY_FREQUENCY_VALUES;
4584                 val |= divider;
4585                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4586
4587                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4588                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4589                              50))
4590                         DRM_ERROR("timed out waiting for CDclk change\n");
4591                 mutex_unlock(&dev_priv->dpio_lock);
4592         }
4593
4594         mutex_lock(&dev_priv->dpio_lock);
4595         /* adjust self-refresh exit latency value */
4596         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4597         val &= ~0x7f;
4598
4599         /*
4600          * For high bandwidth configs, we set a higher latency in the bunit
4601          * so that the core display fetch happens in time to avoid underruns.
4602          */
4603         if (cdclk == 400000)
4604                 val |= 4500 / 250; /* 4.5 usec */
4605         else
4606                 val |= 3000 / 250; /* 3.0 usec */
4607         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4608         mutex_unlock(&dev_priv->dpio_lock);
4609
4610         vlv_update_cdclk(dev);
4611 }
4612
4613 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4614 {
4615         struct drm_i915_private *dev_priv = dev->dev_private;
4616         u32 val, cmd;
4617
4618         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4619
4620         switch (cdclk) {
4621         case 400000:
4622                 cmd = 3;
4623                 break;
4624         case 333333:
4625         case 320000:
4626                 cmd = 2;
4627                 break;
4628         case 266667:
4629                 cmd = 1;
4630                 break;
4631         case 200000:
4632                 cmd = 0;
4633                 break;
4634         default:
4635                 WARN_ON(1);
4636                 return;
4637         }
4638
4639         mutex_lock(&dev_priv->rps.hw_lock);
4640         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4641         val &= ~DSPFREQGUAR_MASK_CHV;
4642         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4643         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4644         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4645                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4646                      50)) {
4647                 DRM_ERROR("timed out waiting for CDclk change\n");
4648         }
4649         mutex_unlock(&dev_priv->rps.hw_lock);
4650
4651         vlv_update_cdclk(dev);
4652 }
4653
4654 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4655                                  int max_pixclk)
4656 {
4657         int vco = valleyview_get_vco(dev_priv);
4658         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4659
4660         /* FIXME: Punit isn't quite ready yet */
4661         if (IS_CHERRYVIEW(dev_priv->dev))
4662                 return 400000;
4663
4664         /*
4665          * Really only a few cases to deal with, as only 4 CDclks are supported:
4666          *   200MHz
4667          *   267MHz
4668          *   320/333MHz (depends on HPLL freq)
4669          *   400MHz
4670          * So we check to see whether we're above 90% of the lower bin and
4671          * adjust if needed.
4672          *
4673          * We seem to get an unstable or solid color picture at 200MHz.
4674          * Not sure what's wrong. For now use 200MHz only when all pipes
4675          * are off.
4676          */
4677         if (max_pixclk > freq_320*9/10)
4678                 return 400000;
4679         else if (max_pixclk > 266667*9/10)
4680                 return freq_320;
4681         else if (max_pixclk > 0)
4682                 return 266667;
4683         else
4684                 return 200000;
4685 }
4686
4687 /* compute the max pixel clock for new configuration */
4688 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4689 {
4690         struct drm_device *dev = dev_priv->dev;
4691         struct intel_crtc *intel_crtc;
4692         int max_pixclk = 0;
4693
4694         for_each_intel_crtc(dev, intel_crtc) {
4695                 if (intel_crtc->new_enabled)
4696                         max_pixclk = max(max_pixclk,
4697                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4698         }
4699
4700         return max_pixclk;
4701 }
4702
4703 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4704                                             unsigned *prepare_pipes)
4705 {
4706         struct drm_i915_private *dev_priv = dev->dev_private;
4707         struct intel_crtc *intel_crtc;
4708         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4709
4710         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4711             dev_priv->vlv_cdclk_freq)
4712                 return;
4713
4714         /* disable/enable all currently active pipes while we change cdclk */
4715         for_each_intel_crtc(dev, intel_crtc)
4716                 if (intel_crtc->base.enabled)
4717                         *prepare_pipes |= (1 << intel_crtc->pipe);
4718 }
4719
4720 static void valleyview_modeset_global_resources(struct drm_device *dev)
4721 {
4722         struct drm_i915_private *dev_priv = dev->dev_private;
4723         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4724         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4725
4726         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4727                 if (IS_CHERRYVIEW(dev))
4728                         cherryview_set_cdclk(dev, req_cdclk);
4729                 else
4730                         valleyview_set_cdclk(dev, req_cdclk);
4731         }
4732
4733         modeset_update_crtc_power_domains(dev);
4734 }
4735
4736 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4737 {
4738         struct drm_device *dev = crtc->dev;
4739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740         struct intel_encoder *encoder;
4741         int pipe = intel_crtc->pipe;
4742         bool is_dsi;
4743
4744         WARN_ON(!crtc->enabled);
4745
4746         if (intel_crtc->active)
4747                 return;
4748
4749         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4750
4751         if (!is_dsi) {
4752                 if (IS_CHERRYVIEW(dev))
4753                         chv_prepare_pll(intel_crtc);
4754                 else
4755                         vlv_prepare_pll(intel_crtc);
4756         }
4757
4758         if (intel_crtc->config.has_dp_encoder)
4759                 intel_dp_set_m_n(intel_crtc);
4760
4761         intel_set_pipe_timings(intel_crtc);
4762
4763         i9xx_set_pipeconf(intel_crtc);
4764
4765         intel_crtc->active = true;
4766
4767         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4768
4769         for_each_encoder_on_crtc(dev, crtc, encoder)
4770                 if (encoder->pre_pll_enable)
4771                         encoder->pre_pll_enable(encoder);
4772
4773         if (!is_dsi) {
4774                 if (IS_CHERRYVIEW(dev))
4775                         chv_enable_pll(intel_crtc);
4776                 else
4777                         vlv_enable_pll(intel_crtc);
4778         }
4779
4780         for_each_encoder_on_crtc(dev, crtc, encoder)
4781                 if (encoder->pre_enable)
4782                         encoder->pre_enable(encoder);
4783
4784         i9xx_pfit_enable(intel_crtc);
4785
4786         intel_crtc_load_lut(crtc);
4787
4788         intel_update_watermarks(crtc);
4789         intel_enable_pipe(intel_crtc);
4790
4791         for_each_encoder_on_crtc(dev, crtc, encoder)
4792                 encoder->enable(encoder);
4793
4794         assert_vblank_disabled(crtc);
4795         drm_crtc_vblank_on(crtc);
4796
4797         intel_crtc_enable_planes(crtc);
4798
4799         /* Underruns don't raise interrupts, so check manually. */
4800         i9xx_check_fifo_underruns(dev);
4801 }
4802
4803 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4804 {
4805         struct drm_device *dev = crtc->base.dev;
4806         struct drm_i915_private *dev_priv = dev->dev_private;
4807
4808         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4809         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4810 }
4811
4812 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4813 {
4814         struct drm_device *dev = crtc->dev;
4815         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4816         struct intel_encoder *encoder;
4817         int pipe = intel_crtc->pipe;
4818
4819         WARN_ON(!crtc->enabled);
4820
4821         if (intel_crtc->active)
4822                 return;
4823
4824         i9xx_set_pll_dividers(intel_crtc);
4825
4826         if (intel_crtc->config.has_dp_encoder)
4827                 intel_dp_set_m_n(intel_crtc);
4828
4829         intel_set_pipe_timings(intel_crtc);
4830
4831         i9xx_set_pipeconf(intel_crtc);
4832
4833         intel_crtc->active = true;
4834
4835         if (!IS_GEN2(dev))
4836                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4837
4838         for_each_encoder_on_crtc(dev, crtc, encoder)
4839                 if (encoder->pre_enable)
4840                         encoder->pre_enable(encoder);
4841
4842         i9xx_enable_pll(intel_crtc);
4843
4844         i9xx_pfit_enable(intel_crtc);
4845
4846         intel_crtc_load_lut(crtc);
4847
4848         intel_update_watermarks(crtc);
4849         intel_enable_pipe(intel_crtc);
4850
4851         for_each_encoder_on_crtc(dev, crtc, encoder)
4852                 encoder->enable(encoder);
4853
4854         assert_vblank_disabled(crtc);
4855         drm_crtc_vblank_on(crtc);
4856
4857         intel_crtc_enable_planes(crtc);
4858
4859         /*
4860          * Gen2 reports pipe underruns whenever all planes are disabled.
4861          * So don't enable underrun reporting before at least some planes
4862          * are enabled.
4863          * FIXME: Need to fix the logic to work when we turn off all planes
4864          * but leave the pipe running.
4865          */
4866         if (IS_GEN2(dev))
4867                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4868
4869         /* Underruns don't raise interrupts, so check manually. */
4870         i9xx_check_fifo_underruns(dev);
4871 }
4872
4873 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4874 {
4875         struct drm_device *dev = crtc->base.dev;
4876         struct drm_i915_private *dev_priv = dev->dev_private;
4877
4878         if (!crtc->config.gmch_pfit.control)
4879                 return;
4880
4881         assert_pipe_disabled(dev_priv, crtc->pipe);
4882
4883         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4884                          I915_READ(PFIT_CONTROL));
4885         I915_WRITE(PFIT_CONTROL, 0);
4886 }
4887
4888 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4889 {
4890         struct drm_device *dev = crtc->dev;
4891         struct drm_i915_private *dev_priv = dev->dev_private;
4892         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4893         struct intel_encoder *encoder;
4894         int pipe = intel_crtc->pipe;
4895
4896         if (!intel_crtc->active)
4897                 return;
4898
4899         /*
4900          * Gen2 reports pipe underruns whenever all planes are disabled.
4901          * So diasble underrun reporting before all the planes get disabled.
4902          * FIXME: Need to fix the logic to work when we turn off all planes
4903          * but leave the pipe running.
4904          */
4905         if (IS_GEN2(dev))
4906                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4907
4908         /*
4909          * Vblank time updates from the shadow to live plane control register
4910          * are blocked if the memory self-refresh mode is active at that
4911          * moment. So to make sure the plane gets truly disabled, disable
4912          * first the self-refresh mode. The self-refresh enable bit in turn
4913          * will be checked/applied by the HW only at the next frame start
4914          * event which is after the vblank start event, so we need to have a
4915          * wait-for-vblank between disabling the plane and the pipe.
4916          */
4917         intel_set_memory_cxsr(dev_priv, false);
4918         intel_crtc_disable_planes(crtc);
4919
4920         /*
4921          * On gen2 planes are double buffered but the pipe isn't, so we must
4922          * wait for planes to fully turn off before disabling the pipe.
4923          * We also need to wait on all gmch platforms because of the
4924          * self-refresh mode constraint explained above.
4925          */
4926         intel_wait_for_vblank(dev, pipe);
4927
4928         drm_crtc_vblank_off(crtc);
4929         assert_vblank_disabled(crtc);
4930
4931         for_each_encoder_on_crtc(dev, crtc, encoder)
4932                 encoder->disable(encoder);
4933
4934         intel_disable_pipe(intel_crtc);
4935
4936         i9xx_pfit_disable(intel_crtc);
4937
4938         for_each_encoder_on_crtc(dev, crtc, encoder)
4939                 if (encoder->post_disable)
4940                         encoder->post_disable(encoder);
4941
4942         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4943                 if (IS_CHERRYVIEW(dev))
4944                         chv_disable_pll(dev_priv, pipe);
4945                 else if (IS_VALLEYVIEW(dev))
4946                         vlv_disable_pll(dev_priv, pipe);
4947                 else
4948                         i9xx_disable_pll(intel_crtc);
4949         }
4950
4951         if (!IS_GEN2(dev))
4952                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4953
4954         intel_crtc->active = false;
4955         intel_update_watermarks(crtc);
4956
4957         mutex_lock(&dev->struct_mutex);
4958         intel_update_fbc(dev);
4959         mutex_unlock(&dev->struct_mutex);
4960 }
4961
4962 static void i9xx_crtc_off(struct drm_crtc *crtc)
4963 {
4964 }
4965
4966 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4967                                     bool enabled)
4968 {
4969         struct drm_device *dev = crtc->dev;
4970         struct drm_i915_master_private *master_priv;
4971         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4972         int pipe = intel_crtc->pipe;
4973
4974         if (!dev->primary->master)
4975                 return;
4976
4977         master_priv = dev->primary->master->driver_priv;
4978         if (!master_priv->sarea_priv)
4979                 return;
4980
4981         switch (pipe) {
4982         case 0:
4983                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4984                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4985                 break;
4986         case 1:
4987                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4988                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4989                 break;
4990         default:
4991                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4992                 break;
4993         }
4994 }
4995
4996 /* Master function to enable/disable CRTC and corresponding power wells */
4997 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4998 {
4999         struct drm_device *dev = crtc->dev;
5000         struct drm_i915_private *dev_priv = dev->dev_private;
5001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5002         enum intel_display_power_domain domain;
5003         unsigned long domains;
5004
5005         if (enable) {
5006                 if (!intel_crtc->active) {
5007                         domains = get_crtc_power_domains(crtc);
5008                         for_each_power_domain(domain, domains)
5009                                 intel_display_power_get(dev_priv, domain);
5010                         intel_crtc->enabled_power_domains = domains;
5011
5012                         dev_priv->display.crtc_enable(crtc);
5013                 }
5014         } else {
5015                 if (intel_crtc->active) {
5016                         dev_priv->display.crtc_disable(crtc);
5017
5018                         domains = intel_crtc->enabled_power_domains;
5019                         for_each_power_domain(domain, domains)
5020                                 intel_display_power_put(dev_priv, domain);
5021                         intel_crtc->enabled_power_domains = 0;
5022                 }
5023         }
5024 }
5025
5026 /**
5027  * Sets the power management mode of the pipe and plane.
5028  */
5029 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5030 {
5031         struct drm_device *dev = crtc->dev;
5032         struct intel_encoder *intel_encoder;
5033         bool enable = false;
5034
5035         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5036                 enable |= intel_encoder->connectors_active;
5037
5038         intel_crtc_control(crtc, enable);
5039
5040         intel_crtc_update_sarea(crtc, enable);
5041 }
5042
5043 static void intel_crtc_disable(struct drm_crtc *crtc)
5044 {
5045         struct drm_device *dev = crtc->dev;
5046         struct drm_connector *connector;
5047         struct drm_i915_private *dev_priv = dev->dev_private;
5048         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5049         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5050
5051         /* crtc should still be enabled when we disable it. */
5052         WARN_ON(!crtc->enabled);
5053
5054         dev_priv->display.crtc_disable(crtc);
5055         intel_crtc_update_sarea(crtc, false);
5056         dev_priv->display.off(crtc);
5057
5058         if (crtc->primary->fb) {
5059                 mutex_lock(&dev->struct_mutex);
5060                 intel_unpin_fb_obj(old_obj);
5061                 i915_gem_track_fb(old_obj, NULL,
5062                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5063                 mutex_unlock(&dev->struct_mutex);
5064                 crtc->primary->fb = NULL;
5065         }
5066
5067         /* Update computed state. */
5068         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5069                 if (!connector->encoder || !connector->encoder->crtc)
5070                         continue;
5071
5072                 if (connector->encoder->crtc != crtc)
5073                         continue;
5074
5075                 connector->dpms = DRM_MODE_DPMS_OFF;
5076                 to_intel_encoder(connector->encoder)->connectors_active = false;
5077         }
5078 }
5079
5080 void intel_encoder_destroy(struct drm_encoder *encoder)
5081 {
5082         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5083
5084         drm_encoder_cleanup(encoder);
5085         kfree(intel_encoder);
5086 }
5087
5088 /* Simple dpms helper for encoders with just one connector, no cloning and only
5089  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5090  * state of the entire output pipe. */
5091 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5092 {
5093         if (mode == DRM_MODE_DPMS_ON) {
5094                 encoder->connectors_active = true;
5095
5096                 intel_crtc_update_dpms(encoder->base.crtc);
5097         } else {
5098                 encoder->connectors_active = false;
5099
5100                 intel_crtc_update_dpms(encoder->base.crtc);
5101         }
5102 }
5103
5104 /* Cross check the actual hw state with our own modeset state tracking (and it's
5105  * internal consistency). */
5106 static void intel_connector_check_state(struct intel_connector *connector)
5107 {
5108         if (connector->get_hw_state(connector)) {
5109                 struct intel_encoder *encoder = connector->encoder;
5110                 struct drm_crtc *crtc;
5111                 bool encoder_enabled;
5112                 enum pipe pipe;
5113
5114                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5115                               connector->base.base.id,
5116                               connector->base.name);
5117
5118                 /* there is no real hw state for MST connectors */
5119                 if (connector->mst_port)
5120                         return;
5121
5122                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5123                      "wrong connector dpms state\n");
5124                 WARN(connector->base.encoder != &encoder->base,
5125                      "active connector not linked to encoder\n");
5126
5127                 if (encoder) {
5128                         WARN(!encoder->connectors_active,
5129                              "encoder->connectors_active not set\n");
5130
5131                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5132                         WARN(!encoder_enabled, "encoder not enabled\n");
5133                         if (WARN_ON(!encoder->base.crtc))
5134                                 return;
5135
5136                         crtc = encoder->base.crtc;
5137
5138                         WARN(!crtc->enabled, "crtc not enabled\n");
5139                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5140                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5141                              "encoder active on the wrong pipe\n");
5142                 }
5143         }
5144 }
5145
5146 /* Even simpler default implementation, if there's really no special case to
5147  * consider. */
5148 void intel_connector_dpms(struct drm_connector *connector, int mode)
5149 {
5150         /* All the simple cases only support two dpms states. */
5151         if (mode != DRM_MODE_DPMS_ON)
5152                 mode = DRM_MODE_DPMS_OFF;
5153
5154         if (mode == connector->dpms)
5155                 return;
5156
5157         connector->dpms = mode;
5158
5159         /* Only need to change hw state when actually enabled */
5160         if (connector->encoder)
5161                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5162
5163         intel_modeset_check_state(connector->dev);
5164 }
5165
5166 /* Simple connector->get_hw_state implementation for encoders that support only
5167  * one connector and no cloning and hence the encoder state determines the state
5168  * of the connector. */
5169 bool intel_connector_get_hw_state(struct intel_connector *connector)
5170 {
5171         enum pipe pipe = 0;
5172         struct intel_encoder *encoder = connector->encoder;
5173
5174         return encoder->get_hw_state(encoder, &pipe);
5175 }
5176
5177 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5178                                      struct intel_crtc_config *pipe_config)
5179 {
5180         struct drm_i915_private *dev_priv = dev->dev_private;
5181         struct intel_crtc *pipe_B_crtc =
5182                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5183
5184         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5185                       pipe_name(pipe), pipe_config->fdi_lanes);
5186         if (pipe_config->fdi_lanes > 4) {
5187                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5188                               pipe_name(pipe), pipe_config->fdi_lanes);
5189                 return false;
5190         }
5191
5192         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5193                 if (pipe_config->fdi_lanes > 2) {
5194                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5195                                       pipe_config->fdi_lanes);
5196                         return false;
5197                 } else {
5198                         return true;
5199                 }
5200         }
5201
5202         if (INTEL_INFO(dev)->num_pipes == 2)
5203                 return true;
5204
5205         /* Ivybridge 3 pipe is really complicated */
5206         switch (pipe) {
5207         case PIPE_A:
5208                 return true;
5209         case PIPE_B:
5210                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5211                     pipe_config->fdi_lanes > 2) {
5212                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5213                                       pipe_name(pipe), pipe_config->fdi_lanes);
5214                         return false;
5215                 }
5216                 return true;
5217         case PIPE_C:
5218                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5219                     pipe_B_crtc->config.fdi_lanes <= 2) {
5220                         if (pipe_config->fdi_lanes > 2) {
5221                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5222                                               pipe_name(pipe), pipe_config->fdi_lanes);
5223                                 return false;
5224                         }
5225                 } else {
5226                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5227                         return false;
5228                 }
5229                 return true;
5230         default:
5231                 BUG();
5232         }
5233 }
5234
5235 #define RETRY 1
5236 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5237                                        struct intel_crtc_config *pipe_config)
5238 {
5239         struct drm_device *dev = intel_crtc->base.dev;
5240         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5241         int lane, link_bw, fdi_dotclock;
5242         bool setup_ok, needs_recompute = false;
5243
5244 retry:
5245         /* FDI is a binary signal running at ~2.7GHz, encoding
5246          * each output octet as 10 bits. The actual frequency
5247          * is stored as a divider into a 100MHz clock, and the
5248          * mode pixel clock is stored in units of 1KHz.
5249          * Hence the bw of each lane in terms of the mode signal
5250          * is:
5251          */
5252         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5253
5254         fdi_dotclock = adjusted_mode->crtc_clock;
5255
5256         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5257                                            pipe_config->pipe_bpp);
5258
5259         pipe_config->fdi_lanes = lane;
5260
5261         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5262                                link_bw, &pipe_config->fdi_m_n);
5263
5264         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5265                                             intel_crtc->pipe, pipe_config);
5266         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5267                 pipe_config->pipe_bpp -= 2*3;
5268                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5269                               pipe_config->pipe_bpp);
5270                 needs_recompute = true;
5271                 pipe_config->bw_constrained = true;
5272
5273                 goto retry;
5274         }
5275
5276         if (needs_recompute)
5277                 return RETRY;
5278
5279         return setup_ok ? 0 : -EINVAL;
5280 }
5281
5282 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5283                                    struct intel_crtc_config *pipe_config)
5284 {
5285         pipe_config->ips_enabled = i915.enable_ips &&
5286                                    hsw_crtc_supports_ips(crtc) &&
5287                                    pipe_config->pipe_bpp <= 24;
5288 }
5289
5290 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5291                                      struct intel_crtc_config *pipe_config)
5292 {
5293         struct drm_device *dev = crtc->base.dev;
5294         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5295
5296         /* FIXME should check pixel clock limits on all platforms */
5297         if (INTEL_INFO(dev)->gen < 4) {
5298                 struct drm_i915_private *dev_priv = dev->dev_private;
5299                 int clock_limit =
5300                         dev_priv->display.get_display_clock_speed(dev);
5301
5302                 /*
5303                  * Enable pixel doubling when the dot clock
5304                  * is > 90% of the (display) core speed.
5305                  *
5306                  * GDG double wide on either pipe,
5307                  * otherwise pipe A only.
5308                  */
5309                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5310                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5311                         clock_limit *= 2;
5312                         pipe_config->double_wide = true;
5313                 }
5314
5315                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5316                         return -EINVAL;
5317         }
5318
5319         /*
5320          * Pipe horizontal size must be even in:
5321          * - DVO ganged mode
5322          * - LVDS dual channel mode
5323          * - Double wide pipe
5324          */
5325         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5326              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5327                 pipe_config->pipe_src_w &= ~1;
5328
5329         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5330          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5331          */
5332         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5333                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5334                 return -EINVAL;
5335
5336         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5337                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5338         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5339                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5340                  * for lvds. */
5341                 pipe_config->pipe_bpp = 8*3;
5342         }
5343
5344         if (HAS_IPS(dev))
5345                 hsw_compute_ips_config(crtc, pipe_config);
5346
5347         /*
5348          * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5349          * old clock survives for now.
5350          */
5351         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5352                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5353
5354         if (pipe_config->has_pch_encoder)
5355                 return ironlake_fdi_compute_config(crtc, pipe_config);
5356
5357         return 0;
5358 }
5359
5360 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5361 {
5362         struct drm_i915_private *dev_priv = dev->dev_private;
5363         int vco = valleyview_get_vco(dev_priv);
5364         u32 val;
5365         int divider;
5366
5367         /* FIXME: Punit isn't quite ready yet */
5368         if (IS_CHERRYVIEW(dev))
5369                 return 400000;
5370
5371         mutex_lock(&dev_priv->dpio_lock);
5372         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5373         mutex_unlock(&dev_priv->dpio_lock);
5374
5375         divider = val & DISPLAY_FREQUENCY_VALUES;
5376
5377         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5378              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5379              "cdclk change in progress\n");
5380
5381         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5382 }
5383
5384 static int i945_get_display_clock_speed(struct drm_device *dev)
5385 {
5386         return 400000;
5387 }
5388
5389 static int i915_get_display_clock_speed(struct drm_device *dev)
5390 {
5391         return 333000;
5392 }
5393
5394 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5395 {
5396         return 200000;
5397 }
5398
5399 static int pnv_get_display_clock_speed(struct drm_device *dev)
5400 {
5401         u16 gcfgc = 0;
5402
5403         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5404
5405         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5406         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5407                 return 267000;
5408         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5409                 return 333000;
5410         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5411                 return 444000;
5412         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5413                 return 200000;
5414         default:
5415                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5416         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5417                 return 133000;
5418         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5419                 return 167000;
5420         }
5421 }
5422
5423 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5424 {
5425         u16 gcfgc = 0;
5426
5427         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5428
5429         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5430                 return 133000;
5431         else {
5432                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5433                 case GC_DISPLAY_CLOCK_333_MHZ:
5434                         return 333000;
5435                 default:
5436                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5437                         return 190000;
5438                 }
5439         }
5440 }
5441
5442 static int i865_get_display_clock_speed(struct drm_device *dev)
5443 {
5444         return 266000;
5445 }
5446
5447 static int i855_get_display_clock_speed(struct drm_device *dev)
5448 {
5449         u16 hpllcc = 0;
5450         /* Assume that the hardware is in the high speed state.  This
5451          * should be the default.
5452          */
5453         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5454         case GC_CLOCK_133_200:
5455         case GC_CLOCK_100_200:
5456                 return 200000;
5457         case GC_CLOCK_166_250:
5458                 return 250000;
5459         case GC_CLOCK_100_133:
5460                 return 133000;
5461         }
5462
5463         /* Shouldn't happen */
5464         return 0;
5465 }
5466
5467 static int i830_get_display_clock_speed(struct drm_device *dev)
5468 {
5469         return 133000;
5470 }
5471
5472 static void
5473 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5474 {
5475         while (*num > DATA_LINK_M_N_MASK ||
5476                *den > DATA_LINK_M_N_MASK) {
5477                 *num >>= 1;
5478                 *den >>= 1;
5479         }
5480 }
5481
5482 static void compute_m_n(unsigned int m, unsigned int n,
5483                         uint32_t *ret_m, uint32_t *ret_n)
5484 {
5485         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5486         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5487         intel_reduce_m_n_ratio(ret_m, ret_n);
5488 }
5489
5490 void
5491 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5492                        int pixel_clock, int link_clock,
5493                        struct intel_link_m_n *m_n)
5494 {
5495         m_n->tu = 64;
5496
5497         compute_m_n(bits_per_pixel * pixel_clock,
5498                     link_clock * nlanes * 8,
5499                     &m_n->gmch_m, &m_n->gmch_n);
5500
5501         compute_m_n(pixel_clock, link_clock,
5502                     &m_n->link_m, &m_n->link_n);
5503 }
5504
5505 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5506 {
5507         if (i915.panel_use_ssc >= 0)
5508                 return i915.panel_use_ssc != 0;
5509         return dev_priv->vbt.lvds_use_ssc
5510                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5511 }
5512
5513 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5514 {
5515         struct drm_device *dev = crtc->dev;
5516         struct drm_i915_private *dev_priv = dev->dev_private;
5517         int refclk;
5518
5519         if (IS_VALLEYVIEW(dev)) {
5520                 refclk = 100000;
5521         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5522             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5523                 refclk = dev_priv->vbt.lvds_ssc_freq;
5524                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5525         } else if (!IS_GEN2(dev)) {
5526                 refclk = 96000;
5527         } else {
5528                 refclk = 48000;
5529         }
5530
5531         return refclk;
5532 }
5533
5534 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5535 {
5536         return (1 << dpll->n) << 16 | dpll->m2;
5537 }
5538
5539 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5540 {
5541         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5542 }
5543
5544 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5545                                      intel_clock_t *reduced_clock)
5546 {
5547         struct drm_device *dev = crtc->base.dev;
5548         u32 fp, fp2 = 0;
5549
5550         if (IS_PINEVIEW(dev)) {
5551                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5552                 if (reduced_clock)
5553                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5554         } else {
5555                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5556                 if (reduced_clock)
5557                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5558         }
5559
5560         crtc->config.dpll_hw_state.fp0 = fp;
5561
5562         crtc->lowfreq_avail = false;
5563         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5564             reduced_clock && i915.powersave) {
5565                 crtc->config.dpll_hw_state.fp1 = fp2;
5566                 crtc->lowfreq_avail = true;
5567         } else {
5568                 crtc->config.dpll_hw_state.fp1 = fp;
5569         }
5570 }
5571
5572 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5573                 pipe)
5574 {
5575         u32 reg_val;
5576
5577         /*
5578          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5579          * and set it to a reasonable value instead.
5580          */
5581         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5582         reg_val &= 0xffffff00;
5583         reg_val |= 0x00000030;
5584         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5585
5586         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5587         reg_val &= 0x8cffffff;
5588         reg_val = 0x8c000000;
5589         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5590
5591         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5592         reg_val &= 0xffffff00;
5593         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5594
5595         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5596         reg_val &= 0x00ffffff;
5597         reg_val |= 0xb0000000;
5598         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5599 }
5600
5601 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5602                                          struct intel_link_m_n *m_n)
5603 {
5604         struct drm_device *dev = crtc->base.dev;
5605         struct drm_i915_private *dev_priv = dev->dev_private;
5606         int pipe = crtc->pipe;
5607
5608         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5609         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5610         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5611         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5612 }
5613
5614 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5615                                          struct intel_link_m_n *m_n,
5616                                          struct intel_link_m_n *m2_n2)
5617 {
5618         struct drm_device *dev = crtc->base.dev;
5619         struct drm_i915_private *dev_priv = dev->dev_private;
5620         int pipe = crtc->pipe;
5621         enum transcoder transcoder = crtc->config.cpu_transcoder;
5622
5623         if (INTEL_INFO(dev)->gen >= 5) {
5624                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5625                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5626                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5627                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5628                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5629                  * for gen < 8) and if DRRS is supported (to make sure the
5630                  * registers are not unnecessarily accessed).
5631                  */
5632                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5633                         crtc->config.has_drrs) {
5634                         I915_WRITE(PIPE_DATA_M2(transcoder),
5635                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5636                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5637                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5638                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5639                 }
5640         } else {
5641                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5642                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5643                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5644                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5645         }
5646 }
5647
5648 void intel_dp_set_m_n(struct intel_crtc *crtc)
5649 {
5650         if (crtc->config.has_pch_encoder)
5651                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5652         else
5653                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5654                                                    &crtc->config.dp_m2_n2);
5655 }
5656
5657 static void vlv_update_pll(struct intel_crtc *crtc)
5658 {
5659         u32 dpll, dpll_md;
5660
5661         /*
5662          * Enable DPIO clock input. We should never disable the reference
5663          * clock for pipe B, since VGA hotplug / manual detection depends
5664          * on it.
5665          */
5666         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5667                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5668         /* We should never disable this, set it here for state tracking */
5669         if (crtc->pipe == PIPE_B)
5670                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5671         dpll |= DPLL_VCO_ENABLE;
5672         crtc->config.dpll_hw_state.dpll = dpll;
5673
5674         dpll_md = (crtc->config.pixel_multiplier - 1)
5675                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5676         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5677 }
5678
5679 static void vlv_prepare_pll(struct intel_crtc *crtc)
5680 {
5681         struct drm_device *dev = crtc->base.dev;
5682         struct drm_i915_private *dev_priv = dev->dev_private;
5683         int pipe = crtc->pipe;
5684         u32 mdiv;
5685         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5686         u32 coreclk, reg_val;
5687
5688         mutex_lock(&dev_priv->dpio_lock);
5689
5690         bestn = crtc->config.dpll.n;
5691         bestm1 = crtc->config.dpll.m1;
5692         bestm2 = crtc->config.dpll.m2;
5693         bestp1 = crtc->config.dpll.p1;
5694         bestp2 = crtc->config.dpll.p2;
5695
5696         /* See eDP HDMI DPIO driver vbios notes doc */
5697
5698         /* PLL B needs special handling */
5699         if (pipe == PIPE_B)
5700                 vlv_pllb_recal_opamp(dev_priv, pipe);
5701
5702         /* Set up Tx target for periodic Rcomp update */
5703         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5704
5705         /* Disable target IRef on PLL */
5706         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5707         reg_val &= 0x00ffffff;
5708         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5709
5710         /* Disable fast lock */
5711         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5712
5713         /* Set idtafcrecal before PLL is enabled */
5714         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5715         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5716         mdiv |= ((bestn << DPIO_N_SHIFT));
5717         mdiv |= (1 << DPIO_K_SHIFT);
5718
5719         /*
5720          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5721          * but we don't support that).
5722          * Note: don't use the DAC post divider as it seems unstable.
5723          */
5724         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5725         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5726
5727         mdiv |= DPIO_ENABLE_CALIBRATION;
5728         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5729
5730         /* Set HBR and RBR LPF coefficients */
5731         if (crtc->config.port_clock == 162000 ||
5732             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5733             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5734                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5735                                  0x009f0003);
5736         else
5737                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5738                                  0x00d0000f);
5739
5740         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5741             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5742                 /* Use SSC source */
5743                 if (pipe == PIPE_A)
5744                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5745                                          0x0df40000);
5746                 else
5747                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5748                                          0x0df70000);
5749         } else { /* HDMI or VGA */
5750                 /* Use bend source */
5751                 if (pipe == PIPE_A)
5752                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5753                                          0x0df70000);
5754                 else
5755                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5756                                          0x0df40000);
5757         }
5758
5759         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5760         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5761         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5762             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5763                 coreclk |= 0x01000000;
5764         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5765
5766         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5767         mutex_unlock(&dev_priv->dpio_lock);
5768 }
5769
5770 static void chv_update_pll(struct intel_crtc *crtc)
5771 {
5772         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5773                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5774                 DPLL_VCO_ENABLE;
5775         if (crtc->pipe != PIPE_A)
5776                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5777
5778         crtc->config.dpll_hw_state.dpll_md =
5779                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5780 }
5781
5782 static void chv_prepare_pll(struct intel_crtc *crtc)
5783 {
5784         struct drm_device *dev = crtc->base.dev;
5785         struct drm_i915_private *dev_priv = dev->dev_private;
5786         int pipe = crtc->pipe;
5787         int dpll_reg = DPLL(crtc->pipe);
5788         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5789         u32 loopfilter, intcoeff;
5790         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5791         int refclk;
5792
5793         bestn = crtc->config.dpll.n;
5794         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5795         bestm1 = crtc->config.dpll.m1;
5796         bestm2 = crtc->config.dpll.m2 >> 22;
5797         bestp1 = crtc->config.dpll.p1;
5798         bestp2 = crtc->config.dpll.p2;
5799
5800         /*
5801          * Enable Refclk and SSC
5802          */
5803         I915_WRITE(dpll_reg,
5804                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5805
5806         mutex_lock(&dev_priv->dpio_lock);
5807
5808         /* p1 and p2 divider */
5809         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5810                         5 << DPIO_CHV_S1_DIV_SHIFT |
5811                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5812                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5813                         1 << DPIO_CHV_K_DIV_SHIFT);
5814
5815         /* Feedback post-divider - m2 */
5816         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5817
5818         /* Feedback refclk divider - n and m1 */
5819         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5820                         DPIO_CHV_M1_DIV_BY_2 |
5821                         1 << DPIO_CHV_N_DIV_SHIFT);
5822
5823         /* M2 fraction division */
5824         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5825
5826         /* M2 fraction division enable */
5827         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5828                        DPIO_CHV_FRAC_DIV_EN |
5829                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5830
5831         /* Loop filter */
5832         refclk = i9xx_get_refclk(&crtc->base, 0);
5833         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5834                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5835         if (refclk == 100000)
5836                 intcoeff = 11;
5837         else if (refclk == 38400)
5838                 intcoeff = 10;
5839         else
5840                 intcoeff = 9;
5841         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5842         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5843
5844         /* AFC Recal */
5845         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5846                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5847                         DPIO_AFC_RECAL);
5848
5849         mutex_unlock(&dev_priv->dpio_lock);
5850 }
5851
5852 static void i9xx_update_pll(struct intel_crtc *crtc,
5853                             intel_clock_t *reduced_clock,
5854                             int num_connectors)
5855 {
5856         struct drm_device *dev = crtc->base.dev;
5857         struct drm_i915_private *dev_priv = dev->dev_private;
5858         u32 dpll;
5859         bool is_sdvo;
5860         struct dpll *clock = &crtc->config.dpll;
5861
5862         i9xx_update_pll_dividers(crtc, reduced_clock);
5863
5864         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5865                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5866
5867         dpll = DPLL_VGA_MODE_DIS;
5868
5869         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5870                 dpll |= DPLLB_MODE_LVDS;
5871         else
5872                 dpll |= DPLLB_MODE_DAC_SERIAL;
5873
5874         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5875                 dpll |= (crtc->config.pixel_multiplier - 1)
5876                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5877         }
5878
5879         if (is_sdvo)
5880                 dpll |= DPLL_SDVO_HIGH_SPEED;
5881
5882         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5883                 dpll |= DPLL_SDVO_HIGH_SPEED;
5884
5885         /* compute bitmask from p1 value */
5886         if (IS_PINEVIEW(dev))
5887                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5888         else {
5889                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5890                 if (IS_G4X(dev) && reduced_clock)
5891                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5892         }
5893         switch (clock->p2) {
5894         case 5:
5895                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5896                 break;
5897         case 7:
5898                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5899                 break;
5900         case 10:
5901                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5902                 break;
5903         case 14:
5904                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5905                 break;
5906         }
5907         if (INTEL_INFO(dev)->gen >= 4)
5908                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5909
5910         if (crtc->config.sdvo_tv_clock)
5911                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5912         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5913                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5914                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5915         else
5916                 dpll |= PLL_REF_INPUT_DREFCLK;
5917
5918         dpll |= DPLL_VCO_ENABLE;
5919         crtc->config.dpll_hw_state.dpll = dpll;
5920
5921         if (INTEL_INFO(dev)->gen >= 4) {
5922                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5923                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5924                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5925         }
5926 }
5927
5928 static void i8xx_update_pll(struct intel_crtc *crtc,
5929                             intel_clock_t *reduced_clock,
5930                             int num_connectors)
5931 {
5932         struct drm_device *dev = crtc->base.dev;
5933         struct drm_i915_private *dev_priv = dev->dev_private;
5934         u32 dpll;
5935         struct dpll *clock = &crtc->config.dpll;
5936
5937         i9xx_update_pll_dividers(crtc, reduced_clock);
5938
5939         dpll = DPLL_VGA_MODE_DIS;
5940
5941         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5942                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5943         } else {
5944                 if (clock->p1 == 2)
5945                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5946                 else
5947                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5948                 if (clock->p2 == 4)
5949                         dpll |= PLL_P2_DIVIDE_BY_4;
5950         }
5951
5952         if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5953                 dpll |= DPLL_DVO_2X_MODE;
5954
5955         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5956                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5957                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5958         else
5959                 dpll |= PLL_REF_INPUT_DREFCLK;
5960
5961         dpll |= DPLL_VCO_ENABLE;
5962         crtc->config.dpll_hw_state.dpll = dpll;
5963 }
5964
5965 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5966 {
5967         struct drm_device *dev = intel_crtc->base.dev;
5968         struct drm_i915_private *dev_priv = dev->dev_private;
5969         enum pipe pipe = intel_crtc->pipe;
5970         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5971         struct drm_display_mode *adjusted_mode =
5972                 &intel_crtc->config.adjusted_mode;
5973         uint32_t crtc_vtotal, crtc_vblank_end;
5974         int vsyncshift = 0;
5975
5976         /* We need to be careful not to changed the adjusted mode, for otherwise
5977          * the hw state checker will get angry at the mismatch. */
5978         crtc_vtotal = adjusted_mode->crtc_vtotal;
5979         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5980
5981         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5982                 /* the chip adds 2 halflines automatically */
5983                 crtc_vtotal -= 1;
5984                 crtc_vblank_end -= 1;
5985
5986                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5987                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5988                 else
5989                         vsyncshift = adjusted_mode->crtc_hsync_start -
5990                                 adjusted_mode->crtc_htotal / 2;
5991                 if (vsyncshift < 0)
5992                         vsyncshift += adjusted_mode->crtc_htotal;
5993         }
5994
5995         if (INTEL_INFO(dev)->gen > 3)
5996                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5997
5998         I915_WRITE(HTOTAL(cpu_transcoder),
5999                    (adjusted_mode->crtc_hdisplay - 1) |
6000                    ((adjusted_mode->crtc_htotal - 1) << 16));
6001         I915_WRITE(HBLANK(cpu_transcoder),
6002                    (adjusted_mode->crtc_hblank_start - 1) |
6003                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6004         I915_WRITE(HSYNC(cpu_transcoder),
6005                    (adjusted_mode->crtc_hsync_start - 1) |
6006                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6007
6008         I915_WRITE(VTOTAL(cpu_transcoder),
6009                    (adjusted_mode->crtc_vdisplay - 1) |
6010                    ((crtc_vtotal - 1) << 16));
6011         I915_WRITE(VBLANK(cpu_transcoder),
6012                    (adjusted_mode->crtc_vblank_start - 1) |
6013                    ((crtc_vblank_end - 1) << 16));
6014         I915_WRITE(VSYNC(cpu_transcoder),
6015                    (adjusted_mode->crtc_vsync_start - 1) |
6016                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6017
6018         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6019          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6020          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6021          * bits. */
6022         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6023             (pipe == PIPE_B || pipe == PIPE_C))
6024                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6025
6026         /* pipesrc controls the size that is scaled from, which should
6027          * always be the user's requested size.
6028          */
6029         I915_WRITE(PIPESRC(pipe),
6030                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6031                    (intel_crtc->config.pipe_src_h - 1));
6032 }
6033
6034 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6035                                    struct intel_crtc_config *pipe_config)
6036 {
6037         struct drm_device *dev = crtc->base.dev;
6038         struct drm_i915_private *dev_priv = dev->dev_private;
6039         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6040         uint32_t tmp;
6041
6042         tmp = I915_READ(HTOTAL(cpu_transcoder));
6043         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6044         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6045         tmp = I915_READ(HBLANK(cpu_transcoder));
6046         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6047         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6048         tmp = I915_READ(HSYNC(cpu_transcoder));
6049         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6050         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6051
6052         tmp = I915_READ(VTOTAL(cpu_transcoder));
6053         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6054         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6055         tmp = I915_READ(VBLANK(cpu_transcoder));
6056         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6057         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6058         tmp = I915_READ(VSYNC(cpu_transcoder));
6059         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6060         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6061
6062         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6063                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6064                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6065                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6066         }
6067
6068         tmp = I915_READ(PIPESRC(crtc->pipe));
6069         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6070         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6071
6072         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6073         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6074 }
6075
6076 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6077                                  struct intel_crtc_config *pipe_config)
6078 {
6079         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6080         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6081         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6082         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6083
6084         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6085         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6086         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6087         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6088
6089         mode->flags = pipe_config->adjusted_mode.flags;
6090
6091         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6092         mode->flags |= pipe_config->adjusted_mode.flags;
6093 }
6094
6095 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6096 {
6097         struct drm_device *dev = intel_crtc->base.dev;
6098         struct drm_i915_private *dev_priv = dev->dev_private;
6099         uint32_t pipeconf;
6100
6101         pipeconf = 0;
6102
6103         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6104             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6105                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6106
6107         if (intel_crtc->config.double_wide)
6108                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6109
6110         /* only g4x and later have fancy bpc/dither controls */
6111         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6112                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6113                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6114                         pipeconf |= PIPECONF_DITHER_EN |
6115                                     PIPECONF_DITHER_TYPE_SP;
6116
6117                 switch (intel_crtc->config.pipe_bpp) {
6118                 case 18:
6119                         pipeconf |= PIPECONF_6BPC;
6120                         break;
6121                 case 24:
6122                         pipeconf |= PIPECONF_8BPC;
6123                         break;
6124                 case 30:
6125                         pipeconf |= PIPECONF_10BPC;
6126                         break;
6127                 default:
6128                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6129                         BUG();
6130                 }
6131         }
6132
6133         if (HAS_PIPE_CXSR(dev)) {
6134                 if (intel_crtc->lowfreq_avail) {
6135                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6136                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6137                 } else {
6138                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6139                 }
6140         }
6141
6142         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6143                 if (INTEL_INFO(dev)->gen < 4 ||
6144                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6145                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6146                 else
6147                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6148         } else
6149                 pipeconf |= PIPECONF_PROGRESSIVE;
6150
6151         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6152                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6153
6154         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6155         POSTING_READ(PIPECONF(intel_crtc->pipe));
6156 }
6157
6158 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6159                               int x, int y,
6160                               struct drm_framebuffer *fb)
6161 {
6162         struct drm_device *dev = crtc->dev;
6163         struct drm_i915_private *dev_priv = dev->dev_private;
6164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6165         int refclk, num_connectors = 0;
6166         intel_clock_t clock, reduced_clock;
6167         bool ok, has_reduced_clock = false;
6168         bool is_lvds = false, is_dsi = false;
6169         struct intel_encoder *encoder;
6170         const intel_limit_t *limit;
6171
6172         for_each_encoder_on_crtc(dev, crtc, encoder) {
6173                 switch (encoder->type) {
6174                 case INTEL_OUTPUT_LVDS:
6175                         is_lvds = true;
6176                         break;
6177                 case INTEL_OUTPUT_DSI:
6178                         is_dsi = true;
6179                         break;
6180                 }
6181
6182                 num_connectors++;
6183         }
6184
6185         if (is_dsi)
6186                 return 0;
6187
6188         if (!intel_crtc->config.clock_set) {
6189                 refclk = i9xx_get_refclk(crtc, num_connectors);
6190
6191                 /*
6192                  * Returns a set of divisors for the desired target clock with
6193                  * the given refclk, or FALSE.  The returned values represent
6194                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6195                  * 2) / p1 / p2.
6196                  */
6197                 limit = intel_limit(crtc, refclk);
6198                 ok = dev_priv->display.find_dpll(limit, crtc,
6199                                                  intel_crtc->config.port_clock,
6200                                                  refclk, NULL, &clock);
6201                 if (!ok) {
6202                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6203                         return -EINVAL;
6204                 }
6205
6206                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6207                         /*
6208                          * Ensure we match the reduced clock's P to the target
6209                          * clock.  If the clocks don't match, we can't switch
6210                          * the display clock by using the FP0/FP1. In such case
6211                          * we will disable the LVDS downclock feature.
6212                          */
6213                         has_reduced_clock =
6214                                 dev_priv->display.find_dpll(limit, crtc,
6215                                                             dev_priv->lvds_downclock,
6216                                                             refclk, &clock,
6217                                                             &reduced_clock);
6218                 }
6219                 /* Compat-code for transition, will disappear. */
6220                 intel_crtc->config.dpll.n = clock.n;
6221                 intel_crtc->config.dpll.m1 = clock.m1;
6222                 intel_crtc->config.dpll.m2 = clock.m2;
6223                 intel_crtc->config.dpll.p1 = clock.p1;
6224                 intel_crtc->config.dpll.p2 = clock.p2;
6225         }
6226
6227         if (IS_GEN2(dev)) {
6228                 i8xx_update_pll(intel_crtc,
6229                                 has_reduced_clock ? &reduced_clock : NULL,
6230                                 num_connectors);
6231         } else if (IS_CHERRYVIEW(dev)) {
6232                 chv_update_pll(intel_crtc);
6233         } else if (IS_VALLEYVIEW(dev)) {
6234                 vlv_update_pll(intel_crtc);
6235         } else {
6236                 i9xx_update_pll(intel_crtc,
6237                                 has_reduced_clock ? &reduced_clock : NULL,
6238                                 num_connectors);
6239         }
6240
6241         return 0;
6242 }
6243
6244 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6245                                  struct intel_crtc_config *pipe_config)
6246 {
6247         struct drm_device *dev = crtc->base.dev;
6248         struct drm_i915_private *dev_priv = dev->dev_private;
6249         uint32_t tmp;
6250
6251         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6252                 return;
6253
6254         tmp = I915_READ(PFIT_CONTROL);
6255         if (!(tmp & PFIT_ENABLE))
6256                 return;
6257
6258         /* Check whether the pfit is attached to our pipe. */
6259         if (INTEL_INFO(dev)->gen < 4) {
6260                 if (crtc->pipe != PIPE_B)
6261                         return;
6262         } else {
6263                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6264                         return;
6265         }
6266
6267         pipe_config->gmch_pfit.control = tmp;
6268         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6269         if (INTEL_INFO(dev)->gen < 5)
6270                 pipe_config->gmch_pfit.lvds_border_bits =
6271                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6272 }
6273
6274 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6275                                struct intel_crtc_config *pipe_config)
6276 {
6277         struct drm_device *dev = crtc->base.dev;
6278         struct drm_i915_private *dev_priv = dev->dev_private;
6279         int pipe = pipe_config->cpu_transcoder;
6280         intel_clock_t clock;
6281         u32 mdiv;
6282         int refclk = 100000;
6283
6284         /* In case of MIPI DPLL will not even be used */
6285         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6286                 return;
6287
6288         mutex_lock(&dev_priv->dpio_lock);
6289         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6290         mutex_unlock(&dev_priv->dpio_lock);
6291
6292         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6293         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6294         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6295         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6296         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6297
6298         vlv_clock(refclk, &clock);
6299
6300         /* clock.dot is the fast clock */
6301         pipe_config->port_clock = clock.dot / 5;
6302 }
6303
6304 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6305                                   struct intel_plane_config *plane_config)
6306 {
6307         struct drm_device *dev = crtc->base.dev;
6308         struct drm_i915_private *dev_priv = dev->dev_private;
6309         u32 val, base, offset;
6310         int pipe = crtc->pipe, plane = crtc->plane;
6311         int fourcc, pixel_format;
6312         int aligned_height;
6313
6314         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6315         if (!crtc->base.primary->fb) {
6316                 DRM_DEBUG_KMS("failed to alloc fb\n");
6317                 return;
6318         }
6319
6320         val = I915_READ(DSPCNTR(plane));
6321
6322         if (INTEL_INFO(dev)->gen >= 4)
6323                 if (val & DISPPLANE_TILED)
6324                         plane_config->tiled = true;
6325
6326         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6327         fourcc = intel_format_to_fourcc(pixel_format);
6328         crtc->base.primary->fb->pixel_format = fourcc;
6329         crtc->base.primary->fb->bits_per_pixel =
6330                 drm_format_plane_cpp(fourcc, 0) * 8;
6331
6332         if (INTEL_INFO(dev)->gen >= 4) {
6333                 if (plane_config->tiled)
6334                         offset = I915_READ(DSPTILEOFF(plane));
6335                 else
6336                         offset = I915_READ(DSPLINOFF(plane));
6337                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6338         } else {
6339                 base = I915_READ(DSPADDR(plane));
6340         }
6341         plane_config->base = base;
6342
6343         val = I915_READ(PIPESRC(pipe));
6344         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6345         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6346
6347         val = I915_READ(DSPSTRIDE(pipe));
6348         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6349
6350         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6351                                             plane_config->tiled);
6352
6353         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6354                                         aligned_height);
6355
6356         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6357                       pipe, plane, crtc->base.primary->fb->width,
6358                       crtc->base.primary->fb->height,
6359                       crtc->base.primary->fb->bits_per_pixel, base,
6360                       crtc->base.primary->fb->pitches[0],
6361                       plane_config->size);
6362
6363 }
6364
6365 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6366                                struct intel_crtc_config *pipe_config)
6367 {
6368         struct drm_device *dev = crtc->base.dev;
6369         struct drm_i915_private *dev_priv = dev->dev_private;
6370         int pipe = pipe_config->cpu_transcoder;
6371         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6372         intel_clock_t clock;
6373         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6374         int refclk = 100000;
6375
6376         mutex_lock(&dev_priv->dpio_lock);
6377         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6378         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6379         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6380         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6381         mutex_unlock(&dev_priv->dpio_lock);
6382
6383         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6384         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6385         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6386         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6387         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6388
6389         chv_clock(refclk, &clock);
6390
6391         /* clock.dot is the fast clock */
6392         pipe_config->port_clock = clock.dot / 5;
6393 }
6394
6395 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6396                                  struct intel_crtc_config *pipe_config)
6397 {
6398         struct drm_device *dev = crtc->base.dev;
6399         struct drm_i915_private *dev_priv = dev->dev_private;
6400         uint32_t tmp;
6401
6402         if (!intel_display_power_enabled(dev_priv,
6403                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6404                 return false;
6405
6406         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6407         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6408
6409         tmp = I915_READ(PIPECONF(crtc->pipe));
6410         if (!(tmp & PIPECONF_ENABLE))
6411                 return false;
6412
6413         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6414                 switch (tmp & PIPECONF_BPC_MASK) {
6415                 case PIPECONF_6BPC:
6416                         pipe_config->pipe_bpp = 18;
6417                         break;
6418                 case PIPECONF_8BPC:
6419                         pipe_config->pipe_bpp = 24;
6420                         break;
6421                 case PIPECONF_10BPC:
6422                         pipe_config->pipe_bpp = 30;
6423                         break;
6424                 default:
6425                         break;
6426                 }
6427         }
6428
6429         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6430                 pipe_config->limited_color_range = true;
6431
6432         if (INTEL_INFO(dev)->gen < 4)
6433                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6434
6435         intel_get_pipe_timings(crtc, pipe_config);
6436
6437         i9xx_get_pfit_config(crtc, pipe_config);
6438
6439         if (INTEL_INFO(dev)->gen >= 4) {
6440                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6441                 pipe_config->pixel_multiplier =
6442                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6443                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6444                 pipe_config->dpll_hw_state.dpll_md = tmp;
6445         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6446                 tmp = I915_READ(DPLL(crtc->pipe));
6447                 pipe_config->pixel_multiplier =
6448                         ((tmp & SDVO_MULTIPLIER_MASK)
6449                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6450         } else {
6451                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6452                  * port and will be fixed up in the encoder->get_config
6453                  * function. */
6454                 pipe_config->pixel_multiplier = 1;
6455         }
6456         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6457         if (!IS_VALLEYVIEW(dev)) {
6458                 /*
6459                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6460                  * on 830. Filter it out here so that we don't
6461                  * report errors due to that.
6462                  */
6463                 if (IS_I830(dev))
6464                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6465
6466                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6467                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6468         } else {
6469                 /* Mask out read-only status bits. */
6470                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6471                                                      DPLL_PORTC_READY_MASK |
6472                                                      DPLL_PORTB_READY_MASK);
6473         }
6474
6475         if (IS_CHERRYVIEW(dev))
6476                 chv_crtc_clock_get(crtc, pipe_config);
6477         else if (IS_VALLEYVIEW(dev))
6478                 vlv_crtc_clock_get(crtc, pipe_config);
6479         else
6480                 i9xx_crtc_clock_get(crtc, pipe_config);
6481
6482         return true;
6483 }
6484
6485 static void ironlake_init_pch_refclk(struct drm_device *dev)
6486 {
6487         struct drm_i915_private *dev_priv = dev->dev_private;
6488         struct intel_encoder *encoder;
6489         u32 val, final;
6490         bool has_lvds = false;
6491         bool has_cpu_edp = false;
6492         bool has_panel = false;
6493         bool has_ck505 = false;
6494         bool can_ssc = false;
6495
6496         /* We need to take the global config into account */
6497         for_each_intel_encoder(dev, encoder) {
6498                 switch (encoder->type) {
6499                 case INTEL_OUTPUT_LVDS:
6500                         has_panel = true;
6501                         has_lvds = true;
6502                         break;
6503                 case INTEL_OUTPUT_EDP:
6504                         has_panel = true;
6505                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6506                                 has_cpu_edp = true;
6507                         break;
6508                 }
6509         }
6510
6511         if (HAS_PCH_IBX(dev)) {
6512                 has_ck505 = dev_priv->vbt.display_clock_mode;
6513                 can_ssc = has_ck505;
6514         } else {
6515                 has_ck505 = false;
6516                 can_ssc = true;
6517         }
6518
6519         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6520                       has_panel, has_lvds, has_ck505);
6521
6522         /* Ironlake: try to setup display ref clock before DPLL
6523          * enabling. This is only under driver's control after
6524          * PCH B stepping, previous chipset stepping should be
6525          * ignoring this setting.
6526          */
6527         val = I915_READ(PCH_DREF_CONTROL);
6528
6529         /* As we must carefully and slowly disable/enable each source in turn,
6530          * compute the final state we want first and check if we need to
6531          * make any changes at all.
6532          */
6533         final = val;
6534         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6535         if (has_ck505)
6536                 final |= DREF_NONSPREAD_CK505_ENABLE;
6537         else
6538                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6539
6540         final &= ~DREF_SSC_SOURCE_MASK;
6541         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6542         final &= ~DREF_SSC1_ENABLE;
6543
6544         if (has_panel) {
6545                 final |= DREF_SSC_SOURCE_ENABLE;
6546
6547                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6548                         final |= DREF_SSC1_ENABLE;
6549
6550                 if (has_cpu_edp) {
6551                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6552                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6553                         else
6554                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6555                 } else
6556                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6557         } else {
6558                 final |= DREF_SSC_SOURCE_DISABLE;
6559                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6560         }
6561
6562         if (final == val)
6563                 return;
6564
6565         /* Always enable nonspread source */
6566         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6567
6568         if (has_ck505)
6569                 val |= DREF_NONSPREAD_CK505_ENABLE;
6570         else
6571                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6572
6573         if (has_panel) {
6574                 val &= ~DREF_SSC_SOURCE_MASK;
6575                 val |= DREF_SSC_SOURCE_ENABLE;
6576
6577                 /* SSC must be turned on before enabling the CPU output  */
6578                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6579                         DRM_DEBUG_KMS("Using SSC on panel\n");
6580                         val |= DREF_SSC1_ENABLE;
6581                 } else
6582                         val &= ~DREF_SSC1_ENABLE;
6583
6584                 /* Get SSC going before enabling the outputs */
6585                 I915_WRITE(PCH_DREF_CONTROL, val);
6586                 POSTING_READ(PCH_DREF_CONTROL);
6587                 udelay(200);
6588
6589                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6590
6591                 /* Enable CPU source on CPU attached eDP */
6592                 if (has_cpu_edp) {
6593                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6594                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6595                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6596                         } else
6597                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6598                 } else
6599                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6600
6601                 I915_WRITE(PCH_DREF_CONTROL, val);
6602                 POSTING_READ(PCH_DREF_CONTROL);
6603                 udelay(200);
6604         } else {
6605                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6606
6607                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6608
6609                 /* Turn off CPU output */
6610                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6611
6612                 I915_WRITE(PCH_DREF_CONTROL, val);
6613                 POSTING_READ(PCH_DREF_CONTROL);
6614                 udelay(200);
6615
6616                 /* Turn off the SSC source */
6617                 val &= ~DREF_SSC_SOURCE_MASK;
6618                 val |= DREF_SSC_SOURCE_DISABLE;
6619
6620                 /* Turn off SSC1 */
6621                 val &= ~DREF_SSC1_ENABLE;
6622
6623                 I915_WRITE(PCH_DREF_CONTROL, val);
6624                 POSTING_READ(PCH_DREF_CONTROL);
6625                 udelay(200);
6626         }
6627
6628         BUG_ON(val != final);
6629 }
6630
6631 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6632 {
6633         uint32_t tmp;
6634
6635         tmp = I915_READ(SOUTH_CHICKEN2);
6636         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6637         I915_WRITE(SOUTH_CHICKEN2, tmp);
6638
6639         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6640                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6641                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6642
6643         tmp = I915_READ(SOUTH_CHICKEN2);
6644         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6645         I915_WRITE(SOUTH_CHICKEN2, tmp);
6646
6647         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6648                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6649                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6650 }
6651
6652 /* WaMPhyProgramming:hsw */
6653 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6654 {
6655         uint32_t tmp;
6656
6657         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6658         tmp &= ~(0xFF << 24);
6659         tmp |= (0x12 << 24);
6660         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6661
6662         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6663         tmp |= (1 << 11);
6664         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6665
6666         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6667         tmp |= (1 << 11);
6668         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6669
6670         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6671         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6672         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6673
6674         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6675         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6676         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6677
6678         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6679         tmp &= ~(7 << 13);
6680         tmp |= (5 << 13);
6681         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6682
6683         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6684         tmp &= ~(7 << 13);
6685         tmp |= (5 << 13);
6686         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6687
6688         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6689         tmp &= ~0xFF;
6690         tmp |= 0x1C;
6691         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6692
6693         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6694         tmp &= ~0xFF;
6695         tmp |= 0x1C;
6696         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6697
6698         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6699         tmp &= ~(0xFF << 16);
6700         tmp |= (0x1C << 16);
6701         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6702
6703         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6704         tmp &= ~(0xFF << 16);
6705         tmp |= (0x1C << 16);
6706         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6707
6708         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6709         tmp |= (1 << 27);
6710         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6711
6712         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6713         tmp |= (1 << 27);
6714         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6715
6716         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6717         tmp &= ~(0xF << 28);
6718         tmp |= (4 << 28);
6719         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6720
6721         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6722         tmp &= ~(0xF << 28);
6723         tmp |= (4 << 28);
6724         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6725 }
6726
6727 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6728  * Programming" based on the parameters passed:
6729  * - Sequence to enable CLKOUT_DP
6730  * - Sequence to enable CLKOUT_DP without spread
6731  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6732  */
6733 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6734                                  bool with_fdi)
6735 {
6736         struct drm_i915_private *dev_priv = dev->dev_private;
6737         uint32_t reg, tmp;
6738
6739         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6740                 with_spread = true;
6741         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6742                  with_fdi, "LP PCH doesn't have FDI\n"))
6743                 with_fdi = false;
6744
6745         mutex_lock(&dev_priv->dpio_lock);
6746
6747         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6748         tmp &= ~SBI_SSCCTL_DISABLE;
6749         tmp |= SBI_SSCCTL_PATHALT;
6750         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6751
6752         udelay(24);
6753
6754         if (with_spread) {
6755                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6756                 tmp &= ~SBI_SSCCTL_PATHALT;
6757                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6758
6759                 if (with_fdi) {
6760                         lpt_reset_fdi_mphy(dev_priv);
6761                         lpt_program_fdi_mphy(dev_priv);
6762                 }
6763         }
6764
6765         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6766                SBI_GEN0 : SBI_DBUFF0;
6767         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6768         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6769         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6770
6771         mutex_unlock(&dev_priv->dpio_lock);
6772 }
6773
6774 /* Sequence to disable CLKOUT_DP */
6775 static void lpt_disable_clkout_dp(struct drm_device *dev)
6776 {
6777         struct drm_i915_private *dev_priv = dev->dev_private;
6778         uint32_t reg, tmp;
6779
6780         mutex_lock(&dev_priv->dpio_lock);
6781
6782         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6783                SBI_GEN0 : SBI_DBUFF0;
6784         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6785         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6786         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6787
6788         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6789         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6790                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6791                         tmp |= SBI_SSCCTL_PATHALT;
6792                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6793                         udelay(32);
6794                 }
6795                 tmp |= SBI_SSCCTL_DISABLE;
6796                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6797         }
6798
6799         mutex_unlock(&dev_priv->dpio_lock);
6800 }
6801
6802 static void lpt_init_pch_refclk(struct drm_device *dev)
6803 {
6804         struct intel_encoder *encoder;
6805         bool has_vga = false;
6806
6807         for_each_intel_encoder(dev, encoder) {
6808                 switch (encoder->type) {
6809                 case INTEL_OUTPUT_ANALOG:
6810                         has_vga = true;
6811                         break;
6812                 }
6813         }
6814
6815         if (has_vga)
6816                 lpt_enable_clkout_dp(dev, true, true);
6817         else
6818                 lpt_disable_clkout_dp(dev);
6819 }
6820
6821 /*
6822  * Initialize reference clocks when the driver loads
6823  */
6824 void intel_init_pch_refclk(struct drm_device *dev)
6825 {
6826         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6827                 ironlake_init_pch_refclk(dev);
6828         else if (HAS_PCH_LPT(dev))
6829                 lpt_init_pch_refclk(dev);
6830 }
6831
6832 static int ironlake_get_refclk(struct drm_crtc *crtc)
6833 {
6834         struct drm_device *dev = crtc->dev;
6835         struct drm_i915_private *dev_priv = dev->dev_private;
6836         struct intel_encoder *encoder;
6837         int num_connectors = 0;
6838         bool is_lvds = false;
6839
6840         for_each_encoder_on_crtc(dev, crtc, encoder) {
6841                 switch (encoder->type) {
6842                 case INTEL_OUTPUT_LVDS:
6843                         is_lvds = true;
6844                         break;
6845                 }
6846                 num_connectors++;
6847         }
6848
6849         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6850                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6851                               dev_priv->vbt.lvds_ssc_freq);
6852                 return dev_priv->vbt.lvds_ssc_freq;
6853         }
6854
6855         return 120000;
6856 }
6857
6858 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6859 {
6860         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6861         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6862         int pipe = intel_crtc->pipe;
6863         uint32_t val;
6864
6865         val = 0;
6866
6867         switch (intel_crtc->config.pipe_bpp) {
6868         case 18:
6869                 val |= PIPECONF_6BPC;
6870                 break;
6871         case 24:
6872                 val |= PIPECONF_8BPC;
6873                 break;
6874         case 30:
6875                 val |= PIPECONF_10BPC;
6876                 break;
6877         case 36:
6878                 val |= PIPECONF_12BPC;
6879                 break;
6880         default:
6881                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6882                 BUG();
6883         }
6884
6885         if (intel_crtc->config.dither)
6886                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6887
6888         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6889                 val |= PIPECONF_INTERLACED_ILK;
6890         else
6891                 val |= PIPECONF_PROGRESSIVE;
6892
6893         if (intel_crtc->config.limited_color_range)
6894                 val |= PIPECONF_COLOR_RANGE_SELECT;
6895
6896         I915_WRITE(PIPECONF(pipe), val);
6897         POSTING_READ(PIPECONF(pipe));
6898 }
6899
6900 /*
6901  * Set up the pipe CSC unit.
6902  *
6903  * Currently only full range RGB to limited range RGB conversion
6904  * is supported, but eventually this should handle various
6905  * RGB<->YCbCr scenarios as well.
6906  */
6907 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6908 {
6909         struct drm_device *dev = crtc->dev;
6910         struct drm_i915_private *dev_priv = dev->dev_private;
6911         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6912         int pipe = intel_crtc->pipe;
6913         uint16_t coeff = 0x7800; /* 1.0 */
6914
6915         /*
6916          * TODO: Check what kind of values actually come out of the pipe
6917          * with these coeff/postoff values and adjust to get the best
6918          * accuracy. Perhaps we even need to take the bpc value into
6919          * consideration.
6920          */
6921
6922         if (intel_crtc->config.limited_color_range)
6923                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6924
6925         /*
6926          * GY/GU and RY/RU should be the other way around according
6927          * to BSpec, but reality doesn't agree. Just set them up in
6928          * a way that results in the correct picture.
6929          */
6930         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6931         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6932
6933         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6934         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6935
6936         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6937         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6938
6939         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6940         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6941         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6942
6943         if (INTEL_INFO(dev)->gen > 6) {
6944                 uint16_t postoff = 0;
6945
6946                 if (intel_crtc->config.limited_color_range)
6947                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6948
6949                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6950                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6951                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6952
6953                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6954         } else {
6955                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6956
6957                 if (intel_crtc->config.limited_color_range)
6958                         mode |= CSC_BLACK_SCREEN_OFFSET;
6959
6960                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6961         }
6962 }
6963
6964 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6965 {
6966         struct drm_device *dev = crtc->dev;
6967         struct drm_i915_private *dev_priv = dev->dev_private;
6968         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6969         enum pipe pipe = intel_crtc->pipe;
6970         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6971         uint32_t val;
6972
6973         val = 0;
6974
6975         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6976                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6977
6978         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6979                 val |= PIPECONF_INTERLACED_ILK;
6980         else
6981                 val |= PIPECONF_PROGRESSIVE;
6982
6983         I915_WRITE(PIPECONF(cpu_transcoder), val);
6984         POSTING_READ(PIPECONF(cpu_transcoder));
6985
6986         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6987         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6988
6989         if (IS_BROADWELL(dev)) {
6990                 val = 0;
6991
6992                 switch (intel_crtc->config.pipe_bpp) {
6993                 case 18:
6994                         val |= PIPEMISC_DITHER_6_BPC;
6995                         break;
6996                 case 24:
6997                         val |= PIPEMISC_DITHER_8_BPC;
6998                         break;
6999                 case 30:
7000                         val |= PIPEMISC_DITHER_10_BPC;
7001                         break;
7002                 case 36:
7003                         val |= PIPEMISC_DITHER_12_BPC;
7004                         break;
7005                 default:
7006                         /* Case prevented by pipe_config_set_bpp. */
7007                         BUG();
7008                 }
7009
7010                 if (intel_crtc->config.dither)
7011                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7012
7013                 I915_WRITE(PIPEMISC(pipe), val);
7014         }
7015 }
7016
7017 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7018                                     intel_clock_t *clock,
7019                                     bool *has_reduced_clock,
7020                                     intel_clock_t *reduced_clock)
7021 {
7022         struct drm_device *dev = crtc->dev;
7023         struct drm_i915_private *dev_priv = dev->dev_private;
7024         struct intel_encoder *intel_encoder;
7025         int refclk;
7026         const intel_limit_t *limit;
7027         bool ret, is_lvds = false;
7028
7029         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7030                 switch (intel_encoder->type) {
7031                 case INTEL_OUTPUT_LVDS:
7032                         is_lvds = true;
7033                         break;
7034                 }
7035         }
7036
7037         refclk = ironlake_get_refclk(crtc);
7038
7039         /*
7040          * Returns a set of divisors for the desired target clock with the given
7041          * refclk, or FALSE.  The returned values represent the clock equation:
7042          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7043          */
7044         limit = intel_limit(crtc, refclk);
7045         ret = dev_priv->display.find_dpll(limit, crtc,
7046                                           to_intel_crtc(crtc)->config.port_clock,
7047                                           refclk, NULL, clock);
7048         if (!ret)
7049                 return false;
7050
7051         if (is_lvds && dev_priv->lvds_downclock_avail) {
7052                 /*
7053                  * Ensure we match the reduced clock's P to the target clock.
7054                  * If the clocks don't match, we can't switch the display clock
7055                  * by using the FP0/FP1. In such case we will disable the LVDS
7056                  * downclock feature.
7057                 */
7058                 *has_reduced_clock =
7059                         dev_priv->display.find_dpll(limit, crtc,
7060                                                     dev_priv->lvds_downclock,
7061                                                     refclk, clock,
7062                                                     reduced_clock);
7063         }
7064
7065         return true;
7066 }
7067
7068 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7069 {
7070         /*
7071          * Account for spread spectrum to avoid
7072          * oversubscribing the link. Max center spread
7073          * is 2.5%; use 5% for safety's sake.
7074          */
7075         u32 bps = target_clock * bpp * 21 / 20;
7076         return DIV_ROUND_UP(bps, link_bw * 8);
7077 }
7078
7079 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7080 {
7081         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7082 }
7083
7084 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7085                                       u32 *fp,
7086                                       intel_clock_t *reduced_clock, u32 *fp2)
7087 {
7088         struct drm_crtc *crtc = &intel_crtc->base;
7089         struct drm_device *dev = crtc->dev;
7090         struct drm_i915_private *dev_priv = dev->dev_private;
7091         struct intel_encoder *intel_encoder;
7092         uint32_t dpll;
7093         int factor, num_connectors = 0;
7094         bool is_lvds = false, is_sdvo = false;
7095
7096         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7097                 switch (intel_encoder->type) {
7098                 case INTEL_OUTPUT_LVDS:
7099                         is_lvds = true;
7100                         break;
7101                 case INTEL_OUTPUT_SDVO:
7102                 case INTEL_OUTPUT_HDMI:
7103                         is_sdvo = true;
7104                         break;
7105                 }
7106
7107                 num_connectors++;
7108         }
7109
7110         /* Enable autotuning of the PLL clock (if permissible) */
7111         factor = 21;
7112         if (is_lvds) {
7113                 if ((intel_panel_use_ssc(dev_priv) &&
7114                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7115                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7116                         factor = 25;
7117         } else if (intel_crtc->config.sdvo_tv_clock)
7118                 factor = 20;
7119
7120         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7121                 *fp |= FP_CB_TUNE;
7122
7123         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7124                 *fp2 |= FP_CB_TUNE;
7125
7126         dpll = 0;
7127
7128         if (is_lvds)
7129                 dpll |= DPLLB_MODE_LVDS;
7130         else
7131                 dpll |= DPLLB_MODE_DAC_SERIAL;
7132
7133         dpll |= (intel_crtc->config.pixel_multiplier - 1)
7134                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7135
7136         if (is_sdvo)
7137                 dpll |= DPLL_SDVO_HIGH_SPEED;
7138         if (intel_crtc->config.has_dp_encoder)
7139                 dpll |= DPLL_SDVO_HIGH_SPEED;
7140
7141         /* compute bitmask from p1 value */
7142         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7143         /* also FPA1 */
7144         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7145
7146         switch (intel_crtc->config.dpll.p2) {
7147         case 5:
7148                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7149                 break;
7150         case 7:
7151                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7152                 break;
7153         case 10:
7154                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7155                 break;
7156         case 14:
7157                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7158                 break;
7159         }
7160
7161         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7162                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7163         else
7164                 dpll |= PLL_REF_INPUT_DREFCLK;
7165
7166         return dpll | DPLL_VCO_ENABLE;
7167 }
7168
7169 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7170                                   int x, int y,
7171                                   struct drm_framebuffer *fb)
7172 {
7173         struct drm_device *dev = crtc->dev;
7174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7175         int num_connectors = 0;
7176         intel_clock_t clock, reduced_clock;
7177         u32 dpll = 0, fp = 0, fp2 = 0;
7178         bool ok, has_reduced_clock = false;
7179         bool is_lvds = false;
7180         struct intel_encoder *encoder;
7181         struct intel_shared_dpll *pll;
7182
7183         for_each_encoder_on_crtc(dev, crtc, encoder) {
7184                 switch (encoder->type) {
7185                 case INTEL_OUTPUT_LVDS:
7186                         is_lvds = true;
7187                         break;
7188                 }
7189
7190                 num_connectors++;
7191         }
7192
7193         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7194              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7195
7196         ok = ironlake_compute_clocks(crtc, &clock,
7197                                      &has_reduced_clock, &reduced_clock);
7198         if (!ok && !intel_crtc->config.clock_set) {
7199                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7200                 return -EINVAL;
7201         }
7202         /* Compat-code for transition, will disappear. */
7203         if (!intel_crtc->config.clock_set) {
7204                 intel_crtc->config.dpll.n = clock.n;
7205                 intel_crtc->config.dpll.m1 = clock.m1;
7206                 intel_crtc->config.dpll.m2 = clock.m2;
7207                 intel_crtc->config.dpll.p1 = clock.p1;
7208                 intel_crtc->config.dpll.p2 = clock.p2;
7209         }
7210
7211         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7212         if (intel_crtc->config.has_pch_encoder) {
7213                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7214                 if (has_reduced_clock)
7215                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7216
7217                 dpll = ironlake_compute_dpll(intel_crtc,
7218                                              &fp, &reduced_clock,
7219                                              has_reduced_clock ? &fp2 : NULL);
7220
7221                 intel_crtc->config.dpll_hw_state.dpll = dpll;
7222                 intel_crtc->config.dpll_hw_state.fp0 = fp;
7223                 if (has_reduced_clock)
7224                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
7225                 else
7226                         intel_crtc->config.dpll_hw_state.fp1 = fp;
7227
7228                 pll = intel_get_shared_dpll(intel_crtc);
7229                 if (pll == NULL) {
7230                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7231                                          pipe_name(intel_crtc->pipe));
7232                         return -EINVAL;
7233                 }
7234         } else
7235                 intel_put_shared_dpll(intel_crtc);
7236
7237         if (is_lvds && has_reduced_clock && i915.powersave)
7238                 intel_crtc->lowfreq_avail = true;
7239         else
7240                 intel_crtc->lowfreq_avail = false;
7241
7242         return 0;
7243 }
7244
7245 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7246                                          struct intel_link_m_n *m_n)
7247 {
7248         struct drm_device *dev = crtc->base.dev;
7249         struct drm_i915_private *dev_priv = dev->dev_private;
7250         enum pipe pipe = crtc->pipe;
7251
7252         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7253         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7254         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7255                 & ~TU_SIZE_MASK;
7256         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7257         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7258                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7259 }
7260
7261 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7262                                          enum transcoder transcoder,
7263                                          struct intel_link_m_n *m_n,
7264                                          struct intel_link_m_n *m2_n2)
7265 {
7266         struct drm_device *dev = crtc->base.dev;
7267         struct drm_i915_private *dev_priv = dev->dev_private;
7268         enum pipe pipe = crtc->pipe;
7269
7270         if (INTEL_INFO(dev)->gen >= 5) {
7271                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7272                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7273                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7274                         & ~TU_SIZE_MASK;
7275                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7276                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7277                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7278                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7279                  * gen < 8) and if DRRS is supported (to make sure the
7280                  * registers are not unnecessarily read).
7281                  */
7282                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7283                         crtc->config.has_drrs) {
7284                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7285                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7286                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7287                                         & ~TU_SIZE_MASK;
7288                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7289                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7290                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7291                 }
7292         } else {
7293                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7294                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7295                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7296                         & ~TU_SIZE_MASK;
7297                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7298                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7299                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7300         }
7301 }
7302
7303 void intel_dp_get_m_n(struct intel_crtc *crtc,
7304                       struct intel_crtc_config *pipe_config)
7305 {
7306         if (crtc->config.has_pch_encoder)
7307                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7308         else
7309                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7310                                              &pipe_config->dp_m_n,
7311                                              &pipe_config->dp_m2_n2);
7312 }
7313
7314 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7315                                         struct intel_crtc_config *pipe_config)
7316 {
7317         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7318                                      &pipe_config->fdi_m_n, NULL);
7319 }
7320
7321 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7322                                      struct intel_crtc_config *pipe_config)
7323 {
7324         struct drm_device *dev = crtc->base.dev;
7325         struct drm_i915_private *dev_priv = dev->dev_private;
7326         uint32_t tmp;
7327
7328         tmp = I915_READ(PF_CTL(crtc->pipe));
7329
7330         if (tmp & PF_ENABLE) {
7331                 pipe_config->pch_pfit.enabled = true;
7332                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7333                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7334
7335                 /* We currently do not free assignements of panel fitters on
7336                  * ivb/hsw (since we don't use the higher upscaling modes which
7337                  * differentiates them) so just WARN about this case for now. */
7338                 if (IS_GEN7(dev)) {
7339                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7340                                 PF_PIPE_SEL_IVB(crtc->pipe));
7341                 }
7342         }
7343 }
7344
7345 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7346                                       struct intel_plane_config *plane_config)
7347 {
7348         struct drm_device *dev = crtc->base.dev;
7349         struct drm_i915_private *dev_priv = dev->dev_private;
7350         u32 val, base, offset;
7351         int pipe = crtc->pipe, plane = crtc->plane;
7352         int fourcc, pixel_format;
7353         int aligned_height;
7354
7355         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7356         if (!crtc->base.primary->fb) {
7357                 DRM_DEBUG_KMS("failed to alloc fb\n");
7358                 return;
7359         }
7360
7361         val = I915_READ(DSPCNTR(plane));
7362
7363         if (INTEL_INFO(dev)->gen >= 4)
7364                 if (val & DISPPLANE_TILED)
7365                         plane_config->tiled = true;
7366
7367         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7368         fourcc = intel_format_to_fourcc(pixel_format);
7369         crtc->base.primary->fb->pixel_format = fourcc;
7370         crtc->base.primary->fb->bits_per_pixel =
7371                 drm_format_plane_cpp(fourcc, 0) * 8;
7372
7373         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7374         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7375                 offset = I915_READ(DSPOFFSET(plane));
7376         } else {
7377                 if (plane_config->tiled)
7378                         offset = I915_READ(DSPTILEOFF(plane));
7379                 else
7380                         offset = I915_READ(DSPLINOFF(plane));
7381         }
7382         plane_config->base = base;
7383
7384         val = I915_READ(PIPESRC(pipe));
7385         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7386         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7387
7388         val = I915_READ(DSPSTRIDE(pipe));
7389         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7390
7391         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7392                                             plane_config->tiled);
7393
7394         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7395                                         aligned_height);
7396
7397         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7398                       pipe, plane, crtc->base.primary->fb->width,
7399                       crtc->base.primary->fb->height,
7400                       crtc->base.primary->fb->bits_per_pixel, base,
7401                       crtc->base.primary->fb->pitches[0],
7402                       plane_config->size);
7403 }
7404
7405 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7406                                      struct intel_crtc_config *pipe_config)
7407 {
7408         struct drm_device *dev = crtc->base.dev;
7409         struct drm_i915_private *dev_priv = dev->dev_private;
7410         uint32_t tmp;
7411
7412         if (!intel_display_power_enabled(dev_priv,
7413                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7414                 return false;
7415
7416         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7417         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7418
7419         tmp = I915_READ(PIPECONF(crtc->pipe));
7420         if (!(tmp & PIPECONF_ENABLE))
7421                 return false;
7422
7423         switch (tmp & PIPECONF_BPC_MASK) {
7424         case PIPECONF_6BPC:
7425                 pipe_config->pipe_bpp = 18;
7426                 break;
7427         case PIPECONF_8BPC:
7428                 pipe_config->pipe_bpp = 24;
7429                 break;
7430         case PIPECONF_10BPC:
7431                 pipe_config->pipe_bpp = 30;
7432                 break;
7433         case PIPECONF_12BPC:
7434                 pipe_config->pipe_bpp = 36;
7435                 break;
7436         default:
7437                 break;
7438         }
7439
7440         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7441                 pipe_config->limited_color_range = true;
7442
7443         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7444                 struct intel_shared_dpll *pll;
7445
7446                 pipe_config->has_pch_encoder = true;
7447
7448                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7449                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7450                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7451
7452                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7453
7454                 if (HAS_PCH_IBX(dev_priv->dev)) {
7455                         pipe_config->shared_dpll =
7456                                 (enum intel_dpll_id) crtc->pipe;
7457                 } else {
7458                         tmp = I915_READ(PCH_DPLL_SEL);
7459                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7460                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7461                         else
7462                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7463                 }
7464
7465                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7466
7467                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7468                                            &pipe_config->dpll_hw_state));
7469
7470                 tmp = pipe_config->dpll_hw_state.dpll;
7471                 pipe_config->pixel_multiplier =
7472                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7473                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7474
7475                 ironlake_pch_clock_get(crtc, pipe_config);
7476         } else {
7477                 pipe_config->pixel_multiplier = 1;
7478         }
7479
7480         intel_get_pipe_timings(crtc, pipe_config);
7481
7482         ironlake_get_pfit_config(crtc, pipe_config);
7483
7484         return true;
7485 }
7486
7487 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7488 {
7489         struct drm_device *dev = dev_priv->dev;
7490         struct intel_crtc *crtc;
7491
7492         for_each_intel_crtc(dev, crtc)
7493                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7494                      pipe_name(crtc->pipe));
7495
7496         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7497         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7498         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7499         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7500         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7501         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7502              "CPU PWM1 enabled\n");
7503         if (IS_HASWELL(dev))
7504                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7505                      "CPU PWM2 enabled\n");
7506         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7507              "PCH PWM1 enabled\n");
7508         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7509              "Utility pin enabled\n");
7510         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7511
7512         /*
7513          * In theory we can still leave IRQs enabled, as long as only the HPD
7514          * interrupts remain enabled. We used to check for that, but since it's
7515          * gen-specific and since we only disable LCPLL after we fully disable
7516          * the interrupts, the check below should be enough.
7517          */
7518         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7519 }
7520
7521 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7522 {
7523         struct drm_device *dev = dev_priv->dev;
7524
7525         if (IS_HASWELL(dev))
7526                 return I915_READ(D_COMP_HSW);
7527         else
7528                 return I915_READ(D_COMP_BDW);
7529 }
7530
7531 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7532 {
7533         struct drm_device *dev = dev_priv->dev;
7534
7535         if (IS_HASWELL(dev)) {
7536                 mutex_lock(&dev_priv->rps.hw_lock);
7537                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7538                                             val))
7539                         DRM_ERROR("Failed to write to D_COMP\n");
7540                 mutex_unlock(&dev_priv->rps.hw_lock);
7541         } else {
7542                 I915_WRITE(D_COMP_BDW, val);
7543                 POSTING_READ(D_COMP_BDW);
7544         }
7545 }
7546
7547 /*
7548  * This function implements pieces of two sequences from BSpec:
7549  * - Sequence for display software to disable LCPLL
7550  * - Sequence for display software to allow package C8+
7551  * The steps implemented here are just the steps that actually touch the LCPLL
7552  * register. Callers should take care of disabling all the display engine
7553  * functions, doing the mode unset, fixing interrupts, etc.
7554  */
7555 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7556                               bool switch_to_fclk, bool allow_power_down)
7557 {
7558         uint32_t val;
7559
7560         assert_can_disable_lcpll(dev_priv);
7561
7562         val = I915_READ(LCPLL_CTL);
7563
7564         if (switch_to_fclk) {
7565                 val |= LCPLL_CD_SOURCE_FCLK;
7566                 I915_WRITE(LCPLL_CTL, val);
7567
7568                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7569                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7570                         DRM_ERROR("Switching to FCLK failed\n");
7571
7572                 val = I915_READ(LCPLL_CTL);
7573         }
7574
7575         val |= LCPLL_PLL_DISABLE;
7576         I915_WRITE(LCPLL_CTL, val);
7577         POSTING_READ(LCPLL_CTL);
7578
7579         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7580                 DRM_ERROR("LCPLL still locked\n");
7581
7582         val = hsw_read_dcomp(dev_priv);
7583         val |= D_COMP_COMP_DISABLE;
7584         hsw_write_dcomp(dev_priv, val);
7585         ndelay(100);
7586
7587         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7588                      1))
7589                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7590
7591         if (allow_power_down) {
7592                 val = I915_READ(LCPLL_CTL);
7593                 val |= LCPLL_POWER_DOWN_ALLOW;
7594                 I915_WRITE(LCPLL_CTL, val);
7595                 POSTING_READ(LCPLL_CTL);
7596         }
7597 }
7598
7599 /*
7600  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7601  * source.
7602  */
7603 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7604 {
7605         uint32_t val;
7606
7607         val = I915_READ(LCPLL_CTL);
7608
7609         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7610                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7611                 return;
7612
7613         /*
7614          * Make sure we're not on PC8 state before disabling PC8, otherwise
7615          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7616          *
7617          * The other problem is that hsw_restore_lcpll() is called as part of
7618          * the runtime PM resume sequence, so we can't just call
7619          * gen6_gt_force_wake_get() because that function calls
7620          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7621          * while we are on the resume sequence. So to solve this problem we have
7622          * to call special forcewake code that doesn't touch runtime PM and
7623          * doesn't enable the forcewake delayed work.
7624          */
7625         spin_lock_irq(&dev_priv->uncore.lock);
7626         if (dev_priv->uncore.forcewake_count++ == 0)
7627                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7628         spin_unlock_irq(&dev_priv->uncore.lock);
7629
7630         if (val & LCPLL_POWER_DOWN_ALLOW) {
7631                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7632                 I915_WRITE(LCPLL_CTL, val);
7633                 POSTING_READ(LCPLL_CTL);
7634         }
7635
7636         val = hsw_read_dcomp(dev_priv);
7637         val |= D_COMP_COMP_FORCE;
7638         val &= ~D_COMP_COMP_DISABLE;
7639         hsw_write_dcomp(dev_priv, val);
7640
7641         val = I915_READ(LCPLL_CTL);
7642         val &= ~LCPLL_PLL_DISABLE;
7643         I915_WRITE(LCPLL_CTL, val);
7644
7645         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7646                 DRM_ERROR("LCPLL not locked yet\n");
7647
7648         if (val & LCPLL_CD_SOURCE_FCLK) {
7649                 val = I915_READ(LCPLL_CTL);
7650                 val &= ~LCPLL_CD_SOURCE_FCLK;
7651                 I915_WRITE(LCPLL_CTL, val);
7652
7653                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7654                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7655                         DRM_ERROR("Switching back to LCPLL failed\n");
7656         }
7657
7658         /* See the big comment above. */
7659         spin_lock_irq(&dev_priv->uncore.lock);
7660         if (--dev_priv->uncore.forcewake_count == 0)
7661                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7662         spin_unlock_irq(&dev_priv->uncore.lock);
7663 }
7664
7665 /*
7666  * Package states C8 and deeper are really deep PC states that can only be
7667  * reached when all the devices on the system allow it, so even if the graphics
7668  * device allows PC8+, it doesn't mean the system will actually get to these
7669  * states. Our driver only allows PC8+ when going into runtime PM.
7670  *
7671  * The requirements for PC8+ are that all the outputs are disabled, the power
7672  * well is disabled and most interrupts are disabled, and these are also
7673  * requirements for runtime PM. When these conditions are met, we manually do
7674  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7675  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7676  * hang the machine.
7677  *
7678  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7679  * the state of some registers, so when we come back from PC8+ we need to
7680  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7681  * need to take care of the registers kept by RC6. Notice that this happens even
7682  * if we don't put the device in PCI D3 state (which is what currently happens
7683  * because of the runtime PM support).
7684  *
7685  * For more, read "Display Sequences for Package C8" on the hardware
7686  * documentation.
7687  */
7688 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7689 {
7690         struct drm_device *dev = dev_priv->dev;
7691         uint32_t val;
7692
7693         DRM_DEBUG_KMS("Enabling package C8+\n");
7694
7695         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7696                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7697                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7698                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7699         }
7700
7701         lpt_disable_clkout_dp(dev);
7702         hsw_disable_lcpll(dev_priv, true, true);
7703 }
7704
7705 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7706 {
7707         struct drm_device *dev = dev_priv->dev;
7708         uint32_t val;
7709
7710         DRM_DEBUG_KMS("Disabling package C8+\n");
7711
7712         hsw_restore_lcpll(dev_priv);
7713         lpt_init_pch_refclk(dev);
7714
7715         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7716                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7717                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7718                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7719         }
7720
7721         intel_prepare_ddi(dev);
7722 }
7723
7724 static void snb_modeset_global_resources(struct drm_device *dev)
7725 {
7726         modeset_update_crtc_power_domains(dev);
7727 }
7728
7729 static void haswell_modeset_global_resources(struct drm_device *dev)
7730 {
7731         modeset_update_crtc_power_domains(dev);
7732 }
7733
7734 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7735                                  int x, int y,
7736                                  struct drm_framebuffer *fb)
7737 {
7738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7739
7740         if (!intel_ddi_pll_select(intel_crtc))
7741                 return -EINVAL;
7742
7743         intel_crtc->lowfreq_avail = false;
7744
7745         return 0;
7746 }
7747
7748 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7749                                 enum port port,
7750                                 struct intel_crtc_config *pipe_config)
7751 {
7752         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7753
7754         switch (pipe_config->ddi_pll_sel) {
7755         case PORT_CLK_SEL_WRPLL1:
7756                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7757                 break;
7758         case PORT_CLK_SEL_WRPLL2:
7759                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7760                 break;
7761         }
7762 }
7763
7764 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7765                                        struct intel_crtc_config *pipe_config)
7766 {
7767         struct drm_device *dev = crtc->base.dev;
7768         struct drm_i915_private *dev_priv = dev->dev_private;
7769         struct intel_shared_dpll *pll;
7770         enum port port;
7771         uint32_t tmp;
7772
7773         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7774
7775         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7776
7777         haswell_get_ddi_pll(dev_priv, port, pipe_config);
7778
7779         if (pipe_config->shared_dpll >= 0) {
7780                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7781
7782                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7783                                            &pipe_config->dpll_hw_state));
7784         }
7785
7786         /*
7787          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7788          * DDI E. So just check whether this pipe is wired to DDI E and whether
7789          * the PCH transcoder is on.
7790          */
7791         if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7792                 pipe_config->has_pch_encoder = true;
7793
7794                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7795                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7796                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7797
7798                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7799         }
7800 }
7801
7802 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7803                                     struct intel_crtc_config *pipe_config)
7804 {
7805         struct drm_device *dev = crtc->base.dev;
7806         struct drm_i915_private *dev_priv = dev->dev_private;
7807         enum intel_display_power_domain pfit_domain;
7808         uint32_t tmp;
7809
7810         if (!intel_display_power_enabled(dev_priv,
7811                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7812                 return false;
7813
7814         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7815         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7816
7817         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7818         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7819                 enum pipe trans_edp_pipe;
7820                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7821                 default:
7822                         WARN(1, "unknown pipe linked to edp transcoder\n");
7823                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7824                 case TRANS_DDI_EDP_INPUT_A_ON:
7825                         trans_edp_pipe = PIPE_A;
7826                         break;
7827                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7828                         trans_edp_pipe = PIPE_B;
7829                         break;
7830                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7831                         trans_edp_pipe = PIPE_C;
7832                         break;
7833                 }
7834
7835                 if (trans_edp_pipe == crtc->pipe)
7836                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7837         }
7838
7839         if (!intel_display_power_enabled(dev_priv,
7840                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7841                 return false;
7842
7843         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7844         if (!(tmp & PIPECONF_ENABLE))
7845                 return false;
7846
7847         haswell_get_ddi_port_state(crtc, pipe_config);
7848
7849         intel_get_pipe_timings(crtc, pipe_config);
7850
7851         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7852         if (intel_display_power_enabled(dev_priv, pfit_domain))
7853                 ironlake_get_pfit_config(crtc, pipe_config);
7854
7855         if (IS_HASWELL(dev))
7856                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7857                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7858
7859         pipe_config->pixel_multiplier = 1;
7860
7861         return true;
7862 }
7863
7864 static struct {
7865         int clock;
7866         u32 config;
7867 } hdmi_audio_clock[] = {
7868         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7869         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7870         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7871         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7872         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7873         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7874         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7875         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7876         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7877         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7878 };
7879
7880 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7881 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7882 {
7883         int i;
7884
7885         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7886                 if (mode->clock == hdmi_audio_clock[i].clock)
7887                         break;
7888         }
7889
7890         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7891                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7892                 i = 1;
7893         }
7894
7895         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7896                       hdmi_audio_clock[i].clock,
7897                       hdmi_audio_clock[i].config);
7898
7899         return hdmi_audio_clock[i].config;
7900 }
7901
7902 static bool intel_eld_uptodate(struct drm_connector *connector,
7903                                int reg_eldv, uint32_t bits_eldv,
7904                                int reg_elda, uint32_t bits_elda,
7905                                int reg_edid)
7906 {
7907         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7908         uint8_t *eld = connector->eld;
7909         uint32_t i;
7910
7911         i = I915_READ(reg_eldv);
7912         i &= bits_eldv;
7913
7914         if (!eld[0])
7915                 return !i;
7916
7917         if (!i)
7918                 return false;
7919
7920         i = I915_READ(reg_elda);
7921         i &= ~bits_elda;
7922         I915_WRITE(reg_elda, i);
7923
7924         for (i = 0; i < eld[2]; i++)
7925                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7926                         return false;
7927
7928         return true;
7929 }
7930
7931 static void g4x_write_eld(struct drm_connector *connector,
7932                           struct drm_crtc *crtc,
7933                           struct drm_display_mode *mode)
7934 {
7935         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7936         uint8_t *eld = connector->eld;
7937         uint32_t eldv;
7938         uint32_t len;
7939         uint32_t i;
7940
7941         i = I915_READ(G4X_AUD_VID_DID);
7942
7943         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7944                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7945         else
7946                 eldv = G4X_ELDV_DEVCTG;
7947
7948         if (intel_eld_uptodate(connector,
7949                                G4X_AUD_CNTL_ST, eldv,
7950                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7951                                G4X_HDMIW_HDMIEDID))
7952                 return;
7953
7954         i = I915_READ(G4X_AUD_CNTL_ST);
7955         i &= ~(eldv | G4X_ELD_ADDR);
7956         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7957         I915_WRITE(G4X_AUD_CNTL_ST, i);
7958
7959         if (!eld[0])
7960                 return;
7961
7962         len = min_t(uint8_t, eld[2], len);
7963         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7964         for (i = 0; i < len; i++)
7965                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7966
7967         i = I915_READ(G4X_AUD_CNTL_ST);
7968         i |= eldv;
7969         I915_WRITE(G4X_AUD_CNTL_ST, i);
7970 }
7971
7972 static void haswell_write_eld(struct drm_connector *connector,
7973                               struct drm_crtc *crtc,
7974                               struct drm_display_mode *mode)
7975 {
7976         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7977         uint8_t *eld = connector->eld;
7978         uint32_t eldv;
7979         uint32_t i;
7980         int len;
7981         int pipe = to_intel_crtc(crtc)->pipe;
7982         int tmp;
7983
7984         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7985         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7986         int aud_config = HSW_AUD_CFG(pipe);
7987         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7988
7989         /* Audio output enable */
7990         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7991         tmp = I915_READ(aud_cntrl_st2);
7992         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7993         I915_WRITE(aud_cntrl_st2, tmp);
7994         POSTING_READ(aud_cntrl_st2);
7995
7996         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7997
7998         /* Set ELD valid state */
7999         tmp = I915_READ(aud_cntrl_st2);
8000         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
8001         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8002         I915_WRITE(aud_cntrl_st2, tmp);
8003         tmp = I915_READ(aud_cntrl_st2);
8004         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
8005
8006         /* Enable HDMI mode */
8007         tmp = I915_READ(aud_config);
8008         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
8009         /* clear N_programing_enable and N_value_index */
8010         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8011         I915_WRITE(aud_config, tmp);
8012
8013         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8014
8015         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8016
8017         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8018                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8019                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8020                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8021         } else {
8022                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8023         }
8024
8025         if (intel_eld_uptodate(connector,
8026                                aud_cntrl_st2, eldv,
8027                                aud_cntl_st, IBX_ELD_ADDRESS,
8028                                hdmiw_hdmiedid))
8029                 return;
8030
8031         i = I915_READ(aud_cntrl_st2);
8032         i &= ~eldv;
8033         I915_WRITE(aud_cntrl_st2, i);
8034
8035         if (!eld[0])
8036                 return;
8037
8038         i = I915_READ(aud_cntl_st);
8039         i &= ~IBX_ELD_ADDRESS;
8040         I915_WRITE(aud_cntl_st, i);
8041         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
8042         DRM_DEBUG_DRIVER("port num:%d\n", i);
8043
8044         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8045         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8046         for (i = 0; i < len; i++)
8047                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8048
8049         i = I915_READ(aud_cntrl_st2);
8050         i |= eldv;
8051         I915_WRITE(aud_cntrl_st2, i);
8052
8053 }
8054
8055 static void ironlake_write_eld(struct drm_connector *connector,
8056                                struct drm_crtc *crtc,
8057                                struct drm_display_mode *mode)
8058 {
8059         struct drm_i915_private *dev_priv = connector->dev->dev_private;
8060         uint8_t *eld = connector->eld;
8061         uint32_t eldv;
8062         uint32_t i;
8063         int len;
8064         int hdmiw_hdmiedid;
8065         int aud_config;
8066         int aud_cntl_st;
8067         int aud_cntrl_st2;
8068         int pipe = to_intel_crtc(crtc)->pipe;
8069
8070         if (HAS_PCH_IBX(connector->dev)) {
8071                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8072                 aud_config = IBX_AUD_CFG(pipe);
8073                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
8074                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
8075         } else if (IS_VALLEYVIEW(connector->dev)) {
8076                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8077                 aud_config = VLV_AUD_CFG(pipe);
8078                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8079                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
8080         } else {
8081                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8082                 aud_config = CPT_AUD_CFG(pipe);
8083                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
8084                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
8085         }
8086
8087         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8088
8089         if (IS_VALLEYVIEW(connector->dev))  {
8090                 struct intel_encoder *intel_encoder;
8091                 struct intel_digital_port *intel_dig_port;
8092
8093                 intel_encoder = intel_attached_encoder(connector);
8094                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8095                 i = intel_dig_port->port;
8096         } else {
8097                 i = I915_READ(aud_cntl_st);
8098                 i = (i >> 29) & DIP_PORT_SEL_MASK;
8099                 /* DIP_Port_Select, 0x1 = PortB */
8100         }
8101
8102         if (!i) {
8103                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8104                 /* operate blindly on all ports */
8105                 eldv = IBX_ELD_VALIDB;
8106                 eldv |= IBX_ELD_VALIDB << 4;
8107                 eldv |= IBX_ELD_VALIDB << 8;
8108         } else {
8109                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
8110                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
8111         }
8112
8113         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8114                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8115                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8116                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8117         } else {
8118                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8119         }
8120
8121         if (intel_eld_uptodate(connector,
8122                                aud_cntrl_st2, eldv,
8123                                aud_cntl_st, IBX_ELD_ADDRESS,
8124                                hdmiw_hdmiedid))
8125                 return;
8126
8127         i = I915_READ(aud_cntrl_st2);
8128         i &= ~eldv;
8129         I915_WRITE(aud_cntrl_st2, i);
8130
8131         if (!eld[0])
8132                 return;
8133
8134         i = I915_READ(aud_cntl_st);
8135         i &= ~IBX_ELD_ADDRESS;
8136         I915_WRITE(aud_cntl_st, i);
8137
8138         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8139         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8140         for (i = 0; i < len; i++)
8141                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8142
8143         i = I915_READ(aud_cntrl_st2);
8144         i |= eldv;
8145         I915_WRITE(aud_cntrl_st2, i);
8146 }
8147
8148 void intel_write_eld(struct drm_encoder *encoder,
8149                      struct drm_display_mode *mode)
8150 {
8151         struct drm_crtc *crtc = encoder->crtc;
8152         struct drm_connector *connector;
8153         struct drm_device *dev = encoder->dev;
8154         struct drm_i915_private *dev_priv = dev->dev_private;
8155
8156         connector = drm_select_eld(encoder, mode);
8157         if (!connector)
8158                 return;
8159
8160         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8161                          connector->base.id,
8162                          connector->name,
8163                          connector->encoder->base.id,
8164                          connector->encoder->name);
8165
8166         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8167
8168         if (dev_priv->display.write_eld)
8169                 dev_priv->display.write_eld(connector, crtc, mode);
8170 }
8171
8172 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8173 {
8174         struct drm_device *dev = crtc->dev;
8175         struct drm_i915_private *dev_priv = dev->dev_private;
8176         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8177         uint32_t cntl = 0, size = 0;
8178
8179         if (base) {
8180                 unsigned int width = intel_crtc->cursor_width;
8181                 unsigned int height = intel_crtc->cursor_height;
8182                 unsigned int stride = roundup_pow_of_two(width) * 4;
8183
8184                 switch (stride) {
8185                 default:
8186                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8187                                   width, stride);
8188                         stride = 256;
8189                         /* fallthrough */
8190                 case 256:
8191                 case 512:
8192                 case 1024:
8193                 case 2048:
8194                         break;
8195                 }
8196
8197                 cntl |= CURSOR_ENABLE |
8198                         CURSOR_GAMMA_ENABLE |
8199                         CURSOR_FORMAT_ARGB |
8200                         CURSOR_STRIDE(stride);
8201
8202                 size = (height << 12) | width;
8203         }
8204
8205         if (intel_crtc->cursor_cntl != 0 &&
8206             (intel_crtc->cursor_base != base ||
8207              intel_crtc->cursor_size != size ||
8208              intel_crtc->cursor_cntl != cntl)) {
8209                 /* On these chipsets we can only modify the base/size/stride
8210                  * whilst the cursor is disabled.
8211                  */
8212                 I915_WRITE(_CURACNTR, 0);
8213                 POSTING_READ(_CURACNTR);
8214                 intel_crtc->cursor_cntl = 0;
8215         }
8216
8217         if (intel_crtc->cursor_base != base) {
8218                 I915_WRITE(_CURABASE, base);
8219                 intel_crtc->cursor_base = base;
8220         }
8221
8222         if (intel_crtc->cursor_size != size) {
8223                 I915_WRITE(CURSIZE, size);
8224                 intel_crtc->cursor_size = size;
8225         }
8226
8227         if (intel_crtc->cursor_cntl != cntl) {
8228                 I915_WRITE(_CURACNTR, cntl);
8229                 POSTING_READ(_CURACNTR);
8230                 intel_crtc->cursor_cntl = cntl;
8231         }
8232 }
8233
8234 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8235 {
8236         struct drm_device *dev = crtc->dev;
8237         struct drm_i915_private *dev_priv = dev->dev_private;
8238         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8239         int pipe = intel_crtc->pipe;
8240         uint32_t cntl;
8241
8242         cntl = 0;
8243         if (base) {
8244                 cntl = MCURSOR_GAMMA_ENABLE;
8245                 switch (intel_crtc->cursor_width) {
8246                         case 64:
8247                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8248                                 break;
8249                         case 128:
8250                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8251                                 break;
8252                         case 256:
8253                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8254                                 break;
8255                         default:
8256                                 WARN_ON(1);
8257                                 return;
8258                 }
8259                 cntl |= pipe << 28; /* Connect to correct pipe */
8260
8261                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8262                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8263         }
8264
8265         if (intel_crtc->cursor_cntl != cntl) {
8266                 I915_WRITE(CURCNTR(pipe), cntl);
8267                 POSTING_READ(CURCNTR(pipe));
8268                 intel_crtc->cursor_cntl = cntl;
8269         }
8270
8271         /* and commit changes on next vblank */
8272         I915_WRITE(CURBASE(pipe), base);
8273         POSTING_READ(CURBASE(pipe));
8274
8275         intel_crtc->cursor_base = base;
8276 }
8277
8278 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8279 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8280                                      bool on)
8281 {
8282         struct drm_device *dev = crtc->dev;
8283         struct drm_i915_private *dev_priv = dev->dev_private;
8284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8285         int pipe = intel_crtc->pipe;
8286         int x = crtc->cursor_x;
8287         int y = crtc->cursor_y;
8288         u32 base = 0, pos = 0;
8289
8290         if (on)
8291                 base = intel_crtc->cursor_addr;
8292
8293         if (x >= intel_crtc->config.pipe_src_w)
8294                 base = 0;
8295
8296         if (y >= intel_crtc->config.pipe_src_h)
8297                 base = 0;
8298
8299         if (x < 0) {
8300                 if (x + intel_crtc->cursor_width <= 0)
8301                         base = 0;
8302
8303                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8304                 x = -x;
8305         }
8306         pos |= x << CURSOR_X_SHIFT;
8307
8308         if (y < 0) {
8309                 if (y + intel_crtc->cursor_height <= 0)
8310                         base = 0;
8311
8312                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8313                 y = -y;
8314         }
8315         pos |= y << CURSOR_Y_SHIFT;
8316
8317         if (base == 0 && intel_crtc->cursor_base == 0)
8318                 return;
8319
8320         I915_WRITE(CURPOS(pipe), pos);
8321
8322         if (IS_845G(dev) || IS_I865G(dev))
8323                 i845_update_cursor(crtc, base);
8324         else
8325                 i9xx_update_cursor(crtc, base);
8326 }
8327
8328 static bool cursor_size_ok(struct drm_device *dev,
8329                            uint32_t width, uint32_t height)
8330 {
8331         if (width == 0 || height == 0)
8332                 return false;
8333
8334         /*
8335          * 845g/865g are special in that they are only limited by
8336          * the width of their cursors, the height is arbitrary up to
8337          * the precision of the register. Everything else requires
8338          * square cursors, limited to a few power-of-two sizes.
8339          */
8340         if (IS_845G(dev) || IS_I865G(dev)) {
8341                 if ((width & 63) != 0)
8342                         return false;
8343
8344                 if (width > (IS_845G(dev) ? 64 : 512))
8345                         return false;
8346
8347                 if (height > 1023)
8348                         return false;
8349         } else {
8350                 switch (width | height) {
8351                 case 256:
8352                 case 128:
8353                         if (IS_GEN2(dev))
8354                                 return false;
8355                 case 64:
8356                         break;
8357                 default:
8358                         return false;
8359                 }
8360         }
8361
8362         return true;
8363 }
8364
8365 /*
8366  * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8367  *
8368  * Note that the object's reference will be consumed if the update fails.  If
8369  * the update succeeds, the reference of the old object (if any) will be
8370  * consumed.
8371  */
8372 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8373                                      struct drm_i915_gem_object *obj,
8374                                      uint32_t width, uint32_t height)
8375 {
8376         struct drm_device *dev = crtc->dev;
8377         struct drm_i915_private *dev_priv = dev->dev_private;
8378         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8379         enum pipe pipe = intel_crtc->pipe;
8380         unsigned old_width, stride;
8381         uint32_t addr;
8382         int ret;
8383
8384         /* if we want to turn off the cursor ignore width and height */
8385         if (!obj) {
8386                 DRM_DEBUG_KMS("cursor off\n");
8387                 addr = 0;
8388                 mutex_lock(&dev->struct_mutex);
8389                 goto finish;
8390         }
8391
8392         /* Check for which cursor types we support */
8393         if (!cursor_size_ok(dev, width, height)) {
8394                 DRM_DEBUG("Cursor dimension not supported\n");
8395                 return -EINVAL;
8396         }
8397
8398         stride = roundup_pow_of_two(width) * 4;
8399         if (obj->base.size < stride * height) {
8400                 DRM_DEBUG_KMS("buffer is too small\n");
8401                 ret = -ENOMEM;
8402                 goto fail;
8403         }
8404
8405         /* we only need to pin inside GTT if cursor is non-phy */
8406         mutex_lock(&dev->struct_mutex);
8407         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8408                 unsigned alignment;
8409
8410                 if (obj->tiling_mode) {
8411                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8412                         ret = -EINVAL;
8413                         goto fail_locked;
8414                 }
8415
8416                 /*
8417                  * Global gtt pte registers are special registers which actually
8418                  * forward writes to a chunk of system memory. Which means that
8419                  * there is no risk that the register values disappear as soon
8420                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8421                  * only the pin/unpin/fence and not more.
8422                  */
8423                 intel_runtime_pm_get(dev_priv);
8424
8425                 /* Note that the w/a also requires 2 PTE of padding following
8426                  * the bo. We currently fill all unused PTE with the shadow
8427                  * page and so we should always have valid PTE following the
8428                  * cursor preventing the VT-d warning.
8429                  */
8430                 alignment = 0;
8431                 if (need_vtd_wa(dev))
8432                         alignment = 64*1024;
8433
8434                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8435                 if (ret) {
8436                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8437                         intel_runtime_pm_put(dev_priv);
8438                         goto fail_locked;
8439                 }
8440
8441                 ret = i915_gem_object_put_fence(obj);
8442                 if (ret) {
8443                         DRM_DEBUG_KMS("failed to release fence for cursor");
8444                         intel_runtime_pm_put(dev_priv);
8445                         goto fail_unpin;
8446                 }
8447
8448                 addr = i915_gem_obj_ggtt_offset(obj);
8449
8450                 intel_runtime_pm_put(dev_priv);
8451         } else {
8452                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8453                 ret = i915_gem_object_attach_phys(obj, align);
8454                 if (ret) {
8455                         DRM_DEBUG_KMS("failed to attach phys object\n");
8456                         goto fail_locked;
8457                 }
8458                 addr = obj->phys_handle->busaddr;
8459         }
8460
8461  finish:
8462         if (intel_crtc->cursor_bo) {
8463                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8464                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8465         }
8466
8467         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8468                           INTEL_FRONTBUFFER_CURSOR(pipe));
8469         mutex_unlock(&dev->struct_mutex);
8470
8471         old_width = intel_crtc->cursor_width;
8472
8473         intel_crtc->cursor_addr = addr;
8474         intel_crtc->cursor_bo = obj;
8475         intel_crtc->cursor_width = width;
8476         intel_crtc->cursor_height = height;
8477
8478         if (intel_crtc->active) {
8479                 if (old_width != width)
8480                         intel_update_watermarks(crtc);
8481                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8482         }
8483
8484         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8485
8486         return 0;
8487 fail_unpin:
8488         i915_gem_object_unpin_from_display_plane(obj);
8489 fail_locked:
8490         mutex_unlock(&dev->struct_mutex);
8491 fail:
8492         drm_gem_object_unreference_unlocked(&obj->base);
8493         return ret;
8494 }
8495
8496 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8497                                  u16 *blue, uint32_t start, uint32_t size)
8498 {
8499         int end = (start + size > 256) ? 256 : start + size, i;
8500         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8501
8502         for (i = start; i < end; i++) {
8503                 intel_crtc->lut_r[i] = red[i] >> 8;
8504                 intel_crtc->lut_g[i] = green[i] >> 8;
8505                 intel_crtc->lut_b[i] = blue[i] >> 8;
8506         }
8507
8508         intel_crtc_load_lut(crtc);
8509 }
8510
8511 /* VESA 640x480x72Hz mode to set on the pipe */
8512 static struct drm_display_mode load_detect_mode = {
8513         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8514                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8515 };
8516
8517 struct drm_framebuffer *
8518 __intel_framebuffer_create(struct drm_device *dev,
8519                            struct drm_mode_fb_cmd2 *mode_cmd,
8520                            struct drm_i915_gem_object *obj)
8521 {
8522         struct intel_framebuffer *intel_fb;
8523         int ret;
8524
8525         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8526         if (!intel_fb) {
8527                 drm_gem_object_unreference_unlocked(&obj->base);
8528                 return ERR_PTR(-ENOMEM);
8529         }
8530
8531         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8532         if (ret)
8533                 goto err;
8534
8535         return &intel_fb->base;
8536 err:
8537         drm_gem_object_unreference_unlocked(&obj->base);
8538         kfree(intel_fb);
8539
8540         return ERR_PTR(ret);
8541 }
8542
8543 static struct drm_framebuffer *
8544 intel_framebuffer_create(struct drm_device *dev,
8545                          struct drm_mode_fb_cmd2 *mode_cmd,
8546                          struct drm_i915_gem_object *obj)
8547 {
8548         struct drm_framebuffer *fb;
8549         int ret;
8550
8551         ret = i915_mutex_lock_interruptible(dev);
8552         if (ret)
8553                 return ERR_PTR(ret);
8554         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8555         mutex_unlock(&dev->struct_mutex);
8556
8557         return fb;
8558 }
8559
8560 static u32
8561 intel_framebuffer_pitch_for_width(int width, int bpp)
8562 {
8563         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8564         return ALIGN(pitch, 64);
8565 }
8566
8567 static u32
8568 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8569 {
8570         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8571         return PAGE_ALIGN(pitch * mode->vdisplay);
8572 }
8573
8574 static struct drm_framebuffer *
8575 intel_framebuffer_create_for_mode(struct drm_device *dev,
8576                                   struct drm_display_mode *mode,
8577                                   int depth, int bpp)
8578 {
8579         struct drm_i915_gem_object *obj;
8580         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8581
8582         obj = i915_gem_alloc_object(dev,
8583                                     intel_framebuffer_size_for_mode(mode, bpp));
8584         if (obj == NULL)
8585                 return ERR_PTR(-ENOMEM);
8586
8587         mode_cmd.width = mode->hdisplay;
8588         mode_cmd.height = mode->vdisplay;
8589         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8590                                                                 bpp);
8591         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8592
8593         return intel_framebuffer_create(dev, &mode_cmd, obj);
8594 }
8595
8596 static struct drm_framebuffer *
8597 mode_fits_in_fbdev(struct drm_device *dev,
8598                    struct drm_display_mode *mode)
8599 {
8600 #ifdef CONFIG_DRM_I915_FBDEV
8601         struct drm_i915_private *dev_priv = dev->dev_private;
8602         struct drm_i915_gem_object *obj;
8603         struct drm_framebuffer *fb;
8604
8605         if (!dev_priv->fbdev)
8606                 return NULL;
8607
8608         if (!dev_priv->fbdev->fb)
8609                 return NULL;
8610
8611         obj = dev_priv->fbdev->fb->obj;
8612         BUG_ON(!obj);
8613
8614         fb = &dev_priv->fbdev->fb->base;
8615         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8616                                                                fb->bits_per_pixel))
8617                 return NULL;
8618
8619         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8620                 return NULL;
8621
8622         return fb;
8623 #else
8624         return NULL;
8625 #endif
8626 }
8627
8628 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8629                                 struct drm_display_mode *mode,
8630                                 struct intel_load_detect_pipe *old,
8631                                 struct drm_modeset_acquire_ctx *ctx)
8632 {
8633         struct intel_crtc *intel_crtc;
8634         struct intel_encoder *intel_encoder =
8635                 intel_attached_encoder(connector);
8636         struct drm_crtc *possible_crtc;
8637         struct drm_encoder *encoder = &intel_encoder->base;
8638         struct drm_crtc *crtc = NULL;
8639         struct drm_device *dev = encoder->dev;
8640         struct drm_framebuffer *fb;
8641         struct drm_mode_config *config = &dev->mode_config;
8642         int ret, i = -1;
8643
8644         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8645                       connector->base.id, connector->name,
8646                       encoder->base.id, encoder->name);
8647
8648 retry:
8649         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8650         if (ret)
8651                 goto fail_unlock;
8652
8653         /*
8654          * Algorithm gets a little messy:
8655          *
8656          *   - if the connector already has an assigned crtc, use it (but make
8657          *     sure it's on first)
8658          *
8659          *   - try to find the first unused crtc that can drive this connector,
8660          *     and use that if we find one
8661          */
8662
8663         /* See if we already have a CRTC for this connector */
8664         if (encoder->crtc) {
8665                 crtc = encoder->crtc;
8666
8667                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8668                 if (ret)
8669                         goto fail_unlock;
8670
8671                 old->dpms_mode = connector->dpms;
8672                 old->load_detect_temp = false;
8673
8674                 /* Make sure the crtc and connector are running */
8675                 if (connector->dpms != DRM_MODE_DPMS_ON)
8676                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8677
8678                 return true;
8679         }
8680
8681         /* Find an unused one (if possible) */
8682         for_each_crtc(dev, possible_crtc) {
8683                 i++;
8684                 if (!(encoder->possible_crtcs & (1 << i)))
8685                         continue;
8686                 if (possible_crtc->enabled)
8687                         continue;
8688                 /* This can occur when applying the pipe A quirk on resume. */
8689                 if (to_intel_crtc(possible_crtc)->new_enabled)
8690                         continue;
8691
8692                 crtc = possible_crtc;
8693                 break;
8694         }
8695
8696         /*
8697          * If we didn't find an unused CRTC, don't use any.
8698          */
8699         if (!crtc) {
8700                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8701                 goto fail_unlock;
8702         }
8703
8704         ret = drm_modeset_lock(&crtc->mutex, ctx);
8705         if (ret)
8706                 goto fail_unlock;
8707         intel_encoder->new_crtc = to_intel_crtc(crtc);
8708         to_intel_connector(connector)->new_encoder = intel_encoder;
8709
8710         intel_crtc = to_intel_crtc(crtc);
8711         intel_crtc->new_enabled = true;
8712         intel_crtc->new_config = &intel_crtc->config;
8713         old->dpms_mode = connector->dpms;
8714         old->load_detect_temp = true;
8715         old->release_fb = NULL;
8716
8717         if (!mode)
8718                 mode = &load_detect_mode;
8719
8720         /* We need a framebuffer large enough to accommodate all accesses
8721          * that the plane may generate whilst we perform load detection.
8722          * We can not rely on the fbcon either being present (we get called
8723          * during its initialisation to detect all boot displays, or it may
8724          * not even exist) or that it is large enough to satisfy the
8725          * requested mode.
8726          */
8727         fb = mode_fits_in_fbdev(dev, mode);
8728         if (fb == NULL) {
8729                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8730                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8731                 old->release_fb = fb;
8732         } else
8733                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8734         if (IS_ERR(fb)) {
8735                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8736                 goto fail;
8737         }
8738
8739         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8740                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8741                 if (old->release_fb)
8742                         old->release_fb->funcs->destroy(old->release_fb);
8743                 goto fail;
8744         }
8745
8746         /* let the connector get through one full cycle before testing */
8747         intel_wait_for_vblank(dev, intel_crtc->pipe);
8748         return true;
8749
8750  fail:
8751         intel_crtc->new_enabled = crtc->enabled;
8752         if (intel_crtc->new_enabled)
8753                 intel_crtc->new_config = &intel_crtc->config;
8754         else
8755                 intel_crtc->new_config = NULL;
8756 fail_unlock:
8757         if (ret == -EDEADLK) {
8758                 drm_modeset_backoff(ctx);
8759                 goto retry;
8760         }
8761
8762         return false;
8763 }
8764
8765 void intel_release_load_detect_pipe(struct drm_connector *connector,
8766                                     struct intel_load_detect_pipe *old)
8767 {
8768         struct intel_encoder *intel_encoder =
8769                 intel_attached_encoder(connector);
8770         struct drm_encoder *encoder = &intel_encoder->base;
8771         struct drm_crtc *crtc = encoder->crtc;
8772         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8773
8774         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8775                       connector->base.id, connector->name,
8776                       encoder->base.id, encoder->name);
8777
8778         if (old->load_detect_temp) {
8779                 to_intel_connector(connector)->new_encoder = NULL;
8780                 intel_encoder->new_crtc = NULL;
8781                 intel_crtc->new_enabled = false;
8782                 intel_crtc->new_config = NULL;
8783                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8784
8785                 if (old->release_fb) {
8786                         drm_framebuffer_unregister_private(old->release_fb);
8787                         drm_framebuffer_unreference(old->release_fb);
8788                 }
8789
8790                 return;
8791         }
8792
8793         /* Switch crtc and encoder back off if necessary */
8794         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8795                 connector->funcs->dpms(connector, old->dpms_mode);
8796 }
8797
8798 static int i9xx_pll_refclk(struct drm_device *dev,
8799                            const struct intel_crtc_config *pipe_config)
8800 {
8801         struct drm_i915_private *dev_priv = dev->dev_private;
8802         u32 dpll = pipe_config->dpll_hw_state.dpll;
8803
8804         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8805                 return dev_priv->vbt.lvds_ssc_freq;
8806         else if (HAS_PCH_SPLIT(dev))
8807                 return 120000;
8808         else if (!IS_GEN2(dev))
8809                 return 96000;
8810         else
8811                 return 48000;
8812 }
8813
8814 /* Returns the clock of the currently programmed mode of the given pipe. */
8815 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8816                                 struct intel_crtc_config *pipe_config)
8817 {
8818         struct drm_device *dev = crtc->base.dev;
8819         struct drm_i915_private *dev_priv = dev->dev_private;
8820         int pipe = pipe_config->cpu_transcoder;
8821         u32 dpll = pipe_config->dpll_hw_state.dpll;
8822         u32 fp;
8823         intel_clock_t clock;
8824         int refclk = i9xx_pll_refclk(dev, pipe_config);
8825
8826         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8827                 fp = pipe_config->dpll_hw_state.fp0;
8828         else
8829                 fp = pipe_config->dpll_hw_state.fp1;
8830
8831         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8832         if (IS_PINEVIEW(dev)) {
8833                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8834                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8835         } else {
8836                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8837                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8838         }
8839
8840         if (!IS_GEN2(dev)) {
8841                 if (IS_PINEVIEW(dev))
8842                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8843                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8844                 else
8845                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8846                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8847
8848                 switch (dpll & DPLL_MODE_MASK) {
8849                 case DPLLB_MODE_DAC_SERIAL:
8850                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8851                                 5 : 10;
8852                         break;
8853                 case DPLLB_MODE_LVDS:
8854                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8855                                 7 : 14;
8856                         break;
8857                 default:
8858                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8859                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8860                         return;
8861                 }
8862
8863                 if (IS_PINEVIEW(dev))
8864                         pineview_clock(refclk, &clock);
8865                 else
8866                         i9xx_clock(refclk, &clock);
8867         } else {
8868                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8869                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8870
8871                 if (is_lvds) {
8872                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8873                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8874
8875                         if (lvds & LVDS_CLKB_POWER_UP)
8876                                 clock.p2 = 7;
8877                         else
8878                                 clock.p2 = 14;
8879                 } else {
8880                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8881                                 clock.p1 = 2;
8882                         else {
8883                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8884                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8885                         }
8886                         if (dpll & PLL_P2_DIVIDE_BY_4)
8887                                 clock.p2 = 4;
8888                         else
8889                                 clock.p2 = 2;
8890                 }
8891
8892                 i9xx_clock(refclk, &clock);
8893         }
8894
8895         /*
8896          * This value includes pixel_multiplier. We will use
8897          * port_clock to compute adjusted_mode.crtc_clock in the
8898          * encoder's get_config() function.
8899          */
8900         pipe_config->port_clock = clock.dot;
8901 }
8902
8903 int intel_dotclock_calculate(int link_freq,
8904                              const struct intel_link_m_n *m_n)
8905 {
8906         /*
8907          * The calculation for the data clock is:
8908          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8909          * But we want to avoid losing precison if possible, so:
8910          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8911          *
8912          * and the link clock is simpler:
8913          * link_clock = (m * link_clock) / n
8914          */
8915
8916         if (!m_n->link_n)
8917                 return 0;
8918
8919         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8920 }
8921
8922 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8923                                    struct intel_crtc_config *pipe_config)
8924 {
8925         struct drm_device *dev = crtc->base.dev;
8926
8927         /* read out port_clock from the DPLL */
8928         i9xx_crtc_clock_get(crtc, pipe_config);
8929
8930         /*
8931          * This value does not include pixel_multiplier.
8932          * We will check that port_clock and adjusted_mode.crtc_clock
8933          * agree once we know their relationship in the encoder's
8934          * get_config() function.
8935          */
8936         pipe_config->adjusted_mode.crtc_clock =
8937                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8938                                          &pipe_config->fdi_m_n);
8939 }
8940
8941 /** Returns the currently programmed mode of the given pipe. */
8942 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8943                                              struct drm_crtc *crtc)
8944 {
8945         struct drm_i915_private *dev_priv = dev->dev_private;
8946         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8947         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8948         struct drm_display_mode *mode;
8949         struct intel_crtc_config pipe_config;
8950         int htot = I915_READ(HTOTAL(cpu_transcoder));
8951         int hsync = I915_READ(HSYNC(cpu_transcoder));
8952         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8953         int vsync = I915_READ(VSYNC(cpu_transcoder));
8954         enum pipe pipe = intel_crtc->pipe;
8955
8956         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8957         if (!mode)
8958                 return NULL;
8959
8960         /*
8961          * Construct a pipe_config sufficient for getting the clock info
8962          * back out of crtc_clock_get.
8963          *
8964          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8965          * to use a real value here instead.
8966          */
8967         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8968         pipe_config.pixel_multiplier = 1;
8969         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8970         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8971         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8972         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8973
8974         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8975         mode->hdisplay = (htot & 0xffff) + 1;
8976         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8977         mode->hsync_start = (hsync & 0xffff) + 1;
8978         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8979         mode->vdisplay = (vtot & 0xffff) + 1;
8980         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8981         mode->vsync_start = (vsync & 0xffff) + 1;
8982         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8983
8984         drm_mode_set_name(mode);
8985
8986         return mode;
8987 }
8988
8989 static void intel_increase_pllclock(struct drm_device *dev,
8990                                     enum pipe pipe)
8991 {
8992         struct drm_i915_private *dev_priv = dev->dev_private;
8993         int dpll_reg = DPLL(pipe);
8994         int dpll;
8995
8996         if (!HAS_GMCH_DISPLAY(dev))
8997                 return;
8998
8999         if (!dev_priv->lvds_downclock_avail)
9000                 return;
9001
9002         dpll = I915_READ(dpll_reg);
9003         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
9004                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
9005
9006                 assert_panel_unlocked(dev_priv, pipe);
9007
9008                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9009                 I915_WRITE(dpll_reg, dpll);
9010                 intel_wait_for_vblank(dev, pipe);
9011
9012                 dpll = I915_READ(dpll_reg);
9013                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
9014                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
9015         }
9016 }
9017
9018 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9019 {
9020         struct drm_device *dev = crtc->dev;
9021         struct drm_i915_private *dev_priv = dev->dev_private;
9022         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9023
9024         if (!HAS_GMCH_DISPLAY(dev))
9025                 return;
9026
9027         if (!dev_priv->lvds_downclock_avail)
9028                 return;
9029
9030         /*
9031          * Since this is called by a timer, we should never get here in
9032          * the manual case.
9033          */
9034         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9035                 int pipe = intel_crtc->pipe;
9036                 int dpll_reg = DPLL(pipe);
9037                 int dpll;
9038
9039                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9040
9041                 assert_panel_unlocked(dev_priv, pipe);
9042
9043                 dpll = I915_READ(dpll_reg);
9044                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9045                 I915_WRITE(dpll_reg, dpll);
9046                 intel_wait_for_vblank(dev, pipe);
9047                 dpll = I915_READ(dpll_reg);
9048                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9049                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9050         }
9051
9052 }
9053
9054 void intel_mark_busy(struct drm_device *dev)
9055 {
9056         struct drm_i915_private *dev_priv = dev->dev_private;
9057
9058         if (dev_priv->mm.busy)
9059                 return;
9060
9061         intel_runtime_pm_get(dev_priv);
9062         i915_update_gfx_val(dev_priv);
9063         dev_priv->mm.busy = true;
9064 }
9065
9066 void intel_mark_idle(struct drm_device *dev)
9067 {
9068         struct drm_i915_private *dev_priv = dev->dev_private;
9069         struct drm_crtc *crtc;
9070
9071         if (!dev_priv->mm.busy)
9072                 return;
9073
9074         dev_priv->mm.busy = false;
9075
9076         if (!i915.powersave)
9077                 goto out;
9078
9079         for_each_crtc(dev, crtc) {
9080                 if (!crtc->primary->fb)
9081                         continue;
9082
9083                 intel_decrease_pllclock(crtc);
9084         }
9085
9086         if (INTEL_INFO(dev)->gen >= 6)
9087                 gen6_rps_idle(dev->dev_private);
9088
9089 out:
9090         intel_runtime_pm_put(dev_priv);
9091 }
9092
9093
9094 /**
9095  * intel_mark_fb_busy - mark given planes as busy
9096  * @dev: DRM device
9097  * @frontbuffer_bits: bits for the affected planes
9098  * @ring: optional ring for asynchronous commands
9099  *
9100  * This function gets called every time the screen contents change. It can be
9101  * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9102  */
9103 static void intel_mark_fb_busy(struct drm_device *dev,
9104                                unsigned frontbuffer_bits,
9105                                struct intel_engine_cs *ring)
9106 {
9107         struct drm_i915_private *dev_priv = dev->dev_private;
9108         enum pipe pipe;
9109
9110         if (!i915.powersave)
9111                 return;
9112
9113         for_each_pipe(dev_priv, pipe) {
9114                 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
9115                         continue;
9116
9117                 intel_increase_pllclock(dev, pipe);
9118                 if (ring && intel_fbc_enabled(dev))
9119                         ring->fbc_dirty = true;
9120         }
9121 }
9122
9123 /**
9124  * intel_fb_obj_invalidate - invalidate frontbuffer object
9125  * @obj: GEM object to invalidate
9126  * @ring: set for asynchronous rendering
9127  *
9128  * This function gets called every time rendering on the given object starts and
9129  * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9130  * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9131  * until the rendering completes or a flip on this frontbuffer plane is
9132  * scheduled.
9133  */
9134 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9135                              struct intel_engine_cs *ring)
9136 {
9137         struct drm_device *dev = obj->base.dev;
9138         struct drm_i915_private *dev_priv = dev->dev_private;
9139
9140         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9141
9142         if (!obj->frontbuffer_bits)
9143                 return;
9144
9145         if (ring) {
9146                 mutex_lock(&dev_priv->fb_tracking.lock);
9147                 dev_priv->fb_tracking.busy_bits
9148                         |= obj->frontbuffer_bits;
9149                 dev_priv->fb_tracking.flip_bits
9150                         &= ~obj->frontbuffer_bits;
9151                 mutex_unlock(&dev_priv->fb_tracking.lock);
9152         }
9153
9154         intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9155
9156         intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
9157 }
9158
9159 /**
9160  * intel_frontbuffer_flush - flush frontbuffer
9161  * @dev: DRM device
9162  * @frontbuffer_bits: frontbuffer plane tracking bits
9163  *
9164  * This function gets called every time rendering on the given planes has
9165  * completed and frontbuffer caching can be started again. Flushes will get
9166  * delayed if they're blocked by some oustanding asynchronous rendering.
9167  *
9168  * Can be called without any locks held.
9169  */
9170 void intel_frontbuffer_flush(struct drm_device *dev,
9171                              unsigned frontbuffer_bits)
9172 {
9173         struct drm_i915_private *dev_priv = dev->dev_private;
9174
9175         /* Delay flushing when rings are still busy.*/
9176         mutex_lock(&dev_priv->fb_tracking.lock);
9177         frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9178         mutex_unlock(&dev_priv->fb_tracking.lock);
9179
9180         intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9181
9182         intel_edp_psr_flush(dev, frontbuffer_bits);
9183
9184         /*
9185          * FIXME: Unconditional fbc flushing here is a rather gross hack and
9186          * needs to be reworked into a proper frontbuffer tracking scheme like
9187          * psr employs.
9188          */
9189         if (IS_BROADWELL(dev))
9190                 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
9191 }
9192
9193 /**
9194  * intel_fb_obj_flush - flush frontbuffer object
9195  * @obj: GEM object to flush
9196  * @retire: set when retiring asynchronous rendering
9197  *
9198  * This function gets called every time rendering on the given object has
9199  * completed and frontbuffer caching can be started again. If @retire is true
9200  * then any delayed flushes will be unblocked.
9201  */
9202 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9203                         bool retire)
9204 {
9205         struct drm_device *dev = obj->base.dev;
9206         struct drm_i915_private *dev_priv = dev->dev_private;
9207         unsigned frontbuffer_bits;
9208
9209         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9210
9211         if (!obj->frontbuffer_bits)
9212                 return;
9213
9214         frontbuffer_bits = obj->frontbuffer_bits;
9215
9216         if (retire) {
9217                 mutex_lock(&dev_priv->fb_tracking.lock);
9218                 /* Filter out new bits since rendering started. */
9219                 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9220
9221                 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9222                 mutex_unlock(&dev_priv->fb_tracking.lock);
9223         }
9224
9225         intel_frontbuffer_flush(dev, frontbuffer_bits);
9226 }
9227
9228 /**
9229  * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9230  * @dev: DRM device
9231  * @frontbuffer_bits: frontbuffer plane tracking bits
9232  *
9233  * This function gets called after scheduling a flip on @obj. The actual
9234  * frontbuffer flushing will be delayed until completion is signalled with
9235  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9236  * flush will be cancelled.
9237  *
9238  * Can be called without any locks held.
9239  */
9240 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9241                                     unsigned frontbuffer_bits)
9242 {
9243         struct drm_i915_private *dev_priv = dev->dev_private;
9244
9245         mutex_lock(&dev_priv->fb_tracking.lock);
9246         dev_priv->fb_tracking.flip_bits
9247                 |= frontbuffer_bits;
9248         mutex_unlock(&dev_priv->fb_tracking.lock);
9249 }
9250
9251 /**
9252  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9253  * @dev: DRM device
9254  * @frontbuffer_bits: frontbuffer plane tracking bits
9255  *
9256  * This function gets called after the flip has been latched and will complete
9257  * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9258  *
9259  * Can be called without any locks held.
9260  */
9261 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9262                                      unsigned frontbuffer_bits)
9263 {
9264         struct drm_i915_private *dev_priv = dev->dev_private;
9265
9266         mutex_lock(&dev_priv->fb_tracking.lock);
9267         /* Mask any cancelled flips. */
9268         frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9269         dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9270         mutex_unlock(&dev_priv->fb_tracking.lock);
9271
9272         intel_frontbuffer_flush(dev, frontbuffer_bits);
9273 }
9274
9275 static void intel_crtc_destroy(struct drm_crtc *crtc)
9276 {
9277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9278         struct drm_device *dev = crtc->dev;
9279         struct intel_unpin_work *work;
9280
9281         spin_lock_irq(&dev->event_lock);
9282         work = intel_crtc->unpin_work;
9283         intel_crtc->unpin_work = NULL;
9284         spin_unlock_irq(&dev->event_lock);
9285
9286         if (work) {
9287                 cancel_work_sync(&work->work);
9288                 kfree(work);
9289         }
9290
9291         drm_crtc_cleanup(crtc);
9292
9293         kfree(intel_crtc);
9294 }
9295
9296 static void intel_unpin_work_fn(struct work_struct *__work)
9297 {
9298         struct intel_unpin_work *work =
9299                 container_of(__work, struct intel_unpin_work, work);
9300         struct drm_device *dev = work->crtc->dev;
9301         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9302
9303         mutex_lock(&dev->struct_mutex);
9304         intel_unpin_fb_obj(work->old_fb_obj);
9305         drm_gem_object_unreference(&work->pending_flip_obj->base);
9306         drm_gem_object_unreference(&work->old_fb_obj->base);
9307
9308         intel_update_fbc(dev);
9309         mutex_unlock(&dev->struct_mutex);
9310
9311         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9312
9313         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9314         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9315
9316         kfree(work);
9317 }
9318
9319 static void do_intel_finish_page_flip(struct drm_device *dev,
9320                                       struct drm_crtc *crtc)
9321 {
9322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9323         struct intel_unpin_work *work;
9324         unsigned long flags;
9325
9326         /* Ignore early vblank irqs */
9327         if (intel_crtc == NULL)
9328                 return;
9329
9330         /*
9331          * This is called both by irq handlers and the reset code (to complete
9332          * lost pageflips) so needs the full irqsave spinlocks.
9333          */
9334         spin_lock_irqsave(&dev->event_lock, flags);
9335         work = intel_crtc->unpin_work;
9336
9337         /* Ensure we don't miss a work->pending update ... */
9338         smp_rmb();
9339
9340         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9341                 spin_unlock_irqrestore(&dev->event_lock, flags);
9342                 return;
9343         }
9344
9345         page_flip_completed(intel_crtc);
9346
9347         spin_unlock_irqrestore(&dev->event_lock, flags);
9348 }
9349
9350 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9351 {
9352         struct drm_i915_private *dev_priv = dev->dev_private;
9353         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9354
9355         do_intel_finish_page_flip(dev, crtc);
9356 }
9357
9358 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9359 {
9360         struct drm_i915_private *dev_priv = dev->dev_private;
9361         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9362
9363         do_intel_finish_page_flip(dev, crtc);
9364 }
9365
9366 /* Is 'a' after or equal to 'b'? */
9367 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9368 {
9369         return !((a - b) & 0x80000000);
9370 }
9371
9372 static bool page_flip_finished(struct intel_crtc *crtc)
9373 {
9374         struct drm_device *dev = crtc->base.dev;
9375         struct drm_i915_private *dev_priv = dev->dev_private;
9376
9377         /*
9378          * The relevant registers doen't exist on pre-ctg.
9379          * As the flip done interrupt doesn't trigger for mmio
9380          * flips on gmch platforms, a flip count check isn't
9381          * really needed there. But since ctg has the registers,
9382          * include it in the check anyway.
9383          */
9384         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9385                 return true;
9386
9387         /*
9388          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9389          * used the same base address. In that case the mmio flip might
9390          * have completed, but the CS hasn't even executed the flip yet.
9391          *
9392          * A flip count check isn't enough as the CS might have updated
9393          * the base address just after start of vblank, but before we
9394          * managed to process the interrupt. This means we'd complete the
9395          * CS flip too soon.
9396          *
9397          * Combining both checks should get us a good enough result. It may
9398          * still happen that the CS flip has been executed, but has not
9399          * yet actually completed. But in case the base address is the same
9400          * anyway, we don't really care.
9401          */
9402         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9403                 crtc->unpin_work->gtt_offset &&
9404                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9405                                     crtc->unpin_work->flip_count);
9406 }
9407
9408 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9409 {
9410         struct drm_i915_private *dev_priv = dev->dev_private;
9411         struct intel_crtc *intel_crtc =
9412                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9413         unsigned long flags;
9414
9415
9416         /*
9417          * This is called both by irq handlers and the reset code (to complete
9418          * lost pageflips) so needs the full irqsave spinlocks.
9419          *
9420          * NB: An MMIO update of the plane base pointer will also
9421          * generate a page-flip completion irq, i.e. every modeset
9422          * is also accompanied by a spurious intel_prepare_page_flip().
9423          */
9424         spin_lock_irqsave(&dev->event_lock, flags);
9425         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9426                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9427         spin_unlock_irqrestore(&dev->event_lock, flags);
9428 }
9429
9430 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9431 {
9432         /* Ensure that the work item is consistent when activating it ... */
9433         smp_wmb();
9434         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9435         /* and that it is marked active as soon as the irq could fire. */
9436         smp_wmb();
9437 }
9438
9439 static int intel_gen2_queue_flip(struct drm_device *dev,
9440                                  struct drm_crtc *crtc,
9441                                  struct drm_framebuffer *fb,
9442                                  struct drm_i915_gem_object *obj,
9443                                  struct intel_engine_cs *ring,
9444                                  uint32_t flags)
9445 {
9446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9447         u32 flip_mask;
9448         int ret;
9449
9450         ret = intel_ring_begin(ring, 6);
9451         if (ret)
9452                 return ret;
9453
9454         /* Can't queue multiple flips, so wait for the previous
9455          * one to finish before executing the next.
9456          */
9457         if (intel_crtc->plane)
9458                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9459         else
9460                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9461         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9462         intel_ring_emit(ring, MI_NOOP);
9463         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9464                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9465         intel_ring_emit(ring, fb->pitches[0]);
9466         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9467         intel_ring_emit(ring, 0); /* aux display base address, unused */
9468
9469         intel_mark_page_flip_active(intel_crtc);
9470         __intel_ring_advance(ring);
9471         return 0;
9472 }
9473
9474 static int intel_gen3_queue_flip(struct drm_device *dev,
9475                                  struct drm_crtc *crtc,
9476                                  struct drm_framebuffer *fb,
9477                                  struct drm_i915_gem_object *obj,
9478                                  struct intel_engine_cs *ring,
9479                                  uint32_t flags)
9480 {
9481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9482         u32 flip_mask;
9483         int ret;
9484
9485         ret = intel_ring_begin(ring, 6);
9486         if (ret)
9487                 return ret;
9488
9489         if (intel_crtc->plane)
9490                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9491         else
9492                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9493         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9494         intel_ring_emit(ring, MI_NOOP);
9495         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9496                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9497         intel_ring_emit(ring, fb->pitches[0]);
9498         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9499         intel_ring_emit(ring, MI_NOOP);
9500
9501         intel_mark_page_flip_active(intel_crtc);
9502         __intel_ring_advance(ring);
9503         return 0;
9504 }
9505
9506 static int intel_gen4_queue_flip(struct drm_device *dev,
9507                                  struct drm_crtc *crtc,
9508                                  struct drm_framebuffer *fb,
9509                                  struct drm_i915_gem_object *obj,
9510                                  struct intel_engine_cs *ring,
9511                                  uint32_t flags)
9512 {
9513         struct drm_i915_private *dev_priv = dev->dev_private;
9514         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9515         uint32_t pf, pipesrc;
9516         int ret;
9517
9518         ret = intel_ring_begin(ring, 4);
9519         if (ret)
9520                 return ret;
9521
9522         /* i965+ uses the linear or tiled offsets from the
9523          * Display Registers (which do not change across a page-flip)
9524          * so we need only reprogram the base address.
9525          */
9526         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9527                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9528         intel_ring_emit(ring, fb->pitches[0]);
9529         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9530                         obj->tiling_mode);
9531
9532         /* XXX Enabling the panel-fitter across page-flip is so far
9533          * untested on non-native modes, so ignore it for now.
9534          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9535          */
9536         pf = 0;
9537         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9538         intel_ring_emit(ring, pf | pipesrc);
9539
9540         intel_mark_page_flip_active(intel_crtc);
9541         __intel_ring_advance(ring);
9542         return 0;
9543 }
9544
9545 static int intel_gen6_queue_flip(struct drm_device *dev,
9546                                  struct drm_crtc *crtc,
9547                                  struct drm_framebuffer *fb,
9548                                  struct drm_i915_gem_object *obj,
9549                                  struct intel_engine_cs *ring,
9550                                  uint32_t flags)
9551 {
9552         struct drm_i915_private *dev_priv = dev->dev_private;
9553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9554         uint32_t pf, pipesrc;
9555         int ret;
9556
9557         ret = intel_ring_begin(ring, 4);
9558         if (ret)
9559                 return ret;
9560
9561         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9562                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9563         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9564         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9565
9566         /* Contrary to the suggestions in the documentation,
9567          * "Enable Panel Fitter" does not seem to be required when page
9568          * flipping with a non-native mode, and worse causes a normal
9569          * modeset to fail.
9570          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9571          */
9572         pf = 0;
9573         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9574         intel_ring_emit(ring, pf | pipesrc);
9575
9576         intel_mark_page_flip_active(intel_crtc);
9577         __intel_ring_advance(ring);
9578         return 0;
9579 }
9580
9581 static int intel_gen7_queue_flip(struct drm_device *dev,
9582                                  struct drm_crtc *crtc,
9583                                  struct drm_framebuffer *fb,
9584                                  struct drm_i915_gem_object *obj,
9585                                  struct intel_engine_cs *ring,
9586                                  uint32_t flags)
9587 {
9588         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9589         uint32_t plane_bit = 0;
9590         int len, ret;
9591
9592         switch (intel_crtc->plane) {
9593         case PLANE_A:
9594                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9595                 break;
9596         case PLANE_B:
9597                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9598                 break;
9599         case PLANE_C:
9600                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9601                 break;
9602         default:
9603                 WARN_ONCE(1, "unknown plane in flip command\n");
9604                 return -ENODEV;
9605         }
9606
9607         len = 4;
9608         if (ring->id == RCS) {
9609                 len += 6;
9610                 /*
9611                  * On Gen 8, SRM is now taking an extra dword to accommodate
9612                  * 48bits addresses, and we need a NOOP for the batch size to
9613                  * stay even.
9614                  */
9615                 if (IS_GEN8(dev))
9616                         len += 2;
9617         }
9618
9619         /*
9620          * BSpec MI_DISPLAY_FLIP for IVB:
9621          * "The full packet must be contained within the same cache line."
9622          *
9623          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9624          * cacheline, if we ever start emitting more commands before
9625          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9626          * then do the cacheline alignment, and finally emit the
9627          * MI_DISPLAY_FLIP.
9628          */
9629         ret = intel_ring_cacheline_align(ring);
9630         if (ret)
9631                 return ret;
9632
9633         ret = intel_ring_begin(ring, len);
9634         if (ret)
9635                 return ret;
9636
9637         /* Unmask the flip-done completion message. Note that the bspec says that
9638          * we should do this for both the BCS and RCS, and that we must not unmask
9639          * more than one flip event at any time (or ensure that one flip message
9640          * can be sent by waiting for flip-done prior to queueing new flips).
9641          * Experimentation says that BCS works despite DERRMR masking all
9642          * flip-done completion events and that unmasking all planes at once
9643          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9644          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9645          */
9646         if (ring->id == RCS) {
9647                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9648                 intel_ring_emit(ring, DERRMR);
9649                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9650                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9651                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9652                 if (IS_GEN8(dev))
9653                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9654                                               MI_SRM_LRM_GLOBAL_GTT);
9655                 else
9656                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9657                                               MI_SRM_LRM_GLOBAL_GTT);
9658                 intel_ring_emit(ring, DERRMR);
9659                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9660                 if (IS_GEN8(dev)) {
9661                         intel_ring_emit(ring, 0);
9662                         intel_ring_emit(ring, MI_NOOP);
9663                 }
9664         }
9665
9666         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9667         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9668         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9669         intel_ring_emit(ring, (MI_NOOP));
9670
9671         intel_mark_page_flip_active(intel_crtc);
9672         __intel_ring_advance(ring);
9673         return 0;
9674 }
9675
9676 static bool use_mmio_flip(struct intel_engine_cs *ring,
9677                           struct drm_i915_gem_object *obj)
9678 {
9679         /*
9680          * This is not being used for older platforms, because
9681          * non-availability of flip done interrupt forces us to use
9682          * CS flips. Older platforms derive flip done using some clever
9683          * tricks involving the flip_pending status bits and vblank irqs.
9684          * So using MMIO flips there would disrupt this mechanism.
9685          */
9686
9687         if (ring == NULL)
9688                 return true;
9689
9690         if (INTEL_INFO(ring->dev)->gen < 5)
9691                 return false;
9692
9693         if (i915.use_mmio_flip < 0)
9694                 return false;
9695         else if (i915.use_mmio_flip > 0)
9696                 return true;
9697         else if (i915.enable_execlists)
9698                 return true;
9699         else
9700                 return ring != obj->ring;
9701 }
9702
9703 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9704 {
9705         struct drm_device *dev = intel_crtc->base.dev;
9706         struct drm_i915_private *dev_priv = dev->dev_private;
9707         struct intel_framebuffer *intel_fb =
9708                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9709         struct drm_i915_gem_object *obj = intel_fb->obj;
9710         u32 dspcntr;
9711         u32 reg;
9712
9713         intel_mark_page_flip_active(intel_crtc);
9714
9715         reg = DSPCNTR(intel_crtc->plane);
9716         dspcntr = I915_READ(reg);
9717
9718         if (INTEL_INFO(dev)->gen >= 4) {
9719                 if (obj->tiling_mode != I915_TILING_NONE)
9720                         dspcntr |= DISPPLANE_TILED;
9721                 else
9722                         dspcntr &= ~DISPPLANE_TILED;
9723         }
9724         I915_WRITE(reg, dspcntr);
9725
9726         I915_WRITE(DSPSURF(intel_crtc->plane),
9727                    intel_crtc->unpin_work->gtt_offset);
9728         POSTING_READ(DSPSURF(intel_crtc->plane));
9729 }
9730
9731 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9732 {
9733         struct intel_engine_cs *ring;
9734         int ret;
9735
9736         lockdep_assert_held(&obj->base.dev->struct_mutex);
9737
9738         if (!obj->last_write_seqno)
9739                 return 0;
9740
9741         ring = obj->ring;
9742
9743         if (i915_seqno_passed(ring->get_seqno(ring, true),
9744                               obj->last_write_seqno))
9745                 return 0;
9746
9747         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9748         if (ret)
9749                 return ret;
9750
9751         if (WARN_ON(!ring->irq_get(ring)))
9752                 return 0;
9753
9754         return 1;
9755 }
9756
9757 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9758 {
9759         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9760         struct intel_crtc *intel_crtc;
9761         unsigned long irq_flags;
9762         u32 seqno;
9763
9764         seqno = ring->get_seqno(ring, false);
9765
9766         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9767         for_each_intel_crtc(ring->dev, intel_crtc) {
9768                 struct intel_mmio_flip *mmio_flip;
9769
9770                 mmio_flip = &intel_crtc->mmio_flip;
9771                 if (mmio_flip->seqno == 0)
9772                         continue;
9773
9774                 if (ring->id != mmio_flip->ring_id)
9775                         continue;
9776
9777                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9778                         intel_do_mmio_flip(intel_crtc);
9779                         mmio_flip->seqno = 0;
9780                         ring->irq_put(ring);
9781                 }
9782         }
9783         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9784 }
9785
9786 static int intel_queue_mmio_flip(struct drm_device *dev,
9787                                  struct drm_crtc *crtc,
9788                                  struct drm_framebuffer *fb,
9789                                  struct drm_i915_gem_object *obj,
9790                                  struct intel_engine_cs *ring,
9791                                  uint32_t flags)
9792 {
9793         struct drm_i915_private *dev_priv = dev->dev_private;
9794         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9795         unsigned long irq_flags;
9796         int ret;
9797
9798         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9799                 return -EBUSY;
9800
9801         ret = intel_postpone_flip(obj);
9802         if (ret < 0)
9803                 return ret;
9804         if (ret == 0) {
9805                 intel_do_mmio_flip(intel_crtc);
9806                 return 0;
9807         }
9808
9809         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9810         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9811         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9812         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9813
9814         /*
9815          * Double check to catch cases where irq fired before
9816          * mmio flip data was ready
9817          */
9818         intel_notify_mmio_flip(obj->ring);
9819         return 0;
9820 }
9821
9822 static int intel_default_queue_flip(struct drm_device *dev,
9823                                     struct drm_crtc *crtc,
9824                                     struct drm_framebuffer *fb,
9825                                     struct drm_i915_gem_object *obj,
9826                                     struct intel_engine_cs *ring,
9827                                     uint32_t flags)
9828 {
9829         return -ENODEV;
9830 }
9831
9832 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9833                                          struct drm_crtc *crtc)
9834 {
9835         struct drm_i915_private *dev_priv = dev->dev_private;
9836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9837         struct intel_unpin_work *work = intel_crtc->unpin_work;
9838         u32 addr;
9839
9840         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9841                 return true;
9842
9843         if (!work->enable_stall_check)
9844                 return false;
9845
9846         if (work->flip_ready_vblank == 0) {
9847                 if (work->flip_queued_ring &&
9848                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9849                                        work->flip_queued_seqno))
9850                         return false;
9851
9852                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9853         }
9854
9855         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9856                 return false;
9857
9858         /* Potential stall - if we see that the flip has happened,
9859          * assume a missed interrupt. */
9860         if (INTEL_INFO(dev)->gen >= 4)
9861                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9862         else
9863                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9864
9865         /* There is a potential issue here with a false positive after a flip
9866          * to the same address. We could address this by checking for a
9867          * non-incrementing frame counter.
9868          */
9869         return addr == work->gtt_offset;
9870 }
9871
9872 void intel_check_page_flip(struct drm_device *dev, int pipe)
9873 {
9874         struct drm_i915_private *dev_priv = dev->dev_private;
9875         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9876         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9877
9878         WARN_ON(!in_irq());
9879
9880         if (crtc == NULL)
9881                 return;
9882
9883         spin_lock(&dev->event_lock);
9884         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9885                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9886                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9887                 page_flip_completed(intel_crtc);
9888         }
9889         spin_unlock(&dev->event_lock);
9890 }
9891
9892 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9893                                 struct drm_framebuffer *fb,
9894                                 struct drm_pending_vblank_event *event,
9895                                 uint32_t page_flip_flags)
9896 {
9897         struct drm_device *dev = crtc->dev;
9898         struct drm_i915_private *dev_priv = dev->dev_private;
9899         struct drm_framebuffer *old_fb = crtc->primary->fb;
9900         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9901         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9902         enum pipe pipe = intel_crtc->pipe;
9903         struct intel_unpin_work *work;
9904         struct intel_engine_cs *ring;
9905         int ret;
9906
9907         //trigger software GT busyness calculation
9908         gen8_flip_interrupt(dev);
9909
9910         /*
9911          * drm_mode_page_flip_ioctl() should already catch this, but double
9912          * check to be safe.  In the future we may enable pageflipping from
9913          * a disabled primary plane.
9914          */
9915         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9916                 return -EBUSY;
9917
9918         /* Can't change pixel format via MI display flips. */
9919         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9920                 return -EINVAL;
9921
9922         /*
9923          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9924          * Note that pitch changes could also affect these register.
9925          */
9926         if (INTEL_INFO(dev)->gen > 3 &&
9927             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9928              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9929                 return -EINVAL;
9930
9931         if (i915_terminally_wedged(&dev_priv->gpu_error))
9932                 goto out_hang;
9933
9934         work = kzalloc(sizeof(*work), GFP_KERNEL);
9935         if (work == NULL)
9936                 return -ENOMEM;
9937
9938         work->event = event;
9939         work->crtc = crtc;
9940         work->old_fb_obj = intel_fb_obj(old_fb);
9941         INIT_WORK(&work->work, intel_unpin_work_fn);
9942
9943         ret = drm_crtc_vblank_get(crtc);
9944         if (ret)
9945                 goto free_work;
9946
9947         /* We borrow the event spin lock for protecting unpin_work */
9948         spin_lock_irq(&dev->event_lock);
9949         if (intel_crtc->unpin_work) {
9950                 /* Before declaring the flip queue wedged, check if
9951                  * the hardware completed the operation behind our backs.
9952                  */
9953                 if (__intel_pageflip_stall_check(dev, crtc)) {
9954                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9955                         page_flip_completed(intel_crtc);
9956                 } else {
9957                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9958                         spin_unlock_irq(&dev->event_lock);
9959
9960                         drm_crtc_vblank_put(crtc);
9961                         kfree(work);
9962                         return -EBUSY;
9963                 }
9964         }
9965         intel_crtc->unpin_work = work;
9966         spin_unlock_irq(&dev->event_lock);
9967
9968         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9969                 flush_workqueue(dev_priv->wq);
9970
9971         ret = i915_mutex_lock_interruptible(dev);
9972         if (ret)
9973                 goto cleanup;
9974
9975         /* Reference the objects for the scheduled work. */
9976         drm_gem_object_reference(&work->old_fb_obj->base);
9977         drm_gem_object_reference(&obj->base);
9978
9979         crtc->primary->fb = fb;
9980
9981         work->pending_flip_obj = obj;
9982
9983         atomic_inc(&intel_crtc->unpin_work_count);
9984         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9985
9986         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9987                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9988
9989         if (IS_VALLEYVIEW(dev)) {
9990                 ring = &dev_priv->ring[BCS];
9991                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9992                         /* vlv: DISPLAY_FLIP fails to change tiling */
9993                         ring = NULL;
9994         } else if (IS_IVYBRIDGE(dev)) {
9995                 ring = &dev_priv->ring[BCS];
9996         } else if (INTEL_INFO(dev)->gen >= 7) {
9997                 ring = obj->ring;
9998                 if (ring == NULL || ring->id != RCS)
9999                         ring = &dev_priv->ring[BCS];
10000         } else {
10001                 ring = &dev_priv->ring[RCS];
10002         }
10003
10004         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
10005         if (ret)
10006                 goto cleanup_pending;
10007
10008         work->gtt_offset =
10009                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10010
10011         if (use_mmio_flip(ring, obj)) {
10012                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10013                                             page_flip_flags);
10014                 if (ret)
10015                         goto cleanup_unpin;
10016
10017                 work->flip_queued_seqno = obj->last_write_seqno;
10018                 work->flip_queued_ring = obj->ring;
10019         } else {
10020                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10021                                                    page_flip_flags);
10022                 if (ret)
10023                         goto cleanup_unpin;
10024
10025                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10026                 work->flip_queued_ring = ring;
10027         }
10028
10029         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10030         work->enable_stall_check = true;
10031
10032         i915_gem_track_fb(work->old_fb_obj, obj,
10033                           INTEL_FRONTBUFFER_PRIMARY(pipe));
10034
10035         intel_disable_fbc(dev);
10036         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10037         mutex_unlock(&dev->struct_mutex);
10038
10039         trace_i915_flip_request(intel_crtc->plane, obj);
10040
10041         return 0;
10042
10043 cleanup_unpin:
10044         intel_unpin_fb_obj(obj);
10045 cleanup_pending:
10046         atomic_dec(&intel_crtc->unpin_work_count);
10047         crtc->primary->fb = old_fb;
10048         drm_gem_object_unreference(&work->old_fb_obj->base);
10049         drm_gem_object_unreference(&obj->base);
10050         mutex_unlock(&dev->struct_mutex);
10051
10052 cleanup:
10053         spin_lock_irq(&dev->event_lock);
10054         intel_crtc->unpin_work = NULL;
10055         spin_unlock_irq(&dev->event_lock);
10056
10057         drm_crtc_vblank_put(crtc);
10058 free_work:
10059         kfree(work);
10060
10061         if (ret == -EIO) {
10062 out_hang:
10063                 intel_crtc_wait_for_pending_flips(crtc);
10064                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
10065                 if (ret == 0 && event) {
10066                         spin_lock_irq(&dev->event_lock);
10067                         drm_send_vblank_event(dev, pipe, event);
10068                         spin_unlock_irq(&dev->event_lock);
10069                 }
10070         }
10071         return ret;
10072 }
10073
10074 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10075         .mode_set_base_atomic = intel_pipe_set_base_atomic,
10076         .load_lut = intel_crtc_load_lut,
10077 };
10078
10079 /**
10080  * intel_modeset_update_staged_output_state
10081  *
10082  * Updates the staged output configuration state, e.g. after we've read out the
10083  * current hw state.
10084  */
10085 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10086 {
10087         struct intel_crtc *crtc;
10088         struct intel_encoder *encoder;
10089         struct intel_connector *connector;
10090
10091         list_for_each_entry(connector, &dev->mode_config.connector_list,
10092                             base.head) {
10093                 connector->new_encoder =
10094                         to_intel_encoder(connector->base.encoder);
10095         }
10096
10097         for_each_intel_encoder(dev, encoder) {
10098                 encoder->new_crtc =
10099                         to_intel_crtc(encoder->base.crtc);
10100         }
10101
10102         for_each_intel_crtc(dev, crtc) {
10103                 crtc->new_enabled = crtc->base.enabled;
10104
10105                 if (crtc->new_enabled)
10106                         crtc->new_config = &crtc->config;
10107                 else
10108                         crtc->new_config = NULL;
10109         }
10110 }
10111
10112 /**
10113  * intel_modeset_commit_output_state
10114  *
10115  * This function copies the stage display pipe configuration to the real one.
10116  */
10117 static void intel_modeset_commit_output_state(struct drm_device *dev)
10118 {
10119         struct intel_crtc *crtc;
10120         struct intel_encoder *encoder;
10121         struct intel_connector *connector;
10122
10123         list_for_each_entry(connector, &dev->mode_config.connector_list,
10124                             base.head) {
10125                 connector->base.encoder = &connector->new_encoder->base;
10126         }
10127
10128         for_each_intel_encoder(dev, encoder) {
10129                 encoder->base.crtc = &encoder->new_crtc->base;
10130         }
10131
10132         for_each_intel_crtc(dev, crtc) {
10133                 crtc->base.enabled = crtc->new_enabled;
10134         }
10135 }
10136
10137 static void
10138 connected_sink_compute_bpp(struct intel_connector *connector,
10139                            struct intel_crtc_config *pipe_config)
10140 {
10141         int bpp = pipe_config->pipe_bpp;
10142
10143         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10144                 connector->base.base.id,
10145                 connector->base.name);
10146
10147         /* Don't use an invalid EDID bpc value */
10148         if (connector->base.display_info.bpc &&
10149             connector->base.display_info.bpc * 3 < bpp) {
10150                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10151                               bpp, connector->base.display_info.bpc*3);
10152                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10153         }
10154
10155         /* Clamp bpp to 8 on screens without EDID 1.4 */
10156         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10157                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10158                               bpp);
10159                 pipe_config->pipe_bpp = 24;
10160         }
10161 }
10162
10163 static int
10164 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10165                           struct drm_framebuffer *fb,
10166                           struct intel_crtc_config *pipe_config)
10167 {
10168         struct drm_device *dev = crtc->base.dev;
10169         struct intel_connector *connector;
10170         int bpp;
10171
10172         switch (fb->pixel_format) {
10173         case DRM_FORMAT_C8:
10174                 bpp = 8*3; /* since we go through a colormap */
10175                 break;
10176         case DRM_FORMAT_XRGB1555:
10177         case DRM_FORMAT_ARGB1555:
10178                 /* checked in intel_framebuffer_init already */
10179                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10180                         return -EINVAL;
10181         case DRM_FORMAT_RGB565:
10182                 bpp = 6*3; /* min is 18bpp */
10183                 break;
10184         case DRM_FORMAT_XBGR8888:
10185         case DRM_FORMAT_ABGR8888:
10186                 /* checked in intel_framebuffer_init already */
10187                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10188                         return -EINVAL;
10189         case DRM_FORMAT_XRGB8888:
10190         case DRM_FORMAT_ARGB8888:
10191                 bpp = 8*3;
10192                 break;
10193         case DRM_FORMAT_XRGB2101010:
10194         case DRM_FORMAT_ARGB2101010:
10195         case DRM_FORMAT_XBGR2101010:
10196         case DRM_FORMAT_ABGR2101010:
10197                 /* checked in intel_framebuffer_init already */
10198                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10199                         return -EINVAL;
10200                 bpp = 10*3;
10201                 break;
10202         /* TODO: gen4+ supports 16 bpc floating point, too. */
10203         default:
10204                 DRM_DEBUG_KMS("unsupported depth\n");
10205                 return -EINVAL;
10206         }
10207
10208         pipe_config->pipe_bpp = bpp;
10209
10210         /* Clamp display bpp to EDID value */
10211         list_for_each_entry(connector, &dev->mode_config.connector_list,
10212                             base.head) {
10213                 if (!connector->new_encoder ||
10214                     connector->new_encoder->new_crtc != crtc)
10215                         continue;
10216
10217                 connected_sink_compute_bpp(connector, pipe_config);
10218         }
10219
10220         return bpp;
10221 }
10222
10223 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10224 {
10225         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10226                         "type: 0x%x flags: 0x%x\n",
10227                 mode->crtc_clock,
10228                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10229                 mode->crtc_hsync_end, mode->crtc_htotal,
10230                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10231                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10232 }
10233
10234 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10235                                    struct intel_crtc_config *pipe_config,
10236                                    const char *context)
10237 {
10238         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10239                       context, pipe_name(crtc->pipe));
10240
10241         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10242         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10243                       pipe_config->pipe_bpp, pipe_config->dither);
10244         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10245                       pipe_config->has_pch_encoder,
10246                       pipe_config->fdi_lanes,
10247                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10248                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10249                       pipe_config->fdi_m_n.tu);
10250         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10251                       pipe_config->has_dp_encoder,
10252                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10253                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10254                       pipe_config->dp_m_n.tu);
10255
10256         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10257                       pipe_config->has_dp_encoder,
10258                       pipe_config->dp_m2_n2.gmch_m,
10259                       pipe_config->dp_m2_n2.gmch_n,
10260                       pipe_config->dp_m2_n2.link_m,
10261                       pipe_config->dp_m2_n2.link_n,
10262                       pipe_config->dp_m2_n2.tu);
10263
10264         DRM_DEBUG_KMS("requested mode:\n");
10265         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10266         DRM_DEBUG_KMS("adjusted mode:\n");
10267         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10268         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10269         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10270         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10271                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10272         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10273                       pipe_config->gmch_pfit.control,
10274                       pipe_config->gmch_pfit.pgm_ratios,
10275                       pipe_config->gmch_pfit.lvds_border_bits);
10276         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10277                       pipe_config->pch_pfit.pos,
10278                       pipe_config->pch_pfit.size,
10279                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10280         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10281         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10282 }
10283
10284 static bool encoders_cloneable(const struct intel_encoder *a,
10285                                const struct intel_encoder *b)
10286 {
10287         /* masks could be asymmetric, so check both ways */
10288         return a == b || (a->cloneable & (1 << b->type) &&
10289                           b->cloneable & (1 << a->type));
10290 }
10291
10292 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10293                                          struct intel_encoder *encoder)
10294 {
10295         struct drm_device *dev = crtc->base.dev;
10296         struct intel_encoder *source_encoder;
10297
10298         for_each_intel_encoder(dev, source_encoder) {
10299                 if (source_encoder->new_crtc != crtc)
10300                         continue;
10301
10302                 if (!encoders_cloneable(encoder, source_encoder))
10303                         return false;
10304         }
10305
10306         return true;
10307 }
10308
10309 static bool check_encoder_cloning(struct intel_crtc *crtc)
10310 {
10311         struct drm_device *dev = crtc->base.dev;
10312         struct intel_encoder *encoder;
10313
10314         for_each_intel_encoder(dev, encoder) {
10315                 if (encoder->new_crtc != crtc)
10316                         continue;
10317
10318                 if (!check_single_encoder_cloning(crtc, encoder))
10319                         return false;
10320         }
10321
10322         return true;
10323 }
10324
10325 static struct intel_crtc_config *
10326 intel_modeset_pipe_config(struct drm_crtc *crtc,
10327                           struct drm_framebuffer *fb,
10328                           struct drm_display_mode *mode)
10329 {
10330         struct drm_device *dev = crtc->dev;
10331         struct intel_encoder *encoder;
10332         struct intel_crtc_config *pipe_config;
10333         int plane_bpp, ret = -EINVAL;
10334         bool retry = true;
10335
10336         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10337                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10338                 return ERR_PTR(-EINVAL);
10339         }
10340
10341         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10342         if (!pipe_config)
10343                 return ERR_PTR(-ENOMEM);
10344
10345         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10346         drm_mode_copy(&pipe_config->requested_mode, mode);
10347
10348         pipe_config->cpu_transcoder =
10349                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10350         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10351
10352         /*
10353          * Sanitize sync polarity flags based on requested ones. If neither
10354          * positive or negative polarity is requested, treat this as meaning
10355          * negative polarity.
10356          */
10357         if (!(pipe_config->adjusted_mode.flags &
10358               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10359                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10360
10361         if (!(pipe_config->adjusted_mode.flags &
10362               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10363                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10364
10365         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10366          * plane pixel format and any sink constraints into account. Returns the
10367          * source plane bpp so that dithering can be selected on mismatches
10368          * after encoders and crtc also have had their say. */
10369         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10370                                               fb, pipe_config);
10371         if (plane_bpp < 0)
10372                 goto fail;
10373
10374         /*
10375          * Determine the real pipe dimensions. Note that stereo modes can
10376          * increase the actual pipe size due to the frame doubling and
10377          * insertion of additional space for blanks between the frame. This
10378          * is stored in the crtc timings. We use the requested mode to do this
10379          * computation to clearly distinguish it from the adjusted mode, which
10380          * can be changed by the connectors in the below retry loop.
10381          */
10382         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10383         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10384         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10385
10386 encoder_retry:
10387         /* Ensure the port clock defaults are reset when retrying. */
10388         pipe_config->port_clock = 0;
10389         pipe_config->pixel_multiplier = 1;
10390
10391         /* Fill in default crtc timings, allow encoders to overwrite them. */
10392         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10393
10394         /* Pass our mode to the connectors and the CRTC to give them a chance to
10395          * adjust it according to limitations or connector properties, and also
10396          * a chance to reject the mode entirely.
10397          */
10398         for_each_intel_encoder(dev, encoder) {
10399
10400                 if (&encoder->new_crtc->base != crtc)
10401                         continue;
10402
10403                 if (!(encoder->compute_config(encoder, pipe_config))) {
10404                         DRM_DEBUG_KMS("Encoder config failure\n");
10405                         goto fail;
10406                 }
10407         }
10408
10409         /* Set default port clock if not overwritten by the encoder. Needs to be
10410          * done afterwards in case the encoder adjusts the mode. */
10411         if (!pipe_config->port_clock)
10412                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10413                         * pipe_config->pixel_multiplier;
10414
10415         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10416         if (ret < 0) {
10417                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10418                 goto fail;
10419         }
10420
10421         if (ret == RETRY) {
10422                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10423                         ret = -EINVAL;
10424                         goto fail;
10425                 }
10426
10427                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10428                 retry = false;
10429                 goto encoder_retry;
10430         }
10431
10432         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10433         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10434                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10435
10436         return pipe_config;
10437 fail:
10438         kfree(pipe_config);
10439         return ERR_PTR(ret);
10440 }
10441
10442 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10443  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10444 static void
10445 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10446                              unsigned *prepare_pipes, unsigned *disable_pipes)
10447 {
10448         struct intel_crtc *intel_crtc;
10449         struct drm_device *dev = crtc->dev;
10450         struct intel_encoder *encoder;
10451         struct intel_connector *connector;
10452         struct drm_crtc *tmp_crtc;
10453
10454         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10455
10456         /* Check which crtcs have changed outputs connected to them, these need
10457          * to be part of the prepare_pipes mask. We don't (yet) support global
10458          * modeset across multiple crtcs, so modeset_pipes will only have one
10459          * bit set at most. */
10460         list_for_each_entry(connector, &dev->mode_config.connector_list,
10461                             base.head) {
10462                 if (connector->base.encoder == &connector->new_encoder->base)
10463                         continue;
10464
10465                 if (connector->base.encoder) {
10466                         tmp_crtc = connector->base.encoder->crtc;
10467
10468                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10469                 }
10470
10471                 if (connector->new_encoder)
10472                         *prepare_pipes |=
10473                                 1 << connector->new_encoder->new_crtc->pipe;
10474         }
10475
10476         for_each_intel_encoder(dev, encoder) {
10477                 if (encoder->base.crtc == &encoder->new_crtc->base)
10478                         continue;
10479
10480                 if (encoder->base.crtc) {
10481                         tmp_crtc = encoder->base.crtc;
10482
10483                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10484                 }
10485
10486                 if (encoder->new_crtc)
10487                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10488         }
10489
10490         /* Check for pipes that will be enabled/disabled ... */
10491         for_each_intel_crtc(dev, intel_crtc) {
10492                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10493                         continue;
10494
10495                 if (!intel_crtc->new_enabled)
10496                         *disable_pipes |= 1 << intel_crtc->pipe;
10497                 else
10498                         *prepare_pipes |= 1 << intel_crtc->pipe;
10499         }
10500
10501
10502         /* set_mode is also used to update properties on life display pipes. */
10503         intel_crtc = to_intel_crtc(crtc);
10504         if (intel_crtc->new_enabled)
10505                 *prepare_pipes |= 1 << intel_crtc->pipe;
10506
10507         /*
10508          * For simplicity do a full modeset on any pipe where the output routing
10509          * changed. We could be more clever, but that would require us to be
10510          * more careful with calling the relevant encoder->mode_set functions.
10511          */
10512         if (*prepare_pipes)
10513                 *modeset_pipes = *prepare_pipes;
10514
10515         /* ... and mask these out. */
10516         *modeset_pipes &= ~(*disable_pipes);
10517         *prepare_pipes &= ~(*disable_pipes);
10518
10519         /*
10520          * HACK: We don't (yet) fully support global modesets. intel_set_config
10521          * obies this rule, but the modeset restore mode of
10522          * intel_modeset_setup_hw_state does not.
10523          */
10524         *modeset_pipes &= 1 << intel_crtc->pipe;
10525         *prepare_pipes &= 1 << intel_crtc->pipe;
10526
10527         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10528                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10529 }
10530
10531 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10532 {
10533         struct drm_encoder *encoder;
10534         struct drm_device *dev = crtc->dev;
10535
10536         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10537                 if (encoder->crtc == crtc)
10538                         return true;
10539
10540         return false;
10541 }
10542
10543 static void
10544 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10545 {
10546         struct intel_encoder *intel_encoder;
10547         struct intel_crtc *intel_crtc;
10548         struct drm_connector *connector;
10549
10550         for_each_intel_encoder(dev, intel_encoder) {
10551                 if (!intel_encoder->base.crtc)
10552                         continue;
10553
10554                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10555
10556                 if (prepare_pipes & (1 << intel_crtc->pipe))
10557                         intel_encoder->connectors_active = false;
10558         }
10559
10560         intel_modeset_commit_output_state(dev);
10561
10562         /* Double check state. */
10563         for_each_intel_crtc(dev, intel_crtc) {
10564                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10565                 WARN_ON(intel_crtc->new_config &&
10566                         intel_crtc->new_config != &intel_crtc->config);
10567                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10568         }
10569
10570         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10571                 if (!connector->encoder || !connector->encoder->crtc)
10572                         continue;
10573
10574                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10575
10576                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10577                         struct drm_property *dpms_property =
10578                                 dev->mode_config.dpms_property;
10579
10580                         connector->dpms = DRM_MODE_DPMS_ON;
10581                         drm_object_property_set_value(&connector->base,
10582                                                          dpms_property,
10583                                                          DRM_MODE_DPMS_ON);
10584
10585                         intel_encoder = to_intel_encoder(connector->encoder);
10586                         intel_encoder->connectors_active = true;
10587                 }
10588         }
10589
10590 }
10591
10592 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10593 {
10594         int diff;
10595
10596         if (clock1 == clock2)
10597                 return true;
10598
10599         if (!clock1 || !clock2)
10600                 return false;
10601
10602         diff = abs(clock1 - clock2);
10603
10604         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10605                 return true;
10606
10607         return false;
10608 }
10609
10610 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10611         list_for_each_entry((intel_crtc), \
10612                             &(dev)->mode_config.crtc_list, \
10613                             base.head) \
10614                 if (mask & (1 <<(intel_crtc)->pipe))
10615
10616 static bool
10617 intel_pipe_config_compare(struct drm_device *dev,
10618                           struct intel_crtc_config *current_config,
10619                           struct intel_crtc_config *pipe_config)
10620 {
10621 #define PIPE_CONF_CHECK_X(name) \
10622         if (current_config->name != pipe_config->name) { \
10623                 DRM_ERROR("mismatch in " #name " " \
10624                           "(expected 0x%08x, found 0x%08x)\n", \
10625                           current_config->name, \
10626                           pipe_config->name); \
10627                 return false; \
10628         }
10629
10630 #define PIPE_CONF_CHECK_I(name) \
10631         if (current_config->name != pipe_config->name) { \
10632                 DRM_ERROR("mismatch in " #name " " \
10633                           "(expected %i, found %i)\n", \
10634                           current_config->name, \
10635                           pipe_config->name); \
10636                 return false; \
10637         }
10638
10639 /* This is required for BDW+ where there is only one set of registers for
10640  * switching between high and low RR.
10641  * This macro can be used whenever a comparison has to be made between one
10642  * hw state and multiple sw state variables.
10643  */
10644 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10645         if ((current_config->name != pipe_config->name) && \
10646                 (current_config->alt_name != pipe_config->name)) { \
10647                         DRM_ERROR("mismatch in " #name " " \
10648                                   "(expected %i or %i, found %i)\n", \
10649                                   current_config->name, \
10650                                   current_config->alt_name, \
10651                                   pipe_config->name); \
10652                         return false; \
10653         }
10654
10655 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10656         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10657                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10658                           "(expected %i, found %i)\n", \
10659                           current_config->name & (mask), \
10660                           pipe_config->name & (mask)); \
10661                 return false; \
10662         }
10663
10664 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10665         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10666                 DRM_ERROR("mismatch in " #name " " \
10667                           "(expected %i, found %i)\n", \
10668                           current_config->name, \
10669                           pipe_config->name); \
10670                 return false; \
10671         }
10672
10673 #define PIPE_CONF_QUIRK(quirk)  \
10674         ((current_config->quirks | pipe_config->quirks) & (quirk))
10675
10676         PIPE_CONF_CHECK_I(cpu_transcoder);
10677
10678         PIPE_CONF_CHECK_I(has_pch_encoder);
10679         PIPE_CONF_CHECK_I(fdi_lanes);
10680         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10681         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10682         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10683         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10684         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10685
10686         PIPE_CONF_CHECK_I(has_dp_encoder);
10687
10688         if (INTEL_INFO(dev)->gen < 8) {
10689                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10690                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10691                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10692                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10693                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10694
10695                 if (current_config->has_drrs) {
10696                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10697                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10698                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10699                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10700                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10701                 }
10702         } else {
10703                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10704                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10705                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10706                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10707                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10708         }
10709
10710         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10711         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10712         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10713         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10714         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10715         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10716
10717         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10718         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10719         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10720         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10721         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10722         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10723
10724         PIPE_CONF_CHECK_I(pixel_multiplier);
10725         PIPE_CONF_CHECK_I(has_hdmi_sink);
10726         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10727             IS_VALLEYVIEW(dev))
10728                 PIPE_CONF_CHECK_I(limited_color_range);
10729
10730         PIPE_CONF_CHECK_I(has_audio);
10731
10732         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10733                               DRM_MODE_FLAG_INTERLACE);
10734
10735         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10736                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10737                                       DRM_MODE_FLAG_PHSYNC);
10738                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10739                                       DRM_MODE_FLAG_NHSYNC);
10740                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10741                                       DRM_MODE_FLAG_PVSYNC);
10742                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10743                                       DRM_MODE_FLAG_NVSYNC);
10744         }
10745
10746         PIPE_CONF_CHECK_I(pipe_src_w);
10747         PIPE_CONF_CHECK_I(pipe_src_h);
10748
10749         /*
10750          * FIXME: BIOS likes to set up a cloned config with lvds+external
10751          * screen. Since we don't yet re-compute the pipe config when moving
10752          * just the lvds port away to another pipe the sw tracking won't match.
10753          *
10754          * Proper atomic modesets with recomputed global state will fix this.
10755          * Until then just don't check gmch state for inherited modes.
10756          */
10757         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10758                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10759                 /* pfit ratios are autocomputed by the hw on gen4+ */
10760                 if (INTEL_INFO(dev)->gen < 4)
10761                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10762                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10763         }
10764
10765         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10766         if (current_config->pch_pfit.enabled) {
10767                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10768                 PIPE_CONF_CHECK_I(pch_pfit.size);
10769         }
10770
10771         /* BDW+ don't expose a synchronous way to read the state */
10772         if (IS_HASWELL(dev))
10773                 PIPE_CONF_CHECK_I(ips_enabled);
10774
10775         PIPE_CONF_CHECK_I(double_wide);
10776
10777         PIPE_CONF_CHECK_X(ddi_pll_sel);
10778
10779         PIPE_CONF_CHECK_I(shared_dpll);
10780         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10781         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10782         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10783         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10784         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10785
10786         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10787                 PIPE_CONF_CHECK_I(pipe_bpp);
10788
10789         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10790         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10791
10792 #undef PIPE_CONF_CHECK_X
10793 #undef PIPE_CONF_CHECK_I
10794 #undef PIPE_CONF_CHECK_I_ALT
10795 #undef PIPE_CONF_CHECK_FLAGS
10796 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10797 #undef PIPE_CONF_QUIRK
10798
10799         return true;
10800 }
10801
10802 static void
10803 check_connector_state(struct drm_device *dev)
10804 {
10805         struct intel_connector *connector;
10806
10807         list_for_each_entry(connector, &dev->mode_config.connector_list,
10808                             base.head) {
10809                 /* This also checks the encoder/connector hw state with the
10810                  * ->get_hw_state callbacks. */
10811                 intel_connector_check_state(connector);
10812
10813                 WARN(&connector->new_encoder->base != connector->base.encoder,
10814                      "connector's staged encoder doesn't match current encoder\n");
10815         }
10816 }
10817
10818 static void
10819 check_encoder_state(struct drm_device *dev)
10820 {
10821         struct intel_encoder *encoder;
10822         struct intel_connector *connector;
10823
10824         for_each_intel_encoder(dev, encoder) {
10825                 bool enabled = false;
10826                 bool active = false;
10827                 enum pipe pipe, tracked_pipe;
10828
10829                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10830                               encoder->base.base.id,
10831                               encoder->base.name);
10832
10833                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10834                      "encoder's stage crtc doesn't match current crtc\n");
10835                 WARN(encoder->connectors_active && !encoder->base.crtc,
10836                      "encoder's active_connectors set, but no crtc\n");
10837
10838                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10839                                     base.head) {
10840                         if (connector->base.encoder != &encoder->base)
10841                                 continue;
10842                         enabled = true;
10843                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10844                                 active = true;
10845                 }
10846                 /*
10847                  * for MST connectors if we unplug the connector is gone
10848                  * away but the encoder is still connected to a crtc
10849                  * until a modeset happens in response to the hotplug.
10850                  */
10851                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10852                         continue;
10853
10854                 WARN(!!encoder->base.crtc != enabled,
10855                      "encoder's enabled state mismatch "
10856                      "(expected %i, found %i)\n",
10857                      !!encoder->base.crtc, enabled);
10858                 WARN(active && !encoder->base.crtc,
10859                      "active encoder with no crtc\n");
10860
10861                 WARN(encoder->connectors_active != active,
10862                      "encoder's computed active state doesn't match tracked active state "
10863                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10864
10865                 active = encoder->get_hw_state(encoder, &pipe);
10866                 WARN(active != encoder->connectors_active,
10867                      "encoder's hw state doesn't match sw tracking "
10868                      "(expected %i, found %i)\n",
10869                      encoder->connectors_active, active);
10870
10871                 if (!encoder->base.crtc)
10872                         continue;
10873
10874                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10875                 WARN(active && pipe != tracked_pipe,
10876                      "active encoder's pipe doesn't match"
10877                      "(expected %i, found %i)\n",
10878                      tracked_pipe, pipe);
10879
10880         }
10881 }
10882
10883 static void
10884 check_crtc_state(struct drm_device *dev)
10885 {
10886         struct drm_i915_private *dev_priv = dev->dev_private;
10887         struct intel_crtc *crtc;
10888         struct intel_encoder *encoder;
10889         struct intel_crtc_config pipe_config;
10890
10891         for_each_intel_crtc(dev, crtc) {
10892                 bool enabled = false;
10893                 bool active = false;
10894
10895                 memset(&pipe_config, 0, sizeof(pipe_config));
10896
10897                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10898                               crtc->base.base.id);
10899
10900                 WARN(crtc->active && !crtc->base.enabled,
10901                      "active crtc, but not enabled in sw tracking\n");
10902
10903                 for_each_intel_encoder(dev, encoder) {
10904                         if (encoder->base.crtc != &crtc->base)
10905                                 continue;
10906                         enabled = true;
10907                         if (encoder->connectors_active)
10908                                 active = true;
10909                 }
10910
10911                 WARN(active != crtc->active,
10912                      "crtc's computed active state doesn't match tracked active state "
10913                      "(expected %i, found %i)\n", active, crtc->active);
10914                 WARN(enabled != crtc->base.enabled,
10915                      "crtc's computed enabled state doesn't match tracked enabled state "
10916                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10917
10918                 active = dev_priv->display.get_pipe_config(crtc,
10919                                                            &pipe_config);
10920
10921                 /* hw state is inconsistent with the pipe quirk */
10922                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10923                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10924                         active = crtc->active;
10925
10926                 for_each_intel_encoder(dev, encoder) {
10927                         enum pipe pipe;
10928                         if (encoder->base.crtc != &crtc->base)
10929                                 continue;
10930                         if (encoder->get_hw_state(encoder, &pipe))
10931                                 encoder->get_config(encoder, &pipe_config);
10932                 }
10933
10934                 WARN(crtc->active != active,
10935                      "crtc active state doesn't match with hw state "
10936                      "(expected %i, found %i)\n", crtc->active, active);
10937
10938                 if (active &&
10939                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10940                         WARN(1, "pipe state doesn't match!\n");
10941                         intel_dump_pipe_config(crtc, &pipe_config,
10942                                                "[hw state]");
10943                         intel_dump_pipe_config(crtc, &crtc->config,
10944                                                "[sw state]");
10945                 }
10946         }
10947 }
10948
10949 static void
10950 check_shared_dpll_state(struct drm_device *dev)
10951 {
10952         struct drm_i915_private *dev_priv = dev->dev_private;
10953         struct intel_crtc *crtc;
10954         struct intel_dpll_hw_state dpll_hw_state;
10955         int i;
10956
10957         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10958                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10959                 int enabled_crtcs = 0, active_crtcs = 0;
10960                 bool active;
10961
10962                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10963
10964                 DRM_DEBUG_KMS("%s\n", pll->name);
10965
10966                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10967
10968                 WARN(pll->active > pll->refcount,
10969                      "more active pll users than references: %i vs %i\n",
10970                      pll->active, pll->refcount);
10971                 WARN(pll->active && !pll->on,
10972                      "pll in active use but not on in sw tracking\n");
10973                 WARN(pll->on && !pll->active,
10974                      "pll in on but not on in use in sw tracking\n");
10975                 WARN(pll->on != active,
10976                      "pll on state mismatch (expected %i, found %i)\n",
10977                      pll->on, active);
10978
10979                 for_each_intel_crtc(dev, crtc) {
10980                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10981                                 enabled_crtcs++;
10982                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10983                                 active_crtcs++;
10984                 }
10985                 WARN(pll->active != active_crtcs,
10986                      "pll active crtcs mismatch (expected %i, found %i)\n",
10987                      pll->active, active_crtcs);
10988                 WARN(pll->refcount != enabled_crtcs,
10989                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10990                      pll->refcount, enabled_crtcs);
10991
10992                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10993                                        sizeof(dpll_hw_state)),
10994                      "pll hw state mismatch\n");
10995         }
10996 }
10997
10998 void
10999 intel_modeset_check_state(struct drm_device *dev)
11000 {
11001         check_connector_state(dev);
11002         check_encoder_state(dev);
11003         check_crtc_state(dev);
11004         check_shared_dpll_state(dev);
11005 }
11006
11007 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11008                                      int dotclock)
11009 {
11010         /*
11011          * FDI already provided one idea for the dotclock.
11012          * Yell if the encoder disagrees.
11013          */
11014         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
11015              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11016              pipe_config->adjusted_mode.crtc_clock, dotclock);
11017 }
11018
11019 static void update_scanline_offset(struct intel_crtc *crtc)
11020 {
11021         struct drm_device *dev = crtc->base.dev;
11022
11023         /*
11024          * The scanline counter increments at the leading edge of hsync.
11025          *
11026          * On most platforms it starts counting from vtotal-1 on the
11027          * first active line. That means the scanline counter value is
11028          * always one less than what we would expect. Ie. just after
11029          * start of vblank, which also occurs at start of hsync (on the
11030          * last active line), the scanline counter will read vblank_start-1.
11031          *
11032          * On gen2 the scanline counter starts counting from 1 instead
11033          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11034          * to keep the value positive), instead of adding one.
11035          *
11036          * On HSW+ the behaviour of the scanline counter depends on the output
11037          * type. For DP ports it behaves like most other platforms, but on HDMI
11038          * there's an extra 1 line difference. So we need to add two instead of
11039          * one to the value.
11040          */
11041         if (IS_GEN2(dev)) {
11042                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11043                 int vtotal;
11044
11045                 vtotal = mode->crtc_vtotal;
11046                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11047                         vtotal /= 2;
11048
11049                 crtc->scanline_offset = vtotal - 1;
11050         } else if (HAS_DDI(dev) &&
11051                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11052                 crtc->scanline_offset = 2;
11053         } else
11054                 crtc->scanline_offset = 1;
11055 }
11056
11057 static int __intel_set_mode(struct drm_crtc *crtc,
11058                             struct drm_display_mode *mode,
11059                             int x, int y, struct drm_framebuffer *fb)
11060 {
11061         struct drm_device *dev = crtc->dev;
11062         struct drm_i915_private *dev_priv = dev->dev_private;
11063         struct drm_display_mode *saved_mode;
11064         struct intel_crtc_config *pipe_config = NULL;
11065         struct intel_crtc *intel_crtc;
11066         unsigned disable_pipes, prepare_pipes, modeset_pipes;
11067         int ret = 0;
11068
11069         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11070         if (!saved_mode)
11071                 return -ENOMEM;
11072
11073         intel_modeset_affected_pipes(crtc, &modeset_pipes,
11074                                      &prepare_pipes, &disable_pipes);
11075
11076         *saved_mode = crtc->mode;
11077
11078         /* Hack: Because we don't (yet) support global modeset on multiple
11079          * crtcs, we don't keep track of the new mode for more than one crtc.
11080          * Hence simply check whether any bit is set in modeset_pipes in all the
11081          * pieces of code that are not yet converted to deal with mutliple crtcs
11082          * changing their mode at the same time. */
11083         if (modeset_pipes) {
11084                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11085                 if (IS_ERR(pipe_config)) {
11086                         ret = PTR_ERR(pipe_config);
11087                         pipe_config = NULL;
11088
11089                         goto out;
11090                 }
11091                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11092                                        "[modeset]");
11093                 to_intel_crtc(crtc)->new_config = pipe_config;
11094         }
11095
11096         /*
11097          * See if the config requires any additional preparation, e.g.
11098          * to adjust global state with pipes off.  We need to do this
11099          * here so we can get the modeset_pipe updated config for the new
11100          * mode set on this crtc.  For other crtcs we need to use the
11101          * adjusted_mode bits in the crtc directly.
11102          */
11103         if (IS_VALLEYVIEW(dev)) {
11104                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11105
11106                 /* may have added more to prepare_pipes than we should */
11107                 prepare_pipes &= ~disable_pipes;
11108         }
11109
11110         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11111                 intel_crtc_disable(&intel_crtc->base);
11112
11113         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11114                 if (intel_crtc->base.enabled)
11115                         dev_priv->display.crtc_disable(&intel_crtc->base);
11116         }
11117
11118         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11119          * to set it here already despite that we pass it down the callchain.
11120          */
11121         if (modeset_pipes) {
11122                 crtc->mode = *mode;
11123                 /* mode_set/enable/disable functions rely on a correct pipe
11124                  * config. */
11125                 to_intel_crtc(crtc)->config = *pipe_config;
11126                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11127
11128                 /*
11129                  * Calculate and store various constants which
11130                  * are later needed by vblank and swap-completion
11131                  * timestamping. They are derived from true hwmode.
11132                  */
11133                 drm_calc_timestamping_constants(crtc,
11134                                                 &pipe_config->adjusted_mode);
11135         }
11136
11137         /* Only after disabling all output pipelines that will be changed can we
11138          * update the the output configuration. */
11139         intel_modeset_update_state(dev, prepare_pipes);
11140
11141         if (dev_priv->display.modeset_global_resources)
11142                 dev_priv->display.modeset_global_resources(dev);
11143
11144         /* Set up the DPLL and any encoders state that needs to adjust or depend
11145          * on the DPLL.
11146          */
11147         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11148                 struct drm_framebuffer *old_fb = crtc->primary->fb;
11149                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11150                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11151
11152                 mutex_lock(&dev->struct_mutex);
11153                 ret = intel_pin_and_fence_fb_obj(dev,
11154                                                  obj,
11155                                                  NULL);
11156                 if (ret != 0) {
11157                         DRM_ERROR("pin & fence failed\n");
11158                         mutex_unlock(&dev->struct_mutex);
11159                         goto done;
11160                 }
11161                 if (old_fb)
11162                         intel_unpin_fb_obj(old_obj);
11163                 i915_gem_track_fb(old_obj, obj,
11164                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11165                 mutex_unlock(&dev->struct_mutex);
11166
11167                 crtc->primary->fb = fb;
11168                 crtc->x = x;
11169                 crtc->y = y;
11170
11171                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11172                                                       x, y, fb);
11173                 if (ret)
11174                         goto done;
11175         }
11176
11177         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11178         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11179                 update_scanline_offset(intel_crtc);
11180
11181                 dev_priv->display.crtc_enable(&intel_crtc->base);
11182         }
11183
11184         /* FIXME: add subpixel order */
11185 done:
11186         if (ret && crtc->enabled)
11187                 crtc->mode = *saved_mode;
11188
11189 out:
11190         kfree(pipe_config);
11191         kfree(saved_mode);
11192         return ret;
11193 }
11194
11195 static int intel_set_mode(struct drm_crtc *crtc,
11196                           struct drm_display_mode *mode,
11197                           int x, int y, struct drm_framebuffer *fb)
11198 {
11199         int ret;
11200
11201         ret = __intel_set_mode(crtc, mode, x, y, fb);
11202
11203         if (ret == 0)
11204                 intel_modeset_check_state(crtc->dev);
11205
11206         return ret;
11207 }
11208
11209 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11210 {
11211         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11212 }
11213
11214 #undef for_each_intel_crtc_masked
11215
11216 static void intel_set_config_free(struct intel_set_config *config)
11217 {
11218         if (!config)
11219                 return;
11220
11221         kfree(config->save_connector_encoders);
11222         kfree(config->save_encoder_crtcs);
11223         kfree(config->save_crtc_enabled);
11224         kfree(config);
11225 }
11226
11227 static int intel_set_config_save_state(struct drm_device *dev,
11228                                        struct intel_set_config *config)
11229 {
11230         struct drm_crtc *crtc;
11231         struct drm_encoder *encoder;
11232         struct drm_connector *connector;
11233         int count;
11234
11235         config->save_crtc_enabled =
11236                 kcalloc(dev->mode_config.num_crtc,
11237                         sizeof(bool), GFP_KERNEL);
11238         if (!config->save_crtc_enabled)
11239                 return -ENOMEM;
11240
11241         config->save_encoder_crtcs =
11242                 kcalloc(dev->mode_config.num_encoder,
11243                         sizeof(struct drm_crtc *), GFP_KERNEL);
11244         if (!config->save_encoder_crtcs)
11245                 return -ENOMEM;
11246
11247         config->save_connector_encoders =
11248                 kcalloc(dev->mode_config.num_connector,
11249                         sizeof(struct drm_encoder *), GFP_KERNEL);
11250         if (!config->save_connector_encoders)
11251                 return -ENOMEM;
11252
11253         /* Copy data. Note that driver private data is not affected.
11254          * Should anything bad happen only the expected state is
11255          * restored, not the drivers personal bookkeeping.
11256          */
11257         count = 0;
11258         for_each_crtc(dev, crtc) {
11259                 config->save_crtc_enabled[count++] = crtc->enabled;
11260         }
11261
11262         count = 0;
11263         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11264                 config->save_encoder_crtcs[count++] = encoder->crtc;
11265         }
11266
11267         count = 0;
11268         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11269                 config->save_connector_encoders[count++] = connector->encoder;
11270         }
11271
11272         return 0;
11273 }
11274
11275 static void intel_set_config_restore_state(struct drm_device *dev,
11276                                            struct intel_set_config *config)
11277 {
11278         struct intel_crtc *crtc;
11279         struct intel_encoder *encoder;
11280         struct intel_connector *connector;
11281         int count;
11282
11283         count = 0;
11284         for_each_intel_crtc(dev, crtc) {
11285                 crtc->new_enabled = config->save_crtc_enabled[count++];
11286
11287                 if (crtc->new_enabled)
11288                         crtc->new_config = &crtc->config;
11289                 else
11290                         crtc->new_config = NULL;
11291         }
11292
11293         count = 0;
11294         for_each_intel_encoder(dev, encoder) {
11295                 encoder->new_crtc =
11296                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11297         }
11298
11299         count = 0;
11300         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11301                 connector->new_encoder =
11302                         to_intel_encoder(config->save_connector_encoders[count++]);
11303         }
11304 }
11305
11306 static bool
11307 is_crtc_connector_off(struct drm_mode_set *set)
11308 {
11309         int i;
11310
11311         if (set->num_connectors == 0)
11312                 return false;
11313
11314         if (WARN_ON(set->connectors == NULL))
11315                 return false;
11316
11317         for (i = 0; i < set->num_connectors; i++)
11318                 if (set->connectors[i]->encoder &&
11319                     set->connectors[i]->encoder->crtc == set->crtc &&
11320                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11321                         return true;
11322
11323         return false;
11324 }
11325
11326 static void
11327 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11328                                       struct intel_set_config *config)
11329 {
11330
11331         /* We should be able to check here if the fb has the same properties
11332          * and then just flip_or_move it */
11333         if (is_crtc_connector_off(set)) {
11334                 config->mode_changed = true;
11335         } else if (set->crtc->primary->fb != set->fb) {
11336                 /*
11337                  * If we have no fb, we can only flip as long as the crtc is
11338                  * active, otherwise we need a full mode set.  The crtc may
11339                  * be active if we've only disabled the primary plane, or
11340                  * in fastboot situations.
11341                  */
11342                 if (set->crtc->primary->fb == NULL) {
11343                         struct intel_crtc *intel_crtc =
11344                                 to_intel_crtc(set->crtc);
11345
11346                         if (intel_crtc->active) {
11347                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11348                                 config->fb_changed = true;
11349                         } else {
11350                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11351                                 config->mode_changed = true;
11352                         }
11353                 } else if (set->fb == NULL) {
11354                         config->mode_changed = true;
11355                 } else if (set->fb->pixel_format !=
11356                            set->crtc->primary->fb->pixel_format) {
11357                         config->mode_changed = true;
11358                 } else {
11359                         config->fb_changed = true;
11360                 }
11361         }
11362
11363         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11364                 config->fb_changed = true;
11365
11366         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11367                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11368                 drm_mode_debug_printmodeline(&set->crtc->mode);
11369                 drm_mode_debug_printmodeline(set->mode);
11370                 config->mode_changed = true;
11371         }
11372
11373         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11374                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11375 }
11376
11377 static int
11378 intel_modeset_stage_output_state(struct drm_device *dev,
11379                                  struct drm_mode_set *set,
11380                                  struct intel_set_config *config)
11381 {
11382         struct intel_connector *connector;
11383         struct intel_encoder *encoder;
11384         struct intel_crtc *crtc;
11385         int ro;
11386
11387         /* The upper layers ensure that we either disable a crtc or have a list
11388          * of connectors. For paranoia, double-check this. */
11389         WARN_ON(!set->fb && (set->num_connectors != 0));
11390         WARN_ON(set->fb && (set->num_connectors == 0));
11391
11392         list_for_each_entry(connector, &dev->mode_config.connector_list,
11393                             base.head) {
11394                 /* Otherwise traverse passed in connector list and get encoders
11395                  * for them. */
11396                 for (ro = 0; ro < set->num_connectors; ro++) {
11397                         if (set->connectors[ro] == &connector->base) {
11398                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11399                                 break;
11400                         }
11401                 }
11402
11403                 /* If we disable the crtc, disable all its connectors. Also, if
11404                  * the connector is on the changing crtc but not on the new
11405                  * connector list, disable it. */
11406                 if ((!set->fb || ro == set->num_connectors) &&
11407                     connector->base.encoder &&
11408                     connector->base.encoder->crtc == set->crtc) {
11409                         connector->new_encoder = NULL;
11410
11411                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11412                                 connector->base.base.id,
11413                                 connector->base.name);
11414                 }
11415
11416
11417                 if (&connector->new_encoder->base != connector->base.encoder) {
11418                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11419                         config->mode_changed = true;
11420                 }
11421         }
11422         /* connector->new_encoder is now updated for all connectors. */
11423
11424         /* Update crtc of enabled connectors. */
11425         list_for_each_entry(connector, &dev->mode_config.connector_list,
11426                             base.head) {
11427                 struct drm_crtc *new_crtc;
11428
11429                 if (!connector->new_encoder)
11430                         continue;
11431
11432                 new_crtc = connector->new_encoder->base.crtc;
11433
11434                 for (ro = 0; ro < set->num_connectors; ro++) {
11435                         if (set->connectors[ro] == &connector->base)
11436                                 new_crtc = set->crtc;
11437                 }
11438
11439                 /* Make sure the new CRTC will work with the encoder */
11440                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11441                                          new_crtc)) {
11442                         return -EINVAL;
11443                 }
11444                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11445
11446                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11447                         connector->base.base.id,
11448                         connector->base.name,
11449                         new_crtc->base.id);
11450         }
11451
11452         /* Check for any encoders that needs to be disabled. */
11453         for_each_intel_encoder(dev, encoder) {
11454                 int num_connectors = 0;
11455                 list_for_each_entry(connector,
11456                                     &dev->mode_config.connector_list,
11457                                     base.head) {
11458                         if (connector->new_encoder == encoder) {
11459                                 WARN_ON(!connector->new_encoder->new_crtc);
11460                                 num_connectors++;
11461                         }
11462                 }
11463
11464                 if (num_connectors == 0)
11465                         encoder->new_crtc = NULL;
11466                 else if (num_connectors > 1)
11467                         return -EINVAL;
11468
11469                 /* Only now check for crtc changes so we don't miss encoders
11470                  * that will be disabled. */
11471                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11472                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11473                         config->mode_changed = true;
11474                 }
11475         }
11476         /* Now we've also updated encoder->new_crtc for all encoders. */
11477         list_for_each_entry(connector, &dev->mode_config.connector_list,
11478                             base.head) {
11479                 if (connector->new_encoder)
11480                         if (connector->new_encoder != connector->encoder)
11481                                 connector->encoder = connector->new_encoder;
11482         }
11483         for_each_intel_crtc(dev, crtc) {
11484                 crtc->new_enabled = false;
11485
11486                 for_each_intel_encoder(dev, encoder) {
11487                         if (encoder->new_crtc == crtc) {
11488                                 crtc->new_enabled = true;
11489                                 break;
11490                         }
11491                 }
11492
11493                 if (crtc->new_enabled != crtc->base.enabled) {
11494                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11495                                       crtc->new_enabled ? "en" : "dis");
11496                         config->mode_changed = true;
11497                 }
11498
11499                 if (crtc->new_enabled)
11500                         crtc->new_config = &crtc->config;
11501                 else
11502                         crtc->new_config = NULL;
11503         }
11504
11505         return 0;
11506 }
11507
11508 static void disable_crtc_nofb(struct intel_crtc *crtc)
11509 {
11510         struct drm_device *dev = crtc->base.dev;
11511         struct intel_encoder *encoder;
11512         struct intel_connector *connector;
11513
11514         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11515                       pipe_name(crtc->pipe));
11516
11517         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11518                 if (connector->new_encoder &&
11519                     connector->new_encoder->new_crtc == crtc)
11520                         connector->new_encoder = NULL;
11521         }
11522
11523         for_each_intel_encoder(dev, encoder) {
11524                 if (encoder->new_crtc == crtc)
11525                         encoder->new_crtc = NULL;
11526         }
11527
11528         crtc->new_enabled = false;
11529         crtc->new_config = NULL;
11530 }
11531
11532 static int intel_crtc_set_config(struct drm_mode_set *set)
11533 {
11534         struct drm_device *dev;
11535         struct drm_mode_set save_set;
11536         struct intel_set_config *config;
11537         int ret;
11538
11539         BUG_ON(!set);
11540         BUG_ON(!set->crtc);
11541         BUG_ON(!set->crtc->helper_private);
11542
11543         /* Enforce sane interface api - has been abused by the fb helper. */
11544         BUG_ON(!set->mode && set->fb);
11545         BUG_ON(set->fb && set->num_connectors == 0);
11546
11547         if (set->fb) {
11548                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11549                                 set->crtc->base.id, set->fb->base.id,
11550                                 (int)set->num_connectors, set->x, set->y);
11551         } else {
11552                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11553         }
11554
11555         dev = set->crtc->dev;
11556
11557         ret = -ENOMEM;
11558         config = kzalloc(sizeof(*config), GFP_KERNEL);
11559         if (!config)
11560                 goto out_config;
11561
11562         ret = intel_set_config_save_state(dev, config);
11563         if (ret)
11564                 goto out_config;
11565
11566         save_set.crtc = set->crtc;
11567         save_set.mode = &set->crtc->mode;
11568         save_set.x = set->crtc->x;
11569         save_set.y = set->crtc->y;
11570         save_set.fb = set->crtc->primary->fb;
11571
11572         /* Compute whether we need a full modeset, only an fb base update or no
11573          * change at all. In the future we might also check whether only the
11574          * mode changed, e.g. for LVDS where we only change the panel fitter in
11575          * such cases. */
11576         intel_set_config_compute_mode_changes(set, config);
11577
11578         ret = intel_modeset_stage_output_state(dev, set, config);
11579         if (ret)
11580                 goto fail;
11581
11582         if (config->mode_changed) {
11583                 ret = intel_set_mode(set->crtc, set->mode,
11584                                      set->x, set->y, set->fb);
11585         } else if (config->fb_changed) {
11586                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11587
11588                 intel_crtc_wait_for_pending_flips(set->crtc);
11589
11590                 ret = intel_pipe_set_base(set->crtc,
11591                                           set->x, set->y, set->fb);
11592
11593                 /*
11594                  * We need to make sure the primary plane is re-enabled if it
11595                  * has previously been turned off.
11596                  */
11597                 if (!intel_crtc->primary_enabled && ret == 0) {
11598                         WARN_ON(!intel_crtc->active);
11599                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11600                 }
11601
11602                 /*
11603                  * In the fastboot case this may be our only check of the
11604                  * state after boot.  It would be better to only do it on
11605                  * the first update, but we don't have a nice way of doing that
11606                  * (and really, set_config isn't used much for high freq page
11607                  * flipping, so increasing its cost here shouldn't be a big
11608                  * deal).
11609                  */
11610                 if (i915.fastboot && ret == 0)
11611                         intel_modeset_check_state(set->crtc->dev);
11612         }
11613
11614         if (ret) {
11615                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11616                               set->crtc->base.id, ret);
11617 fail:
11618                 intel_set_config_restore_state(dev, config);
11619
11620                 /*
11621                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11622                  * force the pipe off to avoid oopsing in the modeset code
11623                  * due to fb==NULL. This should only happen during boot since
11624                  * we don't yet reconstruct the FB from the hardware state.
11625                  */
11626                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11627                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11628
11629                 /* Try to restore the config */
11630                 if (config->mode_changed &&
11631                     intel_set_mode(save_set.crtc, save_set.mode,
11632                                    save_set.x, save_set.y, save_set.fb))
11633                         DRM_ERROR("failed to restore config after modeset failure\n");
11634         }
11635
11636 out_config:
11637         intel_set_config_free(config);
11638         return ret;
11639 }
11640
11641 static const struct drm_crtc_funcs intel_crtc_funcs = {
11642         .gamma_set = intel_crtc_gamma_set,
11643         .set_config = intel_crtc_set_config,
11644         .destroy = intel_crtc_destroy,
11645         .page_flip = intel_crtc_page_flip,
11646 };
11647
11648 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11649                                       struct intel_shared_dpll *pll,
11650                                       struct intel_dpll_hw_state *hw_state)
11651 {
11652         uint32_t val;
11653
11654         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11655                 return false;
11656
11657         val = I915_READ(PCH_DPLL(pll->id));
11658         hw_state->dpll = val;
11659         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11660         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11661
11662         return val & DPLL_VCO_ENABLE;
11663 }
11664
11665 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11666                                   struct intel_shared_dpll *pll)
11667 {
11668         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11669         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11670 }
11671
11672 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11673                                 struct intel_shared_dpll *pll)
11674 {
11675         /* PCH refclock must be enabled first */
11676         ibx_assert_pch_refclk_enabled(dev_priv);
11677
11678         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11679
11680         /* Wait for the clocks to stabilize. */
11681         POSTING_READ(PCH_DPLL(pll->id));
11682         udelay(150);
11683
11684         /* The pixel multiplier can only be updated once the
11685          * DPLL is enabled and the clocks are stable.
11686          *
11687          * So write it again.
11688          */
11689         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11690         POSTING_READ(PCH_DPLL(pll->id));
11691         udelay(200);
11692 }
11693
11694 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11695                                  struct intel_shared_dpll *pll)
11696 {
11697         struct drm_device *dev = dev_priv->dev;
11698         struct intel_crtc *crtc;
11699
11700         /* Make sure no transcoder isn't still depending on us. */
11701         for_each_intel_crtc(dev, crtc) {
11702                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11703                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11704         }
11705
11706         I915_WRITE(PCH_DPLL(pll->id), 0);
11707         POSTING_READ(PCH_DPLL(pll->id));
11708         udelay(200);
11709 }
11710
11711 static char *ibx_pch_dpll_names[] = {
11712         "PCH DPLL A",
11713         "PCH DPLL B",
11714 };
11715
11716 static void ibx_pch_dpll_init(struct drm_device *dev)
11717 {
11718         struct drm_i915_private *dev_priv = dev->dev_private;
11719         int i;
11720
11721         dev_priv->num_shared_dpll = 2;
11722
11723         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11724                 dev_priv->shared_dplls[i].id = i;
11725                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11726                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11727                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11728                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11729                 dev_priv->shared_dplls[i].get_hw_state =
11730                         ibx_pch_dpll_get_hw_state;
11731         }
11732 }
11733
11734 static void intel_shared_dpll_init(struct drm_device *dev)
11735 {
11736         struct drm_i915_private *dev_priv = dev->dev_private;
11737
11738         if (HAS_DDI(dev))
11739                 intel_ddi_pll_init(dev);
11740         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11741                 ibx_pch_dpll_init(dev);
11742         else
11743                 dev_priv->num_shared_dpll = 0;
11744
11745         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11746 }
11747
11748 static int
11749 intel_primary_plane_disable(struct drm_plane *plane)
11750 {
11751         struct drm_device *dev = plane->dev;
11752         struct intel_crtc *intel_crtc;
11753
11754         if (!plane->fb)
11755                 return 0;
11756
11757         BUG_ON(!plane->crtc);
11758
11759         intel_crtc = to_intel_crtc(plane->crtc);
11760
11761         /*
11762          * Even though we checked plane->fb above, it's still possible that
11763          * the primary plane has been implicitly disabled because the crtc
11764          * coordinates given weren't visible, or because we detected
11765          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11766          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11767          * In either case, we need to unpin the FB and let the fb pointer get
11768          * updated, but otherwise we don't need to touch the hardware.
11769          */
11770         if (!intel_crtc->primary_enabled)
11771                 goto disable_unpin;
11772
11773         intel_crtc_wait_for_pending_flips(plane->crtc);
11774         intel_disable_primary_hw_plane(plane, plane->crtc);
11775
11776 disable_unpin:
11777         mutex_lock(&dev->struct_mutex);
11778         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11779                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11780         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11781         mutex_unlock(&dev->struct_mutex);
11782         plane->fb = NULL;
11783
11784         return 0;
11785 }
11786
11787 static int
11788 intel_check_primary_plane(struct drm_plane *plane,
11789                           struct intel_plane_state *state)
11790 {
11791         struct drm_crtc *crtc = state->crtc;
11792         struct drm_framebuffer *fb = state->fb;
11793         struct drm_rect *dest = &state->dst;
11794         struct drm_rect *src = &state->src;
11795         const struct drm_rect *clip = &state->clip;
11796
11797         return drm_plane_helper_check_update(plane, crtc, fb,
11798                                             src, dest, clip,
11799                                             DRM_PLANE_HELPER_NO_SCALING,
11800                                             DRM_PLANE_HELPER_NO_SCALING,
11801                                             false, true, &state->visible);
11802 }
11803
11804 static int
11805 intel_commit_primary_plane(struct drm_plane *plane,
11806                            struct intel_plane_state *state)
11807 {
11808         struct drm_crtc *crtc = state->crtc;
11809         struct drm_framebuffer *fb = state->fb;
11810         struct drm_device *dev = crtc->dev;
11811         struct drm_i915_private *dev_priv = dev->dev_private;
11812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11813         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11814         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11815         struct intel_plane *intel_plane = to_intel_plane(plane);
11816         struct drm_rect *src = &state->src;
11817         int ret;
11818
11819         intel_crtc_wait_for_pending_flips(crtc);
11820
11821         /*
11822          * If clipping results in a non-visible primary plane, we'll disable
11823          * the primary plane.  Note that this is a bit different than what
11824          * happens if userspace explicitly disables the plane by passing fb=0
11825          * because plane->fb still gets set and pinned.
11826          */
11827         if (!state->visible) {
11828                 mutex_lock(&dev->struct_mutex);
11829
11830                 /*
11831                  * Try to pin the new fb first so that we can bail out if we
11832                  * fail.
11833                  */
11834                 if (plane->fb != fb) {
11835                         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11836                         if (ret) {
11837                                 mutex_unlock(&dev->struct_mutex);
11838                                 return ret;
11839                         }
11840                 }
11841
11842                 i915_gem_track_fb(old_obj, obj,
11843                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11844
11845                 if (intel_crtc->primary_enabled)
11846                         intel_disable_primary_hw_plane(plane, crtc);
11847
11848
11849                 if (plane->fb != fb)
11850                         if (plane->fb)
11851                                 intel_unpin_fb_obj(old_obj);
11852
11853                 mutex_unlock(&dev->struct_mutex);
11854
11855         } else {
11856                 if (intel_crtc && intel_crtc->active &&
11857                     intel_crtc->primary_enabled) {
11858                         /*
11859                          * FBC does not work on some platforms for rotated
11860                          * planes, so disable it when rotation is not 0 and
11861                          * update it when rotation is set back to 0.
11862                          *
11863                          * FIXME: This is redundant with the fbc update done in
11864                          * the primary plane enable function except that that
11865                          * one is done too late. We eventually need to unify
11866                          * this.
11867                          */
11868                         if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11869                             dev_priv->fbc.plane == intel_crtc->plane &&
11870                             intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11871                                 intel_disable_fbc(dev);
11872                         }
11873                 }
11874                 ret = intel_pipe_set_base(crtc, src->x1, src->y1, fb);
11875                 if (ret)
11876                         return ret;
11877
11878                 if (!intel_crtc->primary_enabled)
11879                         intel_enable_primary_hw_plane(plane, crtc);
11880         }
11881
11882         intel_plane->crtc_x = state->orig_dst.x1;
11883         intel_plane->crtc_y = state->orig_dst.y1;
11884         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11885         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11886         intel_plane->src_x = state->orig_src.x1;
11887         intel_plane->src_y = state->orig_src.y1;
11888         intel_plane->src_w = drm_rect_width(&state->orig_src);
11889         intel_plane->src_h = drm_rect_height(&state->orig_src);
11890         intel_plane->obj = obj;
11891
11892         return 0;
11893 }
11894
11895 static int
11896 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11897                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11898                              unsigned int crtc_w, unsigned int crtc_h,
11899                              uint32_t src_x, uint32_t src_y,
11900                              uint32_t src_w, uint32_t src_h)
11901 {
11902         struct intel_plane_state state;
11903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11904         int ret;
11905
11906         state.crtc = crtc;
11907         state.fb = fb;
11908
11909         /* sample coordinates in 16.16 fixed point */
11910         state.src.x1 = src_x;
11911         state.src.x2 = src_x + src_w;
11912         state.src.y1 = src_y;
11913         state.src.y2 = src_y + src_h;
11914
11915         /* integer pixels */
11916         state.dst.x1 = crtc_x;
11917         state.dst.x2 = crtc_x + crtc_w;
11918         state.dst.y1 = crtc_y;
11919         state.dst.y2 = crtc_y + crtc_h;
11920
11921         state.clip.x1 = 0;
11922         state.clip.y1 = 0;
11923         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11924         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11925
11926         state.orig_src = state.src;
11927         state.orig_dst = state.dst;
11928
11929         ret = intel_check_primary_plane(plane, &state);
11930         if (ret)
11931                 return ret;
11932
11933         intel_commit_primary_plane(plane, &state);
11934
11935         return 0;
11936 }
11937
11938 /* Common destruction function for both primary and cursor planes */
11939 static void intel_plane_destroy(struct drm_plane *plane)
11940 {
11941         struct intel_plane *intel_plane = to_intel_plane(plane);
11942         drm_plane_cleanup(plane);
11943         kfree(intel_plane);
11944 }
11945
11946 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11947         .update_plane = intel_primary_plane_setplane,
11948         .disable_plane = intel_primary_plane_disable,
11949         .destroy = intel_plane_destroy,
11950         .set_property = intel_plane_set_property
11951 };
11952
11953 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11954                                                     int pipe)
11955 {
11956         struct intel_plane *primary;
11957         const uint32_t *intel_primary_formats;
11958         int num_formats;
11959
11960         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11961         if (primary == NULL)
11962                 return NULL;
11963
11964         primary->can_scale = false;
11965         primary->max_downscale = 1;
11966         primary->pipe = pipe;
11967         primary->plane = pipe;
11968         primary->rotation = BIT(DRM_ROTATE_0);
11969         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11970                 primary->plane = !pipe;
11971
11972         if (INTEL_INFO(dev)->gen <= 3) {
11973                 intel_primary_formats = intel_primary_formats_gen2;
11974                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11975         } else {
11976                 intel_primary_formats = intel_primary_formats_gen4;
11977                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11978         }
11979
11980         drm_universal_plane_init(dev, &primary->base, 0,
11981                                  &intel_primary_plane_funcs,
11982                                  intel_primary_formats, num_formats,
11983                                  DRM_PLANE_TYPE_PRIMARY);
11984
11985         if (INTEL_INFO(dev)->gen >= 4) {
11986                 if (!dev->mode_config.rotation_property)
11987                         dev->mode_config.rotation_property =
11988                                 drm_mode_create_rotation_property(dev,
11989                                                         BIT(DRM_ROTATE_0) |
11990                                                         BIT(DRM_ROTATE_180));
11991                 if (dev->mode_config.rotation_property)
11992                         drm_object_attach_property(&primary->base.base,
11993                                 dev->mode_config.rotation_property,
11994                                 primary->rotation);
11995         }
11996
11997         return &primary->base;
11998 }
11999
12000 static int
12001 intel_cursor_plane_disable(struct drm_plane *plane)
12002 {
12003         if (!plane->fb)
12004                 return 0;
12005
12006         BUG_ON(!plane->crtc);
12007
12008         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12009 }
12010
12011 static int
12012 intel_check_cursor_plane(struct drm_plane *plane,
12013                          struct intel_plane_state *state)
12014 {
12015         struct drm_crtc *crtc = state->crtc;
12016         struct drm_framebuffer *fb = state->fb;
12017         struct drm_rect *dest = &state->dst;
12018         struct drm_rect *src = &state->src;
12019         const struct drm_rect *clip = &state->clip;
12020
12021         return drm_plane_helper_check_update(plane, crtc, fb,
12022                                             src, dest, clip,
12023                                             DRM_PLANE_HELPER_NO_SCALING,
12024                                             DRM_PLANE_HELPER_NO_SCALING,
12025                                             true, true, &state->visible);
12026 }
12027
12028 static int
12029 intel_commit_cursor_plane(struct drm_plane *plane,
12030                           struct intel_plane_state *state)
12031 {
12032         struct drm_crtc *crtc = state->crtc;
12033         struct drm_framebuffer *fb = state->fb;
12034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12035         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12036         struct drm_i915_gem_object *obj = intel_fb->obj;
12037         int crtc_w, crtc_h;
12038
12039         crtc->cursor_x = state->orig_dst.x1;
12040         crtc->cursor_y = state->orig_dst.y1;
12041         if (fb != crtc->cursor->fb) {
12042                 crtc_w = drm_rect_width(&state->orig_dst);
12043                 crtc_h = drm_rect_height(&state->orig_dst);
12044                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12045         } else {
12046                 intel_crtc_update_cursor(crtc, state->visible);
12047
12048                 intel_frontbuffer_flip(crtc->dev,
12049                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12050
12051                 return 0;
12052         }
12053 }
12054
12055 static int
12056 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12057                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12058                           unsigned int crtc_w, unsigned int crtc_h,
12059                           uint32_t src_x, uint32_t src_y,
12060                           uint32_t src_w, uint32_t src_h)
12061 {
12062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12063         struct intel_plane_state state;
12064         int ret;
12065
12066         state.crtc = crtc;
12067         state.fb = fb;
12068
12069         /* sample coordinates in 16.16 fixed point */
12070         state.src.x1 = src_x;
12071         state.src.x2 = src_x + src_w;
12072         state.src.y1 = src_y;
12073         state.src.y2 = src_y + src_h;
12074
12075         /* integer pixels */
12076         state.dst.x1 = crtc_x;
12077         state.dst.x2 = crtc_x + crtc_w;
12078         state.dst.y1 = crtc_y;
12079         state.dst.y2 = crtc_y + crtc_h;
12080
12081         state.clip.x1 = 0;
12082         state.clip.y1 = 0;
12083         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12084         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12085
12086         state.orig_src = state.src;
12087         state.orig_dst = state.dst;
12088
12089         ret = intel_check_cursor_plane(plane, &state);
12090         if (ret)
12091                 return ret;
12092
12093         return intel_commit_cursor_plane(plane, &state);
12094 }
12095
12096 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12097         .update_plane = intel_cursor_plane_update,
12098         .disable_plane = intel_cursor_plane_disable,
12099         .destroy = intel_plane_destroy,
12100 };
12101
12102 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12103                                                    int pipe)
12104 {
12105         struct intel_plane *cursor;
12106
12107         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12108         if (cursor == NULL)
12109                 return NULL;
12110
12111         cursor->can_scale = false;
12112         cursor->max_downscale = 1;
12113         cursor->pipe = pipe;
12114         cursor->plane = pipe;
12115
12116         drm_universal_plane_init(dev, &cursor->base, 0,
12117                                  &intel_cursor_plane_funcs,
12118                                  intel_cursor_formats,
12119                                  ARRAY_SIZE(intel_cursor_formats),
12120                                  DRM_PLANE_TYPE_CURSOR);
12121         return &cursor->base;
12122 }
12123
12124 static void intel_crtc_init(struct drm_device *dev, int pipe)
12125 {
12126         struct drm_i915_private *dev_priv = dev->dev_private;
12127         struct intel_crtc *intel_crtc;
12128         struct drm_plane *primary = NULL;
12129         struct drm_plane *cursor = NULL;
12130         int i, ret;
12131
12132         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12133         if (intel_crtc == NULL)
12134                 return;
12135
12136         primary = intel_primary_plane_create(dev, pipe);
12137         if (!primary)
12138                 goto fail;
12139
12140         cursor = intel_cursor_plane_create(dev, pipe);
12141         if (!cursor)
12142                 goto fail;
12143
12144         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12145                                         cursor, &intel_crtc_funcs);
12146         if (ret)
12147                 goto fail;
12148
12149         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12150         for (i = 0; i < 256; i++) {
12151                 intel_crtc->lut_r[i] = i;
12152                 intel_crtc->lut_g[i] = i;
12153                 intel_crtc->lut_b[i] = i;
12154         }
12155
12156         /*
12157          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12158          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12159          */
12160         intel_crtc->pipe = pipe;
12161         intel_crtc->plane = pipe;
12162         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12163                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12164                 intel_crtc->plane = !pipe;
12165         }
12166
12167         intel_crtc->cursor_base = ~0;
12168         intel_crtc->cursor_cntl = ~0;
12169         intel_crtc->cursor_size = ~0;
12170
12171         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12172                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12173         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12174         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12175
12176         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12177
12178         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12179         return;
12180
12181 fail:
12182         if (primary)
12183                 drm_plane_cleanup(primary);
12184         if (cursor)
12185                 drm_plane_cleanup(cursor);
12186         kfree(intel_crtc);
12187 }
12188
12189 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12190 {
12191         struct drm_encoder *encoder = connector->base.encoder;
12192         struct drm_device *dev = connector->base.dev;
12193
12194         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12195
12196         if (!encoder)
12197                 return INVALID_PIPE;
12198
12199         return to_intel_crtc(encoder->crtc)->pipe;
12200 }
12201
12202 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12203                                 struct drm_file *file)
12204 {
12205         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12206         struct drm_crtc *drmmode_crtc;
12207         struct intel_crtc *crtc;
12208
12209         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12210                 return -ENODEV;
12211
12212         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12213
12214         if (!drmmode_crtc) {
12215                 DRM_ERROR("no such CRTC id\n");
12216                 return -ENOENT;
12217         }
12218
12219         crtc = to_intel_crtc(drmmode_crtc);
12220         pipe_from_crtc_id->pipe = crtc->pipe;
12221
12222         return 0;
12223 }
12224
12225 static int intel_encoder_clones(struct intel_encoder *encoder)
12226 {
12227         struct drm_device *dev = encoder->base.dev;
12228         struct intel_encoder *source_encoder;
12229         int index_mask = 0;
12230         int entry = 0;
12231
12232         for_each_intel_encoder(dev, source_encoder) {
12233                 if (encoders_cloneable(encoder, source_encoder))
12234                         index_mask |= (1 << entry);
12235
12236                 entry++;
12237         }
12238
12239         return index_mask;
12240 }
12241
12242 static bool has_edp_a(struct drm_device *dev)
12243 {
12244         struct drm_i915_private *dev_priv = dev->dev_private;
12245
12246         if (!IS_MOBILE(dev))
12247                 return false;
12248
12249         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12250                 return false;
12251
12252         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12253                 return false;
12254
12255         return true;
12256 }
12257
12258 const char *intel_output_name(int output)
12259 {
12260         static const char *names[] = {
12261                 [INTEL_OUTPUT_UNUSED] = "Unused",
12262                 [INTEL_OUTPUT_ANALOG] = "Analog",
12263                 [INTEL_OUTPUT_DVO] = "DVO",
12264                 [INTEL_OUTPUT_SDVO] = "SDVO",
12265                 [INTEL_OUTPUT_LVDS] = "LVDS",
12266                 [INTEL_OUTPUT_TVOUT] = "TV",
12267                 [INTEL_OUTPUT_HDMI] = "HDMI",
12268                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12269                 [INTEL_OUTPUT_EDP] = "eDP",
12270                 [INTEL_OUTPUT_DSI] = "DSI",
12271                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12272         };
12273
12274         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12275                 return "Invalid";
12276
12277         return names[output];
12278 }
12279
12280 static bool intel_crt_present(struct drm_device *dev)
12281 {
12282         struct drm_i915_private *dev_priv = dev->dev_private;
12283
12284         if (IS_ULT(dev))
12285                 return false;
12286
12287         if (IS_CHERRYVIEW(dev))
12288                 return false;
12289
12290         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12291                 return false;
12292
12293         return true;
12294 }
12295
12296 static void intel_setup_outputs(struct drm_device *dev)
12297 {
12298         struct drm_i915_private *dev_priv = dev->dev_private;
12299         struct intel_encoder *encoder;
12300         bool dpd_is_edp = false;
12301
12302         intel_lvds_init(dev);
12303
12304         if (intel_crt_present(dev))
12305                 intel_crt_init(dev);
12306
12307         if (HAS_DDI(dev)) {
12308                 int found;
12309
12310                 /* Haswell uses DDI functions to detect digital outputs */
12311                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12312                 /* DDI A only supports eDP */
12313                 if (found)
12314                         intel_ddi_init(dev, PORT_A);
12315
12316                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12317                  * register */
12318                 found = I915_READ(SFUSE_STRAP);
12319
12320                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12321                         intel_ddi_init(dev, PORT_B);
12322                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12323                         intel_ddi_init(dev, PORT_C);
12324                 if (found & SFUSE_STRAP_DDID_DETECTED)
12325                         intel_ddi_init(dev, PORT_D);
12326         } else if (HAS_PCH_SPLIT(dev)) {
12327                 int found;
12328                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12329
12330                 if (has_edp_a(dev))
12331                         intel_dp_init(dev, DP_A, PORT_A);
12332
12333                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12334                         /* PCH SDVOB multiplex with HDMIB */
12335                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12336                         if (!found)
12337                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12338                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12339                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12340                 }
12341
12342                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12343                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12344
12345                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12346                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12347
12348                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12349                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12350
12351                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12352                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12353         } else if (IS_VALLEYVIEW(dev)) {
12354                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12355                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12356                                         PORT_B);
12357                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12358                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12359                 }
12360
12361                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12362                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12363                                         PORT_C);
12364                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
12365                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12366                 }
12367
12368                 if (IS_CHERRYVIEW(dev)) {
12369                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12370                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12371                                                 PORT_D);
12372                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12373                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12374                         }
12375                 }
12376
12377                 intel_dsi_init(dev);
12378         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12379                 bool found = false;
12380
12381                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12382                         DRM_DEBUG_KMS("probing SDVOB\n");
12383                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12384                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12385                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12386                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12387                         }
12388
12389                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12390                                 intel_dp_init(dev, DP_B, PORT_B);
12391                 }
12392
12393                 /* Before G4X SDVOC doesn't have its own detect register */
12394
12395                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12396                         DRM_DEBUG_KMS("probing SDVOC\n");
12397                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12398                 }
12399
12400                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12401
12402                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12403                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12404                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12405                         }
12406                         if (SUPPORTS_INTEGRATED_DP(dev))
12407                                 intel_dp_init(dev, DP_C, PORT_C);
12408                 }
12409
12410                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12411                     (I915_READ(DP_D) & DP_DETECTED))
12412                         intel_dp_init(dev, DP_D, PORT_D);
12413         } else if (IS_GEN2(dev))
12414                 intel_dvo_init(dev);
12415
12416         if (SUPPORTS_TV(dev))
12417                 intel_tv_init(dev);
12418
12419         intel_edp_psr_init(dev);
12420
12421         for_each_intel_encoder(dev, encoder) {
12422                 encoder->base.possible_crtcs = encoder->crtc_mask;
12423                 encoder->base.possible_clones =
12424                         intel_encoder_clones(encoder);
12425         }
12426
12427         intel_init_pch_refclk(dev);
12428
12429         drm_helper_move_panel_connectors_to_head(dev);
12430 }
12431
12432 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12433 {
12434         struct drm_device *dev = fb->dev;
12435         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12436
12437         drm_framebuffer_cleanup(fb);
12438         mutex_lock(&dev->struct_mutex);
12439         WARN_ON(!intel_fb->obj->framebuffer_references--);
12440         drm_gem_object_unreference(&intel_fb->obj->base);
12441         mutex_unlock(&dev->struct_mutex);
12442         kfree(intel_fb);
12443 }
12444
12445 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12446                                                 struct drm_file *file,
12447                                                 unsigned int *handle)
12448 {
12449         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12450         struct drm_i915_gem_object *obj = intel_fb->obj;
12451
12452         return drm_gem_handle_create(file, &obj->base, handle);
12453 }
12454
12455 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12456         .destroy = intel_user_framebuffer_destroy,
12457         .create_handle = intel_user_framebuffer_create_handle,
12458 };
12459
12460 static int intel_framebuffer_init(struct drm_device *dev,
12461                                   struct intel_framebuffer *intel_fb,
12462                                   struct drm_mode_fb_cmd2 *mode_cmd,
12463                                   struct drm_i915_gem_object *obj)
12464 {
12465         int aligned_height;
12466         int pitch_limit;
12467         int ret;
12468
12469         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12470
12471         if (obj->tiling_mode == I915_TILING_Y) {
12472                 DRM_DEBUG("hardware does not support tiling Y\n");
12473                 return -EINVAL;
12474         }
12475
12476         if (mode_cmd->pitches[0] & 63) {
12477                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12478                           mode_cmd->pitches[0]);
12479                 return -EINVAL;
12480         }
12481
12482         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12483                 pitch_limit = 32*1024;
12484         } else if (INTEL_INFO(dev)->gen >= 4) {
12485                 if (obj->tiling_mode)
12486                         pitch_limit = 16*1024;
12487                 else
12488                         pitch_limit = 32*1024;
12489         } else if (INTEL_INFO(dev)->gen >= 3) {
12490                 if (obj->tiling_mode)
12491                         pitch_limit = 8*1024;
12492                 else
12493                         pitch_limit = 16*1024;
12494         } else
12495                 /* XXX DSPC is limited to 4k tiled */
12496                 pitch_limit = 8*1024;
12497
12498         if (mode_cmd->pitches[0] > pitch_limit) {
12499                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12500                           obj->tiling_mode ? "tiled" : "linear",
12501                           mode_cmd->pitches[0], pitch_limit);
12502                 return -EINVAL;
12503         }
12504
12505         if (obj->tiling_mode != I915_TILING_NONE &&
12506             mode_cmd->pitches[0] != obj->stride) {
12507                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12508                           mode_cmd->pitches[0], obj->stride);
12509                 return -EINVAL;
12510         }
12511
12512         /* Reject formats not supported by any plane early. */
12513         switch (mode_cmd->pixel_format) {
12514         case DRM_FORMAT_C8:
12515         case DRM_FORMAT_RGB565:
12516         case DRM_FORMAT_XRGB8888:
12517         case DRM_FORMAT_ARGB8888:
12518                 break;
12519         case DRM_FORMAT_XRGB1555:
12520         case DRM_FORMAT_ARGB1555:
12521                 if (INTEL_INFO(dev)->gen > 3) {
12522                         DRM_DEBUG("unsupported pixel format: %s\n",
12523                                   drm_get_format_name(mode_cmd->pixel_format));
12524                         return -EINVAL;
12525                 }
12526                 break;
12527         case DRM_FORMAT_XBGR8888:
12528         case DRM_FORMAT_ABGR8888:
12529         case DRM_FORMAT_XRGB2101010:
12530         case DRM_FORMAT_ARGB2101010:
12531         case DRM_FORMAT_XBGR2101010:
12532         case DRM_FORMAT_ABGR2101010:
12533                 if (INTEL_INFO(dev)->gen < 4) {
12534                         DRM_DEBUG("unsupported pixel format: %s\n",
12535                                   drm_get_format_name(mode_cmd->pixel_format));
12536                         return -EINVAL;
12537                 }
12538                 break;
12539         case DRM_FORMAT_YUYV:
12540         case DRM_FORMAT_UYVY:
12541         case DRM_FORMAT_YVYU:
12542         case DRM_FORMAT_VYUY:
12543                 if (INTEL_INFO(dev)->gen < 5) {
12544                         DRM_DEBUG("unsupported pixel format: %s\n",
12545                                   drm_get_format_name(mode_cmd->pixel_format));
12546                         return -EINVAL;
12547                 }
12548                 break;
12549         default:
12550                 DRM_DEBUG("unsupported pixel format: %s\n",
12551                           drm_get_format_name(mode_cmd->pixel_format));
12552                 return -EINVAL;
12553         }
12554
12555         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12556         if (mode_cmd->offsets[0] != 0)
12557                 return -EINVAL;
12558
12559         aligned_height = intel_align_height(dev, mode_cmd->height,
12560                                             obj->tiling_mode);
12561         /* FIXME drm helper for size checks (especially planar formats)? */
12562         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12563                 return -EINVAL;
12564
12565         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12566         intel_fb->obj = obj;
12567         intel_fb->obj->framebuffer_references++;
12568
12569         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12570         if (ret) {
12571                 DRM_ERROR("framebuffer init failed %d\n", ret);
12572                 return ret;
12573         }
12574
12575         return 0;
12576 }
12577
12578 static struct drm_framebuffer *
12579 intel_user_framebuffer_create(struct drm_device *dev,
12580                               struct drm_file *filp,
12581                               struct drm_mode_fb_cmd2 *mode_cmd)
12582 {
12583         struct drm_i915_gem_object *obj;
12584
12585         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12586                                                 mode_cmd->handles[0]));
12587         if (&obj->base == NULL)
12588                 return ERR_PTR(-ENOENT);
12589
12590         return intel_framebuffer_create(dev, mode_cmd, obj);
12591 }
12592
12593 #ifndef CONFIG_DRM_I915_FBDEV
12594 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12595 {
12596 }
12597 #endif
12598
12599 static const struct drm_mode_config_funcs intel_mode_funcs = {
12600         .fb_create = intel_user_framebuffer_create,
12601         .output_poll_changed = intel_fbdev_output_poll_changed,
12602 };
12603
12604 /* Set up chip specific display functions */
12605 static void intel_init_display(struct drm_device *dev)
12606 {
12607         struct drm_i915_private *dev_priv = dev->dev_private;
12608
12609         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12610                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12611         else if (IS_CHERRYVIEW(dev))
12612                 dev_priv->display.find_dpll = chv_find_best_dpll;
12613         else if (IS_VALLEYVIEW(dev))
12614                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12615         else if (IS_PINEVIEW(dev))
12616                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12617         else
12618                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12619
12620         if (HAS_DDI(dev)) {
12621                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12622                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12623                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12624                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12625                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12626                 dev_priv->display.off = ironlake_crtc_off;
12627                 dev_priv->display.update_primary_plane =
12628                         ironlake_update_primary_plane;
12629         } else if (HAS_PCH_SPLIT(dev)) {
12630                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12631                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12632                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12633                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12634                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12635                 dev_priv->display.off = ironlake_crtc_off;
12636                 dev_priv->display.update_primary_plane =
12637                         ironlake_update_primary_plane;
12638         } else if (IS_VALLEYVIEW(dev)) {
12639                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12640                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12641                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12642                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12643                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12644                 dev_priv->display.off = i9xx_crtc_off;
12645                 dev_priv->display.update_primary_plane =
12646                         i9xx_update_primary_plane;
12647         } else {
12648                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12649                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12650                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12651                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12652                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12653                 dev_priv->display.off = i9xx_crtc_off;
12654                 dev_priv->display.update_primary_plane =
12655                         i9xx_update_primary_plane;
12656         }
12657
12658         /* Returns the core display clock speed */
12659         if (IS_VALLEYVIEW(dev))
12660                 dev_priv->display.get_display_clock_speed =
12661                         valleyview_get_display_clock_speed;
12662         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12663                 dev_priv->display.get_display_clock_speed =
12664                         i945_get_display_clock_speed;
12665         else if (IS_I915G(dev))
12666                 dev_priv->display.get_display_clock_speed =
12667                         i915_get_display_clock_speed;
12668         else if (IS_I945GM(dev) || IS_845G(dev))
12669                 dev_priv->display.get_display_clock_speed =
12670                         i9xx_misc_get_display_clock_speed;
12671         else if (IS_PINEVIEW(dev))
12672                 dev_priv->display.get_display_clock_speed =
12673                         pnv_get_display_clock_speed;
12674         else if (IS_I915GM(dev))
12675                 dev_priv->display.get_display_clock_speed =
12676                         i915gm_get_display_clock_speed;
12677         else if (IS_I865G(dev))
12678                 dev_priv->display.get_display_clock_speed =
12679                         i865_get_display_clock_speed;
12680         else if (IS_I85X(dev))
12681                 dev_priv->display.get_display_clock_speed =
12682                         i855_get_display_clock_speed;
12683         else /* 852, 830 */
12684                 dev_priv->display.get_display_clock_speed =
12685                         i830_get_display_clock_speed;
12686
12687         if (IS_G4X(dev)) {
12688                 dev_priv->display.write_eld = g4x_write_eld;
12689         } else if (IS_GEN5(dev)) {
12690                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12691                 dev_priv->display.write_eld = ironlake_write_eld;
12692         } else if (IS_GEN6(dev)) {
12693                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12694                 dev_priv->display.write_eld = ironlake_write_eld;
12695                 dev_priv->display.modeset_global_resources =
12696                         snb_modeset_global_resources;
12697         } else if (IS_IVYBRIDGE(dev)) {
12698                 /* FIXME: detect B0+ stepping and use auto training */
12699                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12700                 dev_priv->display.write_eld = ironlake_write_eld;
12701                 dev_priv->display.modeset_global_resources =
12702                         ivb_modeset_global_resources;
12703         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12704                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12705                 dev_priv->display.write_eld = haswell_write_eld;
12706                 dev_priv->display.modeset_global_resources =
12707                         haswell_modeset_global_resources;
12708         } else if (IS_VALLEYVIEW(dev)) {
12709                 dev_priv->display.modeset_global_resources =
12710                         valleyview_modeset_global_resources;
12711                 dev_priv->display.write_eld = ironlake_write_eld;
12712         }
12713
12714         /* Default just returns -ENODEV to indicate unsupported */
12715         dev_priv->display.queue_flip = intel_default_queue_flip;
12716
12717         switch (INTEL_INFO(dev)->gen) {
12718         case 2:
12719                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12720                 break;
12721
12722         case 3:
12723                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12724                 break;
12725
12726         case 4:
12727         case 5:
12728                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12729                 break;
12730
12731         case 6:
12732                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12733                 break;
12734         case 7:
12735         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12736                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12737                 break;
12738         }
12739
12740         intel_panel_init_backlight_funcs(dev);
12741
12742         mutex_init(&dev_priv->pps_mutex);
12743 }
12744
12745 /*
12746  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12747  * resume, or other times.  This quirk makes sure that's the case for
12748  * affected systems.
12749  */
12750 static void quirk_pipea_force(struct drm_device *dev)
12751 {
12752         struct drm_i915_private *dev_priv = dev->dev_private;
12753
12754         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12755         DRM_INFO("applying pipe a force quirk\n");
12756 }
12757
12758 static void quirk_pipeb_force(struct drm_device *dev)
12759 {
12760         struct drm_i915_private *dev_priv = dev->dev_private;
12761
12762         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12763         DRM_INFO("applying pipe b force quirk\n");
12764 }
12765
12766 /*
12767  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12768  */
12769 static void quirk_ssc_force_disable(struct drm_device *dev)
12770 {
12771         struct drm_i915_private *dev_priv = dev->dev_private;
12772         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12773         DRM_INFO("applying lvds SSC disable quirk\n");
12774 }
12775
12776 /*
12777  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12778  * brightness value
12779  */
12780 static void quirk_invert_brightness(struct drm_device *dev)
12781 {
12782         struct drm_i915_private *dev_priv = dev->dev_private;
12783         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12784         DRM_INFO("applying inverted panel brightness quirk\n");
12785 }
12786
12787 /* Some VBT's incorrectly indicate no backlight is present */
12788 static void quirk_backlight_present(struct drm_device *dev)
12789 {
12790         struct drm_i915_private *dev_priv = dev->dev_private;
12791         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12792         DRM_INFO("applying backlight present quirk\n");
12793 }
12794
12795 struct intel_quirk {
12796         int device;
12797         int subsystem_vendor;
12798         int subsystem_device;
12799         void (*hook)(struct drm_device *dev);
12800 };
12801
12802 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12803 struct intel_dmi_quirk {
12804         void (*hook)(struct drm_device *dev);
12805         const struct dmi_system_id (*dmi_id_list)[];
12806 };
12807
12808 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12809 {
12810         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12811         return 1;
12812 }
12813
12814 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12815         {
12816                 .dmi_id_list = &(const struct dmi_system_id[]) {
12817                         {
12818                                 .callback = intel_dmi_reverse_brightness,
12819                                 .ident = "NCR Corporation",
12820                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12821                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12822                                 },
12823                         },
12824                         { }  /* terminating entry */
12825                 },
12826                 .hook = quirk_invert_brightness,
12827         },
12828 };
12829
12830 static struct intel_quirk intel_quirks[] = {
12831         /* HP Mini needs pipe A force quirk (LP: #322104) */
12832         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12833
12834         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12835         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12836
12837         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12838         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12839
12840         /* 830 needs to leave pipe A & dpll A up */
12841         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12842
12843         /* 830 needs to leave pipe B & dpll B up */
12844         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12845
12846         /* Lenovo U160 cannot use SSC on LVDS */
12847         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12848
12849         /* Sony Vaio Y cannot use SSC on LVDS */
12850         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12851
12852         /* Acer Aspire 5734Z must invert backlight brightness */
12853         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12854
12855         /* Acer/eMachines G725 */
12856         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12857
12858         /* Acer/eMachines e725 */
12859         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12860
12861         /* Acer/Packard Bell NCL20 */
12862         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12863
12864         /* Acer Aspire 4736Z */
12865         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12866
12867         /* Acer Aspire 5336 */
12868         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12869
12870         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12871         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12872
12873         /* Acer C720 Chromebook (Core i3 4005U) */
12874         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12875
12876         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12877         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12878
12879         /* HP Chromebook 14 (Celeron 2955U) */
12880         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12881 };
12882
12883 static void intel_init_quirks(struct drm_device *dev)
12884 {
12885         struct pci_dev *d = dev->pdev;
12886         int i;
12887
12888         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12889                 struct intel_quirk *q = &intel_quirks[i];
12890
12891                 if (d->device == q->device &&
12892                     (d->subsystem_vendor == q->subsystem_vendor ||
12893                      q->subsystem_vendor == PCI_ANY_ID) &&
12894                     (d->subsystem_device == q->subsystem_device ||
12895                      q->subsystem_device == PCI_ANY_ID))
12896                         q->hook(dev);
12897         }
12898         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12899                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12900                         intel_dmi_quirks[i].hook(dev);
12901         }
12902 }
12903
12904 /* Disable the VGA plane that we never use */
12905 static void i915_disable_vga(struct drm_device *dev)
12906 {
12907         struct drm_i915_private *dev_priv = dev->dev_private;
12908         u8 sr1;
12909         u32 vga_reg = i915_vgacntrl_reg(dev);
12910
12911         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12912         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12913         outb(SR01, VGA_SR_INDEX);
12914         sr1 = inb(VGA_SR_DATA);
12915         outb(sr1 | 1<<5, VGA_SR_DATA);
12916         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12917         udelay(300);
12918
12919         /*
12920          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12921          * from S3 without preserving (some of?) the other bits.
12922          */
12923         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12924         POSTING_READ(vga_reg);
12925 }
12926
12927 void intel_modeset_init_hw(struct drm_device *dev)
12928 {
12929         intel_prepare_ddi(dev);
12930
12931         if (IS_VALLEYVIEW(dev))
12932                 vlv_update_cdclk(dev);
12933
12934         intel_init_clock_gating(dev);
12935
12936         intel_enable_gt_powersave(dev);
12937 }
12938
12939 void intel_modeset_suspend_hw(struct drm_device *dev)
12940 {
12941         intel_suspend_hw(dev);
12942 }
12943
12944 void intel_modeset_init(struct drm_device *dev)
12945 {
12946         struct drm_i915_private *dev_priv = dev->dev_private;
12947         int sprite, ret;
12948         enum pipe pipe;
12949         struct intel_crtc *crtc;
12950
12951         drm_mode_config_init(dev);
12952
12953         dev->mode_config.min_width = 0;
12954         dev->mode_config.min_height = 0;
12955
12956         dev->mode_config.preferred_depth = 24;
12957         dev->mode_config.prefer_shadow = 1;
12958
12959         dev->mode_config.funcs = &intel_mode_funcs;
12960
12961         intel_init_quirks(dev);
12962
12963         intel_init_pm(dev);
12964
12965         if (INTEL_INFO(dev)->num_pipes == 0)
12966                 return;
12967
12968         intel_init_display(dev);
12969
12970         if (IS_GEN2(dev)) {
12971                 dev->mode_config.max_width = 2048;
12972                 dev->mode_config.max_height = 2048;
12973         } else if (IS_GEN3(dev)) {
12974                 dev->mode_config.max_width = 4096;
12975                 dev->mode_config.max_height = 4096;
12976         } else {
12977                 dev->mode_config.max_width = 8192;
12978                 dev->mode_config.max_height = 8192;
12979         }
12980
12981         if (IS_845G(dev) || IS_I865G(dev)) {
12982                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12983                 dev->mode_config.cursor_height = 1023;
12984         } else if (IS_GEN2(dev)) {
12985                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12986                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12987         } else {
12988                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12989                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12990         }
12991
12992         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12993
12994         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12995                       INTEL_INFO(dev)->num_pipes,
12996                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12997
12998         for_each_pipe(dev_priv, pipe) {
12999                 intel_crtc_init(dev, pipe);
13000                 for_each_sprite(pipe, sprite) {
13001                         ret = intel_plane_init(dev, pipe, sprite);
13002                         if (ret)
13003                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13004                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13005                 }
13006         }
13007
13008         intel_init_dpio(dev);
13009
13010         intel_shared_dpll_init(dev);
13011
13012         /* save the BIOS value before clobbering it */
13013         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13014         /* Just disable it once at startup */
13015         i915_disable_vga(dev);
13016         intel_setup_outputs(dev);
13017
13018         /* Just in case the BIOS is doing something questionable. */
13019         intel_disable_fbc(dev);
13020
13021         drm_modeset_lock_all(dev);
13022         intel_modeset_setup_hw_state(dev, false);
13023         drm_modeset_unlock_all(dev);
13024
13025         for_each_intel_crtc(dev, crtc) {
13026                 if (!crtc->active)
13027                         continue;
13028
13029                 /*
13030                  * Note that reserving the BIOS fb up front prevents us
13031                  * from stuffing other stolen allocations like the ring
13032                  * on top.  This prevents some ugliness at boot time, and
13033                  * can even allow for smooth boot transitions if the BIOS
13034                  * fb is large enough for the active pipe configuration.
13035                  */
13036                 if (dev_priv->display.get_plane_config) {
13037                         dev_priv->display.get_plane_config(crtc,
13038                                                            &crtc->plane_config);
13039                         /*
13040                          * If the fb is shared between multiple heads, we'll
13041                          * just get the first one.
13042                          */
13043                         intel_find_plane_obj(crtc, &crtc->plane_config);
13044                 }
13045         }
13046 }
13047
13048 static void intel_enable_pipe_a(struct drm_device *dev)
13049 {
13050         struct intel_connector *connector;
13051         struct drm_connector *crt = NULL;
13052         struct intel_load_detect_pipe load_detect_temp;
13053         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13054
13055         /* We can't just switch on the pipe A, we need to set things up with a
13056          * proper mode and output configuration. As a gross hack, enable pipe A
13057          * by enabling the load detect pipe once. */
13058         list_for_each_entry(connector,
13059                             &dev->mode_config.connector_list,
13060                             base.head) {
13061                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13062                         crt = &connector->base;
13063                         break;
13064                 }
13065         }
13066
13067         if (!crt)
13068                 return;
13069
13070         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13071                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13072 }
13073
13074 static bool
13075 intel_check_plane_mapping(struct intel_crtc *crtc)
13076 {
13077         struct drm_device *dev = crtc->base.dev;
13078         struct drm_i915_private *dev_priv = dev->dev_private;
13079         u32 reg, val;
13080
13081         if (INTEL_INFO(dev)->num_pipes == 1)
13082                 return true;
13083
13084         reg = DSPCNTR(!crtc->plane);
13085         val = I915_READ(reg);
13086
13087         if ((val & DISPLAY_PLANE_ENABLE) &&
13088             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13089                 return false;
13090
13091         return true;
13092 }
13093
13094 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13095 {
13096         struct drm_device *dev = crtc->base.dev;
13097         struct drm_i915_private *dev_priv = dev->dev_private;
13098         u32 reg;
13099
13100         /* Clear any frame start delays used for debugging left by the BIOS */
13101         reg = PIPECONF(crtc->config.cpu_transcoder);
13102         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13103
13104         /* restore vblank interrupts to correct state */
13105         if (crtc->active) {
13106                 update_scanline_offset(crtc);
13107                 drm_vblank_on(dev, crtc->pipe);
13108         } else
13109                 drm_vblank_off(dev, crtc->pipe);
13110
13111         /* We need to sanitize the plane -> pipe mapping first because this will
13112          * disable the crtc (and hence change the state) if it is wrong. Note
13113          * that gen4+ has a fixed plane -> pipe mapping.  */
13114         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13115                 struct intel_connector *connector;
13116                 bool plane;
13117
13118                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13119                               crtc->base.base.id);
13120
13121                 /* Pipe has the wrong plane attached and the plane is active.
13122                  * Temporarily change the plane mapping and disable everything
13123                  * ...  */
13124                 plane = crtc->plane;
13125                 crtc->plane = !plane;
13126                 crtc->primary_enabled = true;
13127                 dev_priv->display.crtc_disable(&crtc->base);
13128                 crtc->plane = plane;
13129
13130                 /* ... and break all links. */
13131                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13132                                     base.head) {
13133                         if (connector->encoder->base.crtc != &crtc->base)
13134                                 continue;
13135
13136                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13137                         connector->base.encoder = NULL;
13138                 }
13139                 /* multiple connectors may have the same encoder:
13140                  *  handle them and break crtc link separately */
13141                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13142                                     base.head)
13143                         if (connector->encoder->base.crtc == &crtc->base) {
13144                                 connector->encoder->base.crtc = NULL;
13145                                 connector->encoder->connectors_active = false;
13146                         }
13147
13148                 WARN_ON(crtc->active);
13149                 crtc->base.enabled = false;
13150         }
13151
13152         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13153             crtc->pipe == PIPE_A && !crtc->active) {
13154                 /* BIOS forgot to enable pipe A, this mostly happens after
13155                  * resume. Force-enable the pipe to fix this, the update_dpms
13156                  * call below we restore the pipe to the right state, but leave
13157                  * the required bits on. */
13158                 intel_enable_pipe_a(dev);
13159         }
13160
13161         /* Adjust the state of the output pipe according to whether we
13162          * have active connectors/encoders. */
13163         intel_crtc_update_dpms(&crtc->base);
13164
13165         if (crtc->active != crtc->base.enabled) {
13166                 struct intel_encoder *encoder;
13167
13168                 /* This can happen either due to bugs in the get_hw_state
13169                  * functions or because the pipe is force-enabled due to the
13170                  * pipe A quirk. */
13171                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13172                               crtc->base.base.id,
13173                               crtc->base.enabled ? "enabled" : "disabled",
13174                               crtc->active ? "enabled" : "disabled");
13175
13176                 crtc->base.enabled = crtc->active;
13177
13178                 /* Because we only establish the connector -> encoder ->
13179                  * crtc links if something is active, this means the
13180                  * crtc is now deactivated. Break the links. connector
13181                  * -> encoder links are only establish when things are
13182                  *  actually up, hence no need to break them. */
13183                 WARN_ON(crtc->active);
13184
13185                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13186                         WARN_ON(encoder->connectors_active);
13187                         encoder->base.crtc = NULL;
13188                 }
13189         }
13190
13191         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13192                 /*
13193                  * We start out with underrun reporting disabled to avoid races.
13194                  * For correct bookkeeping mark this on active crtcs.
13195                  *
13196                  * Also on gmch platforms we dont have any hardware bits to
13197                  * disable the underrun reporting. Which means we need to start
13198                  * out with underrun reporting disabled also on inactive pipes,
13199                  * since otherwise we'll complain about the garbage we read when
13200                  * e.g. coming up after runtime pm.
13201                  *
13202                  * No protection against concurrent access is required - at
13203                  * worst a fifo underrun happens which also sets this to false.
13204                  */
13205                 crtc->cpu_fifo_underrun_disabled = true;
13206                 crtc->pch_fifo_underrun_disabled = true;
13207         }
13208 }
13209
13210 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13211 {
13212         struct intel_connector *connector;
13213         struct drm_device *dev = encoder->base.dev;
13214
13215         /* We need to check both for a crtc link (meaning that the
13216          * encoder is active and trying to read from a pipe) and the
13217          * pipe itself being active. */
13218         bool has_active_crtc = encoder->base.crtc &&
13219                 to_intel_crtc(encoder->base.crtc)->active;
13220
13221         if (encoder->connectors_active && !has_active_crtc) {
13222                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13223                               encoder->base.base.id,
13224                               encoder->base.name);
13225
13226                 /* Connector is active, but has no active pipe. This is
13227                  * fallout from our resume register restoring. Disable
13228                  * the encoder manually again. */
13229                 if (encoder->base.crtc) {
13230                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13231                                       encoder->base.base.id,
13232                                       encoder->base.name);
13233                         encoder->disable(encoder);
13234                         if (encoder->post_disable)
13235                                 encoder->post_disable(encoder);
13236                 }
13237                 encoder->base.crtc = NULL;
13238                 encoder->connectors_active = false;
13239
13240                 /* Inconsistent output/port/pipe state happens presumably due to
13241                  * a bug in one of the get_hw_state functions. Or someplace else
13242                  * in our code, like the register restore mess on resume. Clamp
13243                  * things to off as a safer default. */
13244                 list_for_each_entry(connector,
13245                                     &dev->mode_config.connector_list,
13246                                     base.head) {
13247                         if (connector->encoder != encoder)
13248                                 continue;
13249                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13250                         connector->base.encoder = NULL;
13251                 }
13252         }
13253         /* Enabled encoders without active connectors will be fixed in
13254          * the crtc fixup. */
13255 }
13256
13257 void i915_redisable_vga_power_on(struct drm_device *dev)
13258 {
13259         struct drm_i915_private *dev_priv = dev->dev_private;
13260         u32 vga_reg = i915_vgacntrl_reg(dev);
13261
13262         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13263                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13264                 i915_disable_vga(dev);
13265         }
13266 }
13267
13268 void i915_redisable_vga(struct drm_device *dev)
13269 {
13270         struct drm_i915_private *dev_priv = dev->dev_private;
13271
13272         /* This function can be called both from intel_modeset_setup_hw_state or
13273          * at a very early point in our resume sequence, where the power well
13274          * structures are not yet restored. Since this function is at a very
13275          * paranoid "someone might have enabled VGA while we were not looking"
13276          * level, just check if the power well is enabled instead of trying to
13277          * follow the "don't touch the power well if we don't need it" policy
13278          * the rest of the driver uses. */
13279         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
13280                 return;
13281
13282         i915_redisable_vga_power_on(dev);
13283 }
13284
13285 static bool primary_get_hw_state(struct intel_crtc *crtc)
13286 {
13287         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13288
13289         if (!crtc->active)
13290                 return false;
13291
13292         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13293 }
13294
13295 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13296 {
13297         struct drm_i915_private *dev_priv = dev->dev_private;
13298         enum pipe pipe;
13299         struct intel_crtc *crtc;
13300         struct intel_encoder *encoder;
13301         struct intel_connector *connector;
13302         int i;
13303
13304         for_each_intel_crtc(dev, crtc) {
13305                 memset(&crtc->config, 0, sizeof(crtc->config));
13306
13307                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13308
13309                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13310                                                                  &crtc->config);
13311
13312                 crtc->base.enabled = crtc->active;
13313                 crtc->primary_enabled = primary_get_hw_state(crtc);
13314
13315                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13316                               crtc->base.base.id,
13317                               crtc->active ? "enabled" : "disabled");
13318         }
13319
13320         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13321                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13322
13323                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13324                 pll->active = 0;
13325                 for_each_intel_crtc(dev, crtc) {
13326                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13327                                 pll->active++;
13328                 }
13329                 pll->refcount = pll->active;
13330
13331                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13332                               pll->name, pll->refcount, pll->on);
13333
13334                 if (pll->refcount)
13335                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13336         }
13337
13338         for_each_intel_encoder(dev, encoder) {
13339                 pipe = 0;
13340
13341                 if (encoder->get_hw_state(encoder, &pipe)) {
13342                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13343                         encoder->base.crtc = &crtc->base;
13344                         encoder->get_config(encoder, &crtc->config);
13345                 } else {
13346                         encoder->base.crtc = NULL;
13347                 }
13348
13349                 encoder->connectors_active = false;
13350                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13351                               encoder->base.base.id,
13352                               encoder->base.name,
13353                               encoder->base.crtc ? "enabled" : "disabled",
13354                               pipe_name(pipe));
13355         }
13356
13357         list_for_each_entry(connector, &dev->mode_config.connector_list,
13358                             base.head) {
13359                 if (connector->get_hw_state(connector)) {
13360                         connector->base.dpms = DRM_MODE_DPMS_ON;
13361                         connector->encoder->connectors_active = true;
13362                         connector->base.encoder = &connector->encoder->base;
13363                 } else {
13364                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13365                         connector->base.encoder = NULL;
13366                 }
13367                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13368                               connector->base.base.id,
13369                               connector->base.name,
13370                               connector->base.encoder ? "enabled" : "disabled");
13371         }
13372 }
13373
13374 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13375  * and i915 state tracking structures. */
13376 void intel_modeset_setup_hw_state(struct drm_device *dev,
13377                                   bool force_restore)
13378 {
13379         struct drm_i915_private *dev_priv = dev->dev_private;
13380         enum pipe pipe;
13381         struct intel_crtc *crtc;
13382         struct intel_encoder *encoder;
13383         int i;
13384
13385         intel_modeset_readout_hw_state(dev);
13386
13387         /*
13388          * Now that we have the config, copy it to each CRTC struct
13389          * Note that this could go away if we move to using crtc_config
13390          * checking everywhere.
13391          */
13392         for_each_intel_crtc(dev, crtc) {
13393                 if (crtc->active && i915.fastboot) {
13394                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13395                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13396                                       crtc->base.base.id);
13397                         drm_mode_debug_printmodeline(&crtc->base.mode);
13398                 }
13399         }
13400
13401         /* HW state is read out, now we need to sanitize this mess. */
13402         for_each_intel_encoder(dev, encoder) {
13403                 intel_sanitize_encoder(encoder);
13404         }
13405
13406         for_each_pipe(dev_priv, pipe) {
13407                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13408                 intel_sanitize_crtc(crtc);
13409                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13410         }
13411
13412         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13413                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13414
13415                 if (!pll->on || pll->active)
13416                         continue;
13417
13418                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13419
13420                 pll->disable(dev_priv, pll);
13421                 pll->on = false;
13422         }
13423
13424         if (HAS_PCH_SPLIT(dev))
13425                 ilk_wm_get_hw_state(dev);
13426
13427         if (force_restore) {
13428                 i915_redisable_vga(dev);
13429
13430                 /*
13431                  * We need to use raw interfaces for restoring state to avoid
13432                  * checking (bogus) intermediate states.
13433                  */
13434                 for_each_pipe(dev_priv, pipe) {
13435                         struct drm_crtc *crtc =
13436                                 dev_priv->pipe_to_crtc_mapping[pipe];
13437
13438                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13439                                          crtc->primary->fb);
13440                 }
13441         } else {
13442                 intel_modeset_update_staged_output_state(dev);
13443         }
13444
13445         intel_modeset_check_state(dev);
13446 }
13447
13448 void intel_modeset_gem_init(struct drm_device *dev)
13449 {
13450         struct drm_crtc *c;
13451         struct drm_i915_gem_object *obj;
13452
13453         mutex_lock(&dev->struct_mutex);
13454         intel_init_gt_powersave(dev);
13455         mutex_unlock(&dev->struct_mutex);
13456
13457         intel_modeset_init_hw(dev);
13458
13459         intel_setup_overlay(dev);
13460
13461         /*
13462          * Make sure any fbs we allocated at startup are properly
13463          * pinned & fenced.  When we do the allocation it's too early
13464          * for this.
13465          */
13466         mutex_lock(&dev->struct_mutex);
13467         for_each_crtc(dev, c) {
13468                 obj = intel_fb_obj(c->primary->fb);
13469                 if (obj == NULL)
13470                         continue;
13471
13472                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13473                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13474                                   to_intel_crtc(c)->pipe);
13475                         drm_framebuffer_unreference(c->primary->fb);
13476                         c->primary->fb = NULL;
13477                 }
13478         }
13479         mutex_unlock(&dev->struct_mutex);
13480 }
13481
13482 void intel_connector_unregister(struct intel_connector *intel_connector)
13483 {
13484         struct drm_connector *connector = &intel_connector->base;
13485
13486         intel_panel_destroy_backlight(connector);
13487         drm_connector_unregister(connector);
13488 }
13489
13490 void intel_modeset_cleanup(struct drm_device *dev)
13491 {
13492         struct drm_i915_private *dev_priv = dev->dev_private;
13493         struct drm_connector *connector;
13494
13495         /*
13496          * Interrupts and polling as the first thing to avoid creating havoc.
13497          * Too much stuff here (turning of rps, connectors, ...) would
13498          * experience fancy races otherwise.
13499          */
13500         drm_irq_uninstall(dev);
13501         intel_hpd_cancel_work(dev_priv);
13502         dev_priv->pm._irqs_disabled = true;
13503
13504         /*
13505          * Due to the hpd irq storm handling the hotplug work can re-arm the
13506          * poll handlers. Hence disable polling after hpd handling is shut down.
13507          */
13508         drm_kms_helper_poll_fini(dev);
13509
13510         mutex_lock(&dev->struct_mutex);
13511
13512         intel_unregister_dsm_handler();
13513
13514         intel_disable_fbc(dev);
13515
13516         intel_disable_gt_powersave(dev);
13517
13518         ironlake_teardown_rc6(dev);
13519
13520         mutex_unlock(&dev->struct_mutex);
13521
13522         /* flush any delayed tasks or pending work */
13523         flush_scheduled_work();
13524
13525         /* destroy the backlight and sysfs files before encoders/connectors */
13526         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13527                 struct intel_connector *intel_connector;
13528
13529                 intel_connector = to_intel_connector(connector);
13530                 intel_connector->unregister(intel_connector);
13531         }
13532
13533         drm_mode_config_cleanup(dev);
13534
13535         intel_cleanup_overlay(dev);
13536
13537         mutex_lock(&dev->struct_mutex);
13538         intel_cleanup_gt_powersave(dev);
13539         mutex_unlock(&dev->struct_mutex);
13540 }
13541
13542 /*
13543  * Return which encoder is currently attached for connector.
13544  */
13545 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13546 {
13547         return &intel_attached_encoder(connector)->base;
13548 }
13549
13550 void intel_connector_attach_encoder(struct intel_connector *connector,
13551                                     struct intel_encoder *encoder)
13552 {
13553         connector->encoder = encoder;
13554         drm_mode_connector_attach_encoder(&connector->base,
13555                                           &encoder->base);
13556 }
13557
13558 /*
13559  * set vga decode state - true == enable VGA decode
13560  */
13561 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13562 {
13563         struct drm_i915_private *dev_priv = dev->dev_private;
13564         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13565         u16 gmch_ctrl;
13566
13567         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13568                 DRM_ERROR("failed to read control word\n");
13569                 return -EIO;
13570         }
13571
13572         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13573                 return 0;
13574
13575         if (state)
13576                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13577         else
13578                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13579
13580         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13581                 DRM_ERROR("failed to write control word\n");
13582                 return -EIO;
13583         }
13584
13585         return 0;
13586 }
13587
13588 struct intel_display_error_state {
13589
13590         u32 power_well_driver;
13591
13592         int num_transcoders;
13593
13594         struct intel_cursor_error_state {
13595                 u32 control;
13596                 u32 position;
13597                 u32 base;
13598                 u32 size;
13599         } cursor[I915_MAX_PIPES];
13600
13601         struct intel_pipe_error_state {
13602                 bool power_domain_on;
13603                 u32 source;
13604                 u32 stat;
13605         } pipe[I915_MAX_PIPES];
13606
13607         struct intel_plane_error_state {
13608                 u32 control;
13609                 u32 stride;
13610                 u32 size;
13611                 u32 pos;
13612                 u32 addr;
13613                 u32 surface;
13614                 u32 tile_offset;
13615         } plane[I915_MAX_PIPES];
13616
13617         struct intel_transcoder_error_state {
13618                 bool power_domain_on;
13619                 enum transcoder cpu_transcoder;
13620
13621                 u32 conf;
13622
13623                 u32 htotal;
13624                 u32 hblank;
13625                 u32 hsync;
13626                 u32 vtotal;
13627                 u32 vblank;
13628                 u32 vsync;
13629         } transcoder[4];
13630 };
13631
13632 struct intel_display_error_state *
13633 intel_display_capture_error_state(struct drm_device *dev)
13634 {
13635         struct drm_i915_private *dev_priv = dev->dev_private;
13636         struct intel_display_error_state *error;
13637         int transcoders[] = {
13638                 TRANSCODER_A,
13639                 TRANSCODER_B,
13640                 TRANSCODER_C,
13641                 TRANSCODER_EDP,
13642         };
13643         int i;
13644
13645         if (INTEL_INFO(dev)->num_pipes == 0)
13646                 return NULL;
13647
13648         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13649         if (error == NULL)
13650                 return NULL;
13651
13652         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13653                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13654
13655         for_each_pipe(dev_priv, i) {
13656                 error->pipe[i].power_domain_on =
13657                         intel_display_power_enabled_unlocked(dev_priv,
13658                                                            POWER_DOMAIN_PIPE(i));
13659                 if (!error->pipe[i].power_domain_on)
13660                         continue;
13661
13662                 error->cursor[i].control = I915_READ(CURCNTR(i));
13663                 error->cursor[i].position = I915_READ(CURPOS(i));
13664                 error->cursor[i].base = I915_READ(CURBASE(i));
13665
13666                 error->plane[i].control = I915_READ(DSPCNTR(i));
13667                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13668                 if (INTEL_INFO(dev)->gen <= 3) {
13669                         error->plane[i].size = I915_READ(DSPSIZE(i));
13670                         error->plane[i].pos = I915_READ(DSPPOS(i));
13671                 }
13672                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13673                         error->plane[i].addr = I915_READ(DSPADDR(i));
13674                 if (INTEL_INFO(dev)->gen >= 4) {
13675                         error->plane[i].surface = I915_READ(DSPSURF(i));
13676                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13677                 }
13678
13679                 error->pipe[i].source = I915_READ(PIPESRC(i));
13680
13681                 if (HAS_GMCH_DISPLAY(dev))
13682                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13683         }
13684
13685         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13686         if (HAS_DDI(dev_priv->dev))
13687                 error->num_transcoders++; /* Account for eDP. */
13688
13689         for (i = 0; i < error->num_transcoders; i++) {
13690                 enum transcoder cpu_transcoder = transcoders[i];
13691
13692                 error->transcoder[i].power_domain_on =
13693                         intel_display_power_enabled_unlocked(dev_priv,
13694                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13695                 if (!error->transcoder[i].power_domain_on)
13696                         continue;
13697
13698                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13699
13700                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13701                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13702                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13703                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13704                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13705                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13706                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13707         }
13708
13709         return error;
13710 }
13711
13712 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13713
13714 void
13715 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13716                                 struct drm_device *dev,
13717                                 struct intel_display_error_state *error)
13718 {
13719         struct drm_i915_private *dev_priv = dev->dev_private;
13720         int i;
13721
13722         if (!error)
13723                 return;
13724
13725         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13726         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13727                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13728                            error->power_well_driver);
13729         for_each_pipe(dev_priv, i) {
13730                 err_printf(m, "Pipe [%d]:\n", i);
13731                 err_printf(m, "  Power: %s\n",
13732                            error->pipe[i].power_domain_on ? "on" : "off");
13733                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13734                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13735
13736                 err_printf(m, "Plane [%d]:\n", i);
13737                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13738                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13739                 if (INTEL_INFO(dev)->gen <= 3) {
13740                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13741                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13742                 }
13743                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13744                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13745                 if (INTEL_INFO(dev)->gen >= 4) {
13746                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13747                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13748                 }
13749
13750                 err_printf(m, "Cursor [%d]:\n", i);
13751                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13752                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13753                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13754         }
13755
13756         for (i = 0; i < error->num_transcoders; i++) {
13757                 err_printf(m, "CPU transcoder: %c\n",
13758                            transcoder_name(error->transcoder[i].cpu_transcoder));
13759                 err_printf(m, "  Power: %s\n",
13760                            error->transcoder[i].power_domain_on ? "on" : "off");
13761                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13762                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13763                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13764                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13765                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13766                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13767                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13768         }
13769 }
13770
13771 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13772 {
13773         struct intel_crtc *crtc;
13774
13775         for_each_intel_crtc(dev, crtc) {
13776                 struct intel_unpin_work *work;
13777
13778                 spin_lock_irq(&dev->event_lock);
13779
13780                 work = crtc->unpin_work;
13781
13782                 if (work && work->event &&
13783                     work->event->base.file_priv == file) {
13784                         kfree(work->event);
13785                         work->event = NULL;
13786                 }
13787
13788                 spin_unlock_irq(&dev->event_lock);
13789         }
13790 }