b20fad3d9f0439188c061312688c45b20661c484
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *match_clock,
86                     intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *match_clock,
90                         intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                       int target, int refclk, intel_clock_t *match_clock,
95                       intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                            int target, int refclk, intel_clock_t *match_clock,
99                            intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103                         int target, int refclk, intel_clock_t *match_clock,
104                         intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109         if (IS_GEN5(dev)) {
110                 struct drm_i915_private *dev_priv = dev->dev_private;
111                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112         } else
113                 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117         .dot = { .min = 25000, .max = 350000 },
118         .vco = { .min = 930000, .max = 1400000 },
119         .n = { .min = 3, .max = 16 },
120         .m = { .min = 96, .max = 140 },
121         .m1 = { .min = 18, .max = 26 },
122         .m2 = { .min = 6, .max = 16 },
123         .p = { .min = 4, .max = 128 },
124         .p1 = { .min = 2, .max = 33 },
125         .p2 = { .dot_limit = 165000,
126                 .p2_slow = 4, .p2_fast = 2 },
127         .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131         .dot = { .min = 25000, .max = 350000 },
132         .vco = { .min = 930000, .max = 1400000 },
133         .n = { .min = 3, .max = 16 },
134         .m = { .min = 96, .max = 140 },
135         .m1 = { .min = 18, .max = 26 },
136         .m2 = { .min = 6, .max = 16 },
137         .p = { .min = 4, .max = 128 },
138         .p1 = { .min = 1, .max = 6 },
139         .p2 = { .dot_limit = 165000,
140                 .p2_slow = 14, .p2_fast = 7 },
141         .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 10, .max = 22 },
150         .m2 = { .min = 5, .max = 9 },
151         .p = { .min = 5, .max = 80 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 200000,
154                 .p2_slow = 10, .p2_fast = 5 },
155         .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159         .dot = { .min = 20000, .max = 400000 },
160         .vco = { .min = 1400000, .max = 2800000 },
161         .n = { .min = 1, .max = 6 },
162         .m = { .min = 70, .max = 120 },
163         .m1 = { .min = 10, .max = 22 },
164         .m2 = { .min = 5, .max = 9 },
165         .p = { .min = 7, .max = 98 },
166         .p1 = { .min = 1, .max = 8 },
167         .p2 = { .dot_limit = 112000,
168                 .p2_slow = 14, .p2_fast = 7 },
169         .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174         .dot = { .min = 25000, .max = 270000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 17, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 10, .max = 30 },
181         .p1 = { .min = 1, .max = 3},
182         .p2 = { .dot_limit = 270000,
183                 .p2_slow = 10,
184                 .p2_fast = 10
185         },
186         .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190         .dot = { .min = 22000, .max = 400000 },
191         .vco = { .min = 1750000, .max = 3500000},
192         .n = { .min = 1, .max = 4 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 16, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 5, .max = 80 },
197         .p1 = { .min = 1, .max = 8},
198         .p2 = { .dot_limit = 165000,
199                 .p2_slow = 10, .p2_fast = 5 },
200         .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204         .dot = { .min = 20000, .max = 115000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 28, .max = 112 },
211         .p1 = { .min = 2, .max = 8 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 14, .p2_fast = 14
214         },
215         .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219         .dot = { .min = 80000, .max = 224000 },
220         .vco = { .min = 1750000, .max = 3500000 },
221         .n = { .min = 1, .max = 3 },
222         .m = { .min = 104, .max = 138 },
223         .m1 = { .min = 17, .max = 23 },
224         .m2 = { .min = 5, .max = 11 },
225         .p = { .min = 14, .max = 42 },
226         .p1 = { .min = 2, .max = 6 },
227         .p2 = { .dot_limit = 0,
228                 .p2_slow = 7, .p2_fast = 7
229         },
230         .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234         .dot = { .min = 161670, .max = 227000 },
235         .vco = { .min = 1750000, .max = 3500000},
236         .n = { .min = 1, .max = 2 },
237         .m = { .min = 97, .max = 108 },
238         .m1 = { .min = 0x10, .max = 0x12 },
239         .m2 = { .min = 0x05, .max = 0x06 },
240         .p = { .min = 10, .max = 20 },
241         .p1 = { .min = 1, .max = 2},
242         .p2 = { .dot_limit = 0,
243                 .p2_slow = 10, .p2_fast = 10 },
244         .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248         .dot = { .min = 20000, .max = 400000},
249         .vco = { .min = 1700000, .max = 3500000 },
250         /* Pineview's Ncounter is a ring counter */
251         .n = { .min = 3, .max = 6 },
252         .m = { .min = 2, .max = 256 },
253         /* Pineview only has one combined m divider, which we treat as m2. */
254         .m1 = { .min = 0, .max = 0 },
255         .m2 = { .min = 0, .max = 254 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 200000,
259                 .p2_slow = 10, .p2_fast = 5 },
260         .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264         .dot = { .min = 20000, .max = 400000 },
265         .vco = { .min = 1700000, .max = 3500000 },
266         .n = { .min = 3, .max = 6 },
267         .m = { .min = 2, .max = 256 },
268         .m1 = { .min = 0, .max = 0 },
269         .m2 = { .min = 0, .max = 254 },
270         .p = { .min = 7, .max = 112 },
271         .p1 = { .min = 1, .max = 8 },
272         .p2 = { .dot_limit = 112000,
273                 .p2_slow = 14, .p2_fast = 14 },
274         .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278  *
279  * We calculate clock using (register_value + 2) for N/M1/M2, so here
280  * the range value for them is (actual_value - 2).
281  */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283         .dot = { .min = 25000, .max = 350000 },
284         .vco = { .min = 1760000, .max = 3510000 },
285         .n = { .min = 1, .max = 5 },
286         .m = { .min = 79, .max = 127 },
287         .m1 = { .min = 12, .max = 22 },
288         .m2 = { .min = 5, .max = 9 },
289         .p = { .min = 5, .max = 80 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 225000,
292                 .p2_slow = 10, .p2_fast = 5 },
293         .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297         .dot = { .min = 25000, .max = 350000 },
298         .vco = { .min = 1760000, .max = 3510000 },
299         .n = { .min = 1, .max = 3 },
300         .m = { .min = 79, .max = 118 },
301         .m1 = { .min = 12, .max = 22 },
302         .m2 = { .min = 5, .max = 9 },
303         .p = { .min = 28, .max = 112 },
304         .p1 = { .min = 2, .max = 8 },
305         .p2 = { .dot_limit = 225000,
306                 .p2_slow = 14, .p2_fast = 14 },
307         .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311         .dot = { .min = 25000, .max = 350000 },
312         .vco = { .min = 1760000, .max = 3510000 },
313         .n = { .min = 1, .max = 3 },
314         .m = { .min = 79, .max = 127 },
315         .m1 = { .min = 12, .max = 22 },
316         .m2 = { .min = 5, .max = 9 },
317         .p = { .min = 14, .max = 56 },
318         .p1 = { .min = 2, .max = 8 },
319         .p2 = { .dot_limit = 225000,
320                 .p2_slow = 7, .p2_fast = 7 },
321         .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326         .dot = { .min = 25000, .max = 350000 },
327         .vco = { .min = 1760000, .max = 3510000 },
328         .n = { .min = 1, .max = 2 },
329         .m = { .min = 79, .max = 126 },
330         .m1 = { .min = 12, .max = 22 },
331         .m2 = { .min = 5, .max = 9 },
332         .p = { .min = 28, .max = 112 },
333         .p1 = { .min = 2, .max = 8 },
334         .p2 = { .dot_limit = 225000,
335                 .p2_slow = 14, .p2_fast = 14 },
336         .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340         .dot = { .min = 25000, .max = 350000 },
341         .vco = { .min = 1760000, .max = 3510000 },
342         .n = { .min = 1, .max = 3 },
343         .m = { .min = 79, .max = 126 },
344         .m1 = { .min = 12, .max = 22 },
345         .m2 = { .min = 5, .max = 9 },
346         .p = { .min = 14, .max = 42 },
347         .p1 = { .min = 2, .max = 6 },
348         .p2 = { .dot_limit = 225000,
349                 .p2_slow = 7, .p2_fast = 7 },
350         .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000},
356         .n = { .min = 1, .max = 2 },
357         .m = { .min = 81, .max = 90 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 10, .max = 20 },
361         .p1 = { .min = 1, .max = 2},
362         .p2 = { .dot_limit = 0,
363                 .p2_slow = 10, .p2_fast = 10 },
364         .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368         .dot = { .min = 25000, .max = 270000 },
369         .vco = { .min = 4000000, .max = 6000000 },
370         .n = { .min = 1, .max = 7 },
371         .m = { .min = 22, .max = 450 }, /* guess */
372         .m1 = { .min = 2, .max = 3 },
373         .m2 = { .min = 11, .max = 156 },
374         .p = { .min = 10, .max = 30 },
375         .p1 = { .min = 2, .max = 3 },
376         .p2 = { .dot_limit = 270000,
377                 .p2_slow = 2, .p2_fast = 20 },
378         .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382         .dot = { .min = 20000, .max = 165000 },
383         .vco = { .min = 5994000, .max = 4000000 },
384         .n = { .min = 1, .max = 7 },
385         .m = { .min = 60, .max = 300 }, /* guess */
386         .m1 = { .min = 2, .max = 3 },
387         .m2 = { .min = 11, .max = 156 },
388         .p = { .min = 10, .max = 30 },
389         .p1 = { .min = 2, .max = 3 },
390         .p2 = { .dot_limit = 270000,
391                 .p2_slow = 2, .p2_fast = 20 },
392         .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396         .dot = { .min = 162000, .max = 270000 },
397         .vco = { .min = 5994000, .max = 4000000 },
398         .n = { .min = 1, .max = 7 },
399         .m = { .min = 60, .max = 300 }, /* guess */
400         .m1 = { .min = 2, .max = 3 },
401         .m2 = { .min = 11, .max = 156 },
402         .p = { .min = 10, .max = 30 },
403         .p1 = { .min = 2, .max = 3 },
404         .p2 = { .dot_limit = 270000,
405                 .p2_slow = 2, .p2_fast = 20 },
406         .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411         unsigned long flags;
412         u32 val = 0;
413
414         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416                 DRM_ERROR("DPIO idle wait timed out\n");
417                 goto out_unlock;
418         }
419
420         I915_WRITE(DPIO_REG, reg);
421         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422                    DPIO_BYTE);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO read wait timed out\n");
425                 goto out_unlock;
426         }
427         val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431         return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435                              u32 val)
436 {
437         unsigned long flags;
438
439         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441                 DRM_ERROR("DPIO idle wait timed out\n");
442                 goto out_unlock;
443         }
444
445         I915_WRITE(DPIO_DATA, val);
446         I915_WRITE(DPIO_REG, reg);
447         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448                    DPIO_BYTE);
449         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450                 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458         struct drm_i915_private *dev_priv = dev->dev_private;
459
460         /* Reset the DPIO config */
461         I915_WRITE(DPIO_CTL, 0);
462         POSTING_READ(DPIO_CTL);
463         I915_WRITE(DPIO_CTL, 1);
464         POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470         return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474         {
475                 .callback = intel_dual_link_lvds_callback,
476                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477                 .matches = {
478                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480                 },
481         },
482         { }     /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486                               unsigned int reg)
487 {
488         unsigned int val;
489
490         /* use the module option value if specified */
491         if (i915_lvds_channel_mode > 0)
492                 return i915_lvds_channel_mode == 2;
493
494         if (dmi_check_system(intel_dual_link_lvds))
495                 return true;
496
497         if (dev_priv->lvds_val)
498                 val = dev_priv->lvds_val;
499         else {
500                 /* BIOS should set the proper LVDS register value at boot, but
501                  * in reality, it doesn't set the value when the lid is closed;
502                  * we need to check "the value to be set" in VBT when LVDS
503                  * register is uninitialized.
504                  */
505                 val = I915_READ(reg);
506                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507                         val = dev_priv->bios_lvds_val;
508                 dev_priv->lvds_val = val;
509         }
510         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514                                                 int refclk)
515 {
516         struct drm_device *dev = crtc->dev;
517         struct drm_i915_private *dev_priv = dev->dev_private;
518         const intel_limit_t *limit;
519
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522                         /* LVDS dual channel */
523                         if (refclk == 100000)
524                                 limit = &intel_limits_ironlake_dual_lvds_100m;
525                         else
526                                 limit = &intel_limits_ironlake_dual_lvds;
527                 } else {
528                         if (refclk == 100000)
529                                 limit = &intel_limits_ironlake_single_lvds_100m;
530                         else
531                                 limit = &intel_limits_ironlake_single_lvds;
532                 }
533         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534                         HAS_eDP)
535                 limit = &intel_limits_ironlake_display_port;
536         else
537                 limit = &intel_limits_ironlake_dac;
538
539         return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544         struct drm_device *dev = crtc->dev;
545         struct drm_i915_private *dev_priv = dev->dev_private;
546         const intel_limit_t *limit;
547
548         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549                 if (is_dual_link_lvds(dev_priv, LVDS))
550                         /* LVDS with dual channel */
551                         limit = &intel_limits_g4x_dual_channel_lvds;
552                 else
553                         /* LVDS with dual channel */
554                         limit = &intel_limits_g4x_single_channel_lvds;
555         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557                 limit = &intel_limits_g4x_hdmi;
558         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559                 limit = &intel_limits_g4x_sdvo;
560         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561                 limit = &intel_limits_g4x_display_port;
562         } else /* The option is for other outputs */
563                 limit = &intel_limits_i9xx_sdvo;
564
565         return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570         struct drm_device *dev = crtc->dev;
571         const intel_limit_t *limit;
572
573         if (HAS_PCH_SPLIT(dev))
574                 limit = intel_ironlake_limit(crtc, refclk);
575         else if (IS_G4X(dev)) {
576                 limit = intel_g4x_limit(crtc);
577         } else if (IS_PINEVIEW(dev)) {
578                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579                         limit = &intel_limits_pineview_lvds;
580                 else
581                         limit = &intel_limits_pineview_sdvo;
582         } else if (IS_VALLEYVIEW(dev)) {
583                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584                         limit = &intel_limits_vlv_dac;
585                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586                         limit = &intel_limits_vlv_hdmi;
587                 else
588                         limit = &intel_limits_vlv_dp;
589         } else if (!IS_GEN2(dev)) {
590                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591                         limit = &intel_limits_i9xx_lvds;
592                 else
593                         limit = &intel_limits_i9xx_sdvo;
594         } else {
595                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596                         limit = &intel_limits_i8xx_lvds;
597                 else
598                         limit = &intel_limits_i8xx_dvo;
599         }
600         return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606         clock->m = clock->m2 + 2;
607         clock->p = clock->p1 * clock->p2;
608         clock->vco = refclk * clock->m / clock->n;
609         clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614         if (IS_PINEVIEW(dev)) {
615                 pineview_clock(refclk, clock);
616                 return;
617         }
618         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619         clock->p = clock->p1 * clock->p2;
620         clock->vco = refclk * clock->m / (clock->n + 2);
621         clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625  * Returns whether any output on the specified pipe is of the specified type
626  */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629         struct drm_device *dev = crtc->dev;
630         struct intel_encoder *encoder;
631
632         for_each_encoder_on_crtc(dev, crtc, encoder)
633                 if (encoder->type == type)
634                         return true;
635
636         return false;
637 }
638
639 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641  * Returns whether the given set of divisors are valid for a given refclk with
642  * the given connectors.
643  */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646                                const intel_limit_t *limit,
647                                const intel_clock_t *clock)
648 {
649         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
650                 INTELPllInvalid("p1 out of range\n");
651         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
652                 INTELPllInvalid("p out of range\n");
653         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
654                 INTELPllInvalid("m2 out of range\n");
655         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
656                 INTELPllInvalid("m1 out of range\n");
657         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658                 INTELPllInvalid("m1 <= m2\n");
659         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
660                 INTELPllInvalid("m out of range\n");
661         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
662                 INTELPllInvalid("n out of range\n");
663         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664                 INTELPllInvalid("vco out of range\n");
665         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666          * connector, etc., rather than just a single range.
667          */
668         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669                 INTELPllInvalid("dot out of range\n");
670
671         return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676                     int target, int refclk, intel_clock_t *match_clock,
677                     intel_clock_t *best_clock)
678
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         intel_clock_t clock;
683         int err = target;
684
685         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686             (I915_READ(LVDS)) != 0) {
687                 /*
688                  * For LVDS, if the panel is on, just rely on its current
689                  * settings for dual-channel.  We haven't figured out how to
690                  * reliably set up different single/dual channel state, if we
691                  * even can.
692                  */
693                 if (is_dual_link_lvds(dev_priv, LVDS))
694                         clock.p2 = limit->p2.p2_fast;
695                 else
696                         clock.p2 = limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         clock.p2 = limit->p2.p2_slow;
700                 else
701                         clock.p2 = limit->p2.p2_fast;
702         }
703
704         memset(best_clock, 0, sizeof(*best_clock));
705
706         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707              clock.m1++) {
708                 for (clock.m2 = limit->m2.min;
709                      clock.m2 <= limit->m2.max; clock.m2++) {
710                         /* m1 is always 0 in Pineview */
711                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712                                 break;
713                         for (clock.n = limit->n.min;
714                              clock.n <= limit->n.max; clock.n++) {
715                                 for (clock.p1 = limit->p1.min;
716                                         clock.p1 <= limit->p1.max; clock.p1++) {
717                                         int this_err;
718
719                                         intel_clock(dev, refclk, &clock);
720                                         if (!intel_PLL_is_valid(dev, limit,
721                                                                 &clock))
722                                                 continue;
723                                         if (match_clock &&
724                                             clock.p != match_clock->p)
725                                                 continue;
726
727                                         this_err = abs(clock.dot - target);
728                                         if (this_err < err) {
729                                                 *best_clock = clock;
730                                                 err = this_err;
731                                         }
732                                 }
733                         }
734                 }
735         }
736
737         return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                         int target, int refclk, intel_clock_t *match_clock,
743                         intel_clock_t *best_clock)
744 {
745         struct drm_device *dev = crtc->dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         intel_clock_t clock;
748         int max_n;
749         bool found;
750         /* approximately equals target * 0.00585 */
751         int err_most = (target >> 8) + (target >> 9);
752         found = false;
753
754         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755                 int lvds_reg;
756
757                 if (HAS_PCH_SPLIT(dev))
758                         lvds_reg = PCH_LVDS;
759                 else
760                         lvds_reg = LVDS;
761                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762                     LVDS_CLKB_POWER_UP)
763                         clock.p2 = limit->p2.p2_fast;
764                 else
765                         clock.p2 = limit->p2.p2_slow;
766         } else {
767                 if (target < limit->p2.dot_limit)
768                         clock.p2 = limit->p2.p2_slow;
769                 else
770                         clock.p2 = limit->p2.p2_fast;
771         }
772
773         memset(best_clock, 0, sizeof(*best_clock));
774         max_n = limit->n.max;
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 /* based on hardware requirement, prefere larger m1,m2 */
778                 for (clock.m1 = limit->m1.max;
779                      clock.m1 >= limit->m1.min; clock.m1--) {
780                         for (clock.m2 = limit->m2.max;
781                              clock.m2 >= limit->m2.min; clock.m2--) {
782                                 for (clock.p1 = limit->p1.max;
783                                      clock.p1 >= limit->p1.min; clock.p1--) {
784                                         int this_err;
785
786                                         intel_clock(dev, refclk, &clock);
787                                         if (!intel_PLL_is_valid(dev, limit,
788                                                                 &clock))
789                                                 continue;
790                                         if (match_clock &&
791                                             clock.p != match_clock->p)
792                                                 continue;
793
794                                         this_err = abs(clock.dot - target);
795                                         if (this_err < err_most) {
796                                                 *best_clock = clock;
797                                                 err_most = this_err;
798                                                 max_n = clock.n;
799                                                 found = true;
800                                         }
801                                 }
802                         }
803                 }
804         }
805         return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810                            int target, int refclk, intel_clock_t *match_clock,
811                            intel_clock_t *best_clock)
812 {
813         struct drm_device *dev = crtc->dev;
814         intel_clock_t clock;
815
816         if (target < 200000) {
817                 clock.n = 1;
818                 clock.p1 = 2;
819                 clock.p2 = 10;
820                 clock.m1 = 12;
821                 clock.m2 = 9;
822         } else {
823                 clock.n = 2;
824                 clock.p1 = 1;
825                 clock.p2 = 10;
826                 clock.m1 = 14;
827                 clock.m2 = 8;
828         }
829         intel_clock(dev, refclk, &clock);
830         memcpy(best_clock, &clock, sizeof(intel_clock_t));
831         return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *match_clock,
838                       intel_clock_t *best_clock)
839 {
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.p1 = 2;
843                 clock.p2 = 10;
844                 clock.n = 2;
845                 clock.m1 = 23;
846                 clock.m2 = 8;
847         } else {
848                 clock.p1 = 1;
849                 clock.p2 = 10;
850                 clock.n = 1;
851                 clock.m1 = 14;
852                 clock.m2 = 2;
853         }
854         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855         clock.p = (clock.p1 * clock.p2);
856         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857         clock.vco = 0;
858         memcpy(best_clock, &clock, sizeof(intel_clock_t));
859         return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863                         int target, int refclk, intel_clock_t *match_clock,
864                         intel_clock_t *best_clock)
865 {
866         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867         u32 m, n, fastclk;
868         u32 updrate, minupdate, fracbits, p;
869         unsigned long bestppm, ppm, absppm;
870         int dotclk, flag;
871
872         flag = 0;
873         dotclk = target * 1000;
874         bestppm = 1000000;
875         ppm = absppm = 0;
876         fastclk = dotclk / (2*100);
877         updrate = 0;
878         minupdate = 19200;
879         fracbits = 1;
880         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881         bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883         /* based on hardware requirement, prefer smaller n to precision */
884         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885                 updrate = refclk / n;
886                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888                                 if (p2 > 10)
889                                         p2 = p2 - 1;
890                                 p = p1 * p2;
891                                 /* based on hardware requirement, prefer bigger m1,m2 values */
892                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893                                         m2 = (((2*(fastclk * p * n / m1 )) +
894                                                refclk) / (2*refclk));
895                                         m = m1 * m2;
896                                         vco = updrate * m;
897                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
898                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899                                                 absppm = (ppm > 0) ? ppm : (-ppm);
900                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901                                                         bestppm = 0;
902                                                         flag = 1;
903                                                 }
904                                                 if (absppm < bestppm - 10) {
905                                                         bestppm = absppm;
906                                                         flag = 1;
907                                                 }
908                                                 if (flag) {
909                                                         bestn = n;
910                                                         bestm1 = m1;
911                                                         bestm2 = m2;
912                                                         bestp1 = p1;
913                                                         bestp2 = p2;
914                                                         flag = 0;
915                                                 }
916                                         }
917                                 }
918                         }
919                 }
920         }
921         best_clock->n = bestn;
922         best_clock->m1 = bestm1;
923         best_clock->m2 = bestm2;
924         best_clock->p1 = bestp1;
925         best_clock->p2 = bestp2;
926
927         return true;
928 }
929
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931 {
932         struct drm_i915_private *dev_priv = dev->dev_private;
933         u32 frame, frame_reg = PIPEFRAME(pipe);
934
935         frame = I915_READ(frame_reg);
936
937         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938                 DRM_DEBUG_KMS("vblank wait timed out\n");
939 }
940
941 /**
942  * intel_wait_for_vblank - wait for vblank on a given pipe
943  * @dev: drm device
944  * @pipe: pipe to wait for
945  *
946  * Wait for vblank to occur on a given pipe.  Needed for various bits of
947  * mode setting code.
948  */
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         int pipestat_reg = PIPESTAT(pipe);
953
954         if (INTEL_INFO(dev)->gen >= 5) {
955                 ironlake_wait_for_vblank(dev, pipe);
956                 return;
957         }
958
959         /* Clear existing vblank status. Note this will clear any other
960          * sticky status fields as well.
961          *
962          * This races with i915_driver_irq_handler() with the result
963          * that either function could miss a vblank event.  Here it is not
964          * fatal, as we will either wait upon the next vblank interrupt or
965          * timeout.  Generally speaking intel_wait_for_vblank() is only
966          * called during modeset at which time the GPU should be idle and
967          * should *not* be performing page flips and thus not waiting on
968          * vblanks...
969          * Currently, the result of us stealing a vblank from the irq
970          * handler is that a single frame will be skipped during swapbuffers.
971          */
972         I915_WRITE(pipestat_reg,
973                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
975         /* Wait for vblank interrupt bit to set */
976         if (wait_for(I915_READ(pipestat_reg) &
977                      PIPE_VBLANK_INTERRUPT_STATUS,
978                      50))
979                 DRM_DEBUG_KMS("vblank wait timed out\n");
980 }
981
982 /*
983  * intel_wait_for_pipe_off - wait for pipe to turn off
984  * @dev: drm device
985  * @pipe: pipe to wait for
986  *
987  * After disabling a pipe, we can't wait for vblank in the usual way,
988  * spinning on the vblank interrupt status bit, since we won't actually
989  * see an interrupt when the pipe is disabled.
990  *
991  * On Gen4 and above:
992  *   wait for the pipe register state bit to turn off
993  *
994  * Otherwise:
995  *   wait for the display line value to settle (it usually
996  *   ends up stopping at the start of the next frame).
997  *
998  */
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1000 {
1001         struct drm_i915_private *dev_priv = dev->dev_private;
1002
1003         if (INTEL_INFO(dev)->gen >= 4) {
1004                 int reg = PIPECONF(pipe);
1005
1006                 /* Wait for the Pipe State to go off */
1007                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008                              100))
1009                         WARN(1, "pipe_off wait timed out\n");
1010         } else {
1011                 u32 last_line, line_mask;
1012                 int reg = PIPEDSL(pipe);
1013                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
1015                 if (IS_GEN2(dev))
1016                         line_mask = DSL_LINEMASK_GEN2;
1017                 else
1018                         line_mask = DSL_LINEMASK_GEN3;
1019
1020                 /* Wait for the display line to settle */
1021                 do {
1022                         last_line = I915_READ(reg) & line_mask;
1023                         mdelay(5);
1024                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025                          time_after(timeout, jiffies));
1026                 if (time_after(jiffies, timeout))
1027                         WARN(1, "pipe_off wait timed out\n");
1028         }
1029 }
1030
1031 static const char *state_string(bool enabled)
1032 {
1033         return enabled ? "on" : "off";
1034 }
1035
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038                        enum pipe pipe, bool state)
1039 {
1040         int reg;
1041         u32 val;
1042         bool cur_state;
1043
1044         reg = DPLL(pipe);
1045         val = I915_READ(reg);
1046         cur_state = !!(val & DPLL_VCO_ENABLE);
1047         WARN(cur_state != state,
1048              "PLL state assertion failure (expected %s, current %s)\n",
1049              state_string(state), state_string(cur_state));
1050 }
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056                            struct intel_pch_pll *pll,
1057                            struct intel_crtc *crtc,
1058                            bool state)
1059 {
1060         u32 val;
1061         bool cur_state;
1062
1063         if (HAS_PCH_LPT(dev_priv->dev)) {
1064                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065                 return;
1066         }
1067
1068         if (WARN (!pll,
1069                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070                 return;
1071
1072         val = I915_READ(pll->pll_reg);
1073         cur_state = !!(val & DPLL_VCO_ENABLE);
1074         WARN(cur_state != state,
1075              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076              pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078         /* Make sure the selected PLL is correctly attached to the transcoder */
1079         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080                 u32 pch_dpll;
1081
1082                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1086                           cur_state, crtc->pipe, pch_dpll)) {
1087                         cur_state = !!(val >> (4*crtc->pipe + 3));
1088                         WARN(cur_state != state,
1089                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1090                              pll->pll_reg == _PCH_DPLL_B,
1091                              state_string(state),
1092                              crtc->pipe,
1093                              val);
1094                 }
1095         }
1096 }
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1099
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101                           enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106
1107         if (IS_HASWELL(dev_priv->dev)) {
1108                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109                 reg = DDI_FUNC_CTL(pipe);
1110                 val = I915_READ(reg);
1111                 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112         } else {
1113                 reg = FDI_TX_CTL(pipe);
1114                 val = I915_READ(reg);
1115                 cur_state = !!(val & FDI_TX_ENABLE);
1116         }
1117         WARN(cur_state != state,
1118              "FDI TX state assertion failure (expected %s, current %s)\n",
1119              state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125                           enum pipe pipe, bool state)
1126 {
1127         int reg;
1128         u32 val;
1129         bool cur_state;
1130
1131         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133                         return;
1134         } else {
1135                 reg = FDI_RX_CTL(pipe);
1136                 val = I915_READ(reg);
1137                 cur_state = !!(val & FDI_RX_ENABLE);
1138         }
1139         WARN(cur_state != state,
1140              "FDI RX state assertion failure (expected %s, current %s)\n",
1141              state_string(state), state_string(cur_state));
1142 }
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147                                       enum pipe pipe)
1148 {
1149         int reg;
1150         u32 val;
1151
1152         /* ILK FDI PLL is always enabled */
1153         if (dev_priv->info->gen == 5)
1154                 return;
1155
1156         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157         if (IS_HASWELL(dev_priv->dev))
1158                 return;
1159
1160         reg = FDI_TX_CTL(pipe);
1161         val = I915_READ(reg);
1162         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163 }
1164
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166                                       enum pipe pipe)
1167 {
1168         int reg;
1169         u32 val;
1170
1171         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173                 return;
1174         }
1175         reg = FDI_RX_CTL(pipe);
1176         val = I915_READ(reg);
1177         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181                                   enum pipe pipe)
1182 {
1183         int pp_reg, lvds_reg;
1184         u32 val;
1185         enum pipe panel_pipe = PIPE_A;
1186         bool locked = true;
1187
1188         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189                 pp_reg = PCH_PP_CONTROL;
1190                 lvds_reg = PCH_LVDS;
1191         } else {
1192                 pp_reg = PP_CONTROL;
1193                 lvds_reg = LVDS;
1194         }
1195
1196         val = I915_READ(pp_reg);
1197         if (!(val & PANEL_POWER_ON) ||
1198             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199                 locked = false;
1200
1201         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202                 panel_pipe = PIPE_B;
1203
1204         WARN(panel_pipe == pipe && locked,
1205              "panel assertion failure, pipe %c regs locked\n",
1206              pipe_name(pipe));
1207 }
1208
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210                  enum pipe pipe, bool state)
1211 {
1212         int reg;
1213         u32 val;
1214         bool cur_state;
1215
1216         /* if we need the pipe A quirk it must be always on */
1217         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218                 state = true;
1219
1220         reg = PIPECONF(pipe);
1221         val = I915_READ(reg);
1222         cur_state = !!(val & PIPECONF_ENABLE);
1223         WARN(cur_state != state,
1224              "pipe %c assertion failure (expected %s, current %s)\n",
1225              pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229                          enum plane plane, bool state)
1230 {
1231         int reg;
1232         u32 val;
1233         bool cur_state;
1234
1235         reg = DSPCNTR(plane);
1236         val = I915_READ(reg);
1237         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238         WARN(cur_state != state,
1239              "plane %c assertion failure (expected %s, current %s)\n",
1240              plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247                                    enum pipe pipe)
1248 {
1249         int reg, i;
1250         u32 val;
1251         int cur_pipe;
1252
1253         /* Planes are fixed to pipes on ILK+ */
1254         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255                 reg = DSPCNTR(pipe);
1256                 val = I915_READ(reg);
1257                 WARN((val & DISPLAY_PLANE_ENABLE),
1258                      "plane %c assertion failure, should be disabled but not\n",
1259                      plane_name(pipe));
1260                 return;
1261         }
1262
1263         /* Need to check both planes against the pipe */
1264         for (i = 0; i < 2; i++) {
1265                 reg = DSPCNTR(i);
1266                 val = I915_READ(reg);
1267                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268                         DISPPLANE_SEL_PIPE_SHIFT;
1269                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271                      plane_name(i), pipe_name(pipe));
1272         }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277         u32 val;
1278         bool enabled;
1279
1280         if (HAS_PCH_LPT(dev_priv->dev)) {
1281                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282                 return;
1283         }
1284
1285         val = I915_READ(PCH_DREF_CONTROL);
1286         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287                             DREF_SUPERSPREAD_SOURCE_MASK));
1288         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292                                        enum pipe pipe)
1293 {
1294         int reg;
1295         u32 val;
1296         bool enabled;
1297
1298         reg = TRANSCONF(pipe);
1299         val = I915_READ(reg);
1300         enabled = !!(val & TRANS_ENABLE);
1301         WARN(enabled,
1302              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303              pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307                             enum pipe pipe, u32 port_sel, u32 val)
1308 {
1309         if ((val & DP_PORT_EN) == 0)
1310                 return false;
1311
1312         if (HAS_PCH_CPT(dev_priv->dev)) {
1313                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else {
1318                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319                         return false;
1320         }
1321         return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325                               enum pipe pipe, u32 val)
1326 {
1327         if ((val & PORT_ENABLE) == 0)
1328                 return false;
1329
1330         if (HAS_PCH_CPT(dev_priv->dev)) {
1331                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332                         return false;
1333         } else {
1334                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335                         return false;
1336         }
1337         return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341                               enum pipe pipe, u32 val)
1342 {
1343         if ((val & LVDS_PORT_EN) == 0)
1344                 return false;
1345
1346         if (HAS_PCH_CPT(dev_priv->dev)) {
1347                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348                         return false;
1349         } else {
1350                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357                               enum pipe pipe, u32 val)
1358 {
1359         if ((val & ADPA_DAC_ENABLE) == 0)
1360                 return false;
1361         if (HAS_PCH_CPT(dev_priv->dev)) {
1362                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363                         return false;
1364         } else {
1365                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366                         return false;
1367         }
1368         return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372                                    enum pipe pipe, int reg, u32 port_sel)
1373 {
1374         u32 val = I915_READ(reg);
1375         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377              reg, pipe_name(pipe));
1378
1379         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1380              "IBX PCH dp port still using transcoder B\n");
1381 }
1382
1383 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1384                                      enum pipe pipe, int reg)
1385 {
1386         u32 val = I915_READ(reg);
1387         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1388              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1389              reg, pipe_name(pipe));
1390
1391         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1392              "IBX PCH hdmi port still using transcoder B\n");
1393 }
1394
1395 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1396                                       enum pipe pipe)
1397 {
1398         int reg;
1399         u32 val;
1400
1401         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1402         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1403         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1404
1405         reg = PCH_ADPA;
1406         val = I915_READ(reg);
1407         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1408              "PCH VGA enabled on transcoder %c, should be disabled\n",
1409              pipe_name(pipe));
1410
1411         reg = PCH_LVDS;
1412         val = I915_READ(reg);
1413         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1414              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1415              pipe_name(pipe));
1416
1417         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1418         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1419         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1420 }
1421
1422 /**
1423  * intel_enable_pll - enable a PLL
1424  * @dev_priv: i915 private structure
1425  * @pipe: pipe PLL to enable
1426  *
1427  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1428  * make sure the PLL reg is writable first though, since the panel write
1429  * protect mechanism may be enabled.
1430  *
1431  * Note!  This is for pre-ILK only.
1432  *
1433  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1434  */
1435 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1436 {
1437         int reg;
1438         u32 val;
1439
1440         /* No really, not for ILK+ */
1441         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1442
1443         /* PLL is protected by panel, make sure we can write it */
1444         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1445                 assert_panel_unlocked(dev_priv, pipe);
1446
1447         reg = DPLL(pipe);
1448         val = I915_READ(reg);
1449         val |= DPLL_VCO_ENABLE;
1450
1451         /* We do this three times for luck */
1452         I915_WRITE(reg, val);
1453         POSTING_READ(reg);
1454         udelay(150); /* wait for warmup */
1455         I915_WRITE(reg, val);
1456         POSTING_READ(reg);
1457         udelay(150); /* wait for warmup */
1458         I915_WRITE(reg, val);
1459         POSTING_READ(reg);
1460         udelay(150); /* wait for warmup */
1461 }
1462
1463 /**
1464  * intel_disable_pll - disable a PLL
1465  * @dev_priv: i915 private structure
1466  * @pipe: pipe PLL to disable
1467  *
1468  * Disable the PLL for @pipe, making sure the pipe is off first.
1469  *
1470  * Note!  This is for pre-ILK only.
1471  */
1472 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474         int reg;
1475         u32 val;
1476
1477         /* Don't disable pipe A or pipe A PLLs if needed */
1478         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1479                 return;
1480
1481         /* Make sure the pipe isn't still relying on us */
1482         assert_pipe_disabled(dev_priv, pipe);
1483
1484         reg = DPLL(pipe);
1485         val = I915_READ(reg);
1486         val &= ~DPLL_VCO_ENABLE;
1487         I915_WRITE(reg, val);
1488         POSTING_READ(reg);
1489 }
1490
1491 /* SBI access */
1492 static void
1493 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1494 {
1495         unsigned long flags;
1496
1497         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1498         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1499                                 100)) {
1500                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1501                 goto out_unlock;
1502         }
1503
1504         I915_WRITE(SBI_ADDR,
1505                         (reg << 16));
1506         I915_WRITE(SBI_DATA,
1507                         value);
1508         I915_WRITE(SBI_CTL_STAT,
1509                         SBI_BUSY |
1510                         SBI_CTL_OP_CRWR);
1511
1512         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1513                                 100)) {
1514                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1515                 goto out_unlock;
1516         }
1517
1518 out_unlock:
1519         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1520 }
1521
1522 static u32
1523 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1524 {
1525         unsigned long flags;
1526         u32 value = 0;
1527
1528         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1529         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1530                                 100)) {
1531                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1532                 goto out_unlock;
1533         }
1534
1535         I915_WRITE(SBI_ADDR,
1536                         (reg << 16));
1537         I915_WRITE(SBI_CTL_STAT,
1538                         SBI_BUSY |
1539                         SBI_CTL_OP_CRRD);
1540
1541         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1542                                 100)) {
1543                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1544                 goto out_unlock;
1545         }
1546
1547         value = I915_READ(SBI_DATA);
1548
1549 out_unlock:
1550         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1551         return value;
1552 }
1553
1554 /**
1555  * intel_enable_pch_pll - enable PCH PLL
1556  * @dev_priv: i915 private structure
1557  * @pipe: pipe PLL to enable
1558  *
1559  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1560  * drives the transcoder clock.
1561  */
1562 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1563 {
1564         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1565         struct intel_pch_pll *pll;
1566         int reg;
1567         u32 val;
1568
1569         /* PCH PLLs only available on ILK, SNB and IVB */
1570         BUG_ON(dev_priv->info->gen < 5);
1571         pll = intel_crtc->pch_pll;
1572         if (pll == NULL)
1573                 return;
1574
1575         if (WARN_ON(pll->refcount == 0))
1576                 return;
1577
1578         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1579                       pll->pll_reg, pll->active, pll->on,
1580                       intel_crtc->base.base.id);
1581
1582         /* PCH refclock must be enabled first */
1583         assert_pch_refclk_enabled(dev_priv);
1584
1585         if (pll->active++ && pll->on) {
1586                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1587                 return;
1588         }
1589
1590         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1591
1592         reg = pll->pll_reg;
1593         val = I915_READ(reg);
1594         val |= DPLL_VCO_ENABLE;
1595         I915_WRITE(reg, val);
1596         POSTING_READ(reg);
1597         udelay(200);
1598
1599         pll->on = true;
1600 }
1601
1602 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1603 {
1604         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1605         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1606         int reg;
1607         u32 val;
1608
1609         /* PCH only available on ILK+ */
1610         BUG_ON(dev_priv->info->gen < 5);
1611         if (pll == NULL)
1612                return;
1613
1614         if (WARN_ON(pll->refcount == 0))
1615                 return;
1616
1617         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1618                       pll->pll_reg, pll->active, pll->on,
1619                       intel_crtc->base.base.id);
1620
1621         if (WARN_ON(pll->active == 0)) {
1622                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1623                 return;
1624         }
1625
1626         if (--pll->active) {
1627                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1628                 return;
1629         }
1630
1631         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1632
1633         /* Make sure transcoder isn't still depending on us */
1634         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1635
1636         reg = pll->pll_reg;
1637         val = I915_READ(reg);
1638         val &= ~DPLL_VCO_ENABLE;
1639         I915_WRITE(reg, val);
1640         POSTING_READ(reg);
1641         udelay(200);
1642
1643         pll->on = false;
1644 }
1645
1646 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1647                                     enum pipe pipe)
1648 {
1649         int reg;
1650         u32 val, pipeconf_val;
1651         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1652
1653         /* PCH only available on ILK+ */
1654         BUG_ON(dev_priv->info->gen < 5);
1655
1656         /* Make sure PCH DPLL is enabled */
1657         assert_pch_pll_enabled(dev_priv,
1658                                to_intel_crtc(crtc)->pch_pll,
1659                                to_intel_crtc(crtc));
1660
1661         /* FDI must be feeding us bits for PCH ports */
1662         assert_fdi_tx_enabled(dev_priv, pipe);
1663         assert_fdi_rx_enabled(dev_priv, pipe);
1664
1665         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1666                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1667                 return;
1668         }
1669         reg = TRANSCONF(pipe);
1670         val = I915_READ(reg);
1671         pipeconf_val = I915_READ(PIPECONF(pipe));
1672
1673         if (HAS_PCH_IBX(dev_priv->dev)) {
1674                 /*
1675                  * make the BPC in transcoder be consistent with
1676                  * that in pipeconf reg.
1677                  */
1678                 val &= ~PIPE_BPC_MASK;
1679                 val |= pipeconf_val & PIPE_BPC_MASK;
1680         }
1681
1682         val &= ~TRANS_INTERLACE_MASK;
1683         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1684                 if (HAS_PCH_IBX(dev_priv->dev) &&
1685                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1686                         val |= TRANS_LEGACY_INTERLACED_ILK;
1687                 else
1688                         val |= TRANS_INTERLACED;
1689         else
1690                 val |= TRANS_PROGRESSIVE;
1691
1692         I915_WRITE(reg, val | TRANS_ENABLE);
1693         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1694                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1695 }
1696
1697 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1698                                      enum pipe pipe)
1699 {
1700         int reg;
1701         u32 val;
1702
1703         /* FDI relies on the transcoder */
1704         assert_fdi_tx_disabled(dev_priv, pipe);
1705         assert_fdi_rx_disabled(dev_priv, pipe);
1706
1707         /* Ports must be off as well */
1708         assert_pch_ports_disabled(dev_priv, pipe);
1709
1710         reg = TRANSCONF(pipe);
1711         val = I915_READ(reg);
1712         val &= ~TRANS_ENABLE;
1713         I915_WRITE(reg, val);
1714         /* wait for PCH transcoder off, transcoder state */
1715         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1716                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1717 }
1718
1719 /**
1720  * intel_enable_pipe - enable a pipe, asserting requirements
1721  * @dev_priv: i915 private structure
1722  * @pipe: pipe to enable
1723  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1724  *
1725  * Enable @pipe, making sure that various hardware specific requirements
1726  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1727  *
1728  * @pipe should be %PIPE_A or %PIPE_B.
1729  *
1730  * Will wait until the pipe is actually running (i.e. first vblank) before
1731  * returning.
1732  */
1733 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1734                               bool pch_port)
1735 {
1736         int reg;
1737         u32 val;
1738
1739         /*
1740          * A pipe without a PLL won't actually be able to drive bits from
1741          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1742          * need the check.
1743          */
1744         if (!HAS_PCH_SPLIT(dev_priv->dev))
1745                 assert_pll_enabled(dev_priv, pipe);
1746         else {
1747                 if (pch_port) {
1748                         /* if driving the PCH, we need FDI enabled */
1749                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1750                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1751                 }
1752                 /* FIXME: assert CPU port conditions for SNB+ */
1753         }
1754
1755         reg = PIPECONF(pipe);
1756         val = I915_READ(reg);
1757         if (val & PIPECONF_ENABLE)
1758                 return;
1759
1760         I915_WRITE(reg, val | PIPECONF_ENABLE);
1761         intel_wait_for_vblank(dev_priv->dev, pipe);
1762 }
1763
1764 /**
1765  * intel_disable_pipe - disable a pipe, asserting requirements
1766  * @dev_priv: i915 private structure
1767  * @pipe: pipe to disable
1768  *
1769  * Disable @pipe, making sure that various hardware specific requirements
1770  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1771  *
1772  * @pipe should be %PIPE_A or %PIPE_B.
1773  *
1774  * Will wait until the pipe has shut down before returning.
1775  */
1776 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1777                                enum pipe pipe)
1778 {
1779         int reg;
1780         u32 val;
1781
1782         /*
1783          * Make sure planes won't keep trying to pump pixels to us,
1784          * or we might hang the display.
1785          */
1786         assert_planes_disabled(dev_priv, pipe);
1787
1788         /* Don't disable pipe A or pipe A PLLs if needed */
1789         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1790                 return;
1791
1792         reg = PIPECONF(pipe);
1793         val = I915_READ(reg);
1794         if ((val & PIPECONF_ENABLE) == 0)
1795                 return;
1796
1797         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1798         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1799 }
1800
1801 /*
1802  * Plane regs are double buffered, going from enabled->disabled needs a
1803  * trigger in order to latch.  The display address reg provides this.
1804  */
1805 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1806                                       enum plane plane)
1807 {
1808         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1809         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1810 }
1811
1812 /**
1813  * intel_enable_plane - enable a display plane on a given pipe
1814  * @dev_priv: i915 private structure
1815  * @plane: plane to enable
1816  * @pipe: pipe being fed
1817  *
1818  * Enable @plane on @pipe, making sure that @pipe is running first.
1819  */
1820 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1821                                enum plane plane, enum pipe pipe)
1822 {
1823         int reg;
1824         u32 val;
1825
1826         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1827         assert_pipe_enabled(dev_priv, pipe);
1828
1829         reg = DSPCNTR(plane);
1830         val = I915_READ(reg);
1831         if (val & DISPLAY_PLANE_ENABLE)
1832                 return;
1833
1834         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1835         intel_flush_display_plane(dev_priv, plane);
1836         intel_wait_for_vblank(dev_priv->dev, pipe);
1837 }
1838
1839 /**
1840  * intel_disable_plane - disable a display plane
1841  * @dev_priv: i915 private structure
1842  * @plane: plane to disable
1843  * @pipe: pipe consuming the data
1844  *
1845  * Disable @plane; should be an independent operation.
1846  */
1847 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1848                                 enum plane plane, enum pipe pipe)
1849 {
1850         int reg;
1851         u32 val;
1852
1853         reg = DSPCNTR(plane);
1854         val = I915_READ(reg);
1855         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1856                 return;
1857
1858         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1859         intel_flush_display_plane(dev_priv, plane);
1860         intel_wait_for_vblank(dev_priv->dev, pipe);
1861 }
1862
1863 int
1864 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1865                            struct drm_i915_gem_object *obj,
1866                            struct intel_ring_buffer *pipelined)
1867 {
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869         u32 alignment;
1870         int ret;
1871
1872         switch (obj->tiling_mode) {
1873         case I915_TILING_NONE:
1874                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1875                         alignment = 128 * 1024;
1876                 else if (INTEL_INFO(dev)->gen >= 4)
1877                         alignment = 4 * 1024;
1878                 else
1879                         alignment = 64 * 1024;
1880                 break;
1881         case I915_TILING_X:
1882                 /* pin() will align the object as required by fence */
1883                 alignment = 0;
1884                 break;
1885         case I915_TILING_Y:
1886                 /* FIXME: Is this true? */
1887                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1888                 return -EINVAL;
1889         default:
1890                 BUG();
1891         }
1892
1893         dev_priv->mm.interruptible = false;
1894         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1895         if (ret)
1896                 goto err_interruptible;
1897
1898         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1899          * fence, whereas 965+ only requires a fence if using
1900          * framebuffer compression.  For simplicity, we always install
1901          * a fence as the cost is not that onerous.
1902          */
1903         ret = i915_gem_object_get_fence(obj);
1904         if (ret)
1905                 goto err_unpin;
1906
1907         i915_gem_object_pin_fence(obj);
1908
1909         dev_priv->mm.interruptible = true;
1910         return 0;
1911
1912 err_unpin:
1913         i915_gem_object_unpin(obj);
1914 err_interruptible:
1915         dev_priv->mm.interruptible = true;
1916         return ret;
1917 }
1918
1919 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1920 {
1921         i915_gem_object_unpin_fence(obj);
1922         i915_gem_object_unpin(obj);
1923 }
1924
1925 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1926  * is assumed to be a power-of-two. */
1927 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1928                                                         unsigned int bpp,
1929                                                         unsigned int pitch)
1930 {
1931         int tile_rows, tiles;
1932
1933         tile_rows = *y / 8;
1934         *y %= 8;
1935         tiles = *x / (512/bpp);
1936         *x %= 512/bpp;
1937
1938         return tile_rows * pitch * 8 + tiles * 4096;
1939 }
1940
1941 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1942                              int x, int y)
1943 {
1944         struct drm_device *dev = crtc->dev;
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1947         struct intel_framebuffer *intel_fb;
1948         struct drm_i915_gem_object *obj;
1949         int plane = intel_crtc->plane;
1950         unsigned long linear_offset;
1951         u32 dspcntr;
1952         u32 reg;
1953
1954         switch (plane) {
1955         case 0:
1956         case 1:
1957                 break;
1958         default:
1959                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1960                 return -EINVAL;
1961         }
1962
1963         intel_fb = to_intel_framebuffer(fb);
1964         obj = intel_fb->obj;
1965
1966         reg = DSPCNTR(plane);
1967         dspcntr = I915_READ(reg);
1968         /* Mask out pixel format bits in case we change it */
1969         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1970         switch (fb->bits_per_pixel) {
1971         case 8:
1972                 dspcntr |= DISPPLANE_8BPP;
1973                 break;
1974         case 16:
1975                 if (fb->depth == 15)
1976                         dspcntr |= DISPPLANE_15_16BPP;
1977                 else
1978                         dspcntr |= DISPPLANE_16BPP;
1979                 break;
1980         case 24:
1981         case 32:
1982                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1983                 break;
1984         default:
1985                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1986                 return -EINVAL;
1987         }
1988         if (INTEL_INFO(dev)->gen >= 4) {
1989                 if (obj->tiling_mode != I915_TILING_NONE)
1990                         dspcntr |= DISPPLANE_TILED;
1991                 else
1992                         dspcntr &= ~DISPPLANE_TILED;
1993         }
1994
1995         I915_WRITE(reg, dspcntr);
1996
1997         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1998
1999         if (INTEL_INFO(dev)->gen >= 4) {
2000                 intel_crtc->dspaddr_offset =
2001                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2002                                                            fb->bits_per_pixel / 8,
2003                                                            fb->pitches[0]);
2004                 linear_offset -= intel_crtc->dspaddr_offset;
2005         } else {
2006                 intel_crtc->dspaddr_offset = linear_offset;
2007         }
2008
2009         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2010                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2011         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2012         if (INTEL_INFO(dev)->gen >= 4) {
2013                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2014                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2015                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2016                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2017         } else
2018                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2019         POSTING_READ(reg);
2020
2021         return 0;
2022 }
2023
2024 static int ironlake_update_plane(struct drm_crtc *crtc,
2025                                  struct drm_framebuffer *fb, int x, int y)
2026 {
2027         struct drm_device *dev = crtc->dev;
2028         struct drm_i915_private *dev_priv = dev->dev_private;
2029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2030         struct intel_framebuffer *intel_fb;
2031         struct drm_i915_gem_object *obj;
2032         int plane = intel_crtc->plane;
2033         unsigned long linear_offset;
2034         u32 dspcntr;
2035         u32 reg;
2036
2037         switch (plane) {
2038         case 0:
2039         case 1:
2040         case 2:
2041                 break;
2042         default:
2043                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2044                 return -EINVAL;
2045         }
2046
2047         intel_fb = to_intel_framebuffer(fb);
2048         obj = intel_fb->obj;
2049
2050         reg = DSPCNTR(plane);
2051         dspcntr = I915_READ(reg);
2052         /* Mask out pixel format bits in case we change it */
2053         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2054         switch (fb->bits_per_pixel) {
2055         case 8:
2056                 dspcntr |= DISPPLANE_8BPP;
2057                 break;
2058         case 16:
2059                 if (fb->depth != 16)
2060                         return -EINVAL;
2061
2062                 dspcntr |= DISPPLANE_16BPP;
2063                 break;
2064         case 24:
2065         case 32:
2066                 if (fb->depth == 24)
2067                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2068                 else if (fb->depth == 30)
2069                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2070                 else
2071                         return -EINVAL;
2072                 break;
2073         default:
2074                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2075                 return -EINVAL;
2076         }
2077
2078         if (obj->tiling_mode != I915_TILING_NONE)
2079                 dspcntr |= DISPPLANE_TILED;
2080         else
2081                 dspcntr &= ~DISPPLANE_TILED;
2082
2083         /* must disable */
2084         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2085
2086         I915_WRITE(reg, dspcntr);
2087
2088         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2089         intel_crtc->dspaddr_offset =
2090                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2091                                                    fb->bits_per_pixel / 8,
2092                                                    fb->pitches[0]);
2093         linear_offset -= intel_crtc->dspaddr_offset;
2094
2095         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2096                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2097         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2098         I915_MODIFY_DISPBASE(DSPSURF(plane),
2099                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2100         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2101         I915_WRITE(DSPLINOFF(plane), linear_offset);
2102         POSTING_READ(reg);
2103
2104         return 0;
2105 }
2106
2107 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2108 static int
2109 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2110                            int x, int y, enum mode_set_atomic state)
2111 {
2112         struct drm_device *dev = crtc->dev;
2113         struct drm_i915_private *dev_priv = dev->dev_private;
2114
2115         if (dev_priv->display.disable_fbc)
2116                 dev_priv->display.disable_fbc(dev);
2117         intel_increase_pllclock(crtc);
2118
2119         return dev_priv->display.update_plane(crtc, fb, x, y);
2120 }
2121
2122 static int
2123 intel_finish_fb(struct drm_framebuffer *old_fb)
2124 {
2125         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2126         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2127         bool was_interruptible = dev_priv->mm.interruptible;
2128         int ret;
2129
2130         wait_event(dev_priv->pending_flip_queue,
2131                    atomic_read(&dev_priv->mm.wedged) ||
2132                    atomic_read(&obj->pending_flip) == 0);
2133
2134         /* Big Hammer, we also need to ensure that any pending
2135          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2136          * current scanout is retired before unpinning the old
2137          * framebuffer.
2138          *
2139          * This should only fail upon a hung GPU, in which case we
2140          * can safely continue.
2141          */
2142         dev_priv->mm.interruptible = false;
2143         ret = i915_gem_object_finish_gpu(obj);
2144         dev_priv->mm.interruptible = was_interruptible;
2145
2146         return ret;
2147 }
2148
2149 static int
2150 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2151                     struct drm_framebuffer *fb)
2152 {
2153         struct drm_device *dev = crtc->dev;
2154         struct drm_i915_private *dev_priv = dev->dev_private;
2155         struct drm_i915_master_private *master_priv;
2156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2157         struct drm_framebuffer *old_fb;
2158         int ret;
2159
2160         /* no fb bound */
2161         if (!fb) {
2162                 DRM_ERROR("No FB bound\n");
2163                 return 0;
2164         }
2165
2166         if(intel_crtc->plane > dev_priv->num_pipe) {
2167                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2168                                 intel_crtc->plane,
2169                                 dev_priv->num_pipe);
2170                 return -EINVAL;
2171         }
2172
2173         mutex_lock(&dev->struct_mutex);
2174         ret = intel_pin_and_fence_fb_obj(dev,
2175                                          to_intel_framebuffer(fb)->obj,
2176                                          NULL);
2177         if (ret != 0) {
2178                 mutex_unlock(&dev->struct_mutex);
2179                 DRM_ERROR("pin & fence failed\n");
2180                 return ret;
2181         }
2182
2183         if (crtc->fb)
2184                 intel_finish_fb(crtc->fb);
2185
2186         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2187         if (ret) {
2188                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2189                 mutex_unlock(&dev->struct_mutex);
2190                 DRM_ERROR("failed to update base address\n");
2191                 return ret;
2192         }
2193
2194         old_fb = crtc->fb;
2195         crtc->fb = fb;
2196         crtc->x = x;
2197         crtc->y = y;
2198
2199         if (old_fb) {
2200                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2201                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2202         }
2203
2204         intel_update_fbc(dev);
2205         mutex_unlock(&dev->struct_mutex);
2206
2207         if (!dev->primary->master)
2208                 return 0;
2209
2210         master_priv = dev->primary->master->driver_priv;
2211         if (!master_priv->sarea_priv)
2212                 return 0;
2213
2214         if (intel_crtc->pipe) {
2215                 master_priv->sarea_priv->pipeB_x = x;
2216                 master_priv->sarea_priv->pipeB_y = y;
2217         } else {
2218                 master_priv->sarea_priv->pipeA_x = x;
2219                 master_priv->sarea_priv->pipeA_y = y;
2220         }
2221
2222         return 0;
2223 }
2224
2225 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2226 {
2227         struct drm_device *dev = crtc->dev;
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229         u32 dpa_ctl;
2230
2231         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2232         dpa_ctl = I915_READ(DP_A);
2233         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2234
2235         if (clock < 200000) {
2236                 u32 temp;
2237                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2238                 /* workaround for 160Mhz:
2239                    1) program 0x4600c bits 15:0 = 0x8124
2240                    2) program 0x46010 bit 0 = 1
2241                    3) program 0x46034 bit 24 = 1
2242                    4) program 0x64000 bit 14 = 1
2243                    */
2244                 temp = I915_READ(0x4600c);
2245                 temp &= 0xffff0000;
2246                 I915_WRITE(0x4600c, temp | 0x8124);
2247
2248                 temp = I915_READ(0x46010);
2249                 I915_WRITE(0x46010, temp | 1);
2250
2251                 temp = I915_READ(0x46034);
2252                 I915_WRITE(0x46034, temp | (1 << 24));
2253         } else {
2254                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2255         }
2256         I915_WRITE(DP_A, dpa_ctl);
2257
2258         POSTING_READ(DP_A);
2259         udelay(500);
2260 }
2261
2262 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2263 {
2264         struct drm_device *dev = crtc->dev;
2265         struct drm_i915_private *dev_priv = dev->dev_private;
2266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2267         int pipe = intel_crtc->pipe;
2268         u32 reg, temp;
2269
2270         /* enable normal train */
2271         reg = FDI_TX_CTL(pipe);
2272         temp = I915_READ(reg);
2273         if (IS_IVYBRIDGE(dev)) {
2274                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2275                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2276         } else {
2277                 temp &= ~FDI_LINK_TRAIN_NONE;
2278                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2279         }
2280         I915_WRITE(reg, temp);
2281
2282         reg = FDI_RX_CTL(pipe);
2283         temp = I915_READ(reg);
2284         if (HAS_PCH_CPT(dev)) {
2285                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2286                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2287         } else {
2288                 temp &= ~FDI_LINK_TRAIN_NONE;
2289                 temp |= FDI_LINK_TRAIN_NONE;
2290         }
2291         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2292
2293         /* wait one idle pattern time */
2294         POSTING_READ(reg);
2295         udelay(1000);
2296
2297         /* IVB wants error correction enabled */
2298         if (IS_IVYBRIDGE(dev))
2299                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2300                            FDI_FE_ERRC_ENABLE);
2301 }
2302
2303 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2304 {
2305         struct drm_i915_private *dev_priv = dev->dev_private;
2306         u32 flags = I915_READ(SOUTH_CHICKEN1);
2307
2308         flags |= FDI_PHASE_SYNC_OVR(pipe);
2309         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2310         flags |= FDI_PHASE_SYNC_EN(pipe);
2311         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2312         POSTING_READ(SOUTH_CHICKEN1);
2313 }
2314
2315 /* The FDI link training functions for ILK/Ibexpeak. */
2316 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2317 {
2318         struct drm_device *dev = crtc->dev;
2319         struct drm_i915_private *dev_priv = dev->dev_private;
2320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2321         int pipe = intel_crtc->pipe;
2322         int plane = intel_crtc->plane;
2323         u32 reg, temp, tries;
2324
2325         /* FDI needs bits from pipe & plane first */
2326         assert_pipe_enabled(dev_priv, pipe);
2327         assert_plane_enabled(dev_priv, plane);
2328
2329         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2330            for train result */
2331         reg = FDI_RX_IMR(pipe);
2332         temp = I915_READ(reg);
2333         temp &= ~FDI_RX_SYMBOL_LOCK;
2334         temp &= ~FDI_RX_BIT_LOCK;
2335         I915_WRITE(reg, temp);
2336         I915_READ(reg);
2337         udelay(150);
2338
2339         /* enable CPU FDI TX and PCH FDI RX */
2340         reg = FDI_TX_CTL(pipe);
2341         temp = I915_READ(reg);
2342         temp &= ~(7 << 19);
2343         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2344         temp &= ~FDI_LINK_TRAIN_NONE;
2345         temp |= FDI_LINK_TRAIN_PATTERN_1;
2346         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2347
2348         reg = FDI_RX_CTL(pipe);
2349         temp = I915_READ(reg);
2350         temp &= ~FDI_LINK_TRAIN_NONE;
2351         temp |= FDI_LINK_TRAIN_PATTERN_1;
2352         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2353
2354         POSTING_READ(reg);
2355         udelay(150);
2356
2357         /* Ironlake workaround, enable clock pointer after FDI enable*/
2358         if (HAS_PCH_IBX(dev)) {
2359                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2360                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2361                            FDI_RX_PHASE_SYNC_POINTER_EN);
2362         }
2363
2364         reg = FDI_RX_IIR(pipe);
2365         for (tries = 0; tries < 5; tries++) {
2366                 temp = I915_READ(reg);
2367                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2368
2369                 if ((temp & FDI_RX_BIT_LOCK)) {
2370                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2371                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2372                         break;
2373                 }
2374         }
2375         if (tries == 5)
2376                 DRM_ERROR("FDI train 1 fail!\n");
2377
2378         /* Train 2 */
2379         reg = FDI_TX_CTL(pipe);
2380         temp = I915_READ(reg);
2381         temp &= ~FDI_LINK_TRAIN_NONE;
2382         temp |= FDI_LINK_TRAIN_PATTERN_2;
2383         I915_WRITE(reg, temp);
2384
2385         reg = FDI_RX_CTL(pipe);
2386         temp = I915_READ(reg);
2387         temp &= ~FDI_LINK_TRAIN_NONE;
2388         temp |= FDI_LINK_TRAIN_PATTERN_2;
2389         I915_WRITE(reg, temp);
2390
2391         POSTING_READ(reg);
2392         udelay(150);
2393
2394         reg = FDI_RX_IIR(pipe);
2395         for (tries = 0; tries < 5; tries++) {
2396                 temp = I915_READ(reg);
2397                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2398
2399                 if (temp & FDI_RX_SYMBOL_LOCK) {
2400                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2401                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2402                         break;
2403                 }
2404         }
2405         if (tries == 5)
2406                 DRM_ERROR("FDI train 2 fail!\n");
2407
2408         DRM_DEBUG_KMS("FDI train done\n");
2409
2410 }
2411
2412 static const int snb_b_fdi_train_param[] = {
2413         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2414         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2415         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2416         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2417 };
2418
2419 /* The FDI link training functions for SNB/Cougarpoint. */
2420 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2421 {
2422         struct drm_device *dev = crtc->dev;
2423         struct drm_i915_private *dev_priv = dev->dev_private;
2424         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2425         int pipe = intel_crtc->pipe;
2426         u32 reg, temp, i, retry;
2427
2428         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2429            for train result */
2430         reg = FDI_RX_IMR(pipe);
2431         temp = I915_READ(reg);
2432         temp &= ~FDI_RX_SYMBOL_LOCK;
2433         temp &= ~FDI_RX_BIT_LOCK;
2434         I915_WRITE(reg, temp);
2435
2436         POSTING_READ(reg);
2437         udelay(150);
2438
2439         /* enable CPU FDI TX and PCH FDI RX */
2440         reg = FDI_TX_CTL(pipe);
2441         temp = I915_READ(reg);
2442         temp &= ~(7 << 19);
2443         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2444         temp &= ~FDI_LINK_TRAIN_NONE;
2445         temp |= FDI_LINK_TRAIN_PATTERN_1;
2446         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2447         /* SNB-B */
2448         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2449         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2450
2451         reg = FDI_RX_CTL(pipe);
2452         temp = I915_READ(reg);
2453         if (HAS_PCH_CPT(dev)) {
2454                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2455                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2456         } else {
2457                 temp &= ~FDI_LINK_TRAIN_NONE;
2458                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2459         }
2460         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2461
2462         POSTING_READ(reg);
2463         udelay(150);
2464
2465         if (HAS_PCH_CPT(dev))
2466                 cpt_phase_pointer_enable(dev, pipe);
2467
2468         for (i = 0; i < 4; i++) {
2469                 reg = FDI_TX_CTL(pipe);
2470                 temp = I915_READ(reg);
2471                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2472                 temp |= snb_b_fdi_train_param[i];
2473                 I915_WRITE(reg, temp);
2474
2475                 POSTING_READ(reg);
2476                 udelay(500);
2477
2478                 for (retry = 0; retry < 5; retry++) {
2479                         reg = FDI_RX_IIR(pipe);
2480                         temp = I915_READ(reg);
2481                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2482                         if (temp & FDI_RX_BIT_LOCK) {
2483                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2484                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2485                                 break;
2486                         }
2487                         udelay(50);
2488                 }
2489                 if (retry < 5)
2490                         break;
2491         }
2492         if (i == 4)
2493                 DRM_ERROR("FDI train 1 fail!\n");
2494
2495         /* Train 2 */
2496         reg = FDI_TX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         temp &= ~FDI_LINK_TRAIN_NONE;
2499         temp |= FDI_LINK_TRAIN_PATTERN_2;
2500         if (IS_GEN6(dev)) {
2501                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2502                 /* SNB-B */
2503                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2504         }
2505         I915_WRITE(reg, temp);
2506
2507         reg = FDI_RX_CTL(pipe);
2508         temp = I915_READ(reg);
2509         if (HAS_PCH_CPT(dev)) {
2510                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2511                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2512         } else {
2513                 temp &= ~FDI_LINK_TRAIN_NONE;
2514                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2515         }
2516         I915_WRITE(reg, temp);
2517
2518         POSTING_READ(reg);
2519         udelay(150);
2520
2521         for (i = 0; i < 4; i++) {
2522                 reg = FDI_TX_CTL(pipe);
2523                 temp = I915_READ(reg);
2524                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2525                 temp |= snb_b_fdi_train_param[i];
2526                 I915_WRITE(reg, temp);
2527
2528                 POSTING_READ(reg);
2529                 udelay(500);
2530
2531                 for (retry = 0; retry < 5; retry++) {
2532                         reg = FDI_RX_IIR(pipe);
2533                         temp = I915_READ(reg);
2534                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2535                         if (temp & FDI_RX_SYMBOL_LOCK) {
2536                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2537                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2538                                 break;
2539                         }
2540                         udelay(50);
2541                 }
2542                 if (retry < 5)
2543                         break;
2544         }
2545         if (i == 4)
2546                 DRM_ERROR("FDI train 2 fail!\n");
2547
2548         DRM_DEBUG_KMS("FDI train done.\n");
2549 }
2550
2551 /* Manual link training for Ivy Bridge A0 parts */
2552 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2553 {
2554         struct drm_device *dev = crtc->dev;
2555         struct drm_i915_private *dev_priv = dev->dev_private;
2556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2557         int pipe = intel_crtc->pipe;
2558         u32 reg, temp, i;
2559
2560         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2561            for train result */
2562         reg = FDI_RX_IMR(pipe);
2563         temp = I915_READ(reg);
2564         temp &= ~FDI_RX_SYMBOL_LOCK;
2565         temp &= ~FDI_RX_BIT_LOCK;
2566         I915_WRITE(reg, temp);
2567
2568         POSTING_READ(reg);
2569         udelay(150);
2570
2571         /* enable CPU FDI TX and PCH FDI RX */
2572         reg = FDI_TX_CTL(pipe);
2573         temp = I915_READ(reg);
2574         temp &= ~(7 << 19);
2575         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2576         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2577         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2578         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2579         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2580         temp |= FDI_COMPOSITE_SYNC;
2581         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2582
2583         reg = FDI_RX_CTL(pipe);
2584         temp = I915_READ(reg);
2585         temp &= ~FDI_LINK_TRAIN_AUTO;
2586         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2587         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2588         temp |= FDI_COMPOSITE_SYNC;
2589         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2590
2591         POSTING_READ(reg);
2592         udelay(150);
2593
2594         if (HAS_PCH_CPT(dev))
2595                 cpt_phase_pointer_enable(dev, pipe);
2596
2597         for (i = 0; i < 4; i++) {
2598                 reg = FDI_TX_CTL(pipe);
2599                 temp = I915_READ(reg);
2600                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2601                 temp |= snb_b_fdi_train_param[i];
2602                 I915_WRITE(reg, temp);
2603
2604                 POSTING_READ(reg);
2605                 udelay(500);
2606
2607                 reg = FDI_RX_IIR(pipe);
2608                 temp = I915_READ(reg);
2609                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2610
2611                 if (temp & FDI_RX_BIT_LOCK ||
2612                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2613                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2614                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2615                         break;
2616                 }
2617         }
2618         if (i == 4)
2619                 DRM_ERROR("FDI train 1 fail!\n");
2620
2621         /* Train 2 */
2622         reg = FDI_TX_CTL(pipe);
2623         temp = I915_READ(reg);
2624         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2625         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2626         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2627         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2628         I915_WRITE(reg, temp);
2629
2630         reg = FDI_RX_CTL(pipe);
2631         temp = I915_READ(reg);
2632         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2633         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2634         I915_WRITE(reg, temp);
2635
2636         POSTING_READ(reg);
2637         udelay(150);
2638
2639         for (i = 0; i < 4; i++) {
2640                 reg = FDI_TX_CTL(pipe);
2641                 temp = I915_READ(reg);
2642                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2643                 temp |= snb_b_fdi_train_param[i];
2644                 I915_WRITE(reg, temp);
2645
2646                 POSTING_READ(reg);
2647                 udelay(500);
2648
2649                 reg = FDI_RX_IIR(pipe);
2650                 temp = I915_READ(reg);
2651                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2652
2653                 if (temp & FDI_RX_SYMBOL_LOCK) {
2654                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2655                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2656                         break;
2657                 }
2658         }
2659         if (i == 4)
2660                 DRM_ERROR("FDI train 2 fail!\n");
2661
2662         DRM_DEBUG_KMS("FDI train done.\n");
2663 }
2664
2665 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2666 {
2667         struct drm_device *dev = intel_crtc->base.dev;
2668         struct drm_i915_private *dev_priv = dev->dev_private;
2669         int pipe = intel_crtc->pipe;
2670         u32 reg, temp;
2671
2672         /* Write the TU size bits so error detection works */
2673         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2674                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2675
2676         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2677         reg = FDI_RX_CTL(pipe);
2678         temp = I915_READ(reg);
2679         temp &= ~((0x7 << 19) | (0x7 << 16));
2680         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2681         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2682         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2683
2684         POSTING_READ(reg);
2685         udelay(200);
2686
2687         /* Switch from Rawclk to PCDclk */
2688         temp = I915_READ(reg);
2689         I915_WRITE(reg, temp | FDI_PCDCLK);
2690
2691         POSTING_READ(reg);
2692         udelay(200);
2693
2694         /* On Haswell, the PLL configuration for ports and pipes is handled
2695          * separately, as part of DDI setup */
2696         if (!IS_HASWELL(dev)) {
2697                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2698                 reg = FDI_TX_CTL(pipe);
2699                 temp = I915_READ(reg);
2700                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2701                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2702
2703                         POSTING_READ(reg);
2704                         udelay(100);
2705                 }
2706         }
2707 }
2708
2709 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2710 {
2711         struct drm_device *dev = intel_crtc->base.dev;
2712         struct drm_i915_private *dev_priv = dev->dev_private;
2713         int pipe = intel_crtc->pipe;
2714         u32 reg, temp;
2715
2716         /* Switch from PCDclk to Rawclk */
2717         reg = FDI_RX_CTL(pipe);
2718         temp = I915_READ(reg);
2719         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2720
2721         /* Disable CPU FDI TX PLL */
2722         reg = FDI_TX_CTL(pipe);
2723         temp = I915_READ(reg);
2724         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2725
2726         POSTING_READ(reg);
2727         udelay(100);
2728
2729         reg = FDI_RX_CTL(pipe);
2730         temp = I915_READ(reg);
2731         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2732
2733         /* Wait for the clocks to turn off. */
2734         POSTING_READ(reg);
2735         udelay(100);
2736 }
2737
2738 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2739 {
2740         struct drm_i915_private *dev_priv = dev->dev_private;
2741         u32 flags = I915_READ(SOUTH_CHICKEN1);
2742
2743         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2744         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2745         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2746         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2747         POSTING_READ(SOUTH_CHICKEN1);
2748 }
2749 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2750 {
2751         struct drm_device *dev = crtc->dev;
2752         struct drm_i915_private *dev_priv = dev->dev_private;
2753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2754         int pipe = intel_crtc->pipe;
2755         u32 reg, temp;
2756
2757         /* disable CPU FDI tx and PCH FDI rx */
2758         reg = FDI_TX_CTL(pipe);
2759         temp = I915_READ(reg);
2760         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2761         POSTING_READ(reg);
2762
2763         reg = FDI_RX_CTL(pipe);
2764         temp = I915_READ(reg);
2765         temp &= ~(0x7 << 16);
2766         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2767         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2768
2769         POSTING_READ(reg);
2770         udelay(100);
2771
2772         /* Ironlake workaround, disable clock pointer after downing FDI */
2773         if (HAS_PCH_IBX(dev)) {
2774                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2775                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2776                            I915_READ(FDI_RX_CHICKEN(pipe) &
2777                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2778         } else if (HAS_PCH_CPT(dev)) {
2779                 cpt_phase_pointer_disable(dev, pipe);
2780         }
2781
2782         /* still set train pattern 1 */
2783         reg = FDI_TX_CTL(pipe);
2784         temp = I915_READ(reg);
2785         temp &= ~FDI_LINK_TRAIN_NONE;
2786         temp |= FDI_LINK_TRAIN_PATTERN_1;
2787         I915_WRITE(reg, temp);
2788
2789         reg = FDI_RX_CTL(pipe);
2790         temp = I915_READ(reg);
2791         if (HAS_PCH_CPT(dev)) {
2792                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2793                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2794         } else {
2795                 temp &= ~FDI_LINK_TRAIN_NONE;
2796                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2797         }
2798         /* BPC in FDI rx is consistent with that in PIPECONF */
2799         temp &= ~(0x07 << 16);
2800         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2801         I915_WRITE(reg, temp);
2802
2803         POSTING_READ(reg);
2804         udelay(100);
2805 }
2806
2807 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2808 {
2809         struct drm_device *dev = crtc->dev;
2810
2811         if (crtc->fb == NULL)
2812                 return;
2813
2814         mutex_lock(&dev->struct_mutex);
2815         intel_finish_fb(crtc->fb);
2816         mutex_unlock(&dev->struct_mutex);
2817 }
2818
2819 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2820 {
2821         struct drm_device *dev = crtc->dev;
2822         struct intel_encoder *intel_encoder;
2823
2824         /*
2825          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2826          * must be driven by its own crtc; no sharing is possible.
2827          */
2828         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2829
2830                 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2831                  * CPU handles all others */
2832                 if (IS_HASWELL(dev)) {
2833                         /* It is still unclear how this will work on PPT, so throw up a warning */
2834                         WARN_ON(!HAS_PCH_LPT(dev));
2835
2836                         if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
2837                                 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2838                                 return true;
2839                         } else {
2840                                 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2841                                               intel_encoder->type);
2842                                 return false;
2843                         }
2844                 }
2845
2846                 switch (intel_encoder->type) {
2847                 case INTEL_OUTPUT_EDP:
2848                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2849                                 return false;
2850                         continue;
2851                 }
2852         }
2853
2854         return true;
2855 }
2856
2857 /* Program iCLKIP clock to the desired frequency */
2858 static void lpt_program_iclkip(struct drm_crtc *crtc)
2859 {
2860         struct drm_device *dev = crtc->dev;
2861         struct drm_i915_private *dev_priv = dev->dev_private;
2862         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2863         u32 temp;
2864
2865         /* It is necessary to ungate the pixclk gate prior to programming
2866          * the divisors, and gate it back when it is done.
2867          */
2868         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2869
2870         /* Disable SSCCTL */
2871         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2872                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2873                                         SBI_SSCCTL_DISABLE);
2874
2875         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2876         if (crtc->mode.clock == 20000) {
2877                 auxdiv = 1;
2878                 divsel = 0x41;
2879                 phaseinc = 0x20;
2880         } else {
2881                 /* The iCLK virtual clock root frequency is in MHz,
2882                  * but the crtc->mode.clock in in KHz. To get the divisors,
2883                  * it is necessary to divide one by another, so we
2884                  * convert the virtual clock precision to KHz here for higher
2885                  * precision.
2886                  */
2887                 u32 iclk_virtual_root_freq = 172800 * 1000;
2888                 u32 iclk_pi_range = 64;
2889                 u32 desired_divisor, msb_divisor_value, pi_value;
2890
2891                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2892                 msb_divisor_value = desired_divisor / iclk_pi_range;
2893                 pi_value = desired_divisor % iclk_pi_range;
2894
2895                 auxdiv = 0;
2896                 divsel = msb_divisor_value - 2;
2897                 phaseinc = pi_value;
2898         }
2899
2900         /* This should not happen with any sane values */
2901         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2902                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2903         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2904                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2905
2906         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2907                         crtc->mode.clock,
2908                         auxdiv,
2909                         divsel,
2910                         phasedir,
2911                         phaseinc);
2912
2913         /* Program SSCDIVINTPHASE6 */
2914         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2915         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2916         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2917         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2918         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2919         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2920         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2921
2922         intel_sbi_write(dev_priv,
2923                         SBI_SSCDIVINTPHASE6,
2924                         temp);
2925
2926         /* Program SSCAUXDIV */
2927         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2928         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2929         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2930         intel_sbi_write(dev_priv,
2931                         SBI_SSCAUXDIV6,
2932                         temp);
2933
2934
2935         /* Enable modulator and associated divider */
2936         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2937         temp &= ~SBI_SSCCTL_DISABLE;
2938         intel_sbi_write(dev_priv,
2939                         SBI_SSCCTL6,
2940                         temp);
2941
2942         /* Wait for initialization time */
2943         udelay(24);
2944
2945         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2946 }
2947
2948 /*
2949  * Enable PCH resources required for PCH ports:
2950  *   - PCH PLLs
2951  *   - FDI training & RX/TX
2952  *   - update transcoder timings
2953  *   - DP transcoding bits
2954  *   - transcoder
2955  */
2956 static void ironlake_pch_enable(struct drm_crtc *crtc)
2957 {
2958         struct drm_device *dev = crtc->dev;
2959         struct drm_i915_private *dev_priv = dev->dev_private;
2960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2961         int pipe = intel_crtc->pipe;
2962         u32 reg, temp;
2963
2964         assert_transcoder_disabled(dev_priv, pipe);
2965
2966         /* For PCH output, training FDI link */
2967         dev_priv->display.fdi_link_train(crtc);
2968
2969         intel_enable_pch_pll(intel_crtc);
2970
2971         if (HAS_PCH_LPT(dev)) {
2972                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2973                 lpt_program_iclkip(crtc);
2974         } else if (HAS_PCH_CPT(dev)) {
2975                 u32 sel;
2976
2977                 temp = I915_READ(PCH_DPLL_SEL);
2978                 switch (pipe) {
2979                 default:
2980                 case 0:
2981                         temp |= TRANSA_DPLL_ENABLE;
2982                         sel = TRANSA_DPLLB_SEL;
2983                         break;
2984                 case 1:
2985                         temp |= TRANSB_DPLL_ENABLE;
2986                         sel = TRANSB_DPLLB_SEL;
2987                         break;
2988                 case 2:
2989                         temp |= TRANSC_DPLL_ENABLE;
2990                         sel = TRANSC_DPLLB_SEL;
2991                         break;
2992                 }
2993                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2994                         temp |= sel;
2995                 else
2996                         temp &= ~sel;
2997                 I915_WRITE(PCH_DPLL_SEL, temp);
2998         }
2999
3000         /* set transcoder timing, panel must allow it */
3001         assert_panel_unlocked(dev_priv, pipe);
3002         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3003         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3004         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3005
3006         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3007         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3008         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3009         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3010
3011         if (!IS_HASWELL(dev))
3012                 intel_fdi_normal_train(crtc);
3013
3014         /* For PCH DP, enable TRANS_DP_CTL */
3015         if (HAS_PCH_CPT(dev) &&
3016             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3017              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3018                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3019                 reg = TRANS_DP_CTL(pipe);
3020                 temp = I915_READ(reg);
3021                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3022                           TRANS_DP_SYNC_MASK |
3023                           TRANS_DP_BPC_MASK);
3024                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3025                          TRANS_DP_ENH_FRAMING);
3026                 temp |= bpc << 9; /* same format but at 11:9 */
3027
3028                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3029                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3030                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3031                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3032
3033                 switch (intel_trans_dp_port_sel(crtc)) {
3034                 case PCH_DP_B:
3035                         temp |= TRANS_DP_PORT_SEL_B;
3036                         break;
3037                 case PCH_DP_C:
3038                         temp |= TRANS_DP_PORT_SEL_C;
3039                         break;
3040                 case PCH_DP_D:
3041                         temp |= TRANS_DP_PORT_SEL_D;
3042                         break;
3043                 default:
3044                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3045                         temp |= TRANS_DP_PORT_SEL_B;
3046                         break;
3047                 }
3048
3049                 I915_WRITE(reg, temp);
3050         }
3051
3052         intel_enable_transcoder(dev_priv, pipe);
3053 }
3054
3055 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3056 {
3057         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3058
3059         if (pll == NULL)
3060                 return;
3061
3062         if (pll->refcount == 0) {
3063                 WARN(1, "bad PCH PLL refcount\n");
3064                 return;
3065         }
3066
3067         --pll->refcount;
3068         intel_crtc->pch_pll = NULL;
3069 }
3070
3071 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3072 {
3073         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3074         struct intel_pch_pll *pll;
3075         int i;
3076
3077         pll = intel_crtc->pch_pll;
3078         if (pll) {
3079                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3080                               intel_crtc->base.base.id, pll->pll_reg);
3081                 goto prepare;
3082         }
3083
3084         if (HAS_PCH_IBX(dev_priv->dev)) {
3085                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3086                 i = intel_crtc->pipe;
3087                 pll = &dev_priv->pch_plls[i];
3088
3089                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3090                               intel_crtc->base.base.id, pll->pll_reg);
3091
3092                 goto found;
3093         }
3094
3095         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3096                 pll = &dev_priv->pch_plls[i];
3097
3098                 /* Only want to check enabled timings first */
3099                 if (pll->refcount == 0)
3100                         continue;
3101
3102                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3103                     fp == I915_READ(pll->fp0_reg)) {
3104                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3105                                       intel_crtc->base.base.id,
3106                                       pll->pll_reg, pll->refcount, pll->active);
3107
3108                         goto found;
3109                 }
3110         }
3111
3112         /* Ok no matching timings, maybe there's a free one? */
3113         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3114                 pll = &dev_priv->pch_plls[i];
3115                 if (pll->refcount == 0) {
3116                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3117                                       intel_crtc->base.base.id, pll->pll_reg);
3118                         goto found;
3119                 }
3120         }
3121
3122         return NULL;
3123
3124 found:
3125         intel_crtc->pch_pll = pll;
3126         pll->refcount++;
3127         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3128 prepare: /* separate function? */
3129         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3130
3131         /* Wait for the clocks to stabilize before rewriting the regs */
3132         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3133         POSTING_READ(pll->pll_reg);
3134         udelay(150);
3135
3136         I915_WRITE(pll->fp0_reg, fp);
3137         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3138         pll->on = false;
3139         return pll;
3140 }
3141
3142 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3143 {
3144         struct drm_i915_private *dev_priv = dev->dev_private;
3145         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3146         u32 temp;
3147
3148         temp = I915_READ(dslreg);
3149         udelay(500);
3150         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3151                 /* Without this, mode sets may fail silently on FDI */
3152                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3153                 udelay(250);
3154                 I915_WRITE(tc2reg, 0);
3155                 if (wait_for(I915_READ(dslreg) != temp, 5))
3156                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3157         }
3158 }
3159
3160 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3161 {
3162         struct drm_device *dev = crtc->dev;
3163         struct drm_i915_private *dev_priv = dev->dev_private;
3164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3165         struct intel_encoder *encoder;
3166         int pipe = intel_crtc->pipe;
3167         int plane = intel_crtc->plane;
3168         u32 temp;
3169         bool is_pch_port;
3170
3171         WARN_ON(!crtc->enabled);
3172
3173         if (intel_crtc->active)
3174                 return;
3175
3176         intel_crtc->active = true;
3177         intel_update_watermarks(dev);
3178
3179         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3180                 temp = I915_READ(PCH_LVDS);
3181                 if ((temp & LVDS_PORT_EN) == 0)
3182                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3183         }
3184
3185         is_pch_port = intel_crtc_driving_pch(crtc);
3186
3187         if (is_pch_port)
3188                 ironlake_fdi_pll_enable(intel_crtc);
3189         else
3190                 ironlake_fdi_disable(crtc);
3191
3192         for_each_encoder_on_crtc(dev, crtc, encoder)
3193                 if (encoder->pre_enable)
3194                         encoder->pre_enable(encoder);
3195
3196         /* Enable panel fitting for LVDS */
3197         if (dev_priv->pch_pf_size &&
3198             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3199                 /* Force use of hard-coded filter coefficients
3200                  * as some pre-programmed values are broken,
3201                  * e.g. x201.
3202                  */
3203                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3204                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3205                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3206         }
3207
3208         /*
3209          * On ILK+ LUT must be loaded before the pipe is running but with
3210          * clocks enabled
3211          */
3212         intel_crtc_load_lut(crtc);
3213
3214         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3215         intel_enable_plane(dev_priv, plane, pipe);
3216
3217         if (is_pch_port)
3218                 ironlake_pch_enable(crtc);
3219
3220         mutex_lock(&dev->struct_mutex);
3221         intel_update_fbc(dev);
3222         mutex_unlock(&dev->struct_mutex);
3223
3224         intel_crtc_update_cursor(crtc, true);
3225
3226         for_each_encoder_on_crtc(dev, crtc, encoder)
3227                 encoder->enable(encoder);
3228
3229         if (HAS_PCH_CPT(dev))
3230                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3231 }
3232
3233 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3234 {
3235         struct drm_device *dev = crtc->dev;
3236         struct drm_i915_private *dev_priv = dev->dev_private;
3237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3238         struct intel_encoder *encoder;
3239         int pipe = intel_crtc->pipe;
3240         int plane = intel_crtc->plane;
3241         u32 reg, temp;
3242
3243
3244         if (!intel_crtc->active)
3245                 return;
3246
3247         for_each_encoder_on_crtc(dev, crtc, encoder)
3248                 encoder->disable(encoder);
3249
3250         intel_crtc_wait_for_pending_flips(crtc);
3251         drm_vblank_off(dev, pipe);
3252         intel_crtc_update_cursor(crtc, false);
3253
3254         intel_disable_plane(dev_priv, plane, pipe);
3255
3256         if (dev_priv->cfb_plane == plane)
3257                 intel_disable_fbc(dev);
3258
3259         intel_disable_pipe(dev_priv, pipe);
3260
3261         /* Disable PF */
3262         I915_WRITE(PF_CTL(pipe), 0);
3263         I915_WRITE(PF_WIN_SZ(pipe), 0);
3264
3265         for_each_encoder_on_crtc(dev, crtc, encoder)
3266                 if (encoder->post_disable)
3267                         encoder->post_disable(encoder);
3268
3269         ironlake_fdi_disable(crtc);
3270
3271         intel_disable_transcoder(dev_priv, pipe);
3272
3273         if (HAS_PCH_CPT(dev)) {
3274                 /* disable TRANS_DP_CTL */
3275                 reg = TRANS_DP_CTL(pipe);
3276                 temp = I915_READ(reg);
3277                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3278                 temp |= TRANS_DP_PORT_SEL_NONE;
3279                 I915_WRITE(reg, temp);
3280
3281                 /* disable DPLL_SEL */
3282                 temp = I915_READ(PCH_DPLL_SEL);
3283                 switch (pipe) {
3284                 case 0:
3285                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3286                         break;
3287                 case 1:
3288                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3289                         break;
3290                 case 2:
3291                         /* C shares PLL A or B */
3292                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3293                         break;
3294                 default:
3295                         BUG(); /* wtf */
3296                 }
3297                 I915_WRITE(PCH_DPLL_SEL, temp);
3298         }
3299
3300         /* disable PCH DPLL */
3301         intel_disable_pch_pll(intel_crtc);
3302
3303         ironlake_fdi_pll_disable(intel_crtc);
3304
3305         intel_crtc->active = false;
3306         intel_update_watermarks(dev);
3307
3308         mutex_lock(&dev->struct_mutex);
3309         intel_update_fbc(dev);
3310         mutex_unlock(&dev->struct_mutex);
3311 }
3312
3313 static void ironlake_crtc_off(struct drm_crtc *crtc)
3314 {
3315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3316         intel_put_pch_pll(intel_crtc);
3317 }
3318
3319 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3320 {
3321         if (!enable && intel_crtc->overlay) {
3322                 struct drm_device *dev = intel_crtc->base.dev;
3323                 struct drm_i915_private *dev_priv = dev->dev_private;
3324
3325                 mutex_lock(&dev->struct_mutex);
3326                 dev_priv->mm.interruptible = false;
3327                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3328                 dev_priv->mm.interruptible = true;
3329                 mutex_unlock(&dev->struct_mutex);
3330         }
3331
3332         /* Let userspace switch the overlay on again. In most cases userspace
3333          * has to recompute where to put it anyway.
3334          */
3335 }
3336
3337 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3338 {
3339         struct drm_device *dev = crtc->dev;
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3342         struct intel_encoder *encoder;
3343         int pipe = intel_crtc->pipe;
3344         int plane = intel_crtc->plane;
3345
3346         WARN_ON(!crtc->enabled);
3347
3348         if (intel_crtc->active)
3349                 return;
3350
3351         intel_crtc->active = true;
3352         intel_update_watermarks(dev);
3353
3354         intel_enable_pll(dev_priv, pipe);
3355         intel_enable_pipe(dev_priv, pipe, false);
3356         intel_enable_plane(dev_priv, plane, pipe);
3357
3358         intel_crtc_load_lut(crtc);
3359         intel_update_fbc(dev);
3360
3361         /* Give the overlay scaler a chance to enable if it's on this pipe */
3362         intel_crtc_dpms_overlay(intel_crtc, true);
3363         intel_crtc_update_cursor(crtc, true);
3364
3365         for_each_encoder_on_crtc(dev, crtc, encoder)
3366                 encoder->enable(encoder);
3367 }
3368
3369 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3370 {
3371         struct drm_device *dev = crtc->dev;
3372         struct drm_i915_private *dev_priv = dev->dev_private;
3373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3374         struct intel_encoder *encoder;
3375         int pipe = intel_crtc->pipe;
3376         int plane = intel_crtc->plane;
3377
3378
3379         if (!intel_crtc->active)
3380                 return;
3381
3382         for_each_encoder_on_crtc(dev, crtc, encoder)
3383                 encoder->disable(encoder);
3384
3385         /* Give the overlay scaler a chance to disable if it's on this pipe */
3386         intel_crtc_wait_for_pending_flips(crtc);
3387         drm_vblank_off(dev, pipe);
3388         intel_crtc_dpms_overlay(intel_crtc, false);
3389         intel_crtc_update_cursor(crtc, false);
3390
3391         if (dev_priv->cfb_plane == plane)
3392                 intel_disable_fbc(dev);
3393
3394         intel_disable_plane(dev_priv, plane, pipe);
3395         intel_disable_pipe(dev_priv, pipe);
3396         intel_disable_pll(dev_priv, pipe);
3397
3398         intel_crtc->active = false;
3399         intel_update_fbc(dev);
3400         intel_update_watermarks(dev);
3401 }
3402
3403 static void i9xx_crtc_off(struct drm_crtc *crtc)
3404 {
3405 }
3406
3407 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3408                                     bool enabled)
3409 {
3410         struct drm_device *dev = crtc->dev;
3411         struct drm_i915_master_private *master_priv;
3412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3413         int pipe = intel_crtc->pipe;
3414
3415         if (!dev->primary->master)
3416                 return;
3417
3418         master_priv = dev->primary->master->driver_priv;
3419         if (!master_priv->sarea_priv)
3420                 return;
3421
3422         switch (pipe) {
3423         case 0:
3424                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3425                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3426                 break;
3427         case 1:
3428                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3429                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3430                 break;
3431         default:
3432                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3433                 break;
3434         }
3435 }
3436
3437 /**
3438  * Sets the power management mode of the pipe and plane.
3439  */
3440 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3441 {
3442         struct drm_device *dev = crtc->dev;
3443         struct drm_i915_private *dev_priv = dev->dev_private;
3444         struct intel_encoder *intel_encoder;
3445         bool enable = false;
3446
3447         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3448                 enable |= intel_encoder->connectors_active;
3449
3450         if (enable)
3451                 dev_priv->display.crtc_enable(crtc);
3452         else
3453                 dev_priv->display.crtc_disable(crtc);
3454
3455         intel_crtc_update_sarea(crtc, enable);
3456 }
3457
3458 static void intel_crtc_noop(struct drm_crtc *crtc)
3459 {
3460 }
3461
3462 static void intel_crtc_disable(struct drm_crtc *crtc)
3463 {
3464         struct drm_device *dev = crtc->dev;
3465         struct drm_connector *connector;
3466         struct drm_i915_private *dev_priv = dev->dev_private;
3467
3468         /* crtc should still be enabled when we disable it. */
3469         WARN_ON(!crtc->enabled);
3470
3471         dev_priv->display.crtc_disable(crtc);
3472         intel_crtc_update_sarea(crtc, false);
3473         dev_priv->display.off(crtc);
3474
3475         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3476         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3477
3478         if (crtc->fb) {
3479                 mutex_lock(&dev->struct_mutex);
3480                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3481                 mutex_unlock(&dev->struct_mutex);
3482                 crtc->fb = NULL;
3483         }
3484
3485         /* Update computed state. */
3486         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3487                 if (!connector->encoder || !connector->encoder->crtc)
3488                         continue;
3489
3490                 if (connector->encoder->crtc != crtc)
3491                         continue;
3492
3493                 connector->dpms = DRM_MODE_DPMS_OFF;
3494                 to_intel_encoder(connector->encoder)->connectors_active = false;
3495         }
3496 }
3497
3498 void intel_modeset_disable(struct drm_device *dev)
3499 {
3500         struct drm_crtc *crtc;
3501
3502         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3503                 if (crtc->enabled)
3504                         intel_crtc_disable(crtc);
3505         }
3506 }
3507
3508 void intel_encoder_noop(struct drm_encoder *encoder)
3509 {
3510 }
3511
3512 void intel_encoder_destroy(struct drm_encoder *encoder)
3513 {
3514         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3515
3516         drm_encoder_cleanup(encoder);
3517         kfree(intel_encoder);
3518 }
3519
3520 /* Simple dpms helper for encodres with just one connector, no cloning and only
3521  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3522  * state of the entire output pipe. */
3523 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3524 {
3525         if (mode == DRM_MODE_DPMS_ON) {
3526                 encoder->connectors_active = true;
3527
3528                 intel_crtc_update_dpms(encoder->base.crtc);
3529         } else {
3530                 encoder->connectors_active = false;
3531
3532                 intel_crtc_update_dpms(encoder->base.crtc);
3533         }
3534 }
3535
3536 /* Cross check the actual hw state with our own modeset state tracking (and it's
3537  * internal consistency). */
3538 static void intel_connector_check_state(struct intel_connector *connector)
3539 {
3540         if (connector->get_hw_state(connector)) {
3541                 struct intel_encoder *encoder = connector->encoder;
3542                 struct drm_crtc *crtc;
3543                 bool encoder_enabled;
3544                 enum pipe pipe;
3545
3546                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3547                               connector->base.base.id,
3548                               drm_get_connector_name(&connector->base));
3549
3550                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3551                      "wrong connector dpms state\n");
3552                 WARN(connector->base.encoder != &encoder->base,
3553                      "active connector not linked to encoder\n");
3554                 WARN(!encoder->connectors_active,
3555                      "encoder->connectors_active not set\n");
3556
3557                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3558                 WARN(!encoder_enabled, "encoder not enabled\n");
3559                 if (WARN_ON(!encoder->base.crtc))
3560                         return;
3561
3562                 crtc = encoder->base.crtc;
3563
3564                 WARN(!crtc->enabled, "crtc not enabled\n");
3565                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3566                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3567                      "encoder active on the wrong pipe\n");
3568         }
3569 }
3570
3571 /* Even simpler default implementation, if there's really no special case to
3572  * consider. */
3573 void intel_connector_dpms(struct drm_connector *connector, int mode)
3574 {
3575         struct intel_encoder *encoder = intel_attached_encoder(connector);
3576
3577         /* All the simple cases only support two dpms states. */
3578         if (mode != DRM_MODE_DPMS_ON)
3579                 mode = DRM_MODE_DPMS_OFF;
3580
3581         if (mode == connector->dpms)
3582                 return;
3583
3584         connector->dpms = mode;
3585
3586         /* Only need to change hw state when actually enabled */
3587         if (encoder->base.crtc)
3588                 intel_encoder_dpms(encoder, mode);
3589         else
3590                 WARN_ON(encoder->connectors_active != false);
3591
3592         intel_modeset_check_state(connector->dev);
3593 }
3594
3595 /* Simple connector->get_hw_state implementation for encoders that support only
3596  * one connector and no cloning and hence the encoder state determines the state
3597  * of the connector. */
3598 bool intel_connector_get_hw_state(struct intel_connector *connector)
3599 {
3600         enum pipe pipe = 0;
3601         struct intel_encoder *encoder = connector->encoder;
3602
3603         return encoder->get_hw_state(encoder, &pipe);
3604 }
3605
3606 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3607                                   const struct drm_display_mode *mode,
3608                                   struct drm_display_mode *adjusted_mode)
3609 {
3610         struct drm_device *dev = crtc->dev;
3611
3612         if (HAS_PCH_SPLIT(dev)) {
3613                 /* FDI link clock is fixed at 2.7G */
3614                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3615                         return false;
3616         }
3617
3618         /* All interlaced capable intel hw wants timings in frames. Note though
3619          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3620          * timings, so we need to be careful not to clobber these.*/
3621         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3622                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3623
3624         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3625          * with a hsync front porch of 0.
3626          */
3627         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3628                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3629                 return false;
3630
3631         return true;
3632 }
3633
3634 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3635 {
3636         return 400000; /* FIXME */
3637 }
3638
3639 static int i945_get_display_clock_speed(struct drm_device *dev)
3640 {
3641         return 400000;
3642 }
3643
3644 static int i915_get_display_clock_speed(struct drm_device *dev)
3645 {
3646         return 333000;
3647 }
3648
3649 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3650 {
3651         return 200000;
3652 }
3653
3654 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3655 {
3656         u16 gcfgc = 0;
3657
3658         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3659
3660         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3661                 return 133000;
3662         else {
3663                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3664                 case GC_DISPLAY_CLOCK_333_MHZ:
3665                         return 333000;
3666                 default:
3667                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3668                         return 190000;
3669                 }
3670         }
3671 }
3672
3673 static int i865_get_display_clock_speed(struct drm_device *dev)
3674 {
3675         return 266000;
3676 }
3677
3678 static int i855_get_display_clock_speed(struct drm_device *dev)
3679 {
3680         u16 hpllcc = 0;
3681         /* Assume that the hardware is in the high speed state.  This
3682          * should be the default.
3683          */
3684         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3685         case GC_CLOCK_133_200:
3686         case GC_CLOCK_100_200:
3687                 return 200000;
3688         case GC_CLOCK_166_250:
3689                 return 250000;
3690         case GC_CLOCK_100_133:
3691                 return 133000;
3692         }
3693
3694         /* Shouldn't happen */
3695         return 0;
3696 }
3697
3698 static int i830_get_display_clock_speed(struct drm_device *dev)
3699 {
3700         return 133000;
3701 }
3702
3703 struct fdi_m_n {
3704         u32        tu;
3705         u32        gmch_m;
3706         u32        gmch_n;
3707         u32        link_m;
3708         u32        link_n;
3709 };
3710
3711 static void
3712 fdi_reduce_ratio(u32 *num, u32 *den)
3713 {
3714         while (*num > 0xffffff || *den > 0xffffff) {
3715                 *num >>= 1;
3716                 *den >>= 1;
3717         }
3718 }
3719
3720 static void
3721 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3722                      int link_clock, struct fdi_m_n *m_n)
3723 {
3724         m_n->tu = 64; /* default size */
3725
3726         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3727         m_n->gmch_m = bits_per_pixel * pixel_clock;
3728         m_n->gmch_n = link_clock * nlanes * 8;
3729         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3730
3731         m_n->link_m = pixel_clock;
3732         m_n->link_n = link_clock;
3733         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3734 }
3735
3736 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3737 {
3738         if (i915_panel_use_ssc >= 0)
3739                 return i915_panel_use_ssc != 0;
3740         return dev_priv->lvds_use_ssc
3741                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3742 }
3743
3744 /**
3745  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3746  * @crtc: CRTC structure
3747  * @mode: requested mode
3748  *
3749  * A pipe may be connected to one or more outputs.  Based on the depth of the
3750  * attached framebuffer, choose a good color depth to use on the pipe.
3751  *
3752  * If possible, match the pipe depth to the fb depth.  In some cases, this
3753  * isn't ideal, because the connected output supports a lesser or restricted
3754  * set of depths.  Resolve that here:
3755  *    LVDS typically supports only 6bpc, so clamp down in that case
3756  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3757  *    Displays may support a restricted set as well, check EDID and clamp as
3758  *      appropriate.
3759  *    DP may want to dither down to 6bpc to fit larger modes
3760  *
3761  * RETURNS:
3762  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3763  * true if they don't match).
3764  */
3765 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3766                                          struct drm_framebuffer *fb,
3767                                          unsigned int *pipe_bpp,
3768                                          struct drm_display_mode *mode)
3769 {
3770         struct drm_device *dev = crtc->dev;
3771         struct drm_i915_private *dev_priv = dev->dev_private;
3772         struct drm_connector *connector;
3773         struct intel_encoder *intel_encoder;
3774         unsigned int display_bpc = UINT_MAX, bpc;
3775
3776         /* Walk the encoders & connectors on this crtc, get min bpc */
3777         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3778
3779                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3780                         unsigned int lvds_bpc;
3781
3782                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3783                             LVDS_A3_POWER_UP)
3784                                 lvds_bpc = 8;
3785                         else
3786                                 lvds_bpc = 6;
3787
3788                         if (lvds_bpc < display_bpc) {
3789                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3790                                 display_bpc = lvds_bpc;
3791                         }
3792                         continue;
3793                 }
3794
3795                 /* Not one of the known troublemakers, check the EDID */
3796                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3797                                     head) {
3798                         if (connector->encoder != &intel_encoder->base)
3799                                 continue;
3800
3801                         /* Don't use an invalid EDID bpc value */
3802                         if (connector->display_info.bpc &&
3803                             connector->display_info.bpc < display_bpc) {
3804                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3805                                 display_bpc = connector->display_info.bpc;
3806                         }
3807                 }
3808
3809                 /*
3810                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3811                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3812                  */
3813                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3814                         if (display_bpc > 8 && display_bpc < 12) {
3815                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3816                                 display_bpc = 12;
3817                         } else {
3818                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3819                                 display_bpc = 8;
3820                         }
3821                 }
3822         }
3823
3824         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3825                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3826                 display_bpc = 6;
3827         }
3828
3829         /*
3830          * We could just drive the pipe at the highest bpc all the time and
3831          * enable dithering as needed, but that costs bandwidth.  So choose
3832          * the minimum value that expresses the full color range of the fb but
3833          * also stays within the max display bpc discovered above.
3834          */
3835
3836         switch (fb->depth) {
3837         case 8:
3838                 bpc = 8; /* since we go through a colormap */
3839                 break;
3840         case 15:
3841         case 16:
3842                 bpc = 6; /* min is 18bpp */
3843                 break;
3844         case 24:
3845                 bpc = 8;
3846                 break;
3847         case 30:
3848                 bpc = 10;
3849                 break;
3850         case 48:
3851                 bpc = 12;
3852                 break;
3853         default:
3854                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3855                 bpc = min((unsigned int)8, display_bpc);
3856                 break;
3857         }
3858
3859         display_bpc = min(display_bpc, bpc);
3860
3861         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3862                       bpc, display_bpc);
3863
3864         *pipe_bpp = display_bpc * 3;
3865
3866         return display_bpc != bpc;
3867 }
3868
3869 static int vlv_get_refclk(struct drm_crtc *crtc)
3870 {
3871         struct drm_device *dev = crtc->dev;
3872         struct drm_i915_private *dev_priv = dev->dev_private;
3873         int refclk = 27000; /* for DP & HDMI */
3874
3875         return 100000; /* only one validated so far */
3876
3877         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3878                 refclk = 96000;
3879         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3880                 if (intel_panel_use_ssc(dev_priv))
3881                         refclk = 100000;
3882                 else
3883                         refclk = 96000;
3884         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3885                 refclk = 100000;
3886         }
3887
3888         return refclk;
3889 }
3890
3891 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3892 {
3893         struct drm_device *dev = crtc->dev;
3894         struct drm_i915_private *dev_priv = dev->dev_private;
3895         int refclk;
3896
3897         if (IS_VALLEYVIEW(dev)) {
3898                 refclk = vlv_get_refclk(crtc);
3899         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3900             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3901                 refclk = dev_priv->lvds_ssc_freq * 1000;
3902                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3903                               refclk / 1000);
3904         } else if (!IS_GEN2(dev)) {
3905                 refclk = 96000;
3906         } else {
3907                 refclk = 48000;
3908         }
3909
3910         return refclk;
3911 }
3912
3913 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3914                                       intel_clock_t *clock)
3915 {
3916         /* SDVO TV has fixed PLL values depend on its clock range,
3917            this mirrors vbios setting. */
3918         if (adjusted_mode->clock >= 100000
3919             && adjusted_mode->clock < 140500) {
3920                 clock->p1 = 2;
3921                 clock->p2 = 10;
3922                 clock->n = 3;
3923                 clock->m1 = 16;
3924                 clock->m2 = 8;
3925         } else if (adjusted_mode->clock >= 140500
3926                    && adjusted_mode->clock <= 200000) {
3927                 clock->p1 = 1;
3928                 clock->p2 = 10;
3929                 clock->n = 6;
3930                 clock->m1 = 12;
3931                 clock->m2 = 8;
3932         }
3933 }
3934
3935 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3936                                      intel_clock_t *clock,
3937                                      intel_clock_t *reduced_clock)
3938 {
3939         struct drm_device *dev = crtc->dev;
3940         struct drm_i915_private *dev_priv = dev->dev_private;
3941         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3942         int pipe = intel_crtc->pipe;
3943         u32 fp, fp2 = 0;
3944
3945         if (IS_PINEVIEW(dev)) {
3946                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3947                 if (reduced_clock)
3948                         fp2 = (1 << reduced_clock->n) << 16 |
3949                                 reduced_clock->m1 << 8 | reduced_clock->m2;
3950         } else {
3951                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3952                 if (reduced_clock)
3953                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3954                                 reduced_clock->m2;
3955         }
3956
3957         I915_WRITE(FP0(pipe), fp);
3958
3959         intel_crtc->lowfreq_avail = false;
3960         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3961             reduced_clock && i915_powersave) {
3962                 I915_WRITE(FP1(pipe), fp2);
3963                 intel_crtc->lowfreq_avail = true;
3964         } else {
3965                 I915_WRITE(FP1(pipe), fp);
3966         }
3967 }
3968
3969 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3970                               struct drm_display_mode *adjusted_mode)
3971 {
3972         struct drm_device *dev = crtc->dev;
3973         struct drm_i915_private *dev_priv = dev->dev_private;
3974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3975         int pipe = intel_crtc->pipe;
3976         u32 temp;
3977
3978         temp = I915_READ(LVDS);
3979         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3980         if (pipe == 1) {
3981                 temp |= LVDS_PIPEB_SELECT;
3982         } else {
3983                 temp &= ~LVDS_PIPEB_SELECT;
3984         }
3985         /* set the corresponsding LVDS_BORDER bit */
3986         temp |= dev_priv->lvds_border_bits;
3987         /* Set the B0-B3 data pairs corresponding to whether we're going to
3988          * set the DPLLs for dual-channel mode or not.
3989          */
3990         if (clock->p2 == 7)
3991                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3992         else
3993                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3994
3995         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3996          * appropriately here, but we need to look more thoroughly into how
3997          * panels behave in the two modes.
3998          */
3999         /* set the dithering flag on LVDS as needed */
4000         if (INTEL_INFO(dev)->gen >= 4) {
4001                 if (dev_priv->lvds_dither)
4002                         temp |= LVDS_ENABLE_DITHER;
4003                 else
4004                         temp &= ~LVDS_ENABLE_DITHER;
4005         }
4006         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4007         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4008                 temp |= LVDS_HSYNC_POLARITY;
4009         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4010                 temp |= LVDS_VSYNC_POLARITY;
4011         I915_WRITE(LVDS, temp);
4012 }
4013
4014 static void vlv_update_pll(struct drm_crtc *crtc,
4015                            struct drm_display_mode *mode,
4016                            struct drm_display_mode *adjusted_mode,
4017                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4018                            int refclk, int num_connectors)
4019 {
4020         struct drm_device *dev = crtc->dev;
4021         struct drm_i915_private *dev_priv = dev->dev_private;
4022         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4023         int pipe = intel_crtc->pipe;
4024         u32 dpll, mdiv, pdiv;
4025         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4026         bool is_hdmi;
4027
4028         is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4029
4030         bestn = clock->n;
4031         bestm1 = clock->m1;
4032         bestm2 = clock->m2;
4033         bestp1 = clock->p1;
4034         bestp2 = clock->p2;
4035
4036         /* Enable DPIO clock input */
4037         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4038                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4039         I915_WRITE(DPLL(pipe), dpll);
4040         POSTING_READ(DPLL(pipe));
4041
4042         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4043         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4044         mdiv |= ((bestn << DPIO_N_SHIFT));
4045         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4046         mdiv |= (1 << DPIO_K_SHIFT);
4047         mdiv |= DPIO_ENABLE_CALIBRATION;
4048         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4049
4050         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4051
4052         pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4053                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4054                 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4055         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4056
4057         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4058
4059         dpll |= DPLL_VCO_ENABLE;
4060         I915_WRITE(DPLL(pipe), dpll);
4061         POSTING_READ(DPLL(pipe));
4062         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4063                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4064
4065         if (is_hdmi) {
4066                 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4067
4068                 if (temp > 1)
4069                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4070                 else
4071                         temp = 0;
4072
4073                 I915_WRITE(DPLL_MD(pipe), temp);
4074                 POSTING_READ(DPLL_MD(pipe));
4075         }
4076
4077         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4078 }
4079
4080 static void i9xx_update_pll(struct drm_crtc *crtc,
4081                             struct drm_display_mode *mode,
4082                             struct drm_display_mode *adjusted_mode,
4083                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4084                             int num_connectors)
4085 {
4086         struct drm_device *dev = crtc->dev;
4087         struct drm_i915_private *dev_priv = dev->dev_private;
4088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4089         int pipe = intel_crtc->pipe;
4090         u32 dpll;
4091         bool is_sdvo;
4092
4093         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4094                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4095
4096         dpll = DPLL_VGA_MODE_DIS;
4097
4098         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4099                 dpll |= DPLLB_MODE_LVDS;
4100         else
4101                 dpll |= DPLLB_MODE_DAC_SERIAL;
4102         if (is_sdvo) {
4103                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4104                 if (pixel_multiplier > 1) {
4105                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4106                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4107                 }
4108                 dpll |= DPLL_DVO_HIGH_SPEED;
4109         }
4110         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4111                 dpll |= DPLL_DVO_HIGH_SPEED;
4112
4113         /* compute bitmask from p1 value */
4114         if (IS_PINEVIEW(dev))
4115                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4116         else {
4117                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4118                 if (IS_G4X(dev) && reduced_clock)
4119                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4120         }
4121         switch (clock->p2) {
4122         case 5:
4123                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4124                 break;
4125         case 7:
4126                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4127                 break;
4128         case 10:
4129                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4130                 break;
4131         case 14:
4132                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4133                 break;
4134         }
4135         if (INTEL_INFO(dev)->gen >= 4)
4136                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4137
4138         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4139                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4140         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4141                 /* XXX: just matching BIOS for now */
4142                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4143                 dpll |= 3;
4144         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4145                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4146                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4147         else
4148                 dpll |= PLL_REF_INPUT_DREFCLK;
4149
4150         dpll |= DPLL_VCO_ENABLE;
4151         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4152         POSTING_READ(DPLL(pipe));
4153         udelay(150);
4154
4155         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4156          * This is an exception to the general rule that mode_set doesn't turn
4157          * things on.
4158          */
4159         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4160                 intel_update_lvds(crtc, clock, adjusted_mode);
4161
4162         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4163                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4164
4165         I915_WRITE(DPLL(pipe), dpll);
4166
4167         /* Wait for the clocks to stabilize. */
4168         POSTING_READ(DPLL(pipe));
4169         udelay(150);
4170
4171         if (INTEL_INFO(dev)->gen >= 4) {
4172                 u32 temp = 0;
4173                 if (is_sdvo) {
4174                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4175                         if (temp > 1)
4176                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4177                         else
4178                                 temp = 0;
4179                 }
4180                 I915_WRITE(DPLL_MD(pipe), temp);
4181         } else {
4182                 /* The pixel multiplier can only be updated once the
4183                  * DPLL is enabled and the clocks are stable.
4184                  *
4185                  * So write it again.
4186                  */
4187                 I915_WRITE(DPLL(pipe), dpll);
4188         }
4189 }
4190
4191 static void i8xx_update_pll(struct drm_crtc *crtc,
4192                             struct drm_display_mode *adjusted_mode,
4193                             intel_clock_t *clock,
4194                             int num_connectors)
4195 {
4196         struct drm_device *dev = crtc->dev;
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4199         int pipe = intel_crtc->pipe;
4200         u32 dpll;
4201
4202         dpll = DPLL_VGA_MODE_DIS;
4203
4204         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4205                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4206         } else {
4207                 if (clock->p1 == 2)
4208                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4209                 else
4210                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4211                 if (clock->p2 == 4)
4212                         dpll |= PLL_P2_DIVIDE_BY_4;
4213         }
4214
4215         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4216                 /* XXX: just matching BIOS for now */
4217                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4218                 dpll |= 3;
4219         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4220                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4221                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4222         else
4223                 dpll |= PLL_REF_INPUT_DREFCLK;
4224
4225         dpll |= DPLL_VCO_ENABLE;
4226         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4227         POSTING_READ(DPLL(pipe));
4228         udelay(150);
4229
4230         I915_WRITE(DPLL(pipe), dpll);
4231
4232         /* Wait for the clocks to stabilize. */
4233         POSTING_READ(DPLL(pipe));
4234         udelay(150);
4235
4236         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4237          * This is an exception to the general rule that mode_set doesn't turn
4238          * things on.
4239          */
4240         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4241                 intel_update_lvds(crtc, clock, adjusted_mode);
4242
4243         /* The pixel multiplier can only be updated once the
4244          * DPLL is enabled and the clocks are stable.
4245          *
4246          * So write it again.
4247          */
4248         I915_WRITE(DPLL(pipe), dpll);
4249 }
4250
4251 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4252                               struct drm_display_mode *mode,
4253                               struct drm_display_mode *adjusted_mode,
4254                               int x, int y,
4255                               struct drm_framebuffer *fb)
4256 {
4257         struct drm_device *dev = crtc->dev;
4258         struct drm_i915_private *dev_priv = dev->dev_private;
4259         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4260         int pipe = intel_crtc->pipe;
4261         int plane = intel_crtc->plane;
4262         int refclk, num_connectors = 0;
4263         intel_clock_t clock, reduced_clock;
4264         u32 dspcntr, pipeconf, vsyncshift;
4265         bool ok, has_reduced_clock = false, is_sdvo = false;
4266         bool is_lvds = false, is_tv = false, is_dp = false;
4267         struct intel_encoder *encoder;
4268         const intel_limit_t *limit;
4269         int ret;
4270
4271         for_each_encoder_on_crtc(dev, crtc, encoder) {
4272                 switch (encoder->type) {
4273                 case INTEL_OUTPUT_LVDS:
4274                         is_lvds = true;
4275                         break;
4276                 case INTEL_OUTPUT_SDVO:
4277                 case INTEL_OUTPUT_HDMI:
4278                         is_sdvo = true;
4279                         if (encoder->needs_tv_clock)
4280                                 is_tv = true;
4281                         break;
4282                 case INTEL_OUTPUT_TVOUT:
4283                         is_tv = true;
4284                         break;
4285                 case INTEL_OUTPUT_DISPLAYPORT:
4286                         is_dp = true;
4287                         break;
4288                 }
4289
4290                 num_connectors++;
4291         }
4292
4293         refclk = i9xx_get_refclk(crtc, num_connectors);
4294
4295         /*
4296          * Returns a set of divisors for the desired target clock with the given
4297          * refclk, or FALSE.  The returned values represent the clock equation:
4298          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4299          */
4300         limit = intel_limit(crtc, refclk);
4301         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4302                              &clock);
4303         if (!ok) {
4304                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4305                 return -EINVAL;
4306         }
4307
4308         /* Ensure that the cursor is valid for the new mode before changing... */
4309         intel_crtc_update_cursor(crtc, true);
4310
4311         if (is_lvds && dev_priv->lvds_downclock_avail) {
4312                 /*
4313                  * Ensure we match the reduced clock's P to the target clock.
4314                  * If the clocks don't match, we can't switch the display clock
4315                  * by using the FP0/FP1. In such case we will disable the LVDS
4316                  * downclock feature.
4317                 */
4318                 has_reduced_clock = limit->find_pll(limit, crtc,
4319                                                     dev_priv->lvds_downclock,
4320                                                     refclk,
4321                                                     &clock,
4322                                                     &reduced_clock);
4323         }
4324
4325         if (is_sdvo && is_tv)
4326                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4327
4328         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4329                                  &reduced_clock : NULL);
4330
4331         if (IS_GEN2(dev))
4332                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4333         else if (IS_VALLEYVIEW(dev))
4334                 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4335                                refclk, num_connectors);
4336         else
4337                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4338                                 has_reduced_clock ? &reduced_clock : NULL,
4339                                 num_connectors);
4340
4341         /* setup pipeconf */
4342         pipeconf = I915_READ(PIPECONF(pipe));
4343
4344         /* Set up the display plane register */
4345         dspcntr = DISPPLANE_GAMMA_ENABLE;
4346
4347         if (pipe == 0)
4348                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4349         else
4350                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4351
4352         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4353                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4354                  * core speed.
4355                  *
4356                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4357                  * pipe == 0 check?
4358                  */
4359                 if (mode->clock >
4360                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4361                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4362                 else
4363                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4364         }
4365
4366         /* default to 8bpc */
4367         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4368         if (is_dp) {
4369                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4370                         pipeconf |= PIPECONF_BPP_6 |
4371                                     PIPECONF_DITHER_EN |
4372                                     PIPECONF_DITHER_TYPE_SP;
4373                 }
4374         }
4375
4376         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4377         drm_mode_debug_printmodeline(mode);
4378
4379         if (HAS_PIPE_CXSR(dev)) {
4380                 if (intel_crtc->lowfreq_avail) {
4381                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4382                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4383                 } else {
4384                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4385                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4386                 }
4387         }
4388
4389         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4390         if (!IS_GEN2(dev) &&
4391             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4392                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4393                 /* the chip adds 2 halflines automatically */
4394                 adjusted_mode->crtc_vtotal -= 1;
4395                 adjusted_mode->crtc_vblank_end -= 1;
4396                 vsyncshift = adjusted_mode->crtc_hsync_start
4397                              - adjusted_mode->crtc_htotal/2;
4398         } else {
4399                 pipeconf |= PIPECONF_PROGRESSIVE;
4400                 vsyncshift = 0;
4401         }
4402
4403         if (!IS_GEN3(dev))
4404                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4405
4406         I915_WRITE(HTOTAL(pipe),
4407                    (adjusted_mode->crtc_hdisplay - 1) |
4408                    ((adjusted_mode->crtc_htotal - 1) << 16));
4409         I915_WRITE(HBLANK(pipe),
4410                    (adjusted_mode->crtc_hblank_start - 1) |
4411                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4412         I915_WRITE(HSYNC(pipe),
4413                    (adjusted_mode->crtc_hsync_start - 1) |
4414                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4415
4416         I915_WRITE(VTOTAL(pipe),
4417                    (adjusted_mode->crtc_vdisplay - 1) |
4418                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4419         I915_WRITE(VBLANK(pipe),
4420                    (adjusted_mode->crtc_vblank_start - 1) |
4421                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4422         I915_WRITE(VSYNC(pipe),
4423                    (adjusted_mode->crtc_vsync_start - 1) |
4424                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4425
4426         /* pipesrc and dspsize control the size that is scaled from,
4427          * which should always be the user's requested size.
4428          */
4429         I915_WRITE(DSPSIZE(plane),
4430                    ((mode->vdisplay - 1) << 16) |
4431                    (mode->hdisplay - 1));
4432         I915_WRITE(DSPPOS(plane), 0);
4433         I915_WRITE(PIPESRC(pipe),
4434                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4435
4436         I915_WRITE(PIPECONF(pipe), pipeconf);
4437         POSTING_READ(PIPECONF(pipe));
4438         intel_enable_pipe(dev_priv, pipe, false);
4439
4440         intel_wait_for_vblank(dev, pipe);
4441
4442         I915_WRITE(DSPCNTR(plane), dspcntr);
4443         POSTING_READ(DSPCNTR(plane));
4444
4445         ret = intel_pipe_set_base(crtc, x, y, fb);
4446
4447         intel_update_watermarks(dev);
4448
4449         return ret;
4450 }
4451
4452 /*
4453  * Initialize reference clocks when the driver loads
4454  */
4455 void ironlake_init_pch_refclk(struct drm_device *dev)
4456 {
4457         struct drm_i915_private *dev_priv = dev->dev_private;
4458         struct drm_mode_config *mode_config = &dev->mode_config;
4459         struct intel_encoder *encoder;
4460         u32 temp;
4461         bool has_lvds = false;
4462         bool has_cpu_edp = false;
4463         bool has_pch_edp = false;
4464         bool has_panel = false;
4465         bool has_ck505 = false;
4466         bool can_ssc = false;
4467
4468         /* We need to take the global config into account */
4469         list_for_each_entry(encoder, &mode_config->encoder_list,
4470                             base.head) {
4471                 switch (encoder->type) {
4472                 case INTEL_OUTPUT_LVDS:
4473                         has_panel = true;
4474                         has_lvds = true;
4475                         break;
4476                 case INTEL_OUTPUT_EDP:
4477                         has_panel = true;
4478                         if (intel_encoder_is_pch_edp(&encoder->base))
4479                                 has_pch_edp = true;
4480                         else
4481                                 has_cpu_edp = true;
4482                         break;
4483                 }
4484         }
4485
4486         if (HAS_PCH_IBX(dev)) {
4487                 has_ck505 = dev_priv->display_clock_mode;
4488                 can_ssc = has_ck505;
4489         } else {
4490                 has_ck505 = false;
4491                 can_ssc = true;
4492         }
4493
4494         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4495                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4496                       has_ck505);
4497
4498         /* Ironlake: try to setup display ref clock before DPLL
4499          * enabling. This is only under driver's control after
4500          * PCH B stepping, previous chipset stepping should be
4501          * ignoring this setting.
4502          */
4503         temp = I915_READ(PCH_DREF_CONTROL);
4504         /* Always enable nonspread source */
4505         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4506
4507         if (has_ck505)
4508                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4509         else
4510                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4511
4512         if (has_panel) {
4513                 temp &= ~DREF_SSC_SOURCE_MASK;
4514                 temp |= DREF_SSC_SOURCE_ENABLE;
4515
4516                 /* SSC must be turned on before enabling the CPU output  */
4517                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4518                         DRM_DEBUG_KMS("Using SSC on panel\n");
4519                         temp |= DREF_SSC1_ENABLE;
4520                 } else
4521                         temp &= ~DREF_SSC1_ENABLE;
4522
4523                 /* Get SSC going before enabling the outputs */
4524                 I915_WRITE(PCH_DREF_CONTROL, temp);
4525                 POSTING_READ(PCH_DREF_CONTROL);
4526                 udelay(200);
4527
4528                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4529
4530                 /* Enable CPU source on CPU attached eDP */
4531                 if (has_cpu_edp) {
4532                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4533                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4534                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4535                         }
4536                         else
4537                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4538                 } else
4539                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4540
4541                 I915_WRITE(PCH_DREF_CONTROL, temp);
4542                 POSTING_READ(PCH_DREF_CONTROL);
4543                 udelay(200);
4544         } else {
4545                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4546
4547                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4548
4549                 /* Turn off CPU output */
4550                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4551
4552                 I915_WRITE(PCH_DREF_CONTROL, temp);
4553                 POSTING_READ(PCH_DREF_CONTROL);
4554                 udelay(200);
4555
4556                 /* Turn off the SSC source */
4557                 temp &= ~DREF_SSC_SOURCE_MASK;
4558                 temp |= DREF_SSC_SOURCE_DISABLE;
4559
4560                 /* Turn off SSC1 */
4561                 temp &= ~ DREF_SSC1_ENABLE;
4562
4563                 I915_WRITE(PCH_DREF_CONTROL, temp);
4564                 POSTING_READ(PCH_DREF_CONTROL);
4565                 udelay(200);
4566         }
4567 }
4568
4569 static int ironlake_get_refclk(struct drm_crtc *crtc)
4570 {
4571         struct drm_device *dev = crtc->dev;
4572         struct drm_i915_private *dev_priv = dev->dev_private;
4573         struct intel_encoder *encoder;
4574         struct intel_encoder *edp_encoder = NULL;
4575         int num_connectors = 0;
4576         bool is_lvds = false;
4577
4578         for_each_encoder_on_crtc(dev, crtc, encoder) {
4579                 switch (encoder->type) {
4580                 case INTEL_OUTPUT_LVDS:
4581                         is_lvds = true;
4582                         break;
4583                 case INTEL_OUTPUT_EDP:
4584                         edp_encoder = encoder;
4585                         break;
4586                 }
4587                 num_connectors++;
4588         }
4589
4590         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4591                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4592                               dev_priv->lvds_ssc_freq);
4593                 return dev_priv->lvds_ssc_freq * 1000;
4594         }
4595
4596         return 120000;
4597 }
4598
4599 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4600                                   struct drm_display_mode *adjusted_mode,
4601                                   bool dither)
4602 {
4603         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4604         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4605         int pipe = intel_crtc->pipe;
4606         uint32_t val;
4607
4608         val = I915_READ(PIPECONF(pipe));
4609
4610         val &= ~PIPE_BPC_MASK;
4611         switch (intel_crtc->bpp) {
4612         case 18:
4613                 val |= PIPE_6BPC;
4614                 break;
4615         case 24:
4616                 val |= PIPE_8BPC;
4617                 break;
4618         case 30:
4619                 val |= PIPE_10BPC;
4620                 break;
4621         case 36:
4622                 val |= PIPE_12BPC;
4623                 break;
4624         default:
4625                 val |= PIPE_8BPC;
4626                 break;
4627         }
4628
4629         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4630         if (dither)
4631                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4632
4633         val &= ~PIPECONF_INTERLACE_MASK;
4634         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4635                 val |= PIPECONF_INTERLACED_ILK;
4636         else
4637                 val |= PIPECONF_PROGRESSIVE;
4638
4639         I915_WRITE(PIPECONF(pipe), val);
4640         POSTING_READ(PIPECONF(pipe));
4641 }
4642
4643 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4644                                     struct drm_display_mode *adjusted_mode,
4645                                     intel_clock_t *clock,
4646                                     bool *has_reduced_clock,
4647                                     intel_clock_t *reduced_clock)
4648 {
4649         struct drm_device *dev = crtc->dev;
4650         struct drm_i915_private *dev_priv = dev->dev_private;
4651         struct intel_encoder *intel_encoder;
4652         int refclk;
4653         const intel_limit_t *limit;
4654         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4655
4656         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4657                 switch (intel_encoder->type) {
4658                 case INTEL_OUTPUT_LVDS:
4659                         is_lvds = true;
4660                         break;
4661                 case INTEL_OUTPUT_SDVO:
4662                 case INTEL_OUTPUT_HDMI:
4663                         is_sdvo = true;
4664                         if (intel_encoder->needs_tv_clock)
4665                                 is_tv = true;
4666                         break;
4667                 case INTEL_OUTPUT_TVOUT:
4668                         is_tv = true;
4669                         break;
4670                 }
4671         }
4672
4673         refclk = ironlake_get_refclk(crtc);
4674
4675         /*
4676          * Returns a set of divisors for the desired target clock with the given
4677          * refclk, or FALSE.  The returned values represent the clock equation:
4678          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4679          */
4680         limit = intel_limit(crtc, refclk);
4681         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4682                               clock);
4683         if (!ret)
4684                 return false;
4685
4686         if (is_lvds && dev_priv->lvds_downclock_avail) {
4687                 /*
4688                  * Ensure we match the reduced clock's P to the target clock.
4689                  * If the clocks don't match, we can't switch the display clock
4690                  * by using the FP0/FP1. In such case we will disable the LVDS
4691                  * downclock feature.
4692                 */
4693                 *has_reduced_clock = limit->find_pll(limit, crtc,
4694                                                      dev_priv->lvds_downclock,
4695                                                      refclk,
4696                                                      clock,
4697                                                      reduced_clock);
4698         }
4699
4700         if (is_sdvo && is_tv)
4701                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4702
4703         return true;
4704 }
4705
4706 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4707                                   struct drm_display_mode *mode,
4708                                   struct drm_display_mode *adjusted_mode,
4709                                   int x, int y,
4710                                   struct drm_framebuffer *fb)
4711 {
4712         struct drm_device *dev = crtc->dev;
4713         struct drm_i915_private *dev_priv = dev->dev_private;
4714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4715         int pipe = intel_crtc->pipe;
4716         int plane = intel_crtc->plane;
4717         int num_connectors = 0;
4718         intel_clock_t clock, reduced_clock;
4719         u32 dpll, fp = 0, fp2 = 0;
4720         bool ok, has_reduced_clock = false, is_sdvo = false;
4721         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4722         struct intel_encoder *encoder, *edp_encoder = NULL;
4723         int ret;
4724         struct fdi_m_n m_n = {0};
4725         u32 temp;
4726         int target_clock, pixel_multiplier, lane, link_bw, factor;
4727         unsigned int pipe_bpp;
4728         bool dither;
4729         bool is_cpu_edp = false, is_pch_edp = false;
4730
4731         for_each_encoder_on_crtc(dev, crtc, encoder) {
4732                 switch (encoder->type) {
4733                 case INTEL_OUTPUT_LVDS:
4734                         is_lvds = true;
4735                         break;
4736                 case INTEL_OUTPUT_SDVO:
4737                 case INTEL_OUTPUT_HDMI:
4738                         is_sdvo = true;
4739                         if (encoder->needs_tv_clock)
4740                                 is_tv = true;
4741                         break;
4742                 case INTEL_OUTPUT_TVOUT:
4743                         is_tv = true;
4744                         break;
4745                 case INTEL_OUTPUT_ANALOG:
4746                         is_crt = true;
4747                         break;
4748                 case INTEL_OUTPUT_DISPLAYPORT:
4749                         is_dp = true;
4750                         break;
4751                 case INTEL_OUTPUT_EDP:
4752                         is_dp = true;
4753                         if (intel_encoder_is_pch_edp(&encoder->base))
4754                                 is_pch_edp = true;
4755                         else
4756                                 is_cpu_edp = true;
4757                         edp_encoder = encoder;
4758                         break;
4759                 }
4760
4761                 num_connectors++;
4762         }
4763
4764         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
4765                                      &has_reduced_clock, &reduced_clock);
4766         if (!ok) {
4767                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4768                 return -EINVAL;
4769         }
4770
4771         /* Ensure that the cursor is valid for the new mode before changing... */
4772         intel_crtc_update_cursor(crtc, true);
4773
4774         /* FDI link */
4775         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4776         lane = 0;
4777         /* CPU eDP doesn't require FDI link, so just set DP M/N
4778            according to current link config */
4779         if (is_cpu_edp) {
4780                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4781         } else {
4782                 /* FDI is a binary signal running at ~2.7GHz, encoding
4783                  * each output octet as 10 bits. The actual frequency
4784                  * is stored as a divider into a 100MHz clock, and the
4785                  * mode pixel clock is stored in units of 1KHz.
4786                  * Hence the bw of each lane in terms of the mode signal
4787                  * is:
4788                  */
4789                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4790         }
4791
4792         /* [e]DP over FDI requires target mode clock instead of link clock. */
4793         if (edp_encoder)
4794                 target_clock = intel_edp_target_clock(edp_encoder, mode);
4795         else if (is_dp)
4796                 target_clock = mode->clock;
4797         else
4798                 target_clock = adjusted_mode->clock;
4799
4800         /* determine panel color depth */
4801         dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp, mode);
4802         if (is_lvds && dev_priv->lvds_dither)
4803                 dither = true;
4804
4805         if (pipe_bpp != 18 && pipe_bpp != 24 && pipe_bpp != 30 &&
4806             pipe_bpp != 36) {
4807                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4808                      pipe_bpp);
4809                 pipe_bpp = 24;
4810         }
4811         intel_crtc->bpp = pipe_bpp;
4812
4813         if (!lane) {
4814                 /*
4815                  * Account for spread spectrum to avoid
4816                  * oversubscribing the link. Max center spread
4817                  * is 2.5%; use 5% for safety's sake.
4818                  */
4819                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4820                 lane = bps / (link_bw * 8) + 1;
4821         }
4822
4823         intel_crtc->fdi_lanes = lane;
4824
4825         if (pixel_multiplier > 1)
4826                 link_bw *= pixel_multiplier;
4827         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4828                              &m_n);
4829
4830         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4831         if (has_reduced_clock)
4832                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4833                         reduced_clock.m2;
4834
4835         /* Enable autotuning of the PLL clock (if permissible) */
4836         factor = 21;
4837         if (is_lvds) {
4838                 if ((intel_panel_use_ssc(dev_priv) &&
4839                      dev_priv->lvds_ssc_freq == 100) ||
4840                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4841                         factor = 25;
4842         } else if (is_sdvo && is_tv)
4843                 factor = 20;
4844
4845         if (clock.m < factor * clock.n)
4846                 fp |= FP_CB_TUNE;
4847
4848         dpll = 0;
4849
4850         if (is_lvds)
4851                 dpll |= DPLLB_MODE_LVDS;
4852         else
4853                 dpll |= DPLLB_MODE_DAC_SERIAL;
4854         if (is_sdvo) {
4855                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4856                 if (pixel_multiplier > 1) {
4857                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4858                 }
4859                 dpll |= DPLL_DVO_HIGH_SPEED;
4860         }
4861         if (is_dp && !is_cpu_edp)
4862                 dpll |= DPLL_DVO_HIGH_SPEED;
4863
4864         /* compute bitmask from p1 value */
4865         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4866         /* also FPA1 */
4867         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4868
4869         switch (clock.p2) {
4870         case 5:
4871                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4872                 break;
4873         case 7:
4874                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4875                 break;
4876         case 10:
4877                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4878                 break;
4879         case 14:
4880                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4881                 break;
4882         }
4883
4884         if (is_sdvo && is_tv)
4885                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4886         else if (is_tv)
4887                 /* XXX: just matching BIOS for now */
4888                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4889                 dpll |= 3;
4890         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4891                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4892         else
4893                 dpll |= PLL_REF_INPUT_DREFCLK;
4894
4895         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4896         drm_mode_debug_printmodeline(mode);
4897
4898         /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4899          * pre-Haswell/LPT generation */
4900         if (HAS_PCH_LPT(dev)) {
4901                 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4902                                 pipe);
4903         } else if (!is_cpu_edp) {
4904                 struct intel_pch_pll *pll;
4905
4906                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4907                 if (pll == NULL) {
4908                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4909                                          pipe);
4910                         return -EINVAL;
4911                 }
4912         } else
4913                 intel_put_pch_pll(intel_crtc);
4914
4915         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4916          * This is an exception to the general rule that mode_set doesn't turn
4917          * things on.
4918          */
4919         if (is_lvds) {
4920                 temp = I915_READ(PCH_LVDS);
4921                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4922                 if (HAS_PCH_CPT(dev)) {
4923                         temp &= ~PORT_TRANS_SEL_MASK;
4924                         temp |= PORT_TRANS_SEL_CPT(pipe);
4925                 } else {
4926                         if (pipe == 1)
4927                                 temp |= LVDS_PIPEB_SELECT;
4928                         else
4929                                 temp &= ~LVDS_PIPEB_SELECT;
4930                 }
4931
4932                 /* set the corresponsding LVDS_BORDER bit */
4933                 temp |= dev_priv->lvds_border_bits;
4934                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4935                  * set the DPLLs for dual-channel mode or not.
4936                  */
4937                 if (clock.p2 == 7)
4938                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4939                 else
4940                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4941
4942                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4943                  * appropriately here, but we need to look more thoroughly into how
4944                  * panels behave in the two modes.
4945                  */
4946                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4947                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4948                         temp |= LVDS_HSYNC_POLARITY;
4949                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4950                         temp |= LVDS_VSYNC_POLARITY;
4951                 I915_WRITE(PCH_LVDS, temp);
4952         }
4953
4954         if (is_dp && !is_cpu_edp) {
4955                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4956         } else {
4957                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4958                 I915_WRITE(TRANSDATA_M1(pipe), 0);
4959                 I915_WRITE(TRANSDATA_N1(pipe), 0);
4960                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4961                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4962         }
4963
4964         if (intel_crtc->pch_pll) {
4965                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4966
4967                 /* Wait for the clocks to stabilize. */
4968                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4969                 udelay(150);
4970
4971                 /* The pixel multiplier can only be updated once the
4972                  * DPLL is enabled and the clocks are stable.
4973                  *
4974                  * So write it again.
4975                  */
4976                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4977         }
4978
4979         intel_crtc->lowfreq_avail = false;
4980         if (intel_crtc->pch_pll) {
4981                 if (is_lvds && has_reduced_clock && i915_powersave) {
4982                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4983                         intel_crtc->lowfreq_avail = true;
4984                 } else {
4985                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4986                 }
4987         }
4988
4989         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4990                 /* the chip adds 2 halflines automatically */
4991                 adjusted_mode->crtc_vtotal -= 1;
4992                 adjusted_mode->crtc_vblank_end -= 1;
4993                 I915_WRITE(VSYNCSHIFT(pipe),
4994                            adjusted_mode->crtc_hsync_start
4995                            - adjusted_mode->crtc_htotal/2);
4996         } else {
4997                 I915_WRITE(VSYNCSHIFT(pipe), 0);
4998         }
4999
5000         I915_WRITE(HTOTAL(pipe),
5001                    (adjusted_mode->crtc_hdisplay - 1) |
5002                    ((adjusted_mode->crtc_htotal - 1) << 16));
5003         I915_WRITE(HBLANK(pipe),
5004                    (adjusted_mode->crtc_hblank_start - 1) |
5005                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5006         I915_WRITE(HSYNC(pipe),
5007                    (adjusted_mode->crtc_hsync_start - 1) |
5008                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5009
5010         I915_WRITE(VTOTAL(pipe),
5011                    (adjusted_mode->crtc_vdisplay - 1) |
5012                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5013         I915_WRITE(VBLANK(pipe),
5014                    (adjusted_mode->crtc_vblank_start - 1) |
5015                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5016         I915_WRITE(VSYNC(pipe),
5017                    (adjusted_mode->crtc_vsync_start - 1) |
5018                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5019
5020         /* pipesrc controls the size that is scaled from, which should
5021          * always be the user's requested size.
5022          */
5023         I915_WRITE(PIPESRC(pipe),
5024                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5025
5026         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5027         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5028         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5029         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5030
5031         if (is_cpu_edp)
5032                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5033
5034         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5035
5036         intel_wait_for_vblank(dev, pipe);
5037
5038         /* Set up the display plane register */
5039         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5040         POSTING_READ(DSPCNTR(plane));
5041
5042         ret = intel_pipe_set_base(crtc, x, y, fb);
5043
5044         intel_update_watermarks(dev);
5045
5046         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5047
5048         return ret;
5049 }
5050
5051 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5052                                struct drm_display_mode *mode,
5053                                struct drm_display_mode *adjusted_mode,
5054                                int x, int y,
5055                                struct drm_framebuffer *fb)
5056 {
5057         struct drm_device *dev = crtc->dev;
5058         struct drm_i915_private *dev_priv = dev->dev_private;
5059         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5060         int pipe = intel_crtc->pipe;
5061         int ret;
5062
5063         drm_vblank_pre_modeset(dev, pipe);
5064
5065         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5066                                               x, y, fb);
5067         drm_vblank_post_modeset(dev, pipe);
5068
5069         return ret;
5070 }
5071
5072 static bool intel_eld_uptodate(struct drm_connector *connector,
5073                                int reg_eldv, uint32_t bits_eldv,
5074                                int reg_elda, uint32_t bits_elda,
5075                                int reg_edid)
5076 {
5077         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5078         uint8_t *eld = connector->eld;
5079         uint32_t i;
5080
5081         i = I915_READ(reg_eldv);
5082         i &= bits_eldv;
5083
5084         if (!eld[0])
5085                 return !i;
5086
5087         if (!i)
5088                 return false;
5089
5090         i = I915_READ(reg_elda);
5091         i &= ~bits_elda;
5092         I915_WRITE(reg_elda, i);
5093
5094         for (i = 0; i < eld[2]; i++)
5095                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5096                         return false;
5097
5098         return true;
5099 }
5100
5101 static void g4x_write_eld(struct drm_connector *connector,
5102                           struct drm_crtc *crtc)
5103 {
5104         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5105         uint8_t *eld = connector->eld;
5106         uint32_t eldv;
5107         uint32_t len;
5108         uint32_t i;
5109
5110         i = I915_READ(G4X_AUD_VID_DID);
5111
5112         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5113                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5114         else
5115                 eldv = G4X_ELDV_DEVCTG;
5116
5117         if (intel_eld_uptodate(connector,
5118                                G4X_AUD_CNTL_ST, eldv,
5119                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5120                                G4X_HDMIW_HDMIEDID))
5121                 return;
5122
5123         i = I915_READ(G4X_AUD_CNTL_ST);
5124         i &= ~(eldv | G4X_ELD_ADDR);
5125         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5126         I915_WRITE(G4X_AUD_CNTL_ST, i);
5127
5128         if (!eld[0])
5129                 return;
5130
5131         len = min_t(uint8_t, eld[2], len);
5132         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5133         for (i = 0; i < len; i++)
5134                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5135
5136         i = I915_READ(G4X_AUD_CNTL_ST);
5137         i |= eldv;
5138         I915_WRITE(G4X_AUD_CNTL_ST, i);
5139 }
5140
5141 static void haswell_write_eld(struct drm_connector *connector,
5142                                      struct drm_crtc *crtc)
5143 {
5144         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5145         uint8_t *eld = connector->eld;
5146         struct drm_device *dev = crtc->dev;
5147         uint32_t eldv;
5148         uint32_t i;
5149         int len;
5150         int pipe = to_intel_crtc(crtc)->pipe;
5151         int tmp;
5152
5153         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5154         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5155         int aud_config = HSW_AUD_CFG(pipe);
5156         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5157
5158
5159         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5160
5161         /* Audio output enable */
5162         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5163         tmp = I915_READ(aud_cntrl_st2);
5164         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5165         I915_WRITE(aud_cntrl_st2, tmp);
5166
5167         /* Wait for 1 vertical blank */
5168         intel_wait_for_vblank(dev, pipe);
5169
5170         /* Set ELD valid state */
5171         tmp = I915_READ(aud_cntrl_st2);
5172         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5173         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5174         I915_WRITE(aud_cntrl_st2, tmp);
5175         tmp = I915_READ(aud_cntrl_st2);
5176         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5177
5178         /* Enable HDMI mode */
5179         tmp = I915_READ(aud_config);
5180         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5181         /* clear N_programing_enable and N_value_index */
5182         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5183         I915_WRITE(aud_config, tmp);
5184
5185         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5186
5187         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5188
5189         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5190                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5191                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5192                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5193         } else
5194                 I915_WRITE(aud_config, 0);
5195
5196         if (intel_eld_uptodate(connector,
5197                                aud_cntrl_st2, eldv,
5198                                aud_cntl_st, IBX_ELD_ADDRESS,
5199                                hdmiw_hdmiedid))
5200                 return;
5201
5202         i = I915_READ(aud_cntrl_st2);
5203         i &= ~eldv;
5204         I915_WRITE(aud_cntrl_st2, i);
5205
5206         if (!eld[0])
5207                 return;
5208
5209         i = I915_READ(aud_cntl_st);
5210         i &= ~IBX_ELD_ADDRESS;
5211         I915_WRITE(aud_cntl_st, i);
5212         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5213         DRM_DEBUG_DRIVER("port num:%d\n", i);
5214
5215         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5216         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5217         for (i = 0; i < len; i++)
5218                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5219
5220         i = I915_READ(aud_cntrl_st2);
5221         i |= eldv;
5222         I915_WRITE(aud_cntrl_st2, i);
5223
5224 }
5225
5226 static void ironlake_write_eld(struct drm_connector *connector,
5227                                      struct drm_crtc *crtc)
5228 {
5229         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5230         uint8_t *eld = connector->eld;
5231         uint32_t eldv;
5232         uint32_t i;
5233         int len;
5234         int hdmiw_hdmiedid;
5235         int aud_config;
5236         int aud_cntl_st;
5237         int aud_cntrl_st2;
5238         int pipe = to_intel_crtc(crtc)->pipe;
5239
5240         if (HAS_PCH_IBX(connector->dev)) {
5241                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5242                 aud_config = IBX_AUD_CFG(pipe);
5243                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5244                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5245         } else {
5246                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5247                 aud_config = CPT_AUD_CFG(pipe);
5248                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5249                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5250         }
5251
5252         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5253
5254         i = I915_READ(aud_cntl_st);
5255         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5256         if (!i) {
5257                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5258                 /* operate blindly on all ports */
5259                 eldv = IBX_ELD_VALIDB;
5260                 eldv |= IBX_ELD_VALIDB << 4;
5261                 eldv |= IBX_ELD_VALIDB << 8;
5262         } else {
5263                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5264                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5265         }
5266
5267         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5268                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5269                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5270                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5271         } else
5272                 I915_WRITE(aud_config, 0);
5273
5274         if (intel_eld_uptodate(connector,
5275                                aud_cntrl_st2, eldv,
5276                                aud_cntl_st, IBX_ELD_ADDRESS,
5277                                hdmiw_hdmiedid))
5278                 return;
5279
5280         i = I915_READ(aud_cntrl_st2);
5281         i &= ~eldv;
5282         I915_WRITE(aud_cntrl_st2, i);
5283
5284         if (!eld[0])
5285                 return;
5286
5287         i = I915_READ(aud_cntl_st);
5288         i &= ~IBX_ELD_ADDRESS;
5289         I915_WRITE(aud_cntl_st, i);
5290
5291         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5292         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5293         for (i = 0; i < len; i++)
5294                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5295
5296         i = I915_READ(aud_cntrl_st2);
5297         i |= eldv;
5298         I915_WRITE(aud_cntrl_st2, i);
5299 }
5300
5301 void intel_write_eld(struct drm_encoder *encoder,
5302                      struct drm_display_mode *mode)
5303 {
5304         struct drm_crtc *crtc = encoder->crtc;
5305         struct drm_connector *connector;
5306         struct drm_device *dev = encoder->dev;
5307         struct drm_i915_private *dev_priv = dev->dev_private;
5308
5309         connector = drm_select_eld(encoder, mode);
5310         if (!connector)
5311                 return;
5312
5313         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5314                          connector->base.id,
5315                          drm_get_connector_name(connector),
5316                          connector->encoder->base.id,
5317                          drm_get_encoder_name(connector->encoder));
5318
5319         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5320
5321         if (dev_priv->display.write_eld)
5322                 dev_priv->display.write_eld(connector, crtc);
5323 }
5324
5325 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5326 void intel_crtc_load_lut(struct drm_crtc *crtc)
5327 {
5328         struct drm_device *dev = crtc->dev;
5329         struct drm_i915_private *dev_priv = dev->dev_private;
5330         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5331         int palreg = PALETTE(intel_crtc->pipe);
5332         int i;
5333
5334         /* The clocks have to be on to load the palette. */
5335         if (!crtc->enabled || !intel_crtc->active)
5336                 return;
5337
5338         /* use legacy palette for Ironlake */
5339         if (HAS_PCH_SPLIT(dev))
5340                 palreg = LGC_PALETTE(intel_crtc->pipe);
5341
5342         for (i = 0; i < 256; i++) {
5343                 I915_WRITE(palreg + 4 * i,
5344                            (intel_crtc->lut_r[i] << 16) |
5345                            (intel_crtc->lut_g[i] << 8) |
5346                            intel_crtc->lut_b[i]);
5347         }
5348 }
5349
5350 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5351 {
5352         struct drm_device *dev = crtc->dev;
5353         struct drm_i915_private *dev_priv = dev->dev_private;
5354         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5355         bool visible = base != 0;
5356         u32 cntl;
5357
5358         if (intel_crtc->cursor_visible == visible)
5359                 return;
5360
5361         cntl = I915_READ(_CURACNTR);
5362         if (visible) {
5363                 /* On these chipsets we can only modify the base whilst
5364                  * the cursor is disabled.
5365                  */
5366                 I915_WRITE(_CURABASE, base);
5367
5368                 cntl &= ~(CURSOR_FORMAT_MASK);
5369                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5370                 cntl |= CURSOR_ENABLE |
5371                         CURSOR_GAMMA_ENABLE |
5372                         CURSOR_FORMAT_ARGB;
5373         } else
5374                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5375         I915_WRITE(_CURACNTR, cntl);
5376
5377         intel_crtc->cursor_visible = visible;
5378 }
5379
5380 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5381 {
5382         struct drm_device *dev = crtc->dev;
5383         struct drm_i915_private *dev_priv = dev->dev_private;
5384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5385         int pipe = intel_crtc->pipe;
5386         bool visible = base != 0;
5387
5388         if (intel_crtc->cursor_visible != visible) {
5389                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5390                 if (base) {
5391                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5392                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5393                         cntl |= pipe << 28; /* Connect to correct pipe */
5394                 } else {
5395                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5396                         cntl |= CURSOR_MODE_DISABLE;
5397                 }
5398                 I915_WRITE(CURCNTR(pipe), cntl);
5399
5400                 intel_crtc->cursor_visible = visible;
5401         }
5402         /* and commit changes on next vblank */
5403         I915_WRITE(CURBASE(pipe), base);
5404 }
5405
5406 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5407 {
5408         struct drm_device *dev = crtc->dev;
5409         struct drm_i915_private *dev_priv = dev->dev_private;
5410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5411         int pipe = intel_crtc->pipe;
5412         bool visible = base != 0;
5413
5414         if (intel_crtc->cursor_visible != visible) {
5415                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5416                 if (base) {
5417                         cntl &= ~CURSOR_MODE;
5418                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5419                 } else {
5420                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5421                         cntl |= CURSOR_MODE_DISABLE;
5422                 }
5423                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5424
5425                 intel_crtc->cursor_visible = visible;
5426         }
5427         /* and commit changes on next vblank */
5428         I915_WRITE(CURBASE_IVB(pipe), base);
5429 }
5430
5431 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5432 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5433                                      bool on)
5434 {
5435         struct drm_device *dev = crtc->dev;
5436         struct drm_i915_private *dev_priv = dev->dev_private;
5437         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5438         int pipe = intel_crtc->pipe;
5439         int x = intel_crtc->cursor_x;
5440         int y = intel_crtc->cursor_y;
5441         u32 base, pos;
5442         bool visible;
5443
5444         pos = 0;
5445
5446         if (on && crtc->enabled && crtc->fb) {
5447                 base = intel_crtc->cursor_addr;
5448                 if (x > (int) crtc->fb->width)
5449                         base = 0;
5450
5451                 if (y > (int) crtc->fb->height)
5452                         base = 0;
5453         } else
5454                 base = 0;
5455
5456         if (x < 0) {
5457                 if (x + intel_crtc->cursor_width < 0)
5458                         base = 0;
5459
5460                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5461                 x = -x;
5462         }
5463         pos |= x << CURSOR_X_SHIFT;
5464
5465         if (y < 0) {
5466                 if (y + intel_crtc->cursor_height < 0)
5467                         base = 0;
5468
5469                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5470                 y = -y;
5471         }
5472         pos |= y << CURSOR_Y_SHIFT;
5473
5474         visible = base != 0;
5475         if (!visible && !intel_crtc->cursor_visible)
5476                 return;
5477
5478         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5479                 I915_WRITE(CURPOS_IVB(pipe), pos);
5480                 ivb_update_cursor(crtc, base);
5481         } else {
5482                 I915_WRITE(CURPOS(pipe), pos);
5483                 if (IS_845G(dev) || IS_I865G(dev))
5484                         i845_update_cursor(crtc, base);
5485                 else
5486                         i9xx_update_cursor(crtc, base);
5487         }
5488 }
5489
5490 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5491                                  struct drm_file *file,
5492                                  uint32_t handle,
5493                                  uint32_t width, uint32_t height)
5494 {
5495         struct drm_device *dev = crtc->dev;
5496         struct drm_i915_private *dev_priv = dev->dev_private;
5497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5498         struct drm_i915_gem_object *obj;
5499         uint32_t addr;
5500         int ret;
5501
5502         /* if we want to turn off the cursor ignore width and height */
5503         if (!handle) {
5504                 DRM_DEBUG_KMS("cursor off\n");
5505                 addr = 0;
5506                 obj = NULL;
5507                 mutex_lock(&dev->struct_mutex);
5508                 goto finish;
5509         }
5510
5511         /* Currently we only support 64x64 cursors */
5512         if (width != 64 || height != 64) {
5513                 DRM_ERROR("we currently only support 64x64 cursors\n");
5514                 return -EINVAL;
5515         }
5516
5517         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5518         if (&obj->base == NULL)
5519                 return -ENOENT;
5520
5521         if (obj->base.size < width * height * 4) {
5522                 DRM_ERROR("buffer is to small\n");
5523                 ret = -ENOMEM;
5524                 goto fail;
5525         }
5526
5527         /* we only need to pin inside GTT if cursor is non-phy */
5528         mutex_lock(&dev->struct_mutex);
5529         if (!dev_priv->info->cursor_needs_physical) {
5530                 if (obj->tiling_mode) {
5531                         DRM_ERROR("cursor cannot be tiled\n");
5532                         ret = -EINVAL;
5533                         goto fail_locked;
5534                 }
5535
5536                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5537                 if (ret) {
5538                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5539                         goto fail_locked;
5540                 }
5541
5542                 ret = i915_gem_object_put_fence(obj);
5543                 if (ret) {
5544                         DRM_ERROR("failed to release fence for cursor");
5545                         goto fail_unpin;
5546                 }
5547
5548                 addr = obj->gtt_offset;
5549         } else {
5550                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5551                 ret = i915_gem_attach_phys_object(dev, obj,
5552                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5553                                                   align);
5554                 if (ret) {
5555                         DRM_ERROR("failed to attach phys object\n");
5556                         goto fail_locked;
5557                 }
5558                 addr = obj->phys_obj->handle->busaddr;
5559         }
5560
5561         if (IS_GEN2(dev))
5562                 I915_WRITE(CURSIZE, (height << 12) | width);
5563
5564  finish:
5565         if (intel_crtc->cursor_bo) {
5566                 if (dev_priv->info->cursor_needs_physical) {
5567                         if (intel_crtc->cursor_bo != obj)
5568                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5569                 } else
5570                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5571                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5572         }
5573
5574         mutex_unlock(&dev->struct_mutex);
5575
5576         intel_crtc->cursor_addr = addr;
5577         intel_crtc->cursor_bo = obj;
5578         intel_crtc->cursor_width = width;
5579         intel_crtc->cursor_height = height;
5580
5581         intel_crtc_update_cursor(crtc, true);
5582
5583         return 0;
5584 fail_unpin:
5585         i915_gem_object_unpin(obj);
5586 fail_locked:
5587         mutex_unlock(&dev->struct_mutex);
5588 fail:
5589         drm_gem_object_unreference_unlocked(&obj->base);
5590         return ret;
5591 }
5592
5593 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5594 {
5595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5596
5597         intel_crtc->cursor_x = x;
5598         intel_crtc->cursor_y = y;
5599
5600         intel_crtc_update_cursor(crtc, true);
5601
5602         return 0;
5603 }
5604
5605 /** Sets the color ramps on behalf of RandR */
5606 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5607                                  u16 blue, int regno)
5608 {
5609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5610
5611         intel_crtc->lut_r[regno] = red >> 8;
5612         intel_crtc->lut_g[regno] = green >> 8;
5613         intel_crtc->lut_b[regno] = blue >> 8;
5614 }
5615
5616 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5617                              u16 *blue, int regno)
5618 {
5619         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5620
5621         *red = intel_crtc->lut_r[regno] << 8;
5622         *green = intel_crtc->lut_g[regno] << 8;
5623         *blue = intel_crtc->lut_b[regno] << 8;
5624 }
5625
5626 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5627                                  u16 *blue, uint32_t start, uint32_t size)
5628 {
5629         int end = (start + size > 256) ? 256 : start + size, i;
5630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5631
5632         for (i = start; i < end; i++) {
5633                 intel_crtc->lut_r[i] = red[i] >> 8;
5634                 intel_crtc->lut_g[i] = green[i] >> 8;
5635                 intel_crtc->lut_b[i] = blue[i] >> 8;
5636         }
5637
5638         intel_crtc_load_lut(crtc);
5639 }
5640
5641 /**
5642  * Get a pipe with a simple mode set on it for doing load-based monitor
5643  * detection.
5644  *
5645  * It will be up to the load-detect code to adjust the pipe as appropriate for
5646  * its requirements.  The pipe will be connected to no other encoders.
5647  *
5648  * Currently this code will only succeed if there is a pipe with no encoders
5649  * configured for it.  In the future, it could choose to temporarily disable
5650  * some outputs to free up a pipe for its use.
5651  *
5652  * \return crtc, or NULL if no pipes are available.
5653  */
5654
5655 /* VESA 640x480x72Hz mode to set on the pipe */
5656 static struct drm_display_mode load_detect_mode = {
5657         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5658                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5659 };
5660
5661 static struct drm_framebuffer *
5662 intel_framebuffer_create(struct drm_device *dev,
5663                          struct drm_mode_fb_cmd2 *mode_cmd,
5664                          struct drm_i915_gem_object *obj)
5665 {
5666         struct intel_framebuffer *intel_fb;
5667         int ret;
5668
5669         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5670         if (!intel_fb) {
5671                 drm_gem_object_unreference_unlocked(&obj->base);
5672                 return ERR_PTR(-ENOMEM);
5673         }
5674
5675         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5676         if (ret) {
5677                 drm_gem_object_unreference_unlocked(&obj->base);
5678                 kfree(intel_fb);
5679                 return ERR_PTR(ret);
5680         }
5681
5682         return &intel_fb->base;
5683 }
5684
5685 static u32
5686 intel_framebuffer_pitch_for_width(int width, int bpp)
5687 {
5688         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5689         return ALIGN(pitch, 64);
5690 }
5691
5692 static u32
5693 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5694 {
5695         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5696         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5697 }
5698
5699 static struct drm_framebuffer *
5700 intel_framebuffer_create_for_mode(struct drm_device *dev,
5701                                   struct drm_display_mode *mode,
5702                                   int depth, int bpp)
5703 {
5704         struct drm_i915_gem_object *obj;
5705         struct drm_mode_fb_cmd2 mode_cmd;
5706
5707         obj = i915_gem_alloc_object(dev,
5708                                     intel_framebuffer_size_for_mode(mode, bpp));
5709         if (obj == NULL)
5710                 return ERR_PTR(-ENOMEM);
5711
5712         mode_cmd.width = mode->hdisplay;
5713         mode_cmd.height = mode->vdisplay;
5714         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5715                                                                 bpp);
5716         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5717
5718         return intel_framebuffer_create(dev, &mode_cmd, obj);
5719 }
5720
5721 static struct drm_framebuffer *
5722 mode_fits_in_fbdev(struct drm_device *dev,
5723                    struct drm_display_mode *mode)
5724 {
5725         struct drm_i915_private *dev_priv = dev->dev_private;
5726         struct drm_i915_gem_object *obj;
5727         struct drm_framebuffer *fb;
5728
5729         if (dev_priv->fbdev == NULL)
5730                 return NULL;
5731
5732         obj = dev_priv->fbdev->ifb.obj;
5733         if (obj == NULL)
5734                 return NULL;
5735
5736         fb = &dev_priv->fbdev->ifb.base;
5737         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5738                                                                fb->bits_per_pixel))
5739                 return NULL;
5740
5741         if (obj->base.size < mode->vdisplay * fb->pitches[0])
5742                 return NULL;
5743
5744         return fb;
5745 }
5746
5747 bool intel_get_load_detect_pipe(struct drm_connector *connector,
5748                                 struct drm_display_mode *mode,
5749                                 struct intel_load_detect_pipe *old)
5750 {
5751         struct intel_crtc *intel_crtc;
5752         struct intel_encoder *intel_encoder =
5753                 intel_attached_encoder(connector);
5754         struct drm_crtc *possible_crtc;
5755         struct drm_encoder *encoder = &intel_encoder->base;
5756         struct drm_crtc *crtc = NULL;
5757         struct drm_device *dev = encoder->dev;
5758         struct drm_framebuffer *fb;
5759         int i = -1;
5760
5761         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5762                       connector->base.id, drm_get_connector_name(connector),
5763                       encoder->base.id, drm_get_encoder_name(encoder));
5764
5765         /*
5766          * Algorithm gets a little messy:
5767          *
5768          *   - if the connector already has an assigned crtc, use it (but make
5769          *     sure it's on first)
5770          *
5771          *   - try to find the first unused crtc that can drive this connector,
5772          *     and use that if we find one
5773          */
5774
5775         /* See if we already have a CRTC for this connector */
5776         if (encoder->crtc) {
5777                 crtc = encoder->crtc;
5778
5779                 old->dpms_mode = connector->dpms;
5780                 old->load_detect_temp = false;
5781
5782                 /* Make sure the crtc and connector are running */
5783                 if (connector->dpms != DRM_MODE_DPMS_ON)
5784                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
5785
5786                 return true;
5787         }
5788
5789         /* Find an unused one (if possible) */
5790         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5791                 i++;
5792                 if (!(encoder->possible_crtcs & (1 << i)))
5793                         continue;
5794                 if (!possible_crtc->enabled) {
5795                         crtc = possible_crtc;
5796                         break;
5797                 }
5798         }
5799
5800         /*
5801          * If we didn't find an unused CRTC, don't use any.
5802          */
5803         if (!crtc) {
5804                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5805                 return false;
5806         }
5807
5808         intel_encoder->new_crtc = to_intel_crtc(crtc);
5809         to_intel_connector(connector)->new_encoder = intel_encoder;
5810
5811         intel_crtc = to_intel_crtc(crtc);
5812         old->dpms_mode = connector->dpms;
5813         old->load_detect_temp = true;
5814         old->release_fb = NULL;
5815
5816         if (!mode)
5817                 mode = &load_detect_mode;
5818
5819         /* We need a framebuffer large enough to accommodate all accesses
5820          * that the plane may generate whilst we perform load detection.
5821          * We can not rely on the fbcon either being present (we get called
5822          * during its initialisation to detect all boot displays, or it may
5823          * not even exist) or that it is large enough to satisfy the
5824          * requested mode.
5825          */
5826         fb = mode_fits_in_fbdev(dev, mode);
5827         if (fb == NULL) {
5828                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5829                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5830                 old->release_fb = fb;
5831         } else
5832                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5833         if (IS_ERR(fb)) {
5834                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5835                 goto fail;
5836         }
5837
5838         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
5839                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5840                 if (old->release_fb)
5841                         old->release_fb->funcs->destroy(old->release_fb);
5842                 goto fail;
5843         }
5844
5845         /* let the connector get through one full cycle before testing */
5846         intel_wait_for_vblank(dev, intel_crtc->pipe);
5847
5848         return true;
5849 fail:
5850         connector->encoder = NULL;
5851         encoder->crtc = NULL;
5852         return false;
5853 }
5854
5855 void intel_release_load_detect_pipe(struct drm_connector *connector,
5856                                     struct intel_load_detect_pipe *old)
5857 {
5858         struct intel_encoder *intel_encoder =
5859                 intel_attached_encoder(connector);
5860         struct drm_encoder *encoder = &intel_encoder->base;
5861
5862         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5863                       connector->base.id, drm_get_connector_name(connector),
5864                       encoder->base.id, drm_get_encoder_name(encoder));
5865
5866         if (old->load_detect_temp) {
5867                 struct drm_crtc *crtc = encoder->crtc;
5868
5869                 to_intel_connector(connector)->new_encoder = NULL;
5870                 intel_encoder->new_crtc = NULL;
5871                 intel_set_mode(crtc, NULL, 0, 0, NULL);
5872
5873                 if (old->release_fb)
5874                         old->release_fb->funcs->destroy(old->release_fb);
5875
5876                 return;
5877         }
5878
5879         /* Switch crtc and encoder back off if necessary */
5880         if (old->dpms_mode != DRM_MODE_DPMS_ON)
5881                 connector->funcs->dpms(connector, old->dpms_mode);
5882 }
5883
5884 /* Returns the clock of the currently programmed mode of the given pipe. */
5885 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5886 {
5887         struct drm_i915_private *dev_priv = dev->dev_private;
5888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5889         int pipe = intel_crtc->pipe;
5890         u32 dpll = I915_READ(DPLL(pipe));
5891         u32 fp;
5892         intel_clock_t clock;
5893
5894         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5895                 fp = I915_READ(FP0(pipe));
5896         else
5897                 fp = I915_READ(FP1(pipe));
5898
5899         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5900         if (IS_PINEVIEW(dev)) {
5901                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5902                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5903         } else {
5904                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5905                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5906         }
5907
5908         if (!IS_GEN2(dev)) {
5909                 if (IS_PINEVIEW(dev))
5910                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5911                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5912                 else
5913                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5914                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5915
5916                 switch (dpll & DPLL_MODE_MASK) {
5917                 case DPLLB_MODE_DAC_SERIAL:
5918                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5919                                 5 : 10;
5920                         break;
5921                 case DPLLB_MODE_LVDS:
5922                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5923                                 7 : 14;
5924                         break;
5925                 default:
5926                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5927                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5928                         return 0;
5929                 }
5930
5931                 /* XXX: Handle the 100Mhz refclk */
5932                 intel_clock(dev, 96000, &clock);
5933         } else {
5934                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5935
5936                 if (is_lvds) {
5937                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5938                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5939                         clock.p2 = 14;
5940
5941                         if ((dpll & PLL_REF_INPUT_MASK) ==
5942                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5943                                 /* XXX: might not be 66MHz */
5944                                 intel_clock(dev, 66000, &clock);
5945                         } else
5946                                 intel_clock(dev, 48000, &clock);
5947                 } else {
5948                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5949                                 clock.p1 = 2;
5950                         else {
5951                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5952                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5953                         }
5954                         if (dpll & PLL_P2_DIVIDE_BY_4)
5955                                 clock.p2 = 4;
5956                         else
5957                                 clock.p2 = 2;
5958
5959                         intel_clock(dev, 48000, &clock);
5960                 }
5961         }
5962
5963         /* XXX: It would be nice to validate the clocks, but we can't reuse
5964          * i830PllIsValid() because it relies on the xf86_config connector
5965          * configuration being accurate, which it isn't necessarily.
5966          */
5967
5968         return clock.dot;
5969 }
5970
5971 /** Returns the currently programmed mode of the given pipe. */
5972 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5973                                              struct drm_crtc *crtc)
5974 {
5975         struct drm_i915_private *dev_priv = dev->dev_private;
5976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5977         int pipe = intel_crtc->pipe;
5978         struct drm_display_mode *mode;
5979         int htot = I915_READ(HTOTAL(pipe));
5980         int hsync = I915_READ(HSYNC(pipe));
5981         int vtot = I915_READ(VTOTAL(pipe));
5982         int vsync = I915_READ(VSYNC(pipe));
5983
5984         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5985         if (!mode)
5986                 return NULL;
5987
5988         mode->clock = intel_crtc_clock_get(dev, crtc);
5989         mode->hdisplay = (htot & 0xffff) + 1;
5990         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5991         mode->hsync_start = (hsync & 0xffff) + 1;
5992         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5993         mode->vdisplay = (vtot & 0xffff) + 1;
5994         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5995         mode->vsync_start = (vsync & 0xffff) + 1;
5996         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5997
5998         drm_mode_set_name(mode);
5999
6000         return mode;
6001 }
6002
6003 static void intel_increase_pllclock(struct drm_crtc *crtc)
6004 {
6005         struct drm_device *dev = crtc->dev;
6006         drm_i915_private_t *dev_priv = dev->dev_private;
6007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6008         int pipe = intel_crtc->pipe;
6009         int dpll_reg = DPLL(pipe);
6010         int dpll;
6011
6012         if (HAS_PCH_SPLIT(dev))
6013                 return;
6014
6015         if (!dev_priv->lvds_downclock_avail)
6016                 return;
6017
6018         dpll = I915_READ(dpll_reg);
6019         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6020                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6021
6022                 assert_panel_unlocked(dev_priv, pipe);
6023
6024                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6025                 I915_WRITE(dpll_reg, dpll);
6026                 intel_wait_for_vblank(dev, pipe);
6027
6028                 dpll = I915_READ(dpll_reg);
6029                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6030                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6031         }
6032 }
6033
6034 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6035 {
6036         struct drm_device *dev = crtc->dev;
6037         drm_i915_private_t *dev_priv = dev->dev_private;
6038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6039
6040         if (HAS_PCH_SPLIT(dev))
6041                 return;
6042
6043         if (!dev_priv->lvds_downclock_avail)
6044                 return;
6045
6046         /*
6047          * Since this is called by a timer, we should never get here in
6048          * the manual case.
6049          */
6050         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6051                 int pipe = intel_crtc->pipe;
6052                 int dpll_reg = DPLL(pipe);
6053                 int dpll;
6054
6055                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6056
6057                 assert_panel_unlocked(dev_priv, pipe);
6058
6059                 dpll = I915_READ(dpll_reg);
6060                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6061                 I915_WRITE(dpll_reg, dpll);
6062                 intel_wait_for_vblank(dev, pipe);
6063                 dpll = I915_READ(dpll_reg);
6064                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6065                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6066         }
6067
6068 }
6069
6070 void intel_mark_busy(struct drm_device *dev)
6071 {
6072         i915_update_gfx_val(dev->dev_private);
6073 }
6074
6075 void intel_mark_idle(struct drm_device *dev)
6076 {
6077 }
6078
6079 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6080 {
6081         struct drm_device *dev = obj->base.dev;
6082         struct drm_crtc *crtc;
6083
6084         if (!i915_powersave)
6085                 return;
6086
6087         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6088                 if (!crtc->fb)
6089                         continue;
6090
6091                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6092                         intel_increase_pllclock(crtc);
6093         }
6094 }
6095
6096 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6097 {
6098         struct drm_device *dev = obj->base.dev;
6099         struct drm_crtc *crtc;
6100
6101         if (!i915_powersave)
6102                 return;
6103
6104         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6105                 if (!crtc->fb)
6106                         continue;
6107
6108                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6109                         intel_decrease_pllclock(crtc);
6110         }
6111 }
6112
6113 static void intel_crtc_destroy(struct drm_crtc *crtc)
6114 {
6115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6116         struct drm_device *dev = crtc->dev;
6117         struct intel_unpin_work *work;
6118         unsigned long flags;
6119
6120         spin_lock_irqsave(&dev->event_lock, flags);
6121         work = intel_crtc->unpin_work;
6122         intel_crtc->unpin_work = NULL;
6123         spin_unlock_irqrestore(&dev->event_lock, flags);
6124
6125         if (work) {
6126                 cancel_work_sync(&work->work);
6127                 kfree(work);
6128         }
6129
6130         drm_crtc_cleanup(crtc);
6131
6132         kfree(intel_crtc);
6133 }
6134
6135 static void intel_unpin_work_fn(struct work_struct *__work)
6136 {
6137         struct intel_unpin_work *work =
6138                 container_of(__work, struct intel_unpin_work, work);
6139
6140         mutex_lock(&work->dev->struct_mutex);
6141         intel_unpin_fb_obj(work->old_fb_obj);
6142         drm_gem_object_unreference(&work->pending_flip_obj->base);
6143         drm_gem_object_unreference(&work->old_fb_obj->base);
6144
6145         intel_update_fbc(work->dev);
6146         mutex_unlock(&work->dev->struct_mutex);
6147         kfree(work);
6148 }
6149
6150 static void do_intel_finish_page_flip(struct drm_device *dev,
6151                                       struct drm_crtc *crtc)
6152 {
6153         drm_i915_private_t *dev_priv = dev->dev_private;
6154         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6155         struct intel_unpin_work *work;
6156         struct drm_i915_gem_object *obj;
6157         struct drm_pending_vblank_event *e;
6158         struct timeval tnow, tvbl;
6159         unsigned long flags;
6160
6161         /* Ignore early vblank irqs */
6162         if (intel_crtc == NULL)
6163                 return;
6164
6165         do_gettimeofday(&tnow);
6166
6167         spin_lock_irqsave(&dev->event_lock, flags);
6168         work = intel_crtc->unpin_work;
6169         if (work == NULL || !work->pending) {
6170                 spin_unlock_irqrestore(&dev->event_lock, flags);
6171                 return;
6172         }
6173
6174         intel_crtc->unpin_work = NULL;
6175
6176         if (work->event) {
6177                 e = work->event;
6178                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6179
6180                 /* Called before vblank count and timestamps have
6181                  * been updated for the vblank interval of flip
6182                  * completion? Need to increment vblank count and
6183                  * add one videorefresh duration to returned timestamp
6184                  * to account for this. We assume this happened if we
6185                  * get called over 0.9 frame durations after the last
6186                  * timestamped vblank.
6187                  *
6188                  * This calculation can not be used with vrefresh rates
6189                  * below 5Hz (10Hz to be on the safe side) without
6190                  * promoting to 64 integers.
6191                  */
6192                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6193                     9 * crtc->framedur_ns) {
6194                         e->event.sequence++;
6195                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6196                                              crtc->framedur_ns);
6197                 }
6198
6199                 e->event.tv_sec = tvbl.tv_sec;
6200                 e->event.tv_usec = tvbl.tv_usec;
6201
6202                 list_add_tail(&e->base.link,
6203                               &e->base.file_priv->event_list);
6204                 wake_up_interruptible(&e->base.file_priv->event_wait);
6205         }
6206
6207         drm_vblank_put(dev, intel_crtc->pipe);
6208
6209         spin_unlock_irqrestore(&dev->event_lock, flags);
6210
6211         obj = work->old_fb_obj;
6212
6213         atomic_clear_mask(1 << intel_crtc->plane,
6214                           &obj->pending_flip.counter);
6215         if (atomic_read(&obj->pending_flip) == 0)
6216                 wake_up(&dev_priv->pending_flip_queue);
6217
6218         schedule_work(&work->work);
6219
6220         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6221 }
6222
6223 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6224 {
6225         drm_i915_private_t *dev_priv = dev->dev_private;
6226         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6227
6228         do_intel_finish_page_flip(dev, crtc);
6229 }
6230
6231 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6232 {
6233         drm_i915_private_t *dev_priv = dev->dev_private;
6234         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6235
6236         do_intel_finish_page_flip(dev, crtc);
6237 }
6238
6239 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6240 {
6241         drm_i915_private_t *dev_priv = dev->dev_private;
6242         struct intel_crtc *intel_crtc =
6243                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6244         unsigned long flags;
6245
6246         spin_lock_irqsave(&dev->event_lock, flags);
6247         if (intel_crtc->unpin_work) {
6248                 if ((++intel_crtc->unpin_work->pending) > 1)
6249                         DRM_ERROR("Prepared flip multiple times\n");
6250         } else {
6251                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6252         }
6253         spin_unlock_irqrestore(&dev->event_lock, flags);
6254 }
6255
6256 static int intel_gen2_queue_flip(struct drm_device *dev,
6257                                  struct drm_crtc *crtc,
6258                                  struct drm_framebuffer *fb,
6259                                  struct drm_i915_gem_object *obj)
6260 {
6261         struct drm_i915_private *dev_priv = dev->dev_private;
6262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6263         u32 flip_mask;
6264         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6265         int ret;
6266
6267         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6268         if (ret)
6269                 goto err;
6270
6271         ret = intel_ring_begin(ring, 6);
6272         if (ret)
6273                 goto err_unpin;
6274
6275         /* Can't queue multiple flips, so wait for the previous
6276          * one to finish before executing the next.
6277          */
6278         if (intel_crtc->plane)
6279                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6280         else
6281                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6282         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6283         intel_ring_emit(ring, MI_NOOP);
6284         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6285                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6286         intel_ring_emit(ring, fb->pitches[0]);
6287         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6288         intel_ring_emit(ring, 0); /* aux display base address, unused */
6289         intel_ring_advance(ring);
6290         return 0;
6291
6292 err_unpin:
6293         intel_unpin_fb_obj(obj);
6294 err:
6295         return ret;
6296 }
6297
6298 static int intel_gen3_queue_flip(struct drm_device *dev,
6299                                  struct drm_crtc *crtc,
6300                                  struct drm_framebuffer *fb,
6301                                  struct drm_i915_gem_object *obj)
6302 {
6303         struct drm_i915_private *dev_priv = dev->dev_private;
6304         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6305         u32 flip_mask;
6306         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6307         int ret;
6308
6309         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6310         if (ret)
6311                 goto err;
6312
6313         ret = intel_ring_begin(ring, 6);
6314         if (ret)
6315                 goto err_unpin;
6316
6317         if (intel_crtc->plane)
6318                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6319         else
6320                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6321         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6322         intel_ring_emit(ring, MI_NOOP);
6323         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6324                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6325         intel_ring_emit(ring, fb->pitches[0]);
6326         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6327         intel_ring_emit(ring, MI_NOOP);
6328
6329         intel_ring_advance(ring);
6330         return 0;
6331
6332 err_unpin:
6333         intel_unpin_fb_obj(obj);
6334 err:
6335         return ret;
6336 }
6337
6338 static int intel_gen4_queue_flip(struct drm_device *dev,
6339                                  struct drm_crtc *crtc,
6340                                  struct drm_framebuffer *fb,
6341                                  struct drm_i915_gem_object *obj)
6342 {
6343         struct drm_i915_private *dev_priv = dev->dev_private;
6344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6345         uint32_t pf, pipesrc;
6346         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6347         int ret;
6348
6349         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6350         if (ret)
6351                 goto err;
6352
6353         ret = intel_ring_begin(ring, 4);
6354         if (ret)
6355                 goto err_unpin;
6356
6357         /* i965+ uses the linear or tiled offsets from the
6358          * Display Registers (which do not change across a page-flip)
6359          * so we need only reprogram the base address.
6360          */
6361         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6362                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6363         intel_ring_emit(ring, fb->pitches[0]);
6364         intel_ring_emit(ring,
6365                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6366                         obj->tiling_mode);
6367
6368         /* XXX Enabling the panel-fitter across page-flip is so far
6369          * untested on non-native modes, so ignore it for now.
6370          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6371          */
6372         pf = 0;
6373         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6374         intel_ring_emit(ring, pf | pipesrc);
6375         intel_ring_advance(ring);
6376         return 0;
6377
6378 err_unpin:
6379         intel_unpin_fb_obj(obj);
6380 err:
6381         return ret;
6382 }
6383
6384 static int intel_gen6_queue_flip(struct drm_device *dev,
6385                                  struct drm_crtc *crtc,
6386                                  struct drm_framebuffer *fb,
6387                                  struct drm_i915_gem_object *obj)
6388 {
6389         struct drm_i915_private *dev_priv = dev->dev_private;
6390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6391         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6392         uint32_t pf, pipesrc;
6393         int ret;
6394
6395         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6396         if (ret)
6397                 goto err;
6398
6399         ret = intel_ring_begin(ring, 4);
6400         if (ret)
6401                 goto err_unpin;
6402
6403         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6404                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6405         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6406         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6407
6408         /* Contrary to the suggestions in the documentation,
6409          * "Enable Panel Fitter" does not seem to be required when page
6410          * flipping with a non-native mode, and worse causes a normal
6411          * modeset to fail.
6412          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6413          */
6414         pf = 0;
6415         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6416         intel_ring_emit(ring, pf | pipesrc);
6417         intel_ring_advance(ring);
6418         return 0;
6419
6420 err_unpin:
6421         intel_unpin_fb_obj(obj);
6422 err:
6423         return ret;
6424 }
6425
6426 /*
6427  * On gen7 we currently use the blit ring because (in early silicon at least)
6428  * the render ring doesn't give us interrpts for page flip completion, which
6429  * means clients will hang after the first flip is queued.  Fortunately the
6430  * blit ring generates interrupts properly, so use it instead.
6431  */
6432 static int intel_gen7_queue_flip(struct drm_device *dev,
6433                                  struct drm_crtc *crtc,
6434                                  struct drm_framebuffer *fb,
6435                                  struct drm_i915_gem_object *obj)
6436 {
6437         struct drm_i915_private *dev_priv = dev->dev_private;
6438         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6439         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6440         uint32_t plane_bit = 0;
6441         int ret;
6442
6443         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6444         if (ret)
6445                 goto err;
6446
6447         switch(intel_crtc->plane) {
6448         case PLANE_A:
6449                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6450                 break;
6451         case PLANE_B:
6452                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6453                 break;
6454         case PLANE_C:
6455                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6456                 break;
6457         default:
6458                 WARN_ONCE(1, "unknown plane in flip command\n");
6459                 ret = -ENODEV;
6460                 goto err_unpin;
6461         }
6462
6463         ret = intel_ring_begin(ring, 4);
6464         if (ret)
6465                 goto err_unpin;
6466
6467         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6468         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6469         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6470         intel_ring_emit(ring, (MI_NOOP));
6471         intel_ring_advance(ring);
6472         return 0;
6473
6474 err_unpin:
6475         intel_unpin_fb_obj(obj);
6476 err:
6477         return ret;
6478 }
6479
6480 static int intel_default_queue_flip(struct drm_device *dev,
6481                                     struct drm_crtc *crtc,
6482                                     struct drm_framebuffer *fb,
6483                                     struct drm_i915_gem_object *obj)
6484 {
6485         return -ENODEV;
6486 }
6487
6488 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6489                                 struct drm_framebuffer *fb,
6490                                 struct drm_pending_vblank_event *event)
6491 {
6492         struct drm_device *dev = crtc->dev;
6493         struct drm_i915_private *dev_priv = dev->dev_private;
6494         struct intel_framebuffer *intel_fb;
6495         struct drm_i915_gem_object *obj;
6496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6497         struct intel_unpin_work *work;
6498         unsigned long flags;
6499         int ret;
6500
6501         /* Can't change pixel format via MI display flips. */
6502         if (fb->pixel_format != crtc->fb->pixel_format)
6503                 return -EINVAL;
6504
6505         /*
6506          * TILEOFF/LINOFF registers can't be changed via MI display flips.
6507          * Note that pitch changes could also affect these register.
6508          */
6509         if (INTEL_INFO(dev)->gen > 3 &&
6510             (fb->offsets[0] != crtc->fb->offsets[0] ||
6511              fb->pitches[0] != crtc->fb->pitches[0]))
6512                 return -EINVAL;
6513
6514         work = kzalloc(sizeof *work, GFP_KERNEL);
6515         if (work == NULL)
6516                 return -ENOMEM;
6517
6518         work->event = event;
6519         work->dev = crtc->dev;
6520         intel_fb = to_intel_framebuffer(crtc->fb);
6521         work->old_fb_obj = intel_fb->obj;
6522         INIT_WORK(&work->work, intel_unpin_work_fn);
6523
6524         ret = drm_vblank_get(dev, intel_crtc->pipe);
6525         if (ret)
6526                 goto free_work;
6527
6528         /* We borrow the event spin lock for protecting unpin_work */
6529         spin_lock_irqsave(&dev->event_lock, flags);
6530         if (intel_crtc->unpin_work) {
6531                 spin_unlock_irqrestore(&dev->event_lock, flags);
6532                 kfree(work);
6533                 drm_vblank_put(dev, intel_crtc->pipe);
6534
6535                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6536                 return -EBUSY;
6537         }
6538         intel_crtc->unpin_work = work;
6539         spin_unlock_irqrestore(&dev->event_lock, flags);
6540
6541         intel_fb = to_intel_framebuffer(fb);
6542         obj = intel_fb->obj;
6543
6544         ret = i915_mutex_lock_interruptible(dev);
6545         if (ret)
6546                 goto cleanup;
6547
6548         /* Reference the objects for the scheduled work. */
6549         drm_gem_object_reference(&work->old_fb_obj->base);
6550         drm_gem_object_reference(&obj->base);
6551
6552         crtc->fb = fb;
6553
6554         work->pending_flip_obj = obj;
6555
6556         work->enable_stall_check = true;
6557
6558         /* Block clients from rendering to the new back buffer until
6559          * the flip occurs and the object is no longer visible.
6560          */
6561         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6562
6563         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6564         if (ret)
6565                 goto cleanup_pending;
6566
6567         intel_disable_fbc(dev);
6568         intel_mark_fb_busy(obj);
6569         mutex_unlock(&dev->struct_mutex);
6570
6571         trace_i915_flip_request(intel_crtc->plane, obj);
6572
6573         return 0;
6574
6575 cleanup_pending:
6576         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6577         drm_gem_object_unreference(&work->old_fb_obj->base);
6578         drm_gem_object_unreference(&obj->base);
6579         mutex_unlock(&dev->struct_mutex);
6580
6581 cleanup:
6582         spin_lock_irqsave(&dev->event_lock, flags);
6583         intel_crtc->unpin_work = NULL;
6584         spin_unlock_irqrestore(&dev->event_lock, flags);
6585
6586         drm_vblank_put(dev, intel_crtc->pipe);
6587 free_work:
6588         kfree(work);
6589
6590         return ret;
6591 }
6592
6593 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6594         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6595         .load_lut = intel_crtc_load_lut,
6596         .disable = intel_crtc_noop,
6597 };
6598
6599 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
6600 {
6601         struct intel_encoder *other_encoder;
6602         struct drm_crtc *crtc = &encoder->new_crtc->base;
6603
6604         if (WARN_ON(!crtc))
6605                 return false;
6606
6607         list_for_each_entry(other_encoder,
6608                             &crtc->dev->mode_config.encoder_list,
6609                             base.head) {
6610
6611                 if (&other_encoder->new_crtc->base != crtc ||
6612                     encoder == other_encoder)
6613                         continue;
6614                 else
6615                         return true;
6616         }
6617
6618         return false;
6619 }
6620
6621 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6622                                   struct drm_crtc *crtc)
6623 {
6624         struct drm_device *dev;
6625         struct drm_crtc *tmp;
6626         int crtc_mask = 1;
6627
6628         WARN(!crtc, "checking null crtc?\n");
6629
6630         dev = crtc->dev;
6631
6632         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6633                 if (tmp == crtc)
6634                         break;
6635                 crtc_mask <<= 1;
6636         }
6637
6638         if (encoder->possible_crtcs & crtc_mask)
6639                 return true;
6640         return false;
6641 }
6642
6643 /**
6644  * intel_modeset_update_staged_output_state
6645  *
6646  * Updates the staged output configuration state, e.g. after we've read out the
6647  * current hw state.
6648  */
6649 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
6650 {
6651         struct intel_encoder *encoder;
6652         struct intel_connector *connector;
6653
6654         list_for_each_entry(connector, &dev->mode_config.connector_list,
6655                             base.head) {
6656                 connector->new_encoder =
6657                         to_intel_encoder(connector->base.encoder);
6658         }
6659
6660         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6661                             base.head) {
6662                 encoder->new_crtc =
6663                         to_intel_crtc(encoder->base.crtc);
6664         }
6665 }
6666
6667 /**
6668  * intel_modeset_commit_output_state
6669  *
6670  * This function copies the stage display pipe configuration to the real one.
6671  */
6672 static void intel_modeset_commit_output_state(struct drm_device *dev)
6673 {
6674         struct intel_encoder *encoder;
6675         struct intel_connector *connector;
6676
6677         list_for_each_entry(connector, &dev->mode_config.connector_list,
6678                             base.head) {
6679                 connector->base.encoder = &connector->new_encoder->base;
6680         }
6681
6682         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6683                             base.head) {
6684                 encoder->base.crtc = &encoder->new_crtc->base;
6685         }
6686 }
6687
6688 static struct drm_display_mode *
6689 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
6690                             struct drm_display_mode *mode)
6691 {
6692         struct drm_device *dev = crtc->dev;
6693         struct drm_display_mode *adjusted_mode;
6694         struct drm_encoder_helper_funcs *encoder_funcs;
6695         struct intel_encoder *encoder;
6696
6697         adjusted_mode = drm_mode_duplicate(dev, mode);
6698         if (!adjusted_mode)
6699                 return ERR_PTR(-ENOMEM);
6700
6701         /* Pass our mode to the connectors and the CRTC to give them a chance to
6702          * adjust it according to limitations or connector properties, and also
6703          * a chance to reject the mode entirely.
6704          */
6705         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6706                             base.head) {
6707
6708                 if (&encoder->new_crtc->base != crtc)
6709                         continue;
6710                 encoder_funcs = encoder->base.helper_private;
6711                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
6712                                                 adjusted_mode))) {
6713                         DRM_DEBUG_KMS("Encoder fixup failed\n");
6714                         goto fail;
6715                 }
6716         }
6717
6718         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6719                 DRM_DEBUG_KMS("CRTC fixup failed\n");
6720                 goto fail;
6721         }
6722         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6723
6724         return adjusted_mode;
6725 fail:
6726         drm_mode_destroy(dev, adjusted_mode);
6727         return ERR_PTR(-EINVAL);
6728 }
6729
6730 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
6731  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
6732 static void
6733 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
6734                              unsigned *prepare_pipes, unsigned *disable_pipes)
6735 {
6736         struct intel_crtc *intel_crtc;
6737         struct drm_device *dev = crtc->dev;
6738         struct intel_encoder *encoder;
6739         struct intel_connector *connector;
6740         struct drm_crtc *tmp_crtc;
6741
6742         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
6743
6744         /* Check which crtcs have changed outputs connected to them, these need
6745          * to be part of the prepare_pipes mask. We don't (yet) support global
6746          * modeset across multiple crtcs, so modeset_pipes will only have one
6747          * bit set at most. */
6748         list_for_each_entry(connector, &dev->mode_config.connector_list,
6749                             base.head) {
6750                 if (connector->base.encoder == &connector->new_encoder->base)
6751                         continue;
6752
6753                 if (connector->base.encoder) {
6754                         tmp_crtc = connector->base.encoder->crtc;
6755
6756                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6757                 }
6758
6759                 if (connector->new_encoder)
6760                         *prepare_pipes |=
6761                                 1 << connector->new_encoder->new_crtc->pipe;
6762         }
6763
6764         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6765                             base.head) {
6766                 if (encoder->base.crtc == &encoder->new_crtc->base)
6767                         continue;
6768
6769                 if (encoder->base.crtc) {
6770                         tmp_crtc = encoder->base.crtc;
6771
6772                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6773                 }
6774
6775                 if (encoder->new_crtc)
6776                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
6777         }
6778
6779         /* Check for any pipes that will be fully disabled ... */
6780         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6781                             base.head) {
6782                 bool used = false;
6783
6784                 /* Don't try to disable disabled crtcs. */
6785                 if (!intel_crtc->base.enabled)
6786                         continue;
6787
6788                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6789                                     base.head) {
6790                         if (encoder->new_crtc == intel_crtc)
6791                                 used = true;
6792                 }
6793
6794                 if (!used)
6795                         *disable_pipes |= 1 << intel_crtc->pipe;
6796         }
6797
6798
6799         /* set_mode is also used to update properties on life display pipes. */
6800         intel_crtc = to_intel_crtc(crtc);
6801         if (crtc->enabled)
6802                 *prepare_pipes |= 1 << intel_crtc->pipe;
6803
6804         /* We only support modeset on one single crtc, hence we need to do that
6805          * only for the passed in crtc iff we change anything else than just
6806          * disable crtcs.
6807          *
6808          * This is actually not true, to be fully compatible with the old crtc
6809          * helper we automatically disable _any_ output (i.e. doesn't need to be
6810          * connected to the crtc we're modesetting on) if it's disconnected.
6811          * Which is a rather nutty api (since changed the output configuration
6812          * without userspace's explicit request can lead to confusion), but
6813          * alas. Hence we currently need to modeset on all pipes we prepare. */
6814         if (*prepare_pipes)
6815                 *modeset_pipes = *prepare_pipes;
6816
6817         /* ... and mask these out. */
6818         *modeset_pipes &= ~(*disable_pipes);
6819         *prepare_pipes &= ~(*disable_pipes);
6820 }
6821
6822 static bool intel_crtc_in_use(struct drm_crtc *crtc)
6823 {
6824         struct drm_encoder *encoder;
6825         struct drm_device *dev = crtc->dev;
6826
6827         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
6828                 if (encoder->crtc == crtc)
6829                         return true;
6830
6831         return false;
6832 }
6833
6834 static void
6835 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
6836 {
6837         struct intel_encoder *intel_encoder;
6838         struct intel_crtc *intel_crtc;
6839         struct drm_connector *connector;
6840
6841         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
6842                             base.head) {
6843                 if (!intel_encoder->base.crtc)
6844                         continue;
6845
6846                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
6847
6848                 if (prepare_pipes & (1 << intel_crtc->pipe))
6849                         intel_encoder->connectors_active = false;
6850         }
6851
6852         intel_modeset_commit_output_state(dev);
6853
6854         /* Update computed state. */
6855         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6856                             base.head) {
6857                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
6858         }
6859
6860         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6861                 if (!connector->encoder || !connector->encoder->crtc)
6862                         continue;
6863
6864                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
6865
6866                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
6867                         connector->dpms = DRM_MODE_DPMS_ON;
6868
6869                         intel_encoder = to_intel_encoder(connector->encoder);
6870                         intel_encoder->connectors_active = true;
6871                 }
6872         }
6873
6874 }
6875
6876 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
6877         list_for_each_entry((intel_crtc), \
6878                             &(dev)->mode_config.crtc_list, \
6879                             base.head) \
6880                 if (mask & (1 <<(intel_crtc)->pipe)) \
6881
6882 void
6883 intel_modeset_check_state(struct drm_device *dev)
6884 {
6885         struct intel_crtc *crtc;
6886         struct intel_encoder *encoder;
6887         struct intel_connector *connector;
6888
6889         list_for_each_entry(connector, &dev->mode_config.connector_list,
6890                             base.head) {
6891                 /* This also checks the encoder/connector hw state with the
6892                  * ->get_hw_state callbacks. */
6893                 intel_connector_check_state(connector);
6894
6895                 WARN(&connector->new_encoder->base != connector->base.encoder,
6896                      "connector's staged encoder doesn't match current encoder\n");
6897         }
6898
6899         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6900                             base.head) {
6901                 bool enabled = false;
6902                 bool active = false;
6903                 enum pipe pipe, tracked_pipe;
6904
6905                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
6906                               encoder->base.base.id,
6907                               drm_get_encoder_name(&encoder->base));
6908
6909                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
6910                      "encoder's stage crtc doesn't match current crtc\n");
6911                 WARN(encoder->connectors_active && !encoder->base.crtc,
6912                      "encoder's active_connectors set, but no crtc\n");
6913
6914                 list_for_each_entry(connector, &dev->mode_config.connector_list,
6915                                     base.head) {
6916                         if (connector->base.encoder != &encoder->base)
6917                                 continue;
6918                         enabled = true;
6919                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
6920                                 active = true;
6921                 }
6922                 WARN(!!encoder->base.crtc != enabled,
6923                      "encoder's enabled state mismatch "
6924                      "(expected %i, found %i)\n",
6925                      !!encoder->base.crtc, enabled);
6926                 WARN(active && !encoder->base.crtc,
6927                      "active encoder with no crtc\n");
6928
6929                 WARN(encoder->connectors_active != active,
6930                      "encoder's computed active state doesn't match tracked active state "
6931                      "(expected %i, found %i)\n", active, encoder->connectors_active);
6932
6933                 active = encoder->get_hw_state(encoder, &pipe);
6934                 WARN(active != encoder->connectors_active,
6935                      "encoder's hw state doesn't match sw tracking "
6936                      "(expected %i, found %i)\n",
6937                      encoder->connectors_active, active);
6938
6939                 if (!encoder->base.crtc)
6940                         continue;
6941
6942                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
6943                 WARN(active && pipe != tracked_pipe,
6944                      "active encoder's pipe doesn't match"
6945                      "(expected %i, found %i)\n",
6946                      tracked_pipe, pipe);
6947
6948         }
6949
6950         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
6951                             base.head) {
6952                 bool enabled = false;
6953                 bool active = false;
6954
6955                 DRM_DEBUG_KMS("[CRTC:%d]\n",
6956                               crtc->base.base.id);
6957
6958                 WARN(crtc->active && !crtc->base.enabled,
6959                      "active crtc, but not enabled in sw tracking\n");
6960
6961                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6962                                     base.head) {
6963                         if (encoder->base.crtc != &crtc->base)
6964                                 continue;
6965                         enabled = true;
6966                         if (encoder->connectors_active)
6967                                 active = true;
6968                 }
6969                 WARN(active != crtc->active,
6970                      "crtc's computed active state doesn't match tracked active state "
6971                      "(expected %i, found %i)\n", active, crtc->active);
6972                 WARN(enabled != crtc->base.enabled,
6973                      "crtc's computed enabled state doesn't match tracked enabled state "
6974                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
6975
6976                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
6977         }
6978 }
6979
6980 bool intel_set_mode(struct drm_crtc *crtc,
6981                     struct drm_display_mode *mode,
6982                     int x, int y, struct drm_framebuffer *fb)
6983 {
6984         struct drm_device *dev = crtc->dev;
6985         drm_i915_private_t *dev_priv = dev->dev_private;
6986         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
6987         struct drm_encoder_helper_funcs *encoder_funcs;
6988         struct drm_encoder *encoder;
6989         struct intel_crtc *intel_crtc;
6990         unsigned disable_pipes, prepare_pipes, modeset_pipes;
6991         bool ret = true;
6992
6993         intel_modeset_affected_pipes(crtc, &modeset_pipes,
6994                                      &prepare_pipes, &disable_pipes);
6995
6996         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
6997                       modeset_pipes, prepare_pipes, disable_pipes);
6998
6999         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7000                 intel_crtc_disable(&intel_crtc->base);
7001
7002         saved_hwmode = crtc->hwmode;
7003         saved_mode = crtc->mode;
7004
7005         /* Hack: Because we don't (yet) support global modeset on multiple
7006          * crtcs, we don't keep track of the new mode for more than one crtc.
7007          * Hence simply check whether any bit is set in modeset_pipes in all the
7008          * pieces of code that are not yet converted to deal with mutliple crtcs
7009          * changing their mode at the same time. */
7010         adjusted_mode = NULL;
7011         if (modeset_pipes) {
7012                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7013                 if (IS_ERR(adjusted_mode)) {
7014                         return false;
7015                 }
7016         }
7017
7018         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7019                 if (intel_crtc->base.enabled)
7020                         dev_priv->display.crtc_disable(&intel_crtc->base);
7021         }
7022
7023         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7024          * to set it here already despite that we pass it down the callchain.
7025          */
7026         if (modeset_pipes)
7027                 crtc->mode = *mode;
7028
7029         /* Only after disabling all output pipelines that will be changed can we
7030          * update the the output configuration. */
7031         intel_modeset_update_state(dev, prepare_pipes);
7032
7033         /* Set up the DPLL and any encoders state that needs to adjust or depend
7034          * on the DPLL.
7035          */
7036         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7037                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7038                                            mode, adjusted_mode,
7039                                            x, y, fb);
7040                 if (!ret)
7041                     goto done;
7042
7043                 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7044
7045                         if (encoder->crtc != &intel_crtc->base)
7046                                 continue;
7047
7048                         DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7049                                 encoder->base.id, drm_get_encoder_name(encoder),
7050                                 mode->base.id, mode->name);
7051                         encoder_funcs = encoder->helper_private;
7052                         encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7053                 }
7054         }
7055
7056         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7057         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7058                 dev_priv->display.crtc_enable(&intel_crtc->base);
7059
7060         if (modeset_pipes) {
7061                 /* Store real post-adjustment hardware mode. */
7062                 crtc->hwmode = *adjusted_mode;
7063
7064                 /* Calculate and store various constants which
7065                  * are later needed by vblank and swap-completion
7066                  * timestamping. They are derived from true hwmode.
7067                  */
7068                 drm_calc_timestamping_constants(crtc);
7069         }
7070
7071         /* FIXME: add subpixel order */
7072 done:
7073         drm_mode_destroy(dev, adjusted_mode);
7074         if (!ret && crtc->enabled) {
7075                 crtc->hwmode = saved_hwmode;
7076                 crtc->mode = saved_mode;
7077         } else {
7078                 intel_modeset_check_state(dev);
7079         }
7080
7081         return ret;
7082 }
7083
7084 #undef for_each_intel_crtc_masked
7085
7086 static void intel_set_config_free(struct intel_set_config *config)
7087 {
7088         if (!config)
7089                 return;
7090
7091         kfree(config->save_connector_encoders);
7092         kfree(config->save_encoder_crtcs);
7093         kfree(config);
7094 }
7095
7096 static int intel_set_config_save_state(struct drm_device *dev,
7097                                        struct intel_set_config *config)
7098 {
7099         struct drm_encoder *encoder;
7100         struct drm_connector *connector;
7101         int count;
7102
7103         config->save_encoder_crtcs =
7104                 kcalloc(dev->mode_config.num_encoder,
7105                         sizeof(struct drm_crtc *), GFP_KERNEL);
7106         if (!config->save_encoder_crtcs)
7107                 return -ENOMEM;
7108
7109         config->save_connector_encoders =
7110                 kcalloc(dev->mode_config.num_connector,
7111                         sizeof(struct drm_encoder *), GFP_KERNEL);
7112         if (!config->save_connector_encoders)
7113                 return -ENOMEM;
7114
7115         /* Copy data. Note that driver private data is not affected.
7116          * Should anything bad happen only the expected state is
7117          * restored, not the drivers personal bookkeeping.
7118          */
7119         count = 0;
7120         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7121                 config->save_encoder_crtcs[count++] = encoder->crtc;
7122         }
7123
7124         count = 0;
7125         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7126                 config->save_connector_encoders[count++] = connector->encoder;
7127         }
7128
7129         return 0;
7130 }
7131
7132 static void intel_set_config_restore_state(struct drm_device *dev,
7133                                            struct intel_set_config *config)
7134 {
7135         struct intel_encoder *encoder;
7136         struct intel_connector *connector;
7137         int count;
7138
7139         count = 0;
7140         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7141                 encoder->new_crtc =
7142                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7143         }
7144
7145         count = 0;
7146         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7147                 connector->new_encoder =
7148                         to_intel_encoder(config->save_connector_encoders[count++]);
7149         }
7150 }
7151
7152 static void
7153 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7154                                       struct intel_set_config *config)
7155 {
7156
7157         /* We should be able to check here if the fb has the same properties
7158          * and then just flip_or_move it */
7159         if (set->crtc->fb != set->fb) {
7160                 /* If we have no fb then treat it as a full mode set */
7161                 if (set->crtc->fb == NULL) {
7162                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7163                         config->mode_changed = true;
7164                 } else if (set->fb == NULL) {
7165                         config->mode_changed = true;
7166                 } else if (set->fb->depth != set->crtc->fb->depth) {
7167                         config->mode_changed = true;
7168                 } else if (set->fb->bits_per_pixel !=
7169                            set->crtc->fb->bits_per_pixel) {
7170                         config->mode_changed = true;
7171                 } else
7172                         config->fb_changed = true;
7173         }
7174
7175         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7176                 config->fb_changed = true;
7177
7178         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7179                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7180                 drm_mode_debug_printmodeline(&set->crtc->mode);
7181                 drm_mode_debug_printmodeline(set->mode);
7182                 config->mode_changed = true;
7183         }
7184 }
7185
7186 static int
7187 intel_modeset_stage_output_state(struct drm_device *dev,
7188                                  struct drm_mode_set *set,
7189                                  struct intel_set_config *config)
7190 {
7191         struct drm_crtc *new_crtc;
7192         struct intel_connector *connector;
7193         struct intel_encoder *encoder;
7194         int count, ro;
7195
7196         /* The upper layers ensure that we either disabl a crtc or have a list
7197          * of connectors. For paranoia, double-check this. */
7198         WARN_ON(!set->fb && (set->num_connectors != 0));
7199         WARN_ON(set->fb && (set->num_connectors == 0));
7200
7201         count = 0;
7202         list_for_each_entry(connector, &dev->mode_config.connector_list,
7203                             base.head) {
7204                 /* Otherwise traverse passed in connector list and get encoders
7205                  * for them. */
7206                 for (ro = 0; ro < set->num_connectors; ro++) {
7207                         if (set->connectors[ro] == &connector->base) {
7208                                 connector->new_encoder = connector->encoder;
7209                                 break;
7210                         }
7211                 }
7212
7213                 /* If we disable the crtc, disable all its connectors. Also, if
7214                  * the connector is on the changing crtc but not on the new
7215                  * connector list, disable it. */
7216                 if ((!set->fb || ro == set->num_connectors) &&
7217                     connector->base.encoder &&
7218                     connector->base.encoder->crtc == set->crtc) {
7219                         connector->new_encoder = NULL;
7220
7221                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7222                                 connector->base.base.id,
7223                                 drm_get_connector_name(&connector->base));
7224                 }
7225
7226
7227                 if (&connector->new_encoder->base != connector->base.encoder) {
7228                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7229                         config->mode_changed = true;
7230                 }
7231
7232                 /* Disable all disconnected encoders. */
7233                 if (connector->base.status == connector_status_disconnected)
7234                         connector->new_encoder = NULL;
7235         }
7236         /* connector->new_encoder is now updated for all connectors. */
7237
7238         /* Update crtc of enabled connectors. */
7239         count = 0;
7240         list_for_each_entry(connector, &dev->mode_config.connector_list,
7241                             base.head) {
7242                 if (!connector->new_encoder)
7243                         continue;
7244
7245                 new_crtc = connector->new_encoder->base.crtc;
7246
7247                 for (ro = 0; ro < set->num_connectors; ro++) {
7248                         if (set->connectors[ro] == &connector->base)
7249                                 new_crtc = set->crtc;
7250                 }
7251
7252                 /* Make sure the new CRTC will work with the encoder */
7253                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7254                                            new_crtc)) {
7255                         return -EINVAL;
7256                 }
7257                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7258
7259                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7260                         connector->base.base.id,
7261                         drm_get_connector_name(&connector->base),
7262                         new_crtc->base.id);
7263         }
7264
7265         /* Check for any encoders that needs to be disabled. */
7266         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7267                             base.head) {
7268                 list_for_each_entry(connector,
7269                                     &dev->mode_config.connector_list,
7270                                     base.head) {
7271                         if (connector->new_encoder == encoder) {
7272                                 WARN_ON(!connector->new_encoder->new_crtc);
7273
7274                                 goto next_encoder;
7275                         }
7276                 }
7277                 encoder->new_crtc = NULL;
7278 next_encoder:
7279                 /* Only now check for crtc changes so we don't miss encoders
7280                  * that will be disabled. */
7281                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7282                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7283                         config->mode_changed = true;
7284                 }
7285         }
7286         /* Now we've also updated encoder->new_crtc for all encoders. */
7287
7288         return 0;
7289 }
7290
7291 static int intel_crtc_set_config(struct drm_mode_set *set)
7292 {
7293         struct drm_device *dev;
7294         struct drm_mode_set save_set;
7295         struct intel_set_config *config;
7296         int ret;
7297         int i;
7298
7299         BUG_ON(!set);
7300         BUG_ON(!set->crtc);
7301         BUG_ON(!set->crtc->helper_private);
7302
7303         if (!set->mode)
7304                 set->fb = NULL;
7305
7306         /* The fb helper likes to play gross jokes with ->mode_set_config.
7307          * Unfortunately the crtc helper doesn't do much at all for this case,
7308          * so we have to cope with this madness until the fb helper is fixed up. */
7309         if (set->fb && set->num_connectors == 0)
7310                 return 0;
7311
7312         if (set->fb) {
7313                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7314                                 set->crtc->base.id, set->fb->base.id,
7315                                 (int)set->num_connectors, set->x, set->y);
7316         } else {
7317                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7318         }
7319
7320         dev = set->crtc->dev;
7321
7322         ret = -ENOMEM;
7323         config = kzalloc(sizeof(*config), GFP_KERNEL);
7324         if (!config)
7325                 goto out_config;
7326
7327         ret = intel_set_config_save_state(dev, config);
7328         if (ret)
7329                 goto out_config;
7330
7331         save_set.crtc = set->crtc;
7332         save_set.mode = &set->crtc->mode;
7333         save_set.x = set->crtc->x;
7334         save_set.y = set->crtc->y;
7335         save_set.fb = set->crtc->fb;
7336
7337         /* Compute whether we need a full modeset, only an fb base update or no
7338          * change at all. In the future we might also check whether only the
7339          * mode changed, e.g. for LVDS where we only change the panel fitter in
7340          * such cases. */
7341         intel_set_config_compute_mode_changes(set, config);
7342
7343         ret = intel_modeset_stage_output_state(dev, set, config);
7344         if (ret)
7345                 goto fail;
7346
7347         if (config->mode_changed) {
7348                 if (set->mode) {
7349                         DRM_DEBUG_KMS("attempting to set mode from"
7350                                         " userspace\n");
7351                         drm_mode_debug_printmodeline(set->mode);
7352                 }
7353
7354                 if (!intel_set_mode(set->crtc, set->mode,
7355                                     set->x, set->y, set->fb)) {
7356                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7357                                   set->crtc->base.id);
7358                         ret = -EINVAL;
7359                         goto fail;
7360                 }
7361
7362                 if (set->crtc->enabled) {
7363                         DRM_DEBUG_KMS("Setting connector DPMS state to on\n");
7364                         for (i = 0; i < set->num_connectors; i++) {
7365                                 DRM_DEBUG_KMS("\t[CONNECTOR:%d:%s] set DPMS on\n", set->connectors[i]->base.id,
7366                                               drm_get_connector_name(set->connectors[i]));
7367                                 set->connectors[i]->funcs->dpms(set->connectors[i], DRM_MODE_DPMS_ON);
7368                         }
7369                 }
7370         } else if (config->fb_changed) {
7371                 ret = intel_pipe_set_base(set->crtc,
7372                                           set->x, set->y, set->fb);
7373         }
7374
7375         intel_set_config_free(config);
7376
7377         return 0;
7378
7379 fail:
7380         intel_set_config_restore_state(dev, config);
7381
7382         /* Try to restore the config */
7383         if (config->mode_changed &&
7384             !intel_set_mode(save_set.crtc, save_set.mode,
7385                             save_set.x, save_set.y, save_set.fb))
7386                 DRM_ERROR("failed to restore config after modeset failure\n");
7387
7388 out_config:
7389         intel_set_config_free(config);
7390         return ret;
7391 }
7392
7393 static const struct drm_crtc_funcs intel_crtc_funcs = {
7394         .cursor_set = intel_crtc_cursor_set,
7395         .cursor_move = intel_crtc_cursor_move,
7396         .gamma_set = intel_crtc_gamma_set,
7397         .set_config = intel_crtc_set_config,
7398         .destroy = intel_crtc_destroy,
7399         .page_flip = intel_crtc_page_flip,
7400 };
7401
7402 static void intel_pch_pll_init(struct drm_device *dev)
7403 {
7404         drm_i915_private_t *dev_priv = dev->dev_private;
7405         int i;
7406
7407         if (dev_priv->num_pch_pll == 0) {
7408                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7409                 return;
7410         }
7411
7412         for (i = 0; i < dev_priv->num_pch_pll; i++) {
7413                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7414                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7415                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7416         }
7417 }
7418
7419 static void intel_crtc_init(struct drm_device *dev, int pipe)
7420 {
7421         drm_i915_private_t *dev_priv = dev->dev_private;
7422         struct intel_crtc *intel_crtc;
7423         int i;
7424
7425         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7426         if (intel_crtc == NULL)
7427                 return;
7428
7429         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7430
7431         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7432         for (i = 0; i < 256; i++) {
7433                 intel_crtc->lut_r[i] = i;
7434                 intel_crtc->lut_g[i] = i;
7435                 intel_crtc->lut_b[i] = i;
7436         }
7437
7438         /* Swap pipes & planes for FBC on pre-965 */
7439         intel_crtc->pipe = pipe;
7440         intel_crtc->plane = pipe;
7441         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7442                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7443                 intel_crtc->plane = !pipe;
7444         }
7445
7446         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7447                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7448         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7449         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7450
7451         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7452
7453         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7454 }
7455
7456 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7457                                 struct drm_file *file)
7458 {
7459         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7460         struct drm_mode_object *drmmode_obj;
7461         struct intel_crtc *crtc;
7462
7463         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7464                 return -ENODEV;
7465
7466         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7467                         DRM_MODE_OBJECT_CRTC);
7468
7469         if (!drmmode_obj) {
7470                 DRM_ERROR("no such CRTC id\n");
7471                 return -EINVAL;
7472         }
7473
7474         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7475         pipe_from_crtc_id->pipe = crtc->pipe;
7476
7477         return 0;
7478 }
7479
7480 static int intel_encoder_clones(struct intel_encoder *encoder)
7481 {
7482         struct drm_device *dev = encoder->base.dev;
7483         struct intel_encoder *source_encoder;
7484         int index_mask = 0;
7485         int entry = 0;
7486
7487         list_for_each_entry(source_encoder,
7488                             &dev->mode_config.encoder_list, base.head) {
7489
7490                 if (encoder == source_encoder)
7491                         index_mask |= (1 << entry);
7492
7493                 /* Intel hw has only one MUX where enocoders could be cloned. */
7494                 if (encoder->cloneable && source_encoder->cloneable)
7495                         index_mask |= (1 << entry);
7496
7497                 entry++;
7498         }
7499
7500         return index_mask;
7501 }
7502
7503 static bool has_edp_a(struct drm_device *dev)
7504 {
7505         struct drm_i915_private *dev_priv = dev->dev_private;
7506
7507         if (!IS_MOBILE(dev))
7508                 return false;
7509
7510         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7511                 return false;
7512
7513         if (IS_GEN5(dev) &&
7514             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7515                 return false;
7516
7517         return true;
7518 }
7519
7520 static void intel_setup_outputs(struct drm_device *dev)
7521 {
7522         struct drm_i915_private *dev_priv = dev->dev_private;
7523         struct intel_encoder *encoder;
7524         bool dpd_is_edp = false;
7525         bool has_lvds;
7526
7527         has_lvds = intel_lvds_init(dev);
7528         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7529                 /* disable the panel fitter on everything but LVDS */
7530                 I915_WRITE(PFIT_CONTROL, 0);
7531         }
7532
7533         if (HAS_PCH_SPLIT(dev)) {
7534                 dpd_is_edp = intel_dpd_is_edp(dev);
7535
7536                 if (has_edp_a(dev))
7537                         intel_dp_init(dev, DP_A, PORT_A);
7538
7539                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7540                         intel_dp_init(dev, PCH_DP_D, PORT_D);
7541         }
7542
7543         intel_crt_init(dev);
7544
7545         if (IS_HASWELL(dev)) {
7546                 int found;
7547
7548                 /* Haswell uses DDI functions to detect digital outputs */
7549                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7550                 /* DDI A only supports eDP */
7551                 if (found)
7552                         intel_ddi_init(dev, PORT_A);
7553
7554                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7555                  * register */
7556                 found = I915_READ(SFUSE_STRAP);
7557
7558                 if (found & SFUSE_STRAP_DDIB_DETECTED)
7559                         intel_ddi_init(dev, PORT_B);
7560                 if (found & SFUSE_STRAP_DDIC_DETECTED)
7561                         intel_ddi_init(dev, PORT_C);
7562                 if (found & SFUSE_STRAP_DDID_DETECTED)
7563                         intel_ddi_init(dev, PORT_D);
7564         } else if (HAS_PCH_SPLIT(dev)) {
7565                 int found;
7566
7567                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7568                         /* PCH SDVOB multiplex with HDMIB */
7569                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
7570                         if (!found)
7571                                 intel_hdmi_init(dev, HDMIB, PORT_B);
7572                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7573                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
7574                 }
7575
7576                 if (I915_READ(HDMIC) & PORT_DETECTED)
7577                         intel_hdmi_init(dev, HDMIC, PORT_C);
7578
7579                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
7580                         intel_hdmi_init(dev, HDMID, PORT_D);
7581
7582                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7583                         intel_dp_init(dev, PCH_DP_C, PORT_C);
7584
7585                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7586                         intel_dp_init(dev, PCH_DP_D, PORT_D);
7587         } else if (IS_VALLEYVIEW(dev)) {
7588                 int found;
7589
7590                 if (I915_READ(SDVOB) & PORT_DETECTED) {
7591                         /* SDVOB multiplex with HDMIB */
7592                         found = intel_sdvo_init(dev, SDVOB, true);
7593                         if (!found)
7594                                 intel_hdmi_init(dev, SDVOB, PORT_B);
7595                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
7596                                 intel_dp_init(dev, DP_B, PORT_B);
7597                 }
7598
7599                 if (I915_READ(SDVOC) & PORT_DETECTED)
7600                         intel_hdmi_init(dev, SDVOC, PORT_C);
7601
7602                 /* Shares lanes with HDMI on SDVOC */
7603                 if (I915_READ(DP_C) & DP_DETECTED)
7604                         intel_dp_init(dev, DP_C, PORT_C);
7605         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7606                 bool found = false;
7607
7608                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7609                         DRM_DEBUG_KMS("probing SDVOB\n");
7610                         found = intel_sdvo_init(dev, SDVOB, true);
7611                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7612                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7613                                 intel_hdmi_init(dev, SDVOB, PORT_B);
7614                         }
7615
7616                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7617                                 DRM_DEBUG_KMS("probing DP_B\n");
7618                                 intel_dp_init(dev, DP_B, PORT_B);
7619                         }
7620                 }
7621
7622                 /* Before G4X SDVOC doesn't have its own detect register */
7623
7624                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7625                         DRM_DEBUG_KMS("probing SDVOC\n");
7626                         found = intel_sdvo_init(dev, SDVOC, false);
7627                 }
7628
7629                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7630
7631                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7632                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7633                                 intel_hdmi_init(dev, SDVOC, PORT_C);
7634                         }
7635                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7636                                 DRM_DEBUG_KMS("probing DP_C\n");
7637                                 intel_dp_init(dev, DP_C, PORT_C);
7638                         }
7639                 }
7640
7641                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7642                     (I915_READ(DP_D) & DP_DETECTED)) {
7643                         DRM_DEBUG_KMS("probing DP_D\n");
7644                         intel_dp_init(dev, DP_D, PORT_D);
7645                 }
7646         } else if (IS_GEN2(dev))
7647                 intel_dvo_init(dev);
7648
7649         if (SUPPORTS_TV(dev))
7650                 intel_tv_init(dev);
7651
7652         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7653                 encoder->base.possible_crtcs = encoder->crtc_mask;
7654                 encoder->base.possible_clones =
7655                         intel_encoder_clones(encoder);
7656         }
7657
7658         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7659                 ironlake_init_pch_refclk(dev);
7660 }
7661
7662 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7663 {
7664         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7665
7666         drm_framebuffer_cleanup(fb);
7667         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7668
7669         kfree(intel_fb);
7670 }
7671
7672 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7673                                                 struct drm_file *file,
7674                                                 unsigned int *handle)
7675 {
7676         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7677         struct drm_i915_gem_object *obj = intel_fb->obj;
7678
7679         return drm_gem_handle_create(file, &obj->base, handle);
7680 }
7681
7682 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7683         .destroy = intel_user_framebuffer_destroy,
7684         .create_handle = intel_user_framebuffer_create_handle,
7685 };
7686
7687 int intel_framebuffer_init(struct drm_device *dev,
7688                            struct intel_framebuffer *intel_fb,
7689                            struct drm_mode_fb_cmd2 *mode_cmd,
7690                            struct drm_i915_gem_object *obj)
7691 {
7692         int ret;
7693
7694         if (obj->tiling_mode == I915_TILING_Y)
7695                 return -EINVAL;
7696
7697         if (mode_cmd->pitches[0] & 63)
7698                 return -EINVAL;
7699
7700         switch (mode_cmd->pixel_format) {
7701         case DRM_FORMAT_RGB332:
7702         case DRM_FORMAT_RGB565:
7703         case DRM_FORMAT_XRGB8888:
7704         case DRM_FORMAT_XBGR8888:
7705         case DRM_FORMAT_ARGB8888:
7706         case DRM_FORMAT_XRGB2101010:
7707         case DRM_FORMAT_ARGB2101010:
7708                 /* RGB formats are common across chipsets */
7709                 break;
7710         case DRM_FORMAT_YUYV:
7711         case DRM_FORMAT_UYVY:
7712         case DRM_FORMAT_YVYU:
7713         case DRM_FORMAT_VYUY:
7714                 break;
7715         default:
7716                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7717                                 mode_cmd->pixel_format);
7718                 return -EINVAL;
7719         }
7720
7721         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7722         if (ret) {
7723                 DRM_ERROR("framebuffer init failed %d\n", ret);
7724                 return ret;
7725         }
7726
7727         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7728         intel_fb->obj = obj;
7729         return 0;
7730 }
7731
7732 static struct drm_framebuffer *
7733 intel_user_framebuffer_create(struct drm_device *dev,
7734                               struct drm_file *filp,
7735                               struct drm_mode_fb_cmd2 *mode_cmd)
7736 {
7737         struct drm_i915_gem_object *obj;
7738
7739         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7740                                                 mode_cmd->handles[0]));
7741         if (&obj->base == NULL)
7742                 return ERR_PTR(-ENOENT);
7743
7744         return intel_framebuffer_create(dev, mode_cmd, obj);
7745 }
7746
7747 static const struct drm_mode_config_funcs intel_mode_funcs = {
7748         .fb_create = intel_user_framebuffer_create,
7749         .output_poll_changed = intel_fb_output_poll_changed,
7750 };
7751
7752 /* Set up chip specific display functions */
7753 static void intel_init_display(struct drm_device *dev)
7754 {
7755         struct drm_i915_private *dev_priv = dev->dev_private;
7756
7757         /* We always want a DPMS function */
7758         if (HAS_PCH_SPLIT(dev)) {
7759                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7760                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7761                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
7762                 dev_priv->display.off = ironlake_crtc_off;
7763                 dev_priv->display.update_plane = ironlake_update_plane;
7764         } else {
7765                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7766                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7767                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
7768                 dev_priv->display.off = i9xx_crtc_off;
7769                 dev_priv->display.update_plane = i9xx_update_plane;
7770         }
7771
7772         /* Returns the core display clock speed */
7773         if (IS_VALLEYVIEW(dev))
7774                 dev_priv->display.get_display_clock_speed =
7775                         valleyview_get_display_clock_speed;
7776         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
7777                 dev_priv->display.get_display_clock_speed =
7778                         i945_get_display_clock_speed;
7779         else if (IS_I915G(dev))
7780                 dev_priv->display.get_display_clock_speed =
7781                         i915_get_display_clock_speed;
7782         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7783                 dev_priv->display.get_display_clock_speed =
7784                         i9xx_misc_get_display_clock_speed;
7785         else if (IS_I915GM(dev))
7786                 dev_priv->display.get_display_clock_speed =
7787                         i915gm_get_display_clock_speed;
7788         else if (IS_I865G(dev))
7789                 dev_priv->display.get_display_clock_speed =
7790                         i865_get_display_clock_speed;
7791         else if (IS_I85X(dev))
7792                 dev_priv->display.get_display_clock_speed =
7793                         i855_get_display_clock_speed;
7794         else /* 852, 830 */
7795                 dev_priv->display.get_display_clock_speed =
7796                         i830_get_display_clock_speed;
7797
7798         if (HAS_PCH_SPLIT(dev)) {
7799                 if (IS_GEN5(dev)) {
7800                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7801                         dev_priv->display.write_eld = ironlake_write_eld;
7802                 } else if (IS_GEN6(dev)) {
7803                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7804                         dev_priv->display.write_eld = ironlake_write_eld;
7805                 } else if (IS_IVYBRIDGE(dev)) {
7806                         /* FIXME: detect B0+ stepping and use auto training */
7807                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7808                         dev_priv->display.write_eld = ironlake_write_eld;
7809                 } else if (IS_HASWELL(dev)) {
7810                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7811                         dev_priv->display.write_eld = haswell_write_eld;
7812                 } else
7813                         dev_priv->display.update_wm = NULL;
7814         } else if (IS_G4X(dev)) {
7815                 dev_priv->display.write_eld = g4x_write_eld;
7816         }
7817
7818         /* Default just returns -ENODEV to indicate unsupported */
7819         dev_priv->display.queue_flip = intel_default_queue_flip;
7820
7821         switch (INTEL_INFO(dev)->gen) {
7822         case 2:
7823                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7824                 break;
7825
7826         case 3:
7827                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7828                 break;
7829
7830         case 4:
7831         case 5:
7832                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7833                 break;
7834
7835         case 6:
7836                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7837                 break;
7838         case 7:
7839                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7840                 break;
7841         }
7842 }
7843
7844 /*
7845  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7846  * resume, or other times.  This quirk makes sure that's the case for
7847  * affected systems.
7848  */
7849 static void quirk_pipea_force(struct drm_device *dev)
7850 {
7851         struct drm_i915_private *dev_priv = dev->dev_private;
7852
7853         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7854         DRM_INFO("applying pipe a force quirk\n");
7855 }
7856
7857 /*
7858  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7859  */
7860 static void quirk_ssc_force_disable(struct drm_device *dev)
7861 {
7862         struct drm_i915_private *dev_priv = dev->dev_private;
7863         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7864         DRM_INFO("applying lvds SSC disable quirk\n");
7865 }
7866
7867 /*
7868  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7869  * brightness value
7870  */
7871 static void quirk_invert_brightness(struct drm_device *dev)
7872 {
7873         struct drm_i915_private *dev_priv = dev->dev_private;
7874         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7875         DRM_INFO("applying inverted panel brightness quirk\n");
7876 }
7877
7878 struct intel_quirk {
7879         int device;
7880         int subsystem_vendor;
7881         int subsystem_device;
7882         void (*hook)(struct drm_device *dev);
7883 };
7884
7885 static struct intel_quirk intel_quirks[] = {
7886         /* HP Mini needs pipe A force quirk (LP: #322104) */
7887         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7888
7889         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7890         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7891
7892         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7893         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7894
7895         /* 855 & before need to leave pipe A & dpll A up */
7896         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7897         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7898         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7899
7900         /* Lenovo U160 cannot use SSC on LVDS */
7901         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7902
7903         /* Sony Vaio Y cannot use SSC on LVDS */
7904         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7905
7906         /* Acer Aspire 5734Z must invert backlight brightness */
7907         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7908 };
7909
7910 static void intel_init_quirks(struct drm_device *dev)
7911 {
7912         struct pci_dev *d = dev->pdev;
7913         int i;
7914
7915         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7916                 struct intel_quirk *q = &intel_quirks[i];
7917
7918                 if (d->device == q->device &&
7919                     (d->subsystem_vendor == q->subsystem_vendor ||
7920                      q->subsystem_vendor == PCI_ANY_ID) &&
7921                     (d->subsystem_device == q->subsystem_device ||
7922                      q->subsystem_device == PCI_ANY_ID))
7923                         q->hook(dev);
7924         }
7925 }
7926
7927 /* Disable the VGA plane that we never use */
7928 static void i915_disable_vga(struct drm_device *dev)
7929 {
7930         struct drm_i915_private *dev_priv = dev->dev_private;
7931         u8 sr1;
7932         u32 vga_reg;
7933
7934         if (HAS_PCH_SPLIT(dev))
7935                 vga_reg = CPU_VGACNTRL;
7936         else
7937                 vga_reg = VGACNTRL;
7938
7939         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7940         outb(SR01, VGA_SR_INDEX);
7941         sr1 = inb(VGA_SR_DATA);
7942         outb(sr1 | 1<<5, VGA_SR_DATA);
7943         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7944         udelay(300);
7945
7946         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7947         POSTING_READ(vga_reg);
7948 }
7949
7950 void intel_modeset_init_hw(struct drm_device *dev)
7951 {
7952         /* We attempt to init the necessary power wells early in the initialization
7953          * time, so the subsystems that expect power to be enabled can work.
7954          */
7955         intel_init_power_wells(dev);
7956
7957         intel_prepare_ddi(dev);
7958
7959         intel_init_clock_gating(dev);
7960
7961         mutex_lock(&dev->struct_mutex);
7962         intel_enable_gt_powersave(dev);
7963         mutex_unlock(&dev->struct_mutex);
7964 }
7965
7966 void intel_modeset_init(struct drm_device *dev)
7967 {
7968         struct drm_i915_private *dev_priv = dev->dev_private;
7969         int i, ret;
7970
7971         drm_mode_config_init(dev);
7972
7973         dev->mode_config.min_width = 0;
7974         dev->mode_config.min_height = 0;
7975
7976         dev->mode_config.preferred_depth = 24;
7977         dev->mode_config.prefer_shadow = 1;
7978
7979         dev->mode_config.funcs = &intel_mode_funcs;
7980
7981         intel_init_quirks(dev);
7982
7983         intel_init_pm(dev);
7984
7985         intel_init_display(dev);
7986
7987         if (IS_GEN2(dev)) {
7988                 dev->mode_config.max_width = 2048;
7989                 dev->mode_config.max_height = 2048;
7990         } else if (IS_GEN3(dev)) {
7991                 dev->mode_config.max_width = 4096;
7992                 dev->mode_config.max_height = 4096;
7993         } else {
7994                 dev->mode_config.max_width = 8192;
7995                 dev->mode_config.max_height = 8192;
7996         }
7997         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
7998
7999         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8000                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8001
8002         for (i = 0; i < dev_priv->num_pipe; i++) {
8003                 intel_crtc_init(dev, i);
8004                 ret = intel_plane_init(dev, i);
8005                 if (ret)
8006                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8007         }
8008
8009         intel_pch_pll_init(dev);
8010
8011         /* Just disable it once at startup */
8012         i915_disable_vga(dev);
8013         intel_setup_outputs(dev);
8014 }
8015
8016 static void
8017 intel_connector_break_all_links(struct intel_connector *connector)
8018 {
8019         connector->base.dpms = DRM_MODE_DPMS_OFF;
8020         connector->base.encoder = NULL;
8021         connector->encoder->connectors_active = false;
8022         connector->encoder->base.crtc = NULL;
8023 }
8024
8025 static void intel_enable_pipe_a(struct drm_device *dev)
8026 {
8027         struct intel_connector *connector;
8028         struct drm_connector *crt = NULL;
8029         struct intel_load_detect_pipe load_detect_temp;
8030
8031         /* We can't just switch on the pipe A, we need to set things up with a
8032          * proper mode and output configuration. As a gross hack, enable pipe A
8033          * by enabling the load detect pipe once. */
8034         list_for_each_entry(connector,
8035                             &dev->mode_config.connector_list,
8036                             base.head) {
8037                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8038                         crt = &connector->base;
8039                         break;
8040                 }
8041         }
8042
8043         if (!crt)
8044                 return;
8045
8046         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8047                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8048
8049
8050 }
8051
8052 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8053 {
8054         struct drm_device *dev = crtc->base.dev;
8055         struct drm_i915_private *dev_priv = dev->dev_private;
8056         u32 reg, val;
8057
8058         /* Clear any frame start delays used for debugging left by the BIOS */
8059         reg = PIPECONF(crtc->pipe);
8060         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8061
8062         /* We need to sanitize the plane -> pipe mapping first because this will
8063          * disable the crtc (and hence change the state) if it is wrong. */
8064         if (!HAS_PCH_SPLIT(dev)) {
8065                 struct intel_connector *connector;
8066                 bool plane;
8067
8068                 reg = DSPCNTR(crtc->plane);
8069                 val = I915_READ(reg);
8070
8071                 if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
8072                     (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8073                         goto ok;
8074
8075                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8076                               crtc->base.base.id);
8077
8078                 /* Pipe has the wrong plane attached and the plane is active.
8079                  * Temporarily change the plane mapping and disable everything
8080                  * ...  */
8081                 plane = crtc->plane;
8082                 crtc->plane = !plane;
8083                 dev_priv->display.crtc_disable(&crtc->base);
8084                 crtc->plane = plane;
8085
8086                 /* ... and break all links. */
8087                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8088                                     base.head) {
8089                         if (connector->encoder->base.crtc != &crtc->base)
8090                                 continue;
8091
8092                         intel_connector_break_all_links(connector);
8093                 }
8094
8095                 WARN_ON(crtc->active);
8096                 crtc->base.enabled = false;
8097         }
8098 ok:
8099
8100         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8101             crtc->pipe == PIPE_A && !crtc->active) {
8102                 /* BIOS forgot to enable pipe A, this mostly happens after
8103                  * resume. Force-enable the pipe to fix this, the update_dpms
8104                  * call below we restore the pipe to the right state, but leave
8105                  * the required bits on. */
8106                 intel_enable_pipe_a(dev);
8107         }
8108
8109         /* Adjust the state of the output pipe according to whether we
8110          * have active connectors/encoders. */
8111         intel_crtc_update_dpms(&crtc->base);
8112
8113         if (crtc->active != crtc->base.enabled) {
8114                 struct intel_encoder *encoder;
8115
8116                 /* This can happen either due to bugs in the get_hw_state
8117                  * functions or because the pipe is force-enabled due to the
8118                  * pipe A quirk. */
8119                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8120                               crtc->base.base.id,
8121                               crtc->base.enabled ? "enabled" : "disabled",
8122                               crtc->active ? "enabled" : "disabled");
8123
8124                 crtc->base.enabled = crtc->active;
8125
8126                 /* Because we only establish the connector -> encoder ->
8127                  * crtc links if something is active, this means the
8128                  * crtc is now deactivated. Break the links. connector
8129                  * -> encoder links are only establish when things are
8130                  *  actually up, hence no need to break them. */
8131                 WARN_ON(crtc->active);
8132
8133                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8134                         WARN_ON(encoder->connectors_active);
8135                         encoder->base.crtc = NULL;
8136                 }
8137         }
8138 }
8139
8140 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8141 {
8142         struct intel_connector *connector;
8143         struct drm_device *dev = encoder->base.dev;
8144
8145         /* We need to check both for a crtc link (meaning that the
8146          * encoder is active and trying to read from a pipe) and the
8147          * pipe itself being active. */
8148         bool has_active_crtc = encoder->base.crtc &&
8149                 to_intel_crtc(encoder->base.crtc)->active;
8150
8151         if (encoder->connectors_active && !has_active_crtc) {
8152                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8153                               encoder->base.base.id,
8154                               drm_get_encoder_name(&encoder->base));
8155
8156                 /* Connector is active, but has no active pipe. This is
8157                  * fallout from our resume register restoring. Disable
8158                  * the encoder manually again. */
8159                 if (encoder->base.crtc) {
8160                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8161                                       encoder->base.base.id,
8162                                       drm_get_encoder_name(&encoder->base));
8163                         encoder->disable(encoder);
8164                 }
8165
8166                 /* Inconsistent output/port/pipe state happens presumably due to
8167                  * a bug in one of the get_hw_state functions. Or someplace else
8168                  * in our code, like the register restore mess on resume. Clamp
8169                  * things to off as a safer default. */
8170                 list_for_each_entry(connector,
8171                                     &dev->mode_config.connector_list,
8172                                     base.head) {
8173                         if (connector->encoder != encoder)
8174                                 continue;
8175
8176                         intel_connector_break_all_links(connector);
8177                 }
8178         }
8179         /* Enabled encoders without active connectors will be fixed in
8180          * the crtc fixup. */
8181 }
8182
8183 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8184  * and i915 state tracking structures. */
8185 void intel_modeset_setup_hw_state(struct drm_device *dev)
8186 {
8187         struct drm_i915_private *dev_priv = dev->dev_private;
8188         enum pipe pipe;
8189         u32 tmp;
8190         struct intel_crtc *crtc;
8191         struct intel_encoder *encoder;
8192         struct intel_connector *connector;
8193
8194         for_each_pipe(pipe) {
8195                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8196
8197                 tmp = I915_READ(PIPECONF(pipe));
8198                 if (tmp & PIPECONF_ENABLE)
8199                         crtc->active = true;
8200                 else
8201                         crtc->active = false;
8202
8203                 crtc->base.enabled = crtc->active;
8204
8205                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8206                               crtc->base.base.id,
8207                               crtc->active ? "enabled" : "disabled");
8208         }
8209
8210         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8211                             base.head) {
8212                 pipe = 0;
8213
8214                 if (encoder->get_hw_state(encoder, &pipe)) {
8215                         encoder->base.crtc =
8216                                 dev_priv->pipe_to_crtc_mapping[pipe];
8217                 } else {
8218                         encoder->base.crtc = NULL;
8219                 }
8220
8221                 encoder->connectors_active = false;
8222                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8223                               encoder->base.base.id,
8224                               drm_get_encoder_name(&encoder->base),
8225                               encoder->base.crtc ? "enabled" : "disabled",
8226                               pipe);
8227         }
8228
8229         list_for_each_entry(connector, &dev->mode_config.connector_list,
8230                             base.head) {
8231                 if (connector->get_hw_state(connector)) {
8232                         connector->base.dpms = DRM_MODE_DPMS_ON;
8233                         connector->encoder->connectors_active = true;
8234                         connector->base.encoder = &connector->encoder->base;
8235                 } else {
8236                         connector->base.dpms = DRM_MODE_DPMS_OFF;
8237                         connector->base.encoder = NULL;
8238                 }
8239                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8240                               connector->base.base.id,
8241                               drm_get_connector_name(&connector->base),
8242                               connector->base.encoder ? "enabled" : "disabled");
8243         }
8244
8245         /* HW state is read out, now we need to sanitize this mess. */
8246         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8247                             base.head) {
8248                 intel_sanitize_encoder(encoder);
8249         }
8250
8251         for_each_pipe(pipe) {
8252                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8253                 intel_sanitize_crtc(crtc);
8254         }
8255
8256         intel_modeset_update_staged_output_state(dev);
8257
8258         intel_modeset_check_state(dev);
8259 }
8260
8261 void intel_modeset_gem_init(struct drm_device *dev)
8262 {
8263         intel_modeset_init_hw(dev);
8264
8265         intel_setup_overlay(dev);
8266
8267         intel_modeset_setup_hw_state(dev);
8268 }
8269
8270 void intel_modeset_cleanup(struct drm_device *dev)
8271 {
8272         struct drm_i915_private *dev_priv = dev->dev_private;
8273         struct drm_crtc *crtc;
8274         struct intel_crtc *intel_crtc;
8275
8276         drm_kms_helper_poll_fini(dev);
8277         mutex_lock(&dev->struct_mutex);
8278
8279         intel_unregister_dsm_handler();
8280
8281
8282         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8283                 /* Skip inactive CRTCs */
8284                 if (!crtc->fb)
8285                         continue;
8286
8287                 intel_crtc = to_intel_crtc(crtc);
8288                 intel_increase_pllclock(crtc);
8289         }
8290
8291         intel_disable_fbc(dev);
8292
8293         intel_disable_gt_powersave(dev);
8294
8295         ironlake_teardown_rc6(dev);
8296
8297         if (IS_VALLEYVIEW(dev))
8298                 vlv_init_dpio(dev);
8299
8300         mutex_unlock(&dev->struct_mutex);
8301
8302         /* Disable the irq before mode object teardown, for the irq might
8303          * enqueue unpin/hotplug work. */
8304         drm_irq_uninstall(dev);
8305         cancel_work_sync(&dev_priv->hotplug_work);
8306         cancel_work_sync(&dev_priv->rps.work);
8307
8308         /* flush any delayed tasks or pending work */
8309         flush_scheduled_work();
8310
8311         drm_mode_config_cleanup(dev);
8312 }
8313
8314 /*
8315  * Return which encoder is currently attached for connector.
8316  */
8317 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8318 {
8319         return &intel_attached_encoder(connector)->base;
8320 }
8321
8322 void intel_connector_attach_encoder(struct intel_connector *connector,
8323                                     struct intel_encoder *encoder)
8324 {
8325         connector->encoder = encoder;
8326         drm_mode_connector_attach_encoder(&connector->base,
8327                                           &encoder->base);
8328 }
8329
8330 /*
8331  * set vga decode state - true == enable VGA decode
8332  */
8333 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8334 {
8335         struct drm_i915_private *dev_priv = dev->dev_private;
8336         u16 gmch_ctrl;
8337
8338         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8339         if (state)
8340                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8341         else
8342                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8343         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8344         return 0;
8345 }
8346
8347 #ifdef CONFIG_DEBUG_FS
8348 #include <linux/seq_file.h>
8349
8350 struct intel_display_error_state {
8351         struct intel_cursor_error_state {
8352                 u32 control;
8353                 u32 position;
8354                 u32 base;
8355                 u32 size;
8356         } cursor[I915_MAX_PIPES];
8357
8358         struct intel_pipe_error_state {
8359                 u32 conf;
8360                 u32 source;
8361
8362                 u32 htotal;
8363                 u32 hblank;
8364                 u32 hsync;
8365                 u32 vtotal;
8366                 u32 vblank;
8367                 u32 vsync;
8368         } pipe[I915_MAX_PIPES];
8369
8370         struct intel_plane_error_state {
8371                 u32 control;
8372                 u32 stride;
8373                 u32 size;
8374                 u32 pos;
8375                 u32 addr;
8376                 u32 surface;
8377                 u32 tile_offset;
8378         } plane[I915_MAX_PIPES];
8379 };
8380
8381 struct intel_display_error_state *
8382 intel_display_capture_error_state(struct drm_device *dev)
8383 {
8384         drm_i915_private_t *dev_priv = dev->dev_private;
8385         struct intel_display_error_state *error;
8386         int i;
8387
8388         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8389         if (error == NULL)
8390                 return NULL;
8391
8392         for_each_pipe(i) {
8393                 error->cursor[i].control = I915_READ(CURCNTR(i));
8394                 error->cursor[i].position = I915_READ(CURPOS(i));
8395                 error->cursor[i].base = I915_READ(CURBASE(i));
8396
8397                 error->plane[i].control = I915_READ(DSPCNTR(i));
8398                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8399                 error->plane[i].size = I915_READ(DSPSIZE(i));
8400                 error->plane[i].pos = I915_READ(DSPPOS(i));
8401                 error->plane[i].addr = I915_READ(DSPADDR(i));
8402                 if (INTEL_INFO(dev)->gen >= 4) {
8403                         error->plane[i].surface = I915_READ(DSPSURF(i));
8404                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8405                 }
8406
8407                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8408                 error->pipe[i].source = I915_READ(PIPESRC(i));
8409                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8410                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8411                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8412                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8413                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8414                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8415         }
8416
8417         return error;
8418 }
8419
8420 void
8421 intel_display_print_error_state(struct seq_file *m,
8422                                 struct drm_device *dev,
8423                                 struct intel_display_error_state *error)
8424 {
8425         drm_i915_private_t *dev_priv = dev->dev_private;
8426         int i;
8427
8428         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8429         for_each_pipe(i) {
8430                 seq_printf(m, "Pipe [%d]:\n", i);
8431                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8432                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8433                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8434                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8435                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8436                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8437                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8438                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8439
8440                 seq_printf(m, "Plane [%d]:\n", i);
8441                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8442                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8443                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8444                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8445                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8446                 if (INTEL_INFO(dev)->gen >= 4) {
8447                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8448                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8449                 }
8450
8451                 seq_printf(m, "Cursor [%d]:\n", i);
8452                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8453                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8454                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8455         }
8456 }
8457 #endif