drm/i915: detect PCH encoders on Haswell
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *match_clock,
86                     intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *match_clock,
90                         intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                       int target, int refclk, intel_clock_t *match_clock,
95                       intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                            int target, int refclk, intel_clock_t *match_clock,
99                            intel_clock_t *best_clock);
100
101 static inline u32 /* units of 100MHz */
102 intel_fdi_link_freq(struct drm_device *dev)
103 {
104         if (IS_GEN5(dev)) {
105                 struct drm_i915_private *dev_priv = dev->dev_private;
106                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
107         } else
108                 return 27;
109 }
110
111 static const intel_limit_t intel_limits_i8xx_dvo = {
112         .dot = { .min = 25000, .max = 350000 },
113         .vco = { .min = 930000, .max = 1400000 },
114         .n = { .min = 3, .max = 16 },
115         .m = { .min = 96, .max = 140 },
116         .m1 = { .min = 18, .max = 26 },
117         .m2 = { .min = 6, .max = 16 },
118         .p = { .min = 4, .max = 128 },
119         .p1 = { .min = 2, .max = 33 },
120         .p2 = { .dot_limit = 165000,
121                 .p2_slow = 4, .p2_fast = 2 },
122         .find_pll = intel_find_best_PLL,
123 };
124
125 static const intel_limit_t intel_limits_i8xx_lvds = {
126         .dot = { .min = 25000, .max = 350000 },
127         .vco = { .min = 930000, .max = 1400000 },
128         .n = { .min = 3, .max = 16 },
129         .m = { .min = 96, .max = 140 },
130         .m1 = { .min = 18, .max = 26 },
131         .m2 = { .min = 6, .max = 16 },
132         .p = { .min = 4, .max = 128 },
133         .p1 = { .min = 1, .max = 6 },
134         .p2 = { .dot_limit = 165000,
135                 .p2_slow = 14, .p2_fast = 7 },
136         .find_pll = intel_find_best_PLL,
137 };
138
139 static const intel_limit_t intel_limits_i9xx_sdvo = {
140         .dot = { .min = 20000, .max = 400000 },
141         .vco = { .min = 1400000, .max = 2800000 },
142         .n = { .min = 1, .max = 6 },
143         .m = { .min = 70, .max = 120 },
144         .m1 = { .min = 10, .max = 22 },
145         .m2 = { .min = 5, .max = 9 },
146         .p = { .min = 5, .max = 80 },
147         .p1 = { .min = 1, .max = 8 },
148         .p2 = { .dot_limit = 200000,
149                 .p2_slow = 10, .p2_fast = 5 },
150         .find_pll = intel_find_best_PLL,
151 };
152
153 static const intel_limit_t intel_limits_i9xx_lvds = {
154         .dot = { .min = 20000, .max = 400000 },
155         .vco = { .min = 1400000, .max = 2800000 },
156         .n = { .min = 1, .max = 6 },
157         .m = { .min = 70, .max = 120 },
158         .m1 = { .min = 10, .max = 22 },
159         .m2 = { .min = 5, .max = 9 },
160         .p = { .min = 7, .max = 98 },
161         .p1 = { .min = 1, .max = 8 },
162         .p2 = { .dot_limit = 112000,
163                 .p2_slow = 14, .p2_fast = 7 },
164         .find_pll = intel_find_best_PLL,
165 };
166
167
168 static const intel_limit_t intel_limits_g4x_sdvo = {
169         .dot = { .min = 25000, .max = 270000 },
170         .vco = { .min = 1750000, .max = 3500000},
171         .n = { .min = 1, .max = 4 },
172         .m = { .min = 104, .max = 138 },
173         .m1 = { .min = 17, .max = 23 },
174         .m2 = { .min = 5, .max = 11 },
175         .p = { .min = 10, .max = 30 },
176         .p1 = { .min = 1, .max = 3},
177         .p2 = { .dot_limit = 270000,
178                 .p2_slow = 10,
179                 .p2_fast = 10
180         },
181         .find_pll = intel_g4x_find_best_PLL,
182 };
183
184 static const intel_limit_t intel_limits_g4x_hdmi = {
185         .dot = { .min = 22000, .max = 400000 },
186         .vco = { .min = 1750000, .max = 3500000},
187         .n = { .min = 1, .max = 4 },
188         .m = { .min = 104, .max = 138 },
189         .m1 = { .min = 16, .max = 23 },
190         .m2 = { .min = 5, .max = 11 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8},
193         .p2 = { .dot_limit = 165000,
194                 .p2_slow = 10, .p2_fast = 5 },
195         .find_pll = intel_g4x_find_best_PLL,
196 };
197
198 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
199         .dot = { .min = 20000, .max = 115000 },
200         .vco = { .min = 1750000, .max = 3500000 },
201         .n = { .min = 1, .max = 3 },
202         .m = { .min = 104, .max = 138 },
203         .m1 = { .min = 17, .max = 23 },
204         .m2 = { .min = 5, .max = 11 },
205         .p = { .min = 28, .max = 112 },
206         .p1 = { .min = 2, .max = 8 },
207         .p2 = { .dot_limit = 0,
208                 .p2_slow = 14, .p2_fast = 14
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
214         .dot = { .min = 80000, .max = 224000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 14, .max = 42 },
221         .p1 = { .min = 2, .max = 6 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 7, .p2_fast = 7
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_display_port = {
229         .dot = { .min = 161670, .max = 227000 },
230         .vco = { .min = 1750000, .max = 3500000},
231         .n = { .min = 1, .max = 2 },
232         .m = { .min = 97, .max = 108 },
233         .m1 = { .min = 0x10, .max = 0x12 },
234         .m2 = { .min = 0x05, .max = 0x06 },
235         .p = { .min = 10, .max = 20 },
236         .p1 = { .min = 1, .max = 2},
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 10, .p2_fast = 10 },
239         .find_pll = intel_find_pll_g4x_dp,
240 };
241
242 static const intel_limit_t intel_limits_pineview_sdvo = {
243         .dot = { .min = 20000, .max = 400000},
244         .vco = { .min = 1700000, .max = 3500000 },
245         /* Pineview's Ncounter is a ring counter */
246         .n = { .min = 3, .max = 6 },
247         .m = { .min = 2, .max = 256 },
248         /* Pineview only has one combined m divider, which we treat as m2. */
249         .m1 = { .min = 0, .max = 0 },
250         .m2 = { .min = 0, .max = 254 },
251         .p = { .min = 5, .max = 80 },
252         .p1 = { .min = 1, .max = 8 },
253         .p2 = { .dot_limit = 200000,
254                 .p2_slow = 10, .p2_fast = 5 },
255         .find_pll = intel_find_best_PLL,
256 };
257
258 static const intel_limit_t intel_limits_pineview_lvds = {
259         .dot = { .min = 20000, .max = 400000 },
260         .vco = { .min = 1700000, .max = 3500000 },
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         .m1 = { .min = 0, .max = 0 },
264         .m2 = { .min = 0, .max = 254 },
265         .p = { .min = 7, .max = 112 },
266         .p1 = { .min = 1, .max = 8 },
267         .p2 = { .dot_limit = 112000,
268                 .p2_slow = 14, .p2_fast = 14 },
269         .find_pll = intel_find_best_PLL,
270 };
271
272 /* Ironlake / Sandybridge
273  *
274  * We calculate clock using (register_value + 2) for N/M1/M2, so here
275  * the range value for them is (actual_value - 2).
276  */
277 static const intel_limit_t intel_limits_ironlake_dac = {
278         .dot = { .min = 25000, .max = 350000 },
279         .vco = { .min = 1760000, .max = 3510000 },
280         .n = { .min = 1, .max = 5 },
281         .m = { .min = 79, .max = 127 },
282         .m1 = { .min = 12, .max = 22 },
283         .m2 = { .min = 5, .max = 9 },
284         .p = { .min = 5, .max = 80 },
285         .p1 = { .min = 1, .max = 8 },
286         .p2 = { .dot_limit = 225000,
287                 .p2_slow = 10, .p2_fast = 5 },
288         .find_pll = intel_g4x_find_best_PLL,
289 };
290
291 static const intel_limit_t intel_limits_ironlake_single_lvds = {
292         .dot = { .min = 25000, .max = 350000 },
293         .vco = { .min = 1760000, .max = 3510000 },
294         .n = { .min = 1, .max = 3 },
295         .m = { .min = 79, .max = 118 },
296         .m1 = { .min = 12, .max = 22 },
297         .m2 = { .min = 5, .max = 9 },
298         .p = { .min = 28, .max = 112 },
299         .p1 = { .min = 2, .max = 8 },
300         .p2 = { .dot_limit = 225000,
301                 .p2_slow = 14, .p2_fast = 14 },
302         .find_pll = intel_g4x_find_best_PLL,
303 };
304
305 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
306         .dot = { .min = 25000, .max = 350000 },
307         .vco = { .min = 1760000, .max = 3510000 },
308         .n = { .min = 1, .max = 3 },
309         .m = { .min = 79, .max = 127 },
310         .m1 = { .min = 12, .max = 22 },
311         .m2 = { .min = 5, .max = 9 },
312         .p = { .min = 14, .max = 56 },
313         .p1 = { .min = 2, .max = 8 },
314         .p2 = { .dot_limit = 225000,
315                 .p2_slow = 7, .p2_fast = 7 },
316         .find_pll = intel_g4x_find_best_PLL,
317 };
318
319 /* LVDS 100mhz refclk limits. */
320 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 2 },
324         .m = { .min = 79, .max = 126 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 126 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 42 },
342         .p1 = { .min = 2, .max = 6 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 static const intel_limit_t intel_limits_ironlake_display_port = {
349         .dot = { .min = 25000, .max = 350000 },
350         .vco = { .min = 1760000, .max = 3510000},
351         .n = { .min = 1, .max = 2 },
352         .m = { .min = 81, .max = 90 },
353         .m1 = { .min = 12, .max = 22 },
354         .m2 = { .min = 5, .max = 9 },
355         .p = { .min = 10, .max = 20 },
356         .p1 = { .min = 1, .max = 2},
357         .p2 = { .dot_limit = 0,
358                 .p2_slow = 10, .p2_fast = 10 },
359         .find_pll = intel_find_pll_ironlake_dp,
360 };
361
362 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
363 {
364         unsigned long flags;
365         u32 val = 0;
366
367         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
368         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
369                 DRM_ERROR("DPIO idle wait timed out\n");
370                 goto out_unlock;
371         }
372
373         I915_WRITE(DPIO_REG, reg);
374         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
375                    DPIO_BYTE);
376         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
377                 DRM_ERROR("DPIO read wait timed out\n");
378                 goto out_unlock;
379         }
380         val = I915_READ(DPIO_DATA);
381
382 out_unlock:
383         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
384         return val;
385 }
386
387 static void vlv_init_dpio(struct drm_device *dev)
388 {
389         struct drm_i915_private *dev_priv = dev->dev_private;
390
391         /* Reset the DPIO config */
392         I915_WRITE(DPIO_CTL, 0);
393         POSTING_READ(DPIO_CTL);
394         I915_WRITE(DPIO_CTL, 1);
395         POSTING_READ(DPIO_CTL);
396 }
397
398 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
399 {
400         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
401         return 1;
402 }
403
404 static const struct dmi_system_id intel_dual_link_lvds[] = {
405         {
406                 .callback = intel_dual_link_lvds_callback,
407                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
408                 .matches = {
409                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
410                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
411                 },
412         },
413         { }     /* terminating entry */
414 };
415
416 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
417                               unsigned int reg)
418 {
419         unsigned int val;
420
421         /* use the module option value if specified */
422         if (i915_lvds_channel_mode > 0)
423                 return i915_lvds_channel_mode == 2;
424
425         if (dmi_check_system(intel_dual_link_lvds))
426                 return true;
427
428         if (dev_priv->lvds_val)
429                 val = dev_priv->lvds_val;
430         else {
431                 /* BIOS should set the proper LVDS register value at boot, but
432                  * in reality, it doesn't set the value when the lid is closed;
433                  * we need to check "the value to be set" in VBT when LVDS
434                  * register is uninitialized.
435                  */
436                 val = I915_READ(reg);
437                 if (!(val & ~LVDS_DETECTED))
438                         val = dev_priv->bios_lvds_val;
439                 dev_priv->lvds_val = val;
440         }
441         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
442 }
443
444 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
445                                                 int refclk)
446 {
447         struct drm_device *dev = crtc->dev;
448         struct drm_i915_private *dev_priv = dev->dev_private;
449         const intel_limit_t *limit;
450
451         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
452                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
453                         /* LVDS dual channel */
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_dual_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_dual_lvds;
458                 } else {
459                         if (refclk == 100000)
460                                 limit = &intel_limits_ironlake_single_lvds_100m;
461                         else
462                                 limit = &intel_limits_ironlake_single_lvds;
463                 }
464         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
465                         HAS_eDP)
466                 limit = &intel_limits_ironlake_display_port;
467         else
468                 limit = &intel_limits_ironlake_dac;
469
470         return limit;
471 }
472
473 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
474 {
475         struct drm_device *dev = crtc->dev;
476         struct drm_i915_private *dev_priv = dev->dev_private;
477         const intel_limit_t *limit;
478
479         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
480                 if (is_dual_link_lvds(dev_priv, LVDS))
481                         /* LVDS with dual channel */
482                         limit = &intel_limits_g4x_dual_channel_lvds;
483                 else
484                         /* LVDS with dual channel */
485                         limit = &intel_limits_g4x_single_channel_lvds;
486         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
487                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
488                 limit = &intel_limits_g4x_hdmi;
489         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
490                 limit = &intel_limits_g4x_sdvo;
491         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
492                 limit = &intel_limits_g4x_display_port;
493         } else /* The option is for other outputs */
494                 limit = &intel_limits_i9xx_sdvo;
495
496         return limit;
497 }
498
499 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
500 {
501         struct drm_device *dev = crtc->dev;
502         const intel_limit_t *limit;
503
504         if (HAS_PCH_SPLIT(dev))
505                 limit = intel_ironlake_limit(crtc, refclk);
506         else if (IS_G4X(dev)) {
507                 limit = intel_g4x_limit(crtc);
508         } else if (IS_PINEVIEW(dev)) {
509                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
510                         limit = &intel_limits_pineview_lvds;
511                 else
512                         limit = &intel_limits_pineview_sdvo;
513         } else if (!IS_GEN2(dev)) {
514                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
515                         limit = &intel_limits_i9xx_lvds;
516                 else
517                         limit = &intel_limits_i9xx_sdvo;
518         } else {
519                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
520                         limit = &intel_limits_i8xx_lvds;
521                 else
522                         limit = &intel_limits_i8xx_dvo;
523         }
524         return limit;
525 }
526
527 /* m1 is reserved as 0 in Pineview, n is a ring counter */
528 static void pineview_clock(int refclk, intel_clock_t *clock)
529 {
530         clock->m = clock->m2 + 2;
531         clock->p = clock->p1 * clock->p2;
532         clock->vco = refclk * clock->m / clock->n;
533         clock->dot = clock->vco / clock->p;
534 }
535
536 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
537 {
538         if (IS_PINEVIEW(dev)) {
539                 pineview_clock(refclk, clock);
540                 return;
541         }
542         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
543         clock->p = clock->p1 * clock->p2;
544         clock->vco = refclk * clock->m / (clock->n + 2);
545         clock->dot = clock->vco / clock->p;
546 }
547
548 /**
549  * Returns whether any output on the specified pipe is of the specified type
550  */
551 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
552 {
553         struct drm_device *dev = crtc->dev;
554         struct drm_mode_config *mode_config = &dev->mode_config;
555         struct intel_encoder *encoder;
556
557         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
558                 if (encoder->base.crtc == crtc && encoder->type == type)
559                         return true;
560
561         return false;
562 }
563
564 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
565 /**
566  * Returns whether the given set of divisors are valid for a given refclk with
567  * the given connectors.
568  */
569
570 static bool intel_PLL_is_valid(struct drm_device *dev,
571                                const intel_limit_t *limit,
572                                const intel_clock_t *clock)
573 {
574         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
575                 INTELPllInvalid("p1 out of range\n");
576         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
577                 INTELPllInvalid("p out of range\n");
578         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
579                 INTELPllInvalid("m2 out of range\n");
580         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
581                 INTELPllInvalid("m1 out of range\n");
582         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
583                 INTELPllInvalid("m1 <= m2\n");
584         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
585                 INTELPllInvalid("m out of range\n");
586         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
587                 INTELPllInvalid("n out of range\n");
588         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
589                 INTELPllInvalid("vco out of range\n");
590         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
591          * connector, etc., rather than just a single range.
592          */
593         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
594                 INTELPllInvalid("dot out of range\n");
595
596         return true;
597 }
598
599 static bool
600 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
601                     int target, int refclk, intel_clock_t *match_clock,
602                     intel_clock_t *best_clock)
603
604 {
605         struct drm_device *dev = crtc->dev;
606         struct drm_i915_private *dev_priv = dev->dev_private;
607         intel_clock_t clock;
608         int err = target;
609
610         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
611             (I915_READ(LVDS)) != 0) {
612                 /*
613                  * For LVDS, if the panel is on, just rely on its current
614                  * settings for dual-channel.  We haven't figured out how to
615                  * reliably set up different single/dual channel state, if we
616                  * even can.
617                  */
618                 if (is_dual_link_lvds(dev_priv, LVDS))
619                         clock.p2 = limit->p2.p2_fast;
620                 else
621                         clock.p2 = limit->p2.p2_slow;
622         } else {
623                 if (target < limit->p2.dot_limit)
624                         clock.p2 = limit->p2.p2_slow;
625                 else
626                         clock.p2 = limit->p2.p2_fast;
627         }
628
629         memset(best_clock, 0, sizeof(*best_clock));
630
631         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
632              clock.m1++) {
633                 for (clock.m2 = limit->m2.min;
634                      clock.m2 <= limit->m2.max; clock.m2++) {
635                         /* m1 is always 0 in Pineview */
636                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
637                                 break;
638                         for (clock.n = limit->n.min;
639                              clock.n <= limit->n.max; clock.n++) {
640                                 for (clock.p1 = limit->p1.min;
641                                         clock.p1 <= limit->p1.max; clock.p1++) {
642                                         int this_err;
643
644                                         intel_clock(dev, refclk, &clock);
645                                         if (!intel_PLL_is_valid(dev, limit,
646                                                                 &clock))
647                                                 continue;
648                                         if (match_clock &&
649                                             clock.p != match_clock->p)
650                                                 continue;
651
652                                         this_err = abs(clock.dot - target);
653                                         if (this_err < err) {
654                                                 *best_clock = clock;
655                                                 err = this_err;
656                                         }
657                                 }
658                         }
659                 }
660         }
661
662         return (err != target);
663 }
664
665 static bool
666 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
667                         int target, int refclk, intel_clock_t *match_clock,
668                         intel_clock_t *best_clock)
669 {
670         struct drm_device *dev = crtc->dev;
671         struct drm_i915_private *dev_priv = dev->dev_private;
672         intel_clock_t clock;
673         int max_n;
674         bool found;
675         /* approximately equals target * 0.00585 */
676         int err_most = (target >> 8) + (target >> 9);
677         found = false;
678
679         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
680                 int lvds_reg;
681
682                 if (HAS_PCH_SPLIT(dev))
683                         lvds_reg = PCH_LVDS;
684                 else
685                         lvds_reg = LVDS;
686                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
687                     LVDS_CLKB_POWER_UP)
688                         clock.p2 = limit->p2.p2_fast;
689                 else
690                         clock.p2 = limit->p2.p2_slow;
691         } else {
692                 if (target < limit->p2.dot_limit)
693                         clock.p2 = limit->p2.p2_slow;
694                 else
695                         clock.p2 = limit->p2.p2_fast;
696         }
697
698         memset(best_clock, 0, sizeof(*best_clock));
699         max_n = limit->n.max;
700         /* based on hardware requirement, prefer smaller n to precision */
701         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
702                 /* based on hardware requirement, prefere larger m1,m2 */
703                 for (clock.m1 = limit->m1.max;
704                      clock.m1 >= limit->m1.min; clock.m1--) {
705                         for (clock.m2 = limit->m2.max;
706                              clock.m2 >= limit->m2.min; clock.m2--) {
707                                 for (clock.p1 = limit->p1.max;
708                                      clock.p1 >= limit->p1.min; clock.p1--) {
709                                         int this_err;
710
711                                         intel_clock(dev, refclk, &clock);
712                                         if (!intel_PLL_is_valid(dev, limit,
713                                                                 &clock))
714                                                 continue;
715                                         if (match_clock &&
716                                             clock.p != match_clock->p)
717                                                 continue;
718
719                                         this_err = abs(clock.dot - target);
720                                         if (this_err < err_most) {
721                                                 *best_clock = clock;
722                                                 err_most = this_err;
723                                                 max_n = clock.n;
724                                                 found = true;
725                                         }
726                                 }
727                         }
728                 }
729         }
730         return found;
731 }
732
733 static bool
734 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
735                            int target, int refclk, intel_clock_t *match_clock,
736                            intel_clock_t *best_clock)
737 {
738         struct drm_device *dev = crtc->dev;
739         intel_clock_t clock;
740
741         if (target < 200000) {
742                 clock.n = 1;
743                 clock.p1 = 2;
744                 clock.p2 = 10;
745                 clock.m1 = 12;
746                 clock.m2 = 9;
747         } else {
748                 clock.n = 2;
749                 clock.p1 = 1;
750                 clock.p2 = 10;
751                 clock.m1 = 14;
752                 clock.m2 = 8;
753         }
754         intel_clock(dev, refclk, &clock);
755         memcpy(best_clock, &clock, sizeof(intel_clock_t));
756         return true;
757 }
758
759 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
760 static bool
761 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
762                       int target, int refclk, intel_clock_t *match_clock,
763                       intel_clock_t *best_clock)
764 {
765         intel_clock_t clock;
766         if (target < 200000) {
767                 clock.p1 = 2;
768                 clock.p2 = 10;
769                 clock.n = 2;
770                 clock.m1 = 23;
771                 clock.m2 = 8;
772         } else {
773                 clock.p1 = 1;
774                 clock.p2 = 10;
775                 clock.n = 1;
776                 clock.m1 = 14;
777                 clock.m2 = 2;
778         }
779         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
780         clock.p = (clock.p1 * clock.p2);
781         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
782         clock.vco = 0;
783         memcpy(best_clock, &clock, sizeof(intel_clock_t));
784         return true;
785 }
786
787 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
788 {
789         struct drm_i915_private *dev_priv = dev->dev_private;
790         u32 frame, frame_reg = PIPEFRAME(pipe);
791
792         frame = I915_READ(frame_reg);
793
794         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
795                 DRM_DEBUG_KMS("vblank wait timed out\n");
796 }
797
798 /**
799  * intel_wait_for_vblank - wait for vblank on a given pipe
800  * @dev: drm device
801  * @pipe: pipe to wait for
802  *
803  * Wait for vblank to occur on a given pipe.  Needed for various bits of
804  * mode setting code.
805  */
806 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
807 {
808         struct drm_i915_private *dev_priv = dev->dev_private;
809         int pipestat_reg = PIPESTAT(pipe);
810
811         if (INTEL_INFO(dev)->gen >= 5) {
812                 ironlake_wait_for_vblank(dev, pipe);
813                 return;
814         }
815
816         /* Clear existing vblank status. Note this will clear any other
817          * sticky status fields as well.
818          *
819          * This races with i915_driver_irq_handler() with the result
820          * that either function could miss a vblank event.  Here it is not
821          * fatal, as we will either wait upon the next vblank interrupt or
822          * timeout.  Generally speaking intel_wait_for_vblank() is only
823          * called during modeset at which time the GPU should be idle and
824          * should *not* be performing page flips and thus not waiting on
825          * vblanks...
826          * Currently, the result of us stealing a vblank from the irq
827          * handler is that a single frame will be skipped during swapbuffers.
828          */
829         I915_WRITE(pipestat_reg,
830                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
831
832         /* Wait for vblank interrupt bit to set */
833         if (wait_for(I915_READ(pipestat_reg) &
834                      PIPE_VBLANK_INTERRUPT_STATUS,
835                      50))
836                 DRM_DEBUG_KMS("vblank wait timed out\n");
837 }
838
839 /*
840  * intel_wait_for_pipe_off - wait for pipe to turn off
841  * @dev: drm device
842  * @pipe: pipe to wait for
843  *
844  * After disabling a pipe, we can't wait for vblank in the usual way,
845  * spinning on the vblank interrupt status bit, since we won't actually
846  * see an interrupt when the pipe is disabled.
847  *
848  * On Gen4 and above:
849  *   wait for the pipe register state bit to turn off
850  *
851  * Otherwise:
852  *   wait for the display line value to settle (it usually
853  *   ends up stopping at the start of the next frame).
854  *
855  */
856 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
857 {
858         struct drm_i915_private *dev_priv = dev->dev_private;
859
860         if (INTEL_INFO(dev)->gen >= 4) {
861                 int reg = PIPECONF(pipe);
862
863                 /* Wait for the Pipe State to go off */
864                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
865                              100))
866                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
867         } else {
868                 u32 last_line, line_mask;
869                 int reg = PIPEDSL(pipe);
870                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
871
872                 if (IS_GEN2(dev))
873                         line_mask = DSL_LINEMASK_GEN2;
874                 else
875                         line_mask = DSL_LINEMASK_GEN3;
876
877                 /* Wait for the display line to settle */
878                 do {
879                         last_line = I915_READ(reg) & line_mask;
880                         mdelay(5);
881                 } while (((I915_READ(reg) & line_mask) != last_line) &&
882                          time_after(timeout, jiffies));
883                 if (time_after(jiffies, timeout))
884                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
885         }
886 }
887
888 static const char *state_string(bool enabled)
889 {
890         return enabled ? "on" : "off";
891 }
892
893 /* Only for pre-ILK configs */
894 static void assert_pll(struct drm_i915_private *dev_priv,
895                        enum pipe pipe, bool state)
896 {
897         int reg;
898         u32 val;
899         bool cur_state;
900
901         reg = DPLL(pipe);
902         val = I915_READ(reg);
903         cur_state = !!(val & DPLL_VCO_ENABLE);
904         WARN(cur_state != state,
905              "PLL state assertion failure (expected %s, current %s)\n",
906              state_string(state), state_string(cur_state));
907 }
908 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
909 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
910
911 /* For ILK+ */
912 static void assert_pch_pll(struct drm_i915_private *dev_priv,
913                            struct intel_crtc *intel_crtc, bool state)
914 {
915         int reg;
916         u32 val;
917         bool cur_state;
918
919         if (!intel_crtc->pch_pll) {
920                 WARN(1, "asserting PCH PLL enabled with no PLL\n");
921                 return;
922         }
923
924         if (HAS_PCH_CPT(dev_priv->dev)) {
925                 u32 pch_dpll;
926
927                 pch_dpll = I915_READ(PCH_DPLL_SEL);
928
929                 /* Make sure the selected PLL is enabled to the transcoder */
930                 WARN(!((pch_dpll >> (4 * intel_crtc->pipe)) & 8),
931                      "transcoder %d PLL not enabled\n", intel_crtc->pipe);
932         }
933
934         reg = intel_crtc->pch_pll->pll_reg;
935         val = I915_READ(reg);
936         cur_state = !!(val & DPLL_VCO_ENABLE);
937         WARN(cur_state != state,
938              "PCH PLL state assertion failure (expected %s, current %s)\n",
939              state_string(state), state_string(cur_state));
940 }
941 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
942 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
943
944 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
945                           enum pipe pipe, bool state)
946 {
947         int reg;
948         u32 val;
949         bool cur_state;
950
951         reg = FDI_TX_CTL(pipe);
952         val = I915_READ(reg);
953         cur_state = !!(val & FDI_TX_ENABLE);
954         WARN(cur_state != state,
955              "FDI TX state assertion failure (expected %s, current %s)\n",
956              state_string(state), state_string(cur_state));
957 }
958 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
959 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
960
961 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
962                           enum pipe pipe, bool state)
963 {
964         int reg;
965         u32 val;
966         bool cur_state;
967
968         reg = FDI_RX_CTL(pipe);
969         val = I915_READ(reg);
970         cur_state = !!(val & FDI_RX_ENABLE);
971         WARN(cur_state != state,
972              "FDI RX state assertion failure (expected %s, current %s)\n",
973              state_string(state), state_string(cur_state));
974 }
975 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
976 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
977
978 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
979                                       enum pipe pipe)
980 {
981         int reg;
982         u32 val;
983
984         /* ILK FDI PLL is always enabled */
985         if (dev_priv->info->gen == 5)
986                 return;
987
988         reg = FDI_TX_CTL(pipe);
989         val = I915_READ(reg);
990         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
991 }
992
993 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
994                                       enum pipe pipe)
995 {
996         int reg;
997         u32 val;
998
999         reg = FDI_RX_CTL(pipe);
1000         val = I915_READ(reg);
1001         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1002 }
1003
1004 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1005                                   enum pipe pipe)
1006 {
1007         int pp_reg, lvds_reg;
1008         u32 val;
1009         enum pipe panel_pipe = PIPE_A;
1010         bool locked = true;
1011
1012         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1013                 pp_reg = PCH_PP_CONTROL;
1014                 lvds_reg = PCH_LVDS;
1015         } else {
1016                 pp_reg = PP_CONTROL;
1017                 lvds_reg = LVDS;
1018         }
1019
1020         val = I915_READ(pp_reg);
1021         if (!(val & PANEL_POWER_ON) ||
1022             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1023                 locked = false;
1024
1025         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1026                 panel_pipe = PIPE_B;
1027
1028         WARN(panel_pipe == pipe && locked,
1029              "panel assertion failure, pipe %c regs locked\n",
1030              pipe_name(pipe));
1031 }
1032
1033 void assert_pipe(struct drm_i915_private *dev_priv,
1034                  enum pipe pipe, bool state)
1035 {
1036         int reg;
1037         u32 val;
1038         bool cur_state;
1039
1040         /* if we need the pipe A quirk it must be always on */
1041         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1042                 state = true;
1043
1044         reg = PIPECONF(pipe);
1045         val = I915_READ(reg);
1046         cur_state = !!(val & PIPECONF_ENABLE);
1047         WARN(cur_state != state,
1048              "pipe %c assertion failure (expected %s, current %s)\n",
1049              pipe_name(pipe), state_string(state), state_string(cur_state));
1050 }
1051
1052 static void assert_plane(struct drm_i915_private *dev_priv,
1053                          enum plane plane, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DSPCNTR(plane);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1062         WARN(cur_state != state,
1063              "plane %c assertion failure (expected %s, current %s)\n",
1064              plane_name(plane), state_string(state), state_string(cur_state));
1065 }
1066
1067 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1068 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1069
1070 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1071                                    enum pipe pipe)
1072 {
1073         int reg, i;
1074         u32 val;
1075         int cur_pipe;
1076
1077         /* Planes are fixed to pipes on ILK+ */
1078         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1079                 reg = DSPCNTR(pipe);
1080                 val = I915_READ(reg);
1081                 WARN((val & DISPLAY_PLANE_ENABLE),
1082                      "plane %c assertion failure, should be disabled but not\n",
1083                      plane_name(pipe));
1084                 return;
1085         }
1086
1087         /* Need to check both planes against the pipe */
1088         for (i = 0; i < 2; i++) {
1089                 reg = DSPCNTR(i);
1090                 val = I915_READ(reg);
1091                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1092                         DISPPLANE_SEL_PIPE_SHIFT;
1093                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1094                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1095                      plane_name(i), pipe_name(pipe));
1096         }
1097 }
1098
1099 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1100 {
1101         u32 val;
1102         bool enabled;
1103
1104         val = I915_READ(PCH_DREF_CONTROL);
1105         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1106                             DREF_SUPERSPREAD_SOURCE_MASK));
1107         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1108 }
1109
1110 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1111                                        enum pipe pipe)
1112 {
1113         int reg;
1114         u32 val;
1115         bool enabled;
1116
1117         reg = TRANSCONF(pipe);
1118         val = I915_READ(reg);
1119         enabled = !!(val & TRANS_ENABLE);
1120         WARN(enabled,
1121              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1122              pipe_name(pipe));
1123 }
1124
1125 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1126                             enum pipe pipe, u32 port_sel, u32 val)
1127 {
1128         if ((val & DP_PORT_EN) == 0)
1129                 return false;
1130
1131         if (HAS_PCH_CPT(dev_priv->dev)) {
1132                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1133                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1134                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1135                         return false;
1136         } else {
1137                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1138                         return false;
1139         }
1140         return true;
1141 }
1142
1143 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1144                               enum pipe pipe, u32 val)
1145 {
1146         if ((val & PORT_ENABLE) == 0)
1147                 return false;
1148
1149         if (HAS_PCH_CPT(dev_priv->dev)) {
1150                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1151                         return false;
1152         } else {
1153                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1154                         return false;
1155         }
1156         return true;
1157 }
1158
1159 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1160                               enum pipe pipe, u32 val)
1161 {
1162         if ((val & LVDS_PORT_EN) == 0)
1163                 return false;
1164
1165         if (HAS_PCH_CPT(dev_priv->dev)) {
1166                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1167                         return false;
1168         } else {
1169                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1170                         return false;
1171         }
1172         return true;
1173 }
1174
1175 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1176                               enum pipe pipe, u32 val)
1177 {
1178         if ((val & ADPA_DAC_ENABLE) == 0)
1179                 return false;
1180         if (HAS_PCH_CPT(dev_priv->dev)) {
1181                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1182                         return false;
1183         } else {
1184                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1185                         return false;
1186         }
1187         return true;
1188 }
1189
1190 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1191                                    enum pipe pipe, int reg, u32 port_sel)
1192 {
1193         u32 val = I915_READ(reg);
1194         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1195              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1196              reg, pipe_name(pipe));
1197 }
1198
1199 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1200                                      enum pipe pipe, int reg)
1201 {
1202         u32 val = I915_READ(reg);
1203         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1204              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1205              reg, pipe_name(pipe));
1206 }
1207
1208 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1209                                       enum pipe pipe)
1210 {
1211         int reg;
1212         u32 val;
1213
1214         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1215         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1216         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1217
1218         reg = PCH_ADPA;
1219         val = I915_READ(reg);
1220         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1221              "PCH VGA enabled on transcoder %c, should be disabled\n",
1222              pipe_name(pipe));
1223
1224         reg = PCH_LVDS;
1225         val = I915_READ(reg);
1226         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1227              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1228              pipe_name(pipe));
1229
1230         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1231         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1232         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1233 }
1234
1235 /**
1236  * intel_enable_pll - enable a PLL
1237  * @dev_priv: i915 private structure
1238  * @pipe: pipe PLL to enable
1239  *
1240  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1241  * make sure the PLL reg is writable first though, since the panel write
1242  * protect mechanism may be enabled.
1243  *
1244  * Note!  This is for pre-ILK only.
1245  */
1246 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1247 {
1248         int reg;
1249         u32 val;
1250
1251         /* No really, not for ILK+ */
1252         BUG_ON(dev_priv->info->gen >= 5);
1253
1254         /* PLL is protected by panel, make sure we can write it */
1255         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1256                 assert_panel_unlocked(dev_priv, pipe);
1257
1258         reg = DPLL(pipe);
1259         val = I915_READ(reg);
1260         val |= DPLL_VCO_ENABLE;
1261
1262         /* We do this three times for luck */
1263         I915_WRITE(reg, val);
1264         POSTING_READ(reg);
1265         udelay(150); /* wait for warmup */
1266         I915_WRITE(reg, val);
1267         POSTING_READ(reg);
1268         udelay(150); /* wait for warmup */
1269         I915_WRITE(reg, val);
1270         POSTING_READ(reg);
1271         udelay(150); /* wait for warmup */
1272 }
1273
1274 /**
1275  * intel_disable_pll - disable a PLL
1276  * @dev_priv: i915 private structure
1277  * @pipe: pipe PLL to disable
1278  *
1279  * Disable the PLL for @pipe, making sure the pipe is off first.
1280  *
1281  * Note!  This is for pre-ILK only.
1282  */
1283 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1284 {
1285         int reg;
1286         u32 val;
1287
1288         /* Don't disable pipe A or pipe A PLLs if needed */
1289         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1290                 return;
1291
1292         /* Make sure the pipe isn't still relying on us */
1293         assert_pipe_disabled(dev_priv, pipe);
1294
1295         reg = DPLL(pipe);
1296         val = I915_READ(reg);
1297         val &= ~DPLL_VCO_ENABLE;
1298         I915_WRITE(reg, val);
1299         POSTING_READ(reg);
1300 }
1301
1302 /* SBI access */
1303 static void
1304 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1305 {
1306         unsigned long flags;
1307
1308         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1309         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_READY) == 0,
1310                                 100)) {
1311                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1312                 goto out_unlock;
1313         }
1314
1315         I915_WRITE(SBI_ADDR,
1316                         (reg << 16));
1317         I915_WRITE(SBI_DATA,
1318                         value);
1319         I915_WRITE(SBI_CTL_STAT,
1320                         SBI_BUSY |
1321                         SBI_CTL_OP_CRWR);
1322
1323         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_READY | SBI_RESPONSE_SUCCESS)) == 0,
1324                                 100)) {
1325                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1326                 goto out_unlock;
1327         }
1328
1329 out_unlock:
1330         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1331 }
1332
1333 static u32
1334 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1335 {
1336         unsigned long flags;
1337         u32 value;
1338
1339         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1340         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_READY) == 0,
1341                                 100)) {
1342                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1343                 goto out_unlock;
1344         }
1345
1346         I915_WRITE(SBI_ADDR,
1347                         (reg << 16));
1348         I915_WRITE(SBI_CTL_STAT,
1349                         SBI_BUSY |
1350                         SBI_CTL_OP_CRRD);
1351
1352         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_READY | SBI_RESPONSE_SUCCESS)) == 0,
1353                                 100)) {
1354                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1355                 goto out_unlock;
1356         }
1357
1358         value = I915_READ(SBI_DATA);
1359
1360 out_unlock:
1361         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1362         return value;
1363 }
1364
1365 /**
1366  * intel_enable_pch_pll - enable PCH PLL
1367  * @dev_priv: i915 private structure
1368  * @pipe: pipe PLL to enable
1369  *
1370  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1371  * drives the transcoder clock.
1372  */
1373 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1374 {
1375         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1376         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1377         int reg;
1378         u32 val;
1379
1380         /* PCH only available on ILK+ */
1381         BUG_ON(dev_priv->info->gen < 5);
1382         BUG_ON(pll == NULL);
1383         BUG_ON(pll->refcount == 0);
1384
1385         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1386                       pll->pll_reg, pll->active, pll->on,
1387                       intel_crtc->base.base.id);
1388
1389         /* PCH refclock must be enabled first */
1390         assert_pch_refclk_enabled(dev_priv);
1391
1392         if (pll->active++ && pll->on) {
1393                 assert_pch_pll_enabled(dev_priv, intel_crtc);
1394                 return;
1395         }
1396
1397         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1398
1399         reg = pll->pll_reg;
1400         val = I915_READ(reg);
1401         val |= DPLL_VCO_ENABLE;
1402         I915_WRITE(reg, val);
1403         POSTING_READ(reg);
1404         udelay(200);
1405
1406         pll->on = true;
1407 }
1408
1409 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1410 {
1411         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1412         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1413         int reg;
1414         u32 val;
1415
1416         /* PCH only available on ILK+ */
1417         BUG_ON(dev_priv->info->gen < 5);
1418         if (pll == NULL)
1419                return;
1420
1421         BUG_ON(pll->refcount == 0);
1422
1423         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1424                       pll->pll_reg, pll->active, pll->on,
1425                       intel_crtc->base.base.id);
1426
1427         BUG_ON(pll->active == 0);
1428         if (--pll->active) {
1429                 assert_pch_pll_enabled(dev_priv, intel_crtc);
1430                 return;
1431         }
1432
1433         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1434
1435         /* Make sure transcoder isn't still depending on us */
1436         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1437
1438         reg = pll->pll_reg;
1439         val = I915_READ(reg);
1440         val &= ~DPLL_VCO_ENABLE;
1441         I915_WRITE(reg, val);
1442         POSTING_READ(reg);
1443         udelay(200);
1444
1445         pll->on = false;
1446 }
1447
1448 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1449                                     enum pipe pipe)
1450 {
1451         int reg;
1452         u32 val, pipeconf_val;
1453         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1454
1455         /* PCH only available on ILK+ */
1456         BUG_ON(dev_priv->info->gen < 5);
1457
1458         /* Make sure PCH DPLL is enabled */
1459         assert_pch_pll_enabled(dev_priv, to_intel_crtc(crtc));
1460
1461         /* FDI must be feeding us bits for PCH ports */
1462         assert_fdi_tx_enabled(dev_priv, pipe);
1463         assert_fdi_rx_enabled(dev_priv, pipe);
1464
1465         reg = TRANSCONF(pipe);
1466         val = I915_READ(reg);
1467         pipeconf_val = I915_READ(PIPECONF(pipe));
1468
1469         if (HAS_PCH_IBX(dev_priv->dev)) {
1470                 /*
1471                  * make the BPC in transcoder be consistent with
1472                  * that in pipeconf reg.
1473                  */
1474                 val &= ~PIPE_BPC_MASK;
1475                 val |= pipeconf_val & PIPE_BPC_MASK;
1476         }
1477
1478         val &= ~TRANS_INTERLACE_MASK;
1479         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1480                 if (HAS_PCH_IBX(dev_priv->dev) &&
1481                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1482                         val |= TRANS_LEGACY_INTERLACED_ILK;
1483                 else
1484                         val |= TRANS_INTERLACED;
1485         else
1486                 val |= TRANS_PROGRESSIVE;
1487
1488         I915_WRITE(reg, val | TRANS_ENABLE);
1489         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1490                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1491 }
1492
1493 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1494                                      enum pipe pipe)
1495 {
1496         int reg;
1497         u32 val;
1498
1499         /* FDI relies on the transcoder */
1500         assert_fdi_tx_disabled(dev_priv, pipe);
1501         assert_fdi_rx_disabled(dev_priv, pipe);
1502
1503         /* Ports must be off as well */
1504         assert_pch_ports_disabled(dev_priv, pipe);
1505
1506         reg = TRANSCONF(pipe);
1507         val = I915_READ(reg);
1508         val &= ~TRANS_ENABLE;
1509         I915_WRITE(reg, val);
1510         /* wait for PCH transcoder off, transcoder state */
1511         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1512                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1513 }
1514
1515 /**
1516  * intel_enable_pipe - enable a pipe, asserting requirements
1517  * @dev_priv: i915 private structure
1518  * @pipe: pipe to enable
1519  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1520  *
1521  * Enable @pipe, making sure that various hardware specific requirements
1522  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1523  *
1524  * @pipe should be %PIPE_A or %PIPE_B.
1525  *
1526  * Will wait until the pipe is actually running (i.e. first vblank) before
1527  * returning.
1528  */
1529 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1530                               bool pch_port)
1531 {
1532         int reg;
1533         u32 val;
1534
1535         /*
1536          * A pipe without a PLL won't actually be able to drive bits from
1537          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1538          * need the check.
1539          */
1540         if (!HAS_PCH_SPLIT(dev_priv->dev))
1541                 assert_pll_enabled(dev_priv, pipe);
1542         else {
1543                 if (pch_port) {
1544                         /* if driving the PCH, we need FDI enabled */
1545                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1546                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1547                 }
1548                 /* FIXME: assert CPU port conditions for SNB+ */
1549         }
1550
1551         reg = PIPECONF(pipe);
1552         val = I915_READ(reg);
1553         if (val & PIPECONF_ENABLE)
1554                 return;
1555
1556         I915_WRITE(reg, val | PIPECONF_ENABLE);
1557         intel_wait_for_vblank(dev_priv->dev, pipe);
1558 }
1559
1560 /**
1561  * intel_disable_pipe - disable a pipe, asserting requirements
1562  * @dev_priv: i915 private structure
1563  * @pipe: pipe to disable
1564  *
1565  * Disable @pipe, making sure that various hardware specific requirements
1566  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1567  *
1568  * @pipe should be %PIPE_A or %PIPE_B.
1569  *
1570  * Will wait until the pipe has shut down before returning.
1571  */
1572 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1573                                enum pipe pipe)
1574 {
1575         int reg;
1576         u32 val;
1577
1578         /*
1579          * Make sure planes won't keep trying to pump pixels to us,
1580          * or we might hang the display.
1581          */
1582         assert_planes_disabled(dev_priv, pipe);
1583
1584         /* Don't disable pipe A or pipe A PLLs if needed */
1585         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1586                 return;
1587
1588         reg = PIPECONF(pipe);
1589         val = I915_READ(reg);
1590         if ((val & PIPECONF_ENABLE) == 0)
1591                 return;
1592
1593         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1594         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1595 }
1596
1597 /*
1598  * Plane regs are double buffered, going from enabled->disabled needs a
1599  * trigger in order to latch.  The display address reg provides this.
1600  */
1601 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1602                                       enum plane plane)
1603 {
1604         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1605         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1606 }
1607
1608 /**
1609  * intel_enable_plane - enable a display plane on a given pipe
1610  * @dev_priv: i915 private structure
1611  * @plane: plane to enable
1612  * @pipe: pipe being fed
1613  *
1614  * Enable @plane on @pipe, making sure that @pipe is running first.
1615  */
1616 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1617                                enum plane plane, enum pipe pipe)
1618 {
1619         int reg;
1620         u32 val;
1621
1622         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1623         assert_pipe_enabled(dev_priv, pipe);
1624
1625         reg = DSPCNTR(plane);
1626         val = I915_READ(reg);
1627         if (val & DISPLAY_PLANE_ENABLE)
1628                 return;
1629
1630         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1631         intel_flush_display_plane(dev_priv, plane);
1632         intel_wait_for_vblank(dev_priv->dev, pipe);
1633 }
1634
1635 /**
1636  * intel_disable_plane - disable a display plane
1637  * @dev_priv: i915 private structure
1638  * @plane: plane to disable
1639  * @pipe: pipe consuming the data
1640  *
1641  * Disable @plane; should be an independent operation.
1642  */
1643 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1644                                 enum plane plane, enum pipe pipe)
1645 {
1646         int reg;
1647         u32 val;
1648
1649         reg = DSPCNTR(plane);
1650         val = I915_READ(reg);
1651         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1652                 return;
1653
1654         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1655         intel_flush_display_plane(dev_priv, plane);
1656         intel_wait_for_vblank(dev_priv->dev, pipe);
1657 }
1658
1659 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1660                            enum pipe pipe, int reg, u32 port_sel)
1661 {
1662         u32 val = I915_READ(reg);
1663         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1664                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1665                 I915_WRITE(reg, val & ~DP_PORT_EN);
1666         }
1667 }
1668
1669 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1670                              enum pipe pipe, int reg)
1671 {
1672         u32 val = I915_READ(reg);
1673         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1674                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1675                               reg, pipe);
1676                 I915_WRITE(reg, val & ~PORT_ENABLE);
1677         }
1678 }
1679
1680 /* Disable any ports connected to this transcoder */
1681 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1682                                     enum pipe pipe)
1683 {
1684         u32 reg, val;
1685
1686         val = I915_READ(PCH_PP_CONTROL);
1687         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1688
1689         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1690         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1691         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1692
1693         reg = PCH_ADPA;
1694         val = I915_READ(reg);
1695         if (adpa_pipe_enabled(dev_priv, val, pipe))
1696                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1697
1698         reg = PCH_LVDS;
1699         val = I915_READ(reg);
1700         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1701                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1702                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1703                 POSTING_READ(reg);
1704                 udelay(100);
1705         }
1706
1707         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1708         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1709         disable_pch_hdmi(dev_priv, pipe, HDMID);
1710 }
1711
1712 int
1713 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1714                            struct drm_i915_gem_object *obj,
1715                            struct intel_ring_buffer *pipelined)
1716 {
1717         struct drm_i915_private *dev_priv = dev->dev_private;
1718         u32 alignment;
1719         int ret;
1720
1721         switch (obj->tiling_mode) {
1722         case I915_TILING_NONE:
1723                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1724                         alignment = 128 * 1024;
1725                 else if (INTEL_INFO(dev)->gen >= 4)
1726                         alignment = 4 * 1024;
1727                 else
1728                         alignment = 64 * 1024;
1729                 break;
1730         case I915_TILING_X:
1731                 /* pin() will align the object as required by fence */
1732                 alignment = 0;
1733                 break;
1734         case I915_TILING_Y:
1735                 /* FIXME: Is this true? */
1736                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1737                 return -EINVAL;
1738         default:
1739                 BUG();
1740         }
1741
1742         dev_priv->mm.interruptible = false;
1743         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1744         if (ret)
1745                 goto err_interruptible;
1746
1747         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1748          * fence, whereas 965+ only requires a fence if using
1749          * framebuffer compression.  For simplicity, we always install
1750          * a fence as the cost is not that onerous.
1751          */
1752         ret = i915_gem_object_get_fence(obj);
1753         if (ret)
1754                 goto err_unpin;
1755
1756         i915_gem_object_pin_fence(obj);
1757
1758         dev_priv->mm.interruptible = true;
1759         return 0;
1760
1761 err_unpin:
1762         i915_gem_object_unpin(obj);
1763 err_interruptible:
1764         dev_priv->mm.interruptible = true;
1765         return ret;
1766 }
1767
1768 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1769 {
1770         i915_gem_object_unpin_fence(obj);
1771         i915_gem_object_unpin(obj);
1772 }
1773
1774 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1775                              int x, int y)
1776 {
1777         struct drm_device *dev = crtc->dev;
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1780         struct intel_framebuffer *intel_fb;
1781         struct drm_i915_gem_object *obj;
1782         int plane = intel_crtc->plane;
1783         unsigned long Start, Offset;
1784         u32 dspcntr;
1785         u32 reg;
1786
1787         switch (plane) {
1788         case 0:
1789         case 1:
1790                 break;
1791         default:
1792                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1793                 return -EINVAL;
1794         }
1795
1796         intel_fb = to_intel_framebuffer(fb);
1797         obj = intel_fb->obj;
1798
1799         reg = DSPCNTR(plane);
1800         dspcntr = I915_READ(reg);
1801         /* Mask out pixel format bits in case we change it */
1802         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1803         switch (fb->bits_per_pixel) {
1804         case 8:
1805                 dspcntr |= DISPPLANE_8BPP;
1806                 break;
1807         case 16:
1808                 if (fb->depth == 15)
1809                         dspcntr |= DISPPLANE_15_16BPP;
1810                 else
1811                         dspcntr |= DISPPLANE_16BPP;
1812                 break;
1813         case 24:
1814         case 32:
1815                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1816                 break;
1817         default:
1818                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1819                 return -EINVAL;
1820         }
1821         if (INTEL_INFO(dev)->gen >= 4) {
1822                 if (obj->tiling_mode != I915_TILING_NONE)
1823                         dspcntr |= DISPPLANE_TILED;
1824                 else
1825                         dspcntr &= ~DISPPLANE_TILED;
1826         }
1827
1828         I915_WRITE(reg, dspcntr);
1829
1830         Start = obj->gtt_offset;
1831         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1832
1833         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1834                       Start, Offset, x, y, fb->pitches[0]);
1835         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1836         if (INTEL_INFO(dev)->gen >= 4) {
1837                 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1838                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1839                 I915_WRITE(DSPADDR(plane), Offset);
1840         } else
1841                 I915_WRITE(DSPADDR(plane), Start + Offset);
1842         POSTING_READ(reg);
1843
1844         return 0;
1845 }
1846
1847 static int ironlake_update_plane(struct drm_crtc *crtc,
1848                                  struct drm_framebuffer *fb, int x, int y)
1849 {
1850         struct drm_device *dev = crtc->dev;
1851         struct drm_i915_private *dev_priv = dev->dev_private;
1852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1853         struct intel_framebuffer *intel_fb;
1854         struct drm_i915_gem_object *obj;
1855         int plane = intel_crtc->plane;
1856         unsigned long Start, Offset;
1857         u32 dspcntr;
1858         u32 reg;
1859
1860         switch (plane) {
1861         case 0:
1862         case 1:
1863         case 2:
1864                 break;
1865         default:
1866                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1867                 return -EINVAL;
1868         }
1869
1870         intel_fb = to_intel_framebuffer(fb);
1871         obj = intel_fb->obj;
1872
1873         reg = DSPCNTR(plane);
1874         dspcntr = I915_READ(reg);
1875         /* Mask out pixel format bits in case we change it */
1876         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1877         switch (fb->bits_per_pixel) {
1878         case 8:
1879                 dspcntr |= DISPPLANE_8BPP;
1880                 break;
1881         case 16:
1882                 if (fb->depth != 16)
1883                         return -EINVAL;
1884
1885                 dspcntr |= DISPPLANE_16BPP;
1886                 break;
1887         case 24:
1888         case 32:
1889                 if (fb->depth == 24)
1890                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1891                 else if (fb->depth == 30)
1892                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1893                 else
1894                         return -EINVAL;
1895                 break;
1896         default:
1897                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1898                 return -EINVAL;
1899         }
1900
1901         if (obj->tiling_mode != I915_TILING_NONE)
1902                 dspcntr |= DISPPLANE_TILED;
1903         else
1904                 dspcntr &= ~DISPPLANE_TILED;
1905
1906         /* must disable */
1907         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1908
1909         I915_WRITE(reg, dspcntr);
1910
1911         Start = obj->gtt_offset;
1912         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1913
1914         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1915                       Start, Offset, x, y, fb->pitches[0]);
1916         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1917         I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1918         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1919         I915_WRITE(DSPADDR(plane), Offset);
1920         POSTING_READ(reg);
1921
1922         return 0;
1923 }
1924
1925 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1926 static int
1927 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1928                            int x, int y, enum mode_set_atomic state)
1929 {
1930         struct drm_device *dev = crtc->dev;
1931         struct drm_i915_private *dev_priv = dev->dev_private;
1932
1933         if (dev_priv->display.disable_fbc)
1934                 dev_priv->display.disable_fbc(dev);
1935         intel_increase_pllclock(crtc);
1936
1937         return dev_priv->display.update_plane(crtc, fb, x, y);
1938 }
1939
1940 static int
1941 intel_finish_fb(struct drm_framebuffer *old_fb)
1942 {
1943         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1944         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1945         bool was_interruptible = dev_priv->mm.interruptible;
1946         int ret;
1947
1948         wait_event(dev_priv->pending_flip_queue,
1949                    atomic_read(&dev_priv->mm.wedged) ||
1950                    atomic_read(&obj->pending_flip) == 0);
1951
1952         /* Big Hammer, we also need to ensure that any pending
1953          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1954          * current scanout is retired before unpinning the old
1955          * framebuffer.
1956          *
1957          * This should only fail upon a hung GPU, in which case we
1958          * can safely continue.
1959          */
1960         dev_priv->mm.interruptible = false;
1961         ret = i915_gem_object_finish_gpu(obj);
1962         dev_priv->mm.interruptible = was_interruptible;
1963
1964         return ret;
1965 }
1966
1967 static int
1968 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1969                     struct drm_framebuffer *old_fb)
1970 {
1971         struct drm_device *dev = crtc->dev;
1972         struct drm_i915_private *dev_priv = dev->dev_private;
1973         struct drm_i915_master_private *master_priv;
1974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1975         int ret;
1976
1977         /* no fb bound */
1978         if (!crtc->fb) {
1979                 DRM_ERROR("No FB bound\n");
1980                 return 0;
1981         }
1982
1983         if(intel_crtc->plane > dev_priv->num_pipe) {
1984                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
1985                                 intel_crtc->plane,
1986                                 dev_priv->num_pipe);
1987                 return -EINVAL;
1988         }
1989
1990         mutex_lock(&dev->struct_mutex);
1991         ret = intel_pin_and_fence_fb_obj(dev,
1992                                          to_intel_framebuffer(crtc->fb)->obj,
1993                                          NULL);
1994         if (ret != 0) {
1995                 mutex_unlock(&dev->struct_mutex);
1996                 DRM_ERROR("pin & fence failed\n");
1997                 return ret;
1998         }
1999
2000         if (old_fb)
2001                 intel_finish_fb(old_fb);
2002
2003         ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2004         if (ret) {
2005                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2006                 mutex_unlock(&dev->struct_mutex);
2007                 DRM_ERROR("failed to update base address\n");
2008                 return ret;
2009         }
2010
2011         if (old_fb) {
2012                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2013                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2014         }
2015
2016         intel_update_fbc(dev);
2017         mutex_unlock(&dev->struct_mutex);
2018
2019         if (!dev->primary->master)
2020                 return 0;
2021
2022         master_priv = dev->primary->master->driver_priv;
2023         if (!master_priv->sarea_priv)
2024                 return 0;
2025
2026         if (intel_crtc->pipe) {
2027                 master_priv->sarea_priv->pipeB_x = x;
2028                 master_priv->sarea_priv->pipeB_y = y;
2029         } else {
2030                 master_priv->sarea_priv->pipeA_x = x;
2031                 master_priv->sarea_priv->pipeA_y = y;
2032         }
2033
2034         return 0;
2035 }
2036
2037 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2038 {
2039         struct drm_device *dev = crtc->dev;
2040         struct drm_i915_private *dev_priv = dev->dev_private;
2041         u32 dpa_ctl;
2042
2043         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2044         dpa_ctl = I915_READ(DP_A);
2045         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2046
2047         if (clock < 200000) {
2048                 u32 temp;
2049                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2050                 /* workaround for 160Mhz:
2051                    1) program 0x4600c bits 15:0 = 0x8124
2052                    2) program 0x46010 bit 0 = 1
2053                    3) program 0x46034 bit 24 = 1
2054                    4) program 0x64000 bit 14 = 1
2055                    */
2056                 temp = I915_READ(0x4600c);
2057                 temp &= 0xffff0000;
2058                 I915_WRITE(0x4600c, temp | 0x8124);
2059
2060                 temp = I915_READ(0x46010);
2061                 I915_WRITE(0x46010, temp | 1);
2062
2063                 temp = I915_READ(0x46034);
2064                 I915_WRITE(0x46034, temp | (1 << 24));
2065         } else {
2066                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2067         }
2068         I915_WRITE(DP_A, dpa_ctl);
2069
2070         POSTING_READ(DP_A);
2071         udelay(500);
2072 }
2073
2074 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2075 {
2076         struct drm_device *dev = crtc->dev;
2077         struct drm_i915_private *dev_priv = dev->dev_private;
2078         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2079         int pipe = intel_crtc->pipe;
2080         u32 reg, temp;
2081
2082         /* enable normal train */
2083         reg = FDI_TX_CTL(pipe);
2084         temp = I915_READ(reg);
2085         if (IS_IVYBRIDGE(dev)) {
2086                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2087                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2088         } else {
2089                 temp &= ~FDI_LINK_TRAIN_NONE;
2090                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2091         }
2092         I915_WRITE(reg, temp);
2093
2094         reg = FDI_RX_CTL(pipe);
2095         temp = I915_READ(reg);
2096         if (HAS_PCH_CPT(dev)) {
2097                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2098                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2099         } else {
2100                 temp &= ~FDI_LINK_TRAIN_NONE;
2101                 temp |= FDI_LINK_TRAIN_NONE;
2102         }
2103         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2104
2105         /* wait one idle pattern time */
2106         POSTING_READ(reg);
2107         udelay(1000);
2108
2109         /* IVB wants error correction enabled */
2110         if (IS_IVYBRIDGE(dev))
2111                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2112                            FDI_FE_ERRC_ENABLE);
2113 }
2114
2115 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2116 {
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118         u32 flags = I915_READ(SOUTH_CHICKEN1);
2119
2120         flags |= FDI_PHASE_SYNC_OVR(pipe);
2121         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2122         flags |= FDI_PHASE_SYNC_EN(pipe);
2123         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2124         POSTING_READ(SOUTH_CHICKEN1);
2125 }
2126
2127 /* The FDI link training functions for ILK/Ibexpeak. */
2128 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2129 {
2130         struct drm_device *dev = crtc->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133         int pipe = intel_crtc->pipe;
2134         int plane = intel_crtc->plane;
2135         u32 reg, temp, tries;
2136
2137         /* FDI needs bits from pipe & plane first */
2138         assert_pipe_enabled(dev_priv, pipe);
2139         assert_plane_enabled(dev_priv, plane);
2140
2141         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2142            for train result */
2143         reg = FDI_RX_IMR(pipe);
2144         temp = I915_READ(reg);
2145         temp &= ~FDI_RX_SYMBOL_LOCK;
2146         temp &= ~FDI_RX_BIT_LOCK;
2147         I915_WRITE(reg, temp);
2148         I915_READ(reg);
2149         udelay(150);
2150
2151         /* enable CPU FDI TX and PCH FDI RX */
2152         reg = FDI_TX_CTL(pipe);
2153         temp = I915_READ(reg);
2154         temp &= ~(7 << 19);
2155         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2156         temp &= ~FDI_LINK_TRAIN_NONE;
2157         temp |= FDI_LINK_TRAIN_PATTERN_1;
2158         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2159
2160         reg = FDI_RX_CTL(pipe);
2161         temp = I915_READ(reg);
2162         temp &= ~FDI_LINK_TRAIN_NONE;
2163         temp |= FDI_LINK_TRAIN_PATTERN_1;
2164         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2165
2166         POSTING_READ(reg);
2167         udelay(150);
2168
2169         /* Ironlake workaround, enable clock pointer after FDI enable*/
2170         if (HAS_PCH_IBX(dev)) {
2171                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2172                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2173                            FDI_RX_PHASE_SYNC_POINTER_EN);
2174         }
2175
2176         reg = FDI_RX_IIR(pipe);
2177         for (tries = 0; tries < 5; tries++) {
2178                 temp = I915_READ(reg);
2179                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2180
2181                 if ((temp & FDI_RX_BIT_LOCK)) {
2182                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2183                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2184                         break;
2185                 }
2186         }
2187         if (tries == 5)
2188                 DRM_ERROR("FDI train 1 fail!\n");
2189
2190         /* Train 2 */
2191         reg = FDI_TX_CTL(pipe);
2192         temp = I915_READ(reg);
2193         temp &= ~FDI_LINK_TRAIN_NONE;
2194         temp |= FDI_LINK_TRAIN_PATTERN_2;
2195         I915_WRITE(reg, temp);
2196
2197         reg = FDI_RX_CTL(pipe);
2198         temp = I915_READ(reg);
2199         temp &= ~FDI_LINK_TRAIN_NONE;
2200         temp |= FDI_LINK_TRAIN_PATTERN_2;
2201         I915_WRITE(reg, temp);
2202
2203         POSTING_READ(reg);
2204         udelay(150);
2205
2206         reg = FDI_RX_IIR(pipe);
2207         for (tries = 0; tries < 5; tries++) {
2208                 temp = I915_READ(reg);
2209                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2210
2211                 if (temp & FDI_RX_SYMBOL_LOCK) {
2212                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2213                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2214                         break;
2215                 }
2216         }
2217         if (tries == 5)
2218                 DRM_ERROR("FDI train 2 fail!\n");
2219
2220         DRM_DEBUG_KMS("FDI train done\n");
2221
2222 }
2223
2224 static const int snb_b_fdi_train_param[] = {
2225         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2226         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2227         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2228         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2229 };
2230
2231 /* The FDI link training functions for SNB/Cougarpoint. */
2232 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2233 {
2234         struct drm_device *dev = crtc->dev;
2235         struct drm_i915_private *dev_priv = dev->dev_private;
2236         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2237         int pipe = intel_crtc->pipe;
2238         u32 reg, temp, i, retry;
2239
2240         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2241            for train result */
2242         reg = FDI_RX_IMR(pipe);
2243         temp = I915_READ(reg);
2244         temp &= ~FDI_RX_SYMBOL_LOCK;
2245         temp &= ~FDI_RX_BIT_LOCK;
2246         I915_WRITE(reg, temp);
2247
2248         POSTING_READ(reg);
2249         udelay(150);
2250
2251         /* enable CPU FDI TX and PCH FDI RX */
2252         reg = FDI_TX_CTL(pipe);
2253         temp = I915_READ(reg);
2254         temp &= ~(7 << 19);
2255         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2256         temp &= ~FDI_LINK_TRAIN_NONE;
2257         temp |= FDI_LINK_TRAIN_PATTERN_1;
2258         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2259         /* SNB-B */
2260         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2261         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2262
2263         reg = FDI_RX_CTL(pipe);
2264         temp = I915_READ(reg);
2265         if (HAS_PCH_CPT(dev)) {
2266                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2267                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2268         } else {
2269                 temp &= ~FDI_LINK_TRAIN_NONE;
2270                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2271         }
2272         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2273
2274         POSTING_READ(reg);
2275         udelay(150);
2276
2277         if (HAS_PCH_CPT(dev))
2278                 cpt_phase_pointer_enable(dev, pipe);
2279
2280         for (i = 0; i < 4; i++) {
2281                 reg = FDI_TX_CTL(pipe);
2282                 temp = I915_READ(reg);
2283                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2284                 temp |= snb_b_fdi_train_param[i];
2285                 I915_WRITE(reg, temp);
2286
2287                 POSTING_READ(reg);
2288                 udelay(500);
2289
2290                 for (retry = 0; retry < 5; retry++) {
2291                         reg = FDI_RX_IIR(pipe);
2292                         temp = I915_READ(reg);
2293                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2294                         if (temp & FDI_RX_BIT_LOCK) {
2295                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2296                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2297                                 break;
2298                         }
2299                         udelay(50);
2300                 }
2301                 if (retry < 5)
2302                         break;
2303         }
2304         if (i == 4)
2305                 DRM_ERROR("FDI train 1 fail!\n");
2306
2307         /* Train 2 */
2308         reg = FDI_TX_CTL(pipe);
2309         temp = I915_READ(reg);
2310         temp &= ~FDI_LINK_TRAIN_NONE;
2311         temp |= FDI_LINK_TRAIN_PATTERN_2;
2312         if (IS_GEN6(dev)) {
2313                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2314                 /* SNB-B */
2315                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2316         }
2317         I915_WRITE(reg, temp);
2318
2319         reg = FDI_RX_CTL(pipe);
2320         temp = I915_READ(reg);
2321         if (HAS_PCH_CPT(dev)) {
2322                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2323                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2324         } else {
2325                 temp &= ~FDI_LINK_TRAIN_NONE;
2326                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2327         }
2328         I915_WRITE(reg, temp);
2329
2330         POSTING_READ(reg);
2331         udelay(150);
2332
2333         for (i = 0; i < 4; i++) {
2334                 reg = FDI_TX_CTL(pipe);
2335                 temp = I915_READ(reg);
2336                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2337                 temp |= snb_b_fdi_train_param[i];
2338                 I915_WRITE(reg, temp);
2339
2340                 POSTING_READ(reg);
2341                 udelay(500);
2342
2343                 for (retry = 0; retry < 5; retry++) {
2344                         reg = FDI_RX_IIR(pipe);
2345                         temp = I915_READ(reg);
2346                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2347                         if (temp & FDI_RX_SYMBOL_LOCK) {
2348                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2349                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2350                                 break;
2351                         }
2352                         udelay(50);
2353                 }
2354                 if (retry < 5)
2355                         break;
2356         }
2357         if (i == 4)
2358                 DRM_ERROR("FDI train 2 fail!\n");
2359
2360         DRM_DEBUG_KMS("FDI train done.\n");
2361 }
2362
2363 /* Manual link training for Ivy Bridge A0 parts */
2364 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2365 {
2366         struct drm_device *dev = crtc->dev;
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2369         int pipe = intel_crtc->pipe;
2370         u32 reg, temp, i;
2371
2372         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2373            for train result */
2374         reg = FDI_RX_IMR(pipe);
2375         temp = I915_READ(reg);
2376         temp &= ~FDI_RX_SYMBOL_LOCK;
2377         temp &= ~FDI_RX_BIT_LOCK;
2378         I915_WRITE(reg, temp);
2379
2380         POSTING_READ(reg);
2381         udelay(150);
2382
2383         /* enable CPU FDI TX and PCH FDI RX */
2384         reg = FDI_TX_CTL(pipe);
2385         temp = I915_READ(reg);
2386         temp &= ~(7 << 19);
2387         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2388         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2389         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2390         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2391         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2392         temp |= FDI_COMPOSITE_SYNC;
2393         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2394
2395         reg = FDI_RX_CTL(pipe);
2396         temp = I915_READ(reg);
2397         temp &= ~FDI_LINK_TRAIN_AUTO;
2398         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2399         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2400         temp |= FDI_COMPOSITE_SYNC;
2401         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2402
2403         POSTING_READ(reg);
2404         udelay(150);
2405
2406         if (HAS_PCH_CPT(dev))
2407                 cpt_phase_pointer_enable(dev, pipe);
2408
2409         for (i = 0; i < 4; i++) {
2410                 reg = FDI_TX_CTL(pipe);
2411                 temp = I915_READ(reg);
2412                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2413                 temp |= snb_b_fdi_train_param[i];
2414                 I915_WRITE(reg, temp);
2415
2416                 POSTING_READ(reg);
2417                 udelay(500);
2418
2419                 reg = FDI_RX_IIR(pipe);
2420                 temp = I915_READ(reg);
2421                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2422
2423                 if (temp & FDI_RX_BIT_LOCK ||
2424                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2425                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2426                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2427                         break;
2428                 }
2429         }
2430         if (i == 4)
2431                 DRM_ERROR("FDI train 1 fail!\n");
2432
2433         /* Train 2 */
2434         reg = FDI_TX_CTL(pipe);
2435         temp = I915_READ(reg);
2436         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2437         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2438         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2439         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2440         I915_WRITE(reg, temp);
2441
2442         reg = FDI_RX_CTL(pipe);
2443         temp = I915_READ(reg);
2444         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2445         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2446         I915_WRITE(reg, temp);
2447
2448         POSTING_READ(reg);
2449         udelay(150);
2450
2451         for (i = 0; i < 4; i++) {
2452                 reg = FDI_TX_CTL(pipe);
2453                 temp = I915_READ(reg);
2454                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2455                 temp |= snb_b_fdi_train_param[i];
2456                 I915_WRITE(reg, temp);
2457
2458                 POSTING_READ(reg);
2459                 udelay(500);
2460
2461                 reg = FDI_RX_IIR(pipe);
2462                 temp = I915_READ(reg);
2463                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2464
2465                 if (temp & FDI_RX_SYMBOL_LOCK) {
2466                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2467                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2468                         break;
2469                 }
2470         }
2471         if (i == 4)
2472                 DRM_ERROR("FDI train 2 fail!\n");
2473
2474         DRM_DEBUG_KMS("FDI train done.\n");
2475 }
2476
2477 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2478 {
2479         struct drm_device *dev = crtc->dev;
2480         struct drm_i915_private *dev_priv = dev->dev_private;
2481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2482         int pipe = intel_crtc->pipe;
2483         u32 reg, temp;
2484
2485         /* Write the TU size bits so error detection works */
2486         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2487                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2488
2489         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2490         reg = FDI_RX_CTL(pipe);
2491         temp = I915_READ(reg);
2492         temp &= ~((0x7 << 19) | (0x7 << 16));
2493         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2494         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2495         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2496
2497         POSTING_READ(reg);
2498         udelay(200);
2499
2500         /* Switch from Rawclk to PCDclk */
2501         temp = I915_READ(reg);
2502         I915_WRITE(reg, temp | FDI_PCDCLK);
2503
2504         POSTING_READ(reg);
2505         udelay(200);
2506
2507         /* Enable CPU FDI TX PLL, always on for Ironlake */
2508         reg = FDI_TX_CTL(pipe);
2509         temp = I915_READ(reg);
2510         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2511                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2512
2513                 POSTING_READ(reg);
2514                 udelay(100);
2515         }
2516 }
2517
2518 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2519 {
2520         struct drm_i915_private *dev_priv = dev->dev_private;
2521         u32 flags = I915_READ(SOUTH_CHICKEN1);
2522
2523         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2524         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2525         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2526         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2527         POSTING_READ(SOUTH_CHICKEN1);
2528 }
2529 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2530 {
2531         struct drm_device *dev = crtc->dev;
2532         struct drm_i915_private *dev_priv = dev->dev_private;
2533         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2534         int pipe = intel_crtc->pipe;
2535         u32 reg, temp;
2536
2537         /* disable CPU FDI tx and PCH FDI rx */
2538         reg = FDI_TX_CTL(pipe);
2539         temp = I915_READ(reg);
2540         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2541         POSTING_READ(reg);
2542
2543         reg = FDI_RX_CTL(pipe);
2544         temp = I915_READ(reg);
2545         temp &= ~(0x7 << 16);
2546         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2547         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2548
2549         POSTING_READ(reg);
2550         udelay(100);
2551
2552         /* Ironlake workaround, disable clock pointer after downing FDI */
2553         if (HAS_PCH_IBX(dev)) {
2554                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2555                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2556                            I915_READ(FDI_RX_CHICKEN(pipe) &
2557                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2558         } else if (HAS_PCH_CPT(dev)) {
2559                 cpt_phase_pointer_disable(dev, pipe);
2560         }
2561
2562         /* still set train pattern 1 */
2563         reg = FDI_TX_CTL(pipe);
2564         temp = I915_READ(reg);
2565         temp &= ~FDI_LINK_TRAIN_NONE;
2566         temp |= FDI_LINK_TRAIN_PATTERN_1;
2567         I915_WRITE(reg, temp);
2568
2569         reg = FDI_RX_CTL(pipe);
2570         temp = I915_READ(reg);
2571         if (HAS_PCH_CPT(dev)) {
2572                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2573                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2574         } else {
2575                 temp &= ~FDI_LINK_TRAIN_NONE;
2576                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2577         }
2578         /* BPC in FDI rx is consistent with that in PIPECONF */
2579         temp &= ~(0x07 << 16);
2580         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2581         I915_WRITE(reg, temp);
2582
2583         POSTING_READ(reg);
2584         udelay(100);
2585 }
2586
2587 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2588 {
2589         struct drm_device *dev = crtc->dev;
2590
2591         if (crtc->fb == NULL)
2592                 return;
2593
2594         mutex_lock(&dev->struct_mutex);
2595         intel_finish_fb(crtc->fb);
2596         mutex_unlock(&dev->struct_mutex);
2597 }
2598
2599 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2600 {
2601         struct drm_device *dev = crtc->dev;
2602         struct drm_mode_config *mode_config = &dev->mode_config;
2603         struct intel_encoder *encoder;
2604
2605         /*
2606          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2607          * must be driven by its own crtc; no sharing is possible.
2608          */
2609         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2610                 if (encoder->base.crtc != crtc)
2611                         continue;
2612
2613                 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2614                  * CPU handles all others */
2615                 if (IS_HASWELL(dev)) {
2616                         /* It is still unclear how this will work on PPT, so throw up a warning */
2617                         WARN_ON(!HAS_PCH_LPT(dev));
2618
2619                         if (encoder->type == DRM_MODE_ENCODER_DAC) {
2620                                 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2621                                 return true;
2622                         } else {
2623                                 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2624                                                 encoder->type);
2625                                 return false;
2626                         }
2627                 }
2628
2629                 switch (encoder->type) {
2630                 case INTEL_OUTPUT_EDP:
2631                         if (!intel_encoder_is_pch_edp(&encoder->base))
2632                                 return false;
2633                         continue;
2634                 }
2635         }
2636
2637         return true;
2638 }
2639
2640 /*
2641  * Enable PCH resources required for PCH ports:
2642  *   - PCH PLLs
2643  *   - FDI training & RX/TX
2644  *   - update transcoder timings
2645  *   - DP transcoding bits
2646  *   - transcoder
2647  */
2648 static void ironlake_pch_enable(struct drm_crtc *crtc)
2649 {
2650         struct drm_device *dev = crtc->dev;
2651         struct drm_i915_private *dev_priv = dev->dev_private;
2652         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2653         int pipe = intel_crtc->pipe;
2654         u32 reg, temp;
2655
2656         /* For PCH output, training FDI link */
2657         dev_priv->display.fdi_link_train(crtc);
2658
2659         intel_enable_pch_pll(intel_crtc);
2660
2661         if (HAS_PCH_CPT(dev)) {
2662                 u32 sel;
2663
2664                 temp = I915_READ(PCH_DPLL_SEL);
2665                 switch (pipe) {
2666                 default:
2667                 case 0:
2668                         temp |= TRANSA_DPLL_ENABLE;
2669                         sel = TRANSA_DPLLB_SEL;
2670                         break;
2671                 case 1:
2672                         temp |= TRANSB_DPLL_ENABLE;
2673                         sel = TRANSB_DPLLB_SEL;
2674                         break;
2675                 case 2:
2676                         temp |= TRANSC_DPLL_ENABLE;
2677                         sel = TRANSC_DPLLB_SEL;
2678                         break;
2679                 }
2680                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2681                         temp |= sel;
2682                 else
2683                         temp &= ~sel;
2684                 I915_WRITE(PCH_DPLL_SEL, temp);
2685         }
2686
2687         /* set transcoder timing, panel must allow it */
2688         assert_panel_unlocked(dev_priv, pipe);
2689         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2690         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2691         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2692
2693         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2694         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2695         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2696         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
2697
2698         if (!IS_HASWELL(dev))
2699                 intel_fdi_normal_train(crtc);
2700
2701         /* For PCH DP, enable TRANS_DP_CTL */
2702         if (HAS_PCH_CPT(dev) &&
2703             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2704              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2705                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2706                 reg = TRANS_DP_CTL(pipe);
2707                 temp = I915_READ(reg);
2708                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2709                           TRANS_DP_SYNC_MASK |
2710                           TRANS_DP_BPC_MASK);
2711                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2712                          TRANS_DP_ENH_FRAMING);
2713                 temp |= bpc << 9; /* same format but at 11:9 */
2714
2715                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2716                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2717                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2718                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2719
2720                 switch (intel_trans_dp_port_sel(crtc)) {
2721                 case PCH_DP_B:
2722                         temp |= TRANS_DP_PORT_SEL_B;
2723                         break;
2724                 case PCH_DP_C:
2725                         temp |= TRANS_DP_PORT_SEL_C;
2726                         break;
2727                 case PCH_DP_D:
2728                         temp |= TRANS_DP_PORT_SEL_D;
2729                         break;
2730                 default:
2731                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2732                         temp |= TRANS_DP_PORT_SEL_B;
2733                         break;
2734                 }
2735
2736                 I915_WRITE(reg, temp);
2737         }
2738
2739         intel_enable_transcoder(dev_priv, pipe);
2740 }
2741
2742 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
2743 {
2744         struct intel_pch_pll *pll = intel_crtc->pch_pll;
2745
2746         if (pll == NULL)
2747                 return;
2748
2749         if (pll->refcount == 0) {
2750                 WARN(1, "bad PCH PLL refcount\n");
2751                 return;
2752         }
2753
2754         --pll->refcount;
2755         intel_crtc->pch_pll = NULL;
2756 }
2757
2758 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
2759 {
2760         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2761         struct intel_pch_pll *pll;
2762         int i;
2763
2764         pll = intel_crtc->pch_pll;
2765         if (pll) {
2766                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
2767                               intel_crtc->base.base.id, pll->pll_reg);
2768                 goto prepare;
2769         }
2770
2771         for (i = 0; i < dev_priv->num_pch_pll; i++) {
2772                 pll = &dev_priv->pch_plls[i];
2773
2774                 /* Only want to check enabled timings first */
2775                 if (pll->refcount == 0)
2776                         continue;
2777
2778                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
2779                     fp == I915_READ(pll->fp0_reg)) {
2780                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
2781                                       intel_crtc->base.base.id,
2782                                       pll->pll_reg, pll->refcount, pll->active);
2783
2784                         goto found;
2785                 }
2786         }
2787
2788         /* Ok no matching timings, maybe there's a free one? */
2789         for (i = 0; i < dev_priv->num_pch_pll; i++) {
2790                 pll = &dev_priv->pch_plls[i];
2791                 if (pll->refcount == 0) {
2792                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
2793                                       intel_crtc->base.base.id, pll->pll_reg);
2794                         goto found;
2795                 }
2796         }
2797
2798         return NULL;
2799
2800 found:
2801         intel_crtc->pch_pll = pll;
2802         pll->refcount++;
2803         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
2804 prepare: /* separate function? */
2805         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
2806
2807         /* Wait for the clocks to stabilize before rewriting the regs */
2808         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
2809         POSTING_READ(pll->pll_reg);
2810         udelay(150);
2811
2812         I915_WRITE(pll->fp0_reg, fp);
2813         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
2814         pll->on = false;
2815         return pll;
2816 }
2817
2818 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2819 {
2820         struct drm_i915_private *dev_priv = dev->dev_private;
2821         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2822         u32 temp;
2823
2824         temp = I915_READ(dslreg);
2825         udelay(500);
2826         if (wait_for(I915_READ(dslreg) != temp, 5)) {
2827                 /* Without this, mode sets may fail silently on FDI */
2828                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2829                 udelay(250);
2830                 I915_WRITE(tc2reg, 0);
2831                 if (wait_for(I915_READ(dslreg) != temp, 5))
2832                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2833         }
2834 }
2835
2836 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2837 {
2838         struct drm_device *dev = crtc->dev;
2839         struct drm_i915_private *dev_priv = dev->dev_private;
2840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2841         int pipe = intel_crtc->pipe;
2842         int plane = intel_crtc->plane;
2843         u32 temp;
2844         bool is_pch_port;
2845
2846         if (intel_crtc->active)
2847                 return;
2848
2849         intel_crtc->active = true;
2850         intel_update_watermarks(dev);
2851
2852         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2853                 temp = I915_READ(PCH_LVDS);
2854                 if ((temp & LVDS_PORT_EN) == 0)
2855                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2856         }
2857
2858         is_pch_port = intel_crtc_driving_pch(crtc);
2859
2860         if (is_pch_port)
2861                 ironlake_fdi_pll_enable(crtc);
2862         else
2863                 ironlake_fdi_disable(crtc);
2864
2865         /* Enable panel fitting for LVDS */
2866         if (dev_priv->pch_pf_size &&
2867             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2868                 /* Force use of hard-coded filter coefficients
2869                  * as some pre-programmed values are broken,
2870                  * e.g. x201.
2871                  */
2872                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2873                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2874                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2875         }
2876
2877         /*
2878          * On ILK+ LUT must be loaded before the pipe is running but with
2879          * clocks enabled
2880          */
2881         intel_crtc_load_lut(crtc);
2882
2883         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2884         intel_enable_plane(dev_priv, plane, pipe);
2885
2886         if (is_pch_port)
2887                 ironlake_pch_enable(crtc);
2888
2889         mutex_lock(&dev->struct_mutex);
2890         intel_update_fbc(dev);
2891         mutex_unlock(&dev->struct_mutex);
2892
2893         intel_crtc_update_cursor(crtc, true);
2894 }
2895
2896 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2897 {
2898         struct drm_device *dev = crtc->dev;
2899         struct drm_i915_private *dev_priv = dev->dev_private;
2900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2901         int pipe = intel_crtc->pipe;
2902         int plane = intel_crtc->plane;
2903         u32 reg, temp;
2904
2905         if (!intel_crtc->active)
2906                 return;
2907
2908         intel_crtc_wait_for_pending_flips(crtc);
2909         drm_vblank_off(dev, pipe);
2910         intel_crtc_update_cursor(crtc, false);
2911
2912         intel_disable_plane(dev_priv, plane, pipe);
2913
2914         if (dev_priv->cfb_plane == plane)
2915                 intel_disable_fbc(dev);
2916
2917         intel_disable_pipe(dev_priv, pipe);
2918
2919         /* Disable PF */
2920         I915_WRITE(PF_CTL(pipe), 0);
2921         I915_WRITE(PF_WIN_SZ(pipe), 0);
2922
2923         ironlake_fdi_disable(crtc);
2924
2925         /* This is a horrible layering violation; we should be doing this in
2926          * the connector/encoder ->prepare instead, but we don't always have
2927          * enough information there about the config to know whether it will
2928          * actually be necessary or just cause undesired flicker.
2929          */
2930         intel_disable_pch_ports(dev_priv, pipe);
2931
2932         intel_disable_transcoder(dev_priv, pipe);
2933
2934         if (HAS_PCH_CPT(dev)) {
2935                 /* disable TRANS_DP_CTL */
2936                 reg = TRANS_DP_CTL(pipe);
2937                 temp = I915_READ(reg);
2938                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2939                 temp |= TRANS_DP_PORT_SEL_NONE;
2940                 I915_WRITE(reg, temp);
2941
2942                 /* disable DPLL_SEL */
2943                 temp = I915_READ(PCH_DPLL_SEL);
2944                 switch (pipe) {
2945                 case 0:
2946                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2947                         break;
2948                 case 1:
2949                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2950                         break;
2951                 case 2:
2952                         /* C shares PLL A or B */
2953                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2954                         break;
2955                 default:
2956                         BUG(); /* wtf */
2957                 }
2958                 I915_WRITE(PCH_DPLL_SEL, temp);
2959         }
2960
2961         /* disable PCH DPLL */
2962         intel_disable_pch_pll(intel_crtc);
2963
2964         /* Switch from PCDclk to Rawclk */
2965         reg = FDI_RX_CTL(pipe);
2966         temp = I915_READ(reg);
2967         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2968
2969         /* Disable CPU FDI TX PLL */
2970         reg = FDI_TX_CTL(pipe);
2971         temp = I915_READ(reg);
2972         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2973
2974         POSTING_READ(reg);
2975         udelay(100);
2976
2977         reg = FDI_RX_CTL(pipe);
2978         temp = I915_READ(reg);
2979         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2980
2981         /* Wait for the clocks to turn off. */
2982         POSTING_READ(reg);
2983         udelay(100);
2984
2985         intel_crtc->active = false;
2986         intel_update_watermarks(dev);
2987
2988         mutex_lock(&dev->struct_mutex);
2989         intel_update_fbc(dev);
2990         mutex_unlock(&dev->struct_mutex);
2991 }
2992
2993 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2994 {
2995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2996         int pipe = intel_crtc->pipe;
2997         int plane = intel_crtc->plane;
2998
2999         /* XXX: When our outputs are all unaware of DPMS modes other than off
3000          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3001          */
3002         switch (mode) {
3003         case DRM_MODE_DPMS_ON:
3004         case DRM_MODE_DPMS_STANDBY:
3005         case DRM_MODE_DPMS_SUSPEND:
3006                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3007                 ironlake_crtc_enable(crtc);
3008                 break;
3009
3010         case DRM_MODE_DPMS_OFF:
3011                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3012                 ironlake_crtc_disable(crtc);
3013                 break;
3014         }
3015 }
3016
3017 static void ironlake_crtc_off(struct drm_crtc *crtc)
3018 {
3019         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3020         intel_put_pch_pll(intel_crtc);
3021 }
3022
3023 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3024 {
3025         if (!enable && intel_crtc->overlay) {
3026                 struct drm_device *dev = intel_crtc->base.dev;
3027                 struct drm_i915_private *dev_priv = dev->dev_private;
3028
3029                 mutex_lock(&dev->struct_mutex);
3030                 dev_priv->mm.interruptible = false;
3031                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3032                 dev_priv->mm.interruptible = true;
3033                 mutex_unlock(&dev->struct_mutex);
3034         }
3035
3036         /* Let userspace switch the overlay on again. In most cases userspace
3037          * has to recompute where to put it anyway.
3038          */
3039 }
3040
3041 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3042 {
3043         struct drm_device *dev = crtc->dev;
3044         struct drm_i915_private *dev_priv = dev->dev_private;
3045         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3046         int pipe = intel_crtc->pipe;
3047         int plane = intel_crtc->plane;
3048
3049         if (intel_crtc->active)
3050                 return;
3051
3052         intel_crtc->active = true;
3053         intel_update_watermarks(dev);
3054
3055         intel_enable_pll(dev_priv, pipe);
3056         intel_enable_pipe(dev_priv, pipe, false);
3057         intel_enable_plane(dev_priv, plane, pipe);
3058
3059         intel_crtc_load_lut(crtc);
3060         intel_update_fbc(dev);
3061
3062         /* Give the overlay scaler a chance to enable if it's on this pipe */
3063         intel_crtc_dpms_overlay(intel_crtc, true);
3064         intel_crtc_update_cursor(crtc, true);
3065 }
3066
3067 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3068 {
3069         struct drm_device *dev = crtc->dev;
3070         struct drm_i915_private *dev_priv = dev->dev_private;
3071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3072         int pipe = intel_crtc->pipe;
3073         int plane = intel_crtc->plane;
3074
3075         if (!intel_crtc->active)
3076                 return;
3077
3078         /* Give the overlay scaler a chance to disable if it's on this pipe */
3079         intel_crtc_wait_for_pending_flips(crtc);
3080         drm_vblank_off(dev, pipe);
3081         intel_crtc_dpms_overlay(intel_crtc, false);
3082         intel_crtc_update_cursor(crtc, false);
3083
3084         if (dev_priv->cfb_plane == plane)
3085                 intel_disable_fbc(dev);
3086
3087         intel_disable_plane(dev_priv, plane, pipe);
3088         intel_disable_pipe(dev_priv, pipe);
3089         intel_disable_pll(dev_priv, pipe);
3090
3091         intel_crtc->active = false;
3092         intel_update_fbc(dev);
3093         intel_update_watermarks(dev);
3094 }
3095
3096 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3097 {
3098         /* XXX: When our outputs are all unaware of DPMS modes other than off
3099          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3100          */
3101         switch (mode) {
3102         case DRM_MODE_DPMS_ON:
3103         case DRM_MODE_DPMS_STANDBY:
3104         case DRM_MODE_DPMS_SUSPEND:
3105                 i9xx_crtc_enable(crtc);
3106                 break;
3107         case DRM_MODE_DPMS_OFF:
3108                 i9xx_crtc_disable(crtc);
3109                 break;
3110         }
3111 }
3112
3113 static void i9xx_crtc_off(struct drm_crtc *crtc)
3114 {
3115 }
3116
3117 /**
3118  * Sets the power management mode of the pipe and plane.
3119  */
3120 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3121 {
3122         struct drm_device *dev = crtc->dev;
3123         struct drm_i915_private *dev_priv = dev->dev_private;
3124         struct drm_i915_master_private *master_priv;
3125         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3126         int pipe = intel_crtc->pipe;
3127         bool enabled;
3128
3129         if (intel_crtc->dpms_mode == mode)
3130                 return;
3131
3132         intel_crtc->dpms_mode = mode;
3133
3134         dev_priv->display.dpms(crtc, mode);
3135
3136         if (!dev->primary->master)
3137                 return;
3138
3139         master_priv = dev->primary->master->driver_priv;
3140         if (!master_priv->sarea_priv)
3141                 return;
3142
3143         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3144
3145         switch (pipe) {
3146         case 0:
3147                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3148                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3149                 break;
3150         case 1:
3151                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3152                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3153                 break;
3154         default:
3155                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3156                 break;
3157         }
3158 }
3159
3160 static void intel_crtc_disable(struct drm_crtc *crtc)
3161 {
3162         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3163         struct drm_device *dev = crtc->dev;
3164         struct drm_i915_private *dev_priv = dev->dev_private;
3165
3166         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3167         dev_priv->display.off(crtc);
3168
3169         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3170         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3171
3172         if (crtc->fb) {
3173                 mutex_lock(&dev->struct_mutex);
3174                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3175                 mutex_unlock(&dev->struct_mutex);
3176         }
3177 }
3178
3179 /* Prepare for a mode set.
3180  *
3181  * Note we could be a lot smarter here.  We need to figure out which outputs
3182  * will be enabled, which disabled (in short, how the config will changes)
3183  * and perform the minimum necessary steps to accomplish that, e.g. updating
3184  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3185  * panel fitting is in the proper state, etc.
3186  */
3187 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3188 {
3189         i9xx_crtc_disable(crtc);
3190 }
3191
3192 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3193 {
3194         i9xx_crtc_enable(crtc);
3195 }
3196
3197 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3198 {
3199         ironlake_crtc_disable(crtc);
3200 }
3201
3202 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3203 {
3204         ironlake_crtc_enable(crtc);
3205 }
3206
3207 void intel_encoder_prepare(struct drm_encoder *encoder)
3208 {
3209         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3210         /* lvds has its own version of prepare see intel_lvds_prepare */
3211         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3212 }
3213
3214 void intel_encoder_commit(struct drm_encoder *encoder)
3215 {
3216         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3217         struct drm_device *dev = encoder->dev;
3218         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
3219
3220         /* lvds has its own version of commit see intel_lvds_commit */
3221         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3222
3223         if (HAS_PCH_CPT(dev))
3224                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3225 }
3226
3227 void intel_encoder_destroy(struct drm_encoder *encoder)
3228 {
3229         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3230
3231         drm_encoder_cleanup(encoder);
3232         kfree(intel_encoder);
3233 }
3234
3235 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3236                                   struct drm_display_mode *mode,
3237                                   struct drm_display_mode *adjusted_mode)
3238 {
3239         struct drm_device *dev = crtc->dev;
3240
3241         if (HAS_PCH_SPLIT(dev)) {
3242                 /* FDI link clock is fixed at 2.7G */
3243                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3244                         return false;
3245         }
3246
3247         /* All interlaced capable intel hw wants timings in frames. Note though
3248          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3249          * timings, so we need to be careful not to clobber these.*/
3250         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3251                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3252
3253         return true;
3254 }
3255
3256 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3257 {
3258         return 400000; /* FIXME */
3259 }
3260
3261 static int i945_get_display_clock_speed(struct drm_device *dev)
3262 {
3263         return 400000;
3264 }
3265
3266 static int i915_get_display_clock_speed(struct drm_device *dev)
3267 {
3268         return 333000;
3269 }
3270
3271 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3272 {
3273         return 200000;
3274 }
3275
3276 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3277 {
3278         u16 gcfgc = 0;
3279
3280         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3281
3282         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3283                 return 133000;
3284         else {
3285                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3286                 case GC_DISPLAY_CLOCK_333_MHZ:
3287                         return 333000;
3288                 default:
3289                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3290                         return 190000;
3291                 }
3292         }
3293 }
3294
3295 static int i865_get_display_clock_speed(struct drm_device *dev)
3296 {
3297         return 266000;
3298 }
3299
3300 static int i855_get_display_clock_speed(struct drm_device *dev)
3301 {
3302         u16 hpllcc = 0;
3303         /* Assume that the hardware is in the high speed state.  This
3304          * should be the default.
3305          */
3306         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3307         case GC_CLOCK_133_200:
3308         case GC_CLOCK_100_200:
3309                 return 200000;
3310         case GC_CLOCK_166_250:
3311                 return 250000;
3312         case GC_CLOCK_100_133:
3313                 return 133000;
3314         }
3315
3316         /* Shouldn't happen */
3317         return 0;
3318 }
3319
3320 static int i830_get_display_clock_speed(struct drm_device *dev)
3321 {
3322         return 133000;
3323 }
3324
3325 struct fdi_m_n {
3326         u32        tu;
3327         u32        gmch_m;
3328         u32        gmch_n;
3329         u32        link_m;
3330         u32        link_n;
3331 };
3332
3333 static void
3334 fdi_reduce_ratio(u32 *num, u32 *den)
3335 {
3336         while (*num > 0xffffff || *den > 0xffffff) {
3337                 *num >>= 1;
3338                 *den >>= 1;
3339         }
3340 }
3341
3342 static void
3343 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3344                      int link_clock, struct fdi_m_n *m_n)
3345 {
3346         m_n->tu = 64; /* default size */
3347
3348         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3349         m_n->gmch_m = bits_per_pixel * pixel_clock;
3350         m_n->gmch_n = link_clock * nlanes * 8;
3351         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3352
3353         m_n->link_m = pixel_clock;
3354         m_n->link_n = link_clock;
3355         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3356 }
3357
3358 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3359 {
3360         if (i915_panel_use_ssc >= 0)
3361                 return i915_panel_use_ssc != 0;
3362         return dev_priv->lvds_use_ssc
3363                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3364 }
3365
3366 /**
3367  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3368  * @crtc: CRTC structure
3369  * @mode: requested mode
3370  *
3371  * A pipe may be connected to one or more outputs.  Based on the depth of the
3372  * attached framebuffer, choose a good color depth to use on the pipe.
3373  *
3374  * If possible, match the pipe depth to the fb depth.  In some cases, this
3375  * isn't ideal, because the connected output supports a lesser or restricted
3376  * set of depths.  Resolve that here:
3377  *    LVDS typically supports only 6bpc, so clamp down in that case
3378  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3379  *    Displays may support a restricted set as well, check EDID and clamp as
3380  *      appropriate.
3381  *    DP may want to dither down to 6bpc to fit larger modes
3382  *
3383  * RETURNS:
3384  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3385  * true if they don't match).
3386  */
3387 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3388                                          unsigned int *pipe_bpp,
3389                                          struct drm_display_mode *mode)
3390 {
3391         struct drm_device *dev = crtc->dev;
3392         struct drm_i915_private *dev_priv = dev->dev_private;
3393         struct drm_encoder *encoder;
3394         struct drm_connector *connector;
3395         unsigned int display_bpc = UINT_MAX, bpc;
3396
3397         /* Walk the encoders & connectors on this crtc, get min bpc */
3398         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3399                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3400
3401                 if (encoder->crtc != crtc)
3402                         continue;
3403
3404                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3405                         unsigned int lvds_bpc;
3406
3407                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3408                             LVDS_A3_POWER_UP)
3409                                 lvds_bpc = 8;
3410                         else
3411                                 lvds_bpc = 6;
3412
3413                         if (lvds_bpc < display_bpc) {
3414                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3415                                 display_bpc = lvds_bpc;
3416                         }
3417                         continue;
3418                 }
3419
3420                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3421                         /* Use VBT settings if we have an eDP panel */
3422                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3423
3424                         if (edp_bpc < display_bpc) {
3425                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3426                                 display_bpc = edp_bpc;
3427                         }
3428                         continue;
3429                 }
3430
3431                 /* Not one of the known troublemakers, check the EDID */
3432                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3433                                     head) {
3434                         if (connector->encoder != encoder)
3435                                 continue;
3436
3437                         /* Don't use an invalid EDID bpc value */
3438                         if (connector->display_info.bpc &&
3439                             connector->display_info.bpc < display_bpc) {
3440                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3441                                 display_bpc = connector->display_info.bpc;
3442                         }
3443                 }
3444
3445                 /*
3446                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3447                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3448                  */
3449                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3450                         if (display_bpc > 8 && display_bpc < 12) {
3451                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3452                                 display_bpc = 12;
3453                         } else {
3454                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3455                                 display_bpc = 8;
3456                         }
3457                 }
3458         }
3459
3460         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3461                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3462                 display_bpc = 6;
3463         }
3464
3465         /*
3466          * We could just drive the pipe at the highest bpc all the time and
3467          * enable dithering as needed, but that costs bandwidth.  So choose
3468          * the minimum value that expresses the full color range of the fb but
3469          * also stays within the max display bpc discovered above.
3470          */
3471
3472         switch (crtc->fb->depth) {
3473         case 8:
3474                 bpc = 8; /* since we go through a colormap */
3475                 break;
3476         case 15:
3477         case 16:
3478                 bpc = 6; /* min is 18bpp */
3479                 break;
3480         case 24:
3481                 bpc = 8;
3482                 break;
3483         case 30:
3484                 bpc = 10;
3485                 break;
3486         case 48:
3487                 bpc = 12;
3488                 break;
3489         default:
3490                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3491                 bpc = min((unsigned int)8, display_bpc);
3492                 break;
3493         }
3494
3495         display_bpc = min(display_bpc, bpc);
3496
3497         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3498                       bpc, display_bpc);
3499
3500         *pipe_bpp = display_bpc * 3;
3501
3502         return display_bpc != bpc;
3503 }
3504
3505 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3506 {
3507         struct drm_device *dev = crtc->dev;
3508         struct drm_i915_private *dev_priv = dev->dev_private;
3509         int refclk;
3510
3511         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3512             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3513                 refclk = dev_priv->lvds_ssc_freq * 1000;
3514                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3515                               refclk / 1000);
3516         } else if (!IS_GEN2(dev)) {
3517                 refclk = 96000;
3518         } else {
3519                 refclk = 48000;
3520         }
3521
3522         return refclk;
3523 }
3524
3525 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3526                                       intel_clock_t *clock)
3527 {
3528         /* SDVO TV has fixed PLL values depend on its clock range,
3529            this mirrors vbios setting. */
3530         if (adjusted_mode->clock >= 100000
3531             && adjusted_mode->clock < 140500) {
3532                 clock->p1 = 2;
3533                 clock->p2 = 10;
3534                 clock->n = 3;
3535                 clock->m1 = 16;
3536                 clock->m2 = 8;
3537         } else if (adjusted_mode->clock >= 140500
3538                    && adjusted_mode->clock <= 200000) {
3539                 clock->p1 = 1;
3540                 clock->p2 = 10;
3541                 clock->n = 6;
3542                 clock->m1 = 12;
3543                 clock->m2 = 8;
3544         }
3545 }
3546
3547 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3548                                      intel_clock_t *clock,
3549                                      intel_clock_t *reduced_clock)
3550 {
3551         struct drm_device *dev = crtc->dev;
3552         struct drm_i915_private *dev_priv = dev->dev_private;
3553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3554         int pipe = intel_crtc->pipe;
3555         u32 fp, fp2 = 0;
3556
3557         if (IS_PINEVIEW(dev)) {
3558                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3559                 if (reduced_clock)
3560                         fp2 = (1 << reduced_clock->n) << 16 |
3561                                 reduced_clock->m1 << 8 | reduced_clock->m2;
3562         } else {
3563                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3564                 if (reduced_clock)
3565                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3566                                 reduced_clock->m2;
3567         }
3568
3569         I915_WRITE(FP0(pipe), fp);
3570
3571         intel_crtc->lowfreq_avail = false;
3572         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3573             reduced_clock && i915_powersave) {
3574                 I915_WRITE(FP1(pipe), fp2);
3575                 intel_crtc->lowfreq_avail = true;
3576         } else {
3577                 I915_WRITE(FP1(pipe), fp);
3578         }
3579 }
3580
3581 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3582                               struct drm_display_mode *adjusted_mode)
3583 {
3584         struct drm_device *dev = crtc->dev;
3585         struct drm_i915_private *dev_priv = dev->dev_private;
3586         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3587         int pipe = intel_crtc->pipe;
3588         u32 temp;
3589
3590         temp = I915_READ(LVDS);
3591         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3592         if (pipe == 1) {
3593                 temp |= LVDS_PIPEB_SELECT;
3594         } else {
3595                 temp &= ~LVDS_PIPEB_SELECT;
3596         }
3597         /* set the corresponsding LVDS_BORDER bit */
3598         temp |= dev_priv->lvds_border_bits;
3599         /* Set the B0-B3 data pairs corresponding to whether we're going to
3600          * set the DPLLs for dual-channel mode or not.
3601          */
3602         if (clock->p2 == 7)
3603                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3604         else
3605                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3606
3607         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3608          * appropriately here, but we need to look more thoroughly into how
3609          * panels behave in the two modes.
3610          */
3611         /* set the dithering flag on LVDS as needed */
3612         if (INTEL_INFO(dev)->gen >= 4) {
3613                 if (dev_priv->lvds_dither)
3614                         temp |= LVDS_ENABLE_DITHER;
3615                 else
3616                         temp &= ~LVDS_ENABLE_DITHER;
3617         }
3618         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3619         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3620                 temp |= LVDS_HSYNC_POLARITY;
3621         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3622                 temp |= LVDS_VSYNC_POLARITY;
3623         I915_WRITE(LVDS, temp);
3624 }
3625
3626 static void i9xx_update_pll(struct drm_crtc *crtc,
3627                             struct drm_display_mode *mode,
3628                             struct drm_display_mode *adjusted_mode,
3629                             intel_clock_t *clock, intel_clock_t *reduced_clock,
3630                             int num_connectors)
3631 {
3632         struct drm_device *dev = crtc->dev;
3633         struct drm_i915_private *dev_priv = dev->dev_private;
3634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3635         int pipe = intel_crtc->pipe;
3636         u32 dpll;
3637         bool is_sdvo;
3638
3639         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
3640                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
3641
3642         dpll = DPLL_VGA_MODE_DIS;
3643
3644         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3645                 dpll |= DPLLB_MODE_LVDS;
3646         else
3647                 dpll |= DPLLB_MODE_DAC_SERIAL;
3648         if (is_sdvo) {
3649                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3650                 if (pixel_multiplier > 1) {
3651                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3652                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3653                 }
3654                 dpll |= DPLL_DVO_HIGH_SPEED;
3655         }
3656         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3657                 dpll |= DPLL_DVO_HIGH_SPEED;
3658
3659         /* compute bitmask from p1 value */
3660         if (IS_PINEVIEW(dev))
3661                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3662         else {
3663                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3664                 if (IS_G4X(dev) && reduced_clock)
3665                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3666         }
3667         switch (clock->p2) {
3668         case 5:
3669                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3670                 break;
3671         case 7:
3672                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3673                 break;
3674         case 10:
3675                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3676                 break;
3677         case 14:
3678                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3679                 break;
3680         }
3681         if (INTEL_INFO(dev)->gen >= 4)
3682                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3683
3684         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3685                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3686         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3687                 /* XXX: just matching BIOS for now */
3688                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3689                 dpll |= 3;
3690         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3691                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3692                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3693         else
3694                 dpll |= PLL_REF_INPUT_DREFCLK;
3695
3696         dpll |= DPLL_VCO_ENABLE;
3697         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3698         POSTING_READ(DPLL(pipe));
3699         udelay(150);
3700
3701         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3702          * This is an exception to the general rule that mode_set doesn't turn
3703          * things on.
3704          */
3705         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3706                 intel_update_lvds(crtc, clock, adjusted_mode);
3707
3708         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3709                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3710
3711         I915_WRITE(DPLL(pipe), dpll);
3712
3713         /* Wait for the clocks to stabilize. */
3714         POSTING_READ(DPLL(pipe));
3715         udelay(150);
3716
3717         if (INTEL_INFO(dev)->gen >= 4) {
3718                 u32 temp = 0;
3719                 if (is_sdvo) {
3720                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3721                         if (temp > 1)
3722                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
3723                         else
3724                                 temp = 0;
3725                 }
3726                 I915_WRITE(DPLL_MD(pipe), temp);
3727         } else {
3728                 /* The pixel multiplier can only be updated once the
3729                  * DPLL is enabled and the clocks are stable.
3730                  *
3731                  * So write it again.
3732                  */
3733                 I915_WRITE(DPLL(pipe), dpll);
3734         }
3735 }
3736
3737 static void i8xx_update_pll(struct drm_crtc *crtc,
3738                             struct drm_display_mode *adjusted_mode,
3739                             intel_clock_t *clock,
3740                             int num_connectors)
3741 {
3742         struct drm_device *dev = crtc->dev;
3743         struct drm_i915_private *dev_priv = dev->dev_private;
3744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3745         int pipe = intel_crtc->pipe;
3746         u32 dpll;
3747
3748         dpll = DPLL_VGA_MODE_DIS;
3749
3750         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3751                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3752         } else {
3753                 if (clock->p1 == 2)
3754                         dpll |= PLL_P1_DIVIDE_BY_TWO;
3755                 else
3756                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3757                 if (clock->p2 == 4)
3758                         dpll |= PLL_P2_DIVIDE_BY_4;
3759         }
3760
3761         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3762                 /* XXX: just matching BIOS for now */
3763                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3764                 dpll |= 3;
3765         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3766                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3767                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3768         else
3769                 dpll |= PLL_REF_INPUT_DREFCLK;
3770
3771         dpll |= DPLL_VCO_ENABLE;
3772         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3773         POSTING_READ(DPLL(pipe));
3774         udelay(150);
3775
3776         I915_WRITE(DPLL(pipe), dpll);
3777
3778         /* Wait for the clocks to stabilize. */
3779         POSTING_READ(DPLL(pipe));
3780         udelay(150);
3781
3782         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3783          * This is an exception to the general rule that mode_set doesn't turn
3784          * things on.
3785          */
3786         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3787                 intel_update_lvds(crtc, clock, adjusted_mode);
3788
3789         /* The pixel multiplier can only be updated once the
3790          * DPLL is enabled and the clocks are stable.
3791          *
3792          * So write it again.
3793          */
3794         I915_WRITE(DPLL(pipe), dpll);
3795 }
3796
3797 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
3798                               struct drm_display_mode *mode,
3799                               struct drm_display_mode *adjusted_mode,
3800                               int x, int y,
3801                               struct drm_framebuffer *old_fb)
3802 {
3803         struct drm_device *dev = crtc->dev;
3804         struct drm_i915_private *dev_priv = dev->dev_private;
3805         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3806         int pipe = intel_crtc->pipe;
3807         int plane = intel_crtc->plane;
3808         int refclk, num_connectors = 0;
3809         intel_clock_t clock, reduced_clock;
3810         u32 dspcntr, pipeconf, vsyncshift;
3811         bool ok, has_reduced_clock = false, is_sdvo = false;
3812         bool is_lvds = false, is_tv = false, is_dp = false;
3813         struct drm_mode_config *mode_config = &dev->mode_config;
3814         struct intel_encoder *encoder;
3815         const intel_limit_t *limit;
3816         int ret;
3817
3818         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3819                 if (encoder->base.crtc != crtc)
3820                         continue;
3821
3822                 switch (encoder->type) {
3823                 case INTEL_OUTPUT_LVDS:
3824                         is_lvds = true;
3825                         break;
3826                 case INTEL_OUTPUT_SDVO:
3827                 case INTEL_OUTPUT_HDMI:
3828                         is_sdvo = true;
3829                         if (encoder->needs_tv_clock)
3830                                 is_tv = true;
3831                         break;
3832                 case INTEL_OUTPUT_TVOUT:
3833                         is_tv = true;
3834                         break;
3835                 case INTEL_OUTPUT_DISPLAYPORT:
3836                         is_dp = true;
3837                         break;
3838                 }
3839
3840                 num_connectors++;
3841         }
3842
3843         refclk = i9xx_get_refclk(crtc, num_connectors);
3844
3845         /*
3846          * Returns a set of divisors for the desired target clock with the given
3847          * refclk, or FALSE.  The returned values represent the clock equation:
3848          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3849          */
3850         limit = intel_limit(crtc, refclk);
3851         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
3852                              &clock);
3853         if (!ok) {
3854                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3855                 return -EINVAL;
3856         }
3857
3858         /* Ensure that the cursor is valid for the new mode before changing... */
3859         intel_crtc_update_cursor(crtc, true);
3860
3861         if (is_lvds && dev_priv->lvds_downclock_avail) {
3862                 /*
3863                  * Ensure we match the reduced clock's P to the target clock.
3864                  * If the clocks don't match, we can't switch the display clock
3865                  * by using the FP0/FP1. In such case we will disable the LVDS
3866                  * downclock feature.
3867                 */
3868                 has_reduced_clock = limit->find_pll(limit, crtc,
3869                                                     dev_priv->lvds_downclock,
3870                                                     refclk,
3871                                                     &clock,
3872                                                     &reduced_clock);
3873         }
3874
3875         if (is_sdvo && is_tv)
3876                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
3877
3878         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
3879                                  &reduced_clock : NULL);
3880
3881         if (IS_GEN2(dev))
3882                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
3883         else
3884                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
3885                                 has_reduced_clock ? &reduced_clock : NULL,
3886                                 num_connectors);
3887
3888         /* setup pipeconf */
3889         pipeconf = I915_READ(PIPECONF(pipe));
3890
3891         /* Set up the display plane register */
3892         dspcntr = DISPPLANE_GAMMA_ENABLE;
3893
3894         if (pipe == 0)
3895                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3896         else
3897                 dspcntr |= DISPPLANE_SEL_PIPE_B;
3898
3899         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3900                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3901                  * core speed.
3902                  *
3903                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3904                  * pipe == 0 check?
3905                  */
3906                 if (mode->clock >
3907                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3908                         pipeconf |= PIPECONF_DOUBLE_WIDE;
3909                 else
3910                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3911         }
3912
3913         /* default to 8bpc */
3914         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
3915         if (is_dp) {
3916                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3917                         pipeconf |= PIPECONF_BPP_6 |
3918                                     PIPECONF_DITHER_EN |
3919                                     PIPECONF_DITHER_TYPE_SP;
3920                 }
3921         }
3922
3923         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3924         drm_mode_debug_printmodeline(mode);
3925
3926         if (HAS_PIPE_CXSR(dev)) {
3927                 if (intel_crtc->lowfreq_avail) {
3928                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3929                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3930                 } else {
3931                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3932                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3933                 }
3934         }
3935
3936         pipeconf &= ~PIPECONF_INTERLACE_MASK;
3937         if (!IS_GEN2(dev) &&
3938             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3939                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3940                 /* the chip adds 2 halflines automatically */
3941                 adjusted_mode->crtc_vtotal -= 1;
3942                 adjusted_mode->crtc_vblank_end -= 1;
3943                 vsyncshift = adjusted_mode->crtc_hsync_start
3944                              - adjusted_mode->crtc_htotal/2;
3945         } else {
3946                 pipeconf |= PIPECONF_PROGRESSIVE;
3947                 vsyncshift = 0;
3948         }
3949
3950         if (!IS_GEN3(dev))
3951                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
3952
3953         I915_WRITE(HTOTAL(pipe),
3954                    (adjusted_mode->crtc_hdisplay - 1) |
3955                    ((adjusted_mode->crtc_htotal - 1) << 16));
3956         I915_WRITE(HBLANK(pipe),
3957                    (adjusted_mode->crtc_hblank_start - 1) |
3958                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3959         I915_WRITE(HSYNC(pipe),
3960                    (adjusted_mode->crtc_hsync_start - 1) |
3961                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3962
3963         I915_WRITE(VTOTAL(pipe),
3964                    (adjusted_mode->crtc_vdisplay - 1) |
3965                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3966         I915_WRITE(VBLANK(pipe),
3967                    (adjusted_mode->crtc_vblank_start - 1) |
3968                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3969         I915_WRITE(VSYNC(pipe),
3970                    (adjusted_mode->crtc_vsync_start - 1) |
3971                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3972
3973         /* pipesrc and dspsize control the size that is scaled from,
3974          * which should always be the user's requested size.
3975          */
3976         I915_WRITE(DSPSIZE(plane),
3977                    ((mode->vdisplay - 1) << 16) |
3978                    (mode->hdisplay - 1));
3979         I915_WRITE(DSPPOS(plane), 0);
3980         I915_WRITE(PIPESRC(pipe),
3981                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3982
3983         I915_WRITE(PIPECONF(pipe), pipeconf);
3984         POSTING_READ(PIPECONF(pipe));
3985         intel_enable_pipe(dev_priv, pipe, false);
3986
3987         intel_wait_for_vblank(dev, pipe);
3988
3989         I915_WRITE(DSPCNTR(plane), dspcntr);
3990         POSTING_READ(DSPCNTR(plane));
3991
3992         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3993
3994         intel_update_watermarks(dev);
3995
3996         return ret;
3997 }
3998
3999 /*
4000  * Initialize reference clocks when the driver loads
4001  */
4002 void ironlake_init_pch_refclk(struct drm_device *dev)
4003 {
4004         struct drm_i915_private *dev_priv = dev->dev_private;
4005         struct drm_mode_config *mode_config = &dev->mode_config;
4006         struct intel_encoder *encoder;
4007         u32 temp;
4008         bool has_lvds = false;
4009         bool has_cpu_edp = false;
4010         bool has_pch_edp = false;
4011         bool has_panel = false;
4012         bool has_ck505 = false;
4013         bool can_ssc = false;
4014
4015         /* We need to take the global config into account */
4016         list_for_each_entry(encoder, &mode_config->encoder_list,
4017                             base.head) {
4018                 switch (encoder->type) {
4019                 case INTEL_OUTPUT_LVDS:
4020                         has_panel = true;
4021                         has_lvds = true;
4022                         break;
4023                 case INTEL_OUTPUT_EDP:
4024                         has_panel = true;
4025                         if (intel_encoder_is_pch_edp(&encoder->base))
4026                                 has_pch_edp = true;
4027                         else
4028                                 has_cpu_edp = true;
4029                         break;
4030                 }
4031         }
4032
4033         if (HAS_PCH_IBX(dev)) {
4034                 has_ck505 = dev_priv->display_clock_mode;
4035                 can_ssc = has_ck505;
4036         } else {
4037                 has_ck505 = false;
4038                 can_ssc = true;
4039         }
4040
4041         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4042                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4043                       has_ck505);
4044
4045         /* Ironlake: try to setup display ref clock before DPLL
4046          * enabling. This is only under driver's control after
4047          * PCH B stepping, previous chipset stepping should be
4048          * ignoring this setting.
4049          */
4050         temp = I915_READ(PCH_DREF_CONTROL);
4051         /* Always enable nonspread source */
4052         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4053
4054         if (has_ck505)
4055                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4056         else
4057                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4058
4059         if (has_panel) {
4060                 temp &= ~DREF_SSC_SOURCE_MASK;
4061                 temp |= DREF_SSC_SOURCE_ENABLE;
4062
4063                 /* SSC must be turned on before enabling the CPU output  */
4064                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4065                         DRM_DEBUG_KMS("Using SSC on panel\n");
4066                         temp |= DREF_SSC1_ENABLE;
4067                 } else
4068                         temp &= ~DREF_SSC1_ENABLE;
4069
4070                 /* Get SSC going before enabling the outputs */
4071                 I915_WRITE(PCH_DREF_CONTROL, temp);
4072                 POSTING_READ(PCH_DREF_CONTROL);
4073                 udelay(200);
4074
4075                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4076
4077                 /* Enable CPU source on CPU attached eDP */
4078                 if (has_cpu_edp) {
4079                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4080                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4081                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4082                         }
4083                         else
4084                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4085                 } else
4086                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4087
4088                 I915_WRITE(PCH_DREF_CONTROL, temp);
4089                 POSTING_READ(PCH_DREF_CONTROL);
4090                 udelay(200);
4091         } else {
4092                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4093
4094                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4095
4096                 /* Turn off CPU output */
4097                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4098
4099                 I915_WRITE(PCH_DREF_CONTROL, temp);
4100                 POSTING_READ(PCH_DREF_CONTROL);
4101                 udelay(200);
4102
4103                 /* Turn off the SSC source */
4104                 temp &= ~DREF_SSC_SOURCE_MASK;
4105                 temp |= DREF_SSC_SOURCE_DISABLE;
4106
4107                 /* Turn off SSC1 */
4108                 temp &= ~ DREF_SSC1_ENABLE;
4109
4110                 I915_WRITE(PCH_DREF_CONTROL, temp);
4111                 POSTING_READ(PCH_DREF_CONTROL);
4112                 udelay(200);
4113         }
4114 }
4115
4116 static int ironlake_get_refclk(struct drm_crtc *crtc)
4117 {
4118         struct drm_device *dev = crtc->dev;
4119         struct drm_i915_private *dev_priv = dev->dev_private;
4120         struct intel_encoder *encoder;
4121         struct drm_mode_config *mode_config = &dev->mode_config;
4122         struct intel_encoder *edp_encoder = NULL;
4123         int num_connectors = 0;
4124         bool is_lvds = false;
4125
4126         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4127                 if (encoder->base.crtc != crtc)
4128                         continue;
4129
4130                 switch (encoder->type) {
4131                 case INTEL_OUTPUT_LVDS:
4132                         is_lvds = true;
4133                         break;
4134                 case INTEL_OUTPUT_EDP:
4135                         edp_encoder = encoder;
4136                         break;
4137                 }
4138                 num_connectors++;
4139         }
4140
4141         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4142                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4143                               dev_priv->lvds_ssc_freq);
4144                 return dev_priv->lvds_ssc_freq * 1000;
4145         }
4146
4147         return 120000;
4148 }
4149
4150 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4151                                   struct drm_display_mode *mode,
4152                                   struct drm_display_mode *adjusted_mode,
4153                                   int x, int y,
4154                                   struct drm_framebuffer *old_fb)
4155 {
4156         struct drm_device *dev = crtc->dev;
4157         struct drm_i915_private *dev_priv = dev->dev_private;
4158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4159         int pipe = intel_crtc->pipe;
4160         int plane = intel_crtc->plane;
4161         int refclk, num_connectors = 0;
4162         intel_clock_t clock, reduced_clock;
4163         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4164         bool ok, has_reduced_clock = false, is_sdvo = false;
4165         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4166         struct drm_mode_config *mode_config = &dev->mode_config;
4167         struct intel_encoder *encoder, *edp_encoder = NULL;
4168         const intel_limit_t *limit;
4169         int ret;
4170         struct fdi_m_n m_n = {0};
4171         u32 temp;
4172         int target_clock, pixel_multiplier, lane, link_bw, factor;
4173         unsigned int pipe_bpp;
4174         bool dither;
4175         bool is_cpu_edp = false, is_pch_edp = false;
4176
4177         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4178                 if (encoder->base.crtc != crtc)
4179                         continue;
4180
4181                 switch (encoder->type) {
4182                 case INTEL_OUTPUT_LVDS:
4183                         is_lvds = true;
4184                         break;
4185                 case INTEL_OUTPUT_SDVO:
4186                 case INTEL_OUTPUT_HDMI:
4187                         is_sdvo = true;
4188                         if (encoder->needs_tv_clock)
4189                                 is_tv = true;
4190                         break;
4191                 case INTEL_OUTPUT_TVOUT:
4192                         is_tv = true;
4193                         break;
4194                 case INTEL_OUTPUT_ANALOG:
4195                         is_crt = true;
4196                         break;
4197                 case INTEL_OUTPUT_DISPLAYPORT:
4198                         is_dp = true;
4199                         break;
4200                 case INTEL_OUTPUT_EDP:
4201                         is_dp = true;
4202                         if (intel_encoder_is_pch_edp(&encoder->base))
4203                                 is_pch_edp = true;
4204                         else
4205                                 is_cpu_edp = true;
4206                         edp_encoder = encoder;
4207                         break;
4208                 }
4209
4210                 num_connectors++;
4211         }
4212
4213         refclk = ironlake_get_refclk(crtc);
4214
4215         /*
4216          * Returns a set of divisors for the desired target clock with the given
4217          * refclk, or FALSE.  The returned values represent the clock equation:
4218          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4219          */
4220         limit = intel_limit(crtc, refclk);
4221         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4222                              &clock);
4223         if (!ok) {
4224                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4225                 return -EINVAL;
4226         }
4227
4228         /* Ensure that the cursor is valid for the new mode before changing... */
4229         intel_crtc_update_cursor(crtc, true);
4230
4231         if (is_lvds && dev_priv->lvds_downclock_avail) {
4232                 /*
4233                  * Ensure we match the reduced clock's P to the target clock.
4234                  * If the clocks don't match, we can't switch the display clock
4235                  * by using the FP0/FP1. In such case we will disable the LVDS
4236                  * downclock feature.
4237                 */
4238                 has_reduced_clock = limit->find_pll(limit, crtc,
4239                                                     dev_priv->lvds_downclock,
4240                                                     refclk,
4241                                                     &clock,
4242                                                     &reduced_clock);
4243         }
4244         /* SDVO TV has fixed PLL values depend on its clock range,
4245            this mirrors vbios setting. */
4246         if (is_sdvo && is_tv) {
4247                 if (adjusted_mode->clock >= 100000
4248                     && adjusted_mode->clock < 140500) {
4249                         clock.p1 = 2;
4250                         clock.p2 = 10;
4251                         clock.n = 3;
4252                         clock.m1 = 16;
4253                         clock.m2 = 8;
4254                 } else if (adjusted_mode->clock >= 140500
4255                            && adjusted_mode->clock <= 200000) {
4256                         clock.p1 = 1;
4257                         clock.p2 = 10;
4258                         clock.n = 6;
4259                         clock.m1 = 12;
4260                         clock.m2 = 8;
4261                 }
4262         }
4263
4264         /* FDI link */
4265         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4266         lane = 0;
4267         /* CPU eDP doesn't require FDI link, so just set DP M/N
4268            according to current link config */
4269         if (is_cpu_edp) {
4270                 target_clock = mode->clock;
4271                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4272         } else {
4273                 /* [e]DP over FDI requires target mode clock
4274                    instead of link clock */
4275                 if (is_dp)
4276                         target_clock = mode->clock;
4277                 else
4278                         target_clock = adjusted_mode->clock;
4279
4280                 /* FDI is a binary signal running at ~2.7GHz, encoding
4281                  * each output octet as 10 bits. The actual frequency
4282                  * is stored as a divider into a 100MHz clock, and the
4283                  * mode pixel clock is stored in units of 1KHz.
4284                  * Hence the bw of each lane in terms of the mode signal
4285                  * is:
4286                  */
4287                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4288         }
4289
4290         /* determine panel color depth */
4291         temp = I915_READ(PIPECONF(pipe));
4292         temp &= ~PIPE_BPC_MASK;
4293         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4294         switch (pipe_bpp) {
4295         case 18:
4296                 temp |= PIPE_6BPC;
4297                 break;
4298         case 24:
4299                 temp |= PIPE_8BPC;
4300                 break;
4301         case 30:
4302                 temp |= PIPE_10BPC;
4303                 break;
4304         case 36:
4305                 temp |= PIPE_12BPC;
4306                 break;
4307         default:
4308                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4309                         pipe_bpp);
4310                 temp |= PIPE_8BPC;
4311                 pipe_bpp = 24;
4312                 break;
4313         }
4314
4315         intel_crtc->bpp = pipe_bpp;
4316         I915_WRITE(PIPECONF(pipe), temp);
4317
4318         if (!lane) {
4319                 /*
4320                  * Account for spread spectrum to avoid
4321                  * oversubscribing the link. Max center spread
4322                  * is 2.5%; use 5% for safety's sake.
4323                  */
4324                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4325                 lane = bps / (link_bw * 8) + 1;
4326         }
4327
4328         intel_crtc->fdi_lanes = lane;
4329
4330         if (pixel_multiplier > 1)
4331                 link_bw *= pixel_multiplier;
4332         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4333                              &m_n);
4334
4335         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4336         if (has_reduced_clock)
4337                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4338                         reduced_clock.m2;
4339
4340         /* Enable autotuning of the PLL clock (if permissible) */
4341         factor = 21;
4342         if (is_lvds) {
4343                 if ((intel_panel_use_ssc(dev_priv) &&
4344                      dev_priv->lvds_ssc_freq == 100) ||
4345                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4346                         factor = 25;
4347         } else if (is_sdvo && is_tv)
4348                 factor = 20;
4349
4350         if (clock.m < factor * clock.n)
4351                 fp |= FP_CB_TUNE;
4352
4353         dpll = 0;
4354
4355         if (is_lvds)
4356                 dpll |= DPLLB_MODE_LVDS;
4357         else
4358                 dpll |= DPLLB_MODE_DAC_SERIAL;
4359         if (is_sdvo) {
4360                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4361                 if (pixel_multiplier > 1) {
4362                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4363                 }
4364                 dpll |= DPLL_DVO_HIGH_SPEED;
4365         }
4366         if (is_dp && !is_cpu_edp)
4367                 dpll |= DPLL_DVO_HIGH_SPEED;
4368
4369         /* compute bitmask from p1 value */
4370         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4371         /* also FPA1 */
4372         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4373
4374         switch (clock.p2) {
4375         case 5:
4376                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4377                 break;
4378         case 7:
4379                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4380                 break;
4381         case 10:
4382                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4383                 break;
4384         case 14:
4385                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4386                 break;
4387         }
4388
4389         if (is_sdvo && is_tv)
4390                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4391         else if (is_tv)
4392                 /* XXX: just matching BIOS for now */
4393                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4394                 dpll |= 3;
4395         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4396                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4397         else
4398                 dpll |= PLL_REF_INPUT_DREFCLK;
4399
4400         /* setup pipeconf */
4401         pipeconf = I915_READ(PIPECONF(pipe));
4402
4403         /* Set up the display plane register */
4404         dspcntr = DISPPLANE_GAMMA_ENABLE;
4405
4406         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4407         drm_mode_debug_printmodeline(mode);
4408
4409         /* CPU eDP is the only output that doesn't need a PCH PLL of its own */
4410         if (!is_cpu_edp) {
4411                 struct intel_pch_pll *pll;
4412
4413                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4414                 if (pll == NULL) {
4415                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4416                                          pipe);
4417                         return -EINVAL;
4418                 }
4419         } else
4420                 intel_put_pch_pll(intel_crtc);
4421
4422         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4423          * This is an exception to the general rule that mode_set doesn't turn
4424          * things on.
4425          */
4426         if (is_lvds) {
4427                 temp = I915_READ(PCH_LVDS);
4428                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4429                 if (HAS_PCH_CPT(dev)) {
4430                         temp &= ~PORT_TRANS_SEL_MASK;
4431                         temp |= PORT_TRANS_SEL_CPT(pipe);
4432                 } else {
4433                         if (pipe == 1)
4434                                 temp |= LVDS_PIPEB_SELECT;
4435                         else
4436                                 temp &= ~LVDS_PIPEB_SELECT;
4437                 }
4438
4439                 /* set the corresponsding LVDS_BORDER bit */
4440                 temp |= dev_priv->lvds_border_bits;
4441                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4442                  * set the DPLLs for dual-channel mode or not.
4443                  */
4444                 if (clock.p2 == 7)
4445                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4446                 else
4447                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4448
4449                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4450                  * appropriately here, but we need to look more thoroughly into how
4451                  * panels behave in the two modes.
4452                  */
4453                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4454                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4455                         temp |= LVDS_HSYNC_POLARITY;
4456                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4457                         temp |= LVDS_VSYNC_POLARITY;
4458                 I915_WRITE(PCH_LVDS, temp);
4459         }
4460
4461         pipeconf &= ~PIPECONF_DITHER_EN;
4462         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4463         if ((is_lvds && dev_priv->lvds_dither) || dither) {
4464                 pipeconf |= PIPECONF_DITHER_EN;
4465                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4466         }
4467         if (is_dp && !is_cpu_edp) {
4468                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4469         } else {
4470                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4471                 I915_WRITE(TRANSDATA_M1(pipe), 0);
4472                 I915_WRITE(TRANSDATA_N1(pipe), 0);
4473                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4474                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4475         }
4476
4477         if (intel_crtc->pch_pll) {
4478                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4479
4480                 /* Wait for the clocks to stabilize. */
4481                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4482                 udelay(150);
4483
4484                 /* The pixel multiplier can only be updated once the
4485                  * DPLL is enabled and the clocks are stable.
4486                  *
4487                  * So write it again.
4488                  */
4489                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4490         }
4491
4492         intel_crtc->lowfreq_avail = false;
4493         if (intel_crtc->pch_pll) {
4494                 if (is_lvds && has_reduced_clock && i915_powersave) {
4495                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4496                         intel_crtc->lowfreq_avail = true;
4497                         if (HAS_PIPE_CXSR(dev)) {
4498                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4499                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4500                         }
4501                 } else {
4502                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4503                         if (HAS_PIPE_CXSR(dev)) {
4504                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4505                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4506                         }
4507                 }
4508         }
4509
4510         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4511         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4512                 pipeconf |= PIPECONF_INTERLACED_ILK;
4513                 /* the chip adds 2 halflines automatically */
4514                 adjusted_mode->crtc_vtotal -= 1;
4515                 adjusted_mode->crtc_vblank_end -= 1;
4516                 I915_WRITE(VSYNCSHIFT(pipe),
4517                            adjusted_mode->crtc_hsync_start
4518                            - adjusted_mode->crtc_htotal/2);
4519         } else {
4520                 pipeconf |= PIPECONF_PROGRESSIVE;
4521                 I915_WRITE(VSYNCSHIFT(pipe), 0);
4522         }
4523
4524         I915_WRITE(HTOTAL(pipe),
4525                    (adjusted_mode->crtc_hdisplay - 1) |
4526                    ((adjusted_mode->crtc_htotal - 1) << 16));
4527         I915_WRITE(HBLANK(pipe),
4528                    (adjusted_mode->crtc_hblank_start - 1) |
4529                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4530         I915_WRITE(HSYNC(pipe),
4531                    (adjusted_mode->crtc_hsync_start - 1) |
4532                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4533
4534         I915_WRITE(VTOTAL(pipe),
4535                    (adjusted_mode->crtc_vdisplay - 1) |
4536                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4537         I915_WRITE(VBLANK(pipe),
4538                    (adjusted_mode->crtc_vblank_start - 1) |
4539                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4540         I915_WRITE(VSYNC(pipe),
4541                    (adjusted_mode->crtc_vsync_start - 1) |
4542                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4543
4544         /* pipesrc controls the size that is scaled from, which should
4545          * always be the user's requested size.
4546          */
4547         I915_WRITE(PIPESRC(pipe),
4548                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4549
4550         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4551         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4552         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4553         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4554
4555         if (is_cpu_edp)
4556                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4557
4558         I915_WRITE(PIPECONF(pipe), pipeconf);
4559         POSTING_READ(PIPECONF(pipe));
4560
4561         intel_wait_for_vblank(dev, pipe);
4562
4563         I915_WRITE(DSPCNTR(plane), dspcntr);
4564         POSTING_READ(DSPCNTR(plane));
4565
4566         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4567
4568         intel_update_watermarks(dev);
4569
4570         return ret;
4571 }
4572
4573 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4574                                struct drm_display_mode *mode,
4575                                struct drm_display_mode *adjusted_mode,
4576                                int x, int y,
4577                                struct drm_framebuffer *old_fb)
4578 {
4579         struct drm_device *dev = crtc->dev;
4580         struct drm_i915_private *dev_priv = dev->dev_private;
4581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4582         int pipe = intel_crtc->pipe;
4583         int ret;
4584
4585         drm_vblank_pre_modeset(dev, pipe);
4586
4587         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4588                                               x, y, old_fb);
4589         drm_vblank_post_modeset(dev, pipe);
4590
4591         if (ret)
4592                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4593         else
4594                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4595
4596         return ret;
4597 }
4598
4599 static bool intel_eld_uptodate(struct drm_connector *connector,
4600                                int reg_eldv, uint32_t bits_eldv,
4601                                int reg_elda, uint32_t bits_elda,
4602                                int reg_edid)
4603 {
4604         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4605         uint8_t *eld = connector->eld;
4606         uint32_t i;
4607
4608         i = I915_READ(reg_eldv);
4609         i &= bits_eldv;
4610
4611         if (!eld[0])
4612                 return !i;
4613
4614         if (!i)
4615                 return false;
4616
4617         i = I915_READ(reg_elda);
4618         i &= ~bits_elda;
4619         I915_WRITE(reg_elda, i);
4620
4621         for (i = 0; i < eld[2]; i++)
4622                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
4623                         return false;
4624
4625         return true;
4626 }
4627
4628 static void g4x_write_eld(struct drm_connector *connector,
4629                           struct drm_crtc *crtc)
4630 {
4631         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4632         uint8_t *eld = connector->eld;
4633         uint32_t eldv;
4634         uint32_t len;
4635         uint32_t i;
4636
4637         i = I915_READ(G4X_AUD_VID_DID);
4638
4639         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
4640                 eldv = G4X_ELDV_DEVCL_DEVBLC;
4641         else
4642                 eldv = G4X_ELDV_DEVCTG;
4643
4644         if (intel_eld_uptodate(connector,
4645                                G4X_AUD_CNTL_ST, eldv,
4646                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
4647                                G4X_HDMIW_HDMIEDID))
4648                 return;
4649
4650         i = I915_READ(G4X_AUD_CNTL_ST);
4651         i &= ~(eldv | G4X_ELD_ADDR);
4652         len = (i >> 9) & 0x1f;          /* ELD buffer size */
4653         I915_WRITE(G4X_AUD_CNTL_ST, i);
4654
4655         if (!eld[0])
4656                 return;
4657
4658         len = min_t(uint8_t, eld[2], len);
4659         DRM_DEBUG_DRIVER("ELD size %d\n", len);
4660         for (i = 0; i < len; i++)
4661                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
4662
4663         i = I915_READ(G4X_AUD_CNTL_ST);
4664         i |= eldv;
4665         I915_WRITE(G4X_AUD_CNTL_ST, i);
4666 }
4667
4668 static void ironlake_write_eld(struct drm_connector *connector,
4669                                      struct drm_crtc *crtc)
4670 {
4671         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4672         uint8_t *eld = connector->eld;
4673         uint32_t eldv;
4674         uint32_t i;
4675         int len;
4676         int hdmiw_hdmiedid;
4677         int aud_config;
4678         int aud_cntl_st;
4679         int aud_cntrl_st2;
4680
4681         if (HAS_PCH_IBX(connector->dev)) {
4682                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
4683                 aud_config = IBX_AUD_CONFIG_A;
4684                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
4685                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
4686         } else {
4687                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
4688                 aud_config = CPT_AUD_CONFIG_A;
4689                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
4690                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
4691         }
4692
4693         i = to_intel_crtc(crtc)->pipe;
4694         hdmiw_hdmiedid += i * 0x100;
4695         aud_cntl_st += i * 0x100;
4696         aud_config += i * 0x100;
4697
4698         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
4699
4700         i = I915_READ(aud_cntl_st);
4701         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
4702         if (!i) {
4703                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
4704                 /* operate blindly on all ports */
4705                 eldv = IBX_ELD_VALIDB;
4706                 eldv |= IBX_ELD_VALIDB << 4;
4707                 eldv |= IBX_ELD_VALIDB << 8;
4708         } else {
4709                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
4710                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
4711         }
4712
4713         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
4714                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
4715                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
4716                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4717         } else
4718                 I915_WRITE(aud_config, 0);
4719
4720         if (intel_eld_uptodate(connector,
4721                                aud_cntrl_st2, eldv,
4722                                aud_cntl_st, IBX_ELD_ADDRESS,
4723                                hdmiw_hdmiedid))
4724                 return;
4725
4726         i = I915_READ(aud_cntrl_st2);
4727         i &= ~eldv;
4728         I915_WRITE(aud_cntrl_st2, i);
4729
4730         if (!eld[0])
4731                 return;
4732
4733         i = I915_READ(aud_cntl_st);
4734         i &= ~IBX_ELD_ADDRESS;
4735         I915_WRITE(aud_cntl_st, i);
4736
4737         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
4738         DRM_DEBUG_DRIVER("ELD size %d\n", len);
4739         for (i = 0; i < len; i++)
4740                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
4741
4742         i = I915_READ(aud_cntrl_st2);
4743         i |= eldv;
4744         I915_WRITE(aud_cntrl_st2, i);
4745 }
4746
4747 void intel_write_eld(struct drm_encoder *encoder,
4748                      struct drm_display_mode *mode)
4749 {
4750         struct drm_crtc *crtc = encoder->crtc;
4751         struct drm_connector *connector;
4752         struct drm_device *dev = encoder->dev;
4753         struct drm_i915_private *dev_priv = dev->dev_private;
4754
4755         connector = drm_select_eld(encoder, mode);
4756         if (!connector)
4757                 return;
4758
4759         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
4760                          connector->base.id,
4761                          drm_get_connector_name(connector),
4762                          connector->encoder->base.id,
4763                          drm_get_encoder_name(connector->encoder));
4764
4765         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
4766
4767         if (dev_priv->display.write_eld)
4768                 dev_priv->display.write_eld(connector, crtc);
4769 }
4770
4771 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4772 void intel_crtc_load_lut(struct drm_crtc *crtc)
4773 {
4774         struct drm_device *dev = crtc->dev;
4775         struct drm_i915_private *dev_priv = dev->dev_private;
4776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4777         int palreg = PALETTE(intel_crtc->pipe);
4778         int i;
4779
4780         /* The clocks have to be on to load the palette. */
4781         if (!crtc->enabled || !intel_crtc->active)
4782                 return;
4783
4784         /* use legacy palette for Ironlake */
4785         if (HAS_PCH_SPLIT(dev))
4786                 palreg = LGC_PALETTE(intel_crtc->pipe);
4787
4788         for (i = 0; i < 256; i++) {
4789                 I915_WRITE(palreg + 4 * i,
4790                            (intel_crtc->lut_r[i] << 16) |
4791                            (intel_crtc->lut_g[i] << 8) |
4792                            intel_crtc->lut_b[i]);
4793         }
4794 }
4795
4796 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4797 {
4798         struct drm_device *dev = crtc->dev;
4799         struct drm_i915_private *dev_priv = dev->dev_private;
4800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4801         bool visible = base != 0;
4802         u32 cntl;
4803
4804         if (intel_crtc->cursor_visible == visible)
4805                 return;
4806
4807         cntl = I915_READ(_CURACNTR);
4808         if (visible) {
4809                 /* On these chipsets we can only modify the base whilst
4810                  * the cursor is disabled.
4811                  */
4812                 I915_WRITE(_CURABASE, base);
4813
4814                 cntl &= ~(CURSOR_FORMAT_MASK);
4815                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4816                 cntl |= CURSOR_ENABLE |
4817                         CURSOR_GAMMA_ENABLE |
4818                         CURSOR_FORMAT_ARGB;
4819         } else
4820                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4821         I915_WRITE(_CURACNTR, cntl);
4822
4823         intel_crtc->cursor_visible = visible;
4824 }
4825
4826 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4827 {
4828         struct drm_device *dev = crtc->dev;
4829         struct drm_i915_private *dev_priv = dev->dev_private;
4830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4831         int pipe = intel_crtc->pipe;
4832         bool visible = base != 0;
4833
4834         if (intel_crtc->cursor_visible != visible) {
4835                 uint32_t cntl = I915_READ(CURCNTR(pipe));
4836                 if (base) {
4837                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4838                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4839                         cntl |= pipe << 28; /* Connect to correct pipe */
4840                 } else {
4841                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4842                         cntl |= CURSOR_MODE_DISABLE;
4843                 }
4844                 I915_WRITE(CURCNTR(pipe), cntl);
4845
4846                 intel_crtc->cursor_visible = visible;
4847         }
4848         /* and commit changes on next vblank */
4849         I915_WRITE(CURBASE(pipe), base);
4850 }
4851
4852 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
4853 {
4854         struct drm_device *dev = crtc->dev;
4855         struct drm_i915_private *dev_priv = dev->dev_private;
4856         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4857         int pipe = intel_crtc->pipe;
4858         bool visible = base != 0;
4859
4860         if (intel_crtc->cursor_visible != visible) {
4861                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
4862                 if (base) {
4863                         cntl &= ~CURSOR_MODE;
4864                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4865                 } else {
4866                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4867                         cntl |= CURSOR_MODE_DISABLE;
4868                 }
4869                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
4870
4871                 intel_crtc->cursor_visible = visible;
4872         }
4873         /* and commit changes on next vblank */
4874         I915_WRITE(CURBASE_IVB(pipe), base);
4875 }
4876
4877 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4878 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4879                                      bool on)
4880 {
4881         struct drm_device *dev = crtc->dev;
4882         struct drm_i915_private *dev_priv = dev->dev_private;
4883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4884         int pipe = intel_crtc->pipe;
4885         int x = intel_crtc->cursor_x;
4886         int y = intel_crtc->cursor_y;
4887         u32 base, pos;
4888         bool visible;
4889
4890         pos = 0;
4891
4892         if (on && crtc->enabled && crtc->fb) {
4893                 base = intel_crtc->cursor_addr;
4894                 if (x > (int) crtc->fb->width)
4895                         base = 0;
4896
4897                 if (y > (int) crtc->fb->height)
4898                         base = 0;
4899         } else
4900                 base = 0;
4901
4902         if (x < 0) {
4903                 if (x + intel_crtc->cursor_width < 0)
4904                         base = 0;
4905
4906                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4907                 x = -x;
4908         }
4909         pos |= x << CURSOR_X_SHIFT;
4910
4911         if (y < 0) {
4912                 if (y + intel_crtc->cursor_height < 0)
4913                         base = 0;
4914
4915                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4916                 y = -y;
4917         }
4918         pos |= y << CURSOR_Y_SHIFT;
4919
4920         visible = base != 0;
4921         if (!visible && !intel_crtc->cursor_visible)
4922                 return;
4923
4924         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4925                 I915_WRITE(CURPOS_IVB(pipe), pos);
4926                 ivb_update_cursor(crtc, base);
4927         } else {
4928                 I915_WRITE(CURPOS(pipe), pos);
4929                 if (IS_845G(dev) || IS_I865G(dev))
4930                         i845_update_cursor(crtc, base);
4931                 else
4932                         i9xx_update_cursor(crtc, base);
4933         }
4934 }
4935
4936 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4937                                  struct drm_file *file,
4938                                  uint32_t handle,
4939                                  uint32_t width, uint32_t height)
4940 {
4941         struct drm_device *dev = crtc->dev;
4942         struct drm_i915_private *dev_priv = dev->dev_private;
4943         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4944         struct drm_i915_gem_object *obj;
4945         uint32_t addr;
4946         int ret;
4947
4948         DRM_DEBUG_KMS("\n");
4949
4950         /* if we want to turn off the cursor ignore width and height */
4951         if (!handle) {
4952                 DRM_DEBUG_KMS("cursor off\n");
4953                 addr = 0;
4954                 obj = NULL;
4955                 mutex_lock(&dev->struct_mutex);
4956                 goto finish;
4957         }
4958
4959         /* Currently we only support 64x64 cursors */
4960         if (width != 64 || height != 64) {
4961                 DRM_ERROR("we currently only support 64x64 cursors\n");
4962                 return -EINVAL;
4963         }
4964
4965         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4966         if (&obj->base == NULL)
4967                 return -ENOENT;
4968
4969         if (obj->base.size < width * height * 4) {
4970                 DRM_ERROR("buffer is to small\n");
4971                 ret = -ENOMEM;
4972                 goto fail;
4973         }
4974
4975         /* we only need to pin inside GTT if cursor is non-phy */
4976         mutex_lock(&dev->struct_mutex);
4977         if (!dev_priv->info->cursor_needs_physical) {
4978                 if (obj->tiling_mode) {
4979                         DRM_ERROR("cursor cannot be tiled\n");
4980                         ret = -EINVAL;
4981                         goto fail_locked;
4982                 }
4983
4984                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
4985                 if (ret) {
4986                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4987                         goto fail_locked;
4988                 }
4989
4990                 ret = i915_gem_object_put_fence(obj);
4991                 if (ret) {
4992                         DRM_ERROR("failed to release fence for cursor");
4993                         goto fail_unpin;
4994                 }
4995
4996                 addr = obj->gtt_offset;
4997         } else {
4998                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4999                 ret = i915_gem_attach_phys_object(dev, obj,
5000                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5001                                                   align);
5002                 if (ret) {
5003                         DRM_ERROR("failed to attach phys object\n");
5004                         goto fail_locked;
5005                 }
5006                 addr = obj->phys_obj->handle->busaddr;
5007         }
5008
5009         if (IS_GEN2(dev))
5010                 I915_WRITE(CURSIZE, (height << 12) | width);
5011
5012  finish:
5013         if (intel_crtc->cursor_bo) {
5014                 if (dev_priv->info->cursor_needs_physical) {
5015                         if (intel_crtc->cursor_bo != obj)
5016                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5017                 } else
5018                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5019                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5020         }
5021
5022         mutex_unlock(&dev->struct_mutex);
5023
5024         intel_crtc->cursor_addr = addr;
5025         intel_crtc->cursor_bo = obj;
5026         intel_crtc->cursor_width = width;
5027         intel_crtc->cursor_height = height;
5028
5029         intel_crtc_update_cursor(crtc, true);
5030
5031         return 0;
5032 fail_unpin:
5033         i915_gem_object_unpin(obj);
5034 fail_locked:
5035         mutex_unlock(&dev->struct_mutex);
5036 fail:
5037         drm_gem_object_unreference_unlocked(&obj->base);
5038         return ret;
5039 }
5040
5041 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5042 {
5043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5044
5045         intel_crtc->cursor_x = x;
5046         intel_crtc->cursor_y = y;
5047
5048         intel_crtc_update_cursor(crtc, true);
5049
5050         return 0;
5051 }
5052
5053 /** Sets the color ramps on behalf of RandR */
5054 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5055                                  u16 blue, int regno)
5056 {
5057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5058
5059         intel_crtc->lut_r[regno] = red >> 8;
5060         intel_crtc->lut_g[regno] = green >> 8;
5061         intel_crtc->lut_b[regno] = blue >> 8;
5062 }
5063
5064 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5065                              u16 *blue, int regno)
5066 {
5067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5068
5069         *red = intel_crtc->lut_r[regno] << 8;
5070         *green = intel_crtc->lut_g[regno] << 8;
5071         *blue = intel_crtc->lut_b[regno] << 8;
5072 }
5073
5074 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5075                                  u16 *blue, uint32_t start, uint32_t size)
5076 {
5077         int end = (start + size > 256) ? 256 : start + size, i;
5078         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5079
5080         for (i = start; i < end; i++) {
5081                 intel_crtc->lut_r[i] = red[i] >> 8;
5082                 intel_crtc->lut_g[i] = green[i] >> 8;
5083                 intel_crtc->lut_b[i] = blue[i] >> 8;
5084         }
5085
5086         intel_crtc_load_lut(crtc);
5087 }
5088
5089 /**
5090  * Get a pipe with a simple mode set on it for doing load-based monitor
5091  * detection.
5092  *
5093  * It will be up to the load-detect code to adjust the pipe as appropriate for
5094  * its requirements.  The pipe will be connected to no other encoders.
5095  *
5096  * Currently this code will only succeed if there is a pipe with no encoders
5097  * configured for it.  In the future, it could choose to temporarily disable
5098  * some outputs to free up a pipe for its use.
5099  *
5100  * \return crtc, or NULL if no pipes are available.
5101  */
5102
5103 /* VESA 640x480x72Hz mode to set on the pipe */
5104 static struct drm_display_mode load_detect_mode = {
5105         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5106                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5107 };
5108
5109 static struct drm_framebuffer *
5110 intel_framebuffer_create(struct drm_device *dev,
5111                          struct drm_mode_fb_cmd2 *mode_cmd,
5112                          struct drm_i915_gem_object *obj)
5113 {
5114         struct intel_framebuffer *intel_fb;
5115         int ret;
5116
5117         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5118         if (!intel_fb) {
5119                 drm_gem_object_unreference_unlocked(&obj->base);
5120                 return ERR_PTR(-ENOMEM);
5121         }
5122
5123         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5124         if (ret) {
5125                 drm_gem_object_unreference_unlocked(&obj->base);
5126                 kfree(intel_fb);
5127                 return ERR_PTR(ret);
5128         }
5129
5130         return &intel_fb->base;
5131 }
5132
5133 static u32
5134 intel_framebuffer_pitch_for_width(int width, int bpp)
5135 {
5136         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5137         return ALIGN(pitch, 64);
5138 }
5139
5140 static u32
5141 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5142 {
5143         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5144         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5145 }
5146
5147 static struct drm_framebuffer *
5148 intel_framebuffer_create_for_mode(struct drm_device *dev,
5149                                   struct drm_display_mode *mode,
5150                                   int depth, int bpp)
5151 {
5152         struct drm_i915_gem_object *obj;
5153         struct drm_mode_fb_cmd2 mode_cmd;
5154
5155         obj = i915_gem_alloc_object(dev,
5156                                     intel_framebuffer_size_for_mode(mode, bpp));
5157         if (obj == NULL)
5158                 return ERR_PTR(-ENOMEM);
5159
5160         mode_cmd.width = mode->hdisplay;
5161         mode_cmd.height = mode->vdisplay;
5162         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5163                                                                 bpp);
5164         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5165
5166         return intel_framebuffer_create(dev, &mode_cmd, obj);
5167 }
5168
5169 static struct drm_framebuffer *
5170 mode_fits_in_fbdev(struct drm_device *dev,
5171                    struct drm_display_mode *mode)
5172 {
5173         struct drm_i915_private *dev_priv = dev->dev_private;
5174         struct drm_i915_gem_object *obj;
5175         struct drm_framebuffer *fb;
5176
5177         if (dev_priv->fbdev == NULL)
5178                 return NULL;
5179
5180         obj = dev_priv->fbdev->ifb.obj;
5181         if (obj == NULL)
5182                 return NULL;
5183
5184         fb = &dev_priv->fbdev->ifb.base;
5185         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5186                                                                fb->bits_per_pixel))
5187                 return NULL;
5188
5189         if (obj->base.size < mode->vdisplay * fb->pitches[0])
5190                 return NULL;
5191
5192         return fb;
5193 }
5194
5195 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5196                                 struct drm_connector *connector,
5197                                 struct drm_display_mode *mode,
5198                                 struct intel_load_detect_pipe *old)
5199 {
5200         struct intel_crtc *intel_crtc;
5201         struct drm_crtc *possible_crtc;
5202         struct drm_encoder *encoder = &intel_encoder->base;
5203         struct drm_crtc *crtc = NULL;
5204         struct drm_device *dev = encoder->dev;
5205         struct drm_framebuffer *old_fb;
5206         int i = -1;
5207
5208         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5209                       connector->base.id, drm_get_connector_name(connector),
5210                       encoder->base.id, drm_get_encoder_name(encoder));
5211
5212         /*
5213          * Algorithm gets a little messy:
5214          *
5215          *   - if the connector already has an assigned crtc, use it (but make
5216          *     sure it's on first)
5217          *
5218          *   - try to find the first unused crtc that can drive this connector,
5219          *     and use that if we find one
5220          */
5221
5222         /* See if we already have a CRTC for this connector */
5223         if (encoder->crtc) {
5224                 crtc = encoder->crtc;
5225
5226                 intel_crtc = to_intel_crtc(crtc);
5227                 old->dpms_mode = intel_crtc->dpms_mode;
5228                 old->load_detect_temp = false;
5229
5230                 /* Make sure the crtc and connector are running */
5231                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5232                         struct drm_encoder_helper_funcs *encoder_funcs;
5233                         struct drm_crtc_helper_funcs *crtc_funcs;
5234
5235                         crtc_funcs = crtc->helper_private;
5236                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5237
5238                         encoder_funcs = encoder->helper_private;
5239                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5240                 }
5241
5242                 return true;
5243         }
5244
5245         /* Find an unused one (if possible) */
5246         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5247                 i++;
5248                 if (!(encoder->possible_crtcs & (1 << i)))
5249                         continue;
5250                 if (!possible_crtc->enabled) {
5251                         crtc = possible_crtc;
5252                         break;
5253                 }
5254         }
5255
5256         /*
5257          * If we didn't find an unused CRTC, don't use any.
5258          */
5259         if (!crtc) {
5260                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5261                 return false;
5262         }
5263
5264         encoder->crtc = crtc;
5265         connector->encoder = encoder;
5266
5267         intel_crtc = to_intel_crtc(crtc);
5268         old->dpms_mode = intel_crtc->dpms_mode;
5269         old->load_detect_temp = true;
5270         old->release_fb = NULL;
5271
5272         if (!mode)
5273                 mode = &load_detect_mode;
5274
5275         old_fb = crtc->fb;
5276
5277         /* We need a framebuffer large enough to accommodate all accesses
5278          * that the plane may generate whilst we perform load detection.
5279          * We can not rely on the fbcon either being present (we get called
5280          * during its initialisation to detect all boot displays, or it may
5281          * not even exist) or that it is large enough to satisfy the
5282          * requested mode.
5283          */
5284         crtc->fb = mode_fits_in_fbdev(dev, mode);
5285         if (crtc->fb == NULL) {
5286                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5287                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5288                 old->release_fb = crtc->fb;
5289         } else
5290                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5291         if (IS_ERR(crtc->fb)) {
5292                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5293                 crtc->fb = old_fb;
5294                 return false;
5295         }
5296
5297         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5298                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5299                 if (old->release_fb)
5300                         old->release_fb->funcs->destroy(old->release_fb);
5301                 crtc->fb = old_fb;
5302                 return false;
5303         }
5304
5305         /* let the connector get through one full cycle before testing */
5306         intel_wait_for_vblank(dev, intel_crtc->pipe);
5307
5308         return true;
5309 }
5310
5311 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5312                                     struct drm_connector *connector,
5313                                     struct intel_load_detect_pipe *old)
5314 {
5315         struct drm_encoder *encoder = &intel_encoder->base;
5316         struct drm_device *dev = encoder->dev;
5317         struct drm_crtc *crtc = encoder->crtc;
5318         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5319         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5320
5321         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5322                       connector->base.id, drm_get_connector_name(connector),
5323                       encoder->base.id, drm_get_encoder_name(encoder));
5324
5325         if (old->load_detect_temp) {
5326                 connector->encoder = NULL;
5327                 drm_helper_disable_unused_functions(dev);
5328
5329                 if (old->release_fb)
5330                         old->release_fb->funcs->destroy(old->release_fb);
5331
5332                 return;
5333         }
5334
5335         /* Switch crtc and encoder back off if necessary */
5336         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5337                 encoder_funcs->dpms(encoder, old->dpms_mode);
5338                 crtc_funcs->dpms(crtc, old->dpms_mode);
5339         }
5340 }
5341
5342 /* Returns the clock of the currently programmed mode of the given pipe. */
5343 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5344 {
5345         struct drm_i915_private *dev_priv = dev->dev_private;
5346         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5347         int pipe = intel_crtc->pipe;
5348         u32 dpll = I915_READ(DPLL(pipe));
5349         u32 fp;
5350         intel_clock_t clock;
5351
5352         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5353                 fp = I915_READ(FP0(pipe));
5354         else
5355                 fp = I915_READ(FP1(pipe));
5356
5357         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5358         if (IS_PINEVIEW(dev)) {
5359                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5360                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5361         } else {
5362                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5363                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5364         }
5365
5366         if (!IS_GEN2(dev)) {
5367                 if (IS_PINEVIEW(dev))
5368                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5369                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5370                 else
5371                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5372                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5373
5374                 switch (dpll & DPLL_MODE_MASK) {
5375                 case DPLLB_MODE_DAC_SERIAL:
5376                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5377                                 5 : 10;
5378                         break;
5379                 case DPLLB_MODE_LVDS:
5380                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5381                                 7 : 14;
5382                         break;
5383                 default:
5384                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5385                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5386                         return 0;
5387                 }
5388
5389                 /* XXX: Handle the 100Mhz refclk */
5390                 intel_clock(dev, 96000, &clock);
5391         } else {
5392                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5393
5394                 if (is_lvds) {
5395                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5396                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5397                         clock.p2 = 14;
5398
5399                         if ((dpll & PLL_REF_INPUT_MASK) ==
5400                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5401                                 /* XXX: might not be 66MHz */
5402                                 intel_clock(dev, 66000, &clock);
5403                         } else
5404                                 intel_clock(dev, 48000, &clock);
5405                 } else {
5406                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5407                                 clock.p1 = 2;
5408                         else {
5409                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5410                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5411                         }
5412                         if (dpll & PLL_P2_DIVIDE_BY_4)
5413                                 clock.p2 = 4;
5414                         else
5415                                 clock.p2 = 2;
5416
5417                         intel_clock(dev, 48000, &clock);
5418                 }
5419         }
5420
5421         /* XXX: It would be nice to validate the clocks, but we can't reuse
5422          * i830PllIsValid() because it relies on the xf86_config connector
5423          * configuration being accurate, which it isn't necessarily.
5424          */
5425
5426         return clock.dot;
5427 }
5428
5429 /** Returns the currently programmed mode of the given pipe. */
5430 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5431                                              struct drm_crtc *crtc)
5432 {
5433         struct drm_i915_private *dev_priv = dev->dev_private;
5434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5435         int pipe = intel_crtc->pipe;
5436         struct drm_display_mode *mode;
5437         int htot = I915_READ(HTOTAL(pipe));
5438         int hsync = I915_READ(HSYNC(pipe));
5439         int vtot = I915_READ(VTOTAL(pipe));
5440         int vsync = I915_READ(VSYNC(pipe));
5441
5442         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5443         if (!mode)
5444                 return NULL;
5445
5446         mode->clock = intel_crtc_clock_get(dev, crtc);
5447         mode->hdisplay = (htot & 0xffff) + 1;
5448         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5449         mode->hsync_start = (hsync & 0xffff) + 1;
5450         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5451         mode->vdisplay = (vtot & 0xffff) + 1;
5452         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5453         mode->vsync_start = (vsync & 0xffff) + 1;
5454         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5455
5456         drm_mode_set_name(mode);
5457
5458         return mode;
5459 }
5460
5461 #define GPU_IDLE_TIMEOUT 500 /* ms */
5462
5463 /* When this timer fires, we've been idle for awhile */
5464 static void intel_gpu_idle_timer(unsigned long arg)
5465 {
5466         struct drm_device *dev = (struct drm_device *)arg;
5467         drm_i915_private_t *dev_priv = dev->dev_private;
5468
5469         if (!list_empty(&dev_priv->mm.active_list)) {
5470                 /* Still processing requests, so just re-arm the timer. */
5471                 mod_timer(&dev_priv->idle_timer, jiffies +
5472                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5473                 return;
5474         }
5475
5476         dev_priv->busy = false;
5477         queue_work(dev_priv->wq, &dev_priv->idle_work);
5478 }
5479
5480 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5481
5482 static void intel_crtc_idle_timer(unsigned long arg)
5483 {
5484         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5485         struct drm_crtc *crtc = &intel_crtc->base;
5486         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5487         struct intel_framebuffer *intel_fb;
5488
5489         intel_fb = to_intel_framebuffer(crtc->fb);
5490         if (intel_fb && intel_fb->obj->active) {
5491                 /* The framebuffer is still being accessed by the GPU. */
5492                 mod_timer(&intel_crtc->idle_timer, jiffies +
5493                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5494                 return;
5495         }
5496
5497         intel_crtc->busy = false;
5498         queue_work(dev_priv->wq, &dev_priv->idle_work);
5499 }
5500
5501 static void intel_increase_pllclock(struct drm_crtc *crtc)
5502 {
5503         struct drm_device *dev = crtc->dev;
5504         drm_i915_private_t *dev_priv = dev->dev_private;
5505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5506         int pipe = intel_crtc->pipe;
5507         int dpll_reg = DPLL(pipe);
5508         int dpll;
5509
5510         if (HAS_PCH_SPLIT(dev))
5511                 return;
5512
5513         if (!dev_priv->lvds_downclock_avail)
5514                 return;
5515
5516         dpll = I915_READ(dpll_reg);
5517         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5518                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5519
5520                 assert_panel_unlocked(dev_priv, pipe);
5521
5522                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5523                 I915_WRITE(dpll_reg, dpll);
5524                 intel_wait_for_vblank(dev, pipe);
5525
5526                 dpll = I915_READ(dpll_reg);
5527                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5528                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5529         }
5530
5531         /* Schedule downclock */
5532         mod_timer(&intel_crtc->idle_timer, jiffies +
5533                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5534 }
5535
5536 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5537 {
5538         struct drm_device *dev = crtc->dev;
5539         drm_i915_private_t *dev_priv = dev->dev_private;
5540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5541
5542         if (HAS_PCH_SPLIT(dev))
5543                 return;
5544
5545         if (!dev_priv->lvds_downclock_avail)
5546                 return;
5547
5548         /*
5549          * Since this is called by a timer, we should never get here in
5550          * the manual case.
5551          */
5552         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5553                 int pipe = intel_crtc->pipe;
5554                 int dpll_reg = DPLL(pipe);
5555                 int dpll;
5556
5557                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5558
5559                 assert_panel_unlocked(dev_priv, pipe);
5560
5561                 dpll = I915_READ(dpll_reg);
5562                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5563                 I915_WRITE(dpll_reg, dpll);
5564                 intel_wait_for_vblank(dev, pipe);
5565                 dpll = I915_READ(dpll_reg);
5566                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5567                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5568         }
5569
5570 }
5571
5572 /**
5573  * intel_idle_update - adjust clocks for idleness
5574  * @work: work struct
5575  *
5576  * Either the GPU or display (or both) went idle.  Check the busy status
5577  * here and adjust the CRTC and GPU clocks as necessary.
5578  */
5579 static void intel_idle_update(struct work_struct *work)
5580 {
5581         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5582                                                     idle_work);
5583         struct drm_device *dev = dev_priv->dev;
5584         struct drm_crtc *crtc;
5585         struct intel_crtc *intel_crtc;
5586
5587         if (!i915_powersave)
5588                 return;
5589
5590         mutex_lock(&dev->struct_mutex);
5591
5592         i915_update_gfx_val(dev_priv);
5593
5594         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5595                 /* Skip inactive CRTCs */
5596                 if (!crtc->fb)
5597                         continue;
5598
5599                 intel_crtc = to_intel_crtc(crtc);
5600                 if (!intel_crtc->busy)
5601                         intel_decrease_pllclock(crtc);
5602         }
5603
5604
5605         mutex_unlock(&dev->struct_mutex);
5606 }
5607
5608 /**
5609  * intel_mark_busy - mark the GPU and possibly the display busy
5610  * @dev: drm device
5611  * @obj: object we're operating on
5612  *
5613  * Callers can use this function to indicate that the GPU is busy processing
5614  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
5615  * buffer), we'll also mark the display as busy, so we know to increase its
5616  * clock frequency.
5617  */
5618 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5619 {
5620         drm_i915_private_t *dev_priv = dev->dev_private;
5621         struct drm_crtc *crtc = NULL;
5622         struct intel_framebuffer *intel_fb;
5623         struct intel_crtc *intel_crtc;
5624
5625         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5626                 return;
5627
5628         if (!dev_priv->busy) {
5629                 intel_sanitize_pm(dev);
5630                 dev_priv->busy = true;
5631         } else
5632                 mod_timer(&dev_priv->idle_timer, jiffies +
5633                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5634
5635         if (obj == NULL)
5636                 return;
5637
5638         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5639                 if (!crtc->fb)
5640                         continue;
5641
5642                 intel_crtc = to_intel_crtc(crtc);
5643                 intel_fb = to_intel_framebuffer(crtc->fb);
5644                 if (intel_fb->obj == obj) {
5645                         if (!intel_crtc->busy) {
5646                                 /* Non-busy -> busy, upclock */
5647                                 intel_increase_pllclock(crtc);
5648                                 intel_crtc->busy = true;
5649                         } else {
5650                                 /* Busy -> busy, put off timer */
5651                                 mod_timer(&intel_crtc->idle_timer, jiffies +
5652                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5653                         }
5654                 }
5655         }
5656 }
5657
5658 static void intel_crtc_destroy(struct drm_crtc *crtc)
5659 {
5660         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5661         struct drm_device *dev = crtc->dev;
5662         struct intel_unpin_work *work;
5663         unsigned long flags;
5664
5665         spin_lock_irqsave(&dev->event_lock, flags);
5666         work = intel_crtc->unpin_work;
5667         intel_crtc->unpin_work = NULL;
5668         spin_unlock_irqrestore(&dev->event_lock, flags);
5669
5670         if (work) {
5671                 cancel_work_sync(&work->work);
5672                 kfree(work);
5673         }
5674
5675         drm_crtc_cleanup(crtc);
5676
5677         kfree(intel_crtc);
5678 }
5679
5680 static void intel_unpin_work_fn(struct work_struct *__work)
5681 {
5682         struct intel_unpin_work *work =
5683                 container_of(__work, struct intel_unpin_work, work);
5684
5685         mutex_lock(&work->dev->struct_mutex);
5686         intel_unpin_fb_obj(work->old_fb_obj);
5687         drm_gem_object_unreference(&work->pending_flip_obj->base);
5688         drm_gem_object_unreference(&work->old_fb_obj->base);
5689
5690         intel_update_fbc(work->dev);
5691         mutex_unlock(&work->dev->struct_mutex);
5692         kfree(work);
5693 }
5694
5695 static void do_intel_finish_page_flip(struct drm_device *dev,
5696                                       struct drm_crtc *crtc)
5697 {
5698         drm_i915_private_t *dev_priv = dev->dev_private;
5699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5700         struct intel_unpin_work *work;
5701         struct drm_i915_gem_object *obj;
5702         struct drm_pending_vblank_event *e;
5703         struct timeval tnow, tvbl;
5704         unsigned long flags;
5705
5706         /* Ignore early vblank irqs */
5707         if (intel_crtc == NULL)
5708                 return;
5709
5710         do_gettimeofday(&tnow);
5711
5712         spin_lock_irqsave(&dev->event_lock, flags);
5713         work = intel_crtc->unpin_work;
5714         if (work == NULL || !work->pending) {
5715                 spin_unlock_irqrestore(&dev->event_lock, flags);
5716                 return;
5717         }
5718
5719         intel_crtc->unpin_work = NULL;
5720
5721         if (work->event) {
5722                 e = work->event;
5723                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5724
5725                 /* Called before vblank count and timestamps have
5726                  * been updated for the vblank interval of flip
5727                  * completion? Need to increment vblank count and
5728                  * add one videorefresh duration to returned timestamp
5729                  * to account for this. We assume this happened if we
5730                  * get called over 0.9 frame durations after the last
5731                  * timestamped vblank.
5732                  *
5733                  * This calculation can not be used with vrefresh rates
5734                  * below 5Hz (10Hz to be on the safe side) without
5735                  * promoting to 64 integers.
5736                  */
5737                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5738                     9 * crtc->framedur_ns) {
5739                         e->event.sequence++;
5740                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5741                                              crtc->framedur_ns);
5742                 }
5743
5744                 e->event.tv_sec = tvbl.tv_sec;
5745                 e->event.tv_usec = tvbl.tv_usec;
5746
5747                 list_add_tail(&e->base.link,
5748                               &e->base.file_priv->event_list);
5749                 wake_up_interruptible(&e->base.file_priv->event_wait);
5750         }
5751
5752         drm_vblank_put(dev, intel_crtc->pipe);
5753
5754         spin_unlock_irqrestore(&dev->event_lock, flags);
5755
5756         obj = work->old_fb_obj;
5757
5758         atomic_clear_mask(1 << intel_crtc->plane,
5759                           &obj->pending_flip.counter);
5760         if (atomic_read(&obj->pending_flip) == 0)
5761                 wake_up(&dev_priv->pending_flip_queue);
5762
5763         schedule_work(&work->work);
5764
5765         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5766 }
5767
5768 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5769 {
5770         drm_i915_private_t *dev_priv = dev->dev_private;
5771         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5772
5773         do_intel_finish_page_flip(dev, crtc);
5774 }
5775
5776 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5777 {
5778         drm_i915_private_t *dev_priv = dev->dev_private;
5779         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5780
5781         do_intel_finish_page_flip(dev, crtc);
5782 }
5783
5784 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5785 {
5786         drm_i915_private_t *dev_priv = dev->dev_private;
5787         struct intel_crtc *intel_crtc =
5788                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5789         unsigned long flags;
5790
5791         spin_lock_irqsave(&dev->event_lock, flags);
5792         if (intel_crtc->unpin_work) {
5793                 if ((++intel_crtc->unpin_work->pending) > 1)
5794                         DRM_ERROR("Prepared flip multiple times\n");
5795         } else {
5796                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5797         }
5798         spin_unlock_irqrestore(&dev->event_lock, flags);
5799 }
5800
5801 static int intel_gen2_queue_flip(struct drm_device *dev,
5802                                  struct drm_crtc *crtc,
5803                                  struct drm_framebuffer *fb,
5804                                  struct drm_i915_gem_object *obj)
5805 {
5806         struct drm_i915_private *dev_priv = dev->dev_private;
5807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5808         unsigned long offset;
5809         u32 flip_mask;
5810         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5811         int ret;
5812
5813         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5814         if (ret)
5815                 goto err;
5816
5817         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5818         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5819
5820         ret = intel_ring_begin(ring, 6);
5821         if (ret)
5822                 goto err_unpin;
5823
5824         /* Can't queue multiple flips, so wait for the previous
5825          * one to finish before executing the next.
5826          */
5827         if (intel_crtc->plane)
5828                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5829         else
5830                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5831         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
5832         intel_ring_emit(ring, MI_NOOP);
5833         intel_ring_emit(ring, MI_DISPLAY_FLIP |
5834                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5835         intel_ring_emit(ring, fb->pitches[0]);
5836         intel_ring_emit(ring, obj->gtt_offset + offset);
5837         intel_ring_emit(ring, 0); /* aux display base address, unused */
5838         intel_ring_advance(ring);
5839         return 0;
5840
5841 err_unpin:
5842         intel_unpin_fb_obj(obj);
5843 err:
5844         return ret;
5845 }
5846
5847 static int intel_gen3_queue_flip(struct drm_device *dev,
5848                                  struct drm_crtc *crtc,
5849                                  struct drm_framebuffer *fb,
5850                                  struct drm_i915_gem_object *obj)
5851 {
5852         struct drm_i915_private *dev_priv = dev->dev_private;
5853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5854         unsigned long offset;
5855         u32 flip_mask;
5856         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5857         int ret;
5858
5859         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5860         if (ret)
5861                 goto err;
5862
5863         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5864         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5865
5866         ret = intel_ring_begin(ring, 6);
5867         if (ret)
5868                 goto err_unpin;
5869
5870         if (intel_crtc->plane)
5871                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5872         else
5873                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5874         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
5875         intel_ring_emit(ring, MI_NOOP);
5876         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
5877                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5878         intel_ring_emit(ring, fb->pitches[0]);
5879         intel_ring_emit(ring, obj->gtt_offset + offset);
5880         intel_ring_emit(ring, MI_NOOP);
5881
5882         intel_ring_advance(ring);
5883         return 0;
5884
5885 err_unpin:
5886         intel_unpin_fb_obj(obj);
5887 err:
5888         return ret;
5889 }
5890
5891 static int intel_gen4_queue_flip(struct drm_device *dev,
5892                                  struct drm_crtc *crtc,
5893                                  struct drm_framebuffer *fb,
5894                                  struct drm_i915_gem_object *obj)
5895 {
5896         struct drm_i915_private *dev_priv = dev->dev_private;
5897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5898         uint32_t pf, pipesrc;
5899         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5900         int ret;
5901
5902         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5903         if (ret)
5904                 goto err;
5905
5906         ret = intel_ring_begin(ring, 4);
5907         if (ret)
5908                 goto err_unpin;
5909
5910         /* i965+ uses the linear or tiled offsets from the
5911          * Display Registers (which do not change across a page-flip)
5912          * so we need only reprogram the base address.
5913          */
5914         intel_ring_emit(ring, MI_DISPLAY_FLIP |
5915                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5916         intel_ring_emit(ring, fb->pitches[0]);
5917         intel_ring_emit(ring, obj->gtt_offset | obj->tiling_mode);
5918
5919         /* XXX Enabling the panel-fitter across page-flip is so far
5920          * untested on non-native modes, so ignore it for now.
5921          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5922          */
5923         pf = 0;
5924         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5925         intel_ring_emit(ring, pf | pipesrc);
5926         intel_ring_advance(ring);
5927         return 0;
5928
5929 err_unpin:
5930         intel_unpin_fb_obj(obj);
5931 err:
5932         return ret;
5933 }
5934
5935 static int intel_gen6_queue_flip(struct drm_device *dev,
5936                                  struct drm_crtc *crtc,
5937                                  struct drm_framebuffer *fb,
5938                                  struct drm_i915_gem_object *obj)
5939 {
5940         struct drm_i915_private *dev_priv = dev->dev_private;
5941         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5942         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5943         uint32_t pf, pipesrc;
5944         int ret;
5945
5946         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5947         if (ret)
5948                 goto err;
5949
5950         ret = intel_ring_begin(ring, 4);
5951         if (ret)
5952                 goto err_unpin;
5953
5954         intel_ring_emit(ring, MI_DISPLAY_FLIP |
5955                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5956         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
5957         intel_ring_emit(ring, obj->gtt_offset);
5958
5959         /* Contrary to the suggestions in the documentation,
5960          * "Enable Panel Fitter" does not seem to be required when page
5961          * flipping with a non-native mode, and worse causes a normal
5962          * modeset to fail.
5963          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
5964          */
5965         pf = 0;
5966         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5967         intel_ring_emit(ring, pf | pipesrc);
5968         intel_ring_advance(ring);
5969         return 0;
5970
5971 err_unpin:
5972         intel_unpin_fb_obj(obj);
5973 err:
5974         return ret;
5975 }
5976
5977 /*
5978  * On gen7 we currently use the blit ring because (in early silicon at least)
5979  * the render ring doesn't give us interrpts for page flip completion, which
5980  * means clients will hang after the first flip is queued.  Fortunately the
5981  * blit ring generates interrupts properly, so use it instead.
5982  */
5983 static int intel_gen7_queue_flip(struct drm_device *dev,
5984                                  struct drm_crtc *crtc,
5985                                  struct drm_framebuffer *fb,
5986                                  struct drm_i915_gem_object *obj)
5987 {
5988         struct drm_i915_private *dev_priv = dev->dev_private;
5989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5990         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
5991         int ret;
5992
5993         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5994         if (ret)
5995                 goto err;
5996
5997         ret = intel_ring_begin(ring, 4);
5998         if (ret)
5999                 goto err_unpin;
6000
6001         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6002         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6003         intel_ring_emit(ring, (obj->gtt_offset));
6004         intel_ring_emit(ring, (MI_NOOP));
6005         intel_ring_advance(ring);
6006         return 0;
6007
6008 err_unpin:
6009         intel_unpin_fb_obj(obj);
6010 err:
6011         return ret;
6012 }
6013
6014 static int intel_default_queue_flip(struct drm_device *dev,
6015                                     struct drm_crtc *crtc,
6016                                     struct drm_framebuffer *fb,
6017                                     struct drm_i915_gem_object *obj)
6018 {
6019         return -ENODEV;
6020 }
6021
6022 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6023                                 struct drm_framebuffer *fb,
6024                                 struct drm_pending_vblank_event *event)
6025 {
6026         struct drm_device *dev = crtc->dev;
6027         struct drm_i915_private *dev_priv = dev->dev_private;
6028         struct intel_framebuffer *intel_fb;
6029         struct drm_i915_gem_object *obj;
6030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6031         struct intel_unpin_work *work;
6032         unsigned long flags;
6033         int ret;
6034
6035         work = kzalloc(sizeof *work, GFP_KERNEL);
6036         if (work == NULL)
6037                 return -ENOMEM;
6038
6039         work->event = event;
6040         work->dev = crtc->dev;
6041         intel_fb = to_intel_framebuffer(crtc->fb);
6042         work->old_fb_obj = intel_fb->obj;
6043         INIT_WORK(&work->work, intel_unpin_work_fn);
6044
6045         ret = drm_vblank_get(dev, intel_crtc->pipe);
6046         if (ret)
6047                 goto free_work;
6048
6049         /* We borrow the event spin lock for protecting unpin_work */
6050         spin_lock_irqsave(&dev->event_lock, flags);
6051         if (intel_crtc->unpin_work) {
6052                 spin_unlock_irqrestore(&dev->event_lock, flags);
6053                 kfree(work);
6054                 drm_vblank_put(dev, intel_crtc->pipe);
6055
6056                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6057                 return -EBUSY;
6058         }
6059         intel_crtc->unpin_work = work;
6060         spin_unlock_irqrestore(&dev->event_lock, flags);
6061
6062         intel_fb = to_intel_framebuffer(fb);
6063         obj = intel_fb->obj;
6064
6065         mutex_lock(&dev->struct_mutex);
6066
6067         /* Reference the objects for the scheduled work. */
6068         drm_gem_object_reference(&work->old_fb_obj->base);
6069         drm_gem_object_reference(&obj->base);
6070
6071         crtc->fb = fb;
6072
6073         work->pending_flip_obj = obj;
6074
6075         work->enable_stall_check = true;
6076
6077         /* Block clients from rendering to the new back buffer until
6078          * the flip occurs and the object is no longer visible.
6079          */
6080         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6081
6082         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6083         if (ret)
6084                 goto cleanup_pending;
6085
6086         intel_disable_fbc(dev);
6087         intel_mark_busy(dev, obj);
6088         mutex_unlock(&dev->struct_mutex);
6089
6090         trace_i915_flip_request(intel_crtc->plane, obj);
6091
6092         return 0;
6093
6094 cleanup_pending:
6095         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6096         drm_gem_object_unreference(&work->old_fb_obj->base);
6097         drm_gem_object_unreference(&obj->base);
6098         mutex_unlock(&dev->struct_mutex);
6099
6100         spin_lock_irqsave(&dev->event_lock, flags);
6101         intel_crtc->unpin_work = NULL;
6102         spin_unlock_irqrestore(&dev->event_lock, flags);
6103
6104         drm_vblank_put(dev, intel_crtc->pipe);
6105 free_work:
6106         kfree(work);
6107
6108         return ret;
6109 }
6110
6111 static void intel_sanitize_modesetting(struct drm_device *dev,
6112                                        int pipe, int plane)
6113 {
6114         struct drm_i915_private *dev_priv = dev->dev_private;
6115         u32 reg, val;
6116
6117         /* Clear any frame start delays used for debugging left by the BIOS */
6118         for_each_pipe(pipe) {
6119                 reg = PIPECONF(pipe);
6120                 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6121         }
6122
6123         if (HAS_PCH_SPLIT(dev))
6124                 return;
6125
6126         /* Who knows what state these registers were left in by the BIOS or
6127          * grub?
6128          *
6129          * If we leave the registers in a conflicting state (e.g. with the
6130          * display plane reading from the other pipe than the one we intend
6131          * to use) then when we attempt to teardown the active mode, we will
6132          * not disable the pipes and planes in the correct order -- leaving
6133          * a plane reading from a disabled pipe and possibly leading to
6134          * undefined behaviour.
6135          */
6136
6137         reg = DSPCNTR(plane);
6138         val = I915_READ(reg);
6139
6140         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6141                 return;
6142         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6143                 return;
6144
6145         /* This display plane is active and attached to the other CPU pipe. */
6146         pipe = !pipe;
6147
6148         /* Disable the plane and wait for it to stop reading from the pipe. */
6149         intel_disable_plane(dev_priv, plane, pipe);
6150         intel_disable_pipe(dev_priv, pipe);
6151 }
6152
6153 static void intel_crtc_reset(struct drm_crtc *crtc)
6154 {
6155         struct drm_device *dev = crtc->dev;
6156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6157
6158         /* Reset flags back to the 'unknown' status so that they
6159          * will be correctly set on the initial modeset.
6160          */
6161         intel_crtc->dpms_mode = -1;
6162
6163         /* We need to fix up any BIOS configuration that conflicts with
6164          * our expectations.
6165          */
6166         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6167 }
6168
6169 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6170         .dpms = intel_crtc_dpms,
6171         .mode_fixup = intel_crtc_mode_fixup,
6172         .mode_set = intel_crtc_mode_set,
6173         .mode_set_base = intel_pipe_set_base,
6174         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6175         .load_lut = intel_crtc_load_lut,
6176         .disable = intel_crtc_disable,
6177 };
6178
6179 static const struct drm_crtc_funcs intel_crtc_funcs = {
6180         .reset = intel_crtc_reset,
6181         .cursor_set = intel_crtc_cursor_set,
6182         .cursor_move = intel_crtc_cursor_move,
6183         .gamma_set = intel_crtc_gamma_set,
6184         .set_config = drm_crtc_helper_set_config,
6185         .destroy = intel_crtc_destroy,
6186         .page_flip = intel_crtc_page_flip,
6187 };
6188
6189 static void intel_pch_pll_init(struct drm_device *dev)
6190 {
6191         drm_i915_private_t *dev_priv = dev->dev_private;
6192         int i;
6193
6194         if (dev_priv->num_pch_pll == 0) {
6195                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6196                 return;
6197         }
6198
6199         for (i = 0; i < dev_priv->num_pch_pll; i++) {
6200                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6201                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6202                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6203         }
6204 }
6205
6206 static void intel_crtc_init(struct drm_device *dev, int pipe)
6207 {
6208         drm_i915_private_t *dev_priv = dev->dev_private;
6209         struct intel_crtc *intel_crtc;
6210         int i;
6211
6212         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6213         if (intel_crtc == NULL)
6214                 return;
6215
6216         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6217
6218         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6219         for (i = 0; i < 256; i++) {
6220                 intel_crtc->lut_r[i] = i;
6221                 intel_crtc->lut_g[i] = i;
6222                 intel_crtc->lut_b[i] = i;
6223         }
6224
6225         /* Swap pipes & planes for FBC on pre-965 */
6226         intel_crtc->pipe = pipe;
6227         intel_crtc->plane = pipe;
6228         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6229                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6230                 intel_crtc->plane = !pipe;
6231         }
6232
6233         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6234                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6235         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6236         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6237
6238         intel_crtc_reset(&intel_crtc->base);
6239         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6240         intel_crtc->bpp = 24; /* default for pre-Ironlake */
6241
6242         if (HAS_PCH_SPLIT(dev)) {
6243                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6244                 intel_helper_funcs.commit = ironlake_crtc_commit;
6245         } else {
6246                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6247                 intel_helper_funcs.commit = i9xx_crtc_commit;
6248         }
6249
6250         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6251
6252         intel_crtc->busy = false;
6253
6254         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6255                     (unsigned long)intel_crtc);
6256 }
6257
6258 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6259                                 struct drm_file *file)
6260 {
6261         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6262         struct drm_mode_object *drmmode_obj;
6263         struct intel_crtc *crtc;
6264
6265         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6266                 return -ENODEV;
6267
6268         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6269                         DRM_MODE_OBJECT_CRTC);
6270
6271         if (!drmmode_obj) {
6272                 DRM_ERROR("no such CRTC id\n");
6273                 return -EINVAL;
6274         }
6275
6276         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6277         pipe_from_crtc_id->pipe = crtc->pipe;
6278
6279         return 0;
6280 }
6281
6282 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6283 {
6284         struct intel_encoder *encoder;
6285         int index_mask = 0;
6286         int entry = 0;
6287
6288         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6289                 if (type_mask & encoder->clone_mask)
6290                         index_mask |= (1 << entry);
6291                 entry++;
6292         }
6293
6294         return index_mask;
6295 }
6296
6297 static bool has_edp_a(struct drm_device *dev)
6298 {
6299         struct drm_i915_private *dev_priv = dev->dev_private;
6300
6301         if (!IS_MOBILE(dev))
6302                 return false;
6303
6304         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6305                 return false;
6306
6307         if (IS_GEN5(dev) &&
6308             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6309                 return false;
6310
6311         return true;
6312 }
6313
6314 static void intel_setup_outputs(struct drm_device *dev)
6315 {
6316         struct drm_i915_private *dev_priv = dev->dev_private;
6317         struct intel_encoder *encoder;
6318         bool dpd_is_edp = false;
6319         bool has_lvds;
6320
6321         has_lvds = intel_lvds_init(dev);
6322         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6323                 /* disable the panel fitter on everything but LVDS */
6324                 I915_WRITE(PFIT_CONTROL, 0);
6325         }
6326
6327         if (HAS_PCH_SPLIT(dev)) {
6328                 dpd_is_edp = intel_dpd_is_edp(dev);
6329
6330                 if (has_edp_a(dev))
6331                         intel_dp_init(dev, DP_A);
6332
6333                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6334                         intel_dp_init(dev, PCH_DP_D);
6335         }
6336
6337         intel_crt_init(dev);
6338
6339         if (HAS_PCH_SPLIT(dev)) {
6340                 int found;
6341
6342                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6343                         /* PCH SDVOB multiplex with HDMIB */
6344                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
6345                         if (!found)
6346                                 intel_hdmi_init(dev, HDMIB);
6347                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6348                                 intel_dp_init(dev, PCH_DP_B);
6349                 }
6350
6351                 if (I915_READ(HDMIC) & PORT_DETECTED)
6352                         intel_hdmi_init(dev, HDMIC);
6353
6354                 if (I915_READ(HDMID) & PORT_DETECTED)
6355                         intel_hdmi_init(dev, HDMID);
6356
6357                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6358                         intel_dp_init(dev, PCH_DP_C);
6359
6360                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6361                         intel_dp_init(dev, PCH_DP_D);
6362
6363         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6364                 bool found = false;
6365
6366                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6367                         DRM_DEBUG_KMS("probing SDVOB\n");
6368                         found = intel_sdvo_init(dev, SDVOB, true);
6369                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6370                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6371                                 intel_hdmi_init(dev, SDVOB);
6372                         }
6373
6374                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6375                                 DRM_DEBUG_KMS("probing DP_B\n");
6376                                 intel_dp_init(dev, DP_B);
6377                         }
6378                 }
6379
6380                 /* Before G4X SDVOC doesn't have its own detect register */
6381
6382                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6383                         DRM_DEBUG_KMS("probing SDVOC\n");
6384                         found = intel_sdvo_init(dev, SDVOC, false);
6385                 }
6386
6387                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6388
6389                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6390                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6391                                 intel_hdmi_init(dev, SDVOC);
6392                         }
6393                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6394                                 DRM_DEBUG_KMS("probing DP_C\n");
6395                                 intel_dp_init(dev, DP_C);
6396                         }
6397                 }
6398
6399                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6400                     (I915_READ(DP_D) & DP_DETECTED)) {
6401                         DRM_DEBUG_KMS("probing DP_D\n");
6402                         intel_dp_init(dev, DP_D);
6403                 }
6404         } else if (IS_GEN2(dev))
6405                 intel_dvo_init(dev);
6406
6407         if (SUPPORTS_TV(dev))
6408                 intel_tv_init(dev);
6409
6410         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6411                 encoder->base.possible_crtcs = encoder->crtc_mask;
6412                 encoder->base.possible_clones =
6413                         intel_encoder_clones(dev, encoder->clone_mask);
6414         }
6415
6416         /* disable all the possible outputs/crtcs before entering KMS mode */
6417         drm_helper_disable_unused_functions(dev);
6418
6419         if (HAS_PCH_SPLIT(dev))
6420                 ironlake_init_pch_refclk(dev);
6421 }
6422
6423 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6424 {
6425         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6426
6427         drm_framebuffer_cleanup(fb);
6428         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6429
6430         kfree(intel_fb);
6431 }
6432
6433 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6434                                                 struct drm_file *file,
6435                                                 unsigned int *handle)
6436 {
6437         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6438         struct drm_i915_gem_object *obj = intel_fb->obj;
6439
6440         return drm_gem_handle_create(file, &obj->base, handle);
6441 }
6442
6443 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6444         .destroy = intel_user_framebuffer_destroy,
6445         .create_handle = intel_user_framebuffer_create_handle,
6446 };
6447
6448 int intel_framebuffer_init(struct drm_device *dev,
6449                            struct intel_framebuffer *intel_fb,
6450                            struct drm_mode_fb_cmd2 *mode_cmd,
6451                            struct drm_i915_gem_object *obj)
6452 {
6453         int ret;
6454
6455         if (obj->tiling_mode == I915_TILING_Y)
6456                 return -EINVAL;
6457
6458         if (mode_cmd->pitches[0] & 63)
6459                 return -EINVAL;
6460
6461         switch (mode_cmd->pixel_format) {
6462         case DRM_FORMAT_RGB332:
6463         case DRM_FORMAT_RGB565:
6464         case DRM_FORMAT_XRGB8888:
6465         case DRM_FORMAT_XBGR8888:
6466         case DRM_FORMAT_ARGB8888:
6467         case DRM_FORMAT_XRGB2101010:
6468         case DRM_FORMAT_ARGB2101010:
6469                 /* RGB formats are common across chipsets */
6470                 break;
6471         case DRM_FORMAT_YUYV:
6472         case DRM_FORMAT_UYVY:
6473         case DRM_FORMAT_YVYU:
6474         case DRM_FORMAT_VYUY:
6475                 break;
6476         default:
6477                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6478                                 mode_cmd->pixel_format);
6479                 return -EINVAL;
6480         }
6481
6482         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6483         if (ret) {
6484                 DRM_ERROR("framebuffer init failed %d\n", ret);
6485                 return ret;
6486         }
6487
6488         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6489         intel_fb->obj = obj;
6490         return 0;
6491 }
6492
6493 static struct drm_framebuffer *
6494 intel_user_framebuffer_create(struct drm_device *dev,
6495                               struct drm_file *filp,
6496                               struct drm_mode_fb_cmd2 *mode_cmd)
6497 {
6498         struct drm_i915_gem_object *obj;
6499
6500         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6501                                                 mode_cmd->handles[0]));
6502         if (&obj->base == NULL)
6503                 return ERR_PTR(-ENOENT);
6504
6505         return intel_framebuffer_create(dev, mode_cmd, obj);
6506 }
6507
6508 static const struct drm_mode_config_funcs intel_mode_funcs = {
6509         .fb_create = intel_user_framebuffer_create,
6510         .output_poll_changed = intel_fb_output_poll_changed,
6511 };
6512
6513 /* Set up chip specific display functions */
6514 static void intel_init_display(struct drm_device *dev)
6515 {
6516         struct drm_i915_private *dev_priv = dev->dev_private;
6517
6518         /* We always want a DPMS function */
6519         if (HAS_PCH_SPLIT(dev)) {
6520                 dev_priv->display.dpms = ironlake_crtc_dpms;
6521                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6522                 dev_priv->display.off = ironlake_crtc_off;
6523                 dev_priv->display.update_plane = ironlake_update_plane;
6524         } else {
6525                 dev_priv->display.dpms = i9xx_crtc_dpms;
6526                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6527                 dev_priv->display.off = i9xx_crtc_off;
6528                 dev_priv->display.update_plane = i9xx_update_plane;
6529         }
6530
6531         /* Returns the core display clock speed */
6532         if (IS_VALLEYVIEW(dev))
6533                 dev_priv->display.get_display_clock_speed =
6534                         valleyview_get_display_clock_speed;
6535         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6536                 dev_priv->display.get_display_clock_speed =
6537                         i945_get_display_clock_speed;
6538         else if (IS_I915G(dev))
6539                 dev_priv->display.get_display_clock_speed =
6540                         i915_get_display_clock_speed;
6541         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6542                 dev_priv->display.get_display_clock_speed =
6543                         i9xx_misc_get_display_clock_speed;
6544         else if (IS_I915GM(dev))
6545                 dev_priv->display.get_display_clock_speed =
6546                         i915gm_get_display_clock_speed;
6547         else if (IS_I865G(dev))
6548                 dev_priv->display.get_display_clock_speed =
6549                         i865_get_display_clock_speed;
6550         else if (IS_I85X(dev))
6551                 dev_priv->display.get_display_clock_speed =
6552                         i855_get_display_clock_speed;
6553         else /* 852, 830 */
6554                 dev_priv->display.get_display_clock_speed =
6555                         i830_get_display_clock_speed;
6556
6557         if (HAS_PCH_SPLIT(dev)) {
6558                 if (IS_GEN5(dev)) {
6559                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6560                         dev_priv->display.write_eld = ironlake_write_eld;
6561                 } else if (IS_GEN6(dev)) {
6562                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6563                         dev_priv->display.write_eld = ironlake_write_eld;
6564                 } else if (IS_IVYBRIDGE(dev)) {
6565                         /* FIXME: detect B0+ stepping and use auto training */
6566                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
6567                         dev_priv->display.write_eld = ironlake_write_eld;
6568                 } else
6569                         dev_priv->display.update_wm = NULL;
6570         } else if (IS_VALLEYVIEW(dev)) {
6571                 dev_priv->display.force_wake_get = vlv_force_wake_get;
6572                 dev_priv->display.force_wake_put = vlv_force_wake_put;
6573         } else if (IS_G4X(dev)) {
6574                 dev_priv->display.write_eld = g4x_write_eld;
6575         }
6576
6577         /* Default just returns -ENODEV to indicate unsupported */
6578         dev_priv->display.queue_flip = intel_default_queue_flip;
6579
6580         switch (INTEL_INFO(dev)->gen) {
6581         case 2:
6582                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
6583                 break;
6584
6585         case 3:
6586                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
6587                 break;
6588
6589         case 4:
6590         case 5:
6591                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
6592                 break;
6593
6594         case 6:
6595                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
6596                 break;
6597         case 7:
6598                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
6599                 break;
6600         }
6601 }
6602
6603 /*
6604  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6605  * resume, or other times.  This quirk makes sure that's the case for
6606  * affected systems.
6607  */
6608 static void quirk_pipea_force(struct drm_device *dev)
6609 {
6610         struct drm_i915_private *dev_priv = dev->dev_private;
6611
6612         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6613         DRM_INFO("applying pipe a force quirk\n");
6614 }
6615
6616 /*
6617  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
6618  */
6619 static void quirk_ssc_force_disable(struct drm_device *dev)
6620 {
6621         struct drm_i915_private *dev_priv = dev->dev_private;
6622         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
6623         DRM_INFO("applying lvds SSC disable quirk\n");
6624 }
6625
6626 /*
6627  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
6628  * brightness value
6629  */
6630 static void quirk_invert_brightness(struct drm_device *dev)
6631 {
6632         struct drm_i915_private *dev_priv = dev->dev_private;
6633         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
6634         DRM_INFO("applying inverted panel brightness quirk\n");
6635 }
6636
6637 struct intel_quirk {
6638         int device;
6639         int subsystem_vendor;
6640         int subsystem_device;
6641         void (*hook)(struct drm_device *dev);
6642 };
6643
6644 static struct intel_quirk intel_quirks[] = {
6645         /* HP Mini needs pipe A force quirk (LP: #322104) */
6646         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
6647
6648         /* Thinkpad R31 needs pipe A force quirk */
6649         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6650         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6651         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6652
6653         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6654         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6655         /* ThinkPad X40 needs pipe A force quirk */
6656
6657         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6658         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6659
6660         /* 855 & before need to leave pipe A & dpll A up */
6661         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6662         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6663
6664         /* Lenovo U160 cannot use SSC on LVDS */
6665         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
6666
6667         /* Sony Vaio Y cannot use SSC on LVDS */
6668         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
6669
6670         /* Acer Aspire 5734Z must invert backlight brightness */
6671         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
6672 };
6673
6674 static void intel_init_quirks(struct drm_device *dev)
6675 {
6676         struct pci_dev *d = dev->pdev;
6677         int i;
6678
6679         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6680                 struct intel_quirk *q = &intel_quirks[i];
6681
6682                 if (d->device == q->device &&
6683                     (d->subsystem_vendor == q->subsystem_vendor ||
6684                      q->subsystem_vendor == PCI_ANY_ID) &&
6685                     (d->subsystem_device == q->subsystem_device ||
6686                      q->subsystem_device == PCI_ANY_ID))
6687                         q->hook(dev);
6688         }
6689 }
6690
6691 /* Disable the VGA plane that we never use */
6692 static void i915_disable_vga(struct drm_device *dev)
6693 {
6694         struct drm_i915_private *dev_priv = dev->dev_private;
6695         u8 sr1;
6696         u32 vga_reg;
6697
6698         if (HAS_PCH_SPLIT(dev))
6699                 vga_reg = CPU_VGACNTRL;
6700         else
6701                 vga_reg = VGACNTRL;
6702
6703         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6704         outb(SR01, VGA_SR_INDEX);
6705         sr1 = inb(VGA_SR_DATA);
6706         outb(sr1 | 1<<5, VGA_SR_DATA);
6707         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6708         udelay(300);
6709
6710         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6711         POSTING_READ(vga_reg);
6712 }
6713
6714 static void ivb_pch_pwm_override(struct drm_device *dev)
6715 {
6716         struct drm_i915_private *dev_priv = dev->dev_private;
6717
6718         /*
6719          * IVB has CPU eDP backlight regs too, set things up to let the
6720          * PCH regs control the backlight
6721          */
6722         I915_WRITE(BLC_PWM_CPU_CTL2, PWM_ENABLE);
6723         I915_WRITE(BLC_PWM_CPU_CTL, 0);
6724         I915_WRITE(BLC_PWM_PCH_CTL1, PWM_ENABLE | (1<<30));
6725 }
6726
6727 void intel_modeset_init_hw(struct drm_device *dev)
6728 {
6729         struct drm_i915_private *dev_priv = dev->dev_private;
6730
6731         intel_init_clock_gating(dev);
6732
6733         if (IS_IRONLAKE_M(dev)) {
6734                 ironlake_enable_drps(dev);
6735                 ironlake_enable_rc6(dev);
6736                 intel_init_emon(dev);
6737         }
6738
6739         if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
6740                 gen6_enable_rps(dev_priv);
6741                 gen6_update_ring_freq(dev_priv);
6742         }
6743
6744         if (IS_IVYBRIDGE(dev))
6745                 ivb_pch_pwm_override(dev);
6746 }
6747
6748 void intel_modeset_init(struct drm_device *dev)
6749 {
6750         struct drm_i915_private *dev_priv = dev->dev_private;
6751         int i, ret;
6752
6753         drm_mode_config_init(dev);
6754
6755         dev->mode_config.min_width = 0;
6756         dev->mode_config.min_height = 0;
6757
6758         dev->mode_config.preferred_depth = 24;
6759         dev->mode_config.prefer_shadow = 1;
6760
6761         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6762
6763         intel_init_quirks(dev);
6764
6765         intel_init_pm(dev);
6766
6767         intel_init_display(dev);
6768
6769         if (IS_GEN2(dev)) {
6770                 dev->mode_config.max_width = 2048;
6771                 dev->mode_config.max_height = 2048;
6772         } else if (IS_GEN3(dev)) {
6773                 dev->mode_config.max_width = 4096;
6774                 dev->mode_config.max_height = 4096;
6775         } else {
6776                 dev->mode_config.max_width = 8192;
6777                 dev->mode_config.max_height = 8192;
6778         }
6779         dev->mode_config.fb_base = dev->agp->base;
6780
6781         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6782                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6783
6784         for (i = 0; i < dev_priv->num_pipe; i++) {
6785                 intel_crtc_init(dev, i);
6786                 ret = intel_plane_init(dev, i);
6787                 if (ret)
6788                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
6789         }
6790
6791         intel_pch_pll_init(dev);
6792
6793         /* Just disable it once at startup */
6794         i915_disable_vga(dev);
6795         intel_setup_outputs(dev);
6796
6797         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6798         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6799                     (unsigned long)dev);
6800 }
6801
6802 void intel_modeset_gem_init(struct drm_device *dev)
6803 {
6804         intel_modeset_init_hw(dev);
6805
6806         intel_setup_overlay(dev);
6807 }
6808
6809 void intel_modeset_cleanup(struct drm_device *dev)
6810 {
6811         struct drm_i915_private *dev_priv = dev->dev_private;
6812         struct drm_crtc *crtc;
6813         struct intel_crtc *intel_crtc;
6814
6815         drm_kms_helper_poll_fini(dev);
6816         mutex_lock(&dev->struct_mutex);
6817
6818         intel_unregister_dsm_handler();
6819
6820
6821         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6822                 /* Skip inactive CRTCs */
6823                 if (!crtc->fb)
6824                         continue;
6825
6826                 intel_crtc = to_intel_crtc(crtc);
6827                 intel_increase_pllclock(crtc);
6828         }
6829
6830         intel_disable_fbc(dev);
6831
6832         if (IS_IRONLAKE_M(dev))
6833                 ironlake_disable_drps(dev);
6834         if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
6835                 gen6_disable_rps(dev);
6836
6837         if (IS_IRONLAKE_M(dev))
6838                 ironlake_disable_rc6(dev);
6839
6840         if (IS_VALLEYVIEW(dev))
6841                 vlv_init_dpio(dev);
6842
6843         mutex_unlock(&dev->struct_mutex);
6844
6845         /* Disable the irq before mode object teardown, for the irq might
6846          * enqueue unpin/hotplug work. */
6847         drm_irq_uninstall(dev);
6848         cancel_work_sync(&dev_priv->hotplug_work);
6849         cancel_work_sync(&dev_priv->rps_work);
6850
6851         /* flush any delayed tasks or pending work */
6852         flush_scheduled_work();
6853
6854         /* Shut off idle work before the crtcs get freed. */
6855         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6856                 intel_crtc = to_intel_crtc(crtc);
6857                 del_timer_sync(&intel_crtc->idle_timer);
6858         }
6859         del_timer_sync(&dev_priv->idle_timer);
6860         cancel_work_sync(&dev_priv->idle_work);
6861
6862         drm_mode_config_cleanup(dev);
6863 }
6864
6865 /*
6866  * Return which encoder is currently attached for connector.
6867  */
6868 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6869 {
6870         return &intel_attached_encoder(connector)->base;
6871 }
6872
6873 void intel_connector_attach_encoder(struct intel_connector *connector,
6874                                     struct intel_encoder *encoder)
6875 {
6876         connector->encoder = encoder;
6877         drm_mode_connector_attach_encoder(&connector->base,
6878                                           &encoder->base);
6879 }
6880
6881 /*
6882  * set vga decode state - true == enable VGA decode
6883  */
6884 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6885 {
6886         struct drm_i915_private *dev_priv = dev->dev_private;
6887         u16 gmch_ctrl;
6888
6889         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6890         if (state)
6891                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6892         else
6893                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6894         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6895         return 0;
6896 }
6897
6898 #ifdef CONFIG_DEBUG_FS
6899 #include <linux/seq_file.h>
6900
6901 struct intel_display_error_state {
6902         struct intel_cursor_error_state {
6903                 u32 control;
6904                 u32 position;
6905                 u32 base;
6906                 u32 size;
6907         } cursor[2];
6908
6909         struct intel_pipe_error_state {
6910                 u32 conf;
6911                 u32 source;
6912
6913                 u32 htotal;
6914                 u32 hblank;
6915                 u32 hsync;
6916                 u32 vtotal;
6917                 u32 vblank;
6918                 u32 vsync;
6919         } pipe[2];
6920
6921         struct intel_plane_error_state {
6922                 u32 control;
6923                 u32 stride;
6924                 u32 size;
6925                 u32 pos;
6926                 u32 addr;
6927                 u32 surface;
6928                 u32 tile_offset;
6929         } plane[2];
6930 };
6931
6932 struct intel_display_error_state *
6933 intel_display_capture_error_state(struct drm_device *dev)
6934 {
6935         drm_i915_private_t *dev_priv = dev->dev_private;
6936         struct intel_display_error_state *error;
6937         int i;
6938
6939         error = kmalloc(sizeof(*error), GFP_ATOMIC);
6940         if (error == NULL)
6941                 return NULL;
6942
6943         for (i = 0; i < 2; i++) {
6944                 error->cursor[i].control = I915_READ(CURCNTR(i));
6945                 error->cursor[i].position = I915_READ(CURPOS(i));
6946                 error->cursor[i].base = I915_READ(CURBASE(i));
6947
6948                 error->plane[i].control = I915_READ(DSPCNTR(i));
6949                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6950                 error->plane[i].size = I915_READ(DSPSIZE(i));
6951                 error->plane[i].pos = I915_READ(DSPPOS(i));
6952                 error->plane[i].addr = I915_READ(DSPADDR(i));
6953                 if (INTEL_INFO(dev)->gen >= 4) {
6954                         error->plane[i].surface = I915_READ(DSPSURF(i));
6955                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6956                 }
6957
6958                 error->pipe[i].conf = I915_READ(PIPECONF(i));
6959                 error->pipe[i].source = I915_READ(PIPESRC(i));
6960                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
6961                 error->pipe[i].hblank = I915_READ(HBLANK(i));
6962                 error->pipe[i].hsync = I915_READ(HSYNC(i));
6963                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6964                 error->pipe[i].vblank = I915_READ(VBLANK(i));
6965                 error->pipe[i].vsync = I915_READ(VSYNC(i));
6966         }
6967
6968         return error;
6969 }
6970
6971 void
6972 intel_display_print_error_state(struct seq_file *m,
6973                                 struct drm_device *dev,
6974                                 struct intel_display_error_state *error)
6975 {
6976         int i;
6977
6978         for (i = 0; i < 2; i++) {
6979                 seq_printf(m, "Pipe [%d]:\n", i);
6980                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
6981                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
6982                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
6983                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
6984                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
6985                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
6986                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
6987                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
6988
6989                 seq_printf(m, "Plane [%d]:\n", i);
6990                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
6991                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
6992                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
6993                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
6994                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
6995                 if (INTEL_INFO(dev)->gen >= 4) {
6996                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
6997                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
6998                 }
6999
7000                 seq_printf(m, "Cursor [%d]:\n", i);
7001                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
7002                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
7003                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
7004         }
7005 }
7006 #endif