ce3666d53f57d82bc720345de08b2426e9351a25
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include "drmP.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
40
41 #include "drm_crtc_helper.h"
42
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44
45 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
46 static void intel_update_watermarks(struct drm_device *dev);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51     /* given values */
52     int n;
53     int m1, m2;
54     int p1, p2;
55     /* derived values */
56     int dot;
57     int vco;
58     int m;
59     int p;
60 } intel_clock_t;
61
62 typedef struct {
63     int min, max;
64 } intel_range_t;
65
66 typedef struct {
67     int dot_limit;
68     int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75     intel_p2_t      p2;
76     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                       int, int, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *best_clock);
86 static bool
87 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88                         int target, int refclk, intel_clock_t *best_clock);
89
90 static bool
91 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92                       int target, int refclk, intel_clock_t *best_clock);
93 static bool
94 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95                            int target, int refclk, intel_clock_t *best_clock);
96
97 static inline u32 /* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device *dev)
99 {
100         if (IS_GEN5(dev)) {
101                 struct drm_i915_private *dev_priv = dev->dev_private;
102                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103         } else
104                 return 27;
105 }
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108         .dot = { .min = 25000, .max = 350000 },
109         .vco = { .min = 930000, .max = 1400000 },
110         .n = { .min = 3, .max = 16 },
111         .m = { .min = 96, .max = 140 },
112         .m1 = { .min = 18, .max = 26 },
113         .m2 = { .min = 6, .max = 16 },
114         .p = { .min = 4, .max = 128 },
115         .p1 = { .min = 2, .max = 33 },
116         .p2 = { .dot_limit = 165000,
117                 .p2_slow = 4, .p2_fast = 2 },
118         .find_pll = intel_find_best_PLL,
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122         .dot = { .min = 25000, .max = 350000 },
123         .vco = { .min = 930000, .max = 1400000 },
124         .n = { .min = 3, .max = 16 },
125         .m = { .min = 96, .max = 140 },
126         .m1 = { .min = 18, .max = 26 },
127         .m2 = { .min = 6, .max = 16 },
128         .p = { .min = 4, .max = 128 },
129         .p1 = { .min = 1, .max = 6 },
130         .p2 = { .dot_limit = 165000,
131                 .p2_slow = 14, .p2_fast = 7 },
132         .find_pll = intel_find_best_PLL,
133 };
134
135 static const intel_limit_t intel_limits_i9xx_sdvo = {
136         .dot = { .min = 20000, .max = 400000 },
137         .vco = { .min = 1400000, .max = 2800000 },
138         .n = { .min = 1, .max = 6 },
139         .m = { .min = 70, .max = 120 },
140         .m1 = { .min = 10, .max = 22 },
141         .m2 = { .min = 5, .max = 9 },
142         .p = { .min = 5, .max = 80 },
143         .p1 = { .min = 1, .max = 8 },
144         .p2 = { .dot_limit = 200000,
145                 .p2_slow = 10, .p2_fast = 5 },
146         .find_pll = intel_find_best_PLL,
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150         .dot = { .min = 20000, .max = 400000 },
151         .vco = { .min = 1400000, .max = 2800000 },
152         .n = { .min = 1, .max = 6 },
153         .m = { .min = 70, .max = 120 },
154         .m1 = { .min = 10, .max = 22 },
155         .m2 = { .min = 5, .max = 9 },
156         .p = { .min = 7, .max = 98 },
157         .p1 = { .min = 1, .max = 8 },
158         .p2 = { .dot_limit = 112000,
159                 .p2_slow = 14, .p2_fast = 7 },
160         .find_pll = intel_find_best_PLL,
161 };
162
163
164 static const intel_limit_t intel_limits_g4x_sdvo = {
165         .dot = { .min = 25000, .max = 270000 },
166         .vco = { .min = 1750000, .max = 3500000},
167         .n = { .min = 1, .max = 4 },
168         .m = { .min = 104, .max = 138 },
169         .m1 = { .min = 17, .max = 23 },
170         .m2 = { .min = 5, .max = 11 },
171         .p = { .min = 10, .max = 30 },
172         .p1 = { .min = 1, .max = 3},
173         .p2 = { .dot_limit = 270000,
174                 .p2_slow = 10,
175                 .p2_fast = 10
176         },
177         .find_pll = intel_g4x_find_best_PLL,
178 };
179
180 static const intel_limit_t intel_limits_g4x_hdmi = {
181         .dot = { .min = 22000, .max = 400000 },
182         .vco = { .min = 1750000, .max = 3500000},
183         .n = { .min = 1, .max = 4 },
184         .m = { .min = 104, .max = 138 },
185         .m1 = { .min = 16, .max = 23 },
186         .m2 = { .min = 5, .max = 11 },
187         .p = { .min = 5, .max = 80 },
188         .p1 = { .min = 1, .max = 8},
189         .p2 = { .dot_limit = 165000,
190                 .p2_slow = 10, .p2_fast = 5 },
191         .find_pll = intel_g4x_find_best_PLL,
192 };
193
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
195         .dot = { .min = 20000, .max = 115000 },
196         .vco = { .min = 1750000, .max = 3500000 },
197         .n = { .min = 1, .max = 3 },
198         .m = { .min = 104, .max = 138 },
199         .m1 = { .min = 17, .max = 23 },
200         .m2 = { .min = 5, .max = 11 },
201         .p = { .min = 28, .max = 112 },
202         .p1 = { .min = 2, .max = 8 },
203         .p2 = { .dot_limit = 0,
204                 .p2_slow = 14, .p2_fast = 14
205         },
206         .find_pll = intel_g4x_find_best_PLL,
207 };
208
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
210         .dot = { .min = 80000, .max = 224000 },
211         .vco = { .min = 1750000, .max = 3500000 },
212         .n = { .min = 1, .max = 3 },
213         .m = { .min = 104, .max = 138 },
214         .m1 = { .min = 17, .max = 23 },
215         .m2 = { .min = 5, .max = 11 },
216         .p = { .min = 14, .max = 42 },
217         .p1 = { .min = 2, .max = 6 },
218         .p2 = { .dot_limit = 0,
219                 .p2_slow = 7, .p2_fast = 7
220         },
221         .find_pll = intel_g4x_find_best_PLL,
222 };
223
224 static const intel_limit_t intel_limits_g4x_display_port = {
225         .dot = { .min = 161670, .max = 227000 },
226         .vco = { .min = 1750000, .max = 3500000},
227         .n = { .min = 1, .max = 2 },
228         .m = { .min = 97, .max = 108 },
229         .m1 = { .min = 0x10, .max = 0x12 },
230         .m2 = { .min = 0x05, .max = 0x06 },
231         .p = { .min = 10, .max = 20 },
232         .p1 = { .min = 1, .max = 2},
233         .p2 = { .dot_limit = 0,
234                 .p2_slow = 10, .p2_fast = 10 },
235         .find_pll = intel_find_pll_g4x_dp,
236 };
237
238 static const intel_limit_t intel_limits_pineview_sdvo = {
239         .dot = { .min = 20000, .max = 400000},
240         .vco = { .min = 1700000, .max = 3500000 },
241         /* Pineview's Ncounter is a ring counter */
242         .n = { .min = 3, .max = 6 },
243         .m = { .min = 2, .max = 256 },
244         /* Pineview only has one combined m divider, which we treat as m2. */
245         .m1 = { .min = 0, .max = 0 },
246         .m2 = { .min = 0, .max = 254 },
247         .p = { .min = 5, .max = 80 },
248         .p1 = { .min = 1, .max = 8 },
249         .p2 = { .dot_limit = 200000,
250                 .p2_slow = 10, .p2_fast = 5 },
251         .find_pll = intel_find_best_PLL,
252 };
253
254 static const intel_limit_t intel_limits_pineview_lvds = {
255         .dot = { .min = 20000, .max = 400000 },
256         .vco = { .min = 1700000, .max = 3500000 },
257         .n = { .min = 3, .max = 6 },
258         .m = { .min = 2, .max = 256 },
259         .m1 = { .min = 0, .max = 0 },
260         .m2 = { .min = 0, .max = 254 },
261         .p = { .min = 7, .max = 112 },
262         .p1 = { .min = 1, .max = 8 },
263         .p2 = { .dot_limit = 112000,
264                 .p2_slow = 14, .p2_fast = 14 },
265         .find_pll = intel_find_best_PLL,
266 };
267
268 /* Ironlake / Sandybridge
269  *
270  * We calculate clock using (register_value + 2) for N/M1/M2, so here
271  * the range value for them is (actual_value - 2).
272  */
273 static const intel_limit_t intel_limits_ironlake_dac = {
274         .dot = { .min = 25000, .max = 350000 },
275         .vco = { .min = 1760000, .max = 3510000 },
276         .n = { .min = 1, .max = 5 },
277         .m = { .min = 79, .max = 127 },
278         .m1 = { .min = 12, .max = 22 },
279         .m2 = { .min = 5, .max = 9 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 225000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_g4x_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_ironlake_single_lvds = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 3 },
291         .m = { .min = 79, .max = 118 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 28, .max = 112 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_g4x_find_best_PLL,
299 };
300
301 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
302         .dot = { .min = 25000, .max = 350000 },
303         .vco = { .min = 1760000, .max = 3510000 },
304         .n = { .min = 1, .max = 3 },
305         .m = { .min = 79, .max = 127 },
306         .m1 = { .min = 12, .max = 22 },
307         .m2 = { .min = 5, .max = 9 },
308         .p = { .min = 14, .max = 56 },
309         .p1 = { .min = 2, .max = 8 },
310         .p2 = { .dot_limit = 225000,
311                 .p2_slow = 7, .p2_fast = 7 },
312         .find_pll = intel_g4x_find_best_PLL,
313 };
314
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 2 },
320         .m = { .min = 79, .max = 126 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2,.max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327         .find_pll = intel_g4x_find_best_PLL,
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
331         .dot = { .min = 25000, .max = 350000 },
332         .vco = { .min = 1760000, .max = 3510000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 79, .max = 126 },
335         .m1 = { .min = 12, .max = 22 },
336         .m2 = { .min = 5, .max = 9 },
337         .p = { .min = 14, .max = 42 },
338         .p1 = { .min = 2,.max = 6 },
339         .p2 = { .dot_limit = 225000,
340                 .p2_slow = 7, .p2_fast = 7 },
341         .find_pll = intel_g4x_find_best_PLL,
342 };
343
344 static const intel_limit_t intel_limits_ironlake_display_port = {
345         .dot = { .min = 25000, .max = 350000 },
346         .vco = { .min = 1760000, .max = 3510000},
347         .n = { .min = 1, .max = 2 },
348         .m = { .min = 81, .max = 90 },
349         .m1 = { .min = 12, .max = 22 },
350         .m2 = { .min = 5, .max = 9 },
351         .p = { .min = 10, .max = 20 },
352         .p1 = { .min = 1, .max = 2},
353         .p2 = { .dot_limit = 0,
354                 .p2_slow = 10, .p2_fast = 10 },
355         .find_pll = intel_find_pll_ironlake_dp,
356 };
357
358 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359                                                 int refclk)
360 {
361         struct drm_device *dev = crtc->dev;
362         struct drm_i915_private *dev_priv = dev->dev_private;
363         const intel_limit_t *limit;
364
365         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367                     LVDS_CLKB_POWER_UP) {
368                         /* LVDS dual channel */
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_dual_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_dual_lvds;
373                 } else {
374                         if (refclk == 100000)
375                                 limit = &intel_limits_ironlake_single_lvds_100m;
376                         else
377                                 limit = &intel_limits_ironlake_single_lvds;
378                 }
379         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
380                         HAS_eDP)
381                 limit = &intel_limits_ironlake_display_port;
382         else
383                 limit = &intel_limits_ironlake_dac;
384
385         return limit;
386 }
387
388 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389 {
390         struct drm_device *dev = crtc->dev;
391         struct drm_i915_private *dev_priv = dev->dev_private;
392         const intel_limit_t *limit;
393
394         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396                     LVDS_CLKB_POWER_UP)
397                         /* LVDS with dual channel */
398                         limit = &intel_limits_g4x_dual_channel_lvds;
399                 else
400                         /* LVDS with dual channel */
401                         limit = &intel_limits_g4x_single_channel_lvds;
402         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
404                 limit = &intel_limits_g4x_hdmi;
405         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
406                 limit = &intel_limits_g4x_sdvo;
407         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
408                 limit = &intel_limits_g4x_display_port;
409         } else /* The option is for other outputs */
410                 limit = &intel_limits_i9xx_sdvo;
411
412         return limit;
413 }
414
415 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
416 {
417         struct drm_device *dev = crtc->dev;
418         const intel_limit_t *limit;
419
420         if (HAS_PCH_SPLIT(dev))
421                 limit = intel_ironlake_limit(crtc, refclk);
422         else if (IS_G4X(dev)) {
423                 limit = intel_g4x_limit(crtc);
424         } else if (IS_PINEVIEW(dev)) {
425                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426                         limit = &intel_limits_pineview_lvds;
427                 else
428                         limit = &intel_limits_pineview_sdvo;
429         } else if (!IS_GEN2(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_i9xx_lvds;
432                 else
433                         limit = &intel_limits_i9xx_sdvo;
434         } else {
435                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436                         limit = &intel_limits_i8xx_lvds;
437                 else
438                         limit = &intel_limits_i8xx_dvo;
439         }
440         return limit;
441 }
442
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk, intel_clock_t *clock)
445 {
446         clock->m = clock->m2 + 2;
447         clock->p = clock->p1 * clock->p2;
448         clock->vco = refclk * clock->m / clock->n;
449         clock->dot = clock->vco / clock->p;
450 }
451
452 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453 {
454         if (IS_PINEVIEW(dev)) {
455                 pineview_clock(refclk, clock);
456                 return;
457         }
458         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459         clock->p = clock->p1 * clock->p2;
460         clock->vco = refclk * clock->m / (clock->n + 2);
461         clock->dot = clock->vco / clock->p;
462 }
463
464 /**
465  * Returns whether any output on the specified pipe is of the specified type
466  */
467 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
468 {
469         struct drm_device *dev = crtc->dev;
470         struct drm_mode_config *mode_config = &dev->mode_config;
471         struct intel_encoder *encoder;
472
473         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474                 if (encoder->base.crtc == crtc && encoder->type == type)
475                         return true;
476
477         return false;
478 }
479
480 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
481 /**
482  * Returns whether the given set of divisors are valid for a given refclk with
483  * the given connectors.
484  */
485
486 static bool intel_PLL_is_valid(struct drm_device *dev,
487                                const intel_limit_t *limit,
488                                const intel_clock_t *clock)
489 {
490         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
491                 INTELPllInvalid ("p1 out of range\n");
492         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
493                 INTELPllInvalid ("p out of range\n");
494         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
495                 INTELPllInvalid ("m2 out of range\n");
496         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
497                 INTELPllInvalid ("m1 out of range\n");
498         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
499                 INTELPllInvalid ("m1 <= m2\n");
500         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
501                 INTELPllInvalid ("m out of range\n");
502         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
503                 INTELPllInvalid ("n out of range\n");
504         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505                 INTELPllInvalid ("vco out of range\n");
506         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507          * connector, etc., rather than just a single range.
508          */
509         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510                 INTELPllInvalid ("dot out of range\n");
511
512         return true;
513 }
514
515 static bool
516 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517                     int target, int refclk, intel_clock_t *best_clock)
518
519 {
520         struct drm_device *dev = crtc->dev;
521         struct drm_i915_private *dev_priv = dev->dev_private;
522         intel_clock_t clock;
523         int err = target;
524
525         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
526             (I915_READ(LVDS)) != 0) {
527                 /*
528                  * For LVDS, if the panel is on, just rely on its current
529                  * settings for dual-channel.  We haven't figured out how to
530                  * reliably set up different single/dual channel state, if we
531                  * even can.
532                  */
533                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534                     LVDS_CLKB_POWER_UP)
535                         clock.p2 = limit->p2.p2_fast;
536                 else
537                         clock.p2 = limit->p2.p2_slow;
538         } else {
539                 if (target < limit->p2.dot_limit)
540                         clock.p2 = limit->p2.p2_slow;
541                 else
542                         clock.p2 = limit->p2.p2_fast;
543         }
544
545         memset (best_clock, 0, sizeof (*best_clock));
546
547         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548              clock.m1++) {
549                 for (clock.m2 = limit->m2.min;
550                      clock.m2 <= limit->m2.max; clock.m2++) {
551                         /* m1 is always 0 in Pineview */
552                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
553                                 break;
554                         for (clock.n = limit->n.min;
555                              clock.n <= limit->n.max; clock.n++) {
556                                 for (clock.p1 = limit->p1.min;
557                                         clock.p1 <= limit->p1.max; clock.p1++) {
558                                         int this_err;
559
560                                         intel_clock(dev, refclk, &clock);
561                                         if (!intel_PLL_is_valid(dev, limit,
562                                                                 &clock))
563                                                 continue;
564
565                                         this_err = abs(clock.dot - target);
566                                         if (this_err < err) {
567                                                 *best_clock = clock;
568                                                 err = this_err;
569                                         }
570                                 }
571                         }
572                 }
573         }
574
575         return (err != target);
576 }
577
578 static bool
579 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580                         int target, int refclk, intel_clock_t *best_clock)
581 {
582         struct drm_device *dev = crtc->dev;
583         struct drm_i915_private *dev_priv = dev->dev_private;
584         intel_clock_t clock;
585         int max_n;
586         bool found;
587         /* approximately equals target * 0.00585 */
588         int err_most = (target >> 8) + (target >> 9);
589         found = false;
590
591         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592                 int lvds_reg;
593
594                 if (HAS_PCH_SPLIT(dev))
595                         lvds_reg = PCH_LVDS;
596                 else
597                         lvds_reg = LVDS;
598                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
599                     LVDS_CLKB_POWER_UP)
600                         clock.p2 = limit->p2.p2_fast;
601                 else
602                         clock.p2 = limit->p2.p2_slow;
603         } else {
604                 if (target < limit->p2.dot_limit)
605                         clock.p2 = limit->p2.p2_slow;
606                 else
607                         clock.p2 = limit->p2.p2_fast;
608         }
609
610         memset(best_clock, 0, sizeof(*best_clock));
611         max_n = limit->n.max;
612         /* based on hardware requirement, prefer smaller n to precision */
613         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
614                 /* based on hardware requirement, prefere larger m1,m2 */
615                 for (clock.m1 = limit->m1.max;
616                      clock.m1 >= limit->m1.min; clock.m1--) {
617                         for (clock.m2 = limit->m2.max;
618                              clock.m2 >= limit->m2.min; clock.m2--) {
619                                 for (clock.p1 = limit->p1.max;
620                                      clock.p1 >= limit->p1.min; clock.p1--) {
621                                         int this_err;
622
623                                         intel_clock(dev, refclk, &clock);
624                                         if (!intel_PLL_is_valid(dev, limit,
625                                                                 &clock))
626                                                 continue;
627
628                                         this_err = abs(clock.dot - target);
629                                         if (this_err < err_most) {
630                                                 *best_clock = clock;
631                                                 err_most = this_err;
632                                                 max_n = clock.n;
633                                                 found = true;
634                                         }
635                                 }
636                         }
637                 }
638         }
639         return found;
640 }
641
642 static bool
643 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644                            int target, int refclk, intel_clock_t *best_clock)
645 {
646         struct drm_device *dev = crtc->dev;
647         intel_clock_t clock;
648
649         if (target < 200000) {
650                 clock.n = 1;
651                 clock.p1 = 2;
652                 clock.p2 = 10;
653                 clock.m1 = 12;
654                 clock.m2 = 9;
655         } else {
656                 clock.n = 2;
657                 clock.p1 = 1;
658                 clock.p2 = 10;
659                 clock.m1 = 14;
660                 clock.m2 = 8;
661         }
662         intel_clock(dev, refclk, &clock);
663         memcpy(best_clock, &clock, sizeof(intel_clock_t));
664         return true;
665 }
666
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
668 static bool
669 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670                       int target, int refclk, intel_clock_t *best_clock)
671 {
672         intel_clock_t clock;
673         if (target < 200000) {
674                 clock.p1 = 2;
675                 clock.p2 = 10;
676                 clock.n = 2;
677                 clock.m1 = 23;
678                 clock.m2 = 8;
679         } else {
680                 clock.p1 = 1;
681                 clock.p2 = 10;
682                 clock.n = 1;
683                 clock.m1 = 14;
684                 clock.m2 = 2;
685         }
686         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687         clock.p = (clock.p1 * clock.p2);
688         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689         clock.vco = 0;
690         memcpy(best_clock, &clock, sizeof(intel_clock_t));
691         return true;
692 }
693
694 /**
695  * intel_wait_for_vblank - wait for vblank on a given pipe
696  * @dev: drm device
697  * @pipe: pipe to wait for
698  *
699  * Wait for vblank to occur on a given pipe.  Needed for various bits of
700  * mode setting code.
701  */
702 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
703 {
704         struct drm_i915_private *dev_priv = dev->dev_private;
705         int pipestat_reg = PIPESTAT(pipe);
706
707         /* Clear existing vblank status. Note this will clear any other
708          * sticky status fields as well.
709          *
710          * This races with i915_driver_irq_handler() with the result
711          * that either function could miss a vblank event.  Here it is not
712          * fatal, as we will either wait upon the next vblank interrupt or
713          * timeout.  Generally speaking intel_wait_for_vblank() is only
714          * called during modeset at which time the GPU should be idle and
715          * should *not* be performing page flips and thus not waiting on
716          * vblanks...
717          * Currently, the result of us stealing a vblank from the irq
718          * handler is that a single frame will be skipped during swapbuffers.
719          */
720         I915_WRITE(pipestat_reg,
721                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
722
723         /* Wait for vblank interrupt bit to set */
724         if (wait_for(I915_READ(pipestat_reg) &
725                      PIPE_VBLANK_INTERRUPT_STATUS,
726                      50))
727                 DRM_DEBUG_KMS("vblank wait timed out\n");
728 }
729
730 /*
731  * intel_wait_for_pipe_off - wait for pipe to turn off
732  * @dev: drm device
733  * @pipe: pipe to wait for
734  *
735  * After disabling a pipe, we can't wait for vblank in the usual way,
736  * spinning on the vblank interrupt status bit, since we won't actually
737  * see an interrupt when the pipe is disabled.
738  *
739  * On Gen4 and above:
740  *   wait for the pipe register state bit to turn off
741  *
742  * Otherwise:
743  *   wait for the display line value to settle (it usually
744  *   ends up stopping at the start of the next frame).
745  *
746  */
747 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
748 {
749         struct drm_i915_private *dev_priv = dev->dev_private;
750
751         if (INTEL_INFO(dev)->gen >= 4) {
752                 int reg = PIPECONF(pipe);
753
754                 /* Wait for the Pipe State to go off */
755                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756                              100))
757                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
758         } else {
759                 u32 last_line;
760                 int reg = PIPEDSL(pipe);
761                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
762
763                 /* Wait for the display line to settle */
764                 do {
765                         last_line = I915_READ(reg) & DSL_LINEMASK;
766                         mdelay(5);
767                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
768                          time_after(timeout, jiffies));
769                 if (time_after(jiffies, timeout))
770                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
771         }
772 }
773
774 static const char *state_string(bool enabled)
775 {
776         return enabled ? "on" : "off";
777 }
778
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private *dev_priv,
781                        enum pipe pipe, bool state)
782 {
783         int reg;
784         u32 val;
785         bool cur_state;
786
787         reg = DPLL(pipe);
788         val = I915_READ(reg);
789         cur_state = !!(val & DPLL_VCO_ENABLE);
790         WARN(cur_state != state,
791              "PLL state assertion failure (expected %s, current %s)\n",
792              state_string(state), state_string(cur_state));
793 }
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
796
797 /* For ILK+ */
798 static void assert_pch_pll(struct drm_i915_private *dev_priv,
799                            enum pipe pipe, bool state)
800 {
801         int reg;
802         u32 val;
803         bool cur_state;
804
805         reg = PCH_DPLL(pipe);
806         val = I915_READ(reg);
807         cur_state = !!(val & DPLL_VCO_ENABLE);
808         WARN(cur_state != state,
809              "PCH PLL state assertion failure (expected %s, current %s)\n",
810              state_string(state), state_string(cur_state));
811 }
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
814
815 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816                           enum pipe pipe, bool state)
817 {
818         int reg;
819         u32 val;
820         bool cur_state;
821
822         reg = FDI_TX_CTL(pipe);
823         val = I915_READ(reg);
824         cur_state = !!(val & FDI_TX_ENABLE);
825         WARN(cur_state != state,
826              "FDI TX state assertion failure (expected %s, current %s)\n",
827              state_string(state), state_string(cur_state));
828 }
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
831
832 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833                           enum pipe pipe, bool state)
834 {
835         int reg;
836         u32 val;
837         bool cur_state;
838
839         reg = FDI_RX_CTL(pipe);
840         val = I915_READ(reg);
841         cur_state = !!(val & FDI_RX_ENABLE);
842         WARN(cur_state != state,
843              "FDI RX state assertion failure (expected %s, current %s)\n",
844              state_string(state), state_string(cur_state));
845 }
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
848
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850                                       enum pipe pipe)
851 {
852         int reg;
853         u32 val;
854
855         /* ILK FDI PLL is always enabled */
856         if (dev_priv->info->gen == 5)
857                 return;
858
859         reg = FDI_TX_CTL(pipe);
860         val = I915_READ(reg);
861         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
862 }
863
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865                                       enum pipe pipe)
866 {
867         int reg;
868         u32 val;
869
870         reg = FDI_RX_CTL(pipe);
871         val = I915_READ(reg);
872         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
873 }
874
875 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876                                   enum pipe pipe)
877 {
878         int pp_reg, lvds_reg;
879         u32 val;
880         enum pipe panel_pipe = PIPE_A;
881         bool locked = locked;
882
883         if (HAS_PCH_SPLIT(dev_priv->dev)) {
884                 pp_reg = PCH_PP_CONTROL;
885                 lvds_reg = PCH_LVDS;
886         } else {
887                 pp_reg = PP_CONTROL;
888                 lvds_reg = LVDS;
889         }
890
891         val = I915_READ(pp_reg);
892         if (!(val & PANEL_POWER_ON) ||
893             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894                 locked = false;
895
896         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897                 panel_pipe = PIPE_B;
898
899         WARN(panel_pipe == pipe && locked,
900              "panel assertion failure, pipe %c regs locked\n",
901              pipe_name(pipe));
902 }
903
904 static void assert_pipe(struct drm_i915_private *dev_priv,
905                         enum pipe pipe, bool state)
906 {
907         int reg;
908         u32 val;
909         bool cur_state;
910
911         reg = PIPECONF(pipe);
912         val = I915_READ(reg);
913         cur_state = !!(val & PIPECONF_ENABLE);
914         WARN(cur_state != state,
915              "pipe %c assertion failure (expected %s, current %s)\n",
916              pipe_name(pipe), state_string(state), state_string(cur_state));
917 }
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
920
921 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922                                  enum plane plane)
923 {
924         int reg;
925         u32 val;
926
927         reg = DSPCNTR(plane);
928         val = I915_READ(reg);
929         WARN(!(val & DISPLAY_PLANE_ENABLE),
930              "plane %c assertion failure, should be active but is disabled\n",
931              plane_name(plane));
932 }
933
934 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935                                    enum pipe pipe)
936 {
937         int reg, i;
938         u32 val;
939         int cur_pipe;
940
941         /* Planes are fixed to pipes on ILK+ */
942         if (HAS_PCH_SPLIT(dev_priv->dev))
943                 return;
944
945         /* Need to check both planes against the pipe */
946         for (i = 0; i < 2; i++) {
947                 reg = DSPCNTR(i);
948                 val = I915_READ(reg);
949                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950                         DISPPLANE_SEL_PIPE_SHIFT;
951                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
952                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
953                      plane_name(i), pipe_name(pipe));
954         }
955 }
956
957 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
958 {
959         u32 val;
960         bool enabled;
961
962         val = I915_READ(PCH_DREF_CONTROL);
963         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964                             DREF_SUPERSPREAD_SOURCE_MASK));
965         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
966 }
967
968 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969                                        enum pipe pipe)
970 {
971         int reg;
972         u32 val;
973         bool enabled;
974
975         reg = TRANSCONF(pipe);
976         val = I915_READ(reg);
977         enabled = !!(val & TRANS_ENABLE);
978         WARN(enabled,
979              "transcoder assertion failed, should be off on pipe %c but is still active\n",
980              pipe_name(pipe));
981 }
982
983 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
984                                    enum pipe pipe, int reg)
985 {
986         u32 val = I915_READ(reg);
987         WARN(DP_PIPE_ENABLED(val, pipe),
988              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
989              reg, pipe_name(pipe));
990 }
991
992 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
993                                      enum pipe pipe, int reg)
994 {
995         u32 val = I915_READ(reg);
996         WARN(HDMI_PIPE_ENABLED(val, pipe),
997              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
998              reg, pipe_name(pipe));
999 }
1000
1001 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1002                                       enum pipe pipe)
1003 {
1004         int reg;
1005         u32 val;
1006
1007         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1008         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1009         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1010
1011         reg = PCH_ADPA;
1012         val = I915_READ(reg);
1013         WARN(ADPA_PIPE_ENABLED(val, pipe),
1014              "PCH VGA enabled on transcoder %c, should be disabled\n",
1015              pipe_name(pipe));
1016
1017         reg = PCH_LVDS;
1018         val = I915_READ(reg);
1019         WARN(LVDS_PIPE_ENABLED(val, pipe),
1020              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1021              pipe_name(pipe));
1022
1023         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1024         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1025         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1026 }
1027
1028 /**
1029  * intel_enable_pll - enable a PLL
1030  * @dev_priv: i915 private structure
1031  * @pipe: pipe PLL to enable
1032  *
1033  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1034  * make sure the PLL reg is writable first though, since the panel write
1035  * protect mechanism may be enabled.
1036  *
1037  * Note!  This is for pre-ILK only.
1038  */
1039 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1040 {
1041         int reg;
1042         u32 val;
1043
1044         /* No really, not for ILK+ */
1045         BUG_ON(dev_priv->info->gen >= 5);
1046
1047         /* PLL is protected by panel, make sure we can write it */
1048         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1049                 assert_panel_unlocked(dev_priv, pipe);
1050
1051         reg = DPLL(pipe);
1052         val = I915_READ(reg);
1053         val |= DPLL_VCO_ENABLE;
1054
1055         /* We do this three times for luck */
1056         I915_WRITE(reg, val);
1057         POSTING_READ(reg);
1058         udelay(150); /* wait for warmup */
1059         I915_WRITE(reg, val);
1060         POSTING_READ(reg);
1061         udelay(150); /* wait for warmup */
1062         I915_WRITE(reg, val);
1063         POSTING_READ(reg);
1064         udelay(150); /* wait for warmup */
1065 }
1066
1067 /**
1068  * intel_disable_pll - disable a PLL
1069  * @dev_priv: i915 private structure
1070  * @pipe: pipe PLL to disable
1071  *
1072  * Disable the PLL for @pipe, making sure the pipe is off first.
1073  *
1074  * Note!  This is for pre-ILK only.
1075  */
1076 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1077 {
1078         int reg;
1079         u32 val;
1080
1081         /* Don't disable pipe A or pipe A PLLs if needed */
1082         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1083                 return;
1084
1085         /* Make sure the pipe isn't still relying on us */
1086         assert_pipe_disabled(dev_priv, pipe);
1087
1088         reg = DPLL(pipe);
1089         val = I915_READ(reg);
1090         val &= ~DPLL_VCO_ENABLE;
1091         I915_WRITE(reg, val);
1092         POSTING_READ(reg);
1093 }
1094
1095 /**
1096  * intel_enable_pch_pll - enable PCH PLL
1097  * @dev_priv: i915 private structure
1098  * @pipe: pipe PLL to enable
1099  *
1100  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1101  * drives the transcoder clock.
1102  */
1103 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1104                                  enum pipe pipe)
1105 {
1106         int reg;
1107         u32 val;
1108
1109         /* PCH only available on ILK+ */
1110         BUG_ON(dev_priv->info->gen < 5);
1111
1112         /* PCH refclock must be enabled first */
1113         assert_pch_refclk_enabled(dev_priv);
1114
1115         reg = PCH_DPLL(pipe);
1116         val = I915_READ(reg);
1117         val |= DPLL_VCO_ENABLE;
1118         I915_WRITE(reg, val);
1119         POSTING_READ(reg);
1120         udelay(200);
1121 }
1122
1123 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1124                                   enum pipe pipe)
1125 {
1126         int reg;
1127         u32 val;
1128
1129         /* PCH only available on ILK+ */
1130         BUG_ON(dev_priv->info->gen < 5);
1131
1132         /* Make sure transcoder isn't still depending on us */
1133         assert_transcoder_disabled(dev_priv, pipe);
1134
1135         reg = PCH_DPLL(pipe);
1136         val = I915_READ(reg);
1137         val &= ~DPLL_VCO_ENABLE;
1138         I915_WRITE(reg, val);
1139         POSTING_READ(reg);
1140         udelay(200);
1141 }
1142
1143 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1144                                     enum pipe pipe)
1145 {
1146         int reg;
1147         u32 val;
1148
1149         /* PCH only available on ILK+ */
1150         BUG_ON(dev_priv->info->gen < 5);
1151
1152         /* Make sure PCH DPLL is enabled */
1153         assert_pch_pll_enabled(dev_priv, pipe);
1154
1155         /* FDI must be feeding us bits for PCH ports */
1156         assert_fdi_tx_enabled(dev_priv, pipe);
1157         assert_fdi_rx_enabled(dev_priv, pipe);
1158
1159         reg = TRANSCONF(pipe);
1160         val = I915_READ(reg);
1161
1162         if (HAS_PCH_IBX(dev_priv->dev)) {
1163                 /*
1164                  * make the BPC in transcoder be consistent with
1165                  * that in pipeconf reg.
1166                  */
1167                 val &= ~PIPE_BPC_MASK;
1168                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1169         }
1170         I915_WRITE(reg, val | TRANS_ENABLE);
1171         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1172                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1173 }
1174
1175 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1176                                      enum pipe pipe)
1177 {
1178         int reg;
1179         u32 val;
1180
1181         /* FDI relies on the transcoder */
1182         assert_fdi_tx_disabled(dev_priv, pipe);
1183         assert_fdi_rx_disabled(dev_priv, pipe);
1184
1185         /* Ports must be off as well */
1186         assert_pch_ports_disabled(dev_priv, pipe);
1187
1188         reg = TRANSCONF(pipe);
1189         val = I915_READ(reg);
1190         val &= ~TRANS_ENABLE;
1191         I915_WRITE(reg, val);
1192         /* wait for PCH transcoder off, transcoder state */
1193         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1194                 DRM_ERROR("failed to disable transcoder\n");
1195 }
1196
1197 /**
1198  * intel_enable_pipe - enable a pipe, asserting requirements
1199  * @dev_priv: i915 private structure
1200  * @pipe: pipe to enable
1201  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1202  *
1203  * Enable @pipe, making sure that various hardware specific requirements
1204  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1205  *
1206  * @pipe should be %PIPE_A or %PIPE_B.
1207  *
1208  * Will wait until the pipe is actually running (i.e. first vblank) before
1209  * returning.
1210  */
1211 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1212                               bool pch_port)
1213 {
1214         int reg;
1215         u32 val;
1216
1217         /*
1218          * A pipe without a PLL won't actually be able to drive bits from
1219          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1220          * need the check.
1221          */
1222         if (!HAS_PCH_SPLIT(dev_priv->dev))
1223                 assert_pll_enabled(dev_priv, pipe);
1224         else {
1225                 if (pch_port) {
1226                         /* if driving the PCH, we need FDI enabled */
1227                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1228                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1229                 }
1230                 /* FIXME: assert CPU port conditions for SNB+ */
1231         }
1232
1233         reg = PIPECONF(pipe);
1234         val = I915_READ(reg);
1235         if (val & PIPECONF_ENABLE)
1236                 return;
1237
1238         I915_WRITE(reg, val | PIPECONF_ENABLE);
1239         intel_wait_for_vblank(dev_priv->dev, pipe);
1240 }
1241
1242 /**
1243  * intel_disable_pipe - disable a pipe, asserting requirements
1244  * @dev_priv: i915 private structure
1245  * @pipe: pipe to disable
1246  *
1247  * Disable @pipe, making sure that various hardware specific requirements
1248  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1249  *
1250  * @pipe should be %PIPE_A or %PIPE_B.
1251  *
1252  * Will wait until the pipe has shut down before returning.
1253  */
1254 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1255                                enum pipe pipe)
1256 {
1257         int reg;
1258         u32 val;
1259
1260         /*
1261          * Make sure planes won't keep trying to pump pixels to us,
1262          * or we might hang the display.
1263          */
1264         assert_planes_disabled(dev_priv, pipe);
1265
1266         /* Don't disable pipe A or pipe A PLLs if needed */
1267         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1268                 return;
1269
1270         reg = PIPECONF(pipe);
1271         val = I915_READ(reg);
1272         if ((val & PIPECONF_ENABLE) == 0)
1273                 return;
1274
1275         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1276         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1277 }
1278
1279 /**
1280  * intel_enable_plane - enable a display plane on a given pipe
1281  * @dev_priv: i915 private structure
1282  * @plane: plane to enable
1283  * @pipe: pipe being fed
1284  *
1285  * Enable @plane on @pipe, making sure that @pipe is running first.
1286  */
1287 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1288                                enum plane plane, enum pipe pipe)
1289 {
1290         int reg;
1291         u32 val;
1292
1293         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1294         assert_pipe_enabled(dev_priv, pipe);
1295
1296         reg = DSPCNTR(plane);
1297         val = I915_READ(reg);
1298         if (val & DISPLAY_PLANE_ENABLE)
1299                 return;
1300
1301         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1302         intel_wait_for_vblank(dev_priv->dev, pipe);
1303 }
1304
1305 /*
1306  * Plane regs are double buffered, going from enabled->disabled needs a
1307  * trigger in order to latch.  The display address reg provides this.
1308  */
1309 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1310                                       enum plane plane)
1311 {
1312         u32 reg = DSPADDR(plane);
1313         I915_WRITE(reg, I915_READ(reg));
1314 }
1315
1316 /**
1317  * intel_disable_plane - disable a display plane
1318  * @dev_priv: i915 private structure
1319  * @plane: plane to disable
1320  * @pipe: pipe consuming the data
1321  *
1322  * Disable @plane; should be an independent operation.
1323  */
1324 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1325                                 enum plane plane, enum pipe pipe)
1326 {
1327         int reg;
1328         u32 val;
1329
1330         reg = DSPCNTR(plane);
1331         val = I915_READ(reg);
1332         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1333                 return;
1334
1335         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1336         intel_flush_display_plane(dev_priv, plane);
1337         intel_wait_for_vblank(dev_priv->dev, pipe);
1338 }
1339
1340 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1341                            enum pipe pipe, int reg)
1342 {
1343         u32 val = I915_READ(reg);
1344         if (DP_PIPE_ENABLED(val, pipe))
1345                 I915_WRITE(reg, val & ~DP_PORT_EN);
1346 }
1347
1348 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1349                              enum pipe pipe, int reg)
1350 {
1351         u32 val = I915_READ(reg);
1352         if (HDMI_PIPE_ENABLED(val, pipe))
1353                 I915_WRITE(reg, val & ~PORT_ENABLE);
1354 }
1355
1356 /* Disable any ports connected to this transcoder */
1357 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1358                                     enum pipe pipe)
1359 {
1360         u32 reg, val;
1361
1362         val = I915_READ(PCH_PP_CONTROL);
1363         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1364
1365         disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1366         disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1367         disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1368
1369         reg = PCH_ADPA;
1370         val = I915_READ(reg);
1371         if (ADPA_PIPE_ENABLED(val, pipe))
1372                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1373
1374         reg = PCH_LVDS;
1375         val = I915_READ(reg);
1376         if (LVDS_PIPE_ENABLED(val, pipe)) {
1377                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1378                 POSTING_READ(reg);
1379                 udelay(100);
1380         }
1381
1382         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1383         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1384         disable_pch_hdmi(dev_priv, pipe, HDMID);
1385 }
1386
1387 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1388 {
1389         struct drm_device *dev = crtc->dev;
1390         struct drm_i915_private *dev_priv = dev->dev_private;
1391         struct drm_framebuffer *fb = crtc->fb;
1392         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1393         struct drm_i915_gem_object *obj = intel_fb->obj;
1394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1395         int plane, i;
1396         u32 fbc_ctl, fbc_ctl2;
1397
1398         if (fb->pitch == dev_priv->cfb_pitch &&
1399             obj->fence_reg == dev_priv->cfb_fence &&
1400             intel_crtc->plane == dev_priv->cfb_plane &&
1401             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1402                 return;
1403
1404         i8xx_disable_fbc(dev);
1405
1406         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1407
1408         if (fb->pitch < dev_priv->cfb_pitch)
1409                 dev_priv->cfb_pitch = fb->pitch;
1410
1411         /* FBC_CTL wants 64B units */
1412         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1413         dev_priv->cfb_fence = obj->fence_reg;
1414         dev_priv->cfb_plane = intel_crtc->plane;
1415         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1416
1417         /* Clear old tags */
1418         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1419                 I915_WRITE(FBC_TAG + (i * 4), 0);
1420
1421         /* Set it up... */
1422         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1423         if (obj->tiling_mode != I915_TILING_NONE)
1424                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1425         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1426         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1427
1428         /* enable it... */
1429         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1430         if (IS_I945GM(dev))
1431                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1432         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1433         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1434         if (obj->tiling_mode != I915_TILING_NONE)
1435                 fbc_ctl |= dev_priv->cfb_fence;
1436         I915_WRITE(FBC_CONTROL, fbc_ctl);
1437
1438         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1439                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1440 }
1441
1442 void i8xx_disable_fbc(struct drm_device *dev)
1443 {
1444         struct drm_i915_private *dev_priv = dev->dev_private;
1445         u32 fbc_ctl;
1446
1447         /* Disable compression */
1448         fbc_ctl = I915_READ(FBC_CONTROL);
1449         if ((fbc_ctl & FBC_CTL_EN) == 0)
1450                 return;
1451
1452         fbc_ctl &= ~FBC_CTL_EN;
1453         I915_WRITE(FBC_CONTROL, fbc_ctl);
1454
1455         /* Wait for compressing bit to clear */
1456         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1457                 DRM_DEBUG_KMS("FBC idle timed out\n");
1458                 return;
1459         }
1460
1461         DRM_DEBUG_KMS("disabled FBC\n");
1462 }
1463
1464 static bool i8xx_fbc_enabled(struct drm_device *dev)
1465 {
1466         struct drm_i915_private *dev_priv = dev->dev_private;
1467
1468         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1469 }
1470
1471 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1472 {
1473         struct drm_device *dev = crtc->dev;
1474         struct drm_i915_private *dev_priv = dev->dev_private;
1475         struct drm_framebuffer *fb = crtc->fb;
1476         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1477         struct drm_i915_gem_object *obj = intel_fb->obj;
1478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1479         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1480         unsigned long stall_watermark = 200;
1481         u32 dpfc_ctl;
1482
1483         dpfc_ctl = I915_READ(DPFC_CONTROL);
1484         if (dpfc_ctl & DPFC_CTL_EN) {
1485                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1486                     dev_priv->cfb_fence == obj->fence_reg &&
1487                     dev_priv->cfb_plane == intel_crtc->plane &&
1488                     dev_priv->cfb_y == crtc->y)
1489                         return;
1490
1491                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1492                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1493         }
1494
1495         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1496         dev_priv->cfb_fence = obj->fence_reg;
1497         dev_priv->cfb_plane = intel_crtc->plane;
1498         dev_priv->cfb_y = crtc->y;
1499
1500         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1501         if (obj->tiling_mode != I915_TILING_NONE) {
1502                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1503                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1504         } else {
1505                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1506         }
1507
1508         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1509                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1510                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1511         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1512
1513         /* enable it... */
1514         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1515
1516         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1517 }
1518
1519 void g4x_disable_fbc(struct drm_device *dev)
1520 {
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         u32 dpfc_ctl;
1523
1524         /* Disable compression */
1525         dpfc_ctl = I915_READ(DPFC_CONTROL);
1526         if (dpfc_ctl & DPFC_CTL_EN) {
1527                 dpfc_ctl &= ~DPFC_CTL_EN;
1528                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1529
1530                 DRM_DEBUG_KMS("disabled FBC\n");
1531         }
1532 }
1533
1534 static bool g4x_fbc_enabled(struct drm_device *dev)
1535 {
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537
1538         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1539 }
1540
1541 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1542 {
1543         struct drm_i915_private *dev_priv = dev->dev_private;
1544         u32 blt_ecoskpd;
1545
1546         /* Make sure blitter notifies FBC of writes */
1547         gen6_gt_force_wake_get(dev_priv);
1548         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1549         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1550                 GEN6_BLITTER_LOCK_SHIFT;
1551         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1552         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1553         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1554         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1555                          GEN6_BLITTER_LOCK_SHIFT);
1556         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1557         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1558         gen6_gt_force_wake_put(dev_priv);
1559 }
1560
1561 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1562 {
1563         struct drm_device *dev = crtc->dev;
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565         struct drm_framebuffer *fb = crtc->fb;
1566         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1567         struct drm_i915_gem_object *obj = intel_fb->obj;
1568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1569         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1570         unsigned long stall_watermark = 200;
1571         u32 dpfc_ctl;
1572
1573         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1574         if (dpfc_ctl & DPFC_CTL_EN) {
1575                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1576                     dev_priv->cfb_fence == obj->fence_reg &&
1577                     dev_priv->cfb_plane == intel_crtc->plane &&
1578                     dev_priv->cfb_offset == obj->gtt_offset &&
1579                     dev_priv->cfb_y == crtc->y)
1580                         return;
1581
1582                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1583                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1584         }
1585
1586         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1587         dev_priv->cfb_fence = obj->fence_reg;
1588         dev_priv->cfb_plane = intel_crtc->plane;
1589         dev_priv->cfb_offset = obj->gtt_offset;
1590         dev_priv->cfb_y = crtc->y;
1591
1592         dpfc_ctl &= DPFC_RESERVED;
1593         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1594         if (obj->tiling_mode != I915_TILING_NONE) {
1595                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1596                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1597         } else {
1598                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1599         }
1600
1601         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1602                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1603                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1604         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1605         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1606         /* enable it... */
1607         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1608
1609         if (IS_GEN6(dev)) {
1610                 I915_WRITE(SNB_DPFC_CTL_SA,
1611                            SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1612                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1613                 sandybridge_blit_fbc_update(dev);
1614         }
1615
1616         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1617 }
1618
1619 void ironlake_disable_fbc(struct drm_device *dev)
1620 {
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622         u32 dpfc_ctl;
1623
1624         /* Disable compression */
1625         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1626         if (dpfc_ctl & DPFC_CTL_EN) {
1627                 dpfc_ctl &= ~DPFC_CTL_EN;
1628                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1629
1630                 DRM_DEBUG_KMS("disabled FBC\n");
1631         }
1632 }
1633
1634 static bool ironlake_fbc_enabled(struct drm_device *dev)
1635 {
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637
1638         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1639 }
1640
1641 bool intel_fbc_enabled(struct drm_device *dev)
1642 {
1643         struct drm_i915_private *dev_priv = dev->dev_private;
1644
1645         if (!dev_priv->display.fbc_enabled)
1646                 return false;
1647
1648         return dev_priv->display.fbc_enabled(dev);
1649 }
1650
1651 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1652 {
1653         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1654
1655         if (!dev_priv->display.enable_fbc)
1656                 return;
1657
1658         dev_priv->display.enable_fbc(crtc, interval);
1659 }
1660
1661 void intel_disable_fbc(struct drm_device *dev)
1662 {
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664
1665         if (!dev_priv->display.disable_fbc)
1666                 return;
1667
1668         dev_priv->display.disable_fbc(dev);
1669 }
1670
1671 /**
1672  * intel_update_fbc - enable/disable FBC as needed
1673  * @dev: the drm_device
1674  *
1675  * Set up the framebuffer compression hardware at mode set time.  We
1676  * enable it if possible:
1677  *   - plane A only (on pre-965)
1678  *   - no pixel mulitply/line duplication
1679  *   - no alpha buffer discard
1680  *   - no dual wide
1681  *   - framebuffer <= 2048 in width, 1536 in height
1682  *
1683  * We can't assume that any compression will take place (worst case),
1684  * so the compressed buffer has to be the same size as the uncompressed
1685  * one.  It also must reside (along with the line length buffer) in
1686  * stolen memory.
1687  *
1688  * We need to enable/disable FBC on a global basis.
1689  */
1690 static void intel_update_fbc(struct drm_device *dev)
1691 {
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         struct drm_crtc *crtc = NULL, *tmp_crtc;
1694         struct intel_crtc *intel_crtc;
1695         struct drm_framebuffer *fb;
1696         struct intel_framebuffer *intel_fb;
1697         struct drm_i915_gem_object *obj;
1698
1699         DRM_DEBUG_KMS("\n");
1700
1701         if (!i915_powersave)
1702                 return;
1703
1704         if (!I915_HAS_FBC(dev))
1705                 return;
1706
1707         /*
1708          * If FBC is already on, we just have to verify that we can
1709          * keep it that way...
1710          * Need to disable if:
1711          *   - more than one pipe is active
1712          *   - changing FBC params (stride, fence, mode)
1713          *   - new fb is too large to fit in compressed buffer
1714          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1715          */
1716         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1717                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1718                         if (crtc) {
1719                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1720                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1721                                 goto out_disable;
1722                         }
1723                         crtc = tmp_crtc;
1724                 }
1725         }
1726
1727         if (!crtc || crtc->fb == NULL) {
1728                 DRM_DEBUG_KMS("no output, disabling\n");
1729                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1730                 goto out_disable;
1731         }
1732
1733         intel_crtc = to_intel_crtc(crtc);
1734         fb = crtc->fb;
1735         intel_fb = to_intel_framebuffer(fb);
1736         obj = intel_fb->obj;
1737
1738         if (!i915_enable_fbc) {
1739                 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1740                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1741                 goto out_disable;
1742         }
1743         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1744                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1745                               "compression\n");
1746                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1747                 goto out_disable;
1748         }
1749         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1750             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1751                 DRM_DEBUG_KMS("mode incompatible with compression, "
1752                               "disabling\n");
1753                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1754                 goto out_disable;
1755         }
1756         if ((crtc->mode.hdisplay > 2048) ||
1757             (crtc->mode.vdisplay > 1536)) {
1758                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1759                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1760                 goto out_disable;
1761         }
1762         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1763                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1764                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1765                 goto out_disable;
1766         }
1767         if (obj->tiling_mode != I915_TILING_X) {
1768                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1769                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1770                 goto out_disable;
1771         }
1772
1773         /* If the kernel debugger is active, always disable compression */
1774         if (in_dbg_master())
1775                 goto out_disable;
1776
1777         intel_enable_fbc(crtc, 500);
1778         return;
1779
1780 out_disable:
1781         /* Multiple disables should be harmless */
1782         if (intel_fbc_enabled(dev)) {
1783                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1784                 intel_disable_fbc(dev);
1785         }
1786 }
1787
1788 int
1789 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1790                            struct drm_i915_gem_object *obj,
1791                            struct intel_ring_buffer *pipelined)
1792 {
1793         struct drm_i915_private *dev_priv = dev->dev_private;
1794         u32 alignment;
1795         int ret;
1796
1797         switch (obj->tiling_mode) {
1798         case I915_TILING_NONE:
1799                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1800                         alignment = 128 * 1024;
1801                 else if (INTEL_INFO(dev)->gen >= 4)
1802                         alignment = 4 * 1024;
1803                 else
1804                         alignment = 64 * 1024;
1805                 break;
1806         case I915_TILING_X:
1807                 /* pin() will align the object as required by fence */
1808                 alignment = 0;
1809                 break;
1810         case I915_TILING_Y:
1811                 /* FIXME: Is this true? */
1812                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1813                 return -EINVAL;
1814         default:
1815                 BUG();
1816         }
1817
1818         dev_priv->mm.interruptible = false;
1819         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1820         if (ret)
1821                 goto err_interruptible;
1822
1823         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1824          * fence, whereas 965+ only requires a fence if using
1825          * framebuffer compression.  For simplicity, we always install
1826          * a fence as the cost is not that onerous.
1827          */
1828         if (obj->tiling_mode != I915_TILING_NONE) {
1829                 ret = i915_gem_object_get_fence(obj, pipelined);
1830                 if (ret)
1831                         goto err_unpin;
1832         }
1833
1834         dev_priv->mm.interruptible = true;
1835         return 0;
1836
1837 err_unpin:
1838         i915_gem_object_unpin(obj);
1839 err_interruptible:
1840         dev_priv->mm.interruptible = true;
1841         return ret;
1842 }
1843
1844 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1845 static int
1846 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1847                            int x, int y, enum mode_set_atomic state)
1848 {
1849         struct drm_device *dev = crtc->dev;
1850         struct drm_i915_private *dev_priv = dev->dev_private;
1851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1852         struct intel_framebuffer *intel_fb;
1853         struct drm_i915_gem_object *obj;
1854         int plane = intel_crtc->plane;
1855         unsigned long Start, Offset;
1856         u32 dspcntr;
1857         u32 reg;
1858
1859         switch (plane) {
1860         case 0:
1861         case 1:
1862                 break;
1863         default:
1864                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1865                 return -EINVAL;
1866         }
1867
1868         intel_fb = to_intel_framebuffer(fb);
1869         obj = intel_fb->obj;
1870
1871         reg = DSPCNTR(plane);
1872         dspcntr = I915_READ(reg);
1873         /* Mask out pixel format bits in case we change it */
1874         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1875         switch (fb->bits_per_pixel) {
1876         case 8:
1877                 dspcntr |= DISPPLANE_8BPP;
1878                 break;
1879         case 16:
1880                 if (fb->depth == 15)
1881                         dspcntr |= DISPPLANE_15_16BPP;
1882                 else
1883                         dspcntr |= DISPPLANE_16BPP;
1884                 break;
1885         case 24:
1886         case 32:
1887                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1888                 break;
1889         default:
1890                 DRM_ERROR("Unknown color depth\n");
1891                 return -EINVAL;
1892         }
1893         if (INTEL_INFO(dev)->gen >= 4) {
1894                 if (obj->tiling_mode != I915_TILING_NONE)
1895                         dspcntr |= DISPPLANE_TILED;
1896                 else
1897                         dspcntr &= ~DISPPLANE_TILED;
1898         }
1899
1900         if (HAS_PCH_SPLIT(dev))
1901                 /* must disable */
1902                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1903
1904         I915_WRITE(reg, dspcntr);
1905
1906         Start = obj->gtt_offset;
1907         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1908
1909         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1910                       Start, Offset, x, y, fb->pitch);
1911         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1912         if (INTEL_INFO(dev)->gen >= 4) {
1913                 I915_WRITE(DSPSURF(plane), Start);
1914                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1915                 I915_WRITE(DSPADDR(plane), Offset);
1916         } else
1917                 I915_WRITE(DSPADDR(plane), Start + Offset);
1918         POSTING_READ(reg);
1919
1920         intel_update_fbc(dev);
1921         intel_increase_pllclock(crtc);
1922
1923         return 0;
1924 }
1925
1926 static int
1927 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1928                     struct drm_framebuffer *old_fb)
1929 {
1930         struct drm_device *dev = crtc->dev;
1931         struct drm_i915_master_private *master_priv;
1932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1933         int ret;
1934
1935         /* no fb bound */
1936         if (!crtc->fb) {
1937                 DRM_DEBUG_KMS("No FB bound\n");
1938                 return 0;
1939         }
1940
1941         switch (intel_crtc->plane) {
1942         case 0:
1943         case 1:
1944                 break;
1945         default:
1946                 return -EINVAL;
1947         }
1948
1949         mutex_lock(&dev->struct_mutex);
1950         ret = intel_pin_and_fence_fb_obj(dev,
1951                                          to_intel_framebuffer(crtc->fb)->obj,
1952                                          NULL);
1953         if (ret != 0) {
1954                 mutex_unlock(&dev->struct_mutex);
1955                 return ret;
1956         }
1957
1958         if (old_fb) {
1959                 struct drm_i915_private *dev_priv = dev->dev_private;
1960                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1961
1962                 wait_event(dev_priv->pending_flip_queue,
1963                            atomic_read(&dev_priv->mm.wedged) ||
1964                            atomic_read(&obj->pending_flip) == 0);
1965
1966                 /* Big Hammer, we also need to ensure that any pending
1967                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1968                  * current scanout is retired before unpinning the old
1969                  * framebuffer.
1970                  *
1971                  * This should only fail upon a hung GPU, in which case we
1972                  * can safely continue.
1973                  */
1974                 ret = i915_gem_object_finish_gpu(obj);
1975                 (void) ret;
1976         }
1977
1978         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1979                                          LEAVE_ATOMIC_MODE_SET);
1980         if (ret) {
1981                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1982                 mutex_unlock(&dev->struct_mutex);
1983                 return ret;
1984         }
1985
1986         if (old_fb) {
1987                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1988                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1989         }
1990
1991         mutex_unlock(&dev->struct_mutex);
1992
1993         if (!dev->primary->master)
1994                 return 0;
1995
1996         master_priv = dev->primary->master->driver_priv;
1997         if (!master_priv->sarea_priv)
1998                 return 0;
1999
2000         if (intel_crtc->pipe) {
2001                 master_priv->sarea_priv->pipeB_x = x;
2002                 master_priv->sarea_priv->pipeB_y = y;
2003         } else {
2004                 master_priv->sarea_priv->pipeA_x = x;
2005                 master_priv->sarea_priv->pipeA_y = y;
2006         }
2007
2008         return 0;
2009 }
2010
2011 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2012 {
2013         struct drm_device *dev = crtc->dev;
2014         struct drm_i915_private *dev_priv = dev->dev_private;
2015         u32 dpa_ctl;
2016
2017         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2018         dpa_ctl = I915_READ(DP_A);
2019         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2020
2021         if (clock < 200000) {
2022                 u32 temp;
2023                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2024                 /* workaround for 160Mhz:
2025                    1) program 0x4600c bits 15:0 = 0x8124
2026                    2) program 0x46010 bit 0 = 1
2027                    3) program 0x46034 bit 24 = 1
2028                    4) program 0x64000 bit 14 = 1
2029                    */
2030                 temp = I915_READ(0x4600c);
2031                 temp &= 0xffff0000;
2032                 I915_WRITE(0x4600c, temp | 0x8124);
2033
2034                 temp = I915_READ(0x46010);
2035                 I915_WRITE(0x46010, temp | 1);
2036
2037                 temp = I915_READ(0x46034);
2038                 I915_WRITE(0x46034, temp | (1 << 24));
2039         } else {
2040                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2041         }
2042         I915_WRITE(DP_A, dpa_ctl);
2043
2044         POSTING_READ(DP_A);
2045         udelay(500);
2046 }
2047
2048 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2049 {
2050         struct drm_device *dev = crtc->dev;
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2053         int pipe = intel_crtc->pipe;
2054         u32 reg, temp;
2055
2056         /* enable normal train */
2057         reg = FDI_TX_CTL(pipe);
2058         temp = I915_READ(reg);
2059         if (IS_IVYBRIDGE(dev)) {
2060                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2061                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2062         } else {
2063                 temp &= ~FDI_LINK_TRAIN_NONE;
2064                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2065         }
2066         I915_WRITE(reg, temp);
2067
2068         reg = FDI_RX_CTL(pipe);
2069         temp = I915_READ(reg);
2070         if (HAS_PCH_CPT(dev)) {
2071                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2072                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2073         } else {
2074                 temp &= ~FDI_LINK_TRAIN_NONE;
2075                 temp |= FDI_LINK_TRAIN_NONE;
2076         }
2077         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2078
2079         /* wait one idle pattern time */
2080         POSTING_READ(reg);
2081         udelay(1000);
2082
2083         /* IVB wants error correction enabled */
2084         if (IS_IVYBRIDGE(dev))
2085                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2086                            FDI_FE_ERRC_ENABLE);
2087 }
2088
2089 /* The FDI link training functions for ILK/Ibexpeak. */
2090 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2091 {
2092         struct drm_device *dev = crtc->dev;
2093         struct drm_i915_private *dev_priv = dev->dev_private;
2094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2095         int pipe = intel_crtc->pipe;
2096         int plane = intel_crtc->plane;
2097         u32 reg, temp, tries;
2098
2099         /* FDI needs bits from pipe & plane first */
2100         assert_pipe_enabled(dev_priv, pipe);
2101         assert_plane_enabled(dev_priv, plane);
2102
2103         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2104            for train result */
2105         reg = FDI_RX_IMR(pipe);
2106         temp = I915_READ(reg);
2107         temp &= ~FDI_RX_SYMBOL_LOCK;
2108         temp &= ~FDI_RX_BIT_LOCK;
2109         I915_WRITE(reg, temp);
2110         I915_READ(reg);
2111         udelay(150);
2112
2113         /* enable CPU FDI TX and PCH FDI RX */
2114         reg = FDI_TX_CTL(pipe);
2115         temp = I915_READ(reg);
2116         temp &= ~(7 << 19);
2117         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2118         temp &= ~FDI_LINK_TRAIN_NONE;
2119         temp |= FDI_LINK_TRAIN_PATTERN_1;
2120         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2121
2122         reg = FDI_RX_CTL(pipe);
2123         temp = I915_READ(reg);
2124         temp &= ~FDI_LINK_TRAIN_NONE;
2125         temp |= FDI_LINK_TRAIN_PATTERN_1;
2126         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2127
2128         POSTING_READ(reg);
2129         udelay(150);
2130
2131         /* Ironlake workaround, enable clock pointer after FDI enable*/
2132         if (HAS_PCH_IBX(dev)) {
2133                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2134                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2135                            FDI_RX_PHASE_SYNC_POINTER_EN);
2136         }
2137
2138         reg = FDI_RX_IIR(pipe);
2139         for (tries = 0; tries < 5; tries++) {
2140                 temp = I915_READ(reg);
2141                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2142
2143                 if ((temp & FDI_RX_BIT_LOCK)) {
2144                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2145                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2146                         break;
2147                 }
2148         }
2149         if (tries == 5)
2150                 DRM_ERROR("FDI train 1 fail!\n");
2151
2152         /* Train 2 */
2153         reg = FDI_TX_CTL(pipe);
2154         temp = I915_READ(reg);
2155         temp &= ~FDI_LINK_TRAIN_NONE;
2156         temp |= FDI_LINK_TRAIN_PATTERN_2;
2157         I915_WRITE(reg, temp);
2158
2159         reg = FDI_RX_CTL(pipe);
2160         temp = I915_READ(reg);
2161         temp &= ~FDI_LINK_TRAIN_NONE;
2162         temp |= FDI_LINK_TRAIN_PATTERN_2;
2163         I915_WRITE(reg, temp);
2164
2165         POSTING_READ(reg);
2166         udelay(150);
2167
2168         reg = FDI_RX_IIR(pipe);
2169         for (tries = 0; tries < 5; tries++) {
2170                 temp = I915_READ(reg);
2171                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2172
2173                 if (temp & FDI_RX_SYMBOL_LOCK) {
2174                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2175                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2176                         break;
2177                 }
2178         }
2179         if (tries == 5)
2180                 DRM_ERROR("FDI train 2 fail!\n");
2181
2182         DRM_DEBUG_KMS("FDI train done\n");
2183
2184 }
2185
2186 static const int snb_b_fdi_train_param [] = {
2187         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2188         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2189         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2190         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2191 };
2192
2193 /* The FDI link training functions for SNB/Cougarpoint. */
2194 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2195 {
2196         struct drm_device *dev = crtc->dev;
2197         struct drm_i915_private *dev_priv = dev->dev_private;
2198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2199         int pipe = intel_crtc->pipe;
2200         u32 reg, temp, i;
2201
2202         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2203            for train result */
2204         reg = FDI_RX_IMR(pipe);
2205         temp = I915_READ(reg);
2206         temp &= ~FDI_RX_SYMBOL_LOCK;
2207         temp &= ~FDI_RX_BIT_LOCK;
2208         I915_WRITE(reg, temp);
2209
2210         POSTING_READ(reg);
2211         udelay(150);
2212
2213         /* enable CPU FDI TX and PCH FDI RX */
2214         reg = FDI_TX_CTL(pipe);
2215         temp = I915_READ(reg);
2216         temp &= ~(7 << 19);
2217         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2218         temp &= ~FDI_LINK_TRAIN_NONE;
2219         temp |= FDI_LINK_TRAIN_PATTERN_1;
2220         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2221         /* SNB-B */
2222         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2223         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2224
2225         reg = FDI_RX_CTL(pipe);
2226         temp = I915_READ(reg);
2227         if (HAS_PCH_CPT(dev)) {
2228                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2229                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2230         } else {
2231                 temp &= ~FDI_LINK_TRAIN_NONE;
2232                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2233         }
2234         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2235
2236         POSTING_READ(reg);
2237         udelay(150);
2238
2239         for (i = 0; i < 4; i++ ) {
2240                 reg = FDI_TX_CTL(pipe);
2241                 temp = I915_READ(reg);
2242                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2243                 temp |= snb_b_fdi_train_param[i];
2244                 I915_WRITE(reg, temp);
2245
2246                 POSTING_READ(reg);
2247                 udelay(500);
2248
2249                 reg = FDI_RX_IIR(pipe);
2250                 temp = I915_READ(reg);
2251                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2252
2253                 if (temp & FDI_RX_BIT_LOCK) {
2254                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2255                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2256                         break;
2257                 }
2258         }
2259         if (i == 4)
2260                 DRM_ERROR("FDI train 1 fail!\n");
2261
2262         /* Train 2 */
2263         reg = FDI_TX_CTL(pipe);
2264         temp = I915_READ(reg);
2265         temp &= ~FDI_LINK_TRAIN_NONE;
2266         temp |= FDI_LINK_TRAIN_PATTERN_2;
2267         if (IS_GEN6(dev)) {
2268                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2269                 /* SNB-B */
2270                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2271         }
2272         I915_WRITE(reg, temp);
2273
2274         reg = FDI_RX_CTL(pipe);
2275         temp = I915_READ(reg);
2276         if (HAS_PCH_CPT(dev)) {
2277                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2278                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2279         } else {
2280                 temp &= ~FDI_LINK_TRAIN_NONE;
2281                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2282         }
2283         I915_WRITE(reg, temp);
2284
2285         POSTING_READ(reg);
2286         udelay(150);
2287
2288         for (i = 0; i < 4; i++ ) {
2289                 reg = FDI_TX_CTL(pipe);
2290                 temp = I915_READ(reg);
2291                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2292                 temp |= snb_b_fdi_train_param[i];
2293                 I915_WRITE(reg, temp);
2294
2295                 POSTING_READ(reg);
2296                 udelay(500);
2297
2298                 reg = FDI_RX_IIR(pipe);
2299                 temp = I915_READ(reg);
2300                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2301
2302                 if (temp & FDI_RX_SYMBOL_LOCK) {
2303                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2304                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2305                         break;
2306                 }
2307         }
2308         if (i == 4)
2309                 DRM_ERROR("FDI train 2 fail!\n");
2310
2311         DRM_DEBUG_KMS("FDI train done.\n");
2312 }
2313
2314 /* Manual link training for Ivy Bridge A0 parts */
2315 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2316 {
2317         struct drm_device *dev = crtc->dev;
2318         struct drm_i915_private *dev_priv = dev->dev_private;
2319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2320         int pipe = intel_crtc->pipe;
2321         u32 reg, temp, i;
2322
2323         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2324            for train result */
2325         reg = FDI_RX_IMR(pipe);
2326         temp = I915_READ(reg);
2327         temp &= ~FDI_RX_SYMBOL_LOCK;
2328         temp &= ~FDI_RX_BIT_LOCK;
2329         I915_WRITE(reg, temp);
2330
2331         POSTING_READ(reg);
2332         udelay(150);
2333
2334         /* enable CPU FDI TX and PCH FDI RX */
2335         reg = FDI_TX_CTL(pipe);
2336         temp = I915_READ(reg);
2337         temp &= ~(7 << 19);
2338         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2339         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2340         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2341         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2342         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2343         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2344
2345         reg = FDI_RX_CTL(pipe);
2346         temp = I915_READ(reg);
2347         temp &= ~FDI_LINK_TRAIN_AUTO;
2348         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2349         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2350         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2351
2352         POSTING_READ(reg);
2353         udelay(150);
2354
2355         for (i = 0; i < 4; i++ ) {
2356                 reg = FDI_TX_CTL(pipe);
2357                 temp = I915_READ(reg);
2358                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2359                 temp |= snb_b_fdi_train_param[i];
2360                 I915_WRITE(reg, temp);
2361
2362                 POSTING_READ(reg);
2363                 udelay(500);
2364
2365                 reg = FDI_RX_IIR(pipe);
2366                 temp = I915_READ(reg);
2367                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2368
2369                 if (temp & FDI_RX_BIT_LOCK ||
2370                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2371                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2372                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2373                         break;
2374                 }
2375         }
2376         if (i == 4)
2377                 DRM_ERROR("FDI train 1 fail!\n");
2378
2379         /* Train 2 */
2380         reg = FDI_TX_CTL(pipe);
2381         temp = I915_READ(reg);
2382         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2383         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2384         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2385         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2386         I915_WRITE(reg, temp);
2387
2388         reg = FDI_RX_CTL(pipe);
2389         temp = I915_READ(reg);
2390         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2391         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2392         I915_WRITE(reg, temp);
2393
2394         POSTING_READ(reg);
2395         udelay(150);
2396
2397         for (i = 0; i < 4; i++ ) {
2398                 reg = FDI_TX_CTL(pipe);
2399                 temp = I915_READ(reg);
2400                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2401                 temp |= snb_b_fdi_train_param[i];
2402                 I915_WRITE(reg, temp);
2403
2404                 POSTING_READ(reg);
2405                 udelay(500);
2406
2407                 reg = FDI_RX_IIR(pipe);
2408                 temp = I915_READ(reg);
2409                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411                 if (temp & FDI_RX_SYMBOL_LOCK) {
2412                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2413                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2414                         break;
2415                 }
2416         }
2417         if (i == 4)
2418                 DRM_ERROR("FDI train 2 fail!\n");
2419
2420         DRM_DEBUG_KMS("FDI train done.\n");
2421 }
2422
2423 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2424 {
2425         struct drm_device *dev = crtc->dev;
2426         struct drm_i915_private *dev_priv = dev->dev_private;
2427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2428         int pipe = intel_crtc->pipe;
2429         u32 reg, temp;
2430
2431         /* Write the TU size bits so error detection works */
2432         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2433                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2434
2435         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         temp &= ~((0x7 << 19) | (0x7 << 16));
2439         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2440         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2441         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2442
2443         POSTING_READ(reg);
2444         udelay(200);
2445
2446         /* Switch from Rawclk to PCDclk */
2447         temp = I915_READ(reg);
2448         I915_WRITE(reg, temp | FDI_PCDCLK);
2449
2450         POSTING_READ(reg);
2451         udelay(200);
2452
2453         /* Enable CPU FDI TX PLL, always on for Ironlake */
2454         reg = FDI_TX_CTL(pipe);
2455         temp = I915_READ(reg);
2456         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2457                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2458
2459                 POSTING_READ(reg);
2460                 udelay(100);
2461         }
2462 }
2463
2464 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2465 {
2466         struct drm_device *dev = crtc->dev;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469         int pipe = intel_crtc->pipe;
2470         u32 reg, temp;
2471
2472         /* disable CPU FDI tx and PCH FDI rx */
2473         reg = FDI_TX_CTL(pipe);
2474         temp = I915_READ(reg);
2475         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2476         POSTING_READ(reg);
2477
2478         reg = FDI_RX_CTL(pipe);
2479         temp = I915_READ(reg);
2480         temp &= ~(0x7 << 16);
2481         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2482         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2483
2484         POSTING_READ(reg);
2485         udelay(100);
2486
2487         /* Ironlake workaround, disable clock pointer after downing FDI */
2488         if (HAS_PCH_IBX(dev)) {
2489                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2490                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2491                            I915_READ(FDI_RX_CHICKEN(pipe) &
2492                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2493         }
2494
2495         /* still set train pattern 1 */
2496         reg = FDI_TX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         temp &= ~FDI_LINK_TRAIN_NONE;
2499         temp |= FDI_LINK_TRAIN_PATTERN_1;
2500         I915_WRITE(reg, temp);
2501
2502         reg = FDI_RX_CTL(pipe);
2503         temp = I915_READ(reg);
2504         if (HAS_PCH_CPT(dev)) {
2505                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2506                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2507         } else {
2508                 temp &= ~FDI_LINK_TRAIN_NONE;
2509                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2510         }
2511         /* BPC in FDI rx is consistent with that in PIPECONF */
2512         temp &= ~(0x07 << 16);
2513         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2514         I915_WRITE(reg, temp);
2515
2516         POSTING_READ(reg);
2517         udelay(100);
2518 }
2519
2520 /*
2521  * When we disable a pipe, we need to clear any pending scanline wait events
2522  * to avoid hanging the ring, which we assume we are waiting on.
2523  */
2524 static void intel_clear_scanline_wait(struct drm_device *dev)
2525 {
2526         struct drm_i915_private *dev_priv = dev->dev_private;
2527         struct intel_ring_buffer *ring;
2528         u32 tmp;
2529
2530         if (IS_GEN2(dev))
2531                 /* Can't break the hang on i8xx */
2532                 return;
2533
2534         ring = LP_RING(dev_priv);
2535         tmp = I915_READ_CTL(ring);
2536         if (tmp & RING_WAIT)
2537                 I915_WRITE_CTL(ring, tmp);
2538 }
2539
2540 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2541 {
2542         struct drm_i915_gem_object *obj;
2543         struct drm_i915_private *dev_priv;
2544
2545         if (crtc->fb == NULL)
2546                 return;
2547
2548         obj = to_intel_framebuffer(crtc->fb)->obj;
2549         dev_priv = crtc->dev->dev_private;
2550         wait_event(dev_priv->pending_flip_queue,
2551                    atomic_read(&obj->pending_flip) == 0);
2552 }
2553
2554 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2555 {
2556         struct drm_device *dev = crtc->dev;
2557         struct drm_mode_config *mode_config = &dev->mode_config;
2558         struct intel_encoder *encoder;
2559
2560         /*
2561          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2562          * must be driven by its own crtc; no sharing is possible.
2563          */
2564         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2565                 if (encoder->base.crtc != crtc)
2566                         continue;
2567
2568                 switch (encoder->type) {
2569                 case INTEL_OUTPUT_EDP:
2570                         if (!intel_encoder_is_pch_edp(&encoder->base))
2571                                 return false;
2572                         continue;
2573                 }
2574         }
2575
2576         return true;
2577 }
2578
2579 /*
2580  * Enable PCH resources required for PCH ports:
2581  *   - PCH PLLs
2582  *   - FDI training & RX/TX
2583  *   - update transcoder timings
2584  *   - DP transcoding bits
2585  *   - transcoder
2586  */
2587 static void ironlake_pch_enable(struct drm_crtc *crtc)
2588 {
2589         struct drm_device *dev = crtc->dev;
2590         struct drm_i915_private *dev_priv = dev->dev_private;
2591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2592         int pipe = intel_crtc->pipe;
2593         u32 reg, temp;
2594
2595         /* For PCH output, training FDI link */
2596         dev_priv->display.fdi_link_train(crtc);
2597
2598         intel_enable_pch_pll(dev_priv, pipe);
2599
2600         if (HAS_PCH_CPT(dev)) {
2601                 /* Be sure PCH DPLL SEL is set */
2602                 temp = I915_READ(PCH_DPLL_SEL);
2603                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2604                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2605                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2606                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2607                 I915_WRITE(PCH_DPLL_SEL, temp);
2608         }
2609
2610         /* set transcoder timing, panel must allow it */
2611         assert_panel_unlocked(dev_priv, pipe);
2612         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2613         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2614         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2615
2616         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2617         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2618         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2619
2620         intel_fdi_normal_train(crtc);
2621
2622         /* For PCH DP, enable TRANS_DP_CTL */
2623         if (HAS_PCH_CPT(dev) &&
2624             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2625                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2626                 reg = TRANS_DP_CTL(pipe);
2627                 temp = I915_READ(reg);
2628                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2629                           TRANS_DP_SYNC_MASK |
2630                           TRANS_DP_BPC_MASK);
2631                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2632                          TRANS_DP_ENH_FRAMING);
2633                 temp |= bpc << 9; /* same format but at 11:9 */
2634
2635                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2636                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2637                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2638                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2639
2640                 switch (intel_trans_dp_port_sel(crtc)) {
2641                 case PCH_DP_B:
2642                         temp |= TRANS_DP_PORT_SEL_B;
2643                         break;
2644                 case PCH_DP_C:
2645                         temp |= TRANS_DP_PORT_SEL_C;
2646                         break;
2647                 case PCH_DP_D:
2648                         temp |= TRANS_DP_PORT_SEL_D;
2649                         break;
2650                 default:
2651                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2652                         temp |= TRANS_DP_PORT_SEL_B;
2653                         break;
2654                 }
2655
2656                 I915_WRITE(reg, temp);
2657         }
2658
2659         intel_enable_transcoder(dev_priv, pipe);
2660 }
2661
2662 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2663 {
2664         struct drm_device *dev = crtc->dev;
2665         struct drm_i915_private *dev_priv = dev->dev_private;
2666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2667         int pipe = intel_crtc->pipe;
2668         int plane = intel_crtc->plane;
2669         u32 temp;
2670         bool is_pch_port;
2671
2672         if (intel_crtc->active)
2673                 return;
2674
2675         intel_crtc->active = true;
2676         intel_update_watermarks(dev);
2677
2678         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2679                 temp = I915_READ(PCH_LVDS);
2680                 if ((temp & LVDS_PORT_EN) == 0)
2681                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2682         }
2683
2684         is_pch_port = intel_crtc_driving_pch(crtc);
2685
2686         if (is_pch_port)
2687                 ironlake_fdi_pll_enable(crtc);
2688         else
2689                 ironlake_fdi_disable(crtc);
2690
2691         /* Enable panel fitting for LVDS */
2692         if (dev_priv->pch_pf_size &&
2693             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2694                 /* Force use of hard-coded filter coefficients
2695                  * as some pre-programmed values are broken,
2696                  * e.g. x201.
2697                  */
2698                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2699                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2700                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2701         }
2702
2703         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2704         intel_enable_plane(dev_priv, plane, pipe);
2705
2706         if (is_pch_port)
2707                 ironlake_pch_enable(crtc);
2708
2709         intel_crtc_load_lut(crtc);
2710
2711         mutex_lock(&dev->struct_mutex);
2712         intel_update_fbc(dev);
2713         mutex_unlock(&dev->struct_mutex);
2714
2715         intel_crtc_update_cursor(crtc, true);
2716 }
2717
2718 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2719 {
2720         struct drm_device *dev = crtc->dev;
2721         struct drm_i915_private *dev_priv = dev->dev_private;
2722         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2723         int pipe = intel_crtc->pipe;
2724         int plane = intel_crtc->plane;
2725         u32 reg, temp;
2726
2727         if (!intel_crtc->active)
2728                 return;
2729
2730         intel_crtc_wait_for_pending_flips(crtc);
2731         drm_vblank_off(dev, pipe);
2732         intel_crtc_update_cursor(crtc, false);
2733
2734         intel_disable_plane(dev_priv, plane, pipe);
2735
2736         if (dev_priv->cfb_plane == plane &&
2737             dev_priv->display.disable_fbc)
2738                 dev_priv->display.disable_fbc(dev);
2739
2740         intel_disable_pipe(dev_priv, pipe);
2741
2742         /* Disable PF */
2743         I915_WRITE(PF_CTL(pipe), 0);
2744         I915_WRITE(PF_WIN_SZ(pipe), 0);
2745
2746         ironlake_fdi_disable(crtc);
2747
2748         /* This is a horrible layering violation; we should be doing this in
2749          * the connector/encoder ->prepare instead, but we don't always have
2750          * enough information there about the config to know whether it will
2751          * actually be necessary or just cause undesired flicker.
2752          */
2753         intel_disable_pch_ports(dev_priv, pipe);
2754
2755         intel_disable_transcoder(dev_priv, pipe);
2756
2757         if (HAS_PCH_CPT(dev)) {
2758                 /* disable TRANS_DP_CTL */
2759                 reg = TRANS_DP_CTL(pipe);
2760                 temp = I915_READ(reg);
2761                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2762                 temp |= TRANS_DP_PORT_SEL_NONE;
2763                 I915_WRITE(reg, temp);
2764
2765                 /* disable DPLL_SEL */
2766                 temp = I915_READ(PCH_DPLL_SEL);
2767                 switch (pipe) {
2768                 case 0:
2769                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2770                         break;
2771                 case 1:
2772                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2773                         break;
2774                 case 2:
2775                         /* FIXME: manage transcoder PLLs? */
2776                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2777                         break;
2778                 default:
2779                         BUG(); /* wtf */
2780                 }
2781                 I915_WRITE(PCH_DPLL_SEL, temp);
2782         }
2783
2784         /* disable PCH DPLL */
2785         intel_disable_pch_pll(dev_priv, pipe);
2786
2787         /* Switch from PCDclk to Rawclk */
2788         reg = FDI_RX_CTL(pipe);
2789         temp = I915_READ(reg);
2790         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2791
2792         /* Disable CPU FDI TX PLL */
2793         reg = FDI_TX_CTL(pipe);
2794         temp = I915_READ(reg);
2795         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2796
2797         POSTING_READ(reg);
2798         udelay(100);
2799
2800         reg = FDI_RX_CTL(pipe);
2801         temp = I915_READ(reg);
2802         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2803
2804         /* Wait for the clocks to turn off. */
2805         POSTING_READ(reg);
2806         udelay(100);
2807
2808         intel_crtc->active = false;
2809         intel_update_watermarks(dev);
2810
2811         mutex_lock(&dev->struct_mutex);
2812         intel_update_fbc(dev);
2813         intel_clear_scanline_wait(dev);
2814         mutex_unlock(&dev->struct_mutex);
2815 }
2816
2817 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2818 {
2819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2820         int pipe = intel_crtc->pipe;
2821         int plane = intel_crtc->plane;
2822
2823         /* XXX: When our outputs are all unaware of DPMS modes other than off
2824          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2825          */
2826         switch (mode) {
2827         case DRM_MODE_DPMS_ON:
2828         case DRM_MODE_DPMS_STANDBY:
2829         case DRM_MODE_DPMS_SUSPEND:
2830                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2831                 ironlake_crtc_enable(crtc);
2832                 break;
2833
2834         case DRM_MODE_DPMS_OFF:
2835                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2836                 ironlake_crtc_disable(crtc);
2837                 break;
2838         }
2839 }
2840
2841 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2842 {
2843         if (!enable && intel_crtc->overlay) {
2844                 struct drm_device *dev = intel_crtc->base.dev;
2845                 struct drm_i915_private *dev_priv = dev->dev_private;
2846
2847                 mutex_lock(&dev->struct_mutex);
2848                 dev_priv->mm.interruptible = false;
2849                 (void) intel_overlay_switch_off(intel_crtc->overlay);
2850                 dev_priv->mm.interruptible = true;
2851                 mutex_unlock(&dev->struct_mutex);
2852         }
2853
2854         /* Let userspace switch the overlay on again. In most cases userspace
2855          * has to recompute where to put it anyway.
2856          */
2857 }
2858
2859 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2860 {
2861         struct drm_device *dev = crtc->dev;
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2864         int pipe = intel_crtc->pipe;
2865         int plane = intel_crtc->plane;
2866
2867         if (intel_crtc->active)
2868                 return;
2869
2870         intel_crtc->active = true;
2871         intel_update_watermarks(dev);
2872
2873         intel_enable_pll(dev_priv, pipe);
2874         intel_enable_pipe(dev_priv, pipe, false);
2875         intel_enable_plane(dev_priv, plane, pipe);
2876
2877         intel_crtc_load_lut(crtc);
2878         intel_update_fbc(dev);
2879
2880         /* Give the overlay scaler a chance to enable if it's on this pipe */
2881         intel_crtc_dpms_overlay(intel_crtc, true);
2882         intel_crtc_update_cursor(crtc, true);
2883 }
2884
2885 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2886 {
2887         struct drm_device *dev = crtc->dev;
2888         struct drm_i915_private *dev_priv = dev->dev_private;
2889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2890         int pipe = intel_crtc->pipe;
2891         int plane = intel_crtc->plane;
2892
2893         if (!intel_crtc->active)
2894                 return;
2895
2896         /* Give the overlay scaler a chance to disable if it's on this pipe */
2897         intel_crtc_wait_for_pending_flips(crtc);
2898         drm_vblank_off(dev, pipe);
2899         intel_crtc_dpms_overlay(intel_crtc, false);
2900         intel_crtc_update_cursor(crtc, false);
2901
2902         if (dev_priv->cfb_plane == plane &&
2903             dev_priv->display.disable_fbc)
2904                 dev_priv->display.disable_fbc(dev);
2905
2906         intel_disable_plane(dev_priv, plane, pipe);
2907         intel_disable_pipe(dev_priv, pipe);
2908         intel_disable_pll(dev_priv, pipe);
2909
2910         intel_crtc->active = false;
2911         intel_update_fbc(dev);
2912         intel_update_watermarks(dev);
2913         intel_clear_scanline_wait(dev);
2914 }
2915
2916 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2917 {
2918         /* XXX: When our outputs are all unaware of DPMS modes other than off
2919          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2920          */
2921         switch (mode) {
2922         case DRM_MODE_DPMS_ON:
2923         case DRM_MODE_DPMS_STANDBY:
2924         case DRM_MODE_DPMS_SUSPEND:
2925                 i9xx_crtc_enable(crtc);
2926                 break;
2927         case DRM_MODE_DPMS_OFF:
2928                 i9xx_crtc_disable(crtc);
2929                 break;
2930         }
2931 }
2932
2933 /**
2934  * Sets the power management mode of the pipe and plane.
2935  */
2936 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2937 {
2938         struct drm_device *dev = crtc->dev;
2939         struct drm_i915_private *dev_priv = dev->dev_private;
2940         struct drm_i915_master_private *master_priv;
2941         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2942         int pipe = intel_crtc->pipe;
2943         bool enabled;
2944
2945         if (intel_crtc->dpms_mode == mode)
2946                 return;
2947
2948         intel_crtc->dpms_mode = mode;
2949
2950         dev_priv->display.dpms(crtc, mode);
2951
2952         if (!dev->primary->master)
2953                 return;
2954
2955         master_priv = dev->primary->master->driver_priv;
2956         if (!master_priv->sarea_priv)
2957                 return;
2958
2959         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2960
2961         switch (pipe) {
2962         case 0:
2963                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2964                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2965                 break;
2966         case 1:
2967                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2968                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2969                 break;
2970         default:
2971                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2972                 break;
2973         }
2974 }
2975
2976 static void intel_crtc_disable(struct drm_crtc *crtc)
2977 {
2978         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2979         struct drm_device *dev = crtc->dev;
2980
2981         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2982
2983         if (crtc->fb) {
2984                 mutex_lock(&dev->struct_mutex);
2985                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2986                 mutex_unlock(&dev->struct_mutex);
2987         }
2988 }
2989
2990 /* Prepare for a mode set.
2991  *
2992  * Note we could be a lot smarter here.  We need to figure out which outputs
2993  * will be enabled, which disabled (in short, how the config will changes)
2994  * and perform the minimum necessary steps to accomplish that, e.g. updating
2995  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2996  * panel fitting is in the proper state, etc.
2997  */
2998 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2999 {
3000         i9xx_crtc_disable(crtc);
3001 }
3002
3003 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3004 {
3005         i9xx_crtc_enable(crtc);
3006 }
3007
3008 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3009 {
3010         ironlake_crtc_disable(crtc);
3011 }
3012
3013 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3014 {
3015         ironlake_crtc_enable(crtc);
3016 }
3017
3018 void intel_encoder_prepare (struct drm_encoder *encoder)
3019 {
3020         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3021         /* lvds has its own version of prepare see intel_lvds_prepare */
3022         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3023 }
3024
3025 void intel_encoder_commit (struct drm_encoder *encoder)
3026 {
3027         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3028         /* lvds has its own version of commit see intel_lvds_commit */
3029         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3030 }
3031
3032 void intel_encoder_destroy(struct drm_encoder *encoder)
3033 {
3034         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3035
3036         drm_encoder_cleanup(encoder);
3037         kfree(intel_encoder);
3038 }
3039
3040 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3041                                   struct drm_display_mode *mode,
3042                                   struct drm_display_mode *adjusted_mode)
3043 {
3044         struct drm_device *dev = crtc->dev;
3045
3046         if (HAS_PCH_SPLIT(dev)) {
3047                 /* FDI link clock is fixed at 2.7G */
3048                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3049                         return false;
3050         }
3051
3052         /* XXX some encoders set the crtcinfo, others don't.
3053          * Obviously we need some form of conflict resolution here...
3054          */
3055         if (adjusted_mode->crtc_htotal == 0)
3056                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3057
3058         return true;
3059 }
3060
3061 static int i945_get_display_clock_speed(struct drm_device *dev)
3062 {
3063         return 400000;
3064 }
3065
3066 static int i915_get_display_clock_speed(struct drm_device *dev)
3067 {
3068         return 333000;
3069 }
3070
3071 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3072 {
3073         return 200000;
3074 }
3075
3076 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3077 {
3078         u16 gcfgc = 0;
3079
3080         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3081
3082         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3083                 return 133000;
3084         else {
3085                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3086                 case GC_DISPLAY_CLOCK_333_MHZ:
3087                         return 333000;
3088                 default:
3089                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3090                         return 190000;
3091                 }
3092         }
3093 }
3094
3095 static int i865_get_display_clock_speed(struct drm_device *dev)
3096 {
3097         return 266000;
3098 }
3099
3100 static int i855_get_display_clock_speed(struct drm_device *dev)
3101 {
3102         u16 hpllcc = 0;
3103         /* Assume that the hardware is in the high speed state.  This
3104          * should be the default.
3105          */
3106         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3107         case GC_CLOCK_133_200:
3108         case GC_CLOCK_100_200:
3109                 return 200000;
3110         case GC_CLOCK_166_250:
3111                 return 250000;
3112         case GC_CLOCK_100_133:
3113                 return 133000;
3114         }
3115
3116         /* Shouldn't happen */
3117         return 0;
3118 }
3119
3120 static int i830_get_display_clock_speed(struct drm_device *dev)
3121 {
3122         return 133000;
3123 }
3124
3125 struct fdi_m_n {
3126         u32        tu;
3127         u32        gmch_m;
3128         u32        gmch_n;
3129         u32        link_m;
3130         u32        link_n;
3131 };
3132
3133 static void
3134 fdi_reduce_ratio(u32 *num, u32 *den)
3135 {
3136         while (*num > 0xffffff || *den > 0xffffff) {
3137                 *num >>= 1;
3138                 *den >>= 1;
3139         }
3140 }
3141
3142 static void
3143 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3144                      int link_clock, struct fdi_m_n *m_n)
3145 {
3146         m_n->tu = 64; /* default size */
3147
3148         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3149         m_n->gmch_m = bits_per_pixel * pixel_clock;
3150         m_n->gmch_n = link_clock * nlanes * 8;
3151         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3152
3153         m_n->link_m = pixel_clock;
3154         m_n->link_n = link_clock;
3155         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3156 }
3157
3158
3159 struct intel_watermark_params {
3160         unsigned long fifo_size;
3161         unsigned long max_wm;
3162         unsigned long default_wm;
3163         unsigned long guard_size;
3164         unsigned long cacheline_size;
3165 };
3166
3167 /* Pineview has different values for various configs */
3168 static const struct intel_watermark_params pineview_display_wm = {
3169         PINEVIEW_DISPLAY_FIFO,
3170         PINEVIEW_MAX_WM,
3171         PINEVIEW_DFT_WM,
3172         PINEVIEW_GUARD_WM,
3173         PINEVIEW_FIFO_LINE_SIZE
3174 };
3175 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3176         PINEVIEW_DISPLAY_FIFO,
3177         PINEVIEW_MAX_WM,
3178         PINEVIEW_DFT_HPLLOFF_WM,
3179         PINEVIEW_GUARD_WM,
3180         PINEVIEW_FIFO_LINE_SIZE
3181 };
3182 static const struct intel_watermark_params pineview_cursor_wm = {
3183         PINEVIEW_CURSOR_FIFO,
3184         PINEVIEW_CURSOR_MAX_WM,
3185         PINEVIEW_CURSOR_DFT_WM,
3186         PINEVIEW_CURSOR_GUARD_WM,
3187         PINEVIEW_FIFO_LINE_SIZE,
3188 };
3189 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3190         PINEVIEW_CURSOR_FIFO,
3191         PINEVIEW_CURSOR_MAX_WM,
3192         PINEVIEW_CURSOR_DFT_WM,
3193         PINEVIEW_CURSOR_GUARD_WM,
3194         PINEVIEW_FIFO_LINE_SIZE
3195 };
3196 static const struct intel_watermark_params g4x_wm_info = {
3197         G4X_FIFO_SIZE,
3198         G4X_MAX_WM,
3199         G4X_MAX_WM,
3200         2,
3201         G4X_FIFO_LINE_SIZE,
3202 };
3203 static const struct intel_watermark_params g4x_cursor_wm_info = {
3204         I965_CURSOR_FIFO,
3205         I965_CURSOR_MAX_WM,
3206         I965_CURSOR_DFT_WM,
3207         2,
3208         G4X_FIFO_LINE_SIZE,
3209 };
3210 static const struct intel_watermark_params i965_cursor_wm_info = {
3211         I965_CURSOR_FIFO,
3212         I965_CURSOR_MAX_WM,
3213         I965_CURSOR_DFT_WM,
3214         2,
3215         I915_FIFO_LINE_SIZE,
3216 };
3217 static const struct intel_watermark_params i945_wm_info = {
3218         I945_FIFO_SIZE,
3219         I915_MAX_WM,
3220         1,
3221         2,
3222         I915_FIFO_LINE_SIZE
3223 };
3224 static const struct intel_watermark_params i915_wm_info = {
3225         I915_FIFO_SIZE,
3226         I915_MAX_WM,
3227         1,
3228         2,
3229         I915_FIFO_LINE_SIZE
3230 };
3231 static const struct intel_watermark_params i855_wm_info = {
3232         I855GM_FIFO_SIZE,
3233         I915_MAX_WM,
3234         1,
3235         2,
3236         I830_FIFO_LINE_SIZE
3237 };
3238 static const struct intel_watermark_params i830_wm_info = {
3239         I830_FIFO_SIZE,
3240         I915_MAX_WM,
3241         1,
3242         2,
3243         I830_FIFO_LINE_SIZE
3244 };
3245
3246 static const struct intel_watermark_params ironlake_display_wm_info = {
3247         ILK_DISPLAY_FIFO,
3248         ILK_DISPLAY_MAXWM,
3249         ILK_DISPLAY_DFTWM,
3250         2,
3251         ILK_FIFO_LINE_SIZE
3252 };
3253 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3254         ILK_CURSOR_FIFO,
3255         ILK_CURSOR_MAXWM,
3256         ILK_CURSOR_DFTWM,
3257         2,
3258         ILK_FIFO_LINE_SIZE
3259 };
3260 static const struct intel_watermark_params ironlake_display_srwm_info = {
3261         ILK_DISPLAY_SR_FIFO,
3262         ILK_DISPLAY_MAX_SRWM,
3263         ILK_DISPLAY_DFT_SRWM,
3264         2,
3265         ILK_FIFO_LINE_SIZE
3266 };
3267 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3268         ILK_CURSOR_SR_FIFO,
3269         ILK_CURSOR_MAX_SRWM,
3270         ILK_CURSOR_DFT_SRWM,
3271         2,
3272         ILK_FIFO_LINE_SIZE
3273 };
3274
3275 static const struct intel_watermark_params sandybridge_display_wm_info = {
3276         SNB_DISPLAY_FIFO,
3277         SNB_DISPLAY_MAXWM,
3278         SNB_DISPLAY_DFTWM,
3279         2,
3280         SNB_FIFO_LINE_SIZE
3281 };
3282 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3283         SNB_CURSOR_FIFO,
3284         SNB_CURSOR_MAXWM,
3285         SNB_CURSOR_DFTWM,
3286         2,
3287         SNB_FIFO_LINE_SIZE
3288 };
3289 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3290         SNB_DISPLAY_SR_FIFO,
3291         SNB_DISPLAY_MAX_SRWM,
3292         SNB_DISPLAY_DFT_SRWM,
3293         2,
3294         SNB_FIFO_LINE_SIZE
3295 };
3296 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3297         SNB_CURSOR_SR_FIFO,
3298         SNB_CURSOR_MAX_SRWM,
3299         SNB_CURSOR_DFT_SRWM,
3300         2,
3301         SNB_FIFO_LINE_SIZE
3302 };
3303
3304
3305 /**
3306  * intel_calculate_wm - calculate watermark level
3307  * @clock_in_khz: pixel clock
3308  * @wm: chip FIFO params
3309  * @pixel_size: display pixel size
3310  * @latency_ns: memory latency for the platform
3311  *
3312  * Calculate the watermark level (the level at which the display plane will
3313  * start fetching from memory again).  Each chip has a different display
3314  * FIFO size and allocation, so the caller needs to figure that out and pass
3315  * in the correct intel_watermark_params structure.
3316  *
3317  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3318  * on the pixel size.  When it reaches the watermark level, it'll start
3319  * fetching FIFO line sized based chunks from memory until the FIFO fills
3320  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3321  * will occur, and a display engine hang could result.
3322  */
3323 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3324                                         const struct intel_watermark_params *wm,
3325                                         int fifo_size,
3326                                         int pixel_size,
3327                                         unsigned long latency_ns)
3328 {
3329         long entries_required, wm_size;
3330
3331         /*
3332          * Note: we need to make sure we don't overflow for various clock &
3333          * latency values.
3334          * clocks go from a few thousand to several hundred thousand.
3335          * latency is usually a few thousand
3336          */
3337         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3338                 1000;
3339         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3340
3341         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3342
3343         wm_size = fifo_size - (entries_required + wm->guard_size);
3344
3345         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3346
3347         /* Don't promote wm_size to unsigned... */
3348         if (wm_size > (long)wm->max_wm)
3349                 wm_size = wm->max_wm;
3350         if (wm_size <= 0)
3351                 wm_size = wm->default_wm;
3352         return wm_size;
3353 }
3354
3355 struct cxsr_latency {
3356         int is_desktop;
3357         int is_ddr3;
3358         unsigned long fsb_freq;
3359         unsigned long mem_freq;
3360         unsigned long display_sr;
3361         unsigned long display_hpll_disable;
3362         unsigned long cursor_sr;
3363         unsigned long cursor_hpll_disable;
3364 };
3365
3366 static const struct cxsr_latency cxsr_latency_table[] = {
3367         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3368         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3369         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3370         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3371         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3372
3373         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3374         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3375         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3376         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3377         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3378
3379         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3380         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3381         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3382         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3383         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3384
3385         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3386         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3387         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3388         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3389         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3390
3391         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3392         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3393         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3394         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3395         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3396
3397         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3398         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3399         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3400         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3401         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3402 };
3403
3404 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3405                                                          int is_ddr3,
3406                                                          int fsb,
3407                                                          int mem)
3408 {
3409         const struct cxsr_latency *latency;
3410         int i;
3411
3412         if (fsb == 0 || mem == 0)
3413                 return NULL;
3414
3415         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3416                 latency = &cxsr_latency_table[i];
3417                 if (is_desktop == latency->is_desktop &&
3418                     is_ddr3 == latency->is_ddr3 &&
3419                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3420                         return latency;
3421         }
3422
3423         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3424
3425         return NULL;
3426 }
3427
3428 static void pineview_disable_cxsr(struct drm_device *dev)
3429 {
3430         struct drm_i915_private *dev_priv = dev->dev_private;
3431
3432         /* deactivate cxsr */
3433         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3434 }
3435
3436 /*
3437  * Latency for FIFO fetches is dependent on several factors:
3438  *   - memory configuration (speed, channels)
3439  *   - chipset
3440  *   - current MCH state
3441  * It can be fairly high in some situations, so here we assume a fairly
3442  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3443  * set this value too high, the FIFO will fetch frequently to stay full)
3444  * and power consumption (set it too low to save power and we might see
3445  * FIFO underruns and display "flicker").
3446  *
3447  * A value of 5us seems to be a good balance; safe for very low end
3448  * platforms but not overly aggressive on lower latency configs.
3449  */
3450 static const int latency_ns = 5000;
3451
3452 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3453 {
3454         struct drm_i915_private *dev_priv = dev->dev_private;
3455         uint32_t dsparb = I915_READ(DSPARB);
3456         int size;
3457
3458         size = dsparb & 0x7f;
3459         if (plane)
3460                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3461
3462         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3463                       plane ? "B" : "A", size);
3464
3465         return size;
3466 }
3467
3468 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3469 {
3470         struct drm_i915_private *dev_priv = dev->dev_private;
3471         uint32_t dsparb = I915_READ(DSPARB);
3472         int size;
3473
3474         size = dsparb & 0x1ff;
3475         if (plane)
3476                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3477         size >>= 1; /* Convert to cachelines */
3478
3479         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3480                       plane ? "B" : "A", size);
3481
3482         return size;
3483 }
3484
3485 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3486 {
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488         uint32_t dsparb = I915_READ(DSPARB);
3489         int size;
3490
3491         size = dsparb & 0x7f;
3492         size >>= 2; /* Convert to cachelines */
3493
3494         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3495                       plane ? "B" : "A",
3496                       size);
3497
3498         return size;
3499 }
3500
3501 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3502 {
3503         struct drm_i915_private *dev_priv = dev->dev_private;
3504         uint32_t dsparb = I915_READ(DSPARB);
3505         int size;
3506
3507         size = dsparb & 0x7f;
3508         size >>= 1; /* Convert to cachelines */
3509
3510         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3511                       plane ? "B" : "A", size);
3512
3513         return size;
3514 }
3515
3516 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3517 {
3518         struct drm_crtc *crtc, *enabled = NULL;
3519
3520         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3521                 if (crtc->enabled && crtc->fb) {
3522                         if (enabled)
3523                                 return NULL;
3524                         enabled = crtc;
3525                 }
3526         }
3527
3528         return enabled;
3529 }
3530
3531 static void pineview_update_wm(struct drm_device *dev)
3532 {
3533         struct drm_i915_private *dev_priv = dev->dev_private;
3534         struct drm_crtc *crtc;
3535         const struct cxsr_latency *latency;
3536         u32 reg;
3537         unsigned long wm;
3538
3539         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3540                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3541         if (!latency) {
3542                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3543                 pineview_disable_cxsr(dev);
3544                 return;
3545         }
3546
3547         crtc = single_enabled_crtc(dev);
3548         if (crtc) {
3549                 int clock = crtc->mode.clock;
3550                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3551
3552                 /* Display SR */
3553                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3554                                         pineview_display_wm.fifo_size,
3555                                         pixel_size, latency->display_sr);
3556                 reg = I915_READ(DSPFW1);
3557                 reg &= ~DSPFW_SR_MASK;
3558                 reg |= wm << DSPFW_SR_SHIFT;
3559                 I915_WRITE(DSPFW1, reg);
3560                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3561
3562                 /* cursor SR */
3563                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3564                                         pineview_display_wm.fifo_size,
3565                                         pixel_size, latency->cursor_sr);
3566                 reg = I915_READ(DSPFW3);
3567                 reg &= ~DSPFW_CURSOR_SR_MASK;
3568                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3569                 I915_WRITE(DSPFW3, reg);
3570
3571                 /* Display HPLL off SR */
3572                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3573                                         pineview_display_hplloff_wm.fifo_size,
3574                                         pixel_size, latency->display_hpll_disable);
3575                 reg = I915_READ(DSPFW3);
3576                 reg &= ~DSPFW_HPLL_SR_MASK;
3577                 reg |= wm & DSPFW_HPLL_SR_MASK;
3578                 I915_WRITE(DSPFW3, reg);
3579
3580                 /* cursor HPLL off SR */
3581                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3582                                         pineview_display_hplloff_wm.fifo_size,
3583                                         pixel_size, latency->cursor_hpll_disable);
3584                 reg = I915_READ(DSPFW3);
3585                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3586                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3587                 I915_WRITE(DSPFW3, reg);
3588                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3589
3590                 /* activate cxsr */
3591                 I915_WRITE(DSPFW3,
3592                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3593                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3594         } else {
3595                 pineview_disable_cxsr(dev);
3596                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3597         }
3598 }
3599
3600 static bool g4x_compute_wm0(struct drm_device *dev,
3601                             int plane,
3602                             const struct intel_watermark_params *display,
3603                             int display_latency_ns,
3604                             const struct intel_watermark_params *cursor,
3605                             int cursor_latency_ns,
3606                             int *plane_wm,
3607                             int *cursor_wm)
3608 {
3609         struct drm_crtc *crtc;
3610         int htotal, hdisplay, clock, pixel_size;
3611         int line_time_us, line_count;
3612         int entries, tlb_miss;
3613
3614         crtc = intel_get_crtc_for_plane(dev, plane);
3615         if (crtc->fb == NULL || !crtc->enabled) {
3616                 *cursor_wm = cursor->guard_size;
3617                 *plane_wm = display->guard_size;
3618                 return false;
3619         }
3620
3621         htotal = crtc->mode.htotal;
3622         hdisplay = crtc->mode.hdisplay;
3623         clock = crtc->mode.clock;
3624         pixel_size = crtc->fb->bits_per_pixel / 8;
3625
3626         /* Use the small buffer method to calculate plane watermark */
3627         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3628         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3629         if (tlb_miss > 0)
3630                 entries += tlb_miss;
3631         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3632         *plane_wm = entries + display->guard_size;
3633         if (*plane_wm > (int)display->max_wm)
3634                 *plane_wm = display->max_wm;
3635
3636         /* Use the large buffer method to calculate cursor watermark */
3637         line_time_us = ((htotal * 1000) / clock);
3638         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3639         entries = line_count * 64 * pixel_size;
3640         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3641         if (tlb_miss > 0)
3642                 entries += tlb_miss;
3643         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3644         *cursor_wm = entries + cursor->guard_size;
3645         if (*cursor_wm > (int)cursor->max_wm)
3646                 *cursor_wm = (int)cursor->max_wm;
3647
3648         return true;
3649 }
3650
3651 /*
3652  * Check the wm result.
3653  *
3654  * If any calculated watermark values is larger than the maximum value that
3655  * can be programmed into the associated watermark register, that watermark
3656  * must be disabled.
3657  */
3658 static bool g4x_check_srwm(struct drm_device *dev,
3659                            int display_wm, int cursor_wm,
3660                            const struct intel_watermark_params *display,
3661                            const struct intel_watermark_params *cursor)
3662 {
3663         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3664                       display_wm, cursor_wm);
3665
3666         if (display_wm > display->max_wm) {
3667                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3668                               display_wm, display->max_wm);
3669                 return false;
3670         }
3671
3672         if (cursor_wm > cursor->max_wm) {
3673                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3674                               cursor_wm, cursor->max_wm);
3675                 return false;
3676         }
3677
3678         if (!(display_wm || cursor_wm)) {
3679                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3680                 return false;
3681         }
3682
3683         return true;
3684 }
3685
3686 static bool g4x_compute_srwm(struct drm_device *dev,
3687                              int plane,
3688                              int latency_ns,
3689                              const struct intel_watermark_params *display,
3690                              const struct intel_watermark_params *cursor,
3691                              int *display_wm, int *cursor_wm)
3692 {
3693         struct drm_crtc *crtc;
3694         int hdisplay, htotal, pixel_size, clock;
3695         unsigned long line_time_us;
3696         int line_count, line_size;
3697         int small, large;
3698         int entries;
3699
3700         if (!latency_ns) {
3701                 *display_wm = *cursor_wm = 0;
3702                 return false;
3703         }
3704
3705         crtc = intel_get_crtc_for_plane(dev, plane);
3706         hdisplay = crtc->mode.hdisplay;
3707         htotal = crtc->mode.htotal;
3708         clock = crtc->mode.clock;
3709         pixel_size = crtc->fb->bits_per_pixel / 8;
3710
3711         line_time_us = (htotal * 1000) / clock;
3712         line_count = (latency_ns / line_time_us + 1000) / 1000;
3713         line_size = hdisplay * pixel_size;
3714
3715         /* Use the minimum of the small and large buffer method for primary */
3716         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3717         large = line_count * line_size;
3718
3719         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3720         *display_wm = entries + display->guard_size;
3721
3722         /* calculate the self-refresh watermark for display cursor */
3723         entries = line_count * pixel_size * 64;
3724         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3725         *cursor_wm = entries + cursor->guard_size;
3726
3727         return g4x_check_srwm(dev,
3728                               *display_wm, *cursor_wm,
3729                               display, cursor);
3730 }
3731
3732 #define single_plane_enabled(mask) is_power_of_2(mask)
3733
3734 static void g4x_update_wm(struct drm_device *dev)
3735 {
3736         static const int sr_latency_ns = 12000;
3737         struct drm_i915_private *dev_priv = dev->dev_private;
3738         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3739         int plane_sr, cursor_sr;
3740         unsigned int enabled = 0;
3741
3742         if (g4x_compute_wm0(dev, 0,
3743                             &g4x_wm_info, latency_ns,
3744                             &g4x_cursor_wm_info, latency_ns,
3745                             &planea_wm, &cursora_wm))
3746                 enabled |= 1;
3747
3748         if (g4x_compute_wm0(dev, 1,
3749                             &g4x_wm_info, latency_ns,
3750                             &g4x_cursor_wm_info, latency_ns,
3751                             &planeb_wm, &cursorb_wm))
3752                 enabled |= 2;
3753
3754         plane_sr = cursor_sr = 0;
3755         if (single_plane_enabled(enabled) &&
3756             g4x_compute_srwm(dev, ffs(enabled) - 1,
3757                              sr_latency_ns,
3758                              &g4x_wm_info,
3759                              &g4x_cursor_wm_info,
3760                              &plane_sr, &cursor_sr))
3761                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3762         else
3763                 I915_WRITE(FW_BLC_SELF,
3764                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3765
3766         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3767                       planea_wm, cursora_wm,
3768                       planeb_wm, cursorb_wm,
3769                       plane_sr, cursor_sr);
3770
3771         I915_WRITE(DSPFW1,
3772                    (plane_sr << DSPFW_SR_SHIFT) |
3773                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3774                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
3775                    planea_wm);
3776         I915_WRITE(DSPFW2,
3777                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3778                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3779         /* HPLL off in SR has some issues on G4x... disable it */
3780         I915_WRITE(DSPFW3,
3781                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3782                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3783 }
3784
3785 static void i965_update_wm(struct drm_device *dev)
3786 {
3787         struct drm_i915_private *dev_priv = dev->dev_private;
3788         struct drm_crtc *crtc;
3789         int srwm = 1;
3790         int cursor_sr = 16;
3791
3792         /* Calc sr entries for one plane configs */
3793         crtc = single_enabled_crtc(dev);
3794         if (crtc) {
3795                 /* self-refresh has much higher latency */
3796                 static const int sr_latency_ns = 12000;
3797                 int clock = crtc->mode.clock;
3798                 int htotal = crtc->mode.htotal;
3799                 int hdisplay = crtc->mode.hdisplay;
3800                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3801                 unsigned long line_time_us;
3802                 int entries;
3803
3804                 line_time_us = ((htotal * 1000) / clock);
3805
3806                 /* Use ns/us then divide to preserve precision */
3807                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3808                         pixel_size * hdisplay;
3809                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3810                 srwm = I965_FIFO_SIZE - entries;
3811                 if (srwm < 0)
3812                         srwm = 1;
3813                 srwm &= 0x1ff;
3814                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3815                               entries, srwm);
3816
3817                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3818                         pixel_size * 64;
3819                 entries = DIV_ROUND_UP(entries,
3820                                           i965_cursor_wm_info.cacheline_size);
3821                 cursor_sr = i965_cursor_wm_info.fifo_size -
3822                         (entries + i965_cursor_wm_info.guard_size);
3823
3824                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3825                         cursor_sr = i965_cursor_wm_info.max_wm;
3826
3827                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3828                               "cursor %d\n", srwm, cursor_sr);
3829
3830                 if (IS_CRESTLINE(dev))
3831                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3832         } else {
3833                 /* Turn off self refresh if both pipes are enabled */
3834                 if (IS_CRESTLINE(dev))
3835                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3836                                    & ~FW_BLC_SELF_EN);
3837         }
3838
3839         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3840                       srwm);
3841
3842         /* 965 has limitations... */
3843         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
3844                    (8 << 16) | (8 << 8) | (8 << 0));
3845         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3846         /* update cursor SR watermark */
3847         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3848 }
3849
3850 static void i9xx_update_wm(struct drm_device *dev)
3851 {
3852         struct drm_i915_private *dev_priv = dev->dev_private;
3853         const struct intel_watermark_params *wm_info;
3854         uint32_t fwater_lo;
3855         uint32_t fwater_hi;
3856         int cwm, srwm = 1;
3857         int fifo_size;
3858         int planea_wm, planeb_wm;
3859         struct drm_crtc *crtc, *enabled = NULL;
3860
3861         if (IS_I945GM(dev))
3862                 wm_info = &i945_wm_info;
3863         else if (!IS_GEN2(dev))
3864                 wm_info = &i915_wm_info;
3865         else
3866                 wm_info = &i855_wm_info;
3867
3868         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3869         crtc = intel_get_crtc_for_plane(dev, 0);
3870         if (crtc->enabled && crtc->fb) {
3871                 planea_wm = intel_calculate_wm(crtc->mode.clock,
3872                                                wm_info, fifo_size,
3873                                                crtc->fb->bits_per_pixel / 8,
3874                                                latency_ns);
3875                 enabled = crtc;
3876         } else
3877                 planea_wm = fifo_size - wm_info->guard_size;
3878
3879         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3880         crtc = intel_get_crtc_for_plane(dev, 1);
3881         if (crtc->enabled && crtc->fb) {
3882                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
3883                                                wm_info, fifo_size,
3884                                                crtc->fb->bits_per_pixel / 8,
3885                                                latency_ns);
3886                 if (enabled == NULL)
3887                         enabled = crtc;
3888                 else
3889                         enabled = NULL;
3890         } else
3891                 planeb_wm = fifo_size - wm_info->guard_size;
3892
3893         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3894
3895         /*
3896          * Overlay gets an aggressive default since video jitter is bad.
3897          */
3898         cwm = 2;
3899
3900         /* Play safe and disable self-refresh before adjusting watermarks. */
3901         if (IS_I945G(dev) || IS_I945GM(dev))
3902                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
3903         else if (IS_I915GM(dev))
3904                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3905
3906         /* Calc sr entries for one plane configs */
3907         if (HAS_FW_BLC(dev) && enabled) {
3908                 /* self-refresh has much higher latency */
3909                 static const int sr_latency_ns = 6000;
3910                 int clock = enabled->mode.clock;
3911                 int htotal = enabled->mode.htotal;
3912                 int hdisplay = enabled->mode.hdisplay;
3913                 int pixel_size = enabled->fb->bits_per_pixel / 8;
3914                 unsigned long line_time_us;
3915                 int entries;
3916
3917                 line_time_us = (htotal * 1000) / clock;
3918
3919                 /* Use ns/us then divide to preserve precision */
3920                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3921                         pixel_size * hdisplay;
3922                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
3923                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
3924                 srwm = wm_info->fifo_size - entries;
3925                 if (srwm < 0)
3926                         srwm = 1;
3927
3928                 if (IS_I945G(dev) || IS_I945GM(dev))
3929                         I915_WRITE(FW_BLC_SELF,
3930                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3931                 else if (IS_I915GM(dev))
3932                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3933         }
3934
3935         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3936                       planea_wm, planeb_wm, cwm, srwm);
3937
3938         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3939         fwater_hi = (cwm & 0x1f);
3940
3941         /* Set request length to 8 cachelines per fetch */
3942         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3943         fwater_hi = fwater_hi | (1 << 8);
3944
3945         I915_WRITE(FW_BLC, fwater_lo);
3946         I915_WRITE(FW_BLC2, fwater_hi);
3947
3948         if (HAS_FW_BLC(dev)) {
3949                 if (enabled) {
3950                         if (IS_I945G(dev) || IS_I945GM(dev))
3951                                 I915_WRITE(FW_BLC_SELF,
3952                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
3953                         else if (IS_I915GM(dev))
3954                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3955                         DRM_DEBUG_KMS("memory self refresh enabled\n");
3956                 } else
3957                         DRM_DEBUG_KMS("memory self refresh disabled\n");
3958         }
3959 }
3960
3961 static void i830_update_wm(struct drm_device *dev)
3962 {
3963         struct drm_i915_private *dev_priv = dev->dev_private;
3964         struct drm_crtc *crtc;
3965         uint32_t fwater_lo;
3966         int planea_wm;
3967
3968         crtc = single_enabled_crtc(dev);
3969         if (crtc == NULL)
3970                 return;
3971
3972         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
3973                                        dev_priv->display.get_fifo_size(dev, 0),
3974                                        crtc->fb->bits_per_pixel / 8,
3975                                        latency_ns);
3976         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3977         fwater_lo |= (3<<8) | planea_wm;
3978
3979         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3980
3981         I915_WRITE(FW_BLC, fwater_lo);
3982 }
3983
3984 #define ILK_LP0_PLANE_LATENCY           700
3985 #define ILK_LP0_CURSOR_LATENCY          1300
3986
3987 /*
3988  * Check the wm result.
3989  *
3990  * If any calculated watermark values is larger than the maximum value that
3991  * can be programmed into the associated watermark register, that watermark
3992  * must be disabled.
3993  */
3994 static bool ironlake_check_srwm(struct drm_device *dev, int level,
3995                                 int fbc_wm, int display_wm, int cursor_wm,
3996                                 const struct intel_watermark_params *display,
3997                                 const struct intel_watermark_params *cursor)
3998 {
3999         struct drm_i915_private *dev_priv = dev->dev_private;
4000
4001         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4002                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4003
4004         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4005                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4006                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4007
4008                 /* fbc has it's own way to disable FBC WM */
4009                 I915_WRITE(DISP_ARB_CTL,
4010                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4011                 return false;
4012         }
4013
4014         if (display_wm > display->max_wm) {
4015                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4016                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4017                 return false;
4018         }
4019
4020         if (cursor_wm > cursor->max_wm) {
4021                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4022                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4023                 return false;
4024         }
4025
4026         if (!(fbc_wm || display_wm || cursor_wm)) {
4027                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4028                 return false;
4029         }
4030
4031         return true;
4032 }
4033
4034 /*
4035  * Compute watermark values of WM[1-3],
4036  */
4037 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4038                                   int latency_ns,
4039                                   const struct intel_watermark_params *display,
4040                                   const struct intel_watermark_params *cursor,
4041                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4042 {
4043         struct drm_crtc *crtc;
4044         unsigned long line_time_us;
4045         int hdisplay, htotal, pixel_size, clock;
4046         int line_count, line_size;
4047         int small, large;
4048         int entries;
4049
4050         if (!latency_ns) {
4051                 *fbc_wm = *display_wm = *cursor_wm = 0;
4052                 return false;
4053         }
4054
4055         crtc = intel_get_crtc_for_plane(dev, plane);
4056         hdisplay = crtc->mode.hdisplay;
4057         htotal = crtc->mode.htotal;
4058         clock = crtc->mode.clock;
4059         pixel_size = crtc->fb->bits_per_pixel / 8;
4060
4061         line_time_us = (htotal * 1000) / clock;
4062         line_count = (latency_ns / line_time_us + 1000) / 1000;
4063         line_size = hdisplay * pixel_size;
4064
4065         /* Use the minimum of the small and large buffer method for primary */
4066         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4067         large = line_count * line_size;
4068
4069         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4070         *display_wm = entries + display->guard_size;
4071
4072         /*
4073          * Spec says:
4074          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4075          */
4076         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4077
4078         /* calculate the self-refresh watermark for display cursor */
4079         entries = line_count * pixel_size * 64;
4080         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4081         *cursor_wm = entries + cursor->guard_size;
4082
4083         return ironlake_check_srwm(dev, level,
4084                                    *fbc_wm, *display_wm, *cursor_wm,
4085                                    display, cursor);
4086 }
4087
4088 static void ironlake_update_wm(struct drm_device *dev)
4089 {
4090         struct drm_i915_private *dev_priv = dev->dev_private;
4091         int fbc_wm, plane_wm, cursor_wm;
4092         unsigned int enabled;
4093
4094         enabled = 0;
4095         if (g4x_compute_wm0(dev, 0,
4096                             &ironlake_display_wm_info,
4097                             ILK_LP0_PLANE_LATENCY,
4098                             &ironlake_cursor_wm_info,
4099                             ILK_LP0_CURSOR_LATENCY,
4100                             &plane_wm, &cursor_wm)) {
4101                 I915_WRITE(WM0_PIPEA_ILK,
4102                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4103                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4104                               " plane %d, " "cursor: %d\n",
4105                               plane_wm, cursor_wm);
4106                 enabled |= 1;
4107         }
4108
4109         if (g4x_compute_wm0(dev, 1,
4110                             &ironlake_display_wm_info,
4111                             ILK_LP0_PLANE_LATENCY,
4112                             &ironlake_cursor_wm_info,
4113                             ILK_LP0_CURSOR_LATENCY,
4114                             &plane_wm, &cursor_wm)) {
4115                 I915_WRITE(WM0_PIPEB_ILK,
4116                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4117                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4118                               " plane %d, cursor: %d\n",
4119                               plane_wm, cursor_wm);
4120                 enabled |= 2;
4121         }
4122
4123         /*
4124          * Calculate and update the self-refresh watermark only when one
4125          * display plane is used.
4126          */
4127         I915_WRITE(WM3_LP_ILK, 0);
4128         I915_WRITE(WM2_LP_ILK, 0);
4129         I915_WRITE(WM1_LP_ILK, 0);
4130
4131         if (!single_plane_enabled(enabled))
4132                 return;
4133         enabled = ffs(enabled) - 1;
4134
4135         /* WM1 */
4136         if (!ironlake_compute_srwm(dev, 1, enabled,
4137                                    ILK_READ_WM1_LATENCY() * 500,
4138                                    &ironlake_display_srwm_info,
4139                                    &ironlake_cursor_srwm_info,
4140                                    &fbc_wm, &plane_wm, &cursor_wm))
4141                 return;
4142
4143         I915_WRITE(WM1_LP_ILK,
4144                    WM1_LP_SR_EN |
4145                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4146                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4147                    (plane_wm << WM1_LP_SR_SHIFT) |
4148                    cursor_wm);
4149
4150         /* WM2 */
4151         if (!ironlake_compute_srwm(dev, 2, enabled,
4152                                    ILK_READ_WM2_LATENCY() * 500,
4153                                    &ironlake_display_srwm_info,
4154                                    &ironlake_cursor_srwm_info,
4155                                    &fbc_wm, &plane_wm, &cursor_wm))
4156                 return;
4157
4158         I915_WRITE(WM2_LP_ILK,
4159                    WM2_LP_EN |
4160                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4161                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4162                    (plane_wm << WM1_LP_SR_SHIFT) |
4163                    cursor_wm);
4164
4165         /*
4166          * WM3 is unsupported on ILK, probably because we don't have latency
4167          * data for that power state
4168          */
4169 }
4170
4171 static void sandybridge_update_wm(struct drm_device *dev)
4172 {
4173         struct drm_i915_private *dev_priv = dev->dev_private;
4174         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4175         int fbc_wm, plane_wm, cursor_wm;
4176         unsigned int enabled;
4177
4178         enabled = 0;
4179         if (g4x_compute_wm0(dev, 0,
4180                             &sandybridge_display_wm_info, latency,
4181                             &sandybridge_cursor_wm_info, latency,
4182                             &plane_wm, &cursor_wm)) {
4183                 I915_WRITE(WM0_PIPEA_ILK,
4184                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4185                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4186                               " plane %d, " "cursor: %d\n",
4187                               plane_wm, cursor_wm);
4188                 enabled |= 1;
4189         }
4190
4191         if (g4x_compute_wm0(dev, 1,
4192                             &sandybridge_display_wm_info, latency,
4193                             &sandybridge_cursor_wm_info, latency,
4194                             &plane_wm, &cursor_wm)) {
4195                 I915_WRITE(WM0_PIPEB_ILK,
4196                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4197                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4198                               " plane %d, cursor: %d\n",
4199                               plane_wm, cursor_wm);
4200                 enabled |= 2;
4201         }
4202
4203         /*
4204          * Calculate and update the self-refresh watermark only when one
4205          * display plane is used.
4206          *
4207          * SNB support 3 levels of watermark.
4208          *
4209          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4210          * and disabled in the descending order
4211          *
4212          */
4213         I915_WRITE(WM3_LP_ILK, 0);
4214         I915_WRITE(WM2_LP_ILK, 0);
4215         I915_WRITE(WM1_LP_ILK, 0);
4216
4217         if (!single_plane_enabled(enabled))
4218                 return;
4219         enabled = ffs(enabled) - 1;
4220
4221         /* WM1 */
4222         if (!ironlake_compute_srwm(dev, 1, enabled,
4223                                    SNB_READ_WM1_LATENCY() * 500,
4224                                    &sandybridge_display_srwm_info,
4225                                    &sandybridge_cursor_srwm_info,
4226                                    &fbc_wm, &plane_wm, &cursor_wm))
4227                 return;
4228
4229         I915_WRITE(WM1_LP_ILK,
4230                    WM1_LP_SR_EN |
4231                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4232                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4233                    (plane_wm << WM1_LP_SR_SHIFT) |
4234                    cursor_wm);
4235
4236         /* WM2 */
4237         if (!ironlake_compute_srwm(dev, 2, enabled,
4238                                    SNB_READ_WM2_LATENCY() * 500,
4239                                    &sandybridge_display_srwm_info,
4240                                    &sandybridge_cursor_srwm_info,
4241                                    &fbc_wm, &plane_wm, &cursor_wm))
4242                 return;
4243
4244         I915_WRITE(WM2_LP_ILK,
4245                    WM2_LP_EN |
4246                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4247                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4248                    (plane_wm << WM1_LP_SR_SHIFT) |
4249                    cursor_wm);
4250
4251         /* WM3 */
4252         if (!ironlake_compute_srwm(dev, 3, enabled,
4253                                    SNB_READ_WM3_LATENCY() * 500,
4254                                    &sandybridge_display_srwm_info,
4255                                    &sandybridge_cursor_srwm_info,
4256                                    &fbc_wm, &plane_wm, &cursor_wm))
4257                 return;
4258
4259         I915_WRITE(WM3_LP_ILK,
4260                    WM3_LP_EN |
4261                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4262                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4263                    (plane_wm << WM1_LP_SR_SHIFT) |
4264                    cursor_wm);
4265 }
4266
4267 /**
4268  * intel_update_watermarks - update FIFO watermark values based on current modes
4269  *
4270  * Calculate watermark values for the various WM regs based on current mode
4271  * and plane configuration.
4272  *
4273  * There are several cases to deal with here:
4274  *   - normal (i.e. non-self-refresh)
4275  *   - self-refresh (SR) mode
4276  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4277  *   - lines are small relative to FIFO size (buffer can hold more than 2
4278  *     lines), so need to account for TLB latency
4279  *
4280  *   The normal calculation is:
4281  *     watermark = dotclock * bytes per pixel * latency
4282  *   where latency is platform & configuration dependent (we assume pessimal
4283  *   values here).
4284  *
4285  *   The SR calculation is:
4286  *     watermark = (trunc(latency/line time)+1) * surface width *
4287  *       bytes per pixel
4288  *   where
4289  *     line time = htotal / dotclock
4290  *     surface width = hdisplay for normal plane and 64 for cursor
4291  *   and latency is assumed to be high, as above.
4292  *
4293  * The final value programmed to the register should always be rounded up,
4294  * and include an extra 2 entries to account for clock crossings.
4295  *
4296  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4297  * to set the non-SR watermarks to 8.
4298  */
4299 static void intel_update_watermarks(struct drm_device *dev)
4300 {
4301         struct drm_i915_private *dev_priv = dev->dev_private;
4302
4303         if (dev_priv->display.update_wm)
4304                 dev_priv->display.update_wm(dev);
4305 }
4306
4307 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4308 {
4309         return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4310 }
4311
4312 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4313                               struct drm_display_mode *mode,
4314                               struct drm_display_mode *adjusted_mode,
4315                               int x, int y,
4316                               struct drm_framebuffer *old_fb)
4317 {
4318         struct drm_device *dev = crtc->dev;
4319         struct drm_i915_private *dev_priv = dev->dev_private;
4320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4321         int pipe = intel_crtc->pipe;
4322         int plane = intel_crtc->plane;
4323         int refclk, num_connectors = 0;
4324         intel_clock_t clock, reduced_clock;
4325         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4326         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4327         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4328         struct drm_mode_config *mode_config = &dev->mode_config;
4329         struct intel_encoder *encoder;
4330         const intel_limit_t *limit;
4331         int ret;
4332         u32 temp;
4333         u32 lvds_sync = 0;
4334
4335         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4336                 if (encoder->base.crtc != crtc)
4337                         continue;
4338
4339                 switch (encoder->type) {
4340                 case INTEL_OUTPUT_LVDS:
4341                         is_lvds = true;
4342                         break;
4343                 case INTEL_OUTPUT_SDVO:
4344                 case INTEL_OUTPUT_HDMI:
4345                         is_sdvo = true;
4346                         if (encoder->needs_tv_clock)
4347                                 is_tv = true;
4348                         break;
4349                 case INTEL_OUTPUT_DVO:
4350                         is_dvo = true;
4351                         break;
4352                 case INTEL_OUTPUT_TVOUT:
4353                         is_tv = true;
4354                         break;
4355                 case INTEL_OUTPUT_ANALOG:
4356                         is_crt = true;
4357                         break;
4358                 case INTEL_OUTPUT_DISPLAYPORT:
4359                         is_dp = true;
4360                         break;
4361                 }
4362
4363                 num_connectors++;
4364         }
4365
4366         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4367                 refclk = dev_priv->lvds_ssc_freq * 1000;
4368                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4369                               refclk / 1000);
4370         } else if (!IS_GEN2(dev)) {
4371                 refclk = 96000;
4372         } else {
4373                 refclk = 48000;
4374         }
4375
4376         /*
4377          * Returns a set of divisors for the desired target clock with the given
4378          * refclk, or FALSE.  The returned values represent the clock equation:
4379          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4380          */
4381         limit = intel_limit(crtc, refclk);
4382         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4383         if (!ok) {
4384                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4385                 return -EINVAL;
4386         }
4387
4388         /* Ensure that the cursor is valid for the new mode before changing... */
4389         intel_crtc_update_cursor(crtc, true);
4390
4391         if (is_lvds && dev_priv->lvds_downclock_avail) {
4392                 has_reduced_clock = limit->find_pll(limit, crtc,
4393                                                     dev_priv->lvds_downclock,
4394                                                     refclk,
4395                                                     &reduced_clock);
4396                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4397                         /*
4398                          * If the different P is found, it means that we can't
4399                          * switch the display clock by using the FP0/FP1.
4400                          * In such case we will disable the LVDS downclock
4401                          * feature.
4402                          */
4403                         DRM_DEBUG_KMS("Different P is found for "
4404                                       "LVDS clock/downclock\n");
4405                         has_reduced_clock = 0;
4406                 }
4407         }
4408         /* SDVO TV has fixed PLL values depend on its clock range,
4409            this mirrors vbios setting. */
4410         if (is_sdvo && is_tv) {
4411                 if (adjusted_mode->clock >= 100000
4412                     && adjusted_mode->clock < 140500) {
4413                         clock.p1 = 2;
4414                         clock.p2 = 10;
4415                         clock.n = 3;
4416                         clock.m1 = 16;
4417                         clock.m2 = 8;
4418                 } else if (adjusted_mode->clock >= 140500
4419                            && adjusted_mode->clock <= 200000) {
4420                         clock.p1 = 1;
4421                         clock.p2 = 10;
4422                         clock.n = 6;
4423                         clock.m1 = 12;
4424                         clock.m2 = 8;
4425                 }
4426         }
4427
4428         if (IS_PINEVIEW(dev)) {
4429                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4430                 if (has_reduced_clock)
4431                         fp2 = (1 << reduced_clock.n) << 16 |
4432                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4433         } else {
4434                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4435                 if (has_reduced_clock)
4436                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4437                                 reduced_clock.m2;
4438         }
4439
4440         dpll = DPLL_VGA_MODE_DIS;
4441
4442         if (!IS_GEN2(dev)) {
4443                 if (is_lvds)
4444                         dpll |= DPLLB_MODE_LVDS;
4445                 else
4446                         dpll |= DPLLB_MODE_DAC_SERIAL;
4447                 if (is_sdvo) {
4448                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4449                         if (pixel_multiplier > 1) {
4450                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4451                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4452                         }
4453                         dpll |= DPLL_DVO_HIGH_SPEED;
4454                 }
4455                 if (is_dp)
4456                         dpll |= DPLL_DVO_HIGH_SPEED;
4457
4458                 /* compute bitmask from p1 value */
4459                 if (IS_PINEVIEW(dev))
4460                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4461                 else {
4462                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4463                         if (IS_G4X(dev) && has_reduced_clock)
4464                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4465                 }
4466                 switch (clock.p2) {
4467                 case 5:
4468                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4469                         break;
4470                 case 7:
4471                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4472                         break;
4473                 case 10:
4474                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4475                         break;
4476                 case 14:
4477                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4478                         break;
4479                 }
4480                 if (INTEL_INFO(dev)->gen >= 4)
4481                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4482         } else {
4483                 if (is_lvds) {
4484                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4485                 } else {
4486                         if (clock.p1 == 2)
4487                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4488                         else
4489                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4490                         if (clock.p2 == 4)
4491                                 dpll |= PLL_P2_DIVIDE_BY_4;
4492                 }
4493         }
4494
4495         if (is_sdvo && is_tv)
4496                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4497         else if (is_tv)
4498                 /* XXX: just matching BIOS for now */
4499                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4500                 dpll |= 3;
4501         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4502                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4503         else
4504                 dpll |= PLL_REF_INPUT_DREFCLK;
4505
4506         /* setup pipeconf */
4507         pipeconf = I915_READ(PIPECONF(pipe));
4508
4509         /* Set up the display plane register */
4510         dspcntr = DISPPLANE_GAMMA_ENABLE;
4511
4512         /* Ironlake's plane is forced to pipe, bit 24 is to
4513            enable color space conversion */
4514         if (pipe == 0)
4515                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4516         else
4517                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4518
4519         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4520                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4521                  * core speed.
4522                  *
4523                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4524                  * pipe == 0 check?
4525                  */
4526                 if (mode->clock >
4527                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4528                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4529                 else
4530                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4531         }
4532
4533         dpll |= DPLL_VCO_ENABLE;
4534
4535         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4536         drm_mode_debug_printmodeline(mode);
4537
4538         I915_WRITE(FP0(pipe), fp);
4539         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4540
4541         POSTING_READ(DPLL(pipe));
4542         udelay(150);
4543
4544         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4545          * This is an exception to the general rule that mode_set doesn't turn
4546          * things on.
4547          */
4548         if (is_lvds) {
4549                 temp = I915_READ(LVDS);
4550                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4551                 if (pipe == 1) {
4552                         temp |= LVDS_PIPEB_SELECT;
4553                 } else {
4554                         temp &= ~LVDS_PIPEB_SELECT;
4555                 }
4556                 /* set the corresponsding LVDS_BORDER bit */
4557                 temp |= dev_priv->lvds_border_bits;
4558                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4559                  * set the DPLLs for dual-channel mode or not.
4560                  */
4561                 if (clock.p2 == 7)
4562                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4563                 else
4564                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4565
4566                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4567                  * appropriately here, but we need to look more thoroughly into how
4568                  * panels behave in the two modes.
4569                  */
4570                 /* set the dithering flag on LVDS as needed */
4571                 if (INTEL_INFO(dev)->gen >= 4) {
4572                         if (dev_priv->lvds_dither)
4573                                 temp |= LVDS_ENABLE_DITHER;
4574                         else
4575                                 temp &= ~LVDS_ENABLE_DITHER;
4576                 }
4577                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4578                         lvds_sync |= LVDS_HSYNC_POLARITY;
4579                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4580                         lvds_sync |= LVDS_VSYNC_POLARITY;
4581                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4582                     != lvds_sync) {
4583                         char flags[2] = "-+";
4584                         DRM_INFO("Changing LVDS panel from "
4585                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4586                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
4587                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
4588                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4589                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4590                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4591                         temp |= lvds_sync;
4592                 }
4593                 I915_WRITE(LVDS, temp);
4594         }
4595
4596         if (is_dp) {
4597                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4598         }
4599
4600         I915_WRITE(DPLL(pipe), dpll);
4601
4602         /* Wait for the clocks to stabilize. */
4603         POSTING_READ(DPLL(pipe));
4604         udelay(150);
4605
4606         if (INTEL_INFO(dev)->gen >= 4) {
4607                 temp = 0;
4608                 if (is_sdvo) {
4609                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4610                         if (temp > 1)
4611                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4612                         else
4613                                 temp = 0;
4614                 }
4615                 I915_WRITE(DPLL_MD(pipe), temp);
4616         } else {
4617                 /* The pixel multiplier can only be updated once the
4618                  * DPLL is enabled and the clocks are stable.
4619                  *
4620                  * So write it again.
4621                  */
4622                 I915_WRITE(DPLL(pipe), dpll);
4623         }
4624
4625         intel_crtc->lowfreq_avail = false;
4626         if (is_lvds && has_reduced_clock && i915_powersave) {
4627                 I915_WRITE(FP1(pipe), fp2);
4628                 intel_crtc->lowfreq_avail = true;
4629                 if (HAS_PIPE_CXSR(dev)) {
4630                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4631                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4632                 }
4633         } else {
4634                 I915_WRITE(FP1(pipe), fp);
4635                 if (HAS_PIPE_CXSR(dev)) {
4636                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4637                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4638                 }
4639         }
4640
4641         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4642                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4643                 /* the chip adds 2 halflines automatically */
4644                 adjusted_mode->crtc_vdisplay -= 1;
4645                 adjusted_mode->crtc_vtotal -= 1;
4646                 adjusted_mode->crtc_vblank_start -= 1;
4647                 adjusted_mode->crtc_vblank_end -= 1;
4648                 adjusted_mode->crtc_vsync_end -= 1;
4649                 adjusted_mode->crtc_vsync_start -= 1;
4650         } else
4651                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4652
4653         I915_WRITE(HTOTAL(pipe),
4654                    (adjusted_mode->crtc_hdisplay - 1) |
4655                    ((adjusted_mode->crtc_htotal - 1) << 16));
4656         I915_WRITE(HBLANK(pipe),
4657                    (adjusted_mode->crtc_hblank_start - 1) |
4658                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4659         I915_WRITE(HSYNC(pipe),
4660                    (adjusted_mode->crtc_hsync_start - 1) |
4661                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4662
4663         I915_WRITE(VTOTAL(pipe),
4664                    (adjusted_mode->crtc_vdisplay - 1) |
4665                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4666         I915_WRITE(VBLANK(pipe),
4667                    (adjusted_mode->crtc_vblank_start - 1) |
4668                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4669         I915_WRITE(VSYNC(pipe),
4670                    (adjusted_mode->crtc_vsync_start - 1) |
4671                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4672
4673         /* pipesrc and dspsize control the size that is scaled from,
4674          * which should always be the user's requested size.
4675          */
4676         I915_WRITE(DSPSIZE(plane),
4677                    ((mode->vdisplay - 1) << 16) |
4678                    (mode->hdisplay - 1));
4679         I915_WRITE(DSPPOS(plane), 0);
4680         I915_WRITE(PIPESRC(pipe),
4681                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4682
4683         I915_WRITE(PIPECONF(pipe), pipeconf);
4684         POSTING_READ(PIPECONF(pipe));
4685         intel_enable_pipe(dev_priv, pipe, false);
4686
4687         intel_wait_for_vblank(dev, pipe);
4688
4689         I915_WRITE(DSPCNTR(plane), dspcntr);
4690         POSTING_READ(DSPCNTR(plane));
4691         intel_enable_plane(dev_priv, plane, pipe);
4692
4693         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4694
4695         intel_update_watermarks(dev);
4696
4697         return ret;
4698 }
4699
4700 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4701                                   struct drm_display_mode *mode,
4702                                   struct drm_display_mode *adjusted_mode,
4703                                   int x, int y,
4704                                   struct drm_framebuffer *old_fb)
4705 {
4706         struct drm_device *dev = crtc->dev;
4707         struct drm_i915_private *dev_priv = dev->dev_private;
4708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4709         int pipe = intel_crtc->pipe;
4710         int plane = intel_crtc->plane;
4711         int refclk, num_connectors = 0;
4712         intel_clock_t clock, reduced_clock;
4713         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4714         bool ok, has_reduced_clock = false, is_sdvo = false;
4715         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4716         struct intel_encoder *has_edp_encoder = NULL;
4717         struct drm_mode_config *mode_config = &dev->mode_config;
4718         struct intel_encoder *encoder;
4719         const intel_limit_t *limit;
4720         int ret;
4721         struct fdi_m_n m_n = {0};
4722         u32 temp;
4723         u32 lvds_sync = 0;
4724         int target_clock, pixel_multiplier, lane, link_bw, bpp, factor;
4725
4726         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4727                 if (encoder->base.crtc != crtc)
4728                         continue;
4729
4730                 switch (encoder->type) {
4731                 case INTEL_OUTPUT_LVDS:
4732                         is_lvds = true;
4733                         break;
4734                 case INTEL_OUTPUT_SDVO:
4735                 case INTEL_OUTPUT_HDMI:
4736                         is_sdvo = true;
4737                         if (encoder->needs_tv_clock)
4738                                 is_tv = true;
4739                         break;
4740                 case INTEL_OUTPUT_TVOUT:
4741                         is_tv = true;
4742                         break;
4743                 case INTEL_OUTPUT_ANALOG:
4744                         is_crt = true;
4745                         break;
4746                 case INTEL_OUTPUT_DISPLAYPORT:
4747                         is_dp = true;
4748                         break;
4749                 case INTEL_OUTPUT_EDP:
4750                         has_edp_encoder = encoder;
4751                         break;
4752                 }
4753
4754                 num_connectors++;
4755         }
4756
4757         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4758                 refclk = dev_priv->lvds_ssc_freq * 1000;
4759                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4760                               refclk / 1000);
4761         } else {
4762                 refclk = 96000;
4763                 if (!has_edp_encoder ||
4764                     intel_encoder_is_pch_edp(&has_edp_encoder->base))
4765                         refclk = 120000; /* 120Mhz refclk */
4766         }
4767
4768         /*
4769          * Returns a set of divisors for the desired target clock with the given
4770          * refclk, or FALSE.  The returned values represent the clock equation:
4771          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4772          */
4773         limit = intel_limit(crtc, refclk);
4774         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4775         if (!ok) {
4776                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4777                 return -EINVAL;
4778         }
4779
4780         /* Ensure that the cursor is valid for the new mode before changing... */
4781         intel_crtc_update_cursor(crtc, true);
4782
4783         if (is_lvds && dev_priv->lvds_downclock_avail) {
4784                 has_reduced_clock = limit->find_pll(limit, crtc,
4785                                                     dev_priv->lvds_downclock,
4786                                                     refclk,
4787                                                     &reduced_clock);
4788                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4789                         /*
4790                          * If the different P is found, it means that we can't
4791                          * switch the display clock by using the FP0/FP1.
4792                          * In such case we will disable the LVDS downclock
4793                          * feature.
4794                          */
4795                         DRM_DEBUG_KMS("Different P is found for "
4796                                       "LVDS clock/downclock\n");
4797                         has_reduced_clock = 0;
4798                 }
4799         }
4800         /* SDVO TV has fixed PLL values depend on its clock range,
4801            this mirrors vbios setting. */
4802         if (is_sdvo && is_tv) {
4803                 if (adjusted_mode->clock >= 100000
4804                     && adjusted_mode->clock < 140500) {
4805                         clock.p1 = 2;
4806                         clock.p2 = 10;
4807                         clock.n = 3;
4808                         clock.m1 = 16;
4809                         clock.m2 = 8;
4810                 } else if (adjusted_mode->clock >= 140500
4811                            && adjusted_mode->clock <= 200000) {
4812                         clock.p1 = 1;
4813                         clock.p2 = 10;
4814                         clock.n = 6;
4815                         clock.m1 = 12;
4816                         clock.m2 = 8;
4817                 }
4818         }
4819
4820         /* FDI link */
4821         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4822         lane = 0;
4823         /* CPU eDP doesn't require FDI link, so just set DP M/N
4824            according to current link config */
4825         if (has_edp_encoder &&
4826             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4827                 target_clock = mode->clock;
4828                 intel_edp_link_config(has_edp_encoder,
4829                                       &lane, &link_bw);
4830         } else {
4831                 /* [e]DP over FDI requires target mode clock
4832                    instead of link clock */
4833                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4834                         target_clock = mode->clock;
4835                 else
4836                         target_clock = adjusted_mode->clock;
4837
4838                 /* FDI is a binary signal running at ~2.7GHz, encoding
4839                  * each output octet as 10 bits. The actual frequency
4840                  * is stored as a divider into a 100MHz clock, and the
4841                  * mode pixel clock is stored in units of 1KHz.
4842                  * Hence the bw of each lane in terms of the mode signal
4843                  * is:
4844                  */
4845                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4846         }
4847
4848         /* determine panel color depth */
4849         temp = I915_READ(PIPECONF(pipe));
4850         temp &= ~PIPE_BPC_MASK;
4851         if (is_lvds) {
4852                 /* the BPC will be 6 if it is 18-bit LVDS panel */
4853                 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4854                         temp |= PIPE_8BPC;
4855                 else
4856                         temp |= PIPE_6BPC;
4857         } else if (has_edp_encoder) {
4858                 switch (dev_priv->edp.bpp/3) {
4859                 case 8:
4860                         temp |= PIPE_8BPC;
4861                         break;
4862                 case 10:
4863                         temp |= PIPE_10BPC;
4864                         break;
4865                 case 6:
4866                         temp |= PIPE_6BPC;
4867                         break;
4868                 case 12:
4869                         temp |= PIPE_12BPC;
4870                         break;
4871                 }
4872         } else
4873                 temp |= PIPE_8BPC;
4874         I915_WRITE(PIPECONF(pipe), temp);
4875
4876         switch (temp & PIPE_BPC_MASK) {
4877         case PIPE_8BPC:
4878                 bpp = 24;
4879                 break;
4880         case PIPE_10BPC:
4881                 bpp = 30;
4882                 break;
4883         case PIPE_6BPC:
4884                 bpp = 18;
4885                 break;
4886         case PIPE_12BPC:
4887                 bpp = 36;
4888                 break;
4889         default:
4890                 DRM_ERROR("unknown pipe bpc value\n");
4891                 bpp = 24;
4892         }
4893
4894         if (!lane) {
4895                 /*
4896                  * Account for spread spectrum to avoid
4897                  * oversubscribing the link. Max center spread
4898                  * is 2.5%; use 5% for safety's sake.
4899                  */
4900                 u32 bps = target_clock * bpp * 21 / 20;
4901                 lane = bps / (link_bw * 8) + 1;
4902         }
4903
4904         intel_crtc->fdi_lanes = lane;
4905
4906         if (pixel_multiplier > 1)
4907                 link_bw *= pixel_multiplier;
4908         ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4909
4910         /* Ironlake: try to setup display ref clock before DPLL
4911          * enabling. This is only under driver's control after
4912          * PCH B stepping, previous chipset stepping should be
4913          * ignoring this setting.
4914          */
4915         temp = I915_READ(PCH_DREF_CONTROL);
4916         /* Always enable nonspread source */
4917         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4918         temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4919         temp &= ~DREF_SSC_SOURCE_MASK;
4920         temp |= DREF_SSC_SOURCE_ENABLE;
4921         I915_WRITE(PCH_DREF_CONTROL, temp);
4922
4923         POSTING_READ(PCH_DREF_CONTROL);
4924         udelay(200);
4925
4926         if (has_edp_encoder) {
4927                 if (intel_panel_use_ssc(dev_priv)) {
4928                         temp |= DREF_SSC1_ENABLE;
4929                         I915_WRITE(PCH_DREF_CONTROL, temp);
4930
4931                         POSTING_READ(PCH_DREF_CONTROL);
4932                         udelay(200);
4933                 }
4934                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4935
4936                 /* Enable CPU source on CPU attached eDP */
4937                 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4938                         if (intel_panel_use_ssc(dev_priv))
4939                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4940                         else
4941                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4942                 } else {
4943                         /* Enable SSC on PCH eDP if needed */
4944                         if (intel_panel_use_ssc(dev_priv)) {
4945                                 DRM_ERROR("enabling SSC on PCH\n");
4946                                 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4947                         }
4948                 }
4949                 I915_WRITE(PCH_DREF_CONTROL, temp);
4950                 POSTING_READ(PCH_DREF_CONTROL);
4951                 udelay(200);
4952         }
4953
4954         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4955         if (has_reduced_clock)
4956                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4957                         reduced_clock.m2;
4958
4959         /* Enable autotuning of the PLL clock (if permissible) */
4960         factor = 21;
4961         if (is_lvds) {
4962                 if ((intel_panel_use_ssc(dev_priv) &&
4963                      dev_priv->lvds_ssc_freq == 100) ||
4964                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4965                         factor = 25;
4966         } else if (is_sdvo && is_tv)
4967                 factor = 20;
4968
4969         if (clock.m1 < factor * clock.n)
4970                 fp |= FP_CB_TUNE;
4971
4972         dpll = 0;
4973
4974         if (is_lvds)
4975                 dpll |= DPLLB_MODE_LVDS;
4976         else
4977                 dpll |= DPLLB_MODE_DAC_SERIAL;
4978         if (is_sdvo) {
4979                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4980                 if (pixel_multiplier > 1) {
4981                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4982                 }
4983                 dpll |= DPLL_DVO_HIGH_SPEED;
4984         }
4985         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4986                 dpll |= DPLL_DVO_HIGH_SPEED;
4987
4988         /* compute bitmask from p1 value */
4989         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4990         /* also FPA1 */
4991         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4992
4993         switch (clock.p2) {
4994         case 5:
4995                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4996                 break;
4997         case 7:
4998                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4999                 break;
5000         case 10:
5001                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5002                 break;
5003         case 14:
5004                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5005                 break;
5006         }
5007
5008         if (is_sdvo && is_tv)
5009                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5010         else if (is_tv)
5011                 /* XXX: just matching BIOS for now */
5012                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5013                 dpll |= 3;
5014         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5015                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5016         else
5017                 dpll |= PLL_REF_INPUT_DREFCLK;
5018
5019         /* setup pipeconf */
5020         pipeconf = I915_READ(PIPECONF(pipe));
5021
5022         /* Set up the display plane register */
5023         dspcntr = DISPPLANE_GAMMA_ENABLE;
5024
5025         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5026         drm_mode_debug_printmodeline(mode);
5027
5028         /* PCH eDP needs FDI, but CPU eDP does not */
5029         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5030                 I915_WRITE(PCH_FP0(pipe), fp);
5031                 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5032
5033                 POSTING_READ(PCH_DPLL(pipe));
5034                 udelay(150);
5035         }
5036
5037         /* enable transcoder DPLL */
5038         if (HAS_PCH_CPT(dev)) {
5039                 temp = I915_READ(PCH_DPLL_SEL);
5040                 switch (pipe) {
5041                 case 0:
5042                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5043                         break;
5044                 case 1:
5045                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5046                         break;
5047                 case 2:
5048                         /* FIXME: manage transcoder PLLs? */
5049                         temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5050                         break;
5051                 default:
5052                         BUG();
5053                 }
5054                 I915_WRITE(PCH_DPLL_SEL, temp);
5055
5056                 POSTING_READ(PCH_DPLL_SEL);
5057                 udelay(150);
5058         }
5059
5060         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5061          * This is an exception to the general rule that mode_set doesn't turn
5062          * things on.
5063          */
5064         if (is_lvds) {
5065                 temp = I915_READ(PCH_LVDS);
5066                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5067                 if (pipe == 1) {
5068                         if (HAS_PCH_CPT(dev))
5069                                 temp |= PORT_TRANS_B_SEL_CPT;
5070                         else
5071                                 temp |= LVDS_PIPEB_SELECT;
5072                 } else {
5073                         if (HAS_PCH_CPT(dev))
5074                                 temp &= ~PORT_TRANS_SEL_MASK;
5075                         else
5076                                 temp &= ~LVDS_PIPEB_SELECT;
5077                 }
5078                 /* set the corresponsding LVDS_BORDER bit */
5079                 temp |= dev_priv->lvds_border_bits;
5080                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5081                  * set the DPLLs for dual-channel mode or not.
5082                  */
5083                 if (clock.p2 == 7)
5084                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5085                 else
5086                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5087
5088                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5089                  * appropriately here, but we need to look more thoroughly into how
5090                  * panels behave in the two modes.
5091                  */
5092                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5093                         lvds_sync |= LVDS_HSYNC_POLARITY;
5094                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5095                         lvds_sync |= LVDS_VSYNC_POLARITY;
5096                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5097                     != lvds_sync) {
5098                         char flags[2] = "-+";
5099                         DRM_INFO("Changing LVDS panel from "
5100                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5101                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5102                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5103                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5104                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5105                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5106                         temp |= lvds_sync;
5107                 }
5108                 I915_WRITE(PCH_LVDS, temp);
5109         }
5110
5111         /* set the dithering flag and clear for anything other than a panel. */
5112         pipeconf &= ~PIPECONF_DITHER_EN;
5113         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5114         if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5115                 pipeconf |= PIPECONF_DITHER_EN;
5116                 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5117         }
5118
5119         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5120                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5121         } else {
5122                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5123                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5124                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5125                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5126                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5127         }
5128
5129         if (!has_edp_encoder ||
5130             intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5131                 I915_WRITE(PCH_DPLL(pipe), dpll);
5132
5133                 /* Wait for the clocks to stabilize. */
5134                 POSTING_READ(PCH_DPLL(pipe));
5135                 udelay(150);
5136
5137                 /* The pixel multiplier can only be updated once the
5138                  * DPLL is enabled and the clocks are stable.
5139                  *
5140                  * So write it again.
5141                  */
5142                 I915_WRITE(PCH_DPLL(pipe), dpll);
5143         }
5144
5145         intel_crtc->lowfreq_avail = false;
5146         if (is_lvds && has_reduced_clock && i915_powersave) {
5147                 I915_WRITE(PCH_FP1(pipe), fp2);
5148                 intel_crtc->lowfreq_avail = true;
5149                 if (HAS_PIPE_CXSR(dev)) {
5150                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5151                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5152                 }
5153         } else {
5154                 I915_WRITE(PCH_FP1(pipe), fp);
5155                 if (HAS_PIPE_CXSR(dev)) {
5156                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5157                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5158                 }
5159         }
5160
5161         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5162                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5163                 /* the chip adds 2 halflines automatically */
5164                 adjusted_mode->crtc_vdisplay -= 1;
5165                 adjusted_mode->crtc_vtotal -= 1;
5166                 adjusted_mode->crtc_vblank_start -= 1;
5167                 adjusted_mode->crtc_vblank_end -= 1;
5168                 adjusted_mode->crtc_vsync_end -= 1;
5169                 adjusted_mode->crtc_vsync_start -= 1;
5170         } else
5171                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5172
5173         I915_WRITE(HTOTAL(pipe),
5174                    (adjusted_mode->crtc_hdisplay - 1) |
5175                    ((adjusted_mode->crtc_htotal - 1) << 16));
5176         I915_WRITE(HBLANK(pipe),
5177                    (adjusted_mode->crtc_hblank_start - 1) |
5178                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5179         I915_WRITE(HSYNC(pipe),
5180                    (adjusted_mode->crtc_hsync_start - 1) |
5181                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5182
5183         I915_WRITE(VTOTAL(pipe),
5184                    (adjusted_mode->crtc_vdisplay - 1) |
5185                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5186         I915_WRITE(VBLANK(pipe),
5187                    (adjusted_mode->crtc_vblank_start - 1) |
5188                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5189         I915_WRITE(VSYNC(pipe),
5190                    (adjusted_mode->crtc_vsync_start - 1) |
5191                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5192
5193         /* pipesrc controls the size that is scaled from, which should
5194          * always be the user's requested size.
5195          */
5196         I915_WRITE(PIPESRC(pipe),
5197                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5198
5199         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5200         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5201         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5202         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5203
5204         if (has_edp_encoder &&
5205             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5206                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5207         }
5208
5209         I915_WRITE(PIPECONF(pipe), pipeconf);
5210         POSTING_READ(PIPECONF(pipe));
5211
5212         intel_wait_for_vblank(dev, pipe);
5213
5214         if (IS_GEN5(dev)) {
5215                 /* enable address swizzle for tiling buffer */
5216                 temp = I915_READ(DISP_ARB_CTL);
5217                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5218         }
5219
5220         I915_WRITE(DSPCNTR(plane), dspcntr);
5221         POSTING_READ(DSPCNTR(plane));
5222
5223         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5224
5225         intel_update_watermarks(dev);
5226
5227         return ret;
5228 }
5229
5230 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5231                                struct drm_display_mode *mode,
5232                                struct drm_display_mode *adjusted_mode,
5233                                int x, int y,
5234                                struct drm_framebuffer *old_fb)
5235 {
5236         struct drm_device *dev = crtc->dev;
5237         struct drm_i915_private *dev_priv = dev->dev_private;
5238         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5239         int pipe = intel_crtc->pipe;
5240         int ret;
5241
5242         drm_vblank_pre_modeset(dev, pipe);
5243
5244         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5245                                               x, y, old_fb);
5246
5247         drm_vblank_post_modeset(dev, pipe);
5248
5249         return ret;
5250 }
5251
5252 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5253 void intel_crtc_load_lut(struct drm_crtc *crtc)
5254 {
5255         struct drm_device *dev = crtc->dev;
5256         struct drm_i915_private *dev_priv = dev->dev_private;
5257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5258         int palreg = PALETTE(intel_crtc->pipe);
5259         int i;
5260
5261         /* The clocks have to be on to load the palette. */
5262         if (!crtc->enabled)
5263                 return;
5264
5265         /* use legacy palette for Ironlake */
5266         if (HAS_PCH_SPLIT(dev))
5267                 palreg = LGC_PALETTE(intel_crtc->pipe);
5268
5269         for (i = 0; i < 256; i++) {
5270                 I915_WRITE(palreg + 4 * i,
5271                            (intel_crtc->lut_r[i] << 16) |
5272                            (intel_crtc->lut_g[i] << 8) |
5273                            intel_crtc->lut_b[i]);
5274         }
5275 }
5276
5277 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5278 {
5279         struct drm_device *dev = crtc->dev;
5280         struct drm_i915_private *dev_priv = dev->dev_private;
5281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5282         bool visible = base != 0;
5283         u32 cntl;
5284
5285         if (intel_crtc->cursor_visible == visible)
5286                 return;
5287
5288         cntl = I915_READ(_CURACNTR);
5289         if (visible) {
5290                 /* On these chipsets we can only modify the base whilst
5291                  * the cursor is disabled.
5292                  */
5293                 I915_WRITE(_CURABASE, base);
5294
5295                 cntl &= ~(CURSOR_FORMAT_MASK);
5296                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5297                 cntl |= CURSOR_ENABLE |
5298                         CURSOR_GAMMA_ENABLE |
5299                         CURSOR_FORMAT_ARGB;
5300         } else
5301                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5302         I915_WRITE(_CURACNTR, cntl);
5303
5304         intel_crtc->cursor_visible = visible;
5305 }
5306
5307 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5308 {
5309         struct drm_device *dev = crtc->dev;
5310         struct drm_i915_private *dev_priv = dev->dev_private;
5311         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5312         int pipe = intel_crtc->pipe;
5313         bool visible = base != 0;
5314
5315         if (intel_crtc->cursor_visible != visible) {
5316                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5317                 if (base) {
5318                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5319                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5320                         cntl |= pipe << 28; /* Connect to correct pipe */
5321                 } else {
5322                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5323                         cntl |= CURSOR_MODE_DISABLE;
5324                 }
5325                 I915_WRITE(CURCNTR(pipe), cntl);
5326
5327                 intel_crtc->cursor_visible = visible;
5328         }
5329         /* and commit changes on next vblank */
5330         I915_WRITE(CURBASE(pipe), base);
5331 }
5332
5333 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5334 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5335                                      bool on)
5336 {
5337         struct drm_device *dev = crtc->dev;
5338         struct drm_i915_private *dev_priv = dev->dev_private;
5339         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5340         int pipe = intel_crtc->pipe;
5341         int x = intel_crtc->cursor_x;
5342         int y = intel_crtc->cursor_y;
5343         u32 base, pos;
5344         bool visible;
5345
5346         pos = 0;
5347
5348         if (on && crtc->enabled && crtc->fb) {
5349                 base = intel_crtc->cursor_addr;
5350                 if (x > (int) crtc->fb->width)
5351                         base = 0;
5352
5353                 if (y > (int) crtc->fb->height)
5354                         base = 0;
5355         } else
5356                 base = 0;
5357
5358         if (x < 0) {
5359                 if (x + intel_crtc->cursor_width < 0)
5360                         base = 0;
5361
5362                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5363                 x = -x;
5364         }
5365         pos |= x << CURSOR_X_SHIFT;
5366
5367         if (y < 0) {
5368                 if (y + intel_crtc->cursor_height < 0)
5369                         base = 0;
5370
5371                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5372                 y = -y;
5373         }
5374         pos |= y << CURSOR_Y_SHIFT;
5375
5376         visible = base != 0;
5377         if (!visible && !intel_crtc->cursor_visible)
5378                 return;
5379
5380         I915_WRITE(CURPOS(pipe), pos);
5381         if (IS_845G(dev) || IS_I865G(dev))
5382                 i845_update_cursor(crtc, base);
5383         else
5384                 i9xx_update_cursor(crtc, base);
5385
5386         if (visible)
5387                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5388 }
5389
5390 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5391                                  struct drm_file *file,
5392                                  uint32_t handle,
5393                                  uint32_t width, uint32_t height)
5394 {
5395         struct drm_device *dev = crtc->dev;
5396         struct drm_i915_private *dev_priv = dev->dev_private;
5397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5398         struct drm_i915_gem_object *obj;
5399         uint32_t addr;
5400         int ret;
5401
5402         DRM_DEBUG_KMS("\n");
5403
5404         /* if we want to turn off the cursor ignore width and height */
5405         if (!handle) {
5406                 DRM_DEBUG_KMS("cursor off\n");
5407                 addr = 0;
5408                 obj = NULL;
5409                 mutex_lock(&dev->struct_mutex);
5410                 goto finish;
5411         }
5412
5413         /* Currently we only support 64x64 cursors */
5414         if (width != 64 || height != 64) {
5415                 DRM_ERROR("we currently only support 64x64 cursors\n");
5416                 return -EINVAL;
5417         }
5418
5419         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5420         if (&obj->base == NULL)
5421                 return -ENOENT;
5422
5423         if (obj->base.size < width * height * 4) {
5424                 DRM_ERROR("buffer is to small\n");
5425                 ret = -ENOMEM;
5426                 goto fail;
5427         }
5428
5429         /* we only need to pin inside GTT if cursor is non-phy */
5430         mutex_lock(&dev->struct_mutex);
5431         if (!dev_priv->info->cursor_needs_physical) {
5432                 if (obj->tiling_mode) {
5433                         DRM_ERROR("cursor cannot be tiled\n");
5434                         ret = -EINVAL;
5435                         goto fail_locked;
5436                 }
5437
5438                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5439                 if (ret) {
5440                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5441                         goto fail_locked;
5442                 }
5443
5444                 ret = i915_gem_object_put_fence(obj);
5445                 if (ret) {
5446                         DRM_ERROR("failed to release fence for cursor");
5447                         goto fail_unpin;
5448                 }
5449
5450                 addr = obj->gtt_offset;
5451         } else {
5452                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5453                 ret = i915_gem_attach_phys_object(dev, obj,
5454                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5455                                                   align);
5456                 if (ret) {
5457                         DRM_ERROR("failed to attach phys object\n");
5458                         goto fail_locked;
5459                 }
5460                 addr = obj->phys_obj->handle->busaddr;
5461         }
5462
5463         if (IS_GEN2(dev))
5464                 I915_WRITE(CURSIZE, (height << 12) | width);
5465
5466  finish:
5467         if (intel_crtc->cursor_bo) {
5468                 if (dev_priv->info->cursor_needs_physical) {
5469                         if (intel_crtc->cursor_bo != obj)
5470                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5471                 } else
5472                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5473                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5474         }
5475
5476         mutex_unlock(&dev->struct_mutex);
5477
5478         intel_crtc->cursor_addr = addr;
5479         intel_crtc->cursor_bo = obj;
5480         intel_crtc->cursor_width = width;
5481         intel_crtc->cursor_height = height;
5482
5483         intel_crtc_update_cursor(crtc, true);
5484
5485         return 0;
5486 fail_unpin:
5487         i915_gem_object_unpin(obj);
5488 fail_locked:
5489         mutex_unlock(&dev->struct_mutex);
5490 fail:
5491         drm_gem_object_unreference_unlocked(&obj->base);
5492         return ret;
5493 }
5494
5495 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5496 {
5497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5498
5499         intel_crtc->cursor_x = x;
5500         intel_crtc->cursor_y = y;
5501
5502         intel_crtc_update_cursor(crtc, true);
5503
5504         return 0;
5505 }
5506
5507 /** Sets the color ramps on behalf of RandR */
5508 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5509                                  u16 blue, int regno)
5510 {
5511         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5512
5513         intel_crtc->lut_r[regno] = red >> 8;
5514         intel_crtc->lut_g[regno] = green >> 8;
5515         intel_crtc->lut_b[regno] = blue >> 8;
5516 }
5517
5518 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5519                              u16 *blue, int regno)
5520 {
5521         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5522
5523         *red = intel_crtc->lut_r[regno] << 8;
5524         *green = intel_crtc->lut_g[regno] << 8;
5525         *blue = intel_crtc->lut_b[regno] << 8;
5526 }
5527
5528 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5529                                  u16 *blue, uint32_t start, uint32_t size)
5530 {
5531         int end = (start + size > 256) ? 256 : start + size, i;
5532         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5533
5534         for (i = start; i < end; i++) {
5535                 intel_crtc->lut_r[i] = red[i] >> 8;
5536                 intel_crtc->lut_g[i] = green[i] >> 8;
5537                 intel_crtc->lut_b[i] = blue[i] >> 8;
5538         }
5539
5540         intel_crtc_load_lut(crtc);
5541 }
5542
5543 /**
5544  * Get a pipe with a simple mode set on it for doing load-based monitor
5545  * detection.
5546  *
5547  * It will be up to the load-detect code to adjust the pipe as appropriate for
5548  * its requirements.  The pipe will be connected to no other encoders.
5549  *
5550  * Currently this code will only succeed if there is a pipe with no encoders
5551  * configured for it.  In the future, it could choose to temporarily disable
5552  * some outputs to free up a pipe for its use.
5553  *
5554  * \return crtc, or NULL if no pipes are available.
5555  */
5556
5557 /* VESA 640x480x72Hz mode to set on the pipe */
5558 static struct drm_display_mode load_detect_mode = {
5559         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5560                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5561 };
5562
5563 static struct drm_framebuffer *
5564 intel_framebuffer_create(struct drm_device *dev,
5565                          struct drm_mode_fb_cmd *mode_cmd,
5566                          struct drm_i915_gem_object *obj)
5567 {
5568         struct intel_framebuffer *intel_fb;
5569         int ret;
5570
5571         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5572         if (!intel_fb) {
5573                 drm_gem_object_unreference_unlocked(&obj->base);
5574                 return ERR_PTR(-ENOMEM);
5575         }
5576
5577         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5578         if (ret) {
5579                 drm_gem_object_unreference_unlocked(&obj->base);
5580                 kfree(intel_fb);
5581                 return ERR_PTR(ret);
5582         }
5583
5584         return &intel_fb->base;
5585 }
5586
5587 static u32
5588 intel_framebuffer_pitch_for_width(int width, int bpp)
5589 {
5590         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5591         return ALIGN(pitch, 64);
5592 }
5593
5594 static u32
5595 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5596 {
5597         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5598         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5599 }
5600
5601 static struct drm_framebuffer *
5602 intel_framebuffer_create_for_mode(struct drm_device *dev,
5603                                   struct drm_display_mode *mode,
5604                                   int depth, int bpp)
5605 {
5606         struct drm_i915_gem_object *obj;
5607         struct drm_mode_fb_cmd mode_cmd;
5608
5609         obj = i915_gem_alloc_object(dev,
5610                                     intel_framebuffer_size_for_mode(mode, bpp));
5611         if (obj == NULL)
5612                 return ERR_PTR(-ENOMEM);
5613
5614         mode_cmd.width = mode->hdisplay;
5615         mode_cmd.height = mode->vdisplay;
5616         mode_cmd.depth = depth;
5617         mode_cmd.bpp = bpp;
5618         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5619
5620         return intel_framebuffer_create(dev, &mode_cmd, obj);
5621 }
5622
5623 static struct drm_framebuffer *
5624 mode_fits_in_fbdev(struct drm_device *dev,
5625                    struct drm_display_mode *mode)
5626 {
5627         struct drm_i915_private *dev_priv = dev->dev_private;
5628         struct drm_i915_gem_object *obj;
5629         struct drm_framebuffer *fb;
5630
5631         if (dev_priv->fbdev == NULL)
5632                 return NULL;
5633
5634         obj = dev_priv->fbdev->ifb.obj;
5635         if (obj == NULL)
5636                 return NULL;
5637
5638         fb = &dev_priv->fbdev->ifb.base;
5639         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5640                                                           fb->bits_per_pixel))
5641                 return NULL;
5642
5643         if (obj->base.size < mode->vdisplay * fb->pitch)
5644                 return NULL;
5645
5646         return fb;
5647 }
5648
5649 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5650                                 struct drm_connector *connector,
5651                                 struct drm_display_mode *mode,
5652                                 struct intel_load_detect_pipe *old)
5653 {
5654         struct intel_crtc *intel_crtc;
5655         struct drm_crtc *possible_crtc;
5656         struct drm_encoder *encoder = &intel_encoder->base;
5657         struct drm_crtc *crtc = NULL;
5658         struct drm_device *dev = encoder->dev;
5659         struct drm_framebuffer *old_fb;
5660         int i = -1;
5661
5662         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5663                       connector->base.id, drm_get_connector_name(connector),
5664                       encoder->base.id, drm_get_encoder_name(encoder));
5665
5666         /*
5667          * Algorithm gets a little messy:
5668          *
5669          *   - if the connector already has an assigned crtc, use it (but make
5670          *     sure it's on first)
5671          *
5672          *   - try to find the first unused crtc that can drive this connector,
5673          *     and use that if we find one
5674          */
5675
5676         /* See if we already have a CRTC for this connector */
5677         if (encoder->crtc) {
5678                 crtc = encoder->crtc;
5679
5680                 intel_crtc = to_intel_crtc(crtc);
5681                 old->dpms_mode = intel_crtc->dpms_mode;
5682                 old->load_detect_temp = false;
5683
5684                 /* Make sure the crtc and connector are running */
5685                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5686                         struct drm_encoder_helper_funcs *encoder_funcs;
5687                         struct drm_crtc_helper_funcs *crtc_funcs;
5688
5689                         crtc_funcs = crtc->helper_private;
5690                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5691
5692                         encoder_funcs = encoder->helper_private;
5693                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5694                 }
5695
5696                 return true;
5697         }
5698
5699         /* Find an unused one (if possible) */
5700         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5701                 i++;
5702                 if (!(encoder->possible_crtcs & (1 << i)))
5703                         continue;
5704                 if (!possible_crtc->enabled) {
5705                         crtc = possible_crtc;
5706                         break;
5707                 }
5708         }
5709
5710         /*
5711          * If we didn't find an unused CRTC, don't use any.
5712          */
5713         if (!crtc) {
5714                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5715                 return false;
5716         }
5717
5718         encoder->crtc = crtc;
5719         connector->encoder = encoder;
5720
5721         intel_crtc = to_intel_crtc(crtc);
5722         old->dpms_mode = intel_crtc->dpms_mode;
5723         old->load_detect_temp = true;
5724         old->release_fb = NULL;
5725
5726         if (!mode)
5727                 mode = &load_detect_mode;
5728
5729         old_fb = crtc->fb;
5730
5731         /* We need a framebuffer large enough to accommodate all accesses
5732          * that the plane may generate whilst we perform load detection.
5733          * We can not rely on the fbcon either being present (we get called
5734          * during its initialisation to detect all boot displays, or it may
5735          * not even exist) or that it is large enough to satisfy the
5736          * requested mode.
5737          */
5738         crtc->fb = mode_fits_in_fbdev(dev, mode);
5739         if (crtc->fb == NULL) {
5740                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5741                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5742                 old->release_fb = crtc->fb;
5743         } else
5744                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5745         if (IS_ERR(crtc->fb)) {
5746                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5747                 crtc->fb = old_fb;
5748                 return false;
5749         }
5750
5751         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5752                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5753                 if (old->release_fb)
5754                         old->release_fb->funcs->destroy(old->release_fb);
5755                 crtc->fb = old_fb;
5756                 return false;
5757         }
5758
5759         /* let the connector get through one full cycle before testing */
5760         intel_wait_for_vblank(dev, intel_crtc->pipe);
5761
5762         return true;
5763 }
5764
5765 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5766                                     struct drm_connector *connector,
5767                                     struct intel_load_detect_pipe *old)
5768 {
5769         struct drm_encoder *encoder = &intel_encoder->base;
5770         struct drm_device *dev = encoder->dev;
5771         struct drm_crtc *crtc = encoder->crtc;
5772         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5773         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5774
5775         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5776                       connector->base.id, drm_get_connector_name(connector),
5777                       encoder->base.id, drm_get_encoder_name(encoder));
5778
5779         if (old->load_detect_temp) {
5780                 connector->encoder = NULL;
5781                 drm_helper_disable_unused_functions(dev);
5782
5783                 if (old->release_fb)
5784                         old->release_fb->funcs->destroy(old->release_fb);
5785
5786                 return;
5787         }
5788
5789         /* Switch crtc and encoder back off if necessary */
5790         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5791                 encoder_funcs->dpms(encoder, old->dpms_mode);
5792                 crtc_funcs->dpms(crtc, old->dpms_mode);
5793         }
5794 }
5795
5796 /* Returns the clock of the currently programmed mode of the given pipe. */
5797 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5798 {
5799         struct drm_i915_private *dev_priv = dev->dev_private;
5800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5801         int pipe = intel_crtc->pipe;
5802         u32 dpll = I915_READ(DPLL(pipe));
5803         u32 fp;
5804         intel_clock_t clock;
5805
5806         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5807                 fp = I915_READ(FP0(pipe));
5808         else
5809                 fp = I915_READ(FP1(pipe));
5810
5811         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5812         if (IS_PINEVIEW(dev)) {
5813                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5814                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5815         } else {
5816                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5817                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5818         }
5819
5820         if (!IS_GEN2(dev)) {
5821                 if (IS_PINEVIEW(dev))
5822                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5823                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5824                 else
5825                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5826                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5827
5828                 switch (dpll & DPLL_MODE_MASK) {
5829                 case DPLLB_MODE_DAC_SERIAL:
5830                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5831                                 5 : 10;
5832                         break;
5833                 case DPLLB_MODE_LVDS:
5834                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5835                                 7 : 14;
5836                         break;
5837                 default:
5838                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5839                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5840                         return 0;
5841                 }
5842
5843                 /* XXX: Handle the 100Mhz refclk */
5844                 intel_clock(dev, 96000, &clock);
5845         } else {
5846                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5847
5848                 if (is_lvds) {
5849                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5850                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5851                         clock.p2 = 14;
5852
5853                         if ((dpll & PLL_REF_INPUT_MASK) ==
5854                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5855                                 /* XXX: might not be 66MHz */
5856                                 intel_clock(dev, 66000, &clock);
5857                         } else
5858                                 intel_clock(dev, 48000, &clock);
5859                 } else {
5860                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5861                                 clock.p1 = 2;
5862                         else {
5863                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5864                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5865                         }
5866                         if (dpll & PLL_P2_DIVIDE_BY_4)
5867                                 clock.p2 = 4;
5868                         else
5869                                 clock.p2 = 2;
5870
5871                         intel_clock(dev, 48000, &clock);
5872                 }
5873         }
5874
5875         /* XXX: It would be nice to validate the clocks, but we can't reuse
5876          * i830PllIsValid() because it relies on the xf86_config connector
5877          * configuration being accurate, which it isn't necessarily.
5878          */
5879
5880         return clock.dot;
5881 }
5882
5883 /** Returns the currently programmed mode of the given pipe. */
5884 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5885                                              struct drm_crtc *crtc)
5886 {
5887         struct drm_i915_private *dev_priv = dev->dev_private;
5888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5889         int pipe = intel_crtc->pipe;
5890         struct drm_display_mode *mode;
5891         int htot = I915_READ(HTOTAL(pipe));
5892         int hsync = I915_READ(HSYNC(pipe));
5893         int vtot = I915_READ(VTOTAL(pipe));
5894         int vsync = I915_READ(VSYNC(pipe));
5895
5896         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5897         if (!mode)
5898                 return NULL;
5899
5900         mode->clock = intel_crtc_clock_get(dev, crtc);
5901         mode->hdisplay = (htot & 0xffff) + 1;
5902         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5903         mode->hsync_start = (hsync & 0xffff) + 1;
5904         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5905         mode->vdisplay = (vtot & 0xffff) + 1;
5906         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5907         mode->vsync_start = (vsync & 0xffff) + 1;
5908         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5909
5910         drm_mode_set_name(mode);
5911         drm_mode_set_crtcinfo(mode, 0);
5912
5913         return mode;
5914 }
5915
5916 #define GPU_IDLE_TIMEOUT 500 /* ms */
5917
5918 /* When this timer fires, we've been idle for awhile */
5919 static void intel_gpu_idle_timer(unsigned long arg)
5920 {
5921         struct drm_device *dev = (struct drm_device *)arg;
5922         drm_i915_private_t *dev_priv = dev->dev_private;
5923
5924         if (!list_empty(&dev_priv->mm.active_list)) {
5925                 /* Still processing requests, so just re-arm the timer. */
5926                 mod_timer(&dev_priv->idle_timer, jiffies +
5927                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5928                 return;
5929         }
5930
5931         dev_priv->busy = false;
5932         queue_work(dev_priv->wq, &dev_priv->idle_work);
5933 }
5934
5935 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5936
5937 static void intel_crtc_idle_timer(unsigned long arg)
5938 {
5939         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5940         struct drm_crtc *crtc = &intel_crtc->base;
5941         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5942         struct intel_framebuffer *intel_fb;
5943
5944         intel_fb = to_intel_framebuffer(crtc->fb);
5945         if (intel_fb && intel_fb->obj->active) {
5946                 /* The framebuffer is still being accessed by the GPU. */
5947                 mod_timer(&intel_crtc->idle_timer, jiffies +
5948                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5949                 return;
5950         }
5951
5952         intel_crtc->busy = false;
5953         queue_work(dev_priv->wq, &dev_priv->idle_work);
5954 }
5955
5956 static void intel_increase_pllclock(struct drm_crtc *crtc)
5957 {
5958         struct drm_device *dev = crtc->dev;
5959         drm_i915_private_t *dev_priv = dev->dev_private;
5960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5961         int pipe = intel_crtc->pipe;
5962         int dpll_reg = DPLL(pipe);
5963         int dpll;
5964
5965         if (HAS_PCH_SPLIT(dev))
5966                 return;
5967
5968         if (!dev_priv->lvds_downclock_avail)
5969                 return;
5970
5971         dpll = I915_READ(dpll_reg);
5972         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5973                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5974
5975                 /* Unlock panel regs */
5976                 I915_WRITE(PP_CONTROL,
5977                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5978
5979                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5980                 I915_WRITE(dpll_reg, dpll);
5981                 intel_wait_for_vblank(dev, pipe);
5982
5983                 dpll = I915_READ(dpll_reg);
5984                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5985                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5986
5987                 /* ...and lock them again */
5988                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5989         }
5990
5991         /* Schedule downclock */
5992         mod_timer(&intel_crtc->idle_timer, jiffies +
5993                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5994 }
5995
5996 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5997 {
5998         struct drm_device *dev = crtc->dev;
5999         drm_i915_private_t *dev_priv = dev->dev_private;
6000         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6001         int pipe = intel_crtc->pipe;
6002         int dpll_reg = DPLL(pipe);
6003         int dpll = I915_READ(dpll_reg);
6004
6005         if (HAS_PCH_SPLIT(dev))
6006                 return;
6007
6008         if (!dev_priv->lvds_downclock_avail)
6009                 return;
6010
6011         /*
6012          * Since this is called by a timer, we should never get here in
6013          * the manual case.
6014          */
6015         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6016                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6017
6018                 /* Unlock panel regs */
6019                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6020                            PANEL_UNLOCK_REGS);
6021
6022                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6023                 I915_WRITE(dpll_reg, dpll);
6024                 intel_wait_for_vblank(dev, pipe);
6025                 dpll = I915_READ(dpll_reg);
6026                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6027                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6028
6029                 /* ...and lock them again */
6030                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6031         }
6032
6033 }
6034
6035 /**
6036  * intel_idle_update - adjust clocks for idleness
6037  * @work: work struct
6038  *
6039  * Either the GPU or display (or both) went idle.  Check the busy status
6040  * here and adjust the CRTC and GPU clocks as necessary.
6041  */
6042 static void intel_idle_update(struct work_struct *work)
6043 {
6044         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6045                                                     idle_work);
6046         struct drm_device *dev = dev_priv->dev;
6047         struct drm_crtc *crtc;
6048         struct intel_crtc *intel_crtc;
6049
6050         if (!i915_powersave)
6051                 return;
6052
6053         mutex_lock(&dev->struct_mutex);
6054
6055         i915_update_gfx_val(dev_priv);
6056
6057         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6058                 /* Skip inactive CRTCs */
6059                 if (!crtc->fb)
6060                         continue;
6061
6062                 intel_crtc = to_intel_crtc(crtc);
6063                 if (!intel_crtc->busy)
6064                         intel_decrease_pllclock(crtc);
6065         }
6066
6067
6068         mutex_unlock(&dev->struct_mutex);
6069 }
6070
6071 /**
6072  * intel_mark_busy - mark the GPU and possibly the display busy
6073  * @dev: drm device
6074  * @obj: object we're operating on
6075  *
6076  * Callers can use this function to indicate that the GPU is busy processing
6077  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6078  * buffer), we'll also mark the display as busy, so we know to increase its
6079  * clock frequency.
6080  */
6081 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6082 {
6083         drm_i915_private_t *dev_priv = dev->dev_private;
6084         struct drm_crtc *crtc = NULL;
6085         struct intel_framebuffer *intel_fb;
6086         struct intel_crtc *intel_crtc;
6087
6088         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6089                 return;
6090
6091         if (!dev_priv->busy)
6092                 dev_priv->busy = true;
6093         else
6094                 mod_timer(&dev_priv->idle_timer, jiffies +
6095                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6096
6097         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6098                 if (!crtc->fb)
6099                         continue;
6100
6101                 intel_crtc = to_intel_crtc(crtc);
6102                 intel_fb = to_intel_framebuffer(crtc->fb);
6103                 if (intel_fb->obj == obj) {
6104                         if (!intel_crtc->busy) {
6105                                 /* Non-busy -> busy, upclock */
6106                                 intel_increase_pllclock(crtc);
6107                                 intel_crtc->busy = true;
6108                         } else {
6109                                 /* Busy -> busy, put off timer */
6110                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6111                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6112                         }
6113                 }
6114         }
6115 }
6116
6117 static void intel_crtc_destroy(struct drm_crtc *crtc)
6118 {
6119         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6120         struct drm_device *dev = crtc->dev;
6121         struct intel_unpin_work *work;
6122         unsigned long flags;
6123
6124         spin_lock_irqsave(&dev->event_lock, flags);
6125         work = intel_crtc->unpin_work;
6126         intel_crtc->unpin_work = NULL;
6127         spin_unlock_irqrestore(&dev->event_lock, flags);
6128
6129         if (work) {
6130                 cancel_work_sync(&work->work);
6131                 kfree(work);
6132         }
6133
6134         drm_crtc_cleanup(crtc);
6135
6136         kfree(intel_crtc);
6137 }
6138
6139 static void intel_unpin_work_fn(struct work_struct *__work)
6140 {
6141         struct intel_unpin_work *work =
6142                 container_of(__work, struct intel_unpin_work, work);
6143
6144         mutex_lock(&work->dev->struct_mutex);
6145         i915_gem_object_unpin(work->old_fb_obj);
6146         drm_gem_object_unreference(&work->pending_flip_obj->base);
6147         drm_gem_object_unreference(&work->old_fb_obj->base);
6148
6149         mutex_unlock(&work->dev->struct_mutex);
6150         kfree(work);
6151 }
6152
6153 static void do_intel_finish_page_flip(struct drm_device *dev,
6154                                       struct drm_crtc *crtc)
6155 {
6156         drm_i915_private_t *dev_priv = dev->dev_private;
6157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6158         struct intel_unpin_work *work;
6159         struct drm_i915_gem_object *obj;
6160         struct drm_pending_vblank_event *e;
6161         struct timeval tnow, tvbl;
6162         unsigned long flags;
6163
6164         /* Ignore early vblank irqs */
6165         if (intel_crtc == NULL)
6166                 return;
6167
6168         do_gettimeofday(&tnow);
6169
6170         spin_lock_irqsave(&dev->event_lock, flags);
6171         work = intel_crtc->unpin_work;
6172         if (work == NULL || !work->pending) {
6173                 spin_unlock_irqrestore(&dev->event_lock, flags);
6174                 return;
6175         }
6176
6177         intel_crtc->unpin_work = NULL;
6178
6179         if (work->event) {
6180                 e = work->event;
6181                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6182
6183                 /* Called before vblank count and timestamps have
6184                  * been updated for the vblank interval of flip
6185                  * completion? Need to increment vblank count and
6186                  * add one videorefresh duration to returned timestamp
6187                  * to account for this. We assume this happened if we
6188                  * get called over 0.9 frame durations after the last
6189                  * timestamped vblank.
6190                  *
6191                  * This calculation can not be used with vrefresh rates
6192                  * below 5Hz (10Hz to be on the safe side) without
6193                  * promoting to 64 integers.
6194                  */
6195                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6196                     9 * crtc->framedur_ns) {
6197                         e->event.sequence++;
6198                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6199                                              crtc->framedur_ns);
6200                 }
6201
6202                 e->event.tv_sec = tvbl.tv_sec;
6203                 e->event.tv_usec = tvbl.tv_usec;
6204
6205                 list_add_tail(&e->base.link,
6206                               &e->base.file_priv->event_list);
6207                 wake_up_interruptible(&e->base.file_priv->event_wait);
6208         }
6209
6210         drm_vblank_put(dev, intel_crtc->pipe);
6211
6212         spin_unlock_irqrestore(&dev->event_lock, flags);
6213
6214         obj = work->old_fb_obj;
6215
6216         atomic_clear_mask(1 << intel_crtc->plane,
6217                           &obj->pending_flip.counter);
6218         if (atomic_read(&obj->pending_flip) == 0)
6219                 wake_up(&dev_priv->pending_flip_queue);
6220
6221         schedule_work(&work->work);
6222
6223         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6224 }
6225
6226 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6227 {
6228         drm_i915_private_t *dev_priv = dev->dev_private;
6229         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6230
6231         do_intel_finish_page_flip(dev, crtc);
6232 }
6233
6234 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6235 {
6236         drm_i915_private_t *dev_priv = dev->dev_private;
6237         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6238
6239         do_intel_finish_page_flip(dev, crtc);
6240 }
6241
6242 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6243 {
6244         drm_i915_private_t *dev_priv = dev->dev_private;
6245         struct intel_crtc *intel_crtc =
6246                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6247         unsigned long flags;
6248
6249         spin_lock_irqsave(&dev->event_lock, flags);
6250         if (intel_crtc->unpin_work) {
6251                 if ((++intel_crtc->unpin_work->pending) > 1)
6252                         DRM_ERROR("Prepared flip multiple times\n");
6253         } else {
6254                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6255         }
6256         spin_unlock_irqrestore(&dev->event_lock, flags);
6257 }
6258
6259 static int intel_gen2_queue_flip(struct drm_device *dev,
6260                                  struct drm_crtc *crtc,
6261                                  struct drm_framebuffer *fb,
6262                                  struct drm_i915_gem_object *obj)
6263 {
6264         struct drm_i915_private *dev_priv = dev->dev_private;
6265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6266         unsigned long offset;
6267         u32 flip_mask;
6268         int ret;
6269
6270         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6271         if (ret)
6272                 goto out;
6273
6274         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6275         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6276
6277         ret = BEGIN_LP_RING(6);
6278         if (ret)
6279                 goto out;
6280
6281         /* Can't queue multiple flips, so wait for the previous
6282          * one to finish before executing the next.
6283          */
6284         if (intel_crtc->plane)
6285                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6286         else
6287                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6288         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6289         OUT_RING(MI_NOOP);
6290         OUT_RING(MI_DISPLAY_FLIP |
6291                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6292         OUT_RING(fb->pitch);
6293         OUT_RING(obj->gtt_offset + offset);
6294         OUT_RING(MI_NOOP);
6295         ADVANCE_LP_RING();
6296 out:
6297         return ret;
6298 }
6299
6300 static int intel_gen3_queue_flip(struct drm_device *dev,
6301                                  struct drm_crtc *crtc,
6302                                  struct drm_framebuffer *fb,
6303                                  struct drm_i915_gem_object *obj)
6304 {
6305         struct drm_i915_private *dev_priv = dev->dev_private;
6306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6307         unsigned long offset;
6308         u32 flip_mask;
6309         int ret;
6310
6311         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6312         if (ret)
6313                 goto out;
6314
6315         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6316         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6317
6318         ret = BEGIN_LP_RING(6);
6319         if (ret)
6320                 goto out;
6321
6322         if (intel_crtc->plane)
6323                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6324         else
6325                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6326         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6327         OUT_RING(MI_NOOP);
6328         OUT_RING(MI_DISPLAY_FLIP_I915 |
6329                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6330         OUT_RING(fb->pitch);
6331         OUT_RING(obj->gtt_offset + offset);
6332         OUT_RING(MI_NOOP);
6333
6334         ADVANCE_LP_RING();
6335 out:
6336         return ret;
6337 }
6338
6339 static int intel_gen4_queue_flip(struct drm_device *dev,
6340                                  struct drm_crtc *crtc,
6341                                  struct drm_framebuffer *fb,
6342                                  struct drm_i915_gem_object *obj)
6343 {
6344         struct drm_i915_private *dev_priv = dev->dev_private;
6345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6346         uint32_t pf, pipesrc;
6347         int ret;
6348
6349         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6350         if (ret)
6351                 goto out;
6352
6353         ret = BEGIN_LP_RING(4);
6354         if (ret)
6355                 goto out;
6356
6357         /* i965+ uses the linear or tiled offsets from the
6358          * Display Registers (which do not change across a page-flip)
6359          * so we need only reprogram the base address.
6360          */
6361         OUT_RING(MI_DISPLAY_FLIP |
6362                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6363         OUT_RING(fb->pitch);
6364         OUT_RING(obj->gtt_offset | obj->tiling_mode);
6365
6366         /* XXX Enabling the panel-fitter across page-flip is so far
6367          * untested on non-native modes, so ignore it for now.
6368          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6369          */
6370         pf = 0;
6371         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6372         OUT_RING(pf | pipesrc);
6373         ADVANCE_LP_RING();
6374 out:
6375         return ret;
6376 }
6377
6378 static int intel_gen6_queue_flip(struct drm_device *dev,
6379                                  struct drm_crtc *crtc,
6380                                  struct drm_framebuffer *fb,
6381                                  struct drm_i915_gem_object *obj)
6382 {
6383         struct drm_i915_private *dev_priv = dev->dev_private;
6384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6385         uint32_t pf, pipesrc;
6386         int ret;
6387
6388         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6389         if (ret)
6390                 goto out;
6391
6392         ret = BEGIN_LP_RING(4);
6393         if (ret)
6394                 goto out;
6395
6396         OUT_RING(MI_DISPLAY_FLIP |
6397                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6398         OUT_RING(fb->pitch | obj->tiling_mode);
6399         OUT_RING(obj->gtt_offset);
6400
6401         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6402         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6403         OUT_RING(pf | pipesrc);
6404         ADVANCE_LP_RING();
6405 out:
6406         return ret;
6407 }
6408
6409 /*
6410  * On gen7 we currently use the blit ring because (in early silicon at least)
6411  * the render ring doesn't give us interrpts for page flip completion, which
6412  * means clients will hang after the first flip is queued.  Fortunately the
6413  * blit ring generates interrupts properly, so use it instead.
6414  */
6415 static int intel_gen7_queue_flip(struct drm_device *dev,
6416                                  struct drm_crtc *crtc,
6417                                  struct drm_framebuffer *fb,
6418                                  struct drm_i915_gem_object *obj)
6419 {
6420         struct drm_i915_private *dev_priv = dev->dev_private;
6421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6422         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6423         int ret;
6424
6425         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6426         if (ret)
6427                 goto out;
6428
6429         ret = intel_ring_begin(ring, 4);
6430         if (ret)
6431                 goto out;
6432
6433         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6434         intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6435         intel_ring_emit(ring, (obj->gtt_offset));
6436         intel_ring_emit(ring, (MI_NOOP));
6437         intel_ring_advance(ring);
6438 out:
6439         return ret;
6440 }
6441
6442 static int intel_default_queue_flip(struct drm_device *dev,
6443                                     struct drm_crtc *crtc,
6444                                     struct drm_framebuffer *fb,
6445                                     struct drm_i915_gem_object *obj)
6446 {
6447         return -ENODEV;
6448 }
6449
6450 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6451                                 struct drm_framebuffer *fb,
6452                                 struct drm_pending_vblank_event *event)
6453 {
6454         struct drm_device *dev = crtc->dev;
6455         struct drm_i915_private *dev_priv = dev->dev_private;
6456         struct intel_framebuffer *intel_fb;
6457         struct drm_i915_gem_object *obj;
6458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6459         struct intel_unpin_work *work;
6460         unsigned long flags;
6461         int ret;
6462
6463         work = kzalloc(sizeof *work, GFP_KERNEL);
6464         if (work == NULL)
6465                 return -ENOMEM;
6466
6467         work->event = event;
6468         work->dev = crtc->dev;
6469         intel_fb = to_intel_framebuffer(crtc->fb);
6470         work->old_fb_obj = intel_fb->obj;
6471         INIT_WORK(&work->work, intel_unpin_work_fn);
6472
6473         /* We borrow the event spin lock for protecting unpin_work */
6474         spin_lock_irqsave(&dev->event_lock, flags);
6475         if (intel_crtc->unpin_work) {
6476                 spin_unlock_irqrestore(&dev->event_lock, flags);
6477                 kfree(work);
6478
6479                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6480                 return -EBUSY;
6481         }
6482         intel_crtc->unpin_work = work;
6483         spin_unlock_irqrestore(&dev->event_lock, flags);
6484
6485         intel_fb = to_intel_framebuffer(fb);
6486         obj = intel_fb->obj;
6487
6488         mutex_lock(&dev->struct_mutex);
6489
6490         /* Reference the objects for the scheduled work. */
6491         drm_gem_object_reference(&work->old_fb_obj->base);
6492         drm_gem_object_reference(&obj->base);
6493
6494         crtc->fb = fb;
6495
6496         ret = drm_vblank_get(dev, intel_crtc->pipe);
6497         if (ret)
6498                 goto cleanup_objs;
6499
6500         work->pending_flip_obj = obj;
6501
6502         work->enable_stall_check = true;
6503
6504         /* Block clients from rendering to the new back buffer until
6505          * the flip occurs and the object is no longer visible.
6506          */
6507         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6508
6509         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6510         if (ret)
6511                 goto cleanup_pending;
6512
6513         mutex_unlock(&dev->struct_mutex);
6514
6515         trace_i915_flip_request(intel_crtc->plane, obj);
6516
6517         return 0;
6518
6519 cleanup_pending:
6520         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6521 cleanup_objs:
6522         drm_gem_object_unreference(&work->old_fb_obj->base);
6523         drm_gem_object_unreference(&obj->base);
6524         mutex_unlock(&dev->struct_mutex);
6525
6526         spin_lock_irqsave(&dev->event_lock, flags);
6527         intel_crtc->unpin_work = NULL;
6528         spin_unlock_irqrestore(&dev->event_lock, flags);
6529
6530         kfree(work);
6531
6532         return ret;
6533 }
6534
6535 static void intel_sanitize_modesetting(struct drm_device *dev,
6536                                        int pipe, int plane)
6537 {
6538         struct drm_i915_private *dev_priv = dev->dev_private;
6539         u32 reg, val;
6540
6541         if (HAS_PCH_SPLIT(dev))
6542                 return;
6543
6544         /* Who knows what state these registers were left in by the BIOS or
6545          * grub?
6546          *
6547          * If we leave the registers in a conflicting state (e.g. with the
6548          * display plane reading from the other pipe than the one we intend
6549          * to use) then when we attempt to teardown the active mode, we will
6550          * not disable the pipes and planes in the correct order -- leaving
6551          * a plane reading from a disabled pipe and possibly leading to
6552          * undefined behaviour.
6553          */
6554
6555         reg = DSPCNTR(plane);
6556         val = I915_READ(reg);
6557
6558         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6559                 return;
6560         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6561                 return;
6562
6563         /* This display plane is active and attached to the other CPU pipe. */
6564         pipe = !pipe;
6565
6566         /* Disable the plane and wait for it to stop reading from the pipe. */
6567         intel_disable_plane(dev_priv, plane, pipe);
6568         intel_disable_pipe(dev_priv, pipe);
6569 }
6570
6571 static void intel_crtc_reset(struct drm_crtc *crtc)
6572 {
6573         struct drm_device *dev = crtc->dev;
6574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6575
6576         /* Reset flags back to the 'unknown' status so that they
6577          * will be correctly set on the initial modeset.
6578          */
6579         intel_crtc->dpms_mode = -1;
6580
6581         /* We need to fix up any BIOS configuration that conflicts with
6582          * our expectations.
6583          */
6584         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6585 }
6586
6587 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6588         .dpms = intel_crtc_dpms,
6589         .mode_fixup = intel_crtc_mode_fixup,
6590         .mode_set = intel_crtc_mode_set,
6591         .mode_set_base = intel_pipe_set_base,
6592         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6593         .load_lut = intel_crtc_load_lut,
6594         .disable = intel_crtc_disable,
6595 };
6596
6597 static const struct drm_crtc_funcs intel_crtc_funcs = {
6598         .reset = intel_crtc_reset,
6599         .cursor_set = intel_crtc_cursor_set,
6600         .cursor_move = intel_crtc_cursor_move,
6601         .gamma_set = intel_crtc_gamma_set,
6602         .set_config = drm_crtc_helper_set_config,
6603         .destroy = intel_crtc_destroy,
6604         .page_flip = intel_crtc_page_flip,
6605 };
6606
6607 static void intel_crtc_init(struct drm_device *dev, int pipe)
6608 {
6609         drm_i915_private_t *dev_priv = dev->dev_private;
6610         struct intel_crtc *intel_crtc;
6611         int i;
6612
6613         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6614         if (intel_crtc == NULL)
6615                 return;
6616
6617         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6618
6619         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6620         for (i = 0; i < 256; i++) {
6621                 intel_crtc->lut_r[i] = i;
6622                 intel_crtc->lut_g[i] = i;
6623                 intel_crtc->lut_b[i] = i;
6624         }
6625
6626         /* Swap pipes & planes for FBC on pre-965 */
6627         intel_crtc->pipe = pipe;
6628         intel_crtc->plane = pipe;
6629         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6630                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6631                 intel_crtc->plane = !pipe;
6632         }
6633
6634         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6635                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6636         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6637         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6638
6639         intel_crtc_reset(&intel_crtc->base);
6640         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6641
6642         if (HAS_PCH_SPLIT(dev)) {
6643                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6644                 intel_helper_funcs.commit = ironlake_crtc_commit;
6645         } else {
6646                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6647                 intel_helper_funcs.commit = i9xx_crtc_commit;
6648         }
6649
6650         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6651
6652         intel_crtc->busy = false;
6653
6654         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6655                     (unsigned long)intel_crtc);
6656 }
6657
6658 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6659                                 struct drm_file *file)
6660 {
6661         drm_i915_private_t *dev_priv = dev->dev_private;
6662         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6663         struct drm_mode_object *drmmode_obj;
6664         struct intel_crtc *crtc;
6665
6666         if (!dev_priv) {
6667                 DRM_ERROR("called with no initialization\n");
6668                 return -EINVAL;
6669         }
6670
6671         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6672                         DRM_MODE_OBJECT_CRTC);
6673
6674         if (!drmmode_obj) {
6675                 DRM_ERROR("no such CRTC id\n");
6676                 return -EINVAL;
6677         }
6678
6679         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6680         pipe_from_crtc_id->pipe = crtc->pipe;
6681
6682         return 0;
6683 }
6684
6685 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6686 {
6687         struct intel_encoder *encoder;
6688         int index_mask = 0;
6689         int entry = 0;
6690
6691         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6692                 if (type_mask & encoder->clone_mask)
6693                         index_mask |= (1 << entry);
6694                 entry++;
6695         }
6696
6697         return index_mask;
6698 }
6699
6700 static bool has_edp_a(struct drm_device *dev)
6701 {
6702         struct drm_i915_private *dev_priv = dev->dev_private;
6703
6704         if (!IS_MOBILE(dev))
6705                 return false;
6706
6707         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6708                 return false;
6709
6710         if (IS_GEN5(dev) &&
6711             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6712                 return false;
6713
6714         return true;
6715 }
6716
6717 static void intel_setup_outputs(struct drm_device *dev)
6718 {
6719         struct drm_i915_private *dev_priv = dev->dev_private;
6720         struct intel_encoder *encoder;
6721         bool dpd_is_edp = false;
6722         bool has_lvds = false;
6723
6724         if (IS_MOBILE(dev) && !IS_I830(dev))
6725                 has_lvds = intel_lvds_init(dev);
6726         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6727                 /* disable the panel fitter on everything but LVDS */
6728                 I915_WRITE(PFIT_CONTROL, 0);
6729         }
6730
6731         if (HAS_PCH_SPLIT(dev)) {
6732                 dpd_is_edp = intel_dpd_is_edp(dev);
6733
6734                 if (has_edp_a(dev))
6735                         intel_dp_init(dev, DP_A);
6736
6737                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6738                         intel_dp_init(dev, PCH_DP_D);
6739         }
6740
6741         intel_crt_init(dev);
6742
6743         if (HAS_PCH_SPLIT(dev)) {
6744                 int found;
6745
6746                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6747                         /* PCH SDVOB multiplex with HDMIB */
6748                         found = intel_sdvo_init(dev, PCH_SDVOB);
6749                         if (!found)
6750                                 intel_hdmi_init(dev, HDMIB);
6751                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6752                                 intel_dp_init(dev, PCH_DP_B);
6753                 }
6754
6755                 if (I915_READ(HDMIC) & PORT_DETECTED)
6756                         intel_hdmi_init(dev, HDMIC);
6757
6758                 if (I915_READ(HDMID) & PORT_DETECTED)
6759                         intel_hdmi_init(dev, HDMID);
6760
6761                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6762                         intel_dp_init(dev, PCH_DP_C);
6763
6764                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6765                         intel_dp_init(dev, PCH_DP_D);
6766
6767         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6768                 bool found = false;
6769
6770                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6771                         DRM_DEBUG_KMS("probing SDVOB\n");
6772                         found = intel_sdvo_init(dev, SDVOB);
6773                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6774                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6775                                 intel_hdmi_init(dev, SDVOB);
6776                         }
6777
6778                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6779                                 DRM_DEBUG_KMS("probing DP_B\n");
6780                                 intel_dp_init(dev, DP_B);
6781                         }
6782                 }
6783
6784                 /* Before G4X SDVOC doesn't have its own detect register */
6785
6786                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6787                         DRM_DEBUG_KMS("probing SDVOC\n");
6788                         found = intel_sdvo_init(dev, SDVOC);
6789                 }
6790
6791                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6792
6793                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6794                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6795                                 intel_hdmi_init(dev, SDVOC);
6796                         }
6797                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6798                                 DRM_DEBUG_KMS("probing DP_C\n");
6799                                 intel_dp_init(dev, DP_C);
6800                         }
6801                 }
6802
6803                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6804                     (I915_READ(DP_D) & DP_DETECTED)) {
6805                         DRM_DEBUG_KMS("probing DP_D\n");
6806                         intel_dp_init(dev, DP_D);
6807                 }
6808         } else if (IS_GEN2(dev))
6809                 intel_dvo_init(dev);
6810
6811         if (SUPPORTS_TV(dev))
6812                 intel_tv_init(dev);
6813
6814         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6815                 encoder->base.possible_crtcs = encoder->crtc_mask;
6816                 encoder->base.possible_clones =
6817                         intel_encoder_clones(dev, encoder->clone_mask);
6818         }
6819
6820         intel_panel_setup_backlight(dev);
6821
6822         /* disable all the possible outputs/crtcs before entering KMS mode */
6823         drm_helper_disable_unused_functions(dev);
6824 }
6825
6826 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6827 {
6828         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6829
6830         drm_framebuffer_cleanup(fb);
6831         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6832
6833         kfree(intel_fb);
6834 }
6835
6836 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6837                                                 struct drm_file *file,
6838                                                 unsigned int *handle)
6839 {
6840         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6841         struct drm_i915_gem_object *obj = intel_fb->obj;
6842
6843         return drm_gem_handle_create(file, &obj->base, handle);
6844 }
6845
6846 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6847         .destroy = intel_user_framebuffer_destroy,
6848         .create_handle = intel_user_framebuffer_create_handle,
6849 };
6850
6851 int intel_framebuffer_init(struct drm_device *dev,
6852                            struct intel_framebuffer *intel_fb,
6853                            struct drm_mode_fb_cmd *mode_cmd,
6854                            struct drm_i915_gem_object *obj)
6855 {
6856         int ret;
6857
6858         if (obj->tiling_mode == I915_TILING_Y)
6859                 return -EINVAL;
6860
6861         if (mode_cmd->pitch & 63)
6862                 return -EINVAL;
6863
6864         switch (mode_cmd->bpp) {
6865         case 8:
6866         case 16:
6867         case 24:
6868         case 32:
6869                 break;
6870         default:
6871                 return -EINVAL;
6872         }
6873
6874         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6875         if (ret) {
6876                 DRM_ERROR("framebuffer init failed %d\n", ret);
6877                 return ret;
6878         }
6879
6880         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6881         intel_fb->obj = obj;
6882         return 0;
6883 }
6884
6885 static struct drm_framebuffer *
6886 intel_user_framebuffer_create(struct drm_device *dev,
6887                               struct drm_file *filp,
6888                               struct drm_mode_fb_cmd *mode_cmd)
6889 {
6890         struct drm_i915_gem_object *obj;
6891
6892         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
6893         if (&obj->base == NULL)
6894                 return ERR_PTR(-ENOENT);
6895
6896         return intel_framebuffer_create(dev, mode_cmd, obj);
6897 }
6898
6899 static const struct drm_mode_config_funcs intel_mode_funcs = {
6900         .fb_create = intel_user_framebuffer_create,
6901         .output_poll_changed = intel_fb_output_poll_changed,
6902 };
6903
6904 static struct drm_i915_gem_object *
6905 intel_alloc_context_page(struct drm_device *dev)
6906 {
6907         struct drm_i915_gem_object *ctx;
6908         int ret;
6909
6910         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
6911
6912         ctx = i915_gem_alloc_object(dev, 4096);
6913         if (!ctx) {
6914                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
6915                 return NULL;
6916         }
6917
6918         ret = i915_gem_object_pin(ctx, 4096, true);
6919         if (ret) {
6920                 DRM_ERROR("failed to pin power context: %d\n", ret);
6921                 goto err_unref;
6922         }
6923
6924         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
6925         if (ret) {
6926                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
6927                 goto err_unpin;
6928         }
6929
6930         return ctx;
6931
6932 err_unpin:
6933         i915_gem_object_unpin(ctx);
6934 err_unref:
6935         drm_gem_object_unreference(&ctx->base);
6936         mutex_unlock(&dev->struct_mutex);
6937         return NULL;
6938 }
6939
6940 bool ironlake_set_drps(struct drm_device *dev, u8 val)
6941 {
6942         struct drm_i915_private *dev_priv = dev->dev_private;
6943         u16 rgvswctl;
6944
6945         rgvswctl = I915_READ16(MEMSWCTL);
6946         if (rgvswctl & MEMCTL_CMD_STS) {
6947                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6948                 return false; /* still busy with another command */
6949         }
6950
6951         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6952                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6953         I915_WRITE16(MEMSWCTL, rgvswctl);
6954         POSTING_READ16(MEMSWCTL);
6955
6956         rgvswctl |= MEMCTL_CMD_STS;
6957         I915_WRITE16(MEMSWCTL, rgvswctl);
6958
6959         return true;
6960 }
6961
6962 void ironlake_enable_drps(struct drm_device *dev)
6963 {
6964         struct drm_i915_private *dev_priv = dev->dev_private;
6965         u32 rgvmodectl = I915_READ(MEMMODECTL);
6966         u8 fmax, fmin, fstart, vstart;
6967
6968         /* Enable temp reporting */
6969         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6970         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6971
6972         /* 100ms RC evaluation intervals */
6973         I915_WRITE(RCUPEI, 100000);
6974         I915_WRITE(RCDNEI, 100000);
6975
6976         /* Set max/min thresholds to 90ms and 80ms respectively */
6977         I915_WRITE(RCBMAXAVG, 90000);
6978         I915_WRITE(RCBMINAVG, 80000);
6979
6980         I915_WRITE(MEMIHYST, 1);
6981
6982         /* Set up min, max, and cur for interrupt handling */
6983         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6984         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6985         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6986                 MEMMODE_FSTART_SHIFT;
6987
6988         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6989                 PXVFREQ_PX_SHIFT;
6990
6991         dev_priv->fmax = fmax; /* IPS callback will increase this */
6992         dev_priv->fstart = fstart;
6993
6994         dev_priv->max_delay = fstart;
6995         dev_priv->min_delay = fmin;
6996         dev_priv->cur_delay = fstart;
6997
6998         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6999                          fmax, fmin, fstart);
7000
7001         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7002
7003         /*
7004          * Interrupts will be enabled in ironlake_irq_postinstall
7005          */
7006
7007         I915_WRITE(VIDSTART, vstart);
7008         POSTING_READ(VIDSTART);
7009
7010         rgvmodectl |= MEMMODE_SWMODE_EN;
7011         I915_WRITE(MEMMODECTL, rgvmodectl);
7012
7013         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7014                 DRM_ERROR("stuck trying to change perf mode\n");
7015         msleep(1);
7016
7017         ironlake_set_drps(dev, fstart);
7018
7019         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7020                 I915_READ(0x112e0);
7021         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7022         dev_priv->last_count2 = I915_READ(0x112f4);
7023         getrawmonotonic(&dev_priv->last_time2);
7024 }
7025
7026 void ironlake_disable_drps(struct drm_device *dev)
7027 {
7028         struct drm_i915_private *dev_priv = dev->dev_private;
7029         u16 rgvswctl = I915_READ16(MEMSWCTL);
7030
7031         /* Ack interrupts, disable EFC interrupt */
7032         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7033         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7034         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7035         I915_WRITE(DEIIR, DE_PCU_EVENT);
7036         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7037
7038         /* Go back to the starting frequency */
7039         ironlake_set_drps(dev, dev_priv->fstart);
7040         msleep(1);
7041         rgvswctl |= MEMCTL_CMD_STS;
7042         I915_WRITE(MEMSWCTL, rgvswctl);
7043         msleep(1);
7044
7045 }
7046
7047 void gen6_set_rps(struct drm_device *dev, u8 val)
7048 {
7049         struct drm_i915_private *dev_priv = dev->dev_private;
7050         u32 swreq;
7051
7052         swreq = (val & 0x3ff) << 25;
7053         I915_WRITE(GEN6_RPNSWREQ, swreq);
7054 }
7055
7056 void gen6_disable_rps(struct drm_device *dev)
7057 {
7058         struct drm_i915_private *dev_priv = dev->dev_private;
7059
7060         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7061         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7062         I915_WRITE(GEN6_PMIER, 0);
7063
7064         spin_lock_irq(&dev_priv->rps_lock);
7065         dev_priv->pm_iir = 0;
7066         spin_unlock_irq(&dev_priv->rps_lock);
7067
7068         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7069 }
7070
7071 static unsigned long intel_pxfreq(u32 vidfreq)
7072 {
7073         unsigned long freq;
7074         int div = (vidfreq & 0x3f0000) >> 16;
7075         int post = (vidfreq & 0x3000) >> 12;
7076         int pre = (vidfreq & 0x7);
7077
7078         if (!pre)
7079                 return 0;
7080
7081         freq = ((div * 133333) / ((1<<post) * pre));
7082
7083         return freq;
7084 }
7085
7086 void intel_init_emon(struct drm_device *dev)
7087 {
7088         struct drm_i915_private *dev_priv = dev->dev_private;
7089         u32 lcfuse;
7090         u8 pxw[16];
7091         int i;
7092
7093         /* Disable to program */
7094         I915_WRITE(ECR, 0);
7095         POSTING_READ(ECR);
7096
7097         /* Program energy weights for various events */
7098         I915_WRITE(SDEW, 0x15040d00);
7099         I915_WRITE(CSIEW0, 0x007f0000);
7100         I915_WRITE(CSIEW1, 0x1e220004);
7101         I915_WRITE(CSIEW2, 0x04000004);
7102
7103         for (i = 0; i < 5; i++)
7104                 I915_WRITE(PEW + (i * 4), 0);
7105         for (i = 0; i < 3; i++)
7106                 I915_WRITE(DEW + (i * 4), 0);
7107
7108         /* Program P-state weights to account for frequency power adjustment */
7109         for (i = 0; i < 16; i++) {
7110                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7111                 unsigned long freq = intel_pxfreq(pxvidfreq);
7112                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7113                         PXVFREQ_PX_SHIFT;
7114                 unsigned long val;
7115
7116                 val = vid * vid;
7117                 val *= (freq / 1000);
7118                 val *= 255;
7119                 val /= (127*127*900);
7120                 if (val > 0xff)
7121                         DRM_ERROR("bad pxval: %ld\n", val);
7122                 pxw[i] = val;
7123         }
7124         /* Render standby states get 0 weight */
7125         pxw[14] = 0;
7126         pxw[15] = 0;
7127
7128         for (i = 0; i < 4; i++) {
7129                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7130                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7131                 I915_WRITE(PXW + (i * 4), val);
7132         }
7133
7134         /* Adjust magic regs to magic values (more experimental results) */
7135         I915_WRITE(OGW0, 0);
7136         I915_WRITE(OGW1, 0);
7137         I915_WRITE(EG0, 0x00007f00);
7138         I915_WRITE(EG1, 0x0000000e);
7139         I915_WRITE(EG2, 0x000e0000);
7140         I915_WRITE(EG3, 0x68000300);
7141         I915_WRITE(EG4, 0x42000000);
7142         I915_WRITE(EG5, 0x00140031);
7143         I915_WRITE(EG6, 0);
7144         I915_WRITE(EG7, 0);
7145
7146         for (i = 0; i < 8; i++)
7147                 I915_WRITE(PXWL + (i * 4), 0);
7148
7149         /* Enable PMON + select events */
7150         I915_WRITE(ECR, 0x80000019);
7151
7152         lcfuse = I915_READ(LCFUSE02);
7153
7154         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7155 }
7156
7157 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7158 {
7159         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7160         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7161         u32 pcu_mbox, rc6_mask = 0;
7162         int cur_freq, min_freq, max_freq;
7163         int i;
7164
7165         /* Here begins a magic sequence of register writes to enable
7166          * auto-downclocking.
7167          *
7168          * Perhaps there might be some value in exposing these to
7169          * userspace...
7170          */
7171         I915_WRITE(GEN6_RC_STATE, 0);
7172         mutex_lock(&dev_priv->dev->struct_mutex);
7173         gen6_gt_force_wake_get(dev_priv);
7174
7175         /* disable the counters and set deterministic thresholds */
7176         I915_WRITE(GEN6_RC_CONTROL, 0);
7177
7178         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7179         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7180         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7181         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7182         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7183
7184         for (i = 0; i < I915_NUM_RINGS; i++)
7185                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7186
7187         I915_WRITE(GEN6_RC_SLEEP, 0);
7188         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7189         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7190         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7191         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7192
7193         if (i915_enable_rc6)
7194                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7195                         GEN6_RC_CTL_RC6_ENABLE;
7196
7197         I915_WRITE(GEN6_RC_CONTROL,
7198                    rc6_mask |
7199                    GEN6_RC_CTL_EI_MODE(1) |
7200                    GEN6_RC_CTL_HW_ENABLE);
7201
7202         I915_WRITE(GEN6_RPNSWREQ,
7203                    GEN6_FREQUENCY(10) |
7204                    GEN6_OFFSET(0) |
7205                    GEN6_AGGRESSIVE_TURBO);
7206         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7207                    GEN6_FREQUENCY(12));
7208
7209         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7210         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7211                    18 << 24 |
7212                    6 << 16);
7213         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7214         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7215         I915_WRITE(GEN6_RP_UP_EI, 100000);
7216         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7217         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7218         I915_WRITE(GEN6_RP_CONTROL,
7219                    GEN6_RP_MEDIA_TURBO |
7220                    GEN6_RP_USE_NORMAL_FREQ |
7221                    GEN6_RP_MEDIA_IS_GFX |
7222                    GEN6_RP_ENABLE |
7223                    GEN6_RP_UP_BUSY_AVG |
7224                    GEN6_RP_DOWN_IDLE_CONT);
7225
7226         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7227                      500))
7228                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7229
7230         I915_WRITE(GEN6_PCODE_DATA, 0);
7231         I915_WRITE(GEN6_PCODE_MAILBOX,
7232                    GEN6_PCODE_READY |
7233                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7234         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7235                      500))
7236                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7237
7238         min_freq = (rp_state_cap & 0xff0000) >> 16;
7239         max_freq = rp_state_cap & 0xff;
7240         cur_freq = (gt_perf_status & 0xff00) >> 8;
7241
7242         /* Check for overclock support */
7243         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7244                      500))
7245                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7246         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7247         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7248         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7249                      500))
7250                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7251         if (pcu_mbox & (1<<31)) { /* OC supported */
7252                 max_freq = pcu_mbox & 0xff;
7253                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7254         }
7255
7256         /* In units of 100MHz */
7257         dev_priv->max_delay = max_freq;
7258         dev_priv->min_delay = min_freq;
7259         dev_priv->cur_delay = cur_freq;
7260
7261         /* requires MSI enabled */
7262         I915_WRITE(GEN6_PMIER,
7263                    GEN6_PM_MBOX_EVENT |
7264                    GEN6_PM_THERMAL_EVENT |
7265                    GEN6_PM_RP_DOWN_TIMEOUT |
7266                    GEN6_PM_RP_UP_THRESHOLD |
7267                    GEN6_PM_RP_DOWN_THRESHOLD |
7268                    GEN6_PM_RP_UP_EI_EXPIRED |
7269                    GEN6_PM_RP_DOWN_EI_EXPIRED);
7270         spin_lock_irq(&dev_priv->rps_lock);
7271         WARN_ON(dev_priv->pm_iir != 0);
7272         I915_WRITE(GEN6_PMIMR, 0);
7273         spin_unlock_irq(&dev_priv->rps_lock);
7274         /* enable all PM interrupts */
7275         I915_WRITE(GEN6_PMINTRMSK, 0);
7276
7277         gen6_gt_force_wake_put(dev_priv);
7278         mutex_unlock(&dev_priv->dev->struct_mutex);
7279 }
7280
7281 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7282 {
7283         int min_freq = 15;
7284         int gpu_freq, ia_freq, max_ia_freq;
7285         int scaling_factor = 180;
7286
7287         max_ia_freq = cpufreq_quick_get_max(0);
7288         /*
7289          * Default to measured freq if none found, PCU will ensure we don't go
7290          * over
7291          */
7292         if (!max_ia_freq)
7293                 max_ia_freq = tsc_khz;
7294
7295         /* Convert from kHz to MHz */
7296         max_ia_freq /= 1000;
7297
7298         mutex_lock(&dev_priv->dev->struct_mutex);
7299
7300         /*
7301          * For each potential GPU frequency, load a ring frequency we'd like
7302          * to use for memory access.  We do this by specifying the IA frequency
7303          * the PCU should use as a reference to determine the ring frequency.
7304          */
7305         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7306              gpu_freq--) {
7307                 int diff = dev_priv->max_delay - gpu_freq;
7308
7309                 /*
7310                  * For GPU frequencies less than 750MHz, just use the lowest
7311                  * ring freq.
7312                  */
7313                 if (gpu_freq < min_freq)
7314                         ia_freq = 800;
7315                 else
7316                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7317                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7318
7319                 I915_WRITE(GEN6_PCODE_DATA,
7320                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7321                            gpu_freq);
7322                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7323                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7324                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7325                               GEN6_PCODE_READY) == 0, 10)) {
7326                         DRM_ERROR("pcode write of freq table timed out\n");
7327                         continue;
7328                 }
7329         }
7330
7331         mutex_unlock(&dev_priv->dev->struct_mutex);
7332 }
7333
7334 static void ironlake_init_clock_gating(struct drm_device *dev)
7335 {
7336         struct drm_i915_private *dev_priv = dev->dev_private;
7337         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7338
7339         /* Required for FBC */
7340         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7341                 DPFCRUNIT_CLOCK_GATE_DISABLE |
7342                 DPFDUNIT_CLOCK_GATE_DISABLE;
7343         /* Required for CxSR */
7344         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7345
7346         I915_WRITE(PCH_3DCGDIS0,
7347                    MARIUNIT_CLOCK_GATE_DISABLE |
7348                    SVSMUNIT_CLOCK_GATE_DISABLE);
7349         I915_WRITE(PCH_3DCGDIS1,
7350                    VFMUNIT_CLOCK_GATE_DISABLE);
7351
7352         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7353
7354         /*
7355          * According to the spec the following bits should be set in
7356          * order to enable memory self-refresh
7357          * The bit 22/21 of 0x42004
7358          * The bit 5 of 0x42020
7359          * The bit 15 of 0x45000
7360          */
7361         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7362                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
7363                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7364         I915_WRITE(ILK_DSPCLK_GATE,
7365                    (I915_READ(ILK_DSPCLK_GATE) |
7366                     ILK_DPARB_CLK_GATE));
7367         I915_WRITE(DISP_ARB_CTL,
7368                    (I915_READ(DISP_ARB_CTL) |
7369                     DISP_FBC_WM_DIS));
7370         I915_WRITE(WM3_LP_ILK, 0);
7371         I915_WRITE(WM2_LP_ILK, 0);
7372         I915_WRITE(WM1_LP_ILK, 0);
7373
7374         /*
7375          * Based on the document from hardware guys the following bits
7376          * should be set unconditionally in order to enable FBC.
7377          * The bit 22 of 0x42000
7378          * The bit 22 of 0x42004
7379          * The bit 7,8,9 of 0x42020.
7380          */
7381         if (IS_IRONLAKE_M(dev)) {
7382                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7383                            I915_READ(ILK_DISPLAY_CHICKEN1) |
7384                            ILK_FBCQ_DIS);
7385                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7386                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7387                            ILK_DPARB_GATE);
7388                 I915_WRITE(ILK_DSPCLK_GATE,
7389                            I915_READ(ILK_DSPCLK_GATE) |
7390                            ILK_DPFC_DIS1 |
7391                            ILK_DPFC_DIS2 |
7392                            ILK_CLK_FBC);
7393         }
7394
7395         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7396                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7397                    ILK_ELPIN_409_SELECT);
7398         I915_WRITE(_3D_CHICKEN2,
7399                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7400                    _3D_CHICKEN2_WM_READ_PIPELINED);
7401 }
7402
7403 static void gen6_init_clock_gating(struct drm_device *dev)
7404 {
7405         struct drm_i915_private *dev_priv = dev->dev_private;
7406         int pipe;
7407         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7408
7409         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7410
7411         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7412                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7413                    ILK_ELPIN_409_SELECT);
7414
7415         I915_WRITE(WM3_LP_ILK, 0);
7416         I915_WRITE(WM2_LP_ILK, 0);
7417         I915_WRITE(WM1_LP_ILK, 0);
7418
7419         /*
7420          * According to the spec the following bits should be
7421          * set in order to enable memory self-refresh and fbc:
7422          * The bit21 and bit22 of 0x42000
7423          * The bit21 and bit22 of 0x42004
7424          * The bit5 and bit7 of 0x42020
7425          * The bit14 of 0x70180
7426          * The bit14 of 0x71180
7427          */
7428         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7429                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7430                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7431         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7432                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7433                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7434         I915_WRITE(ILK_DSPCLK_GATE,
7435                    I915_READ(ILK_DSPCLK_GATE) |
7436                    ILK_DPARB_CLK_GATE  |
7437                    ILK_DPFD_CLK_GATE);
7438
7439         for_each_pipe(pipe)
7440                 I915_WRITE(DSPCNTR(pipe),
7441                            I915_READ(DSPCNTR(pipe)) |
7442                            DISPPLANE_TRICKLE_FEED_DISABLE);
7443 }
7444
7445 static void ivybridge_init_clock_gating(struct drm_device *dev)
7446 {
7447         struct drm_i915_private *dev_priv = dev->dev_private;
7448         int pipe;
7449         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7450
7451         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7452
7453         I915_WRITE(WM3_LP_ILK, 0);
7454         I915_WRITE(WM2_LP_ILK, 0);
7455         I915_WRITE(WM1_LP_ILK, 0);
7456
7457         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7458
7459         for_each_pipe(pipe)
7460                 I915_WRITE(DSPCNTR(pipe),
7461                            I915_READ(DSPCNTR(pipe)) |
7462                            DISPPLANE_TRICKLE_FEED_DISABLE);
7463 }
7464
7465 static void g4x_init_clock_gating(struct drm_device *dev)
7466 {
7467         struct drm_i915_private *dev_priv = dev->dev_private;
7468         uint32_t dspclk_gate;
7469
7470         I915_WRITE(RENCLK_GATE_D1, 0);
7471         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7472                    GS_UNIT_CLOCK_GATE_DISABLE |
7473                    CL_UNIT_CLOCK_GATE_DISABLE);
7474         I915_WRITE(RAMCLK_GATE_D, 0);
7475         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7476                 OVRUNIT_CLOCK_GATE_DISABLE |
7477                 OVCUNIT_CLOCK_GATE_DISABLE;
7478         if (IS_GM45(dev))
7479                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7480         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7481 }
7482
7483 static void crestline_init_clock_gating(struct drm_device *dev)
7484 {
7485         struct drm_i915_private *dev_priv = dev->dev_private;
7486
7487         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7488         I915_WRITE(RENCLK_GATE_D2, 0);
7489         I915_WRITE(DSPCLK_GATE_D, 0);
7490         I915_WRITE(RAMCLK_GATE_D, 0);
7491         I915_WRITE16(DEUC, 0);
7492 }
7493
7494 static void broadwater_init_clock_gating(struct drm_device *dev)
7495 {
7496         struct drm_i915_private *dev_priv = dev->dev_private;
7497
7498         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7499                    I965_RCC_CLOCK_GATE_DISABLE |
7500                    I965_RCPB_CLOCK_GATE_DISABLE |
7501                    I965_ISC_CLOCK_GATE_DISABLE |
7502                    I965_FBC_CLOCK_GATE_DISABLE);
7503         I915_WRITE(RENCLK_GATE_D2, 0);
7504 }
7505
7506 static void gen3_init_clock_gating(struct drm_device *dev)
7507 {
7508         struct drm_i915_private *dev_priv = dev->dev_private;
7509         u32 dstate = I915_READ(D_STATE);
7510
7511         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7512                 DSTATE_DOT_CLOCK_GATING;
7513         I915_WRITE(D_STATE, dstate);
7514 }
7515
7516 static void i85x_init_clock_gating(struct drm_device *dev)
7517 {
7518         struct drm_i915_private *dev_priv = dev->dev_private;
7519
7520         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7521 }
7522
7523 static void i830_init_clock_gating(struct drm_device *dev)
7524 {
7525         struct drm_i915_private *dev_priv = dev->dev_private;
7526
7527         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7528 }
7529
7530 static void ibx_init_clock_gating(struct drm_device *dev)
7531 {
7532         struct drm_i915_private *dev_priv = dev->dev_private;
7533
7534         /*
7535          * On Ibex Peak and Cougar Point, we need to disable clock
7536          * gating for the panel power sequencer or it will fail to
7537          * start up when no ports are active.
7538          */
7539         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7540 }
7541
7542 static void cpt_init_clock_gating(struct drm_device *dev)
7543 {
7544         struct drm_i915_private *dev_priv = dev->dev_private;
7545
7546         /*
7547          * On Ibex Peak and Cougar Point, we need to disable clock
7548          * gating for the panel power sequencer or it will fail to
7549          * start up when no ports are active.
7550          */
7551         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7552         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7553                    DPLS_EDP_PPS_FIX_DIS);
7554 }
7555
7556 static void ironlake_teardown_rc6(struct drm_device *dev)
7557 {
7558         struct drm_i915_private *dev_priv = dev->dev_private;
7559
7560         if (dev_priv->renderctx) {
7561                 i915_gem_object_unpin(dev_priv->renderctx);
7562                 drm_gem_object_unreference(&dev_priv->renderctx->base);
7563                 dev_priv->renderctx = NULL;
7564         }
7565
7566         if (dev_priv->pwrctx) {
7567                 i915_gem_object_unpin(dev_priv->pwrctx);
7568                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7569                 dev_priv->pwrctx = NULL;
7570         }
7571 }
7572
7573 static void ironlake_disable_rc6(struct drm_device *dev)
7574 {
7575         struct drm_i915_private *dev_priv = dev->dev_private;
7576
7577         if (I915_READ(PWRCTXA)) {
7578                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7579                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7580                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7581                          50);
7582
7583                 I915_WRITE(PWRCTXA, 0);
7584                 POSTING_READ(PWRCTXA);
7585
7586                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7587                 POSTING_READ(RSTDBYCTL);
7588         }
7589
7590         ironlake_teardown_rc6(dev);
7591 }
7592
7593 static int ironlake_setup_rc6(struct drm_device *dev)
7594 {
7595         struct drm_i915_private *dev_priv = dev->dev_private;
7596
7597         if (dev_priv->renderctx == NULL)
7598                 dev_priv->renderctx = intel_alloc_context_page(dev);
7599         if (!dev_priv->renderctx)
7600                 return -ENOMEM;
7601
7602         if (dev_priv->pwrctx == NULL)
7603                 dev_priv->pwrctx = intel_alloc_context_page(dev);
7604         if (!dev_priv->pwrctx) {
7605                 ironlake_teardown_rc6(dev);
7606                 return -ENOMEM;
7607         }
7608
7609         return 0;
7610 }
7611
7612 void ironlake_enable_rc6(struct drm_device *dev)
7613 {
7614         struct drm_i915_private *dev_priv = dev->dev_private;
7615         int ret;
7616
7617         /* rc6 disabled by default due to repeated reports of hanging during
7618          * boot and resume.
7619          */
7620         if (!i915_enable_rc6)
7621                 return;
7622
7623         mutex_lock(&dev->struct_mutex);
7624         ret = ironlake_setup_rc6(dev);
7625         if (ret) {
7626                 mutex_unlock(&dev->struct_mutex);
7627                 return;
7628         }
7629
7630         /*
7631          * GPU can automatically power down the render unit if given a page
7632          * to save state.
7633          */
7634         ret = BEGIN_LP_RING(6);
7635         if (ret) {
7636                 ironlake_teardown_rc6(dev);
7637                 mutex_unlock(&dev->struct_mutex);
7638                 return;
7639         }
7640
7641         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7642         OUT_RING(MI_SET_CONTEXT);
7643         OUT_RING(dev_priv->renderctx->gtt_offset |
7644                  MI_MM_SPACE_GTT |
7645                  MI_SAVE_EXT_STATE_EN |
7646                  MI_RESTORE_EXT_STATE_EN |
7647                  MI_RESTORE_INHIBIT);
7648         OUT_RING(MI_SUSPEND_FLUSH);
7649         OUT_RING(MI_NOOP);
7650         OUT_RING(MI_FLUSH);
7651         ADVANCE_LP_RING();
7652
7653         /*
7654          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7655          * does an implicit flush, combined with MI_FLUSH above, it should be
7656          * safe to assume that renderctx is valid
7657          */
7658         ret = intel_wait_ring_idle(LP_RING(dev_priv));
7659         if (ret) {
7660                 DRM_ERROR("failed to enable ironlake power power savings\n");
7661                 ironlake_teardown_rc6(dev);
7662                 mutex_unlock(&dev->struct_mutex);
7663                 return;
7664         }
7665
7666         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7667         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7668         mutex_unlock(&dev->struct_mutex);
7669 }
7670
7671 void intel_init_clock_gating(struct drm_device *dev)
7672 {
7673         struct drm_i915_private *dev_priv = dev->dev_private;
7674
7675         dev_priv->display.init_clock_gating(dev);
7676
7677         if (dev_priv->display.init_pch_clock_gating)
7678                 dev_priv->display.init_pch_clock_gating(dev);
7679 }
7680
7681 /* Set up chip specific display functions */
7682 static void intel_init_display(struct drm_device *dev)
7683 {
7684         struct drm_i915_private *dev_priv = dev->dev_private;
7685
7686         /* We always want a DPMS function */
7687         if (HAS_PCH_SPLIT(dev)) {
7688                 dev_priv->display.dpms = ironlake_crtc_dpms;
7689                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7690         } else {
7691                 dev_priv->display.dpms = i9xx_crtc_dpms;
7692                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7693         }
7694
7695         if (I915_HAS_FBC(dev)) {
7696                 if (HAS_PCH_SPLIT(dev)) {
7697                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7698                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7699                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7700                 } else if (IS_GM45(dev)) {
7701                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7702                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7703                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7704                 } else if (IS_CRESTLINE(dev)) {
7705                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7706                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7707                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7708                 }
7709                 /* 855GM needs testing */
7710         }
7711
7712         /* Returns the core display clock speed */
7713         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7714                 dev_priv->display.get_display_clock_speed =
7715                         i945_get_display_clock_speed;
7716         else if (IS_I915G(dev))
7717                 dev_priv->display.get_display_clock_speed =
7718                         i915_get_display_clock_speed;
7719         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7720                 dev_priv->display.get_display_clock_speed =
7721                         i9xx_misc_get_display_clock_speed;
7722         else if (IS_I915GM(dev))
7723                 dev_priv->display.get_display_clock_speed =
7724                         i915gm_get_display_clock_speed;
7725         else if (IS_I865G(dev))
7726                 dev_priv->display.get_display_clock_speed =
7727                         i865_get_display_clock_speed;
7728         else if (IS_I85X(dev))
7729                 dev_priv->display.get_display_clock_speed =
7730                         i855_get_display_clock_speed;
7731         else /* 852, 830 */
7732                 dev_priv->display.get_display_clock_speed =
7733                         i830_get_display_clock_speed;
7734
7735         /* For FIFO watermark updates */
7736         if (HAS_PCH_SPLIT(dev)) {
7737                 if (HAS_PCH_IBX(dev))
7738                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
7739                 else if (HAS_PCH_CPT(dev))
7740                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
7741
7742                 if (IS_GEN5(dev)) {
7743                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7744                                 dev_priv->display.update_wm = ironlake_update_wm;
7745                         else {
7746                                 DRM_DEBUG_KMS("Failed to get proper latency. "
7747                                               "Disable CxSR\n");
7748                                 dev_priv->display.update_wm = NULL;
7749                         }
7750                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7751                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7752                 } else if (IS_GEN6(dev)) {
7753                         if (SNB_READ_WM0_LATENCY()) {
7754                                 dev_priv->display.update_wm = sandybridge_update_wm;
7755                         } else {
7756                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7757                                               "Disable CxSR\n");
7758                                 dev_priv->display.update_wm = NULL;
7759                         }
7760                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7761                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7762                 } else if (IS_IVYBRIDGE(dev)) {
7763                         /* FIXME: detect B0+ stepping and use auto training */
7764                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7765                         if (SNB_READ_WM0_LATENCY()) {
7766                                 dev_priv->display.update_wm = sandybridge_update_wm;
7767                         } else {
7768                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7769                                               "Disable CxSR\n");
7770                                 dev_priv->display.update_wm = NULL;
7771                         }
7772                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7773
7774                 } else
7775                         dev_priv->display.update_wm = NULL;
7776         } else if (IS_PINEVIEW(dev)) {
7777                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7778                                             dev_priv->is_ddr3,
7779                                             dev_priv->fsb_freq,
7780                                             dev_priv->mem_freq)) {
7781                         DRM_INFO("failed to find known CxSR latency "
7782                                  "(found ddr%s fsb freq %d, mem freq %d), "
7783                                  "disabling CxSR\n",
7784                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
7785                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7786                         /* Disable CxSR and never update its watermark again */
7787                         pineview_disable_cxsr(dev);
7788                         dev_priv->display.update_wm = NULL;
7789                 } else
7790                         dev_priv->display.update_wm = pineview_update_wm;
7791                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7792         } else if (IS_G4X(dev)) {
7793                 dev_priv->display.update_wm = g4x_update_wm;
7794                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7795         } else if (IS_GEN4(dev)) {
7796                 dev_priv->display.update_wm = i965_update_wm;
7797                 if (IS_CRESTLINE(dev))
7798                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7799                 else if (IS_BROADWATER(dev))
7800                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7801         } else if (IS_GEN3(dev)) {
7802                 dev_priv->display.update_wm = i9xx_update_wm;
7803                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7804                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7805         } else if (IS_I865G(dev)) {
7806                 dev_priv->display.update_wm = i830_update_wm;
7807                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7808                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7809         } else if (IS_I85X(dev)) {
7810                 dev_priv->display.update_wm = i9xx_update_wm;
7811                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7812                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7813         } else {
7814                 dev_priv->display.update_wm = i830_update_wm;
7815                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7816                 if (IS_845G(dev))
7817                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7818                 else
7819                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7820         }
7821
7822         /* Default just returns -ENODEV to indicate unsupported */
7823         dev_priv->display.queue_flip = intel_default_queue_flip;
7824
7825         switch (INTEL_INFO(dev)->gen) {
7826         case 2:
7827                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7828                 break;
7829
7830         case 3:
7831                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7832                 break;
7833
7834         case 4:
7835         case 5:
7836                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7837                 break;
7838
7839         case 6:
7840                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7841                 break;
7842         case 7:
7843                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7844                 break;
7845         }
7846 }
7847
7848 /*
7849  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7850  * resume, or other times.  This quirk makes sure that's the case for
7851  * affected systems.
7852  */
7853 static void quirk_pipea_force (struct drm_device *dev)
7854 {
7855         struct drm_i915_private *dev_priv = dev->dev_private;
7856
7857         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7858         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7859 }
7860
7861 struct intel_quirk {
7862         int device;
7863         int subsystem_vendor;
7864         int subsystem_device;
7865         void (*hook)(struct drm_device *dev);
7866 };
7867
7868 struct intel_quirk intel_quirks[] = {
7869         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7870         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7871         /* HP Mini needs pipe A force quirk (LP: #322104) */
7872         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7873
7874         /* Thinkpad R31 needs pipe A force quirk */
7875         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7876         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7877         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7878
7879         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7880         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
7881         /* ThinkPad X40 needs pipe A force quirk */
7882
7883         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7884         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7885
7886         /* 855 & before need to leave pipe A & dpll A up */
7887         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7888         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7889 };
7890
7891 static void intel_init_quirks(struct drm_device *dev)
7892 {
7893         struct pci_dev *d = dev->pdev;
7894         int i;
7895
7896         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7897                 struct intel_quirk *q = &intel_quirks[i];
7898
7899                 if (d->device == q->device &&
7900                     (d->subsystem_vendor == q->subsystem_vendor ||
7901                      q->subsystem_vendor == PCI_ANY_ID) &&
7902                     (d->subsystem_device == q->subsystem_device ||
7903                      q->subsystem_device == PCI_ANY_ID))
7904                         q->hook(dev);
7905         }
7906 }
7907
7908 /* Disable the VGA plane that we never use */
7909 static void i915_disable_vga(struct drm_device *dev)
7910 {
7911         struct drm_i915_private *dev_priv = dev->dev_private;
7912         u8 sr1;
7913         u32 vga_reg;
7914
7915         if (HAS_PCH_SPLIT(dev))
7916                 vga_reg = CPU_VGACNTRL;
7917         else
7918                 vga_reg = VGACNTRL;
7919
7920         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7921         outb(1, VGA_SR_INDEX);
7922         sr1 = inb(VGA_SR_DATA);
7923         outb(sr1 | 1<<5, VGA_SR_DATA);
7924         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7925         udelay(300);
7926
7927         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7928         POSTING_READ(vga_reg);
7929 }
7930
7931 void intel_modeset_init(struct drm_device *dev)
7932 {
7933         struct drm_i915_private *dev_priv = dev->dev_private;
7934         int i;
7935
7936         drm_mode_config_init(dev);
7937
7938         dev->mode_config.min_width = 0;
7939         dev->mode_config.min_height = 0;
7940
7941         dev->mode_config.funcs = (void *)&intel_mode_funcs;
7942
7943         intel_init_quirks(dev);
7944
7945         intel_init_display(dev);
7946
7947         if (IS_GEN2(dev)) {
7948                 dev->mode_config.max_width = 2048;
7949                 dev->mode_config.max_height = 2048;
7950         } else if (IS_GEN3(dev)) {
7951                 dev->mode_config.max_width = 4096;
7952                 dev->mode_config.max_height = 4096;
7953         } else {
7954                 dev->mode_config.max_width = 8192;
7955                 dev->mode_config.max_height = 8192;
7956         }
7957         dev->mode_config.fb_base = dev->agp->base;
7958
7959         DRM_DEBUG_KMS("%d display pipe%s available.\n",
7960                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7961
7962         for (i = 0; i < dev_priv->num_pipe; i++) {
7963                 intel_crtc_init(dev, i);
7964         }
7965
7966         /* Just disable it once at startup */
7967         i915_disable_vga(dev);
7968         intel_setup_outputs(dev);
7969
7970         intel_init_clock_gating(dev);
7971
7972         if (IS_IRONLAKE_M(dev)) {
7973                 ironlake_enable_drps(dev);
7974                 intel_init_emon(dev);
7975         }
7976
7977         if (IS_GEN6(dev) || IS_GEN7(dev)) {
7978                 gen6_enable_rps(dev_priv);
7979                 gen6_update_ring_freq(dev_priv);
7980         }
7981
7982         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7983         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7984                     (unsigned long)dev);
7985 }
7986
7987 void intel_modeset_gem_init(struct drm_device *dev)
7988 {
7989         if (IS_IRONLAKE_M(dev))
7990                 ironlake_enable_rc6(dev);
7991
7992         intel_setup_overlay(dev);
7993 }
7994
7995 void intel_modeset_cleanup(struct drm_device *dev)
7996 {
7997         struct drm_i915_private *dev_priv = dev->dev_private;
7998         struct drm_crtc *crtc;
7999         struct intel_crtc *intel_crtc;
8000
8001         drm_kms_helper_poll_fini(dev);
8002         mutex_lock(&dev->struct_mutex);
8003
8004         intel_unregister_dsm_handler();
8005
8006
8007         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8008                 /* Skip inactive CRTCs */
8009                 if (!crtc->fb)
8010                         continue;
8011
8012                 intel_crtc = to_intel_crtc(crtc);
8013                 intel_increase_pllclock(crtc);
8014         }
8015
8016         if (dev_priv->display.disable_fbc)
8017                 dev_priv->display.disable_fbc(dev);
8018
8019         if (IS_IRONLAKE_M(dev))
8020                 ironlake_disable_drps(dev);
8021         if (IS_GEN6(dev) || IS_GEN7(dev))
8022                 gen6_disable_rps(dev);
8023
8024         if (IS_IRONLAKE_M(dev))
8025                 ironlake_disable_rc6(dev);
8026
8027         mutex_unlock(&dev->struct_mutex);
8028
8029         /* Disable the irq before mode object teardown, for the irq might
8030          * enqueue unpin/hotplug work. */
8031         drm_irq_uninstall(dev);
8032         cancel_work_sync(&dev_priv->hotplug_work);
8033
8034         /* Shut off idle work before the crtcs get freed. */
8035         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8036                 intel_crtc = to_intel_crtc(crtc);
8037                 del_timer_sync(&intel_crtc->idle_timer);
8038         }
8039         del_timer_sync(&dev_priv->idle_timer);
8040         cancel_work_sync(&dev_priv->idle_work);
8041
8042         drm_mode_config_cleanup(dev);
8043 }
8044
8045 /*
8046  * Return which encoder is currently attached for connector.
8047  */
8048 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8049 {
8050         return &intel_attached_encoder(connector)->base;
8051 }
8052
8053 void intel_connector_attach_encoder(struct intel_connector *connector,
8054                                     struct intel_encoder *encoder)
8055 {
8056         connector->encoder = encoder;
8057         drm_mode_connector_attach_encoder(&connector->base,
8058                                           &encoder->base);
8059 }
8060
8061 /*
8062  * set vga decode state - true == enable VGA decode
8063  */
8064 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8065 {
8066         struct drm_i915_private *dev_priv = dev->dev_private;
8067         u16 gmch_ctrl;
8068
8069         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8070         if (state)
8071                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8072         else
8073                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8074         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8075         return 0;
8076 }
8077
8078 #ifdef CONFIG_DEBUG_FS
8079 #include <linux/seq_file.h>
8080
8081 struct intel_display_error_state {
8082         struct intel_cursor_error_state {
8083                 u32 control;
8084                 u32 position;
8085                 u32 base;
8086                 u32 size;
8087         } cursor[2];
8088
8089         struct intel_pipe_error_state {
8090                 u32 conf;
8091                 u32 source;
8092
8093                 u32 htotal;
8094                 u32 hblank;
8095                 u32 hsync;
8096                 u32 vtotal;
8097                 u32 vblank;
8098                 u32 vsync;
8099         } pipe[2];
8100
8101         struct intel_plane_error_state {
8102                 u32 control;
8103                 u32 stride;
8104                 u32 size;
8105                 u32 pos;
8106                 u32 addr;
8107                 u32 surface;
8108                 u32 tile_offset;
8109         } plane[2];
8110 };
8111
8112 struct intel_display_error_state *
8113 intel_display_capture_error_state(struct drm_device *dev)
8114 {
8115         drm_i915_private_t *dev_priv = dev->dev_private;
8116         struct intel_display_error_state *error;
8117         int i;
8118
8119         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8120         if (error == NULL)
8121                 return NULL;
8122
8123         for (i = 0; i < 2; i++) {
8124                 error->cursor[i].control = I915_READ(CURCNTR(i));
8125                 error->cursor[i].position = I915_READ(CURPOS(i));
8126                 error->cursor[i].base = I915_READ(CURBASE(i));
8127
8128                 error->plane[i].control = I915_READ(DSPCNTR(i));
8129                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8130                 error->plane[i].size = I915_READ(DSPSIZE(i));
8131                 error->plane[i].pos= I915_READ(DSPPOS(i));
8132                 error->plane[i].addr = I915_READ(DSPADDR(i));
8133                 if (INTEL_INFO(dev)->gen >= 4) {
8134                         error->plane[i].surface = I915_READ(DSPSURF(i));
8135                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8136                 }
8137
8138                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8139                 error->pipe[i].source = I915_READ(PIPESRC(i));
8140                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8141                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8142                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8143                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8144                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8145                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8146         }
8147
8148         return error;
8149 }
8150
8151 void
8152 intel_display_print_error_state(struct seq_file *m,
8153                                 struct drm_device *dev,
8154                                 struct intel_display_error_state *error)
8155 {
8156         int i;
8157
8158         for (i = 0; i < 2; i++) {
8159                 seq_printf(m, "Pipe [%d]:\n", i);
8160                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8161                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8162                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8163                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8164                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8165                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8166                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8167                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8168
8169                 seq_printf(m, "Plane [%d]:\n", i);
8170                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8171                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8172                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8173                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8174                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8175                 if (INTEL_INFO(dev)->gen >= 4) {
8176                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8177                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8178                 }
8179
8180                 seq_printf(m, "Cursor [%d]:\n", i);
8181                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8182                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8183                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8184         }
8185 }
8186 #endif