d5d648030af0cb01c42df70a4bfa29e336db731b
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50         DRM_FORMAT_C8, \
51         DRM_FORMAT_RGB565, \
52         DRM_FORMAT_XRGB8888, \
53         DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57         COMMON_PRIMARY_FORMATS,
58         DRM_FORMAT_XRGB1555,
59         DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64         COMMON_PRIMARY_FORMATS, \
65         DRM_FORMAT_XBGR8888,
66         DRM_FORMAT_ABGR8888,
67         DRM_FORMAT_XRGB2101010,
68         DRM_FORMAT_ARGB2101010,
69         DRM_FORMAT_XBGR2101010,
70         DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75         DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81                                 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83                                    struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86                           int x, int y, struct drm_framebuffer *old_fb,
87                           struct drm_atomic_state *state);
88 static int intel_framebuffer_init(struct drm_device *dev,
89                                   struct intel_framebuffer *ifb,
90                                   struct drm_mode_fb_cmd2 *mode_cmd,
91                                   struct drm_i915_gem_object *obj);
92 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
94 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
95                                          struct intel_link_m_n *m_n,
96                                          struct intel_link_m_n *m2_n2);
97 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
98 static void haswell_set_pipeconf(struct drm_crtc *crtc);
99 static void intel_set_pipe_csc(struct drm_crtc *crtc);
100 static void vlv_prepare_pll(struct intel_crtc *crtc,
101                             const struct intel_crtc_state *pipe_config);
102 static void chv_prepare_pll(struct intel_crtc *crtc,
103                             const struct intel_crtc_state *pipe_config);
104 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
106 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
107         struct intel_crtc_state *crtc_state);
108 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
109                            int num_connectors);
110 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
111 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
112
113 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
114 {
115         if (!connector->mst_port)
116                 return connector->encoder;
117         else
118                 return &connector->mst_port->mst_encoders[pipe]->base;
119 }
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 int
137 intel_pch_rawclk(struct drm_device *dev)
138 {
139         struct drm_i915_private *dev_priv = dev->dev_private;
140
141         WARN_ON(!HAS_PCH_SPLIT(dev));
142
143         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
144 }
145
146 static inline u32 /* units of 100MHz */
147 intel_fdi_link_freq(struct drm_device *dev)
148 {
149         if (IS_GEN5(dev)) {
150                 struct drm_i915_private *dev_priv = dev->dev_private;
151                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
152         } else
153                 return 27;
154 }
155
156 static const intel_limit_t intel_limits_i8xx_dac = {
157         .dot = { .min = 25000, .max = 350000 },
158         .vco = { .min = 908000, .max = 1512000 },
159         .n = { .min = 2, .max = 16 },
160         .m = { .min = 96, .max = 140 },
161         .m1 = { .min = 18, .max = 26 },
162         .m2 = { .min = 6, .max = 16 },
163         .p = { .min = 4, .max = 128 },
164         .p1 = { .min = 2, .max = 33 },
165         .p2 = { .dot_limit = 165000,
166                 .p2_slow = 4, .p2_fast = 2 },
167 };
168
169 static const intel_limit_t intel_limits_i8xx_dvo = {
170         .dot = { .min = 25000, .max = 350000 },
171         .vco = { .min = 908000, .max = 1512000 },
172         .n = { .min = 2, .max = 16 },
173         .m = { .min = 96, .max = 140 },
174         .m1 = { .min = 18, .max = 26 },
175         .m2 = { .min = 6, .max = 16 },
176         .p = { .min = 4, .max = 128 },
177         .p1 = { .min = 2, .max = 33 },
178         .p2 = { .dot_limit = 165000,
179                 .p2_slow = 4, .p2_fast = 4 },
180 };
181
182 static const intel_limit_t intel_limits_i8xx_lvds = {
183         .dot = { .min = 25000, .max = 350000 },
184         .vco = { .min = 908000, .max = 1512000 },
185         .n = { .min = 2, .max = 16 },
186         .m = { .min = 96, .max = 140 },
187         .m1 = { .min = 18, .max = 26 },
188         .m2 = { .min = 6, .max = 16 },
189         .p = { .min = 4, .max = 128 },
190         .p1 = { .min = 1, .max = 6 },
191         .p2 = { .dot_limit = 165000,
192                 .p2_slow = 14, .p2_fast = 7 },
193 };
194
195 static const intel_limit_t intel_limits_i9xx_sdvo = {
196         .dot = { .min = 20000, .max = 400000 },
197         .vco = { .min = 1400000, .max = 2800000 },
198         .n = { .min = 1, .max = 6 },
199         .m = { .min = 70, .max = 120 },
200         .m1 = { .min = 8, .max = 18 },
201         .m2 = { .min = 3, .max = 7 },
202         .p = { .min = 5, .max = 80 },
203         .p1 = { .min = 1, .max = 8 },
204         .p2 = { .dot_limit = 200000,
205                 .p2_slow = 10, .p2_fast = 5 },
206 };
207
208 static const intel_limit_t intel_limits_i9xx_lvds = {
209         .dot = { .min = 20000, .max = 400000 },
210         .vco = { .min = 1400000, .max = 2800000 },
211         .n = { .min = 1, .max = 6 },
212         .m = { .min = 70, .max = 120 },
213         .m1 = { .min = 8, .max = 18 },
214         .m2 = { .min = 3, .max = 7 },
215         .p = { .min = 7, .max = 98 },
216         .p1 = { .min = 1, .max = 8 },
217         .p2 = { .dot_limit = 112000,
218                 .p2_slow = 14, .p2_fast = 7 },
219 };
220
221
222 static const intel_limit_t intel_limits_g4x_sdvo = {
223         .dot = { .min = 25000, .max = 270000 },
224         .vco = { .min = 1750000, .max = 3500000},
225         .n = { .min = 1, .max = 4 },
226         .m = { .min = 104, .max = 138 },
227         .m1 = { .min = 17, .max = 23 },
228         .m2 = { .min = 5, .max = 11 },
229         .p = { .min = 10, .max = 30 },
230         .p1 = { .min = 1, .max = 3},
231         .p2 = { .dot_limit = 270000,
232                 .p2_slow = 10,
233                 .p2_fast = 10
234         },
235 };
236
237 static const intel_limit_t intel_limits_g4x_hdmi = {
238         .dot = { .min = 22000, .max = 400000 },
239         .vco = { .min = 1750000, .max = 3500000},
240         .n = { .min = 1, .max = 4 },
241         .m = { .min = 104, .max = 138 },
242         .m1 = { .min = 16, .max = 23 },
243         .m2 = { .min = 5, .max = 11 },
244         .p = { .min = 5, .max = 80 },
245         .p1 = { .min = 1, .max = 8},
246         .p2 = { .dot_limit = 165000,
247                 .p2_slow = 10, .p2_fast = 5 },
248 };
249
250 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
251         .dot = { .min = 20000, .max = 115000 },
252         .vco = { .min = 1750000, .max = 3500000 },
253         .n = { .min = 1, .max = 3 },
254         .m = { .min = 104, .max = 138 },
255         .m1 = { .min = 17, .max = 23 },
256         .m2 = { .min = 5, .max = 11 },
257         .p = { .min = 28, .max = 112 },
258         .p1 = { .min = 2, .max = 8 },
259         .p2 = { .dot_limit = 0,
260                 .p2_slow = 14, .p2_fast = 14
261         },
262 };
263
264 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
265         .dot = { .min = 80000, .max = 224000 },
266         .vco = { .min = 1750000, .max = 3500000 },
267         .n = { .min = 1, .max = 3 },
268         .m = { .min = 104, .max = 138 },
269         .m1 = { .min = 17, .max = 23 },
270         .m2 = { .min = 5, .max = 11 },
271         .p = { .min = 14, .max = 42 },
272         .p1 = { .min = 2, .max = 6 },
273         .p2 = { .dot_limit = 0,
274                 .p2_slow = 7, .p2_fast = 7
275         },
276 };
277
278 static const intel_limit_t intel_limits_pineview_sdvo = {
279         .dot = { .min = 20000, .max = 400000},
280         .vco = { .min = 1700000, .max = 3500000 },
281         /* Pineview's Ncounter is a ring counter */
282         .n = { .min = 3, .max = 6 },
283         .m = { .min = 2, .max = 256 },
284         /* Pineview only has one combined m divider, which we treat as m2. */
285         .m1 = { .min = 0, .max = 0 },
286         .m2 = { .min = 0, .max = 254 },
287         .p = { .min = 5, .max = 80 },
288         .p1 = { .min = 1, .max = 8 },
289         .p2 = { .dot_limit = 200000,
290                 .p2_slow = 10, .p2_fast = 5 },
291 };
292
293 static const intel_limit_t intel_limits_pineview_lvds = {
294         .dot = { .min = 20000, .max = 400000 },
295         .vco = { .min = 1700000, .max = 3500000 },
296         .n = { .min = 3, .max = 6 },
297         .m = { .min = 2, .max = 256 },
298         .m1 = { .min = 0, .max = 0 },
299         .m2 = { .min = 0, .max = 254 },
300         .p = { .min = 7, .max = 112 },
301         .p1 = { .min = 1, .max = 8 },
302         .p2 = { .dot_limit = 112000,
303                 .p2_slow = 14, .p2_fast = 14 },
304 };
305
306 /* Ironlake / Sandybridge
307  *
308  * We calculate clock using (register_value + 2) for N/M1/M2, so here
309  * the range value for them is (actual_value - 2).
310  */
311 static const intel_limit_t intel_limits_ironlake_dac = {
312         .dot = { .min = 25000, .max = 350000 },
313         .vco = { .min = 1760000, .max = 3510000 },
314         .n = { .min = 1, .max = 5 },
315         .m = { .min = 79, .max = 127 },
316         .m1 = { .min = 12, .max = 22 },
317         .m2 = { .min = 5, .max = 9 },
318         .p = { .min = 5, .max = 80 },
319         .p1 = { .min = 1, .max = 8 },
320         .p2 = { .dot_limit = 225000,
321                 .p2_slow = 10, .p2_fast = 5 },
322 };
323
324 static const intel_limit_t intel_limits_ironlake_single_lvds = {
325         .dot = { .min = 25000, .max = 350000 },
326         .vco = { .min = 1760000, .max = 3510000 },
327         .n = { .min = 1, .max = 3 },
328         .m = { .min = 79, .max = 118 },
329         .m1 = { .min = 12, .max = 22 },
330         .m2 = { .min = 5, .max = 9 },
331         .p = { .min = 28, .max = 112 },
332         .p1 = { .min = 2, .max = 8 },
333         .p2 = { .dot_limit = 225000,
334                 .p2_slow = 14, .p2_fast = 14 },
335 };
336
337 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
338         .dot = { .min = 25000, .max = 350000 },
339         .vco = { .min = 1760000, .max = 3510000 },
340         .n = { .min = 1, .max = 3 },
341         .m = { .min = 79, .max = 127 },
342         .m1 = { .min = 12, .max = 22 },
343         .m2 = { .min = 5, .max = 9 },
344         .p = { .min = 14, .max = 56 },
345         .p1 = { .min = 2, .max = 8 },
346         .p2 = { .dot_limit = 225000,
347                 .p2_slow = 7, .p2_fast = 7 },
348 };
349
350 /* LVDS 100mhz refclk limits. */
351 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
352         .dot = { .min = 25000, .max = 350000 },
353         .vco = { .min = 1760000, .max = 3510000 },
354         .n = { .min = 1, .max = 2 },
355         .m = { .min = 79, .max = 126 },
356         .m1 = { .min = 12, .max = 22 },
357         .m2 = { .min = 5, .max = 9 },
358         .p = { .min = 28, .max = 112 },
359         .p1 = { .min = 2, .max = 8 },
360         .p2 = { .dot_limit = 225000,
361                 .p2_slow = 14, .p2_fast = 14 },
362 };
363
364 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
365         .dot = { .min = 25000, .max = 350000 },
366         .vco = { .min = 1760000, .max = 3510000 },
367         .n = { .min = 1, .max = 3 },
368         .m = { .min = 79, .max = 126 },
369         .m1 = { .min = 12, .max = 22 },
370         .m2 = { .min = 5, .max = 9 },
371         .p = { .min = 14, .max = 42 },
372         .p1 = { .min = 2, .max = 6 },
373         .p2 = { .dot_limit = 225000,
374                 .p2_slow = 7, .p2_fast = 7 },
375 };
376
377 static const intel_limit_t intel_limits_vlv = {
378          /*
379           * These are the data rate limits (measured in fast clocks)
380           * since those are the strictest limits we have. The fast
381           * clock and actual rate limits are more relaxed, so checking
382           * them would make no difference.
383           */
384         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
385         .vco = { .min = 4000000, .max = 6000000 },
386         .n = { .min = 1, .max = 7 },
387         .m1 = { .min = 2, .max = 3 },
388         .m2 = { .min = 11, .max = 156 },
389         .p1 = { .min = 2, .max = 3 },
390         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
391 };
392
393 static const intel_limit_t intel_limits_chv = {
394         /*
395          * These are the data rate limits (measured in fast clocks)
396          * since those are the strictest limits we have.  The fast
397          * clock and actual rate limits are more relaxed, so checking
398          * them would make no difference.
399          */
400         .dot = { .min = 25000 * 5, .max = 540000 * 5},
401         .vco = { .min = 4800000, .max = 6480000 },
402         .n = { .min = 1, .max = 1 },
403         .m1 = { .min = 2, .max = 2 },
404         .m2 = { .min = 24 << 22, .max = 175 << 22 },
405         .p1 = { .min = 2, .max = 4 },
406         .p2 = { .p2_slow = 1, .p2_fast = 14 },
407 };
408
409 static const intel_limit_t intel_limits_bxt = {
410         /* FIXME: find real dot limits */
411         .dot = { .min = 0, .max = INT_MAX },
412         .vco = { .min = 4800000, .max = 6480000 },
413         .n = { .min = 1, .max = 1 },
414         .m1 = { .min = 2, .max = 2 },
415         /* FIXME: find real m2 limits */
416         .m2 = { .min = 2 << 22, .max = 255 << 22 },
417         .p1 = { .min = 2, .max = 4 },
418         .p2 = { .p2_slow = 1, .p2_fast = 20 },
419 };
420
421 static void vlv_clock(int refclk, intel_clock_t *clock)
422 {
423         clock->m = clock->m1 * clock->m2;
424         clock->p = clock->p1 * clock->p2;
425         if (WARN_ON(clock->n == 0 || clock->p == 0))
426                 return;
427         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
428         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
429 }
430
431 /**
432  * Returns whether any output on the specified pipe is of the specified type
433  */
434 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
435 {
436         struct drm_device *dev = crtc->base.dev;
437         struct intel_encoder *encoder;
438
439         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
440                 if (encoder->type == type)
441                         return true;
442
443         return false;
444 }
445
446 /**
447  * Returns whether any output on the specified pipe will have the specified
448  * type after a staged modeset is complete, i.e., the same as
449  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
450  * encoder->crtc.
451  */
452 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
453                                       int type)
454 {
455         struct drm_atomic_state *state = crtc_state->base.state;
456         struct drm_connector_state *connector_state;
457         struct intel_encoder *encoder;
458         int i, num_connectors = 0;
459
460         for (i = 0; i < state->num_connector; i++) {
461                 if (!state->connectors[i])
462                         continue;
463
464                 connector_state = state->connector_states[i];
465                 if (connector_state->crtc != crtc_state->base.crtc)
466                         continue;
467
468                 num_connectors++;
469
470                 encoder = to_intel_encoder(connector_state->best_encoder);
471                 if (encoder->type == type)
472                         return true;
473         }
474
475         WARN_ON(num_connectors == 0);
476
477         return false;
478 }
479
480 static const intel_limit_t *
481 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
482 {
483         struct drm_device *dev = crtc_state->base.crtc->dev;
484         const intel_limit_t *limit;
485
486         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
487                 if (intel_is_dual_link_lvds(dev)) {
488                         if (refclk == 100000)
489                                 limit = &intel_limits_ironlake_dual_lvds_100m;
490                         else
491                                 limit = &intel_limits_ironlake_dual_lvds;
492                 } else {
493                         if (refclk == 100000)
494                                 limit = &intel_limits_ironlake_single_lvds_100m;
495                         else
496                                 limit = &intel_limits_ironlake_single_lvds;
497                 }
498         } else
499                 limit = &intel_limits_ironlake_dac;
500
501         return limit;
502 }
503
504 static const intel_limit_t *
505 intel_g4x_limit(struct intel_crtc_state *crtc_state)
506 {
507         struct drm_device *dev = crtc_state->base.crtc->dev;
508         const intel_limit_t *limit;
509
510         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
511                 if (intel_is_dual_link_lvds(dev))
512                         limit = &intel_limits_g4x_dual_channel_lvds;
513                 else
514                         limit = &intel_limits_g4x_single_channel_lvds;
515         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
516                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
517                 limit = &intel_limits_g4x_hdmi;
518         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
519                 limit = &intel_limits_g4x_sdvo;
520         } else /* The option is for other outputs */
521                 limit = &intel_limits_i9xx_sdvo;
522
523         return limit;
524 }
525
526 static const intel_limit_t *
527 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
528 {
529         struct drm_device *dev = crtc_state->base.crtc->dev;
530         const intel_limit_t *limit;
531
532         if (IS_BROXTON(dev))
533                 limit = &intel_limits_bxt;
534         else if (HAS_PCH_SPLIT(dev))
535                 limit = intel_ironlake_limit(crtc_state, refclk);
536         else if (IS_G4X(dev)) {
537                 limit = intel_g4x_limit(crtc_state);
538         } else if (IS_PINEVIEW(dev)) {
539                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
540                         limit = &intel_limits_pineview_lvds;
541                 else
542                         limit = &intel_limits_pineview_sdvo;
543         } else if (IS_CHERRYVIEW(dev)) {
544                 limit = &intel_limits_chv;
545         } else if (IS_VALLEYVIEW(dev)) {
546                 limit = &intel_limits_vlv;
547         } else if (!IS_GEN2(dev)) {
548                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
549                         limit = &intel_limits_i9xx_lvds;
550                 else
551                         limit = &intel_limits_i9xx_sdvo;
552         } else {
553                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
554                         limit = &intel_limits_i8xx_lvds;
555                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
556                         limit = &intel_limits_i8xx_dvo;
557                 else
558                         limit = &intel_limits_i8xx_dac;
559         }
560         return limit;
561 }
562
563 /* m1 is reserved as 0 in Pineview, n is a ring counter */
564 static void pineview_clock(int refclk, intel_clock_t *clock)
565 {
566         clock->m = clock->m2 + 2;
567         clock->p = clock->p1 * clock->p2;
568         if (WARN_ON(clock->n == 0 || clock->p == 0))
569                 return;
570         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
571         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
572 }
573
574 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
575 {
576         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
577 }
578
579 static void i9xx_clock(int refclk, intel_clock_t *clock)
580 {
581         clock->m = i9xx_dpll_compute_m(clock);
582         clock->p = clock->p1 * clock->p2;
583         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
584                 return;
585         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
586         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
587 }
588
589 static void chv_clock(int refclk, intel_clock_t *clock)
590 {
591         clock->m = clock->m1 * clock->m2;
592         clock->p = clock->p1 * clock->p2;
593         if (WARN_ON(clock->n == 0 || clock->p == 0))
594                 return;
595         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
596                         clock->n << 22);
597         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
598 }
599
600 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
601 /**
602  * Returns whether the given set of divisors are valid for a given refclk with
603  * the given connectors.
604  */
605
606 static bool intel_PLL_is_valid(struct drm_device *dev,
607                                const intel_limit_t *limit,
608                                const intel_clock_t *clock)
609 {
610         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
611                 INTELPllInvalid("n out of range\n");
612         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
613                 INTELPllInvalid("p1 out of range\n");
614         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
615                 INTELPllInvalid("m2 out of range\n");
616         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
617                 INTELPllInvalid("m1 out of range\n");
618
619         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
620                 if (clock->m1 <= clock->m2)
621                         INTELPllInvalid("m1 <= m2\n");
622
623         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
624                 if (clock->p < limit->p.min || limit->p.max < clock->p)
625                         INTELPllInvalid("p out of range\n");
626                 if (clock->m < limit->m.min || limit->m.max < clock->m)
627                         INTELPllInvalid("m out of range\n");
628         }
629
630         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
631                 INTELPllInvalid("vco out of range\n");
632         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
633          * connector, etc., rather than just a single range.
634          */
635         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
636                 INTELPllInvalid("dot out of range\n");
637
638         return true;
639 }
640
641 static bool
642 i9xx_find_best_dpll(const intel_limit_t *limit,
643                     struct intel_crtc_state *crtc_state,
644                     int target, int refclk, intel_clock_t *match_clock,
645                     intel_clock_t *best_clock)
646 {
647         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
648         struct drm_device *dev = crtc->base.dev;
649         intel_clock_t clock;
650         int err = target;
651
652         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
653                 /*
654                  * For LVDS just rely on its current settings for dual-channel.
655                  * We haven't figured out how to reliably set up different
656                  * single/dual channel state, if we even can.
657                  */
658                 if (intel_is_dual_link_lvds(dev))
659                         clock.p2 = limit->p2.p2_fast;
660                 else
661                         clock.p2 = limit->p2.p2_slow;
662         } else {
663                 if (target < limit->p2.dot_limit)
664                         clock.p2 = limit->p2.p2_slow;
665                 else
666                         clock.p2 = limit->p2.p2_fast;
667         }
668
669         memset(best_clock, 0, sizeof(*best_clock));
670
671         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672              clock.m1++) {
673                 for (clock.m2 = limit->m2.min;
674                      clock.m2 <= limit->m2.max; clock.m2++) {
675                         if (clock.m2 >= clock.m1)
676                                 break;
677                         for (clock.n = limit->n.min;
678                              clock.n <= limit->n.max; clock.n++) {
679                                 for (clock.p1 = limit->p1.min;
680                                         clock.p1 <= limit->p1.max; clock.p1++) {
681                                         int this_err;
682
683                                         i9xx_clock(refclk, &clock);
684                                         if (!intel_PLL_is_valid(dev, limit,
685                                                                 &clock))
686                                                 continue;
687                                         if (match_clock &&
688                                             clock.p != match_clock->p)
689                                                 continue;
690
691                                         this_err = abs(clock.dot - target);
692                                         if (this_err < err) {
693                                                 *best_clock = clock;
694                                                 err = this_err;
695                                         }
696                                 }
697                         }
698                 }
699         }
700
701         return (err != target);
702 }
703
704 static bool
705 pnv_find_best_dpll(const intel_limit_t *limit,
706                    struct intel_crtc_state *crtc_state,
707                    int target, int refclk, intel_clock_t *match_clock,
708                    intel_clock_t *best_clock)
709 {
710         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
711         struct drm_device *dev = crtc->base.dev;
712         intel_clock_t clock;
713         int err = target;
714
715         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
716                 /*
717                  * For LVDS just rely on its current settings for dual-channel.
718                  * We haven't figured out how to reliably set up different
719                  * single/dual channel state, if we even can.
720                  */
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733
734         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
735              clock.m1++) {
736                 for (clock.m2 = limit->m2.min;
737                      clock.m2 <= limit->m2.max; clock.m2++) {
738                         for (clock.n = limit->n.min;
739                              clock.n <= limit->n.max; clock.n++) {
740                                 for (clock.p1 = limit->p1.min;
741                                         clock.p1 <= limit->p1.max; clock.p1++) {
742                                         int this_err;
743
744                                         pineview_clock(refclk, &clock);
745                                         if (!intel_PLL_is_valid(dev, limit,
746                                                                 &clock))
747                                                 continue;
748                                         if (match_clock &&
749                                             clock.p != match_clock->p)
750                                                 continue;
751
752                                         this_err = abs(clock.dot - target);
753                                         if (this_err < err) {
754                                                 *best_clock = clock;
755                                                 err = this_err;
756                                         }
757                                 }
758                         }
759                 }
760         }
761
762         return (err != target);
763 }
764
765 static bool
766 g4x_find_best_dpll(const intel_limit_t *limit,
767                    struct intel_crtc_state *crtc_state,
768                    int target, int refclk, intel_clock_t *match_clock,
769                    intel_clock_t *best_clock)
770 {
771         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
772         struct drm_device *dev = crtc->base.dev;
773         intel_clock_t clock;
774         int max_n;
775         bool found;
776         /* approximately equals target * 0.00585 */
777         int err_most = (target >> 8) + (target >> 9);
778         found = false;
779
780         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
781                 if (intel_is_dual_link_lvds(dev))
782                         clock.p2 = limit->p2.p2_fast;
783                 else
784                         clock.p2 = limit->p2.p2_slow;
785         } else {
786                 if (target < limit->p2.dot_limit)
787                         clock.p2 = limit->p2.p2_slow;
788                 else
789                         clock.p2 = limit->p2.p2_fast;
790         }
791
792         memset(best_clock, 0, sizeof(*best_clock));
793         max_n = limit->n.max;
794         /* based on hardware requirement, prefer smaller n to precision */
795         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796                 /* based on hardware requirement, prefere larger m1,m2 */
797                 for (clock.m1 = limit->m1.max;
798                      clock.m1 >= limit->m1.min; clock.m1--) {
799                         for (clock.m2 = limit->m2.max;
800                              clock.m2 >= limit->m2.min; clock.m2--) {
801                                 for (clock.p1 = limit->p1.max;
802                                      clock.p1 >= limit->p1.min; clock.p1--) {
803                                         int this_err;
804
805                                         i9xx_clock(refclk, &clock);
806                                         if (!intel_PLL_is_valid(dev, limit,
807                                                                 &clock))
808                                                 continue;
809
810                                         this_err = abs(clock.dot - target);
811                                         if (this_err < err_most) {
812                                                 *best_clock = clock;
813                                                 err_most = this_err;
814                                                 max_n = clock.n;
815                                                 found = true;
816                                         }
817                                 }
818                         }
819                 }
820         }
821         return found;
822 }
823
824 /*
825  * Check if the calculated PLL configuration is more optimal compared to the
826  * best configuration and error found so far. Return the calculated error.
827  */
828 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
829                                const intel_clock_t *calculated_clock,
830                                const intel_clock_t *best_clock,
831                                unsigned int best_error_ppm,
832                                unsigned int *error_ppm)
833 {
834         /*
835          * For CHV ignore the error and consider only the P value.
836          * Prefer a bigger P value based on HW requirements.
837          */
838         if (IS_CHERRYVIEW(dev)) {
839                 *error_ppm = 0;
840
841                 return calculated_clock->p > best_clock->p;
842         }
843
844         if (WARN_ON_ONCE(!target_freq))
845                 return false;
846
847         *error_ppm = div_u64(1000000ULL *
848                                 abs(target_freq - calculated_clock->dot),
849                              target_freq);
850         /*
851          * Prefer a better P value over a better (smaller) error if the error
852          * is small. Ensure this preference for future configurations too by
853          * setting the error to 0.
854          */
855         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
856                 *error_ppm = 0;
857
858                 return true;
859         }
860
861         return *error_ppm + 10 < best_error_ppm;
862 }
863
864 static bool
865 vlv_find_best_dpll(const intel_limit_t *limit,
866                    struct intel_crtc_state *crtc_state,
867                    int target, int refclk, intel_clock_t *match_clock,
868                    intel_clock_t *best_clock)
869 {
870         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
871         struct drm_device *dev = crtc->base.dev;
872         intel_clock_t clock;
873         unsigned int bestppm = 1000000;
874         /* min update 19.2 MHz */
875         int max_n = min(limit->n.max, refclk / 19200);
876         bool found = false;
877
878         target *= 5; /* fast clock */
879
880         memset(best_clock, 0, sizeof(*best_clock));
881
882         /* based on hardware requirement, prefer smaller n to precision */
883         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
884                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
885                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
886                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
887                                 clock.p = clock.p1 * clock.p2;
888                                 /* based on hardware requirement, prefer bigger m1,m2 values */
889                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
890                                         unsigned int ppm;
891
892                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
893                                                                      refclk * clock.m1);
894
895                                         vlv_clock(refclk, &clock);
896
897                                         if (!intel_PLL_is_valid(dev, limit,
898                                                                 &clock))
899                                                 continue;
900
901                                         if (!vlv_PLL_is_optimal(dev, target,
902                                                                 &clock,
903                                                                 best_clock,
904                                                                 bestppm, &ppm))
905                                                 continue;
906
907                                         *best_clock = clock;
908                                         bestppm = ppm;
909                                         found = true;
910                                 }
911                         }
912                 }
913         }
914
915         return found;
916 }
917
918 static bool
919 chv_find_best_dpll(const intel_limit_t *limit,
920                    struct intel_crtc_state *crtc_state,
921                    int target, int refclk, intel_clock_t *match_clock,
922                    intel_clock_t *best_clock)
923 {
924         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
925         struct drm_device *dev = crtc->base.dev;
926         unsigned int best_error_ppm;
927         intel_clock_t clock;
928         uint64_t m2;
929         int found = false;
930
931         memset(best_clock, 0, sizeof(*best_clock));
932         best_error_ppm = 1000000;
933
934         /*
935          * Based on hardware doc, the n always set to 1, and m1 always
936          * set to 2.  If requires to support 200Mhz refclk, we need to
937          * revisit this because n may not 1 anymore.
938          */
939         clock.n = 1, clock.m1 = 2;
940         target *= 5;    /* fast clock */
941
942         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
943                 for (clock.p2 = limit->p2.p2_fast;
944                                 clock.p2 >= limit->p2.p2_slow;
945                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
946                         unsigned int error_ppm;
947
948                         clock.p = clock.p1 * clock.p2;
949
950                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
951                                         clock.n) << 22, refclk * clock.m1);
952
953                         if (m2 > INT_MAX/clock.m1)
954                                 continue;
955
956                         clock.m2 = m2;
957
958                         chv_clock(refclk, &clock);
959
960                         if (!intel_PLL_is_valid(dev, limit, &clock))
961                                 continue;
962
963                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
964                                                 best_error_ppm, &error_ppm))
965                                 continue;
966
967                         *best_clock = clock;
968                         best_error_ppm = error_ppm;
969                         found = true;
970                 }
971         }
972
973         return found;
974 }
975
976 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
977                         intel_clock_t *best_clock)
978 {
979         int refclk = i9xx_get_refclk(crtc_state, 0);
980
981         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
982                                   target_clock, refclk, NULL, best_clock);
983 }
984
985 bool intel_crtc_active(struct drm_crtc *crtc)
986 {
987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
988
989         /* Be paranoid as we can arrive here with only partial
990          * state retrieved from the hardware during setup.
991          *
992          * We can ditch the adjusted_mode.crtc_clock check as soon
993          * as Haswell has gained clock readout/fastboot support.
994          *
995          * We can ditch the crtc->primary->fb check as soon as we can
996          * properly reconstruct framebuffers.
997          *
998          * FIXME: The intel_crtc->active here should be switched to
999          * crtc->state->active once we have proper CRTC states wired up
1000          * for atomic.
1001          */
1002         return intel_crtc->active && crtc->primary->state->fb &&
1003                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1004 }
1005
1006 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1007                                              enum pipe pipe)
1008 {
1009         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1011
1012         return intel_crtc->config->cpu_transcoder;
1013 }
1014
1015 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1016 {
1017         struct drm_i915_private *dev_priv = dev->dev_private;
1018         u32 reg = PIPEDSL(pipe);
1019         u32 line1, line2;
1020         u32 line_mask;
1021
1022         if (IS_GEN2(dev))
1023                 line_mask = DSL_LINEMASK_GEN2;
1024         else
1025                 line_mask = DSL_LINEMASK_GEN3;
1026
1027         line1 = I915_READ(reg) & line_mask;
1028         mdelay(5);
1029         line2 = I915_READ(reg) & line_mask;
1030
1031         return line1 == line2;
1032 }
1033
1034 /*
1035  * intel_wait_for_pipe_off - wait for pipe to turn off
1036  * @crtc: crtc whose pipe to wait for
1037  *
1038  * After disabling a pipe, we can't wait for vblank in the usual way,
1039  * spinning on the vblank interrupt status bit, since we won't actually
1040  * see an interrupt when the pipe is disabled.
1041  *
1042  * On Gen4 and above:
1043  *   wait for the pipe register state bit to turn off
1044  *
1045  * Otherwise:
1046  *   wait for the display line value to settle (it usually
1047  *   ends up stopping at the start of the next frame).
1048  *
1049  */
1050 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1051 {
1052         struct drm_device *dev = crtc->base.dev;
1053         struct drm_i915_private *dev_priv = dev->dev_private;
1054         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1055         enum pipe pipe = crtc->pipe;
1056
1057         if (INTEL_INFO(dev)->gen >= 4) {
1058                 int reg = PIPECONF(cpu_transcoder);
1059
1060                 /* Wait for the Pipe State to go off */
1061                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1062                              100))
1063                         WARN(1, "pipe_off wait timed out\n");
1064         } else {
1065                 /* Wait for the display line to settle */
1066                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1067                         WARN(1, "pipe_off wait timed out\n");
1068         }
1069 }
1070
1071 /*
1072  * ibx_digital_port_connected - is the specified port connected?
1073  * @dev_priv: i915 private structure
1074  * @port: the port to test
1075  *
1076  * Returns true if @port is connected, false otherwise.
1077  */
1078 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1079                                 struct intel_digital_port *port)
1080 {
1081         u32 bit;
1082
1083         if (HAS_PCH_IBX(dev_priv->dev)) {
1084                 switch (port->port) {
1085                 case PORT_B:
1086                         bit = SDE_PORTB_HOTPLUG;
1087                         break;
1088                 case PORT_C:
1089                         bit = SDE_PORTC_HOTPLUG;
1090                         break;
1091                 case PORT_D:
1092                         bit = SDE_PORTD_HOTPLUG;
1093                         break;
1094                 default:
1095                         return true;
1096                 }
1097         } else {
1098                 switch (port->port) {
1099                 case PORT_B:
1100                         bit = SDE_PORTB_HOTPLUG_CPT;
1101                         break;
1102                 case PORT_C:
1103                         bit = SDE_PORTC_HOTPLUG_CPT;
1104                         break;
1105                 case PORT_D:
1106                         bit = SDE_PORTD_HOTPLUG_CPT;
1107                         break;
1108                 default:
1109                         return true;
1110                 }
1111         }
1112
1113         return I915_READ(SDEISR) & bit;
1114 }
1115
1116 static const char *state_string(bool enabled)
1117 {
1118         return enabled ? "on" : "off";
1119 }
1120
1121 /* Only for pre-ILK configs */
1122 void assert_pll(struct drm_i915_private *dev_priv,
1123                 enum pipe pipe, bool state)
1124 {
1125         int reg;
1126         u32 val;
1127         bool cur_state;
1128
1129         reg = DPLL(pipe);
1130         val = I915_READ(reg);
1131         cur_state = !!(val & DPLL_VCO_ENABLE);
1132         I915_STATE_WARN(cur_state != state,
1133              "PLL state assertion failure (expected %s, current %s)\n",
1134              state_string(state), state_string(cur_state));
1135 }
1136
1137 /* XXX: the dsi pll is shared between MIPI DSI ports */
1138 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1139 {
1140         u32 val;
1141         bool cur_state;
1142
1143         mutex_lock(&dev_priv->dpio_lock);
1144         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1145         mutex_unlock(&dev_priv->dpio_lock);
1146
1147         cur_state = val & DSI_PLL_VCO_EN;
1148         I915_STATE_WARN(cur_state != state,
1149              "DSI PLL state assertion failure (expected %s, current %s)\n",
1150              state_string(state), state_string(cur_state));
1151 }
1152 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1153 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1154
1155 struct intel_shared_dpll *
1156 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1157 {
1158         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1159
1160         if (crtc->config->shared_dpll < 0)
1161                 return NULL;
1162
1163         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1164 }
1165
1166 /* For ILK+ */
1167 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1168                         struct intel_shared_dpll *pll,
1169                         bool state)
1170 {
1171         bool cur_state;
1172         struct intel_dpll_hw_state hw_state;
1173
1174         if (WARN (!pll,
1175                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1176                 return;
1177
1178         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1179         I915_STATE_WARN(cur_state != state,
1180              "%s assertion failure (expected %s, current %s)\n",
1181              pll->name, state_string(state), state_string(cur_state));
1182 }
1183
1184 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1185                           enum pipe pipe, bool state)
1186 {
1187         int reg;
1188         u32 val;
1189         bool cur_state;
1190         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1191                                                                       pipe);
1192
1193         if (HAS_DDI(dev_priv->dev)) {
1194                 /* DDI does not have a specific FDI_TX register */
1195                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1196                 val = I915_READ(reg);
1197                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1198         } else {
1199                 reg = FDI_TX_CTL(pipe);
1200                 val = I915_READ(reg);
1201                 cur_state = !!(val & FDI_TX_ENABLE);
1202         }
1203         I915_STATE_WARN(cur_state != state,
1204              "FDI TX state assertion failure (expected %s, current %s)\n",
1205              state_string(state), state_string(cur_state));
1206 }
1207 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1208 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1209
1210 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1211                           enum pipe pipe, bool state)
1212 {
1213         int reg;
1214         u32 val;
1215         bool cur_state;
1216
1217         reg = FDI_RX_CTL(pipe);
1218         val = I915_READ(reg);
1219         cur_state = !!(val & FDI_RX_ENABLE);
1220         I915_STATE_WARN(cur_state != state,
1221              "FDI RX state assertion failure (expected %s, current %s)\n",
1222              state_string(state), state_string(cur_state));
1223 }
1224 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1225 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1226
1227 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1228                                       enum pipe pipe)
1229 {
1230         int reg;
1231         u32 val;
1232
1233         /* ILK FDI PLL is always enabled */
1234         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1235                 return;
1236
1237         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1238         if (HAS_DDI(dev_priv->dev))
1239                 return;
1240
1241         reg = FDI_TX_CTL(pipe);
1242         val = I915_READ(reg);
1243         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1244 }
1245
1246 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1247                        enum pipe pipe, bool state)
1248 {
1249         int reg;
1250         u32 val;
1251         bool cur_state;
1252
1253         reg = FDI_RX_CTL(pipe);
1254         val = I915_READ(reg);
1255         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1256         I915_STATE_WARN(cur_state != state,
1257              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1258              state_string(state), state_string(cur_state));
1259 }
1260
1261 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1262                            enum pipe pipe)
1263 {
1264         struct drm_device *dev = dev_priv->dev;
1265         int pp_reg;
1266         u32 val;
1267         enum pipe panel_pipe = PIPE_A;
1268         bool locked = true;
1269
1270         if (WARN_ON(HAS_DDI(dev)))
1271                 return;
1272
1273         if (HAS_PCH_SPLIT(dev)) {
1274                 u32 port_sel;
1275
1276                 pp_reg = PCH_PP_CONTROL;
1277                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1278
1279                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1280                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1281                         panel_pipe = PIPE_B;
1282                 /* XXX: else fix for eDP */
1283         } else if (IS_VALLEYVIEW(dev)) {
1284                 /* presumably write lock depends on pipe, not port select */
1285                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1286                 panel_pipe = pipe;
1287         } else {
1288                 pp_reg = PP_CONTROL;
1289                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1290                         panel_pipe = PIPE_B;
1291         }
1292
1293         val = I915_READ(pp_reg);
1294         if (!(val & PANEL_POWER_ON) ||
1295             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1296                 locked = false;
1297
1298         I915_STATE_WARN(panel_pipe == pipe && locked,
1299              "panel assertion failure, pipe %c regs locked\n",
1300              pipe_name(pipe));
1301 }
1302
1303 static void assert_cursor(struct drm_i915_private *dev_priv,
1304                           enum pipe pipe, bool state)
1305 {
1306         struct drm_device *dev = dev_priv->dev;
1307         bool cur_state;
1308
1309         if (IS_845G(dev) || IS_I865G(dev))
1310                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1311         else
1312                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1313
1314         I915_STATE_WARN(cur_state != state,
1315              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1316              pipe_name(pipe), state_string(state), state_string(cur_state));
1317 }
1318 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1319 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1320
1321 void assert_pipe(struct drm_i915_private *dev_priv,
1322                  enum pipe pipe, bool state)
1323 {
1324         int reg;
1325         u32 val;
1326         bool cur_state;
1327         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1328                                                                       pipe);
1329
1330         /* if we need the pipe quirk it must be always on */
1331         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1332             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1333                 state = true;
1334
1335         if (!intel_display_power_is_enabled(dev_priv,
1336                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1337                 cur_state = false;
1338         } else {
1339                 reg = PIPECONF(cpu_transcoder);
1340                 val = I915_READ(reg);
1341                 cur_state = !!(val & PIPECONF_ENABLE);
1342         }
1343
1344         I915_STATE_WARN(cur_state != state,
1345              "pipe %c assertion failure (expected %s, current %s)\n",
1346              pipe_name(pipe), state_string(state), state_string(cur_state));
1347 }
1348
1349 static void assert_plane(struct drm_i915_private *dev_priv,
1350                          enum plane plane, bool state)
1351 {
1352         int reg;
1353         u32 val;
1354         bool cur_state;
1355
1356         reg = DSPCNTR(plane);
1357         val = I915_READ(reg);
1358         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1359         I915_STATE_WARN(cur_state != state,
1360              "plane %c assertion failure (expected %s, current %s)\n",
1361              plane_name(plane), state_string(state), state_string(cur_state));
1362 }
1363
1364 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1365 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1366
1367 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1368                                    enum pipe pipe)
1369 {
1370         struct drm_device *dev = dev_priv->dev;
1371         int reg, i;
1372         u32 val;
1373         int cur_pipe;
1374
1375         /* Primary planes are fixed to pipes on gen4+ */
1376         if (INTEL_INFO(dev)->gen >= 4) {
1377                 reg = DSPCNTR(pipe);
1378                 val = I915_READ(reg);
1379                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1380                      "plane %c assertion failure, should be disabled but not\n",
1381                      plane_name(pipe));
1382                 return;
1383         }
1384
1385         /* Need to check both planes against the pipe */
1386         for_each_pipe(dev_priv, i) {
1387                 reg = DSPCNTR(i);
1388                 val = I915_READ(reg);
1389                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1390                         DISPPLANE_SEL_PIPE_SHIFT;
1391                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1392                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1393                      plane_name(i), pipe_name(pipe));
1394         }
1395 }
1396
1397 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1398                                     enum pipe pipe)
1399 {
1400         struct drm_device *dev = dev_priv->dev;
1401         int reg, sprite;
1402         u32 val;
1403
1404         if (INTEL_INFO(dev)->gen >= 9) {
1405                 for_each_sprite(dev_priv, pipe, sprite) {
1406                         val = I915_READ(PLANE_CTL(pipe, sprite));
1407                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1408                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1409                              sprite, pipe_name(pipe));
1410                 }
1411         } else if (IS_VALLEYVIEW(dev)) {
1412                 for_each_sprite(dev_priv, pipe, sprite) {
1413                         reg = SPCNTR(pipe, sprite);
1414                         val = I915_READ(reg);
1415                         I915_STATE_WARN(val & SP_ENABLE,
1416                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1417                              sprite_name(pipe, sprite), pipe_name(pipe));
1418                 }
1419         } else if (INTEL_INFO(dev)->gen >= 7) {
1420                 reg = SPRCTL(pipe);
1421                 val = I915_READ(reg);
1422                 I915_STATE_WARN(val & SPRITE_ENABLE,
1423                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1424                      plane_name(pipe), pipe_name(pipe));
1425         } else if (INTEL_INFO(dev)->gen >= 5) {
1426                 reg = DVSCNTR(pipe);
1427                 val = I915_READ(reg);
1428                 I915_STATE_WARN(val & DVS_ENABLE,
1429                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1430                      plane_name(pipe), pipe_name(pipe));
1431         }
1432 }
1433
1434 static void assert_vblank_disabled(struct drm_crtc *crtc)
1435 {
1436         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1437                 drm_crtc_vblank_put(crtc);
1438 }
1439
1440 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1441 {
1442         u32 val;
1443         bool enabled;
1444
1445         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1446
1447         val = I915_READ(PCH_DREF_CONTROL);
1448         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1449                             DREF_SUPERSPREAD_SOURCE_MASK));
1450         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1451 }
1452
1453 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1454                                            enum pipe pipe)
1455 {
1456         int reg;
1457         u32 val;
1458         bool enabled;
1459
1460         reg = PCH_TRANSCONF(pipe);
1461         val = I915_READ(reg);
1462         enabled = !!(val & TRANS_ENABLE);
1463         I915_STATE_WARN(enabled,
1464              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1465              pipe_name(pipe));
1466 }
1467
1468 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1469                             enum pipe pipe, u32 port_sel, u32 val)
1470 {
1471         if ((val & DP_PORT_EN) == 0)
1472                 return false;
1473
1474         if (HAS_PCH_CPT(dev_priv->dev)) {
1475                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1476                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1477                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1478                         return false;
1479         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1480                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1481                         return false;
1482         } else {
1483                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1484                         return false;
1485         }
1486         return true;
1487 }
1488
1489 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1490                               enum pipe pipe, u32 val)
1491 {
1492         if ((val & SDVO_ENABLE) == 0)
1493                 return false;
1494
1495         if (HAS_PCH_CPT(dev_priv->dev)) {
1496                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1497                         return false;
1498         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1499                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1500                         return false;
1501         } else {
1502                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1503                         return false;
1504         }
1505         return true;
1506 }
1507
1508 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1509                               enum pipe pipe, u32 val)
1510 {
1511         if ((val & LVDS_PORT_EN) == 0)
1512                 return false;
1513
1514         if (HAS_PCH_CPT(dev_priv->dev)) {
1515                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1516                         return false;
1517         } else {
1518                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1519                         return false;
1520         }
1521         return true;
1522 }
1523
1524 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1525                               enum pipe pipe, u32 val)
1526 {
1527         if ((val & ADPA_DAC_ENABLE) == 0)
1528                 return false;
1529         if (HAS_PCH_CPT(dev_priv->dev)) {
1530                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1531                         return false;
1532         } else {
1533                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1534                         return false;
1535         }
1536         return true;
1537 }
1538
1539 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1540                                    enum pipe pipe, int reg, u32 port_sel)
1541 {
1542         u32 val = I915_READ(reg);
1543         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1544              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1545              reg, pipe_name(pipe));
1546
1547         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1548              && (val & DP_PIPEB_SELECT),
1549              "IBX PCH dp port still using transcoder B\n");
1550 }
1551
1552 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1553                                      enum pipe pipe, int reg)
1554 {
1555         u32 val = I915_READ(reg);
1556         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1557              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1558              reg, pipe_name(pipe));
1559
1560         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1561              && (val & SDVO_PIPE_B_SELECT),
1562              "IBX PCH hdmi port still using transcoder B\n");
1563 }
1564
1565 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1566                                       enum pipe pipe)
1567 {
1568         int reg;
1569         u32 val;
1570
1571         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1572         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1573         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1574
1575         reg = PCH_ADPA;
1576         val = I915_READ(reg);
1577         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1578              "PCH VGA enabled on transcoder %c, should be disabled\n",
1579              pipe_name(pipe));
1580
1581         reg = PCH_LVDS;
1582         val = I915_READ(reg);
1583         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1584              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1585              pipe_name(pipe));
1586
1587         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1588         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1589         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1590 }
1591
1592 static void intel_init_dpio(struct drm_device *dev)
1593 {
1594         struct drm_i915_private *dev_priv = dev->dev_private;
1595
1596         if (!IS_VALLEYVIEW(dev))
1597                 return;
1598
1599         /*
1600          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1601          * CHV x1 PHY (DP/HDMI D)
1602          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1603          */
1604         if (IS_CHERRYVIEW(dev)) {
1605                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1606                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1607         } else {
1608                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1609         }
1610 }
1611
1612 static void vlv_enable_pll(struct intel_crtc *crtc,
1613                            const struct intel_crtc_state *pipe_config)
1614 {
1615         struct drm_device *dev = crtc->base.dev;
1616         struct drm_i915_private *dev_priv = dev->dev_private;
1617         int reg = DPLL(crtc->pipe);
1618         u32 dpll = pipe_config->dpll_hw_state.dpll;
1619
1620         assert_pipe_disabled(dev_priv, crtc->pipe);
1621
1622         /* No really, not for ILK+ */
1623         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1624
1625         /* PLL is protected by panel, make sure we can write it */
1626         if (IS_MOBILE(dev_priv->dev))
1627                 assert_panel_unlocked(dev_priv, crtc->pipe);
1628
1629         I915_WRITE(reg, dpll);
1630         POSTING_READ(reg);
1631         udelay(150);
1632
1633         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1634                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1635
1636         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1637         POSTING_READ(DPLL_MD(crtc->pipe));
1638
1639         /* We do this three times for luck */
1640         I915_WRITE(reg, dpll);
1641         POSTING_READ(reg);
1642         udelay(150); /* wait for warmup */
1643         I915_WRITE(reg, dpll);
1644         POSTING_READ(reg);
1645         udelay(150); /* wait for warmup */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649 }
1650
1651 static void chv_enable_pll(struct intel_crtc *crtc,
1652                            const struct intel_crtc_state *pipe_config)
1653 {
1654         struct drm_device *dev = crtc->base.dev;
1655         struct drm_i915_private *dev_priv = dev->dev_private;
1656         int pipe = crtc->pipe;
1657         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1658         u32 tmp;
1659
1660         assert_pipe_disabled(dev_priv, crtc->pipe);
1661
1662         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1663
1664         mutex_lock(&dev_priv->dpio_lock);
1665
1666         /* Enable back the 10bit clock to display controller */
1667         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1668         tmp |= DPIO_DCLKP_EN;
1669         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1670
1671         /*
1672          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1673          */
1674         udelay(1);
1675
1676         /* Enable PLL */
1677         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1678
1679         /* Check PLL is locked */
1680         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1681                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1682
1683         /* not sure when this should be written */
1684         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1685         POSTING_READ(DPLL_MD(pipe));
1686
1687         mutex_unlock(&dev_priv->dpio_lock);
1688 }
1689
1690 static int intel_num_dvo_pipes(struct drm_device *dev)
1691 {
1692         struct intel_crtc *crtc;
1693         int count = 0;
1694
1695         for_each_intel_crtc(dev, crtc)
1696                 count += crtc->active &&
1697                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1698
1699         return count;
1700 }
1701
1702 static void i9xx_enable_pll(struct intel_crtc *crtc)
1703 {
1704         struct drm_device *dev = crtc->base.dev;
1705         struct drm_i915_private *dev_priv = dev->dev_private;
1706         int reg = DPLL(crtc->pipe);
1707         u32 dpll = crtc->config->dpll_hw_state.dpll;
1708
1709         assert_pipe_disabled(dev_priv, crtc->pipe);
1710
1711         /* No really, not for ILK+ */
1712         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1713
1714         /* PLL is protected by panel, make sure we can write it */
1715         if (IS_MOBILE(dev) && !IS_I830(dev))
1716                 assert_panel_unlocked(dev_priv, crtc->pipe);
1717
1718         /* Enable DVO 2x clock on both PLLs if necessary */
1719         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1720                 /*
1721                  * It appears to be important that we don't enable this
1722                  * for the current pipe before otherwise configuring the
1723                  * PLL. No idea how this should be handled if multiple
1724                  * DVO outputs are enabled simultaneosly.
1725                  */
1726                 dpll |= DPLL_DVO_2X_MODE;
1727                 I915_WRITE(DPLL(!crtc->pipe),
1728                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1729         }
1730
1731         /* Wait for the clocks to stabilize. */
1732         POSTING_READ(reg);
1733         udelay(150);
1734
1735         if (INTEL_INFO(dev)->gen >= 4) {
1736                 I915_WRITE(DPLL_MD(crtc->pipe),
1737                            crtc->config->dpll_hw_state.dpll_md);
1738         } else {
1739                 /* The pixel multiplier can only be updated once the
1740                  * DPLL is enabled and the clocks are stable.
1741                  *
1742                  * So write it again.
1743                  */
1744                 I915_WRITE(reg, dpll);
1745         }
1746
1747         /* We do this three times for luck */
1748         I915_WRITE(reg, dpll);
1749         POSTING_READ(reg);
1750         udelay(150); /* wait for warmup */
1751         I915_WRITE(reg, dpll);
1752         POSTING_READ(reg);
1753         udelay(150); /* wait for warmup */
1754         I915_WRITE(reg, dpll);
1755         POSTING_READ(reg);
1756         udelay(150); /* wait for warmup */
1757 }
1758
1759 /**
1760  * i9xx_disable_pll - disable a PLL
1761  * @dev_priv: i915 private structure
1762  * @pipe: pipe PLL to disable
1763  *
1764  * Disable the PLL for @pipe, making sure the pipe is off first.
1765  *
1766  * Note!  This is for pre-ILK only.
1767  */
1768 static void i9xx_disable_pll(struct intel_crtc *crtc)
1769 {
1770         struct drm_device *dev = crtc->base.dev;
1771         struct drm_i915_private *dev_priv = dev->dev_private;
1772         enum pipe pipe = crtc->pipe;
1773
1774         /* Disable DVO 2x clock on both PLLs if necessary */
1775         if (IS_I830(dev) &&
1776             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1777             intel_num_dvo_pipes(dev) == 1) {
1778                 I915_WRITE(DPLL(PIPE_B),
1779                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1780                 I915_WRITE(DPLL(PIPE_A),
1781                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1782         }
1783
1784         /* Don't disable pipe or pipe PLLs if needed */
1785         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1786             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1787                 return;
1788
1789         /* Make sure the pipe isn't still relying on us */
1790         assert_pipe_disabled(dev_priv, pipe);
1791
1792         I915_WRITE(DPLL(pipe), 0);
1793         POSTING_READ(DPLL(pipe));
1794 }
1795
1796 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1797 {
1798         u32 val = 0;
1799
1800         /* Make sure the pipe isn't still relying on us */
1801         assert_pipe_disabled(dev_priv, pipe);
1802
1803         /*
1804          * Leave integrated clock source and reference clock enabled for pipe B.
1805          * The latter is needed for VGA hotplug / manual detection.
1806          */
1807         if (pipe == PIPE_B)
1808                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1809         I915_WRITE(DPLL(pipe), val);
1810         POSTING_READ(DPLL(pipe));
1811
1812 }
1813
1814 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1815 {
1816         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1817         u32 val;
1818
1819         /* Make sure the pipe isn't still relying on us */
1820         assert_pipe_disabled(dev_priv, pipe);
1821
1822         /* Set PLL en = 0 */
1823         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1824         if (pipe != PIPE_A)
1825                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1826         I915_WRITE(DPLL(pipe), val);
1827         POSTING_READ(DPLL(pipe));
1828
1829         mutex_lock(&dev_priv->dpio_lock);
1830
1831         /* Disable 10bit clock to display controller */
1832         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1833         val &= ~DPIO_DCLKP_EN;
1834         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1835
1836         /* disable left/right clock distribution */
1837         if (pipe != PIPE_B) {
1838                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1839                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1840                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1841         } else {
1842                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1843                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1844                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1845         }
1846
1847         mutex_unlock(&dev_priv->dpio_lock);
1848 }
1849
1850 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1851                 struct intel_digital_port *dport)
1852 {
1853         u32 port_mask;
1854         int dpll_reg;
1855
1856         switch (dport->port) {
1857         case PORT_B:
1858                 port_mask = DPLL_PORTB_READY_MASK;
1859                 dpll_reg = DPLL(0);
1860                 break;
1861         case PORT_C:
1862                 port_mask = DPLL_PORTC_READY_MASK;
1863                 dpll_reg = DPLL(0);
1864                 break;
1865         case PORT_D:
1866                 port_mask = DPLL_PORTD_READY_MASK;
1867                 dpll_reg = DPIO_PHY_STATUS;
1868                 break;
1869         default:
1870                 BUG();
1871         }
1872
1873         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1874                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1875                      port_name(dport->port), I915_READ(dpll_reg));
1876 }
1877
1878 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1879 {
1880         struct drm_device *dev = crtc->base.dev;
1881         struct drm_i915_private *dev_priv = dev->dev_private;
1882         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1883
1884         if (WARN_ON(pll == NULL))
1885                 return;
1886
1887         WARN_ON(!pll->config.crtc_mask);
1888         if (pll->active == 0) {
1889                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1890                 WARN_ON(pll->on);
1891                 assert_shared_dpll_disabled(dev_priv, pll);
1892
1893                 pll->mode_set(dev_priv, pll);
1894         }
1895 }
1896
1897 /**
1898  * intel_enable_shared_dpll - enable PCH PLL
1899  * @dev_priv: i915 private structure
1900  * @pipe: pipe PLL to enable
1901  *
1902  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1903  * drives the transcoder clock.
1904  */
1905 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1906 {
1907         struct drm_device *dev = crtc->base.dev;
1908         struct drm_i915_private *dev_priv = dev->dev_private;
1909         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1910
1911         if (WARN_ON(pll == NULL))
1912                 return;
1913
1914         if (WARN_ON(pll->config.crtc_mask == 0))
1915                 return;
1916
1917         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1918                       pll->name, pll->active, pll->on,
1919                       crtc->base.base.id);
1920
1921         if (pll->active++) {
1922                 WARN_ON(!pll->on);
1923                 assert_shared_dpll_enabled(dev_priv, pll);
1924                 return;
1925         }
1926         WARN_ON(pll->on);
1927
1928         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1929
1930         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1931         pll->enable(dev_priv, pll);
1932         pll->on = true;
1933 }
1934
1935 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1936 {
1937         struct drm_device *dev = crtc->base.dev;
1938         struct drm_i915_private *dev_priv = dev->dev_private;
1939         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1940
1941         /* PCH only available on ILK+ */
1942         BUG_ON(INTEL_INFO(dev)->gen < 5);
1943         if (WARN_ON(pll == NULL))
1944                return;
1945
1946         if (WARN_ON(pll->config.crtc_mask == 0))
1947                 return;
1948
1949         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1950                       pll->name, pll->active, pll->on,
1951                       crtc->base.base.id);
1952
1953         if (WARN_ON(pll->active == 0)) {
1954                 assert_shared_dpll_disabled(dev_priv, pll);
1955                 return;
1956         }
1957
1958         assert_shared_dpll_enabled(dev_priv, pll);
1959         WARN_ON(!pll->on);
1960         if (--pll->active)
1961                 return;
1962
1963         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1964         pll->disable(dev_priv, pll);
1965         pll->on = false;
1966
1967         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1968 }
1969
1970 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1971                                            enum pipe pipe)
1972 {
1973         struct drm_device *dev = dev_priv->dev;
1974         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1975         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1976         uint32_t reg, val, pipeconf_val;
1977
1978         /* PCH only available on ILK+ */
1979         BUG_ON(!HAS_PCH_SPLIT(dev));
1980
1981         /* Make sure PCH DPLL is enabled */
1982         assert_shared_dpll_enabled(dev_priv,
1983                                    intel_crtc_to_shared_dpll(intel_crtc));
1984
1985         /* FDI must be feeding us bits for PCH ports */
1986         assert_fdi_tx_enabled(dev_priv, pipe);
1987         assert_fdi_rx_enabled(dev_priv, pipe);
1988
1989         if (HAS_PCH_CPT(dev)) {
1990                 /* Workaround: Set the timing override bit before enabling the
1991                  * pch transcoder. */
1992                 reg = TRANS_CHICKEN2(pipe);
1993                 val = I915_READ(reg);
1994                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1995                 I915_WRITE(reg, val);
1996         }
1997
1998         reg = PCH_TRANSCONF(pipe);
1999         val = I915_READ(reg);
2000         pipeconf_val = I915_READ(PIPECONF(pipe));
2001
2002         if (HAS_PCH_IBX(dev_priv->dev)) {
2003                 /*
2004                  * make the BPC in transcoder be consistent with
2005                  * that in pipeconf reg.
2006                  */
2007                 val &= ~PIPECONF_BPC_MASK;
2008                 val |= pipeconf_val & PIPECONF_BPC_MASK;
2009         }
2010
2011         val &= ~TRANS_INTERLACE_MASK;
2012         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2013                 if (HAS_PCH_IBX(dev_priv->dev) &&
2014                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2015                         val |= TRANS_LEGACY_INTERLACED_ILK;
2016                 else
2017                         val |= TRANS_INTERLACED;
2018         else
2019                 val |= TRANS_PROGRESSIVE;
2020
2021         I915_WRITE(reg, val | TRANS_ENABLE);
2022         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2023                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2024 }
2025
2026 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2027                                       enum transcoder cpu_transcoder)
2028 {
2029         u32 val, pipeconf_val;
2030
2031         /* PCH only available on ILK+ */
2032         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2033
2034         /* FDI must be feeding us bits for PCH ports */
2035         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2036         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2037
2038         /* Workaround: set timing override bit. */
2039         val = I915_READ(_TRANSA_CHICKEN2);
2040         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2041         I915_WRITE(_TRANSA_CHICKEN2, val);
2042
2043         val = TRANS_ENABLE;
2044         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2045
2046         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2047             PIPECONF_INTERLACED_ILK)
2048                 val |= TRANS_INTERLACED;
2049         else
2050                 val |= TRANS_PROGRESSIVE;
2051
2052         I915_WRITE(LPT_TRANSCONF, val);
2053         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2054                 DRM_ERROR("Failed to enable PCH transcoder\n");
2055 }
2056
2057 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2058                                             enum pipe pipe)
2059 {
2060         struct drm_device *dev = dev_priv->dev;
2061         uint32_t reg, val;
2062
2063         /* FDI relies on the transcoder */
2064         assert_fdi_tx_disabled(dev_priv, pipe);
2065         assert_fdi_rx_disabled(dev_priv, pipe);
2066
2067         /* Ports must be off as well */
2068         assert_pch_ports_disabled(dev_priv, pipe);
2069
2070         reg = PCH_TRANSCONF(pipe);
2071         val = I915_READ(reg);
2072         val &= ~TRANS_ENABLE;
2073         I915_WRITE(reg, val);
2074         /* wait for PCH transcoder off, transcoder state */
2075         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2076                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2077
2078         if (!HAS_PCH_IBX(dev)) {
2079                 /* Workaround: Clear the timing override chicken bit again. */
2080                 reg = TRANS_CHICKEN2(pipe);
2081                 val = I915_READ(reg);
2082                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2083                 I915_WRITE(reg, val);
2084         }
2085 }
2086
2087 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2088 {
2089         u32 val;
2090
2091         val = I915_READ(LPT_TRANSCONF);
2092         val &= ~TRANS_ENABLE;
2093         I915_WRITE(LPT_TRANSCONF, val);
2094         /* wait for PCH transcoder off, transcoder state */
2095         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2096                 DRM_ERROR("Failed to disable PCH transcoder\n");
2097
2098         /* Workaround: clear timing override bit. */
2099         val = I915_READ(_TRANSA_CHICKEN2);
2100         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2101         I915_WRITE(_TRANSA_CHICKEN2, val);
2102 }
2103
2104 /**
2105  * intel_enable_pipe - enable a pipe, asserting requirements
2106  * @crtc: crtc responsible for the pipe
2107  *
2108  * Enable @crtc's pipe, making sure that various hardware specific requirements
2109  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2110  */
2111 static void intel_enable_pipe(struct intel_crtc *crtc)
2112 {
2113         struct drm_device *dev = crtc->base.dev;
2114         struct drm_i915_private *dev_priv = dev->dev_private;
2115         enum pipe pipe = crtc->pipe;
2116         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2117                                                                       pipe);
2118         enum pipe pch_transcoder;
2119         int reg;
2120         u32 val;
2121
2122         assert_planes_disabled(dev_priv, pipe);
2123         assert_cursor_disabled(dev_priv, pipe);
2124         assert_sprites_disabled(dev_priv, pipe);
2125
2126         if (HAS_PCH_LPT(dev_priv->dev))
2127                 pch_transcoder = TRANSCODER_A;
2128         else
2129                 pch_transcoder = pipe;
2130
2131         /*
2132          * A pipe without a PLL won't actually be able to drive bits from
2133          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2134          * need the check.
2135          */
2136         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2137                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2138                         assert_dsi_pll_enabled(dev_priv);
2139                 else
2140                         assert_pll_enabled(dev_priv, pipe);
2141         else {
2142                 if (crtc->config->has_pch_encoder) {
2143                         /* if driving the PCH, we need FDI enabled */
2144                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2145                         assert_fdi_tx_pll_enabled(dev_priv,
2146                                                   (enum pipe) cpu_transcoder);
2147                 }
2148                 /* FIXME: assert CPU port conditions for SNB+ */
2149         }
2150
2151         reg = PIPECONF(cpu_transcoder);
2152         val = I915_READ(reg);
2153         if (val & PIPECONF_ENABLE) {
2154                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2155                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2156                 return;
2157         }
2158
2159         I915_WRITE(reg, val | PIPECONF_ENABLE);
2160         POSTING_READ(reg);
2161 }
2162
2163 /**
2164  * intel_disable_pipe - disable a pipe, asserting requirements
2165  * @crtc: crtc whose pipes is to be disabled
2166  *
2167  * Disable the pipe of @crtc, making sure that various hardware
2168  * specific requirements are met, if applicable, e.g. plane
2169  * disabled, panel fitter off, etc.
2170  *
2171  * Will wait until the pipe has shut down before returning.
2172  */
2173 static void intel_disable_pipe(struct intel_crtc *crtc)
2174 {
2175         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2176         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2177         enum pipe pipe = crtc->pipe;
2178         int reg;
2179         u32 val;
2180
2181         /*
2182          * Make sure planes won't keep trying to pump pixels to us,
2183          * or we might hang the display.
2184          */
2185         assert_planes_disabled(dev_priv, pipe);
2186         assert_cursor_disabled(dev_priv, pipe);
2187         assert_sprites_disabled(dev_priv, pipe);
2188
2189         reg = PIPECONF(cpu_transcoder);
2190         val = I915_READ(reg);
2191         if ((val & PIPECONF_ENABLE) == 0)
2192                 return;
2193
2194         /*
2195          * Double wide has implications for planes
2196          * so best keep it disabled when not needed.
2197          */
2198         if (crtc->config->double_wide)
2199                 val &= ~PIPECONF_DOUBLE_WIDE;
2200
2201         /* Don't disable pipe or pipe PLLs if needed */
2202         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2203             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2204                 val &= ~PIPECONF_ENABLE;
2205
2206         I915_WRITE(reg, val);
2207         if ((val & PIPECONF_ENABLE) == 0)
2208                 intel_wait_for_pipe_off(crtc);
2209 }
2210
2211 /*
2212  * Plane regs are double buffered, going from enabled->disabled needs a
2213  * trigger in order to latch.  The display address reg provides this.
2214  */
2215 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2216                                enum plane plane)
2217 {
2218         struct drm_device *dev = dev_priv->dev;
2219         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2220
2221         I915_WRITE(reg, I915_READ(reg));
2222         POSTING_READ(reg);
2223 }
2224
2225 /**
2226  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2227  * @plane:  plane to be enabled
2228  * @crtc: crtc for the plane
2229  *
2230  * Enable @plane on @crtc, making sure that the pipe is running first.
2231  */
2232 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2233                                           struct drm_crtc *crtc)
2234 {
2235         struct drm_device *dev = plane->dev;
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2238
2239         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2240         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2241         to_intel_plane_state(plane->state)->visible = true;
2242
2243         dev_priv->display.update_primary_plane(crtc, plane->fb,
2244                                                crtc->x, crtc->y);
2245 }
2246
2247 static bool need_vtd_wa(struct drm_device *dev)
2248 {
2249 #ifdef CONFIG_INTEL_IOMMU
2250         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2251                 return true;
2252 #endif
2253         return false;
2254 }
2255
2256 unsigned int
2257 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2258                   uint64_t fb_format_modifier)
2259 {
2260         unsigned int tile_height;
2261         uint32_t pixel_bytes;
2262
2263         switch (fb_format_modifier) {
2264         case DRM_FORMAT_MOD_NONE:
2265                 tile_height = 1;
2266                 break;
2267         case I915_FORMAT_MOD_X_TILED:
2268                 tile_height = IS_GEN2(dev) ? 16 : 8;
2269                 break;
2270         case I915_FORMAT_MOD_Y_TILED:
2271                 tile_height = 32;
2272                 break;
2273         case I915_FORMAT_MOD_Yf_TILED:
2274                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2275                 switch (pixel_bytes) {
2276                 default:
2277                 case 1:
2278                         tile_height = 64;
2279                         break;
2280                 case 2:
2281                 case 4:
2282                         tile_height = 32;
2283                         break;
2284                 case 8:
2285                         tile_height = 16;
2286                         break;
2287                 case 16:
2288                         WARN_ONCE(1,
2289                                   "128-bit pixels are not supported for display!");
2290                         tile_height = 16;
2291                         break;
2292                 }
2293                 break;
2294         default:
2295                 MISSING_CASE(fb_format_modifier);
2296                 tile_height = 1;
2297                 break;
2298         }
2299
2300         return tile_height;
2301 }
2302
2303 unsigned int
2304 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2305                       uint32_t pixel_format, uint64_t fb_format_modifier)
2306 {
2307         return ALIGN(height, intel_tile_height(dev, pixel_format,
2308                                                fb_format_modifier));
2309 }
2310
2311 static int
2312 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2313                         const struct drm_plane_state *plane_state)
2314 {
2315         struct intel_rotation_info *info = &view->rotation_info;
2316
2317         *view = i915_ggtt_view_normal;
2318
2319         if (!plane_state)
2320                 return 0;
2321
2322         if (!intel_rotation_90_or_270(plane_state->rotation))
2323                 return 0;
2324
2325         *view = i915_ggtt_view_rotated;
2326
2327         info->height = fb->height;
2328         info->pixel_format = fb->pixel_format;
2329         info->pitch = fb->pitches[0];
2330         info->fb_modifier = fb->modifier[0];
2331
2332         return 0;
2333 }
2334
2335 int
2336 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2337                            struct drm_framebuffer *fb,
2338                            const struct drm_plane_state *plane_state,
2339                            struct intel_engine_cs *pipelined)
2340 {
2341         struct drm_device *dev = fb->dev;
2342         struct drm_i915_private *dev_priv = dev->dev_private;
2343         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2344         struct i915_ggtt_view view;
2345         u32 alignment;
2346         int ret;
2347
2348         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2349
2350         switch (fb->modifier[0]) {
2351         case DRM_FORMAT_MOD_NONE:
2352                 if (INTEL_INFO(dev)->gen >= 9)
2353                         alignment = 256 * 1024;
2354                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2355                         alignment = 128 * 1024;
2356                 else if (INTEL_INFO(dev)->gen >= 4)
2357                         alignment = 4 * 1024;
2358                 else
2359                         alignment = 64 * 1024;
2360                 break;
2361         case I915_FORMAT_MOD_X_TILED:
2362                 if (INTEL_INFO(dev)->gen >= 9)
2363                         alignment = 256 * 1024;
2364                 else {
2365                         /* pin() will align the object as required by fence */
2366                         alignment = 0;
2367                 }
2368                 break;
2369         case I915_FORMAT_MOD_Y_TILED:
2370         case I915_FORMAT_MOD_Yf_TILED:
2371                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2372                           "Y tiling bo slipped through, driver bug!\n"))
2373                         return -EINVAL;
2374                 alignment = 1 * 1024 * 1024;
2375                 break;
2376         default:
2377                 MISSING_CASE(fb->modifier[0]);
2378                 return -EINVAL;
2379         }
2380
2381         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2382         if (ret)
2383                 return ret;
2384
2385         /* Note that the w/a also requires 64 PTE of padding following the
2386          * bo. We currently fill all unused PTE with the shadow page and so
2387          * we should always have valid PTE following the scanout preventing
2388          * the VT-d warning.
2389          */
2390         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2391                 alignment = 256 * 1024;
2392
2393         /*
2394          * Global gtt pte registers are special registers which actually forward
2395          * writes to a chunk of system memory. Which means that there is no risk
2396          * that the register values disappear as soon as we call
2397          * intel_runtime_pm_put(), so it is correct to wrap only the
2398          * pin/unpin/fence and not more.
2399          */
2400         intel_runtime_pm_get(dev_priv);
2401
2402         dev_priv->mm.interruptible = false;
2403         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2404                                                    &view);
2405         if (ret)
2406                 goto err_interruptible;
2407
2408         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2409          * fence, whereas 965+ only requires a fence if using
2410          * framebuffer compression.  For simplicity, we always install
2411          * a fence as the cost is not that onerous.
2412          */
2413         ret = i915_gem_object_get_fence(obj);
2414         if (ret)
2415                 goto err_unpin;
2416
2417         i915_gem_object_pin_fence(obj);
2418
2419         dev_priv->mm.interruptible = true;
2420         intel_runtime_pm_put(dev_priv);
2421         return 0;
2422
2423 err_unpin:
2424         i915_gem_object_unpin_from_display_plane(obj, &view);
2425 err_interruptible:
2426         dev_priv->mm.interruptible = true;
2427         intel_runtime_pm_put(dev_priv);
2428         return ret;
2429 }
2430
2431 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2432                                const struct drm_plane_state *plane_state)
2433 {
2434         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2435         struct i915_ggtt_view view;
2436         int ret;
2437
2438         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2439
2440         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2441         WARN_ONCE(ret, "Couldn't get view from plane state!");
2442
2443         i915_gem_object_unpin_fence(obj);
2444         i915_gem_object_unpin_from_display_plane(obj, &view);
2445 }
2446
2447 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2448  * is assumed to be a power-of-two. */
2449 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2450                                              unsigned int tiling_mode,
2451                                              unsigned int cpp,
2452                                              unsigned int pitch)
2453 {
2454         if (tiling_mode != I915_TILING_NONE) {
2455                 unsigned int tile_rows, tiles;
2456
2457                 tile_rows = *y / 8;
2458                 *y %= 8;
2459
2460                 tiles = *x / (512/cpp);
2461                 *x %= 512/cpp;
2462
2463                 return tile_rows * pitch * 8 + tiles * 4096;
2464         } else {
2465                 unsigned int offset;
2466
2467                 offset = *y * pitch + *x * cpp;
2468                 *y = 0;
2469                 *x = (offset & 4095) / cpp;
2470                 return offset & -4096;
2471         }
2472 }
2473
2474 static int i9xx_format_to_fourcc(int format)
2475 {
2476         switch (format) {
2477         case DISPPLANE_8BPP:
2478                 return DRM_FORMAT_C8;
2479         case DISPPLANE_BGRX555:
2480                 return DRM_FORMAT_XRGB1555;
2481         case DISPPLANE_BGRX565:
2482                 return DRM_FORMAT_RGB565;
2483         default:
2484         case DISPPLANE_BGRX888:
2485                 return DRM_FORMAT_XRGB8888;
2486         case DISPPLANE_RGBX888:
2487                 return DRM_FORMAT_XBGR8888;
2488         case DISPPLANE_BGRX101010:
2489                 return DRM_FORMAT_XRGB2101010;
2490         case DISPPLANE_RGBX101010:
2491                 return DRM_FORMAT_XBGR2101010;
2492         }
2493 }
2494
2495 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2496 {
2497         switch (format) {
2498         case PLANE_CTL_FORMAT_RGB_565:
2499                 return DRM_FORMAT_RGB565;
2500         default:
2501         case PLANE_CTL_FORMAT_XRGB_8888:
2502                 if (rgb_order) {
2503                         if (alpha)
2504                                 return DRM_FORMAT_ABGR8888;
2505                         else
2506                                 return DRM_FORMAT_XBGR8888;
2507                 } else {
2508                         if (alpha)
2509                                 return DRM_FORMAT_ARGB8888;
2510                         else
2511                                 return DRM_FORMAT_XRGB8888;
2512                 }
2513         case PLANE_CTL_FORMAT_XRGB_2101010:
2514                 if (rgb_order)
2515                         return DRM_FORMAT_XBGR2101010;
2516                 else
2517                         return DRM_FORMAT_XRGB2101010;
2518         }
2519 }
2520
2521 static bool
2522 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2523                               struct intel_initial_plane_config *plane_config)
2524 {
2525         struct drm_device *dev = crtc->base.dev;
2526         struct drm_i915_gem_object *obj = NULL;
2527         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2528         struct drm_framebuffer *fb = &plane_config->fb->base;
2529         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2530         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2531                                     PAGE_SIZE);
2532
2533         size_aligned -= base_aligned;
2534
2535         if (plane_config->size == 0)
2536                 return false;
2537
2538         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2539                                                              base_aligned,
2540                                                              base_aligned,
2541                                                              size_aligned);
2542         if (!obj)
2543                 return false;
2544
2545         obj->tiling_mode = plane_config->tiling;
2546         if (obj->tiling_mode == I915_TILING_X)
2547                 obj->stride = fb->pitches[0];
2548
2549         mode_cmd.pixel_format = fb->pixel_format;
2550         mode_cmd.width = fb->width;
2551         mode_cmd.height = fb->height;
2552         mode_cmd.pitches[0] = fb->pitches[0];
2553         mode_cmd.modifier[0] = fb->modifier[0];
2554         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2555
2556         mutex_lock(&dev->struct_mutex);
2557         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2558                                    &mode_cmd, obj)) {
2559                 DRM_DEBUG_KMS("intel fb init failed\n");
2560                 goto out_unref_obj;
2561         }
2562         mutex_unlock(&dev->struct_mutex);
2563
2564         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2565         return true;
2566
2567 out_unref_obj:
2568         drm_gem_object_unreference(&obj->base);
2569         mutex_unlock(&dev->struct_mutex);
2570         return false;
2571 }
2572
2573 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2574 static void
2575 update_state_fb(struct drm_plane *plane)
2576 {
2577         if (plane->fb == plane->state->fb)
2578                 return;
2579
2580         if (plane->state->fb)
2581                 drm_framebuffer_unreference(plane->state->fb);
2582         plane->state->fb = plane->fb;
2583         if (plane->state->fb)
2584                 drm_framebuffer_reference(plane->state->fb);
2585 }
2586
2587 static void
2588 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2589                              struct intel_initial_plane_config *plane_config)
2590 {
2591         struct drm_device *dev = intel_crtc->base.dev;
2592         struct drm_i915_private *dev_priv = dev->dev_private;
2593         struct drm_crtc *c;
2594         struct intel_crtc *i;
2595         struct drm_i915_gem_object *obj;
2596         struct drm_plane *primary = intel_crtc->base.primary;
2597         struct drm_framebuffer *fb;
2598
2599         if (!plane_config->fb)
2600                 return;
2601
2602         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2603                 fb = &plane_config->fb->base;
2604                 goto valid_fb;
2605         }
2606
2607         kfree(plane_config->fb);
2608
2609         /*
2610          * Failed to alloc the obj, check to see if we should share
2611          * an fb with another CRTC instead
2612          */
2613         for_each_crtc(dev, c) {
2614                 i = to_intel_crtc(c);
2615
2616                 if (c == &intel_crtc->base)
2617                         continue;
2618
2619                 if (!i->active)
2620                         continue;
2621
2622                 fb = c->primary->fb;
2623                 if (!fb)
2624                         continue;
2625
2626                 obj = intel_fb_obj(fb);
2627                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2628                         drm_framebuffer_reference(fb);
2629                         goto valid_fb;
2630                 }
2631         }
2632
2633         return;
2634
2635 valid_fb:
2636         obj = intel_fb_obj(fb);
2637         if (obj->tiling_mode != I915_TILING_NONE)
2638                 dev_priv->preserve_bios_swizzle = true;
2639
2640         primary->fb = fb;
2641         primary->state->crtc = &intel_crtc->base;
2642         primary->crtc = &intel_crtc->base;
2643         update_state_fb(primary);
2644         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2645 }
2646
2647 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2648                                       struct drm_framebuffer *fb,
2649                                       int x, int y)
2650 {
2651         struct drm_device *dev = crtc->dev;
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2654         struct drm_plane *primary = crtc->primary;
2655         bool visible = to_intel_plane_state(primary->state)->visible;
2656         struct drm_i915_gem_object *obj;
2657         int plane = intel_crtc->plane;
2658         unsigned long linear_offset;
2659         u32 dspcntr;
2660         u32 reg = DSPCNTR(plane);
2661         int pixel_size;
2662
2663         if (!visible || !fb) {
2664                 I915_WRITE(reg, 0);
2665                 if (INTEL_INFO(dev)->gen >= 4)
2666                         I915_WRITE(DSPSURF(plane), 0);
2667                 else
2668                         I915_WRITE(DSPADDR(plane), 0);
2669                 POSTING_READ(reg);
2670                 return;
2671         }
2672
2673         obj = intel_fb_obj(fb);
2674         if (WARN_ON(obj == NULL))
2675                 return;
2676
2677         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2678
2679         dspcntr = DISPPLANE_GAMMA_ENABLE;
2680
2681         dspcntr |= DISPLAY_PLANE_ENABLE;
2682
2683         if (INTEL_INFO(dev)->gen < 4) {
2684                 if (intel_crtc->pipe == PIPE_B)
2685                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2686
2687                 /* pipesrc and dspsize control the size that is scaled from,
2688                  * which should always be the user's requested size.
2689                  */
2690                 I915_WRITE(DSPSIZE(plane),
2691                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2692                            (intel_crtc->config->pipe_src_w - 1));
2693                 I915_WRITE(DSPPOS(plane), 0);
2694         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2695                 I915_WRITE(PRIMSIZE(plane),
2696                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2697                            (intel_crtc->config->pipe_src_w - 1));
2698                 I915_WRITE(PRIMPOS(plane), 0);
2699                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2700         }
2701
2702         switch (fb->pixel_format) {
2703         case DRM_FORMAT_C8:
2704                 dspcntr |= DISPPLANE_8BPP;
2705                 break;
2706         case DRM_FORMAT_XRGB1555:
2707         case DRM_FORMAT_ARGB1555:
2708                 dspcntr |= DISPPLANE_BGRX555;
2709                 break;
2710         case DRM_FORMAT_RGB565:
2711                 dspcntr |= DISPPLANE_BGRX565;
2712                 break;
2713         case DRM_FORMAT_XRGB8888:
2714         case DRM_FORMAT_ARGB8888:
2715                 dspcntr |= DISPPLANE_BGRX888;
2716                 break;
2717         case DRM_FORMAT_XBGR8888:
2718         case DRM_FORMAT_ABGR8888:
2719                 dspcntr |= DISPPLANE_RGBX888;
2720                 break;
2721         case DRM_FORMAT_XRGB2101010:
2722         case DRM_FORMAT_ARGB2101010:
2723                 dspcntr |= DISPPLANE_BGRX101010;
2724                 break;
2725         case DRM_FORMAT_XBGR2101010:
2726         case DRM_FORMAT_ABGR2101010:
2727                 dspcntr |= DISPPLANE_RGBX101010;
2728                 break;
2729         default:
2730                 BUG();
2731         }
2732
2733         if (INTEL_INFO(dev)->gen >= 4 &&
2734             obj->tiling_mode != I915_TILING_NONE)
2735                 dspcntr |= DISPPLANE_TILED;
2736
2737         if (IS_G4X(dev))
2738                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2739
2740         linear_offset = y * fb->pitches[0] + x * pixel_size;
2741
2742         if (INTEL_INFO(dev)->gen >= 4) {
2743                 intel_crtc->dspaddr_offset =
2744                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2745                                                        pixel_size,
2746                                                        fb->pitches[0]);
2747                 linear_offset -= intel_crtc->dspaddr_offset;
2748         } else {
2749                 intel_crtc->dspaddr_offset = linear_offset;
2750         }
2751
2752         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2753                 dspcntr |= DISPPLANE_ROTATE_180;
2754
2755                 x += (intel_crtc->config->pipe_src_w - 1);
2756                 y += (intel_crtc->config->pipe_src_h - 1);
2757
2758                 /* Finding the last pixel of the last line of the display
2759                 data and adding to linear_offset*/
2760                 linear_offset +=
2761                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2762                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2763         }
2764
2765         I915_WRITE(reg, dspcntr);
2766
2767         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2768         if (INTEL_INFO(dev)->gen >= 4) {
2769                 I915_WRITE(DSPSURF(plane),
2770                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2771                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2772                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2773         } else
2774                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2775         POSTING_READ(reg);
2776 }
2777
2778 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2779                                           struct drm_framebuffer *fb,
2780                                           int x, int y)
2781 {
2782         struct drm_device *dev = crtc->dev;
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2785         struct drm_plane *primary = crtc->primary;
2786         bool visible = to_intel_plane_state(primary->state)->visible;
2787         struct drm_i915_gem_object *obj;
2788         int plane = intel_crtc->plane;
2789         unsigned long linear_offset;
2790         u32 dspcntr;
2791         u32 reg = DSPCNTR(plane);
2792         int pixel_size;
2793
2794         if (!visible || !fb) {
2795                 I915_WRITE(reg, 0);
2796                 I915_WRITE(DSPSURF(plane), 0);
2797                 POSTING_READ(reg);
2798                 return;
2799         }
2800
2801         obj = intel_fb_obj(fb);
2802         if (WARN_ON(obj == NULL))
2803                 return;
2804
2805         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2806
2807         dspcntr = DISPPLANE_GAMMA_ENABLE;
2808
2809         dspcntr |= DISPLAY_PLANE_ENABLE;
2810
2811         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2812                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2813
2814         switch (fb->pixel_format) {
2815         case DRM_FORMAT_C8:
2816                 dspcntr |= DISPPLANE_8BPP;
2817                 break;
2818         case DRM_FORMAT_RGB565:
2819                 dspcntr |= DISPPLANE_BGRX565;
2820                 break;
2821         case DRM_FORMAT_XRGB8888:
2822         case DRM_FORMAT_ARGB8888:
2823                 dspcntr |= DISPPLANE_BGRX888;
2824                 break;
2825         case DRM_FORMAT_XBGR8888:
2826         case DRM_FORMAT_ABGR8888:
2827                 dspcntr |= DISPPLANE_RGBX888;
2828                 break;
2829         case DRM_FORMAT_XRGB2101010:
2830         case DRM_FORMAT_ARGB2101010:
2831                 dspcntr |= DISPPLANE_BGRX101010;
2832                 break;
2833         case DRM_FORMAT_XBGR2101010:
2834         case DRM_FORMAT_ABGR2101010:
2835                 dspcntr |= DISPPLANE_RGBX101010;
2836                 break;
2837         default:
2838                 BUG();
2839         }
2840
2841         if (obj->tiling_mode != I915_TILING_NONE)
2842                 dspcntr |= DISPPLANE_TILED;
2843
2844         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2845                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2846
2847         linear_offset = y * fb->pitches[0] + x * pixel_size;
2848         intel_crtc->dspaddr_offset =
2849                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2850                                                pixel_size,
2851                                                fb->pitches[0]);
2852         linear_offset -= intel_crtc->dspaddr_offset;
2853         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2854                 dspcntr |= DISPPLANE_ROTATE_180;
2855
2856                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2857                         x += (intel_crtc->config->pipe_src_w - 1);
2858                         y += (intel_crtc->config->pipe_src_h - 1);
2859
2860                         /* Finding the last pixel of the last line of the display
2861                         data and adding to linear_offset*/
2862                         linear_offset +=
2863                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2864                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2865                 }
2866         }
2867
2868         I915_WRITE(reg, dspcntr);
2869
2870         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2871         I915_WRITE(DSPSURF(plane),
2872                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2873         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2874                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2875         } else {
2876                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2877                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2878         }
2879         POSTING_READ(reg);
2880 }
2881
2882 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2883                               uint32_t pixel_format)
2884 {
2885         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2886
2887         /*
2888          * The stride is either expressed as a multiple of 64 bytes
2889          * chunks for linear buffers or in number of tiles for tiled
2890          * buffers.
2891          */
2892         switch (fb_modifier) {
2893         case DRM_FORMAT_MOD_NONE:
2894                 return 64;
2895         case I915_FORMAT_MOD_X_TILED:
2896                 if (INTEL_INFO(dev)->gen == 2)
2897                         return 128;
2898                 return 512;
2899         case I915_FORMAT_MOD_Y_TILED:
2900                 /* No need to check for old gens and Y tiling since this is
2901                  * about the display engine and those will be blocked before
2902                  * we get here.
2903                  */
2904                 return 128;
2905         case I915_FORMAT_MOD_Yf_TILED:
2906                 if (bits_per_pixel == 8)
2907                         return 64;
2908                 else
2909                         return 128;
2910         default:
2911                 MISSING_CASE(fb_modifier);
2912                 return 64;
2913         }
2914 }
2915
2916 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2917                                      struct drm_i915_gem_object *obj)
2918 {
2919         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2920
2921         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2922                 view = &i915_ggtt_view_rotated;
2923
2924         return i915_gem_obj_ggtt_offset_view(obj, view);
2925 }
2926
2927 /*
2928  * This function detaches (aka. unbinds) unused scalers in hardware
2929  */
2930 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2931 {
2932         struct drm_device *dev;
2933         struct drm_i915_private *dev_priv;
2934         struct intel_crtc_scaler_state *scaler_state;
2935         int i;
2936
2937         if (!intel_crtc || !intel_crtc->config)
2938                 return;
2939
2940         dev = intel_crtc->base.dev;
2941         dev_priv = dev->dev_private;
2942         scaler_state = &intel_crtc->config->scaler_state;
2943
2944         /* loop through and disable scalers that aren't in use */
2945         for (i = 0; i < intel_crtc->num_scalers; i++) {
2946                 if (!scaler_state->scalers[i].in_use) {
2947                         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2948                         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2949                         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2950                         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2951                                 intel_crtc->base.base.id, intel_crtc->pipe, i);
2952                 }
2953         }
2954 }
2955
2956 u32 skl_plane_ctl_format(uint32_t pixel_format)
2957 {
2958         u32 plane_ctl_format = 0;
2959         switch (pixel_format) {
2960         case DRM_FORMAT_RGB565:
2961                 plane_ctl_format = PLANE_CTL_FORMAT_RGB_565;
2962                 break;
2963         case DRM_FORMAT_XBGR8888:
2964                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2965                 break;
2966         case DRM_FORMAT_XRGB8888:
2967                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888;
2968                 break;
2969         /*
2970          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2971          * to be already pre-multiplied. We need to add a knob (or a different
2972          * DRM_FORMAT) for user-space to configure that.
2973          */
2974         case DRM_FORMAT_ABGR8888:
2975                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2976                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2977                 break;
2978         case DRM_FORMAT_ARGB8888:
2979                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_8888 |
2980                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2981                 break;
2982         case DRM_FORMAT_XRGB2101010:
2983                 plane_ctl_format = PLANE_CTL_FORMAT_XRGB_2101010;
2984                 break;
2985         case DRM_FORMAT_XBGR2101010:
2986                 plane_ctl_format = PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2987                 break;
2988         case DRM_FORMAT_YUYV:
2989                 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2990                 break;
2991         case DRM_FORMAT_YVYU:
2992                 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2993                 break;
2994         case DRM_FORMAT_UYVY:
2995                 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2996                 break;
2997         case DRM_FORMAT_VYUY:
2998                 plane_ctl_format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2999                 break;
3000         default:
3001                 BUG();
3002         }
3003         return plane_ctl_format;
3004 }
3005
3006 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3007 {
3008         u32 plane_ctl_tiling = 0;
3009         switch (fb_modifier) {
3010         case DRM_FORMAT_MOD_NONE:
3011                 break;
3012         case I915_FORMAT_MOD_X_TILED:
3013                 plane_ctl_tiling = PLANE_CTL_TILED_X;
3014                 break;
3015         case I915_FORMAT_MOD_Y_TILED:
3016                 plane_ctl_tiling = PLANE_CTL_TILED_Y;
3017                 break;
3018         case I915_FORMAT_MOD_Yf_TILED:
3019                 plane_ctl_tiling = PLANE_CTL_TILED_YF;
3020                 break;
3021         default:
3022                 MISSING_CASE(fb_modifier);
3023         }
3024         return plane_ctl_tiling;
3025 }
3026
3027 u32 skl_plane_ctl_rotation(unsigned int rotation)
3028 {
3029         u32 plane_ctl_rotation = 0;
3030         switch (rotation) {
3031         case BIT(DRM_ROTATE_0):
3032                 break;
3033         case BIT(DRM_ROTATE_90):
3034                 plane_ctl_rotation = PLANE_CTL_ROTATE_90;
3035                 break;
3036         case BIT(DRM_ROTATE_180):
3037                 plane_ctl_rotation = PLANE_CTL_ROTATE_180;
3038                 break;
3039         case BIT(DRM_ROTATE_270):
3040                 plane_ctl_rotation = PLANE_CTL_ROTATE_270;
3041                 break;
3042         default:
3043                 MISSING_CASE(rotation);
3044         }
3045
3046         return plane_ctl_rotation;
3047 }
3048
3049 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3050                                          struct drm_framebuffer *fb,
3051                                          int x, int y)
3052 {
3053         struct drm_device *dev = crtc->dev;
3054         struct drm_i915_private *dev_priv = dev->dev_private;
3055         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3056         struct drm_plane *plane = crtc->primary;
3057         bool visible = to_intel_plane_state(plane->state)->visible;
3058         struct drm_i915_gem_object *obj;
3059         int pipe = intel_crtc->pipe;
3060         u32 plane_ctl, stride_div, stride;
3061         u32 tile_height, plane_offset, plane_size;
3062         unsigned int rotation;
3063         int x_offset, y_offset;
3064         unsigned long surf_addr;
3065         struct intel_crtc_state *crtc_state = intel_crtc->config;
3066         struct intel_plane_state *plane_state;
3067         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3068         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3069         int scaler_id = -1;
3070
3071         plane_state = to_intel_plane_state(plane->state);
3072
3073         if (!visible || !fb) {
3074                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3075                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3076                 POSTING_READ(PLANE_CTL(pipe, 0));
3077                 return;
3078         }
3079
3080         plane_ctl = PLANE_CTL_ENABLE |
3081                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3082                     PLANE_CTL_PIPE_CSC_ENABLE;
3083
3084         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3085         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3086         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3087
3088         rotation = plane->state->rotation;
3089         plane_ctl |= skl_plane_ctl_rotation(rotation);
3090
3091         obj = intel_fb_obj(fb);
3092         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3093                                                fb->pixel_format);
3094         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3095
3096         /*
3097          * FIXME: intel_plane_state->src, dst aren't set when transitional
3098          * update_plane helpers are called from legacy paths.
3099          * Once full atomic crtc is available, below check can be avoided.
3100          */
3101         if (drm_rect_width(&plane_state->src)) {
3102                 scaler_id = plane_state->scaler_id;
3103                 src_x = plane_state->src.x1 >> 16;
3104                 src_y = plane_state->src.y1 >> 16;
3105                 src_w = drm_rect_width(&plane_state->src) >> 16;
3106                 src_h = drm_rect_height(&plane_state->src) >> 16;
3107                 dst_x = plane_state->dst.x1;
3108                 dst_y = plane_state->dst.y1;
3109                 dst_w = drm_rect_width(&plane_state->dst);
3110                 dst_h = drm_rect_height(&plane_state->dst);
3111
3112                 WARN_ON(x != src_x || y != src_y);
3113         } else {
3114                 src_w = intel_crtc->config->pipe_src_w;
3115                 src_h = intel_crtc->config->pipe_src_h;
3116         }
3117
3118         if (intel_rotation_90_or_270(rotation)) {
3119                 /* stride = Surface height in tiles */
3120                 tile_height = intel_tile_height(dev, fb->bits_per_pixel,
3121                                                 fb->modifier[0]);
3122                 stride = DIV_ROUND_UP(fb->height, tile_height);
3123                 x_offset = stride * tile_height - y - src_h;
3124                 y_offset = x;
3125                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3126         } else {
3127                 stride = fb->pitches[0] / stride_div;
3128                 x_offset = x;
3129                 y_offset = y;
3130                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3131         }
3132         plane_offset = y_offset << 16 | x_offset;
3133
3134         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3135         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3136         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3137         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3138
3139         if (scaler_id >= 0) {
3140                 uint32_t ps_ctrl = 0;
3141
3142                 WARN_ON(!dst_w || !dst_h);
3143                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3144                         crtc_state->scaler_state.scalers[scaler_id].mode;
3145                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3146                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3147                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3148                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3149                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3150         } else {
3151                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3152         }
3153
3154         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3155
3156         POSTING_READ(PLANE_SURF(pipe, 0));
3157 }
3158
3159 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3160 static int
3161 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3162                            int x, int y, enum mode_set_atomic state)
3163 {
3164         struct drm_device *dev = crtc->dev;
3165         struct drm_i915_private *dev_priv = dev->dev_private;
3166
3167         if (dev_priv->display.disable_fbc)
3168                 dev_priv->display.disable_fbc(dev);
3169
3170         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3171
3172         return 0;
3173 }
3174
3175 static void intel_complete_page_flips(struct drm_device *dev)
3176 {
3177         struct drm_crtc *crtc;
3178
3179         for_each_crtc(dev, crtc) {
3180                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181                 enum plane plane = intel_crtc->plane;
3182
3183                 intel_prepare_page_flip(dev, plane);
3184                 intel_finish_page_flip_plane(dev, plane);
3185         }
3186 }
3187
3188 static void intel_update_primary_planes(struct drm_device *dev)
3189 {
3190         struct drm_i915_private *dev_priv = dev->dev_private;
3191         struct drm_crtc *crtc;
3192
3193         for_each_crtc(dev, crtc) {
3194                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3195
3196                 drm_modeset_lock(&crtc->mutex, NULL);
3197                 /*
3198                  * FIXME: Once we have proper support for primary planes (and
3199                  * disabling them without disabling the entire crtc) allow again
3200                  * a NULL crtc->primary->fb.
3201                  */
3202                 if (intel_crtc->active && crtc->primary->fb)
3203                         dev_priv->display.update_primary_plane(crtc,
3204                                                                crtc->primary->fb,
3205                                                                crtc->x,
3206                                                                crtc->y);
3207                 drm_modeset_unlock(&crtc->mutex);
3208         }
3209 }
3210
3211 void intel_crtc_reset(struct intel_crtc *crtc)
3212 {
3213         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3214
3215         if (!crtc->active)
3216                 return;
3217
3218         intel_crtc_disable_planes(&crtc->base);
3219         dev_priv->display.crtc_disable(&crtc->base);
3220         dev_priv->display.crtc_enable(&crtc->base);
3221         intel_crtc_enable_planes(&crtc->base);
3222 }
3223
3224 void intel_prepare_reset(struct drm_device *dev)
3225 {
3226         struct drm_i915_private *dev_priv = to_i915(dev);
3227         struct intel_crtc *crtc;
3228
3229         /* no reset support for gen2 */
3230         if (IS_GEN2(dev))
3231                 return;
3232
3233         /* reset doesn't touch the display */
3234         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3235                 return;
3236
3237         drm_modeset_lock_all(dev);
3238
3239         /*
3240          * Disabling the crtcs gracefully seems nicer. Also the
3241          * g33 docs say we should at least disable all the planes.
3242          */
3243         for_each_intel_crtc(dev, crtc) {
3244                 if (!crtc->active)
3245                         continue;
3246
3247                 intel_crtc_disable_planes(&crtc->base);
3248                 dev_priv->display.crtc_disable(&crtc->base);
3249         }
3250 }
3251
3252 void intel_finish_reset(struct drm_device *dev)
3253 {
3254         struct drm_i915_private *dev_priv = to_i915(dev);
3255
3256         /*
3257          * Flips in the rings will be nuked by the reset,
3258          * so complete all pending flips so that user space
3259          * will get its events and not get stuck.
3260          */
3261         intel_complete_page_flips(dev);
3262
3263         /* no reset support for gen2 */
3264         if (IS_GEN2(dev))
3265                 return;
3266
3267         /* reset doesn't touch the display */
3268         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3269                 /*
3270                  * Flips in the rings have been nuked by the reset,
3271                  * so update the base address of all primary
3272                  * planes to the the last fb to make sure we're
3273                  * showing the correct fb after a reset.
3274                  */
3275                 intel_update_primary_planes(dev);
3276                 return;
3277         }
3278
3279         /*
3280          * The display has been reset as well,
3281          * so need a full re-initialization.
3282          */
3283         intel_runtime_pm_disable_interrupts(dev_priv);
3284         intel_runtime_pm_enable_interrupts(dev_priv);
3285
3286         intel_modeset_init_hw(dev);
3287
3288         spin_lock_irq(&dev_priv->irq_lock);
3289         if (dev_priv->display.hpd_irq_setup)
3290                 dev_priv->display.hpd_irq_setup(dev);
3291         spin_unlock_irq(&dev_priv->irq_lock);
3292
3293         intel_modeset_setup_hw_state(dev, true);
3294
3295         intel_hpd_init(dev_priv);
3296
3297         drm_modeset_unlock_all(dev);
3298 }
3299
3300 static int
3301 intel_finish_fb(struct drm_framebuffer *old_fb)
3302 {
3303         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3304         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3305         bool was_interruptible = dev_priv->mm.interruptible;
3306         int ret;
3307
3308         /* Big Hammer, we also need to ensure that any pending
3309          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3310          * current scanout is retired before unpinning the old
3311          * framebuffer.
3312          *
3313          * This should only fail upon a hung GPU, in which case we
3314          * can safely continue.
3315          */
3316         dev_priv->mm.interruptible = false;
3317         ret = i915_gem_object_finish_gpu(obj);
3318         dev_priv->mm.interruptible = was_interruptible;
3319
3320         return ret;
3321 }
3322
3323 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3324 {
3325         struct drm_device *dev = crtc->dev;
3326         struct drm_i915_private *dev_priv = dev->dev_private;
3327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3328         bool pending;
3329
3330         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3331             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3332                 return false;
3333
3334         spin_lock_irq(&dev->event_lock);
3335         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3336         spin_unlock_irq(&dev->event_lock);
3337
3338         return pending;
3339 }
3340
3341 static void intel_update_pipe_size(struct intel_crtc *crtc)
3342 {
3343         struct drm_device *dev = crtc->base.dev;
3344         struct drm_i915_private *dev_priv = dev->dev_private;
3345         const struct drm_display_mode *adjusted_mode;
3346
3347         if (!i915.fastboot)
3348                 return;
3349
3350         /*
3351          * Update pipe size and adjust fitter if needed: the reason for this is
3352          * that in compute_mode_changes we check the native mode (not the pfit
3353          * mode) to see if we can flip rather than do a full mode set. In the
3354          * fastboot case, we'll flip, but if we don't update the pipesrc and
3355          * pfit state, we'll end up with a big fb scanned out into the wrong
3356          * sized surface.
3357          *
3358          * To fix this properly, we need to hoist the checks up into
3359          * compute_mode_changes (or above), check the actual pfit state and
3360          * whether the platform allows pfit disable with pipe active, and only
3361          * then update the pipesrc and pfit state, even on the flip path.
3362          */
3363
3364         adjusted_mode = &crtc->config->base.adjusted_mode;
3365
3366         I915_WRITE(PIPESRC(crtc->pipe),
3367                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3368                    (adjusted_mode->crtc_vdisplay - 1));
3369         if (!crtc->config->pch_pfit.enabled &&
3370             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3371              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3372                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3373                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3374                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3375         }
3376         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3377         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3378 }
3379
3380 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3381 {
3382         struct drm_device *dev = crtc->dev;
3383         struct drm_i915_private *dev_priv = dev->dev_private;
3384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3385         int pipe = intel_crtc->pipe;
3386         u32 reg, temp;
3387
3388         /* enable normal train */
3389         reg = FDI_TX_CTL(pipe);
3390         temp = I915_READ(reg);
3391         if (IS_IVYBRIDGE(dev)) {
3392                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3393                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3394         } else {
3395                 temp &= ~FDI_LINK_TRAIN_NONE;
3396                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3397         }
3398         I915_WRITE(reg, temp);
3399
3400         reg = FDI_RX_CTL(pipe);
3401         temp = I915_READ(reg);
3402         if (HAS_PCH_CPT(dev)) {
3403                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3404                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3405         } else {
3406                 temp &= ~FDI_LINK_TRAIN_NONE;
3407                 temp |= FDI_LINK_TRAIN_NONE;
3408         }
3409         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3410
3411         /* wait one idle pattern time */
3412         POSTING_READ(reg);
3413         udelay(1000);
3414
3415         /* IVB wants error correction enabled */
3416         if (IS_IVYBRIDGE(dev))
3417                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3418                            FDI_FE_ERRC_ENABLE);
3419 }
3420
3421 /* The FDI link training functions for ILK/Ibexpeak. */
3422 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3423 {
3424         struct drm_device *dev = crtc->dev;
3425         struct drm_i915_private *dev_priv = dev->dev_private;
3426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3427         int pipe = intel_crtc->pipe;
3428         u32 reg, temp, tries;
3429
3430         /* FDI needs bits from pipe first */
3431         assert_pipe_enabled(dev_priv, pipe);
3432
3433         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3434            for train result */
3435         reg = FDI_RX_IMR(pipe);
3436         temp = I915_READ(reg);
3437         temp &= ~FDI_RX_SYMBOL_LOCK;
3438         temp &= ~FDI_RX_BIT_LOCK;
3439         I915_WRITE(reg, temp);
3440         I915_READ(reg);
3441         udelay(150);
3442
3443         /* enable CPU FDI TX and PCH FDI RX */
3444         reg = FDI_TX_CTL(pipe);
3445         temp = I915_READ(reg);
3446         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3447         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3448         temp &= ~FDI_LINK_TRAIN_NONE;
3449         temp |= FDI_LINK_TRAIN_PATTERN_1;
3450         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3451
3452         reg = FDI_RX_CTL(pipe);
3453         temp = I915_READ(reg);
3454         temp &= ~FDI_LINK_TRAIN_NONE;
3455         temp |= FDI_LINK_TRAIN_PATTERN_1;
3456         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3457
3458         POSTING_READ(reg);
3459         udelay(150);
3460
3461         /* Ironlake workaround, enable clock pointer after FDI enable*/
3462         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3463         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3464                    FDI_RX_PHASE_SYNC_POINTER_EN);
3465
3466         reg = FDI_RX_IIR(pipe);
3467         for (tries = 0; tries < 5; tries++) {
3468                 temp = I915_READ(reg);
3469                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3470
3471                 if ((temp & FDI_RX_BIT_LOCK)) {
3472                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3473                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3474                         break;
3475                 }
3476         }
3477         if (tries == 5)
3478                 DRM_ERROR("FDI train 1 fail!\n");
3479
3480         /* Train 2 */
3481         reg = FDI_TX_CTL(pipe);
3482         temp = I915_READ(reg);
3483         temp &= ~FDI_LINK_TRAIN_NONE;
3484         temp |= FDI_LINK_TRAIN_PATTERN_2;
3485         I915_WRITE(reg, temp);
3486
3487         reg = FDI_RX_CTL(pipe);
3488         temp = I915_READ(reg);
3489         temp &= ~FDI_LINK_TRAIN_NONE;
3490         temp |= FDI_LINK_TRAIN_PATTERN_2;
3491         I915_WRITE(reg, temp);
3492
3493         POSTING_READ(reg);
3494         udelay(150);
3495
3496         reg = FDI_RX_IIR(pipe);
3497         for (tries = 0; tries < 5; tries++) {
3498                 temp = I915_READ(reg);
3499                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3500
3501                 if (temp & FDI_RX_SYMBOL_LOCK) {
3502                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3503                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3504                         break;
3505                 }
3506         }
3507         if (tries == 5)
3508                 DRM_ERROR("FDI train 2 fail!\n");
3509
3510         DRM_DEBUG_KMS("FDI train done\n");
3511
3512 }
3513
3514 static const int snb_b_fdi_train_param[] = {
3515         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3516         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3517         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3518         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3519 };
3520
3521 /* The FDI link training functions for SNB/Cougarpoint. */
3522 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3523 {
3524         struct drm_device *dev = crtc->dev;
3525         struct drm_i915_private *dev_priv = dev->dev_private;
3526         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3527         int pipe = intel_crtc->pipe;
3528         u32 reg, temp, i, retry;
3529
3530         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3531            for train result */
3532         reg = FDI_RX_IMR(pipe);
3533         temp = I915_READ(reg);
3534         temp &= ~FDI_RX_SYMBOL_LOCK;
3535         temp &= ~FDI_RX_BIT_LOCK;
3536         I915_WRITE(reg, temp);
3537
3538         POSTING_READ(reg);
3539         udelay(150);
3540
3541         /* enable CPU FDI TX and PCH FDI RX */
3542         reg = FDI_TX_CTL(pipe);
3543         temp = I915_READ(reg);
3544         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3545         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3546         temp &= ~FDI_LINK_TRAIN_NONE;
3547         temp |= FDI_LINK_TRAIN_PATTERN_1;
3548         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3549         /* SNB-B */
3550         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3551         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3552
3553         I915_WRITE(FDI_RX_MISC(pipe),
3554                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3555
3556         reg = FDI_RX_CTL(pipe);
3557         temp = I915_READ(reg);
3558         if (HAS_PCH_CPT(dev)) {
3559                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3560                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3561         } else {
3562                 temp &= ~FDI_LINK_TRAIN_NONE;
3563                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3564         }
3565         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3566
3567         POSTING_READ(reg);
3568         udelay(150);
3569
3570         for (i = 0; i < 4; i++) {
3571                 reg = FDI_TX_CTL(pipe);
3572                 temp = I915_READ(reg);
3573                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3574                 temp |= snb_b_fdi_train_param[i];
3575                 I915_WRITE(reg, temp);
3576
3577                 POSTING_READ(reg);
3578                 udelay(500);
3579
3580                 for (retry = 0; retry < 5; retry++) {
3581                         reg = FDI_RX_IIR(pipe);
3582                         temp = I915_READ(reg);
3583                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3584                         if (temp & FDI_RX_BIT_LOCK) {
3585                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3586                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3587                                 break;
3588                         }
3589                         udelay(50);
3590                 }
3591                 if (retry < 5)
3592                         break;
3593         }
3594         if (i == 4)
3595                 DRM_ERROR("FDI train 1 fail!\n");
3596
3597         /* Train 2 */
3598         reg = FDI_TX_CTL(pipe);
3599         temp = I915_READ(reg);
3600         temp &= ~FDI_LINK_TRAIN_NONE;
3601         temp |= FDI_LINK_TRAIN_PATTERN_2;
3602         if (IS_GEN6(dev)) {
3603                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3604                 /* SNB-B */
3605                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3606         }
3607         I915_WRITE(reg, temp);
3608
3609         reg = FDI_RX_CTL(pipe);
3610         temp = I915_READ(reg);
3611         if (HAS_PCH_CPT(dev)) {
3612                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3613                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3614         } else {
3615                 temp &= ~FDI_LINK_TRAIN_NONE;
3616                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3617         }
3618         I915_WRITE(reg, temp);
3619
3620         POSTING_READ(reg);
3621         udelay(150);
3622
3623         for (i = 0; i < 4; i++) {
3624                 reg = FDI_TX_CTL(pipe);
3625                 temp = I915_READ(reg);
3626                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3627                 temp |= snb_b_fdi_train_param[i];
3628                 I915_WRITE(reg, temp);
3629
3630                 POSTING_READ(reg);
3631                 udelay(500);
3632
3633                 for (retry = 0; retry < 5; retry++) {
3634                         reg = FDI_RX_IIR(pipe);
3635                         temp = I915_READ(reg);
3636                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3637                         if (temp & FDI_RX_SYMBOL_LOCK) {
3638                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3639                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3640                                 break;
3641                         }
3642                         udelay(50);
3643                 }
3644                 if (retry < 5)
3645                         break;
3646         }
3647         if (i == 4)
3648                 DRM_ERROR("FDI train 2 fail!\n");
3649
3650         DRM_DEBUG_KMS("FDI train done.\n");
3651 }
3652
3653 /* Manual link training for Ivy Bridge A0 parts */
3654 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3655 {
3656         struct drm_device *dev = crtc->dev;
3657         struct drm_i915_private *dev_priv = dev->dev_private;
3658         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3659         int pipe = intel_crtc->pipe;
3660         u32 reg, temp, i, j;
3661
3662         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3663            for train result */
3664         reg = FDI_RX_IMR(pipe);
3665         temp = I915_READ(reg);
3666         temp &= ~FDI_RX_SYMBOL_LOCK;
3667         temp &= ~FDI_RX_BIT_LOCK;
3668         I915_WRITE(reg, temp);
3669
3670         POSTING_READ(reg);
3671         udelay(150);
3672
3673         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3674                       I915_READ(FDI_RX_IIR(pipe)));
3675
3676         /* Try each vswing and preemphasis setting twice before moving on */
3677         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3678                 /* disable first in case we need to retry */
3679                 reg = FDI_TX_CTL(pipe);
3680                 temp = I915_READ(reg);
3681                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3682                 temp &= ~FDI_TX_ENABLE;
3683                 I915_WRITE(reg, temp);
3684
3685                 reg = FDI_RX_CTL(pipe);
3686                 temp = I915_READ(reg);
3687                 temp &= ~FDI_LINK_TRAIN_AUTO;
3688                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3689                 temp &= ~FDI_RX_ENABLE;
3690                 I915_WRITE(reg, temp);
3691
3692                 /* enable CPU FDI TX and PCH FDI RX */
3693                 reg = FDI_TX_CTL(pipe);
3694                 temp = I915_READ(reg);
3695                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3696                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3697                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3698                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3699                 temp |= snb_b_fdi_train_param[j/2];
3700                 temp |= FDI_COMPOSITE_SYNC;
3701                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3702
3703                 I915_WRITE(FDI_RX_MISC(pipe),
3704                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3705
3706                 reg = FDI_RX_CTL(pipe);
3707                 temp = I915_READ(reg);
3708                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3709                 temp |= FDI_COMPOSITE_SYNC;
3710                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3711
3712                 POSTING_READ(reg);
3713                 udelay(1); /* should be 0.5us */
3714
3715                 for (i = 0; i < 4; i++) {
3716                         reg = FDI_RX_IIR(pipe);
3717                         temp = I915_READ(reg);
3718                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3719
3720                         if (temp & FDI_RX_BIT_LOCK ||
3721                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3722                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3723                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3724                                               i);
3725                                 break;
3726                         }
3727                         udelay(1); /* should be 0.5us */
3728                 }
3729                 if (i == 4) {
3730                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3731                         continue;
3732                 }
3733
3734                 /* Train 2 */
3735                 reg = FDI_TX_CTL(pipe);
3736                 temp = I915_READ(reg);
3737                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3738                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3739                 I915_WRITE(reg, temp);
3740
3741                 reg = FDI_RX_CTL(pipe);
3742                 temp = I915_READ(reg);
3743                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3744                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3745                 I915_WRITE(reg, temp);
3746
3747                 POSTING_READ(reg);
3748                 udelay(2); /* should be 1.5us */
3749
3750                 for (i = 0; i < 4; i++) {
3751                         reg = FDI_RX_IIR(pipe);
3752                         temp = I915_READ(reg);
3753                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3754
3755                         if (temp & FDI_RX_SYMBOL_LOCK ||
3756                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3757                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3758                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3759                                               i);
3760                                 goto train_done;
3761                         }
3762                         udelay(2); /* should be 1.5us */
3763                 }
3764                 if (i == 4)
3765                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3766         }
3767
3768 train_done:
3769         DRM_DEBUG_KMS("FDI train done.\n");
3770 }
3771
3772 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3773 {
3774         struct drm_device *dev = intel_crtc->base.dev;
3775         struct drm_i915_private *dev_priv = dev->dev_private;
3776         int pipe = intel_crtc->pipe;
3777         u32 reg, temp;
3778
3779
3780         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3781         reg = FDI_RX_CTL(pipe);
3782         temp = I915_READ(reg);
3783         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3784         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3785         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3786         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3787
3788         POSTING_READ(reg);
3789         udelay(200);
3790
3791         /* Switch from Rawclk to PCDclk */
3792         temp = I915_READ(reg);
3793         I915_WRITE(reg, temp | FDI_PCDCLK);
3794
3795         POSTING_READ(reg);
3796         udelay(200);
3797
3798         /* Enable CPU FDI TX PLL, always on for Ironlake */
3799         reg = FDI_TX_CTL(pipe);
3800         temp = I915_READ(reg);
3801         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3802                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3803
3804                 POSTING_READ(reg);
3805                 udelay(100);
3806         }
3807 }
3808
3809 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3810 {
3811         struct drm_device *dev = intel_crtc->base.dev;
3812         struct drm_i915_private *dev_priv = dev->dev_private;
3813         int pipe = intel_crtc->pipe;
3814         u32 reg, temp;
3815
3816         /* Switch from PCDclk to Rawclk */
3817         reg = FDI_RX_CTL(pipe);
3818         temp = I915_READ(reg);
3819         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3820
3821         /* Disable CPU FDI TX PLL */
3822         reg = FDI_TX_CTL(pipe);
3823         temp = I915_READ(reg);
3824         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3825
3826         POSTING_READ(reg);
3827         udelay(100);
3828
3829         reg = FDI_RX_CTL(pipe);
3830         temp = I915_READ(reg);
3831         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3832
3833         /* Wait for the clocks to turn off. */
3834         POSTING_READ(reg);
3835         udelay(100);
3836 }
3837
3838 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3839 {
3840         struct drm_device *dev = crtc->dev;
3841         struct drm_i915_private *dev_priv = dev->dev_private;
3842         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3843         int pipe = intel_crtc->pipe;
3844         u32 reg, temp;
3845
3846         /* disable CPU FDI tx and PCH FDI rx */
3847         reg = FDI_TX_CTL(pipe);
3848         temp = I915_READ(reg);
3849         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3850         POSTING_READ(reg);
3851
3852         reg = FDI_RX_CTL(pipe);
3853         temp = I915_READ(reg);
3854         temp &= ~(0x7 << 16);
3855         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3856         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3857
3858         POSTING_READ(reg);
3859         udelay(100);
3860
3861         /* Ironlake workaround, disable clock pointer after downing FDI */
3862         if (HAS_PCH_IBX(dev))
3863                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3864
3865         /* still set train pattern 1 */
3866         reg = FDI_TX_CTL(pipe);
3867         temp = I915_READ(reg);
3868         temp &= ~FDI_LINK_TRAIN_NONE;
3869         temp |= FDI_LINK_TRAIN_PATTERN_1;
3870         I915_WRITE(reg, temp);
3871
3872         reg = FDI_RX_CTL(pipe);
3873         temp = I915_READ(reg);
3874         if (HAS_PCH_CPT(dev)) {
3875                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3876                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3877         } else {
3878                 temp &= ~FDI_LINK_TRAIN_NONE;
3879                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3880         }
3881         /* BPC in FDI rx is consistent with that in PIPECONF */
3882         temp &= ~(0x07 << 16);
3883         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3884         I915_WRITE(reg, temp);
3885
3886         POSTING_READ(reg);
3887         udelay(100);
3888 }
3889
3890 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3891 {
3892         struct intel_crtc *crtc;
3893
3894         /* Note that we don't need to be called with mode_config.lock here
3895          * as our list of CRTC objects is static for the lifetime of the
3896          * device and so cannot disappear as we iterate. Similarly, we can
3897          * happily treat the predicates as racy, atomic checks as userspace
3898          * cannot claim and pin a new fb without at least acquring the
3899          * struct_mutex and so serialising with us.
3900          */
3901         for_each_intel_crtc(dev, crtc) {
3902                 if (atomic_read(&crtc->unpin_work_count) == 0)
3903                         continue;
3904
3905                 if (crtc->unpin_work)
3906                         intel_wait_for_vblank(dev, crtc->pipe);
3907
3908                 return true;
3909         }
3910
3911         return false;
3912 }
3913
3914 static void page_flip_completed(struct intel_crtc *intel_crtc)
3915 {
3916         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3917         struct intel_unpin_work *work = intel_crtc->unpin_work;
3918
3919         /* ensure that the unpin work is consistent wrt ->pending. */
3920         smp_rmb();
3921         intel_crtc->unpin_work = NULL;
3922
3923         if (work->event)
3924                 drm_send_vblank_event(intel_crtc->base.dev,
3925                                       intel_crtc->pipe,
3926                                       work->event);
3927
3928         drm_crtc_vblank_put(&intel_crtc->base);
3929
3930         wake_up_all(&dev_priv->pending_flip_queue);
3931         queue_work(dev_priv->wq, &work->work);
3932
3933         trace_i915_flip_complete(intel_crtc->plane,
3934                                  work->pending_flip_obj);
3935 }
3936
3937 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3938 {
3939         struct drm_device *dev = crtc->dev;
3940         struct drm_i915_private *dev_priv = dev->dev_private;
3941
3942         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3943         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3944                                        !intel_crtc_has_pending_flip(crtc),
3945                                        60*HZ) == 0)) {
3946                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3947
3948                 spin_lock_irq(&dev->event_lock);
3949                 if (intel_crtc->unpin_work) {
3950                         WARN_ONCE(1, "Removing stuck page flip\n");
3951                         page_flip_completed(intel_crtc);
3952                 }
3953                 spin_unlock_irq(&dev->event_lock);
3954         }
3955
3956         if (crtc->primary->fb) {
3957                 mutex_lock(&dev->struct_mutex);
3958                 intel_finish_fb(crtc->primary->fb);
3959                 mutex_unlock(&dev->struct_mutex);
3960         }
3961 }
3962
3963 /* Program iCLKIP clock to the desired frequency */
3964 static void lpt_program_iclkip(struct drm_crtc *crtc)
3965 {
3966         struct drm_device *dev = crtc->dev;
3967         struct drm_i915_private *dev_priv = dev->dev_private;
3968         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3969         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3970         u32 temp;
3971
3972         mutex_lock(&dev_priv->dpio_lock);
3973
3974         /* It is necessary to ungate the pixclk gate prior to programming
3975          * the divisors, and gate it back when it is done.
3976          */
3977         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3978
3979         /* Disable SSCCTL */
3980         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3981                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3982                                 SBI_SSCCTL_DISABLE,
3983                         SBI_ICLK);
3984
3985         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3986         if (clock == 20000) {
3987                 auxdiv = 1;
3988                 divsel = 0x41;
3989                 phaseinc = 0x20;
3990         } else {
3991                 /* The iCLK virtual clock root frequency is in MHz,
3992                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3993                  * divisors, it is necessary to divide one by another, so we
3994                  * convert the virtual clock precision to KHz here for higher
3995                  * precision.
3996                  */
3997                 u32 iclk_virtual_root_freq = 172800 * 1000;
3998                 u32 iclk_pi_range = 64;
3999                 u32 desired_divisor, msb_divisor_value, pi_value;
4000
4001                 desired_divisor = (iclk_virtual_root_freq / clock);
4002                 msb_divisor_value = desired_divisor / iclk_pi_range;
4003                 pi_value = desired_divisor % iclk_pi_range;
4004
4005                 auxdiv = 0;
4006                 divsel = msb_divisor_value - 2;
4007                 phaseinc = pi_value;
4008         }
4009
4010         /* This should not happen with any sane values */
4011         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4012                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4013         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4014                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4015
4016         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4017                         clock,
4018                         auxdiv,
4019                         divsel,
4020                         phasedir,
4021                         phaseinc);
4022
4023         /* Program SSCDIVINTPHASE6 */
4024         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4025         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4026         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4027         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4028         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4029         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4030         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4031         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4032
4033         /* Program SSCAUXDIV */
4034         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4035         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4036         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4037         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4038
4039         /* Enable modulator and associated divider */
4040         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4041         temp &= ~SBI_SSCCTL_DISABLE;
4042         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4043
4044         /* Wait for initialization time */
4045         udelay(24);
4046
4047         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4048
4049         mutex_unlock(&dev_priv->dpio_lock);
4050 }
4051
4052 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4053                                                 enum pipe pch_transcoder)
4054 {
4055         struct drm_device *dev = crtc->base.dev;
4056         struct drm_i915_private *dev_priv = dev->dev_private;
4057         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4058
4059         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4060                    I915_READ(HTOTAL(cpu_transcoder)));
4061         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4062                    I915_READ(HBLANK(cpu_transcoder)));
4063         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4064                    I915_READ(HSYNC(cpu_transcoder)));
4065
4066         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4067                    I915_READ(VTOTAL(cpu_transcoder)));
4068         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4069                    I915_READ(VBLANK(cpu_transcoder)));
4070         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4071                    I915_READ(VSYNC(cpu_transcoder)));
4072         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4073                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4074 }
4075
4076 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4077 {
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         uint32_t temp;
4080
4081         temp = I915_READ(SOUTH_CHICKEN1);
4082         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4083                 return;
4084
4085         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4086         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4087
4088         temp &= ~FDI_BC_BIFURCATION_SELECT;
4089         if (enable)
4090                 temp |= FDI_BC_BIFURCATION_SELECT;
4091
4092         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4093         I915_WRITE(SOUTH_CHICKEN1, temp);
4094         POSTING_READ(SOUTH_CHICKEN1);
4095 }
4096
4097 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4098 {
4099         struct drm_device *dev = intel_crtc->base.dev;
4100
4101         switch (intel_crtc->pipe) {
4102         case PIPE_A:
4103                 break;
4104         case PIPE_B:
4105                 if (intel_crtc->config->fdi_lanes > 2)
4106                         cpt_set_fdi_bc_bifurcation(dev, false);
4107                 else
4108                         cpt_set_fdi_bc_bifurcation(dev, true);
4109
4110                 break;
4111         case PIPE_C:
4112                 cpt_set_fdi_bc_bifurcation(dev, true);
4113
4114                 break;
4115         default:
4116                 BUG();
4117         }
4118 }
4119
4120 /*
4121  * Enable PCH resources required for PCH ports:
4122  *   - PCH PLLs
4123  *   - FDI training & RX/TX
4124  *   - update transcoder timings
4125  *   - DP transcoding bits
4126  *   - transcoder
4127  */
4128 static void ironlake_pch_enable(struct drm_crtc *crtc)
4129 {
4130         struct drm_device *dev = crtc->dev;
4131         struct drm_i915_private *dev_priv = dev->dev_private;
4132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4133         int pipe = intel_crtc->pipe;
4134         u32 reg, temp;
4135
4136         assert_pch_transcoder_disabled(dev_priv, pipe);
4137
4138         if (IS_IVYBRIDGE(dev))
4139                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4140
4141         /* Write the TU size bits before fdi link training, so that error
4142          * detection works. */
4143         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4144                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4145
4146         /* For PCH output, training FDI link */
4147         dev_priv->display.fdi_link_train(crtc);
4148
4149         /* We need to program the right clock selection before writing the pixel
4150          * mutliplier into the DPLL. */
4151         if (HAS_PCH_CPT(dev)) {
4152                 u32 sel;
4153
4154                 temp = I915_READ(PCH_DPLL_SEL);
4155                 temp |= TRANS_DPLL_ENABLE(pipe);
4156                 sel = TRANS_DPLLB_SEL(pipe);
4157                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4158                         temp |= sel;
4159                 else
4160                         temp &= ~sel;
4161                 I915_WRITE(PCH_DPLL_SEL, temp);
4162         }
4163
4164         /* XXX: pch pll's can be enabled any time before we enable the PCH
4165          * transcoder, and we actually should do this to not upset any PCH
4166          * transcoder that already use the clock when we share it.
4167          *
4168          * Note that enable_shared_dpll tries to do the right thing, but
4169          * get_shared_dpll unconditionally resets the pll - we need that to have
4170          * the right LVDS enable sequence. */
4171         intel_enable_shared_dpll(intel_crtc);
4172
4173         /* set transcoder timing, panel must allow it */
4174         assert_panel_unlocked(dev_priv, pipe);
4175         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4176
4177         intel_fdi_normal_train(crtc);
4178
4179         /* For PCH DP, enable TRANS_DP_CTL */
4180         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4181                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4182                 reg = TRANS_DP_CTL(pipe);
4183                 temp = I915_READ(reg);
4184                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4185                           TRANS_DP_SYNC_MASK |
4186                           TRANS_DP_BPC_MASK);
4187                 temp |= (TRANS_DP_OUTPUT_ENABLE |
4188                          TRANS_DP_ENH_FRAMING);
4189                 temp |= bpc << 9; /* same format but at 11:9 */
4190
4191                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4192                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4193                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4194                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4195
4196                 switch (intel_trans_dp_port_sel(crtc)) {
4197                 case PCH_DP_B:
4198                         temp |= TRANS_DP_PORT_SEL_B;
4199                         break;
4200                 case PCH_DP_C:
4201                         temp |= TRANS_DP_PORT_SEL_C;
4202                         break;
4203                 case PCH_DP_D:
4204                         temp |= TRANS_DP_PORT_SEL_D;
4205                         break;
4206                 default:
4207                         BUG();
4208                 }
4209
4210                 I915_WRITE(reg, temp);
4211         }
4212
4213         ironlake_enable_pch_transcoder(dev_priv, pipe);
4214 }
4215
4216 static void lpt_pch_enable(struct drm_crtc *crtc)
4217 {
4218         struct drm_device *dev = crtc->dev;
4219         struct drm_i915_private *dev_priv = dev->dev_private;
4220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4221         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4222
4223         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4224
4225         lpt_program_iclkip(crtc);
4226
4227         /* Set transcoder timing. */
4228         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4229
4230         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4231 }
4232
4233 void intel_put_shared_dpll(struct intel_crtc *crtc)
4234 {
4235         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4236
4237         if (pll == NULL)
4238                 return;
4239
4240         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4241                 WARN(1, "bad %s crtc mask\n", pll->name);
4242                 return;
4243         }
4244
4245         pll->config.crtc_mask &= ~(1 << crtc->pipe);
4246         if (pll->config.crtc_mask == 0) {
4247                 WARN_ON(pll->on);
4248                 WARN_ON(pll->active);
4249         }
4250
4251         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4252 }
4253
4254 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4255                                                 struct intel_crtc_state *crtc_state)
4256 {
4257         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4258         struct intel_shared_dpll *pll;
4259         enum intel_dpll_id i;
4260
4261         if (HAS_PCH_IBX(dev_priv->dev)) {
4262                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4263                 i = (enum intel_dpll_id) crtc->pipe;
4264                 pll = &dev_priv->shared_dplls[i];
4265
4266                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4267                               crtc->base.base.id, pll->name);
4268
4269                 WARN_ON(pll->new_config->crtc_mask);
4270
4271                 goto found;
4272         }
4273
4274         if (IS_BROXTON(dev_priv->dev)) {
4275                 /* PLL is attached to port in bxt */
4276                 struct intel_encoder *encoder;
4277                 struct intel_digital_port *intel_dig_port;
4278
4279                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4280                 if (WARN_ON(!encoder))
4281                         return NULL;
4282
4283                 intel_dig_port = enc_to_dig_port(&encoder->base);
4284                 /* 1:1 mapping between ports and PLLs */
4285                 i = (enum intel_dpll_id)intel_dig_port->port;
4286                 pll = &dev_priv->shared_dplls[i];
4287                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4288                         crtc->base.base.id, pll->name);
4289                 WARN_ON(pll->new_config->crtc_mask);
4290
4291                 goto found;
4292         }
4293
4294         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4295                 pll = &dev_priv->shared_dplls[i];
4296
4297                 /* Only want to check enabled timings first */
4298                 if (pll->new_config->crtc_mask == 0)
4299                         continue;
4300
4301                 if (memcmp(&crtc_state->dpll_hw_state,
4302                            &pll->new_config->hw_state,
4303                            sizeof(pll->new_config->hw_state)) == 0) {
4304                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4305                                       crtc->base.base.id, pll->name,
4306                                       pll->new_config->crtc_mask,
4307                                       pll->active);
4308                         goto found;
4309                 }
4310         }
4311
4312         /* Ok no matching timings, maybe there's a free one? */
4313         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4314                 pll = &dev_priv->shared_dplls[i];
4315                 if (pll->new_config->crtc_mask == 0) {
4316                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4317                                       crtc->base.base.id, pll->name);
4318                         goto found;
4319                 }
4320         }
4321
4322         return NULL;
4323
4324 found:
4325         if (pll->new_config->crtc_mask == 0)
4326                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4327
4328         crtc_state->shared_dpll = i;
4329         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4330                          pipe_name(crtc->pipe));
4331
4332         pll->new_config->crtc_mask |= 1 << crtc->pipe;
4333
4334         return pll;
4335 }
4336
4337 /**
4338  * intel_shared_dpll_start_config - start a new PLL staged config
4339  * @dev_priv: DRM device
4340  * @clear_pipes: mask of pipes that will have their PLLs freed
4341  *
4342  * Starts a new PLL staged config, copying the current config but
4343  * releasing the references of pipes specified in clear_pipes.
4344  */
4345 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4346                                           unsigned clear_pipes)
4347 {
4348         struct intel_shared_dpll *pll;
4349         enum intel_dpll_id i;
4350
4351         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4352                 pll = &dev_priv->shared_dplls[i];
4353
4354                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4355                                           GFP_KERNEL);
4356                 if (!pll->new_config)
4357                         goto cleanup;
4358
4359                 pll->new_config->crtc_mask &= ~clear_pipes;
4360         }
4361
4362         return 0;
4363
4364 cleanup:
4365         while (--i >= 0) {
4366                 pll = &dev_priv->shared_dplls[i];
4367                 kfree(pll->new_config);
4368                 pll->new_config = NULL;
4369         }
4370
4371         return -ENOMEM;
4372 }
4373
4374 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4375 {
4376         struct intel_shared_dpll *pll;
4377         enum intel_dpll_id i;
4378
4379         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4380                 pll = &dev_priv->shared_dplls[i];
4381
4382                 WARN_ON(pll->new_config == &pll->config);
4383
4384                 pll->config = *pll->new_config;
4385                 kfree(pll->new_config);
4386                 pll->new_config = NULL;
4387         }
4388 }
4389
4390 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4391 {
4392         struct intel_shared_dpll *pll;
4393         enum intel_dpll_id i;
4394
4395         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4396                 pll = &dev_priv->shared_dplls[i];
4397
4398                 WARN_ON(pll->new_config == &pll->config);
4399
4400                 kfree(pll->new_config);
4401                 pll->new_config = NULL;
4402         }
4403 }
4404
4405 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4406 {
4407         struct drm_i915_private *dev_priv = dev->dev_private;
4408         int dslreg = PIPEDSL(pipe);
4409         u32 temp;
4410
4411         temp = I915_READ(dslreg);
4412         udelay(500);
4413         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4414                 if (wait_for(I915_READ(dslreg) != temp, 5))
4415                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4416         }
4417 }
4418
4419 /**
4420  * skl_update_scaler_users - Stages update to crtc's scaler state
4421  * @intel_crtc: crtc
4422  * @crtc_state: crtc_state
4423  * @plane: plane (NULL indicates crtc is requesting update)
4424  * @plane_state: plane's state
4425  * @force_detach: request unconditional detachment of scaler
4426  *
4427  * This function updates scaler state for requested plane or crtc.
4428  * To request scaler usage update for a plane, caller shall pass plane pointer.
4429  * To request scaler usage update for crtc, caller shall pass plane pointer
4430  * as NULL.
4431  *
4432  * Return
4433  *     0 - scaler_usage updated successfully
4434  *    error - requested scaling cannot be supported or other error condition
4435  */
4436 int
4437 skl_update_scaler_users(
4438         struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4439         struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4440         int force_detach)
4441 {
4442         int need_scaling;
4443         int idx;
4444         int src_w, src_h, dst_w, dst_h;
4445         int *scaler_id;
4446         struct drm_framebuffer *fb;
4447         struct intel_crtc_scaler_state *scaler_state;
4448         unsigned int rotation;
4449
4450         if (!intel_crtc || !crtc_state)
4451                 return 0;
4452
4453         scaler_state = &crtc_state->scaler_state;
4454
4455         idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4456         fb = intel_plane ? plane_state->base.fb : NULL;
4457
4458         if (intel_plane) {
4459                 src_w = drm_rect_width(&plane_state->src) >> 16;
4460                 src_h = drm_rect_height(&plane_state->src) >> 16;
4461                 dst_w = drm_rect_width(&plane_state->dst);
4462                 dst_h = drm_rect_height(&plane_state->dst);
4463                 scaler_id = &plane_state->scaler_id;
4464                 rotation = plane_state->base.rotation;
4465         } else {
4466                 struct drm_display_mode *adjusted_mode =
4467                         &crtc_state->base.adjusted_mode;
4468                 src_w = crtc_state->pipe_src_w;
4469                 src_h = crtc_state->pipe_src_h;
4470                 dst_w = adjusted_mode->hdisplay;
4471                 dst_h = adjusted_mode->vdisplay;
4472                 scaler_id = &scaler_state->scaler_id;
4473                 rotation = DRM_ROTATE_0;
4474         }
4475
4476         need_scaling = intel_rotation_90_or_270(rotation) ?
4477                 (src_h != dst_w || src_w != dst_h):
4478                 (src_w != dst_w || src_h != dst_h);
4479
4480         /*
4481          * if plane is being disabled or scaler is no more required or force detach
4482          *  - free scaler binded to this plane/crtc
4483          *  - in order to do this, update crtc->scaler_usage
4484          *
4485          * Here scaler state in crtc_state is set free so that
4486          * scaler can be assigned to other user. Actual register
4487          * update to free the scaler is done in plane/panel-fit programming.
4488          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4489          */
4490         if (force_detach || !need_scaling || (intel_plane &&
4491                 (!fb || !plane_state->visible))) {
4492                 if (*scaler_id >= 0) {
4493                         scaler_state->scaler_users &= ~(1 << idx);
4494                         scaler_state->scalers[*scaler_id].in_use = 0;
4495
4496                         DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4497                                 "crtc_state = %p scaler_users = 0x%x\n",
4498                                 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4499                                 intel_plane ? intel_plane->base.base.id :
4500                                 intel_crtc->base.base.id, crtc_state,
4501                                 scaler_state->scaler_users);
4502                         *scaler_id = -1;
4503                 }
4504                 return 0;
4505         }
4506
4507         /* range checks */
4508         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4509                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4510
4511                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4512                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4513                 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4514                         "size is out of scaler range\n",
4515                         intel_plane ? "PLANE" : "CRTC",
4516                         intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4517                         intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4518                 return -EINVAL;
4519         }
4520
4521         /* check colorkey */
4522         if (intel_plane && intel_plane->ckey.flags != I915_SET_COLORKEY_NONE) {
4523                 DRM_DEBUG_KMS("PLANE:%d scaling with color key not allowed",
4524                         intel_plane->base.base.id);
4525                 return -EINVAL;
4526         }
4527
4528         /* Check src format */
4529         if (intel_plane) {
4530                 switch (fb->pixel_format) {
4531                 case DRM_FORMAT_RGB565:
4532                 case DRM_FORMAT_XBGR8888:
4533                 case DRM_FORMAT_XRGB8888:
4534                 case DRM_FORMAT_ABGR8888:
4535                 case DRM_FORMAT_ARGB8888:
4536                 case DRM_FORMAT_XRGB2101010:
4537                 case DRM_FORMAT_ARGB2101010:
4538                 case DRM_FORMAT_XBGR2101010:
4539                 case DRM_FORMAT_ABGR2101010:
4540                 case DRM_FORMAT_YUYV:
4541                 case DRM_FORMAT_YVYU:
4542                 case DRM_FORMAT_UYVY:
4543                 case DRM_FORMAT_VYUY:
4544                         break;
4545                 default:
4546                         DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4547                                 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4548                         return -EINVAL;
4549                 }
4550         }
4551
4552         /* mark this plane as a scaler user in crtc_state */
4553         scaler_state->scaler_users |= (1 << idx);
4554         DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4555                 "crtc_state = %p scaler_users = 0x%x\n",
4556                 intel_plane ? "PLANE" : "CRTC",
4557                 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4558                 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4559         return 0;
4560 }
4561
4562 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4563 {
4564         struct drm_device *dev = crtc->base.dev;
4565         struct drm_i915_private *dev_priv = dev->dev_private;
4566         int pipe = crtc->pipe;
4567         struct intel_crtc_scaler_state *scaler_state =
4568                 &crtc->config->scaler_state;
4569
4570         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4571
4572         /* To update pfit, first update scaler state */
4573         skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4574         intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4575         skl_detach_scalers(crtc);
4576         if (!enable)
4577                 return;
4578
4579         if (crtc->config->pch_pfit.enabled) {
4580                 int id;
4581
4582                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4583                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4584                         return;
4585                 }
4586
4587                 id = scaler_state->scaler_id;
4588                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4589                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4590                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4591                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4592
4593                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4594         }
4595 }
4596
4597 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4598 {
4599         struct drm_device *dev = crtc->base.dev;
4600         struct drm_i915_private *dev_priv = dev->dev_private;
4601         int pipe = crtc->pipe;
4602
4603         if (crtc->config->pch_pfit.enabled) {
4604                 /* Force use of hard-coded filter coefficients
4605                  * as some pre-programmed values are broken,
4606                  * e.g. x201.
4607                  */
4608                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4609                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4610                                                  PF_PIPE_SEL_IVB(pipe));
4611                 else
4612                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4613                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4614                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4615         }
4616 }
4617
4618 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4619 {
4620         struct drm_device *dev = crtc->dev;
4621         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4622         struct drm_plane *plane;
4623         struct intel_plane *intel_plane;
4624
4625         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4626                 intel_plane = to_intel_plane(plane);
4627                 if (intel_plane->pipe == pipe)
4628                         intel_plane_restore(&intel_plane->base);
4629         }
4630 }
4631
4632 void hsw_enable_ips(struct intel_crtc *crtc)
4633 {
4634         struct drm_device *dev = crtc->base.dev;
4635         struct drm_i915_private *dev_priv = dev->dev_private;
4636
4637         if (!crtc->config->ips_enabled)
4638                 return;
4639
4640         /* We can only enable IPS after we enable a plane and wait for a vblank */
4641         intel_wait_for_vblank(dev, crtc->pipe);
4642
4643         assert_plane_enabled(dev_priv, crtc->plane);
4644         if (IS_BROADWELL(dev)) {
4645                 mutex_lock(&dev_priv->rps.hw_lock);
4646                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4647                 mutex_unlock(&dev_priv->rps.hw_lock);
4648                 /* Quoting Art Runyan: "its not safe to expect any particular
4649                  * value in IPS_CTL bit 31 after enabling IPS through the
4650                  * mailbox." Moreover, the mailbox may return a bogus state,
4651                  * so we need to just enable it and continue on.
4652                  */
4653         } else {
4654                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4655                 /* The bit only becomes 1 in the next vblank, so this wait here
4656                  * is essentially intel_wait_for_vblank. If we don't have this
4657                  * and don't wait for vblanks until the end of crtc_enable, then
4658                  * the HW state readout code will complain that the expected
4659                  * IPS_CTL value is not the one we read. */
4660                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4661                         DRM_ERROR("Timed out waiting for IPS enable\n");
4662         }
4663 }
4664
4665 void hsw_disable_ips(struct intel_crtc *crtc)
4666 {
4667         struct drm_device *dev = crtc->base.dev;
4668         struct drm_i915_private *dev_priv = dev->dev_private;
4669
4670         if (!crtc->config->ips_enabled)
4671                 return;
4672
4673         assert_plane_enabled(dev_priv, crtc->plane);
4674         if (IS_BROADWELL(dev)) {
4675                 mutex_lock(&dev_priv->rps.hw_lock);
4676                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4677                 mutex_unlock(&dev_priv->rps.hw_lock);
4678                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4679                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4680                         DRM_ERROR("Timed out waiting for IPS disable\n");
4681         } else {
4682                 I915_WRITE(IPS_CTL, 0);
4683                 POSTING_READ(IPS_CTL);
4684         }
4685
4686         /* We need to wait for a vblank before we can disable the plane. */
4687         intel_wait_for_vblank(dev, crtc->pipe);
4688 }
4689
4690 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4691 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4692 {
4693         struct drm_device *dev = crtc->dev;
4694         struct drm_i915_private *dev_priv = dev->dev_private;
4695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4696         enum pipe pipe = intel_crtc->pipe;
4697         int palreg = PALETTE(pipe);
4698         int i;
4699         bool reenable_ips = false;
4700
4701         /* The clocks have to be on to load the palette. */
4702         if (!crtc->state->enable || !intel_crtc->active)
4703                 return;
4704
4705         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4706                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4707                         assert_dsi_pll_enabled(dev_priv);
4708                 else
4709                         assert_pll_enabled(dev_priv, pipe);
4710         }
4711
4712         /* use legacy palette for Ironlake */
4713         if (!HAS_GMCH_DISPLAY(dev))
4714                 palreg = LGC_PALETTE(pipe);
4715
4716         /* Workaround : Do not read or write the pipe palette/gamma data while
4717          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4718          */
4719         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4720             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4721              GAMMA_MODE_MODE_SPLIT)) {
4722                 hsw_disable_ips(intel_crtc);
4723                 reenable_ips = true;
4724         }
4725
4726         for (i = 0; i < 256; i++) {
4727                 I915_WRITE(palreg + 4 * i,
4728                            (intel_crtc->lut_r[i] << 16) |
4729                            (intel_crtc->lut_g[i] << 8) |
4730                            intel_crtc->lut_b[i]);
4731         }
4732
4733         if (reenable_ips)
4734                 hsw_enable_ips(intel_crtc);
4735 }
4736
4737 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4738 {
4739         if (intel_crtc->overlay) {
4740                 struct drm_device *dev = intel_crtc->base.dev;
4741                 struct drm_i915_private *dev_priv = dev->dev_private;
4742
4743                 mutex_lock(&dev->struct_mutex);
4744                 dev_priv->mm.interruptible = false;
4745                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4746                 dev_priv->mm.interruptible = true;
4747                 mutex_unlock(&dev->struct_mutex);
4748         }
4749
4750         /* Let userspace switch the overlay on again. In most cases userspace
4751          * has to recompute where to put it anyway.
4752          */
4753 }
4754
4755 /**
4756  * intel_post_enable_primary - Perform operations after enabling primary plane
4757  * @crtc: the CRTC whose primary plane was just enabled
4758  *
4759  * Performs potentially sleeping operations that must be done after the primary
4760  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4761  * called due to an explicit primary plane update, or due to an implicit
4762  * re-enable that is caused when a sprite plane is updated to no longer
4763  * completely hide the primary plane.
4764  */
4765 static void
4766 intel_post_enable_primary(struct drm_crtc *crtc)
4767 {
4768         struct drm_device *dev = crtc->dev;
4769         struct drm_i915_private *dev_priv = dev->dev_private;
4770         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4771         int pipe = intel_crtc->pipe;
4772
4773         /*
4774          * BDW signals flip done immediately if the plane
4775          * is disabled, even if the plane enable is already
4776          * armed to occur at the next vblank :(
4777          */
4778         if (IS_BROADWELL(dev))
4779                 intel_wait_for_vblank(dev, pipe);
4780
4781         /*
4782          * FIXME IPS should be fine as long as one plane is
4783          * enabled, but in practice it seems to have problems
4784          * when going from primary only to sprite only and vice
4785          * versa.
4786          */
4787         hsw_enable_ips(intel_crtc);
4788
4789         mutex_lock(&dev->struct_mutex);
4790         intel_fbc_update(dev);
4791         mutex_unlock(&dev->struct_mutex);
4792
4793         /*
4794          * Gen2 reports pipe underruns whenever all planes are disabled.
4795          * So don't enable underrun reporting before at least some planes
4796          * are enabled.
4797          * FIXME: Need to fix the logic to work when we turn off all planes
4798          * but leave the pipe running.
4799          */
4800         if (IS_GEN2(dev))
4801                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4802
4803         /* Underruns don't raise interrupts, so check manually. */
4804         if (HAS_GMCH_DISPLAY(dev))
4805                 i9xx_check_fifo_underruns(dev_priv);
4806 }
4807
4808 /**
4809  * intel_pre_disable_primary - Perform operations before disabling primary plane
4810  * @crtc: the CRTC whose primary plane is to be disabled
4811  *
4812  * Performs potentially sleeping operations that must be done before the
4813  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4814  * be called due to an explicit primary plane update, or due to an implicit
4815  * disable that is caused when a sprite plane completely hides the primary
4816  * plane.
4817  */
4818 static void
4819 intel_pre_disable_primary(struct drm_crtc *crtc)
4820 {
4821         struct drm_device *dev = crtc->dev;
4822         struct drm_i915_private *dev_priv = dev->dev_private;
4823         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4824         int pipe = intel_crtc->pipe;
4825
4826         /*
4827          * Gen2 reports pipe underruns whenever all planes are disabled.
4828          * So diasble underrun reporting before all the planes get disabled.
4829          * FIXME: Need to fix the logic to work when we turn off all planes
4830          * but leave the pipe running.
4831          */
4832         if (IS_GEN2(dev))
4833                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4834
4835         /*
4836          * Vblank time updates from the shadow to live plane control register
4837          * are blocked if the memory self-refresh mode is active at that
4838          * moment. So to make sure the plane gets truly disabled, disable
4839          * first the self-refresh mode. The self-refresh enable bit in turn
4840          * will be checked/applied by the HW only at the next frame start
4841          * event which is after the vblank start event, so we need to have a
4842          * wait-for-vblank between disabling the plane and the pipe.
4843          */
4844         if (HAS_GMCH_DISPLAY(dev))
4845                 intel_set_memory_cxsr(dev_priv, false);
4846
4847         mutex_lock(&dev->struct_mutex);
4848         if (dev_priv->fbc.crtc == intel_crtc)
4849                 intel_fbc_disable(dev);
4850         mutex_unlock(&dev->struct_mutex);
4851
4852         /*
4853          * FIXME IPS should be fine as long as one plane is
4854          * enabled, but in practice it seems to have problems
4855          * when going from primary only to sprite only and vice
4856          * versa.
4857          */
4858         hsw_disable_ips(intel_crtc);
4859 }
4860
4861 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4862 {
4863         intel_enable_primary_hw_plane(crtc->primary, crtc);
4864         intel_enable_sprite_planes(crtc);
4865         intel_crtc_update_cursor(crtc, true);
4866
4867         intel_post_enable_primary(crtc);
4868 }
4869
4870 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4871 {
4872         struct drm_device *dev = crtc->dev;
4873         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4874         struct intel_plane *intel_plane;
4875         int pipe = intel_crtc->pipe;
4876
4877         intel_crtc_wait_for_pending_flips(crtc);
4878
4879         intel_pre_disable_primary(crtc);
4880
4881         intel_crtc_dpms_overlay_disable(intel_crtc);
4882         for_each_intel_plane(dev, intel_plane) {
4883                 if (intel_plane->pipe == pipe) {
4884                         struct drm_crtc *from = intel_plane->base.crtc;
4885
4886                         intel_plane->disable_plane(&intel_plane->base,
4887                                                    from ?: crtc, true);
4888                 }
4889         }
4890
4891         /*
4892          * FIXME: Once we grow proper nuclear flip support out of this we need
4893          * to compute the mask of flip planes precisely. For the time being
4894          * consider this a flip to a NULL plane.
4895          */
4896         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4897 }
4898
4899 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4900 {
4901         struct drm_device *dev = crtc->dev;
4902         struct drm_i915_private *dev_priv = dev->dev_private;
4903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4904         struct intel_encoder *encoder;
4905         int pipe = intel_crtc->pipe;
4906
4907         WARN_ON(!crtc->state->enable);
4908
4909         if (intel_crtc->active)
4910                 return;
4911
4912         if (intel_crtc->config->has_pch_encoder)
4913                 intel_prepare_shared_dpll(intel_crtc);
4914
4915         if (intel_crtc->config->has_dp_encoder)
4916                 intel_dp_set_m_n(intel_crtc, M1_N1);
4917
4918         intel_set_pipe_timings(intel_crtc);
4919
4920         if (intel_crtc->config->has_pch_encoder) {
4921                 intel_cpu_transcoder_set_m_n(intel_crtc,
4922                                      &intel_crtc->config->fdi_m_n, NULL);
4923         }
4924
4925         ironlake_set_pipeconf(crtc);
4926
4927         intel_crtc->active = true;
4928
4929         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4930         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4931
4932         for_each_encoder_on_crtc(dev, crtc, encoder)
4933                 if (encoder->pre_enable)
4934                         encoder->pre_enable(encoder);
4935
4936         if (intel_crtc->config->has_pch_encoder) {
4937                 /* Note: FDI PLL enabling _must_ be done before we enable the
4938                  * cpu pipes, hence this is separate from all the other fdi/pch
4939                  * enabling. */
4940                 ironlake_fdi_pll_enable(intel_crtc);
4941         } else {
4942                 assert_fdi_tx_disabled(dev_priv, pipe);
4943                 assert_fdi_rx_disabled(dev_priv, pipe);
4944         }
4945
4946         ironlake_pfit_enable(intel_crtc);
4947
4948         /*
4949          * On ILK+ LUT must be loaded before the pipe is running but with
4950          * clocks enabled
4951          */
4952         intel_crtc_load_lut(crtc);
4953
4954         intel_update_watermarks(crtc);
4955         intel_enable_pipe(intel_crtc);
4956
4957         if (intel_crtc->config->has_pch_encoder)
4958                 ironlake_pch_enable(crtc);
4959
4960         assert_vblank_disabled(crtc);
4961         drm_crtc_vblank_on(crtc);
4962
4963         for_each_encoder_on_crtc(dev, crtc, encoder)
4964                 encoder->enable(encoder);
4965
4966         if (HAS_PCH_CPT(dev))
4967                 cpt_verify_modeset(dev, intel_crtc->pipe);
4968 }
4969
4970 /* IPS only exists on ULT machines and is tied to pipe A. */
4971 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4972 {
4973         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4974 }
4975
4976 /*
4977  * This implements the workaround described in the "notes" section of the mode
4978  * set sequence documentation. When going from no pipes or single pipe to
4979  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4980  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4981  */
4982 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4983 {
4984         struct drm_device *dev = crtc->base.dev;
4985         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4986
4987         /* We want to get the other_active_crtc only if there's only 1 other
4988          * active crtc. */
4989         for_each_intel_crtc(dev, crtc_it) {
4990                 if (!crtc_it->active || crtc_it == crtc)
4991                         continue;
4992
4993                 if (other_active_crtc)
4994                         return;
4995
4996                 other_active_crtc = crtc_it;
4997         }
4998         if (!other_active_crtc)
4999                 return;
5000
5001         intel_wait_for_vblank(dev, other_active_crtc->pipe);
5002         intel_wait_for_vblank(dev, other_active_crtc->pipe);
5003 }
5004
5005 static void haswell_crtc_enable(struct drm_crtc *crtc)
5006 {
5007         struct drm_device *dev = crtc->dev;
5008         struct drm_i915_private *dev_priv = dev->dev_private;
5009         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5010         struct intel_encoder *encoder;
5011         int pipe = intel_crtc->pipe;
5012
5013         WARN_ON(!crtc->state->enable);
5014
5015         if (intel_crtc->active)
5016                 return;
5017
5018         if (intel_crtc_to_shared_dpll(intel_crtc))
5019                 intel_enable_shared_dpll(intel_crtc);
5020
5021         if (intel_crtc->config->has_dp_encoder)
5022                 intel_dp_set_m_n(intel_crtc, M1_N1);
5023
5024         intel_set_pipe_timings(intel_crtc);
5025
5026         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5027                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5028                            intel_crtc->config->pixel_multiplier - 1);
5029         }
5030
5031         if (intel_crtc->config->has_pch_encoder) {
5032                 intel_cpu_transcoder_set_m_n(intel_crtc,
5033                                      &intel_crtc->config->fdi_m_n, NULL);
5034         }
5035
5036         haswell_set_pipeconf(crtc);
5037
5038         intel_set_pipe_csc(crtc);
5039
5040         intel_crtc->active = true;
5041
5042         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5043         for_each_encoder_on_crtc(dev, crtc, encoder)
5044                 if (encoder->pre_enable)
5045                         encoder->pre_enable(encoder);
5046
5047         if (intel_crtc->config->has_pch_encoder) {
5048                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5049                                                       true);
5050                 dev_priv->display.fdi_link_train(crtc);
5051         }
5052
5053         intel_ddi_enable_pipe_clock(intel_crtc);
5054
5055         if (INTEL_INFO(dev)->gen == 9)
5056                 skylake_pfit_update(intel_crtc, 1);
5057         else if (INTEL_INFO(dev)->gen < 9)
5058                 ironlake_pfit_enable(intel_crtc);
5059         else
5060                 MISSING_CASE(INTEL_INFO(dev)->gen);
5061
5062         /*
5063          * On ILK+ LUT must be loaded before the pipe is running but with
5064          * clocks enabled
5065          */
5066         intel_crtc_load_lut(crtc);
5067
5068         intel_ddi_set_pipe_settings(crtc);
5069         intel_ddi_enable_transcoder_func(crtc);
5070
5071         intel_update_watermarks(crtc);
5072         intel_enable_pipe(intel_crtc);
5073
5074         if (intel_crtc->config->has_pch_encoder)
5075                 lpt_pch_enable(crtc);
5076
5077         if (intel_crtc->config->dp_encoder_is_mst)
5078                 intel_ddi_set_vc_payload_alloc(crtc, true);
5079
5080         assert_vblank_disabled(crtc);
5081         drm_crtc_vblank_on(crtc);
5082
5083         for_each_encoder_on_crtc(dev, crtc, encoder) {
5084                 encoder->enable(encoder);
5085                 intel_opregion_notify_encoder(encoder, true);
5086         }
5087
5088         /* If we change the relative order between pipe/planes enabling, we need
5089          * to change the workaround. */
5090         haswell_mode_set_planes_workaround(intel_crtc);
5091 }
5092
5093 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5094 {
5095         struct drm_device *dev = crtc->base.dev;
5096         struct drm_i915_private *dev_priv = dev->dev_private;
5097         int pipe = crtc->pipe;
5098
5099         /* To avoid upsetting the power well on haswell only disable the pfit if
5100          * it's in use. The hw state code will make sure we get this right. */
5101         if (crtc->config->pch_pfit.enabled) {
5102                 I915_WRITE(PF_CTL(pipe), 0);
5103                 I915_WRITE(PF_WIN_POS(pipe), 0);
5104                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5105         }
5106 }
5107
5108 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5109 {
5110         struct drm_device *dev = crtc->dev;
5111         struct drm_i915_private *dev_priv = dev->dev_private;
5112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5113         struct intel_encoder *encoder;
5114         int pipe = intel_crtc->pipe;
5115         u32 reg, temp;
5116
5117         if (!intel_crtc->active)
5118                 return;
5119
5120         for_each_encoder_on_crtc(dev, crtc, encoder)
5121                 encoder->disable(encoder);
5122
5123         drm_crtc_vblank_off(crtc);
5124         assert_vblank_disabled(crtc);
5125
5126         if (intel_crtc->config->has_pch_encoder)
5127                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5128
5129         intel_disable_pipe(intel_crtc);
5130
5131         ironlake_pfit_disable(intel_crtc);
5132
5133         for_each_encoder_on_crtc(dev, crtc, encoder)
5134                 if (encoder->post_disable)
5135                         encoder->post_disable(encoder);
5136
5137         if (intel_crtc->config->has_pch_encoder) {
5138                 ironlake_fdi_disable(crtc);
5139
5140                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5141
5142                 if (HAS_PCH_CPT(dev)) {
5143                         /* disable TRANS_DP_CTL */
5144                         reg = TRANS_DP_CTL(pipe);
5145                         temp = I915_READ(reg);
5146                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5147                                   TRANS_DP_PORT_SEL_MASK);
5148                         temp |= TRANS_DP_PORT_SEL_NONE;
5149                         I915_WRITE(reg, temp);
5150
5151                         /* disable DPLL_SEL */
5152                         temp = I915_READ(PCH_DPLL_SEL);
5153                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5154                         I915_WRITE(PCH_DPLL_SEL, temp);
5155                 }
5156
5157                 /* disable PCH DPLL */
5158                 intel_disable_shared_dpll(intel_crtc);
5159
5160                 ironlake_fdi_pll_disable(intel_crtc);
5161         }
5162
5163         intel_crtc->active = false;
5164         intel_update_watermarks(crtc);
5165
5166         mutex_lock(&dev->struct_mutex);
5167         intel_fbc_update(dev);
5168         mutex_unlock(&dev->struct_mutex);
5169 }
5170
5171 static void haswell_crtc_disable(struct drm_crtc *crtc)
5172 {
5173         struct drm_device *dev = crtc->dev;
5174         struct drm_i915_private *dev_priv = dev->dev_private;
5175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5176         struct intel_encoder *encoder;
5177         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5178
5179         if (!intel_crtc->active)
5180                 return;
5181
5182         for_each_encoder_on_crtc(dev, crtc, encoder) {
5183                 intel_opregion_notify_encoder(encoder, false);
5184                 encoder->disable(encoder);
5185         }
5186
5187         drm_crtc_vblank_off(crtc);
5188         assert_vblank_disabled(crtc);
5189
5190         if (intel_crtc->config->has_pch_encoder)
5191                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5192                                                       false);
5193         intel_disable_pipe(intel_crtc);
5194
5195         if (intel_crtc->config->dp_encoder_is_mst)
5196                 intel_ddi_set_vc_payload_alloc(crtc, false);
5197
5198         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5199
5200         if (INTEL_INFO(dev)->gen == 9)
5201                 skylake_pfit_update(intel_crtc, 0);
5202         else if (INTEL_INFO(dev)->gen < 9)
5203                 ironlake_pfit_disable(intel_crtc);
5204         else
5205                 MISSING_CASE(INTEL_INFO(dev)->gen);
5206
5207         intel_ddi_disable_pipe_clock(intel_crtc);
5208
5209         if (intel_crtc->config->has_pch_encoder) {
5210                 lpt_disable_pch_transcoder(dev_priv);
5211                 intel_ddi_fdi_disable(crtc);
5212         }
5213
5214         for_each_encoder_on_crtc(dev, crtc, encoder)
5215                 if (encoder->post_disable)
5216                         encoder->post_disable(encoder);
5217
5218         intel_crtc->active = false;
5219         intel_update_watermarks(crtc);
5220
5221         mutex_lock(&dev->struct_mutex);
5222         intel_fbc_update(dev);
5223         mutex_unlock(&dev->struct_mutex);
5224
5225         if (intel_crtc_to_shared_dpll(intel_crtc))
5226                 intel_disable_shared_dpll(intel_crtc);
5227 }
5228
5229 static void ironlake_crtc_off(struct drm_crtc *crtc)
5230 {
5231         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5232         intel_put_shared_dpll(intel_crtc);
5233 }
5234
5235
5236 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5237 {
5238         struct drm_device *dev = crtc->base.dev;
5239         struct drm_i915_private *dev_priv = dev->dev_private;
5240         struct intel_crtc_state *pipe_config = crtc->config;
5241
5242         if (!pipe_config->gmch_pfit.control)
5243                 return;
5244
5245         /*
5246          * The panel fitter should only be adjusted whilst the pipe is disabled,
5247          * according to register description and PRM.
5248          */
5249         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5250         assert_pipe_disabled(dev_priv, crtc->pipe);
5251
5252         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5253         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5254
5255         /* Border color in case we don't scale up to the full screen. Black by
5256          * default, change to something else for debugging. */
5257         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5258 }
5259
5260 static enum intel_display_power_domain port_to_power_domain(enum port port)
5261 {
5262         switch (port) {
5263         case PORT_A:
5264                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5265         case PORT_B:
5266                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5267         case PORT_C:
5268                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5269         case PORT_D:
5270                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5271         default:
5272                 WARN_ON_ONCE(1);
5273                 return POWER_DOMAIN_PORT_OTHER;
5274         }
5275 }
5276
5277 #define for_each_power_domain(domain, mask)                             \
5278         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5279                 if ((1 << (domain)) & (mask))
5280
5281 enum intel_display_power_domain
5282 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5283 {
5284         struct drm_device *dev = intel_encoder->base.dev;
5285         struct intel_digital_port *intel_dig_port;
5286
5287         switch (intel_encoder->type) {
5288         case INTEL_OUTPUT_UNKNOWN:
5289                 /* Only DDI platforms should ever use this output type */
5290                 WARN_ON_ONCE(!HAS_DDI(dev));
5291         case INTEL_OUTPUT_DISPLAYPORT:
5292         case INTEL_OUTPUT_HDMI:
5293         case INTEL_OUTPUT_EDP:
5294                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5295                 return port_to_power_domain(intel_dig_port->port);
5296         case INTEL_OUTPUT_DP_MST:
5297                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5298                 return port_to_power_domain(intel_dig_port->port);
5299         case INTEL_OUTPUT_ANALOG:
5300                 return POWER_DOMAIN_PORT_CRT;
5301         case INTEL_OUTPUT_DSI:
5302                 return POWER_DOMAIN_PORT_DSI;
5303         default:
5304                 return POWER_DOMAIN_PORT_OTHER;
5305         }
5306 }
5307
5308 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5309 {
5310         struct drm_device *dev = crtc->dev;
5311         struct intel_encoder *intel_encoder;
5312         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5313         enum pipe pipe = intel_crtc->pipe;
5314         unsigned long mask;
5315         enum transcoder transcoder;
5316
5317         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5318
5319         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5320         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5321         if (intel_crtc->config->pch_pfit.enabled ||
5322             intel_crtc->config->pch_pfit.force_thru)
5323                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5324
5325         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5326                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5327
5328         return mask;
5329 }
5330
5331 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5332 {
5333         struct drm_device *dev = state->dev;
5334         struct drm_i915_private *dev_priv = dev->dev_private;
5335         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5336         struct intel_crtc *crtc;
5337
5338         /*
5339          * First get all needed power domains, then put all unneeded, to avoid
5340          * any unnecessary toggling of the power wells.
5341          */
5342         for_each_intel_crtc(dev, crtc) {
5343                 enum intel_display_power_domain domain;
5344
5345                 if (!crtc->base.state->enable)
5346                         continue;
5347
5348                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5349
5350                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5351                         intel_display_power_get(dev_priv, domain);
5352         }
5353
5354         if (dev_priv->display.modeset_global_resources)
5355                 dev_priv->display.modeset_global_resources(state);
5356
5357         for_each_intel_crtc(dev, crtc) {
5358                 enum intel_display_power_domain domain;
5359
5360                 for_each_power_domain(domain, crtc->enabled_power_domains)
5361                         intel_display_power_put(dev_priv, domain);
5362
5363                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5364         }
5365
5366         intel_display_set_init_power(dev_priv, false);
5367 }
5368
5369 void broxton_set_cdclk(struct drm_device *dev, int frequency)
5370 {
5371         struct drm_i915_private *dev_priv = dev->dev_private;
5372         uint32_t divider;
5373         uint32_t ratio;
5374         uint32_t current_freq;
5375         int ret;
5376
5377         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5378         switch (frequency) {
5379         case 144000:
5380                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5381                 ratio = BXT_DE_PLL_RATIO(60);
5382                 break;
5383         case 288000:
5384                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5385                 ratio = BXT_DE_PLL_RATIO(60);
5386                 break;
5387         case 384000:
5388                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5389                 ratio = BXT_DE_PLL_RATIO(60);
5390                 break;
5391         case 576000:
5392                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5393                 ratio = BXT_DE_PLL_RATIO(60);
5394                 break;
5395         case 624000:
5396                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5397                 ratio = BXT_DE_PLL_RATIO(65);
5398                 break;
5399         case 19200:
5400                 /*
5401                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5402                  * to suppress GCC warning.
5403                  */
5404                 ratio = 0;
5405                 divider = 0;
5406                 break;
5407         default:
5408                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5409
5410                 return;
5411         }
5412
5413         mutex_lock(&dev_priv->rps.hw_lock);
5414         /* Inform power controller of upcoming frequency change */
5415         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5416                                       0x80000000);
5417         mutex_unlock(&dev_priv->rps.hw_lock);
5418
5419         if (ret) {
5420                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5421                           ret, frequency);
5422                 return;
5423         }
5424
5425         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5426         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5427         current_freq = current_freq * 500 + 1000;
5428
5429         /*
5430          * DE PLL has to be disabled when
5431          * - setting to 19.2MHz (bypass, PLL isn't used)
5432          * - before setting to 624MHz (PLL needs toggling)
5433          * - before setting to any frequency from 624MHz (PLL needs toggling)
5434          */
5435         if (frequency == 19200 || frequency == 624000 ||
5436             current_freq == 624000) {
5437                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5438                 /* Timeout 200us */
5439                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5440                              1))
5441                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5442         }
5443
5444         if (frequency != 19200) {
5445                 uint32_t val;
5446
5447                 val = I915_READ(BXT_DE_PLL_CTL);
5448                 val &= ~BXT_DE_PLL_RATIO_MASK;
5449                 val |= ratio;
5450                 I915_WRITE(BXT_DE_PLL_CTL, val);
5451
5452                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5453                 /* Timeout 200us */
5454                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5455                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5456
5457                 val = I915_READ(CDCLK_CTL);
5458                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5459                 val |= divider;
5460                 /*
5461                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5462                  * enable otherwise.
5463                  */
5464                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5465                 if (frequency >= 500000)
5466                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5467
5468                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5469                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5470                 val |= (frequency - 1000) / 500;
5471                 I915_WRITE(CDCLK_CTL, val);
5472         }
5473
5474         mutex_lock(&dev_priv->rps.hw_lock);
5475         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5476                                       DIV_ROUND_UP(frequency, 25000));
5477         mutex_unlock(&dev_priv->rps.hw_lock);
5478
5479         if (ret) {
5480                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5481                           ret, frequency);
5482                 return;
5483         }
5484
5485         dev_priv->cdclk_freq = frequency;
5486 }
5487
5488 void broxton_init_cdclk(struct drm_device *dev)
5489 {
5490         struct drm_i915_private *dev_priv = dev->dev_private;
5491         uint32_t val;
5492
5493         /*
5494          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5495          * or else the reset will hang because there is no PCH to respond.
5496          * Move the handshake programming to initialization sequence.
5497          * Previously was left up to BIOS.
5498          */
5499         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5500         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5501         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5502
5503         /* Enable PG1 for cdclk */
5504         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5505
5506         /* check if cd clock is enabled */
5507         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5508                 DRM_DEBUG_KMS("Display already initialized\n");
5509                 return;
5510         }
5511
5512         /*
5513          * FIXME:
5514          * - The initial CDCLK needs to be read from VBT.
5515          *   Need to make this change after VBT has changes for BXT.
5516          * - check if setting the max (or any) cdclk freq is really necessary
5517          *   here, it belongs to modeset time
5518          */
5519         broxton_set_cdclk(dev, 624000);
5520
5521         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5522         POSTING_READ(DBUF_CTL);
5523
5524         udelay(10);
5525
5526         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5527                 DRM_ERROR("DBuf power enable timeout!\n");
5528 }
5529
5530 void broxton_uninit_cdclk(struct drm_device *dev)
5531 {
5532         struct drm_i915_private *dev_priv = dev->dev_private;
5533
5534         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5535         POSTING_READ(DBUF_CTL);
5536
5537         udelay(10);
5538
5539         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5540                 DRM_ERROR("DBuf power disable timeout!\n");
5541
5542         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5543         broxton_set_cdclk(dev, 19200);
5544
5545         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5546 }
5547
5548 /* returns HPLL frequency in kHz */
5549 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5550 {
5551         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5552
5553         /* Obtain SKU information */
5554         mutex_lock(&dev_priv->dpio_lock);
5555         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5556                 CCK_FUSE_HPLL_FREQ_MASK;
5557         mutex_unlock(&dev_priv->dpio_lock);
5558
5559         return vco_freq[hpll_freq] * 1000;
5560 }
5561
5562 static void vlv_update_cdclk(struct drm_device *dev)
5563 {
5564         struct drm_i915_private *dev_priv = dev->dev_private;
5565
5566         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5567         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5568                          dev_priv->cdclk_freq);
5569
5570         /*
5571          * Program the gmbus_freq based on the cdclk frequency.
5572          * BSpec erroneously claims we should aim for 4MHz, but
5573          * in fact 1MHz is the correct frequency.
5574          */
5575         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5576 }
5577
5578 /* Adjust CDclk dividers to allow high res or save power if possible */
5579 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5580 {
5581         struct drm_i915_private *dev_priv = dev->dev_private;
5582         u32 val, cmd;
5583
5584         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5585                                         != dev_priv->cdclk_freq);
5586
5587         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5588                 cmd = 2;
5589         else if (cdclk == 266667)
5590                 cmd = 1;
5591         else
5592                 cmd = 0;
5593
5594         mutex_lock(&dev_priv->rps.hw_lock);
5595         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5596         val &= ~DSPFREQGUAR_MASK;
5597         val |= (cmd << DSPFREQGUAR_SHIFT);
5598         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5599         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5600                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5601                      50)) {
5602                 DRM_ERROR("timed out waiting for CDclk change\n");
5603         }
5604         mutex_unlock(&dev_priv->rps.hw_lock);
5605
5606         if (cdclk == 400000) {
5607                 u32 divider;
5608
5609                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5610
5611                 mutex_lock(&dev_priv->dpio_lock);
5612                 /* adjust cdclk divider */
5613                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5614                 val &= ~DISPLAY_FREQUENCY_VALUES;
5615                 val |= divider;
5616                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5617
5618                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5619                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5620                              50))
5621                         DRM_ERROR("timed out waiting for CDclk change\n");
5622                 mutex_unlock(&dev_priv->dpio_lock);
5623         }
5624
5625         mutex_lock(&dev_priv->dpio_lock);
5626         /* adjust self-refresh exit latency value */
5627         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5628         val &= ~0x7f;
5629
5630         /*
5631          * For high bandwidth configs, we set a higher latency in the bunit
5632          * so that the core display fetch happens in time to avoid underruns.
5633          */
5634         if (cdclk == 400000)
5635                 val |= 4500 / 250; /* 4.5 usec */
5636         else
5637                 val |= 3000 / 250; /* 3.0 usec */
5638         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5639         mutex_unlock(&dev_priv->dpio_lock);
5640
5641         vlv_update_cdclk(dev);
5642 }
5643
5644 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5645 {
5646         struct drm_i915_private *dev_priv = dev->dev_private;
5647         u32 val, cmd;
5648
5649         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5650                                                 != dev_priv->cdclk_freq);
5651
5652         switch (cdclk) {
5653         case 333333:
5654         case 320000:
5655         case 266667:
5656         case 200000:
5657                 break;
5658         default:
5659                 MISSING_CASE(cdclk);
5660                 return;
5661         }
5662
5663         /*
5664          * Specs are full of misinformation, but testing on actual
5665          * hardware has shown that we just need to write the desired
5666          * CCK divider into the Punit register.
5667          */
5668         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5669
5670         mutex_lock(&dev_priv->rps.hw_lock);
5671         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5672         val &= ~DSPFREQGUAR_MASK_CHV;
5673         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5674         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5675         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5676                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5677                      50)) {
5678                 DRM_ERROR("timed out waiting for CDclk change\n");
5679         }
5680         mutex_unlock(&dev_priv->rps.hw_lock);
5681
5682         vlv_update_cdclk(dev);
5683 }
5684
5685 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5686                                  int max_pixclk)
5687 {
5688         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5689         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5690
5691         /*
5692          * Really only a few cases to deal with, as only 4 CDclks are supported:
5693          *   200MHz
5694          *   267MHz
5695          *   320/333MHz (depends on HPLL freq)
5696          *   400MHz (VLV only)
5697          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5698          * of the lower bin and adjust if needed.
5699          *
5700          * We seem to get an unstable or solid color picture at 200MHz.
5701          * Not sure what's wrong. For now use 200MHz only when all pipes
5702          * are off.
5703          */
5704         if (!IS_CHERRYVIEW(dev_priv) &&
5705             max_pixclk > freq_320*limit/100)
5706                 return 400000;
5707         else if (max_pixclk > 266667*limit/100)
5708                 return freq_320;
5709         else if (max_pixclk > 0)
5710                 return 266667;
5711         else
5712                 return 200000;
5713 }
5714
5715 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5716                               int max_pixclk)
5717 {
5718         /*
5719          * FIXME:
5720          * - remove the guardband, it's not needed on BXT
5721          * - set 19.2MHz bypass frequency if there are no active pipes
5722          */
5723         if (max_pixclk > 576000*9/10)
5724                 return 624000;
5725         else if (max_pixclk > 384000*9/10)
5726                 return 576000;
5727         else if (max_pixclk > 288000*9/10)
5728                 return 384000;
5729         else if (max_pixclk > 144000*9/10)
5730                 return 288000;
5731         else
5732                 return 144000;
5733 }
5734
5735 /* compute the max pixel clock for new configuration */
5736 static int intel_mode_max_pixclk(struct drm_atomic_state *state)
5737 {
5738         struct drm_device *dev = state->dev;
5739         struct intel_crtc *intel_crtc;
5740         struct intel_crtc_state *crtc_state;
5741         int max_pixclk = 0;
5742
5743         for_each_intel_crtc(dev, intel_crtc) {
5744                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5745                 if (IS_ERR(crtc_state))
5746                         return PTR_ERR(crtc_state);
5747
5748                 if (!crtc_state->base.enable)
5749                         continue;
5750
5751                 max_pixclk = max(max_pixclk,
5752                                  crtc_state->base.adjusted_mode.crtc_clock);
5753         }
5754
5755         return max_pixclk;
5756 }
5757
5758 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state,
5759                                             unsigned *prepare_pipes)
5760 {
5761         struct drm_i915_private *dev_priv = to_i915(state->dev);
5762         struct intel_crtc *intel_crtc;
5763         int max_pixclk = intel_mode_max_pixclk(state);
5764         int cdclk;
5765
5766         if (max_pixclk < 0)
5767                 return max_pixclk;
5768
5769         if (IS_VALLEYVIEW(dev_priv))
5770                 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5771         else
5772                 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5773
5774         if (cdclk == dev_priv->cdclk_freq)
5775                 return 0;
5776
5777         /* disable/enable all currently active pipes while we change cdclk */
5778         for_each_intel_crtc(state->dev, intel_crtc)
5779                 if (intel_crtc->base.state->enable)
5780                         *prepare_pipes |= (1 << intel_crtc->pipe);
5781
5782         return 0;
5783 }
5784
5785 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5786 {
5787         unsigned int credits, default_credits;
5788
5789         if (IS_CHERRYVIEW(dev_priv))
5790                 default_credits = PFI_CREDIT(12);
5791         else
5792                 default_credits = PFI_CREDIT(8);
5793
5794         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5795                 /* CHV suggested value is 31 or 63 */
5796                 if (IS_CHERRYVIEW(dev_priv))
5797                         credits = PFI_CREDIT_31;
5798                 else
5799                         credits = PFI_CREDIT(15);
5800         } else {
5801                 credits = default_credits;
5802         }
5803
5804         /*
5805          * WA - write default credits before re-programming
5806          * FIXME: should we also set the resend bit here?
5807          */
5808         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5809                    default_credits);
5810
5811         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5812                    credits | PFI_CREDIT_RESEND);
5813
5814         /*
5815          * FIXME is this guaranteed to clear
5816          * immediately or should we poll for it?
5817          */
5818         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5819 }
5820
5821 static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
5822 {
5823         struct drm_device *dev = state->dev;
5824         struct drm_i915_private *dev_priv = dev->dev_private;
5825         int max_pixclk = intel_mode_max_pixclk(state);
5826         int req_cdclk;
5827
5828         /* The only reason this can fail is if we fail to add the crtc_state
5829          * to the atomic state. But that can't happen since the call to
5830          * intel_mode_max_pixclk() in valleyview_modeset_global_pipes() (which
5831          * can't have failed otherwise the mode set would be aborted) added all
5832          * the states already. */
5833         if (WARN_ON(max_pixclk < 0))
5834                 return;
5835
5836         req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5837
5838         if (req_cdclk != dev_priv->cdclk_freq) {
5839                 /*
5840                  * FIXME: We can end up here with all power domains off, yet
5841                  * with a CDCLK frequency other than the minimum. To account
5842                  * for this take the PIPE-A power domain, which covers the HW
5843                  * blocks needed for the following programming. This can be
5844                  * removed once it's guaranteed that we get here either with
5845                  * the minimum CDCLK set, or the required power domains
5846                  * enabled.
5847                  */
5848                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5849
5850                 if (IS_CHERRYVIEW(dev))
5851                         cherryview_set_cdclk(dev, req_cdclk);
5852                 else
5853                         valleyview_set_cdclk(dev, req_cdclk);
5854
5855                 vlv_program_pfi_credits(dev_priv);
5856
5857                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5858         }
5859 }
5860
5861 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5862 {
5863         struct drm_device *dev = crtc->dev;
5864         struct drm_i915_private *dev_priv = to_i915(dev);
5865         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5866         struct intel_encoder *encoder;
5867         int pipe = intel_crtc->pipe;
5868         bool is_dsi;
5869
5870         WARN_ON(!crtc->state->enable);
5871
5872         if (intel_crtc->active)
5873                 return;
5874
5875         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5876
5877         if (!is_dsi) {
5878                 if (IS_CHERRYVIEW(dev))
5879                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5880                 else
5881                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
5882         }
5883
5884         if (intel_crtc->config->has_dp_encoder)
5885                 intel_dp_set_m_n(intel_crtc, M1_N1);
5886
5887         intel_set_pipe_timings(intel_crtc);
5888
5889         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5890                 struct drm_i915_private *dev_priv = dev->dev_private;
5891
5892                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5893                 I915_WRITE(CHV_CANVAS(pipe), 0);
5894         }
5895
5896         i9xx_set_pipeconf(intel_crtc);
5897
5898         intel_crtc->active = true;
5899
5900         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5901
5902         for_each_encoder_on_crtc(dev, crtc, encoder)
5903                 if (encoder->pre_pll_enable)
5904                         encoder->pre_pll_enable(encoder);
5905
5906         if (!is_dsi) {
5907                 if (IS_CHERRYVIEW(dev))
5908                         chv_enable_pll(intel_crtc, intel_crtc->config);
5909                 else
5910                         vlv_enable_pll(intel_crtc, intel_crtc->config);
5911         }
5912
5913         for_each_encoder_on_crtc(dev, crtc, encoder)
5914                 if (encoder->pre_enable)
5915                         encoder->pre_enable(encoder);
5916
5917         i9xx_pfit_enable(intel_crtc);
5918
5919         intel_crtc_load_lut(crtc);
5920
5921         intel_update_watermarks(crtc);
5922         intel_enable_pipe(intel_crtc);
5923
5924         assert_vblank_disabled(crtc);
5925         drm_crtc_vblank_on(crtc);
5926
5927         for_each_encoder_on_crtc(dev, crtc, encoder)
5928                 encoder->enable(encoder);
5929 }
5930
5931 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5932 {
5933         struct drm_device *dev = crtc->base.dev;
5934         struct drm_i915_private *dev_priv = dev->dev_private;
5935
5936         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5937         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5938 }
5939
5940 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5941 {
5942         struct drm_device *dev = crtc->dev;
5943         struct drm_i915_private *dev_priv = to_i915(dev);
5944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5945         struct intel_encoder *encoder;
5946         int pipe = intel_crtc->pipe;
5947
5948         WARN_ON(!crtc->state->enable);
5949
5950         if (intel_crtc->active)
5951                 return;
5952
5953         i9xx_set_pll_dividers(intel_crtc);
5954
5955         if (intel_crtc->config->has_dp_encoder)
5956                 intel_dp_set_m_n(intel_crtc, M1_N1);
5957
5958         intel_set_pipe_timings(intel_crtc);
5959
5960         i9xx_set_pipeconf(intel_crtc);
5961
5962         intel_crtc->active = true;
5963
5964         if (!IS_GEN2(dev))
5965                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5966
5967         for_each_encoder_on_crtc(dev, crtc, encoder)
5968                 if (encoder->pre_enable)
5969                         encoder->pre_enable(encoder);
5970
5971         i9xx_enable_pll(intel_crtc);
5972
5973         i9xx_pfit_enable(intel_crtc);
5974
5975         intel_crtc_load_lut(crtc);
5976
5977         intel_update_watermarks(crtc);
5978         intel_enable_pipe(intel_crtc);
5979
5980         assert_vblank_disabled(crtc);
5981         drm_crtc_vblank_on(crtc);
5982
5983         for_each_encoder_on_crtc(dev, crtc, encoder)
5984                 encoder->enable(encoder);
5985 }
5986
5987 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5988 {
5989         struct drm_device *dev = crtc->base.dev;
5990         struct drm_i915_private *dev_priv = dev->dev_private;
5991
5992         if (!crtc->config->gmch_pfit.control)
5993                 return;
5994
5995         assert_pipe_disabled(dev_priv, crtc->pipe);
5996
5997         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5998                          I915_READ(PFIT_CONTROL));
5999         I915_WRITE(PFIT_CONTROL, 0);
6000 }
6001
6002 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6003 {
6004         struct drm_device *dev = crtc->dev;
6005         struct drm_i915_private *dev_priv = dev->dev_private;
6006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6007         struct intel_encoder *encoder;
6008         int pipe = intel_crtc->pipe;
6009
6010         if (!intel_crtc->active)
6011                 return;
6012
6013         /*
6014          * On gen2 planes are double buffered but the pipe isn't, so we must
6015          * wait for planes to fully turn off before disabling the pipe.
6016          * We also need to wait on all gmch platforms because of the
6017          * self-refresh mode constraint explained above.
6018          */
6019         intel_wait_for_vblank(dev, pipe);
6020
6021         for_each_encoder_on_crtc(dev, crtc, encoder)
6022                 encoder->disable(encoder);
6023
6024         drm_crtc_vblank_off(crtc);
6025         assert_vblank_disabled(crtc);
6026
6027         intel_disable_pipe(intel_crtc);
6028
6029         i9xx_pfit_disable(intel_crtc);
6030
6031         for_each_encoder_on_crtc(dev, crtc, encoder)
6032                 if (encoder->post_disable)
6033                         encoder->post_disable(encoder);
6034
6035         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6036                 if (IS_CHERRYVIEW(dev))
6037                         chv_disable_pll(dev_priv, pipe);
6038                 else if (IS_VALLEYVIEW(dev))
6039                         vlv_disable_pll(dev_priv, pipe);
6040                 else
6041                         i9xx_disable_pll(intel_crtc);
6042         }
6043
6044         if (!IS_GEN2(dev))
6045                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6046
6047         intel_crtc->active = false;
6048         intel_update_watermarks(crtc);
6049
6050         mutex_lock(&dev->struct_mutex);
6051         intel_fbc_update(dev);
6052         mutex_unlock(&dev->struct_mutex);
6053 }
6054
6055 static void i9xx_crtc_off(struct drm_crtc *crtc)
6056 {
6057 }
6058
6059 /* Master function to enable/disable CRTC and corresponding power wells */
6060 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
6061 {
6062         struct drm_device *dev = crtc->dev;
6063         struct drm_i915_private *dev_priv = dev->dev_private;
6064         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6065         enum intel_display_power_domain domain;
6066         unsigned long domains;
6067
6068         if (enable) {
6069                 if (!intel_crtc->active) {
6070                         domains = get_crtc_power_domains(crtc);
6071                         for_each_power_domain(domain, domains)
6072                                 intel_display_power_get(dev_priv, domain);
6073                         intel_crtc->enabled_power_domains = domains;
6074
6075                         dev_priv->display.crtc_enable(crtc);
6076                         intel_crtc_enable_planes(crtc);
6077                 }
6078         } else {
6079                 if (intel_crtc->active) {
6080                         intel_crtc_disable_planes(crtc);
6081                         dev_priv->display.crtc_disable(crtc);
6082
6083                         domains = intel_crtc->enabled_power_domains;
6084                         for_each_power_domain(domain, domains)
6085                                 intel_display_power_put(dev_priv, domain);
6086                         intel_crtc->enabled_power_domains = 0;
6087                 }
6088         }
6089 }
6090
6091 /**
6092  * Sets the power management mode of the pipe and plane.
6093  */
6094 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6095 {
6096         struct drm_device *dev = crtc->dev;
6097         struct intel_encoder *intel_encoder;
6098         bool enable = false;
6099
6100         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6101                 enable |= intel_encoder->connectors_active;
6102
6103         intel_crtc_control(crtc, enable);
6104 }
6105
6106 static void intel_crtc_disable(struct drm_crtc *crtc)
6107 {
6108         struct drm_device *dev = crtc->dev;
6109         struct drm_connector *connector;
6110         struct drm_i915_private *dev_priv = dev->dev_private;
6111
6112         /* crtc should still be enabled when we disable it. */
6113         WARN_ON(!crtc->state->enable);
6114
6115         intel_crtc_disable_planes(crtc);
6116         dev_priv->display.crtc_disable(crtc);
6117         dev_priv->display.off(crtc);
6118
6119         drm_plane_helper_disable(crtc->primary);
6120
6121         /* Update computed state. */
6122         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6123                 if (!connector->encoder || !connector->encoder->crtc)
6124                         continue;
6125
6126                 if (connector->encoder->crtc != crtc)
6127                         continue;
6128
6129                 connector->dpms = DRM_MODE_DPMS_OFF;
6130                 to_intel_encoder(connector->encoder)->connectors_active = false;
6131         }
6132 }
6133
6134 void intel_encoder_destroy(struct drm_encoder *encoder)
6135 {
6136         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6137
6138         drm_encoder_cleanup(encoder);
6139         kfree(intel_encoder);
6140 }
6141
6142 /* Simple dpms helper for encoders with just one connector, no cloning and only
6143  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6144  * state of the entire output pipe. */
6145 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6146 {
6147         if (mode == DRM_MODE_DPMS_ON) {
6148                 encoder->connectors_active = true;
6149
6150                 intel_crtc_update_dpms(encoder->base.crtc);
6151         } else {
6152                 encoder->connectors_active = false;
6153
6154                 intel_crtc_update_dpms(encoder->base.crtc);
6155         }
6156 }
6157
6158 /* Cross check the actual hw state with our own modeset state tracking (and it's
6159  * internal consistency). */
6160 static void intel_connector_check_state(struct intel_connector *connector)
6161 {
6162         if (connector->get_hw_state(connector)) {
6163                 struct intel_encoder *encoder = connector->encoder;
6164                 struct drm_crtc *crtc;
6165                 bool encoder_enabled;
6166                 enum pipe pipe;
6167
6168                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6169                               connector->base.base.id,
6170                               connector->base.name);
6171
6172                 /* there is no real hw state for MST connectors */
6173                 if (connector->mst_port)
6174                         return;
6175
6176                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6177                      "wrong connector dpms state\n");
6178                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6179                      "active connector not linked to encoder\n");
6180
6181                 if (encoder) {
6182                         I915_STATE_WARN(!encoder->connectors_active,
6183                              "encoder->connectors_active not set\n");
6184
6185                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6186                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6187                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
6188                                 return;
6189
6190                         crtc = encoder->base.crtc;
6191
6192                         I915_STATE_WARN(!crtc->state->enable,
6193                                         "crtc not enabled\n");
6194                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6195                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6196                              "encoder active on the wrong pipe\n");
6197                 }
6198         }
6199 }
6200
6201 int intel_connector_init(struct intel_connector *connector)
6202 {
6203         struct drm_connector_state *connector_state;
6204
6205         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6206         if (!connector_state)
6207                 return -ENOMEM;
6208
6209         connector->base.state = connector_state;
6210         return 0;
6211 }
6212
6213 struct intel_connector *intel_connector_alloc(void)
6214 {
6215         struct intel_connector *connector;
6216
6217         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6218         if (!connector)
6219                 return NULL;
6220
6221         if (intel_connector_init(connector) < 0) {
6222                 kfree(connector);
6223                 return NULL;
6224         }
6225
6226         return connector;
6227 }
6228
6229 /* Even simpler default implementation, if there's really no special case to
6230  * consider. */
6231 void intel_connector_dpms(struct drm_connector *connector, int mode)
6232 {
6233         /* All the simple cases only support two dpms states. */
6234         if (mode != DRM_MODE_DPMS_ON)
6235                 mode = DRM_MODE_DPMS_OFF;
6236
6237         if (mode == connector->dpms)
6238                 return;
6239
6240         connector->dpms = mode;
6241
6242         /* Only need to change hw state when actually enabled */
6243         if (connector->encoder)
6244                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6245
6246         intel_modeset_check_state(connector->dev);
6247 }
6248
6249 /* Simple connector->get_hw_state implementation for encoders that support only
6250  * one connector and no cloning and hence the encoder state determines the state
6251  * of the connector. */
6252 bool intel_connector_get_hw_state(struct intel_connector *connector)
6253 {
6254         enum pipe pipe = 0;
6255         struct intel_encoder *encoder = connector->encoder;
6256
6257         return encoder->get_hw_state(encoder, &pipe);
6258 }
6259
6260 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6261 {
6262         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6263                 return crtc_state->fdi_lanes;
6264
6265         return 0;
6266 }
6267
6268 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6269                                      struct intel_crtc_state *pipe_config)
6270 {
6271         struct drm_atomic_state *state = pipe_config->base.state;
6272         struct intel_crtc *other_crtc;
6273         struct intel_crtc_state *other_crtc_state;
6274
6275         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6276                       pipe_name(pipe), pipe_config->fdi_lanes);
6277         if (pipe_config->fdi_lanes > 4) {
6278                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6279                               pipe_name(pipe), pipe_config->fdi_lanes);
6280                 return -EINVAL;
6281         }
6282
6283         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6284                 if (pipe_config->fdi_lanes > 2) {
6285                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6286                                       pipe_config->fdi_lanes);
6287                         return -EINVAL;
6288                 } else {
6289                         return 0;
6290                 }
6291         }
6292
6293         if (INTEL_INFO(dev)->num_pipes == 2)
6294                 return 0;
6295
6296         /* Ivybridge 3 pipe is really complicated */
6297         switch (pipe) {
6298         case PIPE_A:
6299                 return 0;
6300         case PIPE_B:
6301                 if (pipe_config->fdi_lanes <= 2)
6302                         return 0;
6303
6304                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6305                 other_crtc_state =
6306                         intel_atomic_get_crtc_state(state, other_crtc);
6307                 if (IS_ERR(other_crtc_state))
6308                         return PTR_ERR(other_crtc_state);
6309
6310                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6311                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6312                                       pipe_name(pipe), pipe_config->fdi_lanes);
6313                         return -EINVAL;
6314                 }
6315                 return 0;
6316         case PIPE_C:
6317                 if (pipe_config->fdi_lanes > 2) {
6318                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6319                                       pipe_name(pipe), pipe_config->fdi_lanes);
6320                         return -EINVAL;
6321                 }
6322
6323                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6324                 other_crtc_state =
6325                         intel_atomic_get_crtc_state(state, other_crtc);
6326                 if (IS_ERR(other_crtc_state))
6327                         return PTR_ERR(other_crtc_state);
6328
6329                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6330                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6331                         return -EINVAL;
6332                 }
6333                 return 0;
6334         default:
6335                 BUG();
6336         }
6337 }
6338
6339 #define RETRY 1
6340 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6341                                        struct intel_crtc_state *pipe_config)
6342 {
6343         struct drm_device *dev = intel_crtc->base.dev;
6344         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6345         int lane, link_bw, fdi_dotclock, ret;
6346         bool needs_recompute = false;
6347
6348 retry:
6349         /* FDI is a binary signal running at ~2.7GHz, encoding
6350          * each output octet as 10 bits. The actual frequency
6351          * is stored as a divider into a 100MHz clock, and the
6352          * mode pixel clock is stored in units of 1KHz.
6353          * Hence the bw of each lane in terms of the mode signal
6354          * is:
6355          */
6356         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6357
6358         fdi_dotclock = adjusted_mode->crtc_clock;
6359
6360         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6361                                            pipe_config->pipe_bpp);
6362
6363         pipe_config->fdi_lanes = lane;
6364
6365         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6366                                link_bw, &pipe_config->fdi_m_n);
6367
6368         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6369                                        intel_crtc->pipe, pipe_config);
6370         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6371                 pipe_config->pipe_bpp -= 2*3;
6372                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6373                               pipe_config->pipe_bpp);
6374                 needs_recompute = true;
6375                 pipe_config->bw_constrained = true;
6376
6377                 goto retry;
6378         }
6379
6380         if (needs_recompute)
6381                 return RETRY;
6382
6383         return ret;
6384 }
6385
6386 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6387                                    struct intel_crtc_state *pipe_config)
6388 {
6389         pipe_config->ips_enabled = i915.enable_ips &&
6390                                    hsw_crtc_supports_ips(crtc) &&
6391                                    pipe_config->pipe_bpp <= 24;
6392 }
6393
6394 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6395                                      struct intel_crtc_state *pipe_config)
6396 {
6397         struct drm_device *dev = crtc->base.dev;
6398         struct drm_i915_private *dev_priv = dev->dev_private;
6399         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6400         int ret;
6401
6402         /* FIXME should check pixel clock limits on all platforms */
6403         if (INTEL_INFO(dev)->gen < 4) {
6404                 int clock_limit =
6405                         dev_priv->display.get_display_clock_speed(dev);
6406
6407                 /*
6408                  * Enable pixel doubling when the dot clock
6409                  * is > 90% of the (display) core speed.
6410                  *
6411                  * GDG double wide on either pipe,
6412                  * otherwise pipe A only.
6413                  */
6414                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6415                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6416                         clock_limit *= 2;
6417                         pipe_config->double_wide = true;
6418                 }
6419
6420                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6421                         return -EINVAL;
6422         }
6423
6424         /*
6425          * Pipe horizontal size must be even in:
6426          * - DVO ganged mode
6427          * - LVDS dual channel mode
6428          * - Double wide pipe
6429          */
6430         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6431              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6432                 pipe_config->pipe_src_w &= ~1;
6433
6434         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6435          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6436          */
6437         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6438                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6439                 return -EINVAL;
6440
6441         if (HAS_IPS(dev))
6442                 hsw_compute_ips_config(crtc, pipe_config);
6443
6444         if (pipe_config->has_pch_encoder)
6445                 return ironlake_fdi_compute_config(crtc, pipe_config);
6446
6447         /* FIXME: remove below call once atomic mode set is place and all crtc
6448          * related checks called from atomic_crtc_check function */
6449         ret = 0;
6450         DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6451                 crtc, pipe_config->base.state);
6452         ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6453
6454         return ret;
6455 }
6456
6457 static int skylake_get_display_clock_speed(struct drm_device *dev)
6458 {
6459         struct drm_i915_private *dev_priv = to_i915(dev);
6460         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6461         uint32_t cdctl = I915_READ(CDCLK_CTL);
6462         uint32_t linkrate;
6463
6464         if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6465                 WARN(1, "LCPLL1 not enabled\n");
6466                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6467         }
6468
6469         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6470                 return 540000;
6471
6472         linkrate = (I915_READ(DPLL_CTRL1) &
6473                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6474
6475         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6476             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6477                 /* vco 8640 */
6478                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6479                 case CDCLK_FREQ_450_432:
6480                         return 432000;
6481                 case CDCLK_FREQ_337_308:
6482                         return 308570;
6483                 case CDCLK_FREQ_675_617:
6484                         return 617140;
6485                 default:
6486                         WARN(1, "Unknown cd freq selection\n");
6487                 }
6488         } else {
6489                 /* vco 8100 */
6490                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6491                 case CDCLK_FREQ_450_432:
6492                         return 450000;
6493                 case CDCLK_FREQ_337_308:
6494                         return 337500;
6495                 case CDCLK_FREQ_675_617:
6496                         return 675000;
6497                 default:
6498                         WARN(1, "Unknown cd freq selection\n");
6499                 }
6500         }
6501
6502         /* error case, do as if DPLL0 isn't enabled */
6503         return 24000;
6504 }
6505
6506 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6507 {
6508         struct drm_i915_private *dev_priv = dev->dev_private;
6509         uint32_t lcpll = I915_READ(LCPLL_CTL);
6510         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6511
6512         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6513                 return 800000;
6514         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6515                 return 450000;
6516         else if (freq == LCPLL_CLK_FREQ_450)
6517                 return 450000;
6518         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6519                 return 540000;
6520         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6521                 return 337500;
6522         else
6523                 return 675000;
6524 }
6525
6526 static int haswell_get_display_clock_speed(struct drm_device *dev)
6527 {
6528         struct drm_i915_private *dev_priv = dev->dev_private;
6529         uint32_t lcpll = I915_READ(LCPLL_CTL);
6530         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6531
6532         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6533                 return 800000;
6534         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6535                 return 450000;
6536         else if (freq == LCPLL_CLK_FREQ_450)
6537                 return 450000;
6538         else if (IS_HSW_ULT(dev))
6539                 return 337500;
6540         else
6541                 return 540000;
6542 }
6543
6544 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6545 {
6546         struct drm_i915_private *dev_priv = dev->dev_private;
6547         u32 val;
6548         int divider;
6549
6550         if (dev_priv->hpll_freq == 0)
6551                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6552
6553         mutex_lock(&dev_priv->dpio_lock);
6554         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6555         mutex_unlock(&dev_priv->dpio_lock);
6556
6557         divider = val & DISPLAY_FREQUENCY_VALUES;
6558
6559         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6560              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6561              "cdclk change in progress\n");
6562
6563         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6564 }
6565
6566 static int ilk_get_display_clock_speed(struct drm_device *dev)
6567 {
6568         return 450000;
6569 }
6570
6571 static int i945_get_display_clock_speed(struct drm_device *dev)
6572 {
6573         return 400000;
6574 }
6575
6576 static int i915_get_display_clock_speed(struct drm_device *dev)
6577 {
6578         return 333333;
6579 }
6580
6581 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6582 {
6583         return 200000;
6584 }
6585
6586 static int pnv_get_display_clock_speed(struct drm_device *dev)
6587 {
6588         u16 gcfgc = 0;
6589
6590         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6591
6592         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6593         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6594                 return 266667;
6595         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6596                 return 333333;
6597         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6598                 return 444444;
6599         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6600                 return 200000;
6601         default:
6602                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6603         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6604                 return 133333;
6605         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6606                 return 166667;
6607         }
6608 }
6609
6610 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6611 {
6612         u16 gcfgc = 0;
6613
6614         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6615
6616         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6617                 return 133333;
6618         else {
6619                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6620                 case GC_DISPLAY_CLOCK_333_MHZ:
6621                         return 333333;
6622                 default:
6623                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6624                         return 190000;
6625                 }
6626         }
6627 }
6628
6629 static int i865_get_display_clock_speed(struct drm_device *dev)
6630 {
6631         return 266667;
6632 }
6633
6634 static int i855_get_display_clock_speed(struct drm_device *dev)
6635 {
6636         u16 hpllcc = 0;
6637         /* Assume that the hardware is in the high speed state.  This
6638          * should be the default.
6639          */
6640         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6641         case GC_CLOCK_133_200:
6642         case GC_CLOCK_100_200:
6643                 return 200000;
6644         case GC_CLOCK_166_250:
6645                 return 250000;
6646         case GC_CLOCK_100_133:
6647                 return 133333;
6648         }
6649
6650         /* Shouldn't happen */
6651         return 0;
6652 }
6653
6654 static int i830_get_display_clock_speed(struct drm_device *dev)
6655 {
6656         return 133333;
6657 }
6658
6659 static void
6660 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6661 {
6662         while (*num > DATA_LINK_M_N_MASK ||
6663                *den > DATA_LINK_M_N_MASK) {
6664                 *num >>= 1;
6665                 *den >>= 1;
6666         }
6667 }
6668
6669 static void compute_m_n(unsigned int m, unsigned int n,
6670                         uint32_t *ret_m, uint32_t *ret_n)
6671 {
6672         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6673         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6674         intel_reduce_m_n_ratio(ret_m, ret_n);
6675 }
6676
6677 void
6678 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6679                        int pixel_clock, int link_clock,
6680                        struct intel_link_m_n *m_n)
6681 {
6682         m_n->tu = 64;
6683
6684         compute_m_n(bits_per_pixel * pixel_clock,
6685                     link_clock * nlanes * 8,
6686                     &m_n->gmch_m, &m_n->gmch_n);
6687
6688         compute_m_n(pixel_clock, link_clock,
6689                     &m_n->link_m, &m_n->link_n);
6690 }
6691
6692 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6693 {
6694         if (i915.panel_use_ssc >= 0)
6695                 return i915.panel_use_ssc != 0;
6696         return dev_priv->vbt.lvds_use_ssc
6697                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6698 }
6699
6700 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6701                            int num_connectors)
6702 {
6703         struct drm_device *dev = crtc_state->base.crtc->dev;
6704         struct drm_i915_private *dev_priv = dev->dev_private;
6705         int refclk;
6706
6707         WARN_ON(!crtc_state->base.state);
6708
6709         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
6710                 refclk = 100000;
6711         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6712             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6713                 refclk = dev_priv->vbt.lvds_ssc_freq;
6714                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6715         } else if (!IS_GEN2(dev)) {
6716                 refclk = 96000;
6717         } else {
6718                 refclk = 48000;
6719         }
6720
6721         return refclk;
6722 }
6723
6724 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6725 {
6726         return (1 << dpll->n) << 16 | dpll->m2;
6727 }
6728
6729 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6730 {
6731         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6732 }
6733
6734 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6735                                      struct intel_crtc_state *crtc_state,
6736                                      intel_clock_t *reduced_clock)
6737 {
6738         struct drm_device *dev = crtc->base.dev;
6739         u32 fp, fp2 = 0;
6740
6741         if (IS_PINEVIEW(dev)) {
6742                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6743                 if (reduced_clock)
6744                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6745         } else {
6746                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6747                 if (reduced_clock)
6748                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6749         }
6750
6751         crtc_state->dpll_hw_state.fp0 = fp;
6752
6753         crtc->lowfreq_avail = false;
6754         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6755             reduced_clock) {
6756                 crtc_state->dpll_hw_state.fp1 = fp2;
6757                 crtc->lowfreq_avail = true;
6758         } else {
6759                 crtc_state->dpll_hw_state.fp1 = fp;
6760         }
6761 }
6762
6763 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6764                 pipe)
6765 {
6766         u32 reg_val;
6767
6768         /*
6769          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6770          * and set it to a reasonable value instead.
6771          */
6772         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6773         reg_val &= 0xffffff00;
6774         reg_val |= 0x00000030;
6775         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6776
6777         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6778         reg_val &= 0x8cffffff;
6779         reg_val = 0x8c000000;
6780         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6781
6782         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6783         reg_val &= 0xffffff00;
6784         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6785
6786         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6787         reg_val &= 0x00ffffff;
6788         reg_val |= 0xb0000000;
6789         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6790 }
6791
6792 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6793                                          struct intel_link_m_n *m_n)
6794 {
6795         struct drm_device *dev = crtc->base.dev;
6796         struct drm_i915_private *dev_priv = dev->dev_private;
6797         int pipe = crtc->pipe;
6798
6799         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6800         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6801         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6802         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6803 }
6804
6805 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6806                                          struct intel_link_m_n *m_n,
6807                                          struct intel_link_m_n *m2_n2)
6808 {
6809         struct drm_device *dev = crtc->base.dev;
6810         struct drm_i915_private *dev_priv = dev->dev_private;
6811         int pipe = crtc->pipe;
6812         enum transcoder transcoder = crtc->config->cpu_transcoder;
6813
6814         if (INTEL_INFO(dev)->gen >= 5) {
6815                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6816                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6817                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6818                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6819                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6820                  * for gen < 8) and if DRRS is supported (to make sure the
6821                  * registers are not unnecessarily accessed).
6822                  */
6823                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6824                         crtc->config->has_drrs) {
6825                         I915_WRITE(PIPE_DATA_M2(transcoder),
6826                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6827                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6828                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6829                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6830                 }
6831         } else {
6832                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6833                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6834                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6835                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6836         }
6837 }
6838
6839 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6840 {
6841         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6842
6843         if (m_n == M1_N1) {
6844                 dp_m_n = &crtc->config->dp_m_n;
6845                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6846         } else if (m_n == M2_N2) {
6847
6848                 /*
6849                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6850                  * needs to be programmed into M1_N1.
6851                  */
6852                 dp_m_n = &crtc->config->dp_m2_n2;
6853         } else {
6854                 DRM_ERROR("Unsupported divider value\n");
6855                 return;
6856         }
6857
6858         if (crtc->config->has_pch_encoder)
6859                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6860         else
6861                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6862 }
6863
6864 static void vlv_update_pll(struct intel_crtc *crtc,
6865                            struct intel_crtc_state *pipe_config)
6866 {
6867         u32 dpll, dpll_md;
6868
6869         /*
6870          * Enable DPIO clock input. We should never disable the reference
6871          * clock for pipe B, since VGA hotplug / manual detection depends
6872          * on it.
6873          */
6874         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6875                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6876         /* We should never disable this, set it here for state tracking */
6877         if (crtc->pipe == PIPE_B)
6878                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6879         dpll |= DPLL_VCO_ENABLE;
6880         pipe_config->dpll_hw_state.dpll = dpll;
6881
6882         dpll_md = (pipe_config->pixel_multiplier - 1)
6883                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6884         pipe_config->dpll_hw_state.dpll_md = dpll_md;
6885 }
6886
6887 static void vlv_prepare_pll(struct intel_crtc *crtc,
6888                             const struct intel_crtc_state *pipe_config)
6889 {
6890         struct drm_device *dev = crtc->base.dev;
6891         struct drm_i915_private *dev_priv = dev->dev_private;
6892         int pipe = crtc->pipe;
6893         u32 mdiv;
6894         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6895         u32 coreclk, reg_val;
6896
6897         mutex_lock(&dev_priv->dpio_lock);
6898
6899         bestn = pipe_config->dpll.n;
6900         bestm1 = pipe_config->dpll.m1;
6901         bestm2 = pipe_config->dpll.m2;
6902         bestp1 = pipe_config->dpll.p1;
6903         bestp2 = pipe_config->dpll.p2;
6904
6905         /* See eDP HDMI DPIO driver vbios notes doc */
6906
6907         /* PLL B needs special handling */
6908         if (pipe == PIPE_B)
6909                 vlv_pllb_recal_opamp(dev_priv, pipe);
6910
6911         /* Set up Tx target for periodic Rcomp update */
6912         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6913
6914         /* Disable target IRef on PLL */
6915         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6916         reg_val &= 0x00ffffff;
6917         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6918
6919         /* Disable fast lock */
6920         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6921
6922         /* Set idtafcrecal before PLL is enabled */
6923         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6924         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6925         mdiv |= ((bestn << DPIO_N_SHIFT));
6926         mdiv |= (1 << DPIO_K_SHIFT);
6927
6928         /*
6929          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6930          * but we don't support that).
6931          * Note: don't use the DAC post divider as it seems unstable.
6932          */
6933         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6934         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6935
6936         mdiv |= DPIO_ENABLE_CALIBRATION;
6937         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6938
6939         /* Set HBR and RBR LPF coefficients */
6940         if (pipe_config->port_clock == 162000 ||
6941             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6942             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6943                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6944                                  0x009f0003);
6945         else
6946                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6947                                  0x00d0000f);
6948
6949         if (pipe_config->has_dp_encoder) {
6950                 /* Use SSC source */
6951                 if (pipe == PIPE_A)
6952                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6953                                          0x0df40000);
6954                 else
6955                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6956                                          0x0df70000);
6957         } else { /* HDMI or VGA */
6958                 /* Use bend source */
6959                 if (pipe == PIPE_A)
6960                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6961                                          0x0df70000);
6962                 else
6963                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6964                                          0x0df40000);
6965         }
6966
6967         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6968         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6969         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6970             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6971                 coreclk |= 0x01000000;
6972         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6973
6974         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6975         mutex_unlock(&dev_priv->dpio_lock);
6976 }
6977
6978 static void chv_update_pll(struct intel_crtc *crtc,
6979                            struct intel_crtc_state *pipe_config)
6980 {
6981         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6982                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6983                 DPLL_VCO_ENABLE;
6984         if (crtc->pipe != PIPE_A)
6985                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6986
6987         pipe_config->dpll_hw_state.dpll_md =
6988                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6989 }
6990
6991 static void chv_prepare_pll(struct intel_crtc *crtc,
6992                             const struct intel_crtc_state *pipe_config)
6993 {
6994         struct drm_device *dev = crtc->base.dev;
6995         struct drm_i915_private *dev_priv = dev->dev_private;
6996         int pipe = crtc->pipe;
6997         int dpll_reg = DPLL(crtc->pipe);
6998         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6999         u32 loopfilter, tribuf_calcntr;
7000         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7001         u32 dpio_val;
7002         int vco;
7003
7004         bestn = pipe_config->dpll.n;
7005         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7006         bestm1 = pipe_config->dpll.m1;
7007         bestm2 = pipe_config->dpll.m2 >> 22;
7008         bestp1 = pipe_config->dpll.p1;
7009         bestp2 = pipe_config->dpll.p2;
7010         vco = pipe_config->dpll.vco;
7011         dpio_val = 0;
7012         loopfilter = 0;
7013
7014         /*
7015          * Enable Refclk and SSC
7016          */
7017         I915_WRITE(dpll_reg,
7018                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7019
7020         mutex_lock(&dev_priv->dpio_lock);
7021
7022         /* p1 and p2 divider */
7023         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7024                         5 << DPIO_CHV_S1_DIV_SHIFT |
7025                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7026                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7027                         1 << DPIO_CHV_K_DIV_SHIFT);
7028
7029         /* Feedback post-divider - m2 */
7030         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7031
7032         /* Feedback refclk divider - n and m1 */
7033         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7034                         DPIO_CHV_M1_DIV_BY_2 |
7035                         1 << DPIO_CHV_N_DIV_SHIFT);
7036
7037         /* M2 fraction division */
7038         if (bestm2_frac)
7039                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7040
7041         /* M2 fraction division enable */
7042         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7043         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7044         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7045         if (bestm2_frac)
7046                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7047         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7048
7049         /* Program digital lock detect threshold */
7050         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7051         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7052                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7053         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7054         if (!bestm2_frac)
7055                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7056         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7057
7058         /* Loop filter */
7059         if (vco == 5400000) {
7060                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7061                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7062                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7063                 tribuf_calcntr = 0x9;
7064         } else if (vco <= 6200000) {
7065                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7066                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7067                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7068                 tribuf_calcntr = 0x9;
7069         } else if (vco <= 6480000) {
7070                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7071                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7072                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7073                 tribuf_calcntr = 0x8;
7074         } else {
7075                 /* Not supported. Apply the same limits as in the max case */
7076                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7077                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7078                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7079                 tribuf_calcntr = 0;
7080         }
7081         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7082
7083         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7084         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7085         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7086         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7087
7088         /* AFC Recal */
7089         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7090                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7091                         DPIO_AFC_RECAL);
7092
7093         mutex_unlock(&dev_priv->dpio_lock);
7094 }
7095
7096 /**
7097  * vlv_force_pll_on - forcibly enable just the PLL
7098  * @dev_priv: i915 private structure
7099  * @pipe: pipe PLL to enable
7100  * @dpll: PLL configuration
7101  *
7102  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7103  * in cases where we need the PLL enabled even when @pipe is not going to
7104  * be enabled.
7105  */
7106 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7107                       const struct dpll *dpll)
7108 {
7109         struct intel_crtc *crtc =
7110                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7111         struct intel_crtc_state pipe_config = {
7112                 .base.crtc = &crtc->base,
7113                 .pixel_multiplier = 1,
7114                 .dpll = *dpll,
7115         };
7116
7117         if (IS_CHERRYVIEW(dev)) {
7118                 chv_update_pll(crtc, &pipe_config);
7119                 chv_prepare_pll(crtc, &pipe_config);
7120                 chv_enable_pll(crtc, &pipe_config);
7121         } else {
7122                 vlv_update_pll(crtc, &pipe_config);
7123                 vlv_prepare_pll(crtc, &pipe_config);
7124                 vlv_enable_pll(crtc, &pipe_config);
7125         }
7126 }
7127
7128 /**
7129  * vlv_force_pll_off - forcibly disable just the PLL
7130  * @dev_priv: i915 private structure
7131  * @pipe: pipe PLL to disable
7132  *
7133  * Disable the PLL for @pipe. To be used in cases where we need
7134  * the PLL enabled even when @pipe is not going to be enabled.
7135  */
7136 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7137 {
7138         if (IS_CHERRYVIEW(dev))
7139                 chv_disable_pll(to_i915(dev), pipe);
7140         else
7141                 vlv_disable_pll(to_i915(dev), pipe);
7142 }
7143
7144 static void i9xx_update_pll(struct intel_crtc *crtc,
7145                             struct intel_crtc_state *crtc_state,
7146                             intel_clock_t *reduced_clock,
7147                             int num_connectors)
7148 {
7149         struct drm_device *dev = crtc->base.dev;
7150         struct drm_i915_private *dev_priv = dev->dev_private;
7151         u32 dpll;
7152         bool is_sdvo;
7153         struct dpll *clock = &crtc_state->dpll;
7154
7155         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7156
7157         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7158                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7159
7160         dpll = DPLL_VGA_MODE_DIS;
7161
7162         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7163                 dpll |= DPLLB_MODE_LVDS;
7164         else
7165                 dpll |= DPLLB_MODE_DAC_SERIAL;
7166
7167         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7168                 dpll |= (crtc_state->pixel_multiplier - 1)
7169                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7170         }
7171
7172         if (is_sdvo)
7173                 dpll |= DPLL_SDVO_HIGH_SPEED;
7174
7175         if (crtc_state->has_dp_encoder)
7176                 dpll |= DPLL_SDVO_HIGH_SPEED;
7177
7178         /* compute bitmask from p1 value */
7179         if (IS_PINEVIEW(dev))
7180                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7181         else {
7182                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7183                 if (IS_G4X(dev) && reduced_clock)
7184                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7185         }
7186         switch (clock->p2) {
7187         case 5:
7188                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7189                 break;
7190         case 7:
7191                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7192                 break;
7193         case 10:
7194                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7195                 break;
7196         case 14:
7197                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7198                 break;
7199         }
7200         if (INTEL_INFO(dev)->gen >= 4)
7201                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7202
7203         if (crtc_state->sdvo_tv_clock)
7204                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7205         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7206                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7207                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7208         else
7209                 dpll |= PLL_REF_INPUT_DREFCLK;
7210
7211         dpll |= DPLL_VCO_ENABLE;
7212         crtc_state->dpll_hw_state.dpll = dpll;
7213
7214         if (INTEL_INFO(dev)->gen >= 4) {
7215                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7216                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7217                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7218         }
7219 }
7220
7221 static void i8xx_update_pll(struct intel_crtc *crtc,
7222                             struct intel_crtc_state *crtc_state,
7223                             intel_clock_t *reduced_clock,
7224                             int num_connectors)
7225 {
7226         struct drm_device *dev = crtc->base.dev;
7227         struct drm_i915_private *dev_priv = dev->dev_private;
7228         u32 dpll;
7229         struct dpll *clock = &crtc_state->dpll;
7230
7231         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7232
7233         dpll = DPLL_VGA_MODE_DIS;
7234
7235         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7236                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7237         } else {
7238                 if (clock->p1 == 2)
7239                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7240                 else
7241                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7242                 if (clock->p2 == 4)
7243                         dpll |= PLL_P2_DIVIDE_BY_4;
7244         }
7245
7246         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7247                 dpll |= DPLL_DVO_2X_MODE;
7248
7249         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7250                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7251                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7252         else
7253                 dpll |= PLL_REF_INPUT_DREFCLK;
7254
7255         dpll |= DPLL_VCO_ENABLE;
7256         crtc_state->dpll_hw_state.dpll = dpll;
7257 }
7258
7259 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7260 {
7261         struct drm_device *dev = intel_crtc->base.dev;
7262         struct drm_i915_private *dev_priv = dev->dev_private;
7263         enum pipe pipe = intel_crtc->pipe;
7264         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7265         struct drm_display_mode *adjusted_mode =
7266                 &intel_crtc->config->base.adjusted_mode;
7267         uint32_t crtc_vtotal, crtc_vblank_end;
7268         int vsyncshift = 0;
7269
7270         /* We need to be careful not to changed the adjusted mode, for otherwise
7271          * the hw state checker will get angry at the mismatch. */
7272         crtc_vtotal = adjusted_mode->crtc_vtotal;
7273         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7274
7275         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7276                 /* the chip adds 2 halflines automatically */
7277                 crtc_vtotal -= 1;
7278                 crtc_vblank_end -= 1;
7279
7280                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7281                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7282                 else
7283                         vsyncshift = adjusted_mode->crtc_hsync_start -
7284                                 adjusted_mode->crtc_htotal / 2;
7285                 if (vsyncshift < 0)
7286                         vsyncshift += adjusted_mode->crtc_htotal;
7287         }
7288
7289         if (INTEL_INFO(dev)->gen > 3)
7290                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7291
7292         I915_WRITE(HTOTAL(cpu_transcoder),
7293                    (adjusted_mode->crtc_hdisplay - 1) |
7294                    ((adjusted_mode->crtc_htotal - 1) << 16));
7295         I915_WRITE(HBLANK(cpu_transcoder),
7296                    (adjusted_mode->crtc_hblank_start - 1) |
7297                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7298         I915_WRITE(HSYNC(cpu_transcoder),
7299                    (adjusted_mode->crtc_hsync_start - 1) |
7300                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7301
7302         I915_WRITE(VTOTAL(cpu_transcoder),
7303                    (adjusted_mode->crtc_vdisplay - 1) |
7304                    ((crtc_vtotal - 1) << 16));
7305         I915_WRITE(VBLANK(cpu_transcoder),
7306                    (adjusted_mode->crtc_vblank_start - 1) |
7307                    ((crtc_vblank_end - 1) << 16));
7308         I915_WRITE(VSYNC(cpu_transcoder),
7309                    (adjusted_mode->crtc_vsync_start - 1) |
7310                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7311
7312         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7313          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7314          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7315          * bits. */
7316         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7317             (pipe == PIPE_B || pipe == PIPE_C))
7318                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7319
7320         /* pipesrc controls the size that is scaled from, which should
7321          * always be the user's requested size.
7322          */
7323         I915_WRITE(PIPESRC(pipe),
7324                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7325                    (intel_crtc->config->pipe_src_h - 1));
7326 }
7327
7328 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7329                                    struct intel_crtc_state *pipe_config)
7330 {
7331         struct drm_device *dev = crtc->base.dev;
7332         struct drm_i915_private *dev_priv = dev->dev_private;
7333         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7334         uint32_t tmp;
7335
7336         tmp = I915_READ(HTOTAL(cpu_transcoder));
7337         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7338         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7339         tmp = I915_READ(HBLANK(cpu_transcoder));
7340         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7341         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7342         tmp = I915_READ(HSYNC(cpu_transcoder));
7343         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7344         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7345
7346         tmp = I915_READ(VTOTAL(cpu_transcoder));
7347         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7348         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7349         tmp = I915_READ(VBLANK(cpu_transcoder));
7350         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7351         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7352         tmp = I915_READ(VSYNC(cpu_transcoder));
7353         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7354         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7355
7356         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7357                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7358                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7359                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7360         }
7361
7362         tmp = I915_READ(PIPESRC(crtc->pipe));
7363         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7364         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7365
7366         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7367         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7368 }
7369
7370 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7371                                  struct intel_crtc_state *pipe_config)
7372 {
7373         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7374         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7375         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7376         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7377
7378         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7379         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7380         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7381         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7382
7383         mode->flags = pipe_config->base.adjusted_mode.flags;
7384
7385         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7386         mode->flags |= pipe_config->base.adjusted_mode.flags;
7387 }
7388
7389 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7390 {
7391         struct drm_device *dev = intel_crtc->base.dev;
7392         struct drm_i915_private *dev_priv = dev->dev_private;
7393         uint32_t pipeconf;
7394
7395         pipeconf = 0;
7396
7397         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7398             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7399                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7400
7401         if (intel_crtc->config->double_wide)
7402                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7403
7404         /* only g4x and later have fancy bpc/dither controls */
7405         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7406                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7407                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7408                         pipeconf |= PIPECONF_DITHER_EN |
7409                                     PIPECONF_DITHER_TYPE_SP;
7410
7411                 switch (intel_crtc->config->pipe_bpp) {
7412                 case 18:
7413                         pipeconf |= PIPECONF_6BPC;
7414                         break;
7415                 case 24:
7416                         pipeconf |= PIPECONF_8BPC;
7417                         break;
7418                 case 30:
7419                         pipeconf |= PIPECONF_10BPC;
7420                         break;
7421                 default:
7422                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7423                         BUG();
7424                 }
7425         }
7426
7427         if (HAS_PIPE_CXSR(dev)) {
7428                 if (intel_crtc->lowfreq_avail) {
7429                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7430                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7431                 } else {
7432                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7433                 }
7434         }
7435
7436         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7437                 if (INTEL_INFO(dev)->gen < 4 ||
7438                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7439                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7440                 else
7441                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7442         } else
7443                 pipeconf |= PIPECONF_PROGRESSIVE;
7444
7445         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7446                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7447
7448         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7449         POSTING_READ(PIPECONF(intel_crtc->pipe));
7450 }
7451
7452 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7453                                    struct intel_crtc_state *crtc_state)
7454 {
7455         struct drm_device *dev = crtc->base.dev;
7456         struct drm_i915_private *dev_priv = dev->dev_private;
7457         int refclk, num_connectors = 0;
7458         intel_clock_t clock, reduced_clock;
7459         bool ok, has_reduced_clock = false;
7460         bool is_lvds = false, is_dsi = false;
7461         struct intel_encoder *encoder;
7462         const intel_limit_t *limit;
7463         struct drm_atomic_state *state = crtc_state->base.state;
7464         struct drm_connector_state *connector_state;
7465         int i;
7466
7467         for (i = 0; i < state->num_connector; i++) {
7468                 if (!state->connectors[i])
7469                         continue;
7470
7471                 connector_state = state->connector_states[i];
7472                 if (connector_state->crtc != &crtc->base)
7473                         continue;
7474
7475                 encoder = to_intel_encoder(connector_state->best_encoder);
7476
7477                 switch (encoder->type) {
7478                 case INTEL_OUTPUT_LVDS:
7479                         is_lvds = true;
7480                         break;
7481                 case INTEL_OUTPUT_DSI:
7482                         is_dsi = true;
7483                         break;
7484                 default:
7485                         break;
7486                 }
7487
7488                 num_connectors++;
7489         }
7490
7491         if (is_dsi)
7492                 return 0;
7493
7494         if (!crtc_state->clock_set) {
7495                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7496
7497                 /*
7498                  * Returns a set of divisors for the desired target clock with
7499                  * the given refclk, or FALSE.  The returned values represent
7500                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7501                  * 2) / p1 / p2.
7502                  */
7503                 limit = intel_limit(crtc_state, refclk);
7504                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7505                                                  crtc_state->port_clock,
7506                                                  refclk, NULL, &clock);
7507                 if (!ok) {
7508                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7509                         return -EINVAL;
7510                 }
7511
7512                 if (is_lvds && dev_priv->lvds_downclock_avail) {
7513                         /*
7514                          * Ensure we match the reduced clock's P to the target
7515                          * clock.  If the clocks don't match, we can't switch
7516                          * the display clock by using the FP0/FP1. In such case
7517                          * we will disable the LVDS downclock feature.
7518                          */
7519                         has_reduced_clock =
7520                                 dev_priv->display.find_dpll(limit, crtc_state,
7521                                                             dev_priv->lvds_downclock,
7522                                                             refclk, &clock,
7523                                                             &reduced_clock);
7524                 }
7525                 /* Compat-code for transition, will disappear. */
7526                 crtc_state->dpll.n = clock.n;
7527                 crtc_state->dpll.m1 = clock.m1;
7528                 crtc_state->dpll.m2 = clock.m2;
7529                 crtc_state->dpll.p1 = clock.p1;
7530                 crtc_state->dpll.p2 = clock.p2;
7531         }
7532
7533         if (IS_GEN2(dev)) {
7534                 i8xx_update_pll(crtc, crtc_state,
7535                                 has_reduced_clock ? &reduced_clock : NULL,
7536                                 num_connectors);
7537         } else if (IS_CHERRYVIEW(dev)) {
7538                 chv_update_pll(crtc, crtc_state);
7539         } else if (IS_VALLEYVIEW(dev)) {
7540                 vlv_update_pll(crtc, crtc_state);
7541         } else {
7542                 i9xx_update_pll(crtc, crtc_state,
7543                                 has_reduced_clock ? &reduced_clock : NULL,
7544                                 num_connectors);
7545         }
7546
7547         return 0;
7548 }
7549
7550 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7551                                  struct intel_crtc_state *pipe_config)
7552 {
7553         struct drm_device *dev = crtc->base.dev;
7554         struct drm_i915_private *dev_priv = dev->dev_private;
7555         uint32_t tmp;
7556
7557         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7558                 return;
7559
7560         tmp = I915_READ(PFIT_CONTROL);
7561         if (!(tmp & PFIT_ENABLE))
7562                 return;
7563
7564         /* Check whether the pfit is attached to our pipe. */
7565         if (INTEL_INFO(dev)->gen < 4) {
7566                 if (crtc->pipe != PIPE_B)
7567                         return;
7568         } else {
7569                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7570                         return;
7571         }
7572
7573         pipe_config->gmch_pfit.control = tmp;
7574         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7575         if (INTEL_INFO(dev)->gen < 5)
7576                 pipe_config->gmch_pfit.lvds_border_bits =
7577                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7578 }
7579
7580 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7581                                struct intel_crtc_state *pipe_config)
7582 {
7583         struct drm_device *dev = crtc->base.dev;
7584         struct drm_i915_private *dev_priv = dev->dev_private;
7585         int pipe = pipe_config->cpu_transcoder;
7586         intel_clock_t clock;
7587         u32 mdiv;
7588         int refclk = 100000;
7589
7590         /* In case of MIPI DPLL will not even be used */
7591         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7592                 return;
7593
7594         mutex_lock(&dev_priv->dpio_lock);
7595         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7596         mutex_unlock(&dev_priv->dpio_lock);
7597
7598         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7599         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7600         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7601         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7602         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7603
7604         vlv_clock(refclk, &clock);
7605
7606         /* clock.dot is the fast clock */
7607         pipe_config->port_clock = clock.dot / 5;
7608 }
7609
7610 static void
7611 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7612                               struct intel_initial_plane_config *plane_config)
7613 {
7614         struct drm_device *dev = crtc->base.dev;
7615         struct drm_i915_private *dev_priv = dev->dev_private;
7616         u32 val, base, offset;
7617         int pipe = crtc->pipe, plane = crtc->plane;
7618         int fourcc, pixel_format;
7619         unsigned int aligned_height;
7620         struct drm_framebuffer *fb;
7621         struct intel_framebuffer *intel_fb;
7622
7623         val = I915_READ(DSPCNTR(plane));
7624         if (!(val & DISPLAY_PLANE_ENABLE))
7625                 return;
7626
7627         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7628         if (!intel_fb) {
7629                 DRM_DEBUG_KMS("failed to alloc fb\n");
7630                 return;
7631         }
7632
7633         fb = &intel_fb->base;
7634
7635         if (INTEL_INFO(dev)->gen >= 4) {
7636                 if (val & DISPPLANE_TILED) {
7637                         plane_config->tiling = I915_TILING_X;
7638                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7639                 }
7640         }
7641
7642         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7643         fourcc = i9xx_format_to_fourcc(pixel_format);
7644         fb->pixel_format = fourcc;
7645         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7646
7647         if (INTEL_INFO(dev)->gen >= 4) {
7648                 if (plane_config->tiling)
7649                         offset = I915_READ(DSPTILEOFF(plane));
7650                 else
7651                         offset = I915_READ(DSPLINOFF(plane));
7652                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7653         } else {
7654                 base = I915_READ(DSPADDR(plane));
7655         }
7656         plane_config->base = base;
7657
7658         val = I915_READ(PIPESRC(pipe));
7659         fb->width = ((val >> 16) & 0xfff) + 1;
7660         fb->height = ((val >> 0) & 0xfff) + 1;
7661
7662         val = I915_READ(DSPSTRIDE(pipe));
7663         fb->pitches[0] = val & 0xffffffc0;
7664
7665         aligned_height = intel_fb_align_height(dev, fb->height,
7666                                                fb->pixel_format,
7667                                                fb->modifier[0]);
7668
7669         plane_config->size = fb->pitches[0] * aligned_height;
7670
7671         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7672                       pipe_name(pipe), plane, fb->width, fb->height,
7673                       fb->bits_per_pixel, base, fb->pitches[0],
7674                       plane_config->size);
7675
7676         plane_config->fb = intel_fb;
7677 }
7678
7679 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7680                                struct intel_crtc_state *pipe_config)
7681 {
7682         struct drm_device *dev = crtc->base.dev;
7683         struct drm_i915_private *dev_priv = dev->dev_private;
7684         int pipe = pipe_config->cpu_transcoder;
7685         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7686         intel_clock_t clock;
7687         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7688         int refclk = 100000;
7689
7690         mutex_lock(&dev_priv->dpio_lock);
7691         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7692         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7693         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7694         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7695         mutex_unlock(&dev_priv->dpio_lock);
7696
7697         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7698         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7699         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7700         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7701         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7702
7703         chv_clock(refclk, &clock);
7704
7705         /* clock.dot is the fast clock */
7706         pipe_config->port_clock = clock.dot / 5;
7707 }
7708
7709 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7710                                  struct intel_crtc_state *pipe_config)
7711 {
7712         struct drm_device *dev = crtc->base.dev;
7713         struct drm_i915_private *dev_priv = dev->dev_private;
7714         uint32_t tmp;
7715
7716         if (!intel_display_power_is_enabled(dev_priv,
7717                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7718                 return false;
7719
7720         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7721         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7722
7723         tmp = I915_READ(PIPECONF(crtc->pipe));
7724         if (!(tmp & PIPECONF_ENABLE))
7725                 return false;
7726
7727         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7728                 switch (tmp & PIPECONF_BPC_MASK) {
7729                 case PIPECONF_6BPC:
7730                         pipe_config->pipe_bpp = 18;
7731                         break;
7732                 case PIPECONF_8BPC:
7733                         pipe_config->pipe_bpp = 24;
7734                         break;
7735                 case PIPECONF_10BPC:
7736                         pipe_config->pipe_bpp = 30;
7737                         break;
7738                 default:
7739                         break;
7740                 }
7741         }
7742
7743         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7744                 pipe_config->limited_color_range = true;
7745
7746         if (INTEL_INFO(dev)->gen < 4)
7747                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7748
7749         intel_get_pipe_timings(crtc, pipe_config);
7750
7751         i9xx_get_pfit_config(crtc, pipe_config);
7752
7753         if (INTEL_INFO(dev)->gen >= 4) {
7754                 tmp = I915_READ(DPLL_MD(crtc->pipe));
7755                 pipe_config->pixel_multiplier =
7756                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7757                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7758                 pipe_config->dpll_hw_state.dpll_md = tmp;
7759         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7760                 tmp = I915_READ(DPLL(crtc->pipe));
7761                 pipe_config->pixel_multiplier =
7762                         ((tmp & SDVO_MULTIPLIER_MASK)
7763                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7764         } else {
7765                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7766                  * port and will be fixed up in the encoder->get_config
7767                  * function. */
7768                 pipe_config->pixel_multiplier = 1;
7769         }
7770         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7771         if (!IS_VALLEYVIEW(dev)) {
7772                 /*
7773                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7774                  * on 830. Filter it out here so that we don't
7775                  * report errors due to that.
7776                  */
7777                 if (IS_I830(dev))
7778                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7779
7780                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7781                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7782         } else {
7783                 /* Mask out read-only status bits. */
7784                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7785                                                      DPLL_PORTC_READY_MASK |
7786                                                      DPLL_PORTB_READY_MASK);
7787         }
7788
7789         if (IS_CHERRYVIEW(dev))
7790                 chv_crtc_clock_get(crtc, pipe_config);
7791         else if (IS_VALLEYVIEW(dev))
7792                 vlv_crtc_clock_get(crtc, pipe_config);
7793         else
7794                 i9xx_crtc_clock_get(crtc, pipe_config);
7795
7796         return true;
7797 }
7798
7799 static void ironlake_init_pch_refclk(struct drm_device *dev)
7800 {
7801         struct drm_i915_private *dev_priv = dev->dev_private;
7802         struct intel_encoder *encoder;
7803         u32 val, final;
7804         bool has_lvds = false;
7805         bool has_cpu_edp = false;
7806         bool has_panel = false;
7807         bool has_ck505 = false;
7808         bool can_ssc = false;
7809
7810         /* We need to take the global config into account */
7811         for_each_intel_encoder(dev, encoder) {
7812                 switch (encoder->type) {
7813                 case INTEL_OUTPUT_LVDS:
7814                         has_panel = true;
7815                         has_lvds = true;
7816                         break;
7817                 case INTEL_OUTPUT_EDP:
7818                         has_panel = true;
7819                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7820                                 has_cpu_edp = true;
7821                         break;
7822                 default:
7823                         break;
7824                 }
7825         }
7826
7827         if (HAS_PCH_IBX(dev)) {
7828                 has_ck505 = dev_priv->vbt.display_clock_mode;
7829                 can_ssc = has_ck505;
7830         } else {
7831                 has_ck505 = false;
7832                 can_ssc = true;
7833         }
7834
7835         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7836                       has_panel, has_lvds, has_ck505);
7837
7838         /* Ironlake: try to setup display ref clock before DPLL
7839          * enabling. This is only under driver's control after
7840          * PCH B stepping, previous chipset stepping should be
7841          * ignoring this setting.
7842          */
7843         val = I915_READ(PCH_DREF_CONTROL);
7844
7845         /* As we must carefully and slowly disable/enable each source in turn,
7846          * compute the final state we want first and check if we need to
7847          * make any changes at all.
7848          */
7849         final = val;
7850         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7851         if (has_ck505)
7852                 final |= DREF_NONSPREAD_CK505_ENABLE;
7853         else
7854                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7855
7856         final &= ~DREF_SSC_SOURCE_MASK;
7857         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7858         final &= ~DREF_SSC1_ENABLE;
7859
7860         if (has_panel) {
7861                 final |= DREF_SSC_SOURCE_ENABLE;
7862
7863                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7864                         final |= DREF_SSC1_ENABLE;
7865
7866                 if (has_cpu_edp) {
7867                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7868                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7869                         else
7870                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7871                 } else
7872                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7873         } else {
7874                 final |= DREF_SSC_SOURCE_DISABLE;
7875                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7876         }
7877
7878         if (final == val)
7879                 return;
7880
7881         /* Always enable nonspread source */
7882         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7883
7884         if (has_ck505)
7885                 val |= DREF_NONSPREAD_CK505_ENABLE;
7886         else
7887                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7888
7889         if (has_panel) {
7890                 val &= ~DREF_SSC_SOURCE_MASK;
7891                 val |= DREF_SSC_SOURCE_ENABLE;
7892
7893                 /* SSC must be turned on before enabling the CPU output  */
7894                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7895                         DRM_DEBUG_KMS("Using SSC on panel\n");
7896                         val |= DREF_SSC1_ENABLE;
7897                 } else
7898                         val &= ~DREF_SSC1_ENABLE;
7899
7900                 /* Get SSC going before enabling the outputs */
7901                 I915_WRITE(PCH_DREF_CONTROL, val);
7902                 POSTING_READ(PCH_DREF_CONTROL);
7903                 udelay(200);
7904
7905                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7906
7907                 /* Enable CPU source on CPU attached eDP */
7908                 if (has_cpu_edp) {
7909                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7910                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7911                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7912                         } else
7913                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7914                 } else
7915                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7916
7917                 I915_WRITE(PCH_DREF_CONTROL, val);
7918                 POSTING_READ(PCH_DREF_CONTROL);
7919                 udelay(200);
7920         } else {
7921                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7922
7923                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7924
7925                 /* Turn off CPU output */
7926                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7927
7928                 I915_WRITE(PCH_DREF_CONTROL, val);
7929                 POSTING_READ(PCH_DREF_CONTROL);
7930                 udelay(200);
7931
7932                 /* Turn off the SSC source */
7933                 val &= ~DREF_SSC_SOURCE_MASK;
7934                 val |= DREF_SSC_SOURCE_DISABLE;
7935
7936                 /* Turn off SSC1 */
7937                 val &= ~DREF_SSC1_ENABLE;
7938
7939                 I915_WRITE(PCH_DREF_CONTROL, val);
7940                 POSTING_READ(PCH_DREF_CONTROL);
7941                 udelay(200);
7942         }
7943
7944         BUG_ON(val != final);
7945 }
7946
7947 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7948 {
7949         uint32_t tmp;
7950
7951         tmp = I915_READ(SOUTH_CHICKEN2);
7952         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7953         I915_WRITE(SOUTH_CHICKEN2, tmp);
7954
7955         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7956                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7957                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7958
7959         tmp = I915_READ(SOUTH_CHICKEN2);
7960         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7961         I915_WRITE(SOUTH_CHICKEN2, tmp);
7962
7963         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7964                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7965                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7966 }
7967
7968 /* WaMPhyProgramming:hsw */
7969 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7970 {
7971         uint32_t tmp;
7972
7973         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7974         tmp &= ~(0xFF << 24);
7975         tmp |= (0x12 << 24);
7976         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7977
7978         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7979         tmp |= (1 << 11);
7980         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7981
7982         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7983         tmp |= (1 << 11);
7984         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7985
7986         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7987         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7988         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7989
7990         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7991         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7992         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7993
7994         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7995         tmp &= ~(7 << 13);
7996         tmp |= (5 << 13);
7997         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7998
7999         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8000         tmp &= ~(7 << 13);
8001         tmp |= (5 << 13);
8002         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8003
8004         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8005         tmp &= ~0xFF;
8006         tmp |= 0x1C;
8007         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8008
8009         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8010         tmp &= ~0xFF;
8011         tmp |= 0x1C;
8012         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8013
8014         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8015         tmp &= ~(0xFF << 16);
8016         tmp |= (0x1C << 16);
8017         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8018
8019         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8020         tmp &= ~(0xFF << 16);
8021         tmp |= (0x1C << 16);
8022         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8023
8024         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8025         tmp |= (1 << 27);
8026         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8027
8028         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8029         tmp |= (1 << 27);
8030         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8031
8032         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8033         tmp &= ~(0xF << 28);
8034         tmp |= (4 << 28);
8035         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8036
8037         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8038         tmp &= ~(0xF << 28);
8039         tmp |= (4 << 28);
8040         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8041 }
8042
8043 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8044  * Programming" based on the parameters passed:
8045  * - Sequence to enable CLKOUT_DP
8046  * - Sequence to enable CLKOUT_DP without spread
8047  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8048  */
8049 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8050                                  bool with_fdi)
8051 {
8052         struct drm_i915_private *dev_priv = dev->dev_private;
8053         uint32_t reg, tmp;
8054
8055         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8056                 with_spread = true;
8057         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8058                  with_fdi, "LP PCH doesn't have FDI\n"))
8059                 with_fdi = false;
8060
8061         mutex_lock(&dev_priv->dpio_lock);
8062
8063         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8064         tmp &= ~SBI_SSCCTL_DISABLE;
8065         tmp |= SBI_SSCCTL_PATHALT;
8066         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8067
8068         udelay(24);
8069
8070         if (with_spread) {
8071                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8072                 tmp &= ~SBI_SSCCTL_PATHALT;
8073                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8074
8075                 if (with_fdi) {
8076                         lpt_reset_fdi_mphy(dev_priv);
8077                         lpt_program_fdi_mphy(dev_priv);
8078                 }
8079         }
8080
8081         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8082                SBI_GEN0 : SBI_DBUFF0;
8083         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8084         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8085         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8086
8087         mutex_unlock(&dev_priv->dpio_lock);
8088 }
8089
8090 /* Sequence to disable CLKOUT_DP */
8091 static void lpt_disable_clkout_dp(struct drm_device *dev)
8092 {
8093         struct drm_i915_private *dev_priv = dev->dev_private;
8094         uint32_t reg, tmp;
8095
8096         mutex_lock(&dev_priv->dpio_lock);
8097
8098         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8099                SBI_GEN0 : SBI_DBUFF0;
8100         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8101         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8102         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8103
8104         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8105         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8106                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8107                         tmp |= SBI_SSCCTL_PATHALT;
8108                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8109                         udelay(32);
8110                 }
8111                 tmp |= SBI_SSCCTL_DISABLE;
8112                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8113         }
8114
8115         mutex_unlock(&dev_priv->dpio_lock);
8116 }
8117
8118 static void lpt_init_pch_refclk(struct drm_device *dev)
8119 {
8120         struct intel_encoder *encoder;
8121         bool has_vga = false;
8122
8123         for_each_intel_encoder(dev, encoder) {
8124                 switch (encoder->type) {
8125                 case INTEL_OUTPUT_ANALOG:
8126                         has_vga = true;
8127                         break;
8128                 default:
8129                         break;
8130                 }
8131         }
8132
8133         if (has_vga)
8134                 lpt_enable_clkout_dp(dev, true, true);
8135         else
8136                 lpt_disable_clkout_dp(dev);
8137 }
8138
8139 /*
8140  * Initialize reference clocks when the driver loads
8141  */
8142 void intel_init_pch_refclk(struct drm_device *dev)
8143 {
8144         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8145                 ironlake_init_pch_refclk(dev);
8146         else if (HAS_PCH_LPT(dev))
8147                 lpt_init_pch_refclk(dev);
8148 }
8149
8150 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8151 {
8152         struct drm_device *dev = crtc_state->base.crtc->dev;
8153         struct drm_i915_private *dev_priv = dev->dev_private;
8154         struct drm_atomic_state *state = crtc_state->base.state;
8155         struct drm_connector_state *connector_state;
8156         struct intel_encoder *encoder;
8157         int num_connectors = 0, i;
8158         bool is_lvds = false;
8159
8160         for (i = 0; i < state->num_connector; i++) {
8161                 if (!state->connectors[i])
8162                         continue;
8163
8164                 connector_state = state->connector_states[i];
8165                 if (connector_state->crtc != crtc_state->base.crtc)
8166                         continue;
8167
8168                 encoder = to_intel_encoder(connector_state->best_encoder);
8169
8170                 switch (encoder->type) {
8171                 case INTEL_OUTPUT_LVDS:
8172                         is_lvds = true;
8173                         break;
8174                 default:
8175                         break;
8176                 }
8177                 num_connectors++;
8178         }
8179
8180         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8181                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8182                               dev_priv->vbt.lvds_ssc_freq);
8183                 return dev_priv->vbt.lvds_ssc_freq;
8184         }
8185
8186         return 120000;
8187 }
8188
8189 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8190 {
8191         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8193         int pipe = intel_crtc->pipe;
8194         uint32_t val;
8195
8196         val = 0;
8197
8198         switch (intel_crtc->config->pipe_bpp) {
8199         case 18:
8200                 val |= PIPECONF_6BPC;
8201                 break;
8202         case 24:
8203                 val |= PIPECONF_8BPC;
8204                 break;
8205         case 30:
8206                 val |= PIPECONF_10BPC;
8207                 break;
8208         case 36:
8209                 val |= PIPECONF_12BPC;
8210                 break;
8211         default:
8212                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8213                 BUG();
8214         }
8215
8216         if (intel_crtc->config->dither)
8217                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8218
8219         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8220                 val |= PIPECONF_INTERLACED_ILK;
8221         else
8222                 val |= PIPECONF_PROGRESSIVE;
8223
8224         if (intel_crtc->config->limited_color_range)
8225                 val |= PIPECONF_COLOR_RANGE_SELECT;
8226
8227         I915_WRITE(PIPECONF(pipe), val);
8228         POSTING_READ(PIPECONF(pipe));
8229 }
8230
8231 /*
8232  * Set up the pipe CSC unit.
8233  *
8234  * Currently only full range RGB to limited range RGB conversion
8235  * is supported, but eventually this should handle various
8236  * RGB<->YCbCr scenarios as well.
8237  */
8238 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8239 {
8240         struct drm_device *dev = crtc->dev;
8241         struct drm_i915_private *dev_priv = dev->dev_private;
8242         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8243         int pipe = intel_crtc->pipe;
8244         uint16_t coeff = 0x7800; /* 1.0 */
8245
8246         /*
8247          * TODO: Check what kind of values actually come out of the pipe
8248          * with these coeff/postoff values and adjust to get the best
8249          * accuracy. Perhaps we even need to take the bpc value into
8250          * consideration.
8251          */
8252
8253         if (intel_crtc->config->limited_color_range)
8254                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8255
8256         /*
8257          * GY/GU and RY/RU should be the other way around according
8258          * to BSpec, but reality doesn't agree. Just set them up in
8259          * a way that results in the correct picture.
8260          */
8261         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8262         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8263
8264         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8265         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8266
8267         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8268         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8269
8270         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8271         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8272         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8273
8274         if (INTEL_INFO(dev)->gen > 6) {
8275                 uint16_t postoff = 0;
8276
8277                 if (intel_crtc->config->limited_color_range)
8278                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8279
8280                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8281                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8282                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8283
8284                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8285         } else {
8286                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8287
8288                 if (intel_crtc->config->limited_color_range)
8289                         mode |= CSC_BLACK_SCREEN_OFFSET;
8290
8291                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8292         }
8293 }
8294
8295 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8296 {
8297         struct drm_device *dev = crtc->dev;
8298         struct drm_i915_private *dev_priv = dev->dev_private;
8299         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8300         enum pipe pipe = intel_crtc->pipe;
8301         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8302         uint32_t val;
8303
8304         val = 0;
8305
8306         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8307                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8308
8309         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8310                 val |= PIPECONF_INTERLACED_ILK;
8311         else
8312                 val |= PIPECONF_PROGRESSIVE;
8313
8314         I915_WRITE(PIPECONF(cpu_transcoder), val);
8315         POSTING_READ(PIPECONF(cpu_transcoder));
8316
8317         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8318         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8319
8320         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8321                 val = 0;
8322
8323                 switch (intel_crtc->config->pipe_bpp) {
8324                 case 18:
8325                         val |= PIPEMISC_DITHER_6_BPC;
8326                         break;
8327                 case 24:
8328                         val |= PIPEMISC_DITHER_8_BPC;
8329                         break;
8330                 case 30:
8331                         val |= PIPEMISC_DITHER_10_BPC;
8332                         break;
8333                 case 36:
8334                         val |= PIPEMISC_DITHER_12_BPC;
8335                         break;
8336                 default:
8337                         /* Case prevented by pipe_config_set_bpp. */
8338                         BUG();
8339                 }
8340
8341                 if (intel_crtc->config->dither)
8342                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8343
8344                 I915_WRITE(PIPEMISC(pipe), val);
8345         }
8346 }
8347
8348 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8349                                     struct intel_crtc_state *crtc_state,
8350                                     intel_clock_t *clock,
8351                                     bool *has_reduced_clock,
8352                                     intel_clock_t *reduced_clock)
8353 {
8354         struct drm_device *dev = crtc->dev;
8355         struct drm_i915_private *dev_priv = dev->dev_private;
8356         int refclk;
8357         const intel_limit_t *limit;
8358         bool ret, is_lvds = false;
8359
8360         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8361
8362         refclk = ironlake_get_refclk(crtc_state);
8363
8364         /*
8365          * Returns a set of divisors for the desired target clock with the given
8366          * refclk, or FALSE.  The returned values represent the clock equation:
8367          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8368          */
8369         limit = intel_limit(crtc_state, refclk);
8370         ret = dev_priv->display.find_dpll(limit, crtc_state,
8371                                           crtc_state->port_clock,
8372                                           refclk, NULL, clock);
8373         if (!ret)
8374                 return false;
8375
8376         if (is_lvds && dev_priv->lvds_downclock_avail) {
8377                 /*
8378                  * Ensure we match the reduced clock's P to the target clock.
8379                  * If the clocks don't match, we can't switch the display clock
8380                  * by using the FP0/FP1. In such case we will disable the LVDS
8381                  * downclock feature.
8382                 */
8383                 *has_reduced_clock =
8384                         dev_priv->display.find_dpll(limit, crtc_state,
8385                                                     dev_priv->lvds_downclock,
8386                                                     refclk, clock,
8387                                                     reduced_clock);
8388         }
8389
8390         return true;
8391 }
8392
8393 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8394 {
8395         /*
8396          * Account for spread spectrum to avoid
8397          * oversubscribing the link. Max center spread
8398          * is 2.5%; use 5% for safety's sake.
8399          */
8400         u32 bps = target_clock * bpp * 21 / 20;
8401         return DIV_ROUND_UP(bps, link_bw * 8);
8402 }
8403
8404 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8405 {
8406         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8407 }
8408
8409 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8410                                       struct intel_crtc_state *crtc_state,
8411                                       u32 *fp,
8412                                       intel_clock_t *reduced_clock, u32 *fp2)
8413 {
8414         struct drm_crtc *crtc = &intel_crtc->base;
8415         struct drm_device *dev = crtc->dev;
8416         struct drm_i915_private *dev_priv = dev->dev_private;
8417         struct drm_atomic_state *state = crtc_state->base.state;
8418         struct drm_connector_state *connector_state;
8419         struct intel_encoder *encoder;
8420         uint32_t dpll;
8421         int factor, num_connectors = 0, i;
8422         bool is_lvds = false, is_sdvo = false;
8423
8424         for (i = 0; i < state->num_connector; i++) {
8425                 if (!state->connectors[i])
8426                         continue;
8427
8428                 connector_state = state->connector_states[i];
8429                 if (connector_state->crtc != crtc_state->base.crtc)
8430                         continue;
8431
8432                 encoder = to_intel_encoder(connector_state->best_encoder);
8433
8434                 switch (encoder->type) {
8435                 case INTEL_OUTPUT_LVDS:
8436                         is_lvds = true;
8437                         break;
8438                 case INTEL_OUTPUT_SDVO:
8439                 case INTEL_OUTPUT_HDMI:
8440                         is_sdvo = true;
8441                         break;
8442                 default:
8443                         break;
8444                 }
8445
8446                 num_connectors++;
8447         }
8448
8449         /* Enable autotuning of the PLL clock (if permissible) */
8450         factor = 21;
8451         if (is_lvds) {
8452                 if ((intel_panel_use_ssc(dev_priv) &&
8453                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8454                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8455                         factor = 25;
8456         } else if (crtc_state->sdvo_tv_clock)
8457                 factor = 20;
8458
8459         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8460                 *fp |= FP_CB_TUNE;
8461
8462         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8463                 *fp2 |= FP_CB_TUNE;
8464
8465         dpll = 0;
8466
8467         if (is_lvds)
8468                 dpll |= DPLLB_MODE_LVDS;
8469         else
8470                 dpll |= DPLLB_MODE_DAC_SERIAL;
8471
8472         dpll |= (crtc_state->pixel_multiplier - 1)
8473                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8474
8475         if (is_sdvo)
8476                 dpll |= DPLL_SDVO_HIGH_SPEED;
8477         if (crtc_state->has_dp_encoder)
8478                 dpll |= DPLL_SDVO_HIGH_SPEED;
8479
8480         /* compute bitmask from p1 value */
8481         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8482         /* also FPA1 */
8483         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8484
8485         switch (crtc_state->dpll.p2) {
8486         case 5:
8487                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8488                 break;
8489         case 7:
8490                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8491                 break;
8492         case 10:
8493                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8494                 break;
8495         case 14:
8496                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8497                 break;
8498         }
8499
8500         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8501                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8502         else
8503                 dpll |= PLL_REF_INPUT_DREFCLK;
8504
8505         return dpll | DPLL_VCO_ENABLE;
8506 }
8507
8508 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8509                                        struct intel_crtc_state *crtc_state)
8510 {
8511         struct drm_device *dev = crtc->base.dev;
8512         intel_clock_t clock, reduced_clock;
8513         u32 dpll = 0, fp = 0, fp2 = 0;
8514         bool ok, has_reduced_clock = false;
8515         bool is_lvds = false;
8516         struct intel_shared_dpll *pll;
8517
8518         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8519
8520         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8521              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8522
8523         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8524                                      &has_reduced_clock, &reduced_clock);
8525         if (!ok && !crtc_state->clock_set) {
8526                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8527                 return -EINVAL;
8528         }
8529         /* Compat-code for transition, will disappear. */
8530         if (!crtc_state->clock_set) {
8531                 crtc_state->dpll.n = clock.n;
8532                 crtc_state->dpll.m1 = clock.m1;
8533                 crtc_state->dpll.m2 = clock.m2;
8534                 crtc_state->dpll.p1 = clock.p1;
8535                 crtc_state->dpll.p2 = clock.p2;
8536         }
8537
8538         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8539         if (crtc_state->has_pch_encoder) {
8540                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8541                 if (has_reduced_clock)
8542                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8543
8544                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8545                                              &fp, &reduced_clock,
8546                                              has_reduced_clock ? &fp2 : NULL);
8547
8548                 crtc_state->dpll_hw_state.dpll = dpll;
8549                 crtc_state->dpll_hw_state.fp0 = fp;
8550                 if (has_reduced_clock)
8551                         crtc_state->dpll_hw_state.fp1 = fp2;
8552                 else
8553                         crtc_state->dpll_hw_state.fp1 = fp;
8554
8555                 pll = intel_get_shared_dpll(crtc, crtc_state);
8556                 if (pll == NULL) {
8557                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8558                                          pipe_name(crtc->pipe));
8559                         return -EINVAL;
8560                 }
8561         }
8562
8563         if (is_lvds && has_reduced_clock)
8564                 crtc->lowfreq_avail = true;
8565         else
8566                 crtc->lowfreq_avail = false;
8567
8568         return 0;
8569 }
8570
8571 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8572                                          struct intel_link_m_n *m_n)
8573 {
8574         struct drm_device *dev = crtc->base.dev;
8575         struct drm_i915_private *dev_priv = dev->dev_private;
8576         enum pipe pipe = crtc->pipe;
8577
8578         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8579         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8580         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8581                 & ~TU_SIZE_MASK;
8582         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8583         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8584                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8585 }
8586
8587 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8588                                          enum transcoder transcoder,
8589                                          struct intel_link_m_n *m_n,
8590                                          struct intel_link_m_n *m2_n2)
8591 {
8592         struct drm_device *dev = crtc->base.dev;
8593         struct drm_i915_private *dev_priv = dev->dev_private;
8594         enum pipe pipe = crtc->pipe;
8595
8596         if (INTEL_INFO(dev)->gen >= 5) {
8597                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8598                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8599                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8600                         & ~TU_SIZE_MASK;
8601                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8602                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8603                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8604                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8605                  * gen < 8) and if DRRS is supported (to make sure the
8606                  * registers are not unnecessarily read).
8607                  */
8608                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8609                         crtc->config->has_drrs) {
8610                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8611                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8612                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8613                                         & ~TU_SIZE_MASK;
8614                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8615                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8616                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8617                 }
8618         } else {
8619                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8620                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8621                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8622                         & ~TU_SIZE_MASK;
8623                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8624                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8625                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8626         }
8627 }
8628
8629 void intel_dp_get_m_n(struct intel_crtc *crtc,
8630                       struct intel_crtc_state *pipe_config)
8631 {
8632         if (pipe_config->has_pch_encoder)
8633                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8634         else
8635                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8636                                              &pipe_config->dp_m_n,
8637                                              &pipe_config->dp_m2_n2);
8638 }
8639
8640 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8641                                         struct intel_crtc_state *pipe_config)
8642 {
8643         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8644                                      &pipe_config->fdi_m_n, NULL);
8645 }
8646
8647 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8648                                     struct intel_crtc_state *pipe_config)
8649 {
8650         struct drm_device *dev = crtc->base.dev;
8651         struct drm_i915_private *dev_priv = dev->dev_private;
8652         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8653         uint32_t ps_ctrl = 0;
8654         int id = -1;
8655         int i;
8656
8657         /* find scaler attached to this pipe */
8658         for (i = 0; i < crtc->num_scalers; i++) {
8659                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8660                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8661                         id = i;
8662                         pipe_config->pch_pfit.enabled = true;
8663                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8664                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8665                         break;
8666                 }
8667         }
8668
8669         scaler_state->scaler_id = id;
8670         if (id >= 0) {
8671                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8672         } else {
8673                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8674         }
8675 }
8676
8677 static void
8678 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8679                                  struct intel_initial_plane_config *plane_config)
8680 {
8681         struct drm_device *dev = crtc->base.dev;
8682         struct drm_i915_private *dev_priv = dev->dev_private;
8683         u32 val, base, offset, stride_mult, tiling;
8684         int pipe = crtc->pipe;
8685         int fourcc, pixel_format;
8686         unsigned int aligned_height;
8687         struct drm_framebuffer *fb;
8688         struct intel_framebuffer *intel_fb;
8689
8690         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8691         if (!intel_fb) {
8692                 DRM_DEBUG_KMS("failed to alloc fb\n");
8693                 return;
8694         }
8695
8696         fb = &intel_fb->base;
8697
8698         val = I915_READ(PLANE_CTL(pipe, 0));
8699         if (!(val & PLANE_CTL_ENABLE))
8700                 goto error;
8701
8702         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8703         fourcc = skl_format_to_fourcc(pixel_format,
8704                                       val & PLANE_CTL_ORDER_RGBX,
8705                                       val & PLANE_CTL_ALPHA_MASK);
8706         fb->pixel_format = fourcc;
8707         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8708
8709         tiling = val & PLANE_CTL_TILED_MASK;
8710         switch (tiling) {
8711         case PLANE_CTL_TILED_LINEAR:
8712                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8713                 break;
8714         case PLANE_CTL_TILED_X:
8715                 plane_config->tiling = I915_TILING_X;
8716                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8717                 break;
8718         case PLANE_CTL_TILED_Y:
8719                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8720                 break;
8721         case PLANE_CTL_TILED_YF:
8722                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8723                 break;
8724         default:
8725                 MISSING_CASE(tiling);
8726                 goto error;
8727         }
8728
8729         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8730         plane_config->base = base;
8731
8732         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8733
8734         val = I915_READ(PLANE_SIZE(pipe, 0));
8735         fb->height = ((val >> 16) & 0xfff) + 1;
8736         fb->width = ((val >> 0) & 0x1fff) + 1;
8737
8738         val = I915_READ(PLANE_STRIDE(pipe, 0));
8739         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8740                                                 fb->pixel_format);
8741         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8742
8743         aligned_height = intel_fb_align_height(dev, fb->height,
8744                                                fb->pixel_format,
8745                                                fb->modifier[0]);
8746
8747         plane_config->size = fb->pitches[0] * aligned_height;
8748
8749         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8750                       pipe_name(pipe), fb->width, fb->height,
8751                       fb->bits_per_pixel, base, fb->pitches[0],
8752                       plane_config->size);
8753
8754         plane_config->fb = intel_fb;
8755         return;
8756
8757 error:
8758         kfree(fb);
8759 }
8760
8761 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8762                                      struct intel_crtc_state *pipe_config)
8763 {
8764         struct drm_device *dev = crtc->base.dev;
8765         struct drm_i915_private *dev_priv = dev->dev_private;
8766         uint32_t tmp;
8767
8768         tmp = I915_READ(PF_CTL(crtc->pipe));
8769
8770         if (tmp & PF_ENABLE) {
8771                 pipe_config->pch_pfit.enabled = true;
8772                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8773                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8774
8775                 /* We currently do not free assignements of panel fitters on
8776                  * ivb/hsw (since we don't use the higher upscaling modes which
8777                  * differentiates them) so just WARN about this case for now. */
8778                 if (IS_GEN7(dev)) {
8779                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8780                                 PF_PIPE_SEL_IVB(crtc->pipe));
8781                 }
8782         }
8783 }
8784
8785 static void
8786 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8787                                   struct intel_initial_plane_config *plane_config)
8788 {
8789         struct drm_device *dev = crtc->base.dev;
8790         struct drm_i915_private *dev_priv = dev->dev_private;
8791         u32 val, base, offset;
8792         int pipe = crtc->pipe;
8793         int fourcc, pixel_format;
8794         unsigned int aligned_height;
8795         struct drm_framebuffer *fb;
8796         struct intel_framebuffer *intel_fb;
8797
8798         val = I915_READ(DSPCNTR(pipe));
8799         if (!(val & DISPLAY_PLANE_ENABLE))
8800                 return;
8801
8802         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8803         if (!intel_fb) {
8804                 DRM_DEBUG_KMS("failed to alloc fb\n");
8805                 return;
8806         }
8807
8808         fb = &intel_fb->base;
8809
8810         if (INTEL_INFO(dev)->gen >= 4) {
8811                 if (val & DISPPLANE_TILED) {
8812                         plane_config->tiling = I915_TILING_X;
8813                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8814                 }
8815         }
8816
8817         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8818         fourcc = i9xx_format_to_fourcc(pixel_format);
8819         fb->pixel_format = fourcc;
8820         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8821
8822         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8823         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8824                 offset = I915_READ(DSPOFFSET(pipe));
8825         } else {
8826                 if (plane_config->tiling)
8827                         offset = I915_READ(DSPTILEOFF(pipe));
8828                 else
8829                         offset = I915_READ(DSPLINOFF(pipe));
8830         }
8831         plane_config->base = base;
8832
8833         val = I915_READ(PIPESRC(pipe));
8834         fb->width = ((val >> 16) & 0xfff) + 1;
8835         fb->height = ((val >> 0) & 0xfff) + 1;
8836
8837         val = I915_READ(DSPSTRIDE(pipe));
8838         fb->pitches[0] = val & 0xffffffc0;
8839
8840         aligned_height = intel_fb_align_height(dev, fb->height,
8841                                                fb->pixel_format,
8842                                                fb->modifier[0]);
8843
8844         plane_config->size = fb->pitches[0] * aligned_height;
8845
8846         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8847                       pipe_name(pipe), fb->width, fb->height,
8848                       fb->bits_per_pixel, base, fb->pitches[0],
8849                       plane_config->size);
8850
8851         plane_config->fb = intel_fb;
8852 }
8853
8854 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8855                                      struct intel_crtc_state *pipe_config)
8856 {
8857         struct drm_device *dev = crtc->base.dev;
8858         struct drm_i915_private *dev_priv = dev->dev_private;
8859         uint32_t tmp;
8860
8861         if (!intel_display_power_is_enabled(dev_priv,
8862                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8863                 return false;
8864
8865         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8866         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8867
8868         tmp = I915_READ(PIPECONF(crtc->pipe));
8869         if (!(tmp & PIPECONF_ENABLE))
8870                 return false;
8871
8872         switch (tmp & PIPECONF_BPC_MASK) {
8873         case PIPECONF_6BPC:
8874                 pipe_config->pipe_bpp = 18;
8875                 break;
8876         case PIPECONF_8BPC:
8877                 pipe_config->pipe_bpp = 24;
8878                 break;
8879         case PIPECONF_10BPC:
8880                 pipe_config->pipe_bpp = 30;
8881                 break;
8882         case PIPECONF_12BPC:
8883                 pipe_config->pipe_bpp = 36;
8884                 break;
8885         default:
8886                 break;
8887         }
8888
8889         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8890                 pipe_config->limited_color_range = true;
8891
8892         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8893                 struct intel_shared_dpll *pll;
8894
8895                 pipe_config->has_pch_encoder = true;
8896
8897                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8898                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8899                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8900
8901                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8902
8903                 if (HAS_PCH_IBX(dev_priv->dev)) {
8904                         pipe_config->shared_dpll =
8905                                 (enum intel_dpll_id) crtc->pipe;
8906                 } else {
8907                         tmp = I915_READ(PCH_DPLL_SEL);
8908                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8909                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8910                         else
8911                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8912                 }
8913
8914                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8915
8916                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8917                                            &pipe_config->dpll_hw_state));
8918
8919                 tmp = pipe_config->dpll_hw_state.dpll;
8920                 pipe_config->pixel_multiplier =
8921                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8922                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8923
8924                 ironlake_pch_clock_get(crtc, pipe_config);
8925         } else {
8926                 pipe_config->pixel_multiplier = 1;
8927         }
8928
8929         intel_get_pipe_timings(crtc, pipe_config);
8930
8931         ironlake_get_pfit_config(crtc, pipe_config);
8932
8933         return true;
8934 }
8935
8936 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8937 {
8938         struct drm_device *dev = dev_priv->dev;
8939         struct intel_crtc *crtc;
8940
8941         for_each_intel_crtc(dev, crtc)
8942                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8943                      pipe_name(crtc->pipe));
8944
8945         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8946         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8947         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8948         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8949         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8950         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8951              "CPU PWM1 enabled\n");
8952         if (IS_HASWELL(dev))
8953                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8954                      "CPU PWM2 enabled\n");
8955         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8956              "PCH PWM1 enabled\n");
8957         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8958              "Utility pin enabled\n");
8959         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8960
8961         /*
8962          * In theory we can still leave IRQs enabled, as long as only the HPD
8963          * interrupts remain enabled. We used to check for that, but since it's
8964          * gen-specific and since we only disable LCPLL after we fully disable
8965          * the interrupts, the check below should be enough.
8966          */
8967         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8968 }
8969
8970 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8971 {
8972         struct drm_device *dev = dev_priv->dev;
8973
8974         if (IS_HASWELL(dev))
8975                 return I915_READ(D_COMP_HSW);
8976         else
8977                 return I915_READ(D_COMP_BDW);
8978 }
8979
8980 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8981 {
8982         struct drm_device *dev = dev_priv->dev;
8983
8984         if (IS_HASWELL(dev)) {
8985                 mutex_lock(&dev_priv->rps.hw_lock);
8986                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8987                                             val))
8988                         DRM_ERROR("Failed to write to D_COMP\n");
8989                 mutex_unlock(&dev_priv->rps.hw_lock);
8990         } else {
8991                 I915_WRITE(D_COMP_BDW, val);
8992                 POSTING_READ(D_COMP_BDW);
8993         }
8994 }
8995
8996 /*
8997  * This function implements pieces of two sequences from BSpec:
8998  * - Sequence for display software to disable LCPLL
8999  * - Sequence for display software to allow package C8+
9000  * The steps implemented here are just the steps that actually touch the LCPLL
9001  * register. Callers should take care of disabling all the display engine
9002  * functions, doing the mode unset, fixing interrupts, etc.
9003  */
9004 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9005                               bool switch_to_fclk, bool allow_power_down)
9006 {
9007         uint32_t val;
9008
9009         assert_can_disable_lcpll(dev_priv);
9010
9011         val = I915_READ(LCPLL_CTL);
9012
9013         if (switch_to_fclk) {
9014                 val |= LCPLL_CD_SOURCE_FCLK;
9015                 I915_WRITE(LCPLL_CTL, val);
9016
9017                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9018                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9019                         DRM_ERROR("Switching to FCLK failed\n");
9020
9021                 val = I915_READ(LCPLL_CTL);
9022         }
9023
9024         val |= LCPLL_PLL_DISABLE;
9025         I915_WRITE(LCPLL_CTL, val);
9026         POSTING_READ(LCPLL_CTL);
9027
9028         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9029                 DRM_ERROR("LCPLL still locked\n");
9030
9031         val = hsw_read_dcomp(dev_priv);
9032         val |= D_COMP_COMP_DISABLE;
9033         hsw_write_dcomp(dev_priv, val);
9034         ndelay(100);
9035
9036         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9037                      1))
9038                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9039
9040         if (allow_power_down) {
9041                 val = I915_READ(LCPLL_CTL);
9042                 val |= LCPLL_POWER_DOWN_ALLOW;
9043                 I915_WRITE(LCPLL_CTL, val);
9044                 POSTING_READ(LCPLL_CTL);
9045         }
9046 }
9047
9048 /*
9049  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9050  * source.
9051  */
9052 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9053 {
9054         uint32_t val;
9055
9056         val = I915_READ(LCPLL_CTL);
9057
9058         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9059                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9060                 return;
9061
9062         /*
9063          * Make sure we're not on PC8 state before disabling PC8, otherwise
9064          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9065          */
9066         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9067
9068         if (val & LCPLL_POWER_DOWN_ALLOW) {
9069                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9070                 I915_WRITE(LCPLL_CTL, val);
9071                 POSTING_READ(LCPLL_CTL);
9072         }
9073
9074         val = hsw_read_dcomp(dev_priv);
9075         val |= D_COMP_COMP_FORCE;
9076         val &= ~D_COMP_COMP_DISABLE;
9077         hsw_write_dcomp(dev_priv, val);
9078
9079         val = I915_READ(LCPLL_CTL);
9080         val &= ~LCPLL_PLL_DISABLE;
9081         I915_WRITE(LCPLL_CTL, val);
9082
9083         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9084                 DRM_ERROR("LCPLL not locked yet\n");
9085
9086         if (val & LCPLL_CD_SOURCE_FCLK) {
9087                 val = I915_READ(LCPLL_CTL);
9088                 val &= ~LCPLL_CD_SOURCE_FCLK;
9089                 I915_WRITE(LCPLL_CTL, val);
9090
9091                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9092                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9093                         DRM_ERROR("Switching back to LCPLL failed\n");
9094         }
9095
9096         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9097 }
9098
9099 /*
9100  * Package states C8 and deeper are really deep PC states that can only be
9101  * reached when all the devices on the system allow it, so even if the graphics
9102  * device allows PC8+, it doesn't mean the system will actually get to these
9103  * states. Our driver only allows PC8+ when going into runtime PM.
9104  *
9105  * The requirements for PC8+ are that all the outputs are disabled, the power
9106  * well is disabled and most interrupts are disabled, and these are also
9107  * requirements for runtime PM. When these conditions are met, we manually do
9108  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9109  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9110  * hang the machine.
9111  *
9112  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9113  * the state of some registers, so when we come back from PC8+ we need to
9114  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9115  * need to take care of the registers kept by RC6. Notice that this happens even
9116  * if we don't put the device in PCI D3 state (which is what currently happens
9117  * because of the runtime PM support).
9118  *
9119  * For more, read "Display Sequences for Package C8" on the hardware
9120  * documentation.
9121  */
9122 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9123 {
9124         struct drm_device *dev = dev_priv->dev;
9125         uint32_t val;
9126
9127         DRM_DEBUG_KMS("Enabling package C8+\n");
9128
9129         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9130                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9131                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9132                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9133         }
9134
9135         lpt_disable_clkout_dp(dev);
9136         hsw_disable_lcpll(dev_priv, true, true);
9137 }
9138
9139 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9140 {
9141         struct drm_device *dev = dev_priv->dev;
9142         uint32_t val;
9143
9144         DRM_DEBUG_KMS("Disabling package C8+\n");
9145
9146         hsw_restore_lcpll(dev_priv);
9147         lpt_init_pch_refclk(dev);
9148
9149         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9150                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9151                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9152                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9153         }
9154
9155         intel_prepare_ddi(dev);
9156 }
9157
9158 static void broxton_modeset_global_resources(struct drm_atomic_state *state)
9159 {
9160         struct drm_device *dev = state->dev;
9161         struct drm_i915_private *dev_priv = dev->dev_private;
9162         int max_pixclk = intel_mode_max_pixclk(state);
9163         int req_cdclk;
9164
9165         /* see the comment in valleyview_modeset_global_resources */
9166         if (WARN_ON(max_pixclk < 0))
9167                 return;
9168
9169         req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9170
9171         if (req_cdclk != dev_priv->cdclk_freq)
9172                 broxton_set_cdclk(dev, req_cdclk);
9173 }
9174
9175 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9176                                       struct intel_crtc_state *crtc_state)
9177 {
9178         if (!intel_ddi_pll_select(crtc, crtc_state))
9179                 return -EINVAL;
9180
9181         crtc->lowfreq_avail = false;
9182
9183         return 0;
9184 }
9185
9186 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9187                                 enum port port,
9188                                 struct intel_crtc_state *pipe_config)
9189 {
9190         switch (port) {
9191         case PORT_A:
9192                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9193                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9194                 break;
9195         case PORT_B:
9196                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9197                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9198                 break;
9199         case PORT_C:
9200                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9201                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9202                 break;
9203         default:
9204                 DRM_ERROR("Incorrect port type\n");
9205         }
9206 }
9207
9208 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9209                                 enum port port,
9210                                 struct intel_crtc_state *pipe_config)
9211 {
9212         u32 temp, dpll_ctl1;
9213
9214         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9215         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9216
9217         switch (pipe_config->ddi_pll_sel) {
9218         case SKL_DPLL0:
9219                 /*
9220                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9221                  * of the shared DPLL framework and thus needs to be read out
9222                  * separately
9223                  */
9224                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9225                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9226                 break;
9227         case SKL_DPLL1:
9228                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9229                 break;
9230         case SKL_DPLL2:
9231                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9232                 break;
9233         case SKL_DPLL3:
9234                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9235                 break;
9236         }
9237 }
9238
9239 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9240                                 enum port port,
9241                                 struct intel_crtc_state *pipe_config)
9242 {
9243         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9244
9245         switch (pipe_config->ddi_pll_sel) {
9246         case PORT_CLK_SEL_WRPLL1:
9247                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9248                 break;
9249         case PORT_CLK_SEL_WRPLL2:
9250                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9251                 break;
9252         }
9253 }
9254
9255 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9256                                        struct intel_crtc_state *pipe_config)
9257 {
9258         struct drm_device *dev = crtc->base.dev;
9259         struct drm_i915_private *dev_priv = dev->dev_private;
9260         struct intel_shared_dpll *pll;
9261         enum port port;
9262         uint32_t tmp;
9263
9264         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9265
9266         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9267
9268         if (IS_SKYLAKE(dev))
9269                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9270         else if (IS_BROXTON(dev))
9271                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9272         else
9273                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9274
9275         if (pipe_config->shared_dpll >= 0) {
9276                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9277
9278                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9279                                            &pipe_config->dpll_hw_state));
9280         }
9281
9282         /*
9283          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9284          * DDI E. So just check whether this pipe is wired to DDI E and whether
9285          * the PCH transcoder is on.
9286          */
9287         if (INTEL_INFO(dev)->gen < 9 &&
9288             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9289                 pipe_config->has_pch_encoder = true;
9290
9291                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9292                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9293                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9294
9295                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9296         }
9297 }
9298
9299 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9300                                     struct intel_crtc_state *pipe_config)
9301 {
9302         struct drm_device *dev = crtc->base.dev;
9303         struct drm_i915_private *dev_priv = dev->dev_private;
9304         enum intel_display_power_domain pfit_domain;
9305         uint32_t tmp;
9306
9307         if (!intel_display_power_is_enabled(dev_priv,
9308                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9309                 return false;
9310
9311         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9312         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9313
9314         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9315         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9316                 enum pipe trans_edp_pipe;
9317                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9318                 default:
9319                         WARN(1, "unknown pipe linked to edp transcoder\n");
9320                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9321                 case TRANS_DDI_EDP_INPUT_A_ON:
9322                         trans_edp_pipe = PIPE_A;
9323                         break;
9324                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9325                         trans_edp_pipe = PIPE_B;
9326                         break;
9327                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9328                         trans_edp_pipe = PIPE_C;
9329                         break;
9330                 }
9331
9332                 if (trans_edp_pipe == crtc->pipe)
9333                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9334         }
9335
9336         if (!intel_display_power_is_enabled(dev_priv,
9337                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9338                 return false;
9339
9340         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9341         if (!(tmp & PIPECONF_ENABLE))
9342                 return false;
9343
9344         haswell_get_ddi_port_state(crtc, pipe_config);
9345
9346         intel_get_pipe_timings(crtc, pipe_config);
9347
9348         if (INTEL_INFO(dev)->gen >= 9) {
9349                 skl_init_scalers(dev, crtc, pipe_config);
9350         }
9351
9352         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9353         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9354                 if (INTEL_INFO(dev)->gen == 9)
9355                         skylake_get_pfit_config(crtc, pipe_config);
9356                 else if (INTEL_INFO(dev)->gen < 9)
9357                         ironlake_get_pfit_config(crtc, pipe_config);
9358                 else
9359                         MISSING_CASE(INTEL_INFO(dev)->gen);
9360
9361         } else {
9362                 pipe_config->scaler_state.scaler_id = -1;
9363                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9364         }
9365
9366         if (IS_HASWELL(dev))
9367                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9368                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9369
9370         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9371                 pipe_config->pixel_multiplier =
9372                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9373         } else {
9374                 pipe_config->pixel_multiplier = 1;
9375         }
9376
9377         return true;
9378 }
9379
9380 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9381 {
9382         struct drm_device *dev = crtc->dev;
9383         struct drm_i915_private *dev_priv = dev->dev_private;
9384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9385         uint32_t cntl = 0, size = 0;
9386
9387         if (base) {
9388                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9389                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9390                 unsigned int stride = roundup_pow_of_two(width) * 4;
9391
9392                 switch (stride) {
9393                 default:
9394                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9395                                   width, stride);
9396                         stride = 256;
9397                         /* fallthrough */
9398                 case 256:
9399                 case 512:
9400                 case 1024:
9401                 case 2048:
9402                         break;
9403                 }
9404
9405                 cntl |= CURSOR_ENABLE |
9406                         CURSOR_GAMMA_ENABLE |
9407                         CURSOR_FORMAT_ARGB |
9408                         CURSOR_STRIDE(stride);
9409
9410                 size = (height << 12) | width;
9411         }
9412
9413         if (intel_crtc->cursor_cntl != 0 &&
9414             (intel_crtc->cursor_base != base ||
9415              intel_crtc->cursor_size != size ||
9416              intel_crtc->cursor_cntl != cntl)) {
9417                 /* On these chipsets we can only modify the base/size/stride
9418                  * whilst the cursor is disabled.
9419                  */
9420                 I915_WRITE(_CURACNTR, 0);
9421                 POSTING_READ(_CURACNTR);
9422                 intel_crtc->cursor_cntl = 0;
9423         }
9424
9425         if (intel_crtc->cursor_base != base) {
9426                 I915_WRITE(_CURABASE, base);
9427                 intel_crtc->cursor_base = base;
9428         }
9429
9430         if (intel_crtc->cursor_size != size) {
9431                 I915_WRITE(CURSIZE, size);
9432                 intel_crtc->cursor_size = size;
9433         }
9434
9435         if (intel_crtc->cursor_cntl != cntl) {
9436                 I915_WRITE(_CURACNTR, cntl);
9437                 POSTING_READ(_CURACNTR);
9438                 intel_crtc->cursor_cntl = cntl;
9439         }
9440 }
9441
9442 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9443 {
9444         struct drm_device *dev = crtc->dev;
9445         struct drm_i915_private *dev_priv = dev->dev_private;
9446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9447         int pipe = intel_crtc->pipe;
9448         uint32_t cntl;
9449
9450         cntl = 0;
9451         if (base) {
9452                 cntl = MCURSOR_GAMMA_ENABLE;
9453                 switch (intel_crtc->base.cursor->state->crtc_w) {
9454                         case 64:
9455                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9456                                 break;
9457                         case 128:
9458                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9459                                 break;
9460                         case 256:
9461                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9462                                 break;
9463                         default:
9464                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9465                                 return;
9466                 }
9467                 cntl |= pipe << 28; /* Connect to correct pipe */
9468
9469                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9470                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9471         }
9472
9473         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9474                 cntl |= CURSOR_ROTATE_180;
9475
9476         if (intel_crtc->cursor_cntl != cntl) {
9477                 I915_WRITE(CURCNTR(pipe), cntl);
9478                 POSTING_READ(CURCNTR(pipe));
9479                 intel_crtc->cursor_cntl = cntl;
9480         }
9481
9482         /* and commit changes on next vblank */
9483         I915_WRITE(CURBASE(pipe), base);
9484         POSTING_READ(CURBASE(pipe));
9485
9486         intel_crtc->cursor_base = base;
9487 }
9488
9489 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9490 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9491                                      bool on)
9492 {
9493         struct drm_device *dev = crtc->dev;
9494         struct drm_i915_private *dev_priv = dev->dev_private;
9495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9496         int pipe = intel_crtc->pipe;
9497         int x = crtc->cursor_x;
9498         int y = crtc->cursor_y;
9499         u32 base = 0, pos = 0;
9500
9501         if (on)
9502                 base = intel_crtc->cursor_addr;
9503
9504         if (x >= intel_crtc->config->pipe_src_w)
9505                 base = 0;
9506
9507         if (y >= intel_crtc->config->pipe_src_h)
9508                 base = 0;
9509
9510         if (x < 0) {
9511                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9512                         base = 0;
9513
9514                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9515                 x = -x;
9516         }
9517         pos |= x << CURSOR_X_SHIFT;
9518
9519         if (y < 0) {
9520                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9521                         base = 0;
9522
9523                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9524                 y = -y;
9525         }
9526         pos |= y << CURSOR_Y_SHIFT;
9527
9528         if (base == 0 && intel_crtc->cursor_base == 0)
9529                 return;
9530
9531         I915_WRITE(CURPOS(pipe), pos);
9532
9533         /* ILK+ do this automagically */
9534         if (HAS_GMCH_DISPLAY(dev) &&
9535             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9536                 base += (intel_crtc->base.cursor->state->crtc_h *
9537                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9538         }
9539
9540         if (IS_845G(dev) || IS_I865G(dev))
9541                 i845_update_cursor(crtc, base);
9542         else
9543                 i9xx_update_cursor(crtc, base);
9544 }
9545
9546 static bool cursor_size_ok(struct drm_device *dev,
9547                            uint32_t width, uint32_t height)
9548 {
9549         if (width == 0 || height == 0)
9550                 return false;
9551
9552         /*
9553          * 845g/865g are special in that they are only limited by
9554          * the width of their cursors, the height is arbitrary up to
9555          * the precision of the register. Everything else requires
9556          * square cursors, limited to a few power-of-two sizes.
9557          */
9558         if (IS_845G(dev) || IS_I865G(dev)) {
9559                 if ((width & 63) != 0)
9560                         return false;
9561
9562                 if (width > (IS_845G(dev) ? 64 : 512))
9563                         return false;
9564
9565                 if (height > 1023)
9566                         return false;
9567         } else {
9568                 switch (width | height) {
9569                 case 256:
9570                 case 128:
9571                         if (IS_GEN2(dev))
9572                                 return false;
9573                 case 64:
9574                         break;
9575                 default:
9576                         return false;
9577                 }
9578         }
9579
9580         return true;
9581 }
9582
9583 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
9584                                  u16 *blue, uint32_t start, uint32_t size)
9585 {
9586         int end = (start + size > 256) ? 256 : start + size, i;
9587         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9588
9589         for (i = start; i < end; i++) {
9590                 intel_crtc->lut_r[i] = red[i] >> 8;
9591                 intel_crtc->lut_g[i] = green[i] >> 8;
9592                 intel_crtc->lut_b[i] = blue[i] >> 8;
9593         }
9594
9595         intel_crtc_load_lut(crtc);
9596 }
9597
9598 /* VESA 640x480x72Hz mode to set on the pipe */
9599 static struct drm_display_mode load_detect_mode = {
9600         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9601                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9602 };
9603
9604 struct drm_framebuffer *
9605 __intel_framebuffer_create(struct drm_device *dev,
9606                            struct drm_mode_fb_cmd2 *mode_cmd,
9607                            struct drm_i915_gem_object *obj)
9608 {
9609         struct intel_framebuffer *intel_fb;
9610         int ret;
9611
9612         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9613         if (!intel_fb) {
9614                 drm_gem_object_unreference(&obj->base);
9615                 return ERR_PTR(-ENOMEM);
9616         }
9617
9618         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
9619         if (ret)
9620                 goto err;
9621
9622         return &intel_fb->base;
9623 err:
9624         drm_gem_object_unreference(&obj->base);
9625         kfree(intel_fb);
9626
9627         return ERR_PTR(ret);
9628 }
9629
9630 static struct drm_framebuffer *
9631 intel_framebuffer_create(struct drm_device *dev,
9632                          struct drm_mode_fb_cmd2 *mode_cmd,
9633                          struct drm_i915_gem_object *obj)
9634 {
9635         struct drm_framebuffer *fb;
9636         int ret;
9637
9638         ret = i915_mutex_lock_interruptible(dev);
9639         if (ret)
9640                 return ERR_PTR(ret);
9641         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9642         mutex_unlock(&dev->struct_mutex);
9643
9644         return fb;
9645 }
9646
9647 static u32
9648 intel_framebuffer_pitch_for_width(int width, int bpp)
9649 {
9650         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9651         return ALIGN(pitch, 64);
9652 }
9653
9654 static u32
9655 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9656 {
9657         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9658         return PAGE_ALIGN(pitch * mode->vdisplay);
9659 }
9660
9661 static struct drm_framebuffer *
9662 intel_framebuffer_create_for_mode(struct drm_device *dev,
9663                                   struct drm_display_mode *mode,
9664                                   int depth, int bpp)
9665 {
9666         struct drm_i915_gem_object *obj;
9667         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9668
9669         obj = i915_gem_alloc_object(dev,
9670                                     intel_framebuffer_size_for_mode(mode, bpp));
9671         if (obj == NULL)
9672                 return ERR_PTR(-ENOMEM);
9673
9674         mode_cmd.width = mode->hdisplay;
9675         mode_cmd.height = mode->vdisplay;
9676         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9677                                                                 bpp);
9678         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9679
9680         return intel_framebuffer_create(dev, &mode_cmd, obj);
9681 }
9682
9683 static struct drm_framebuffer *
9684 mode_fits_in_fbdev(struct drm_device *dev,
9685                    struct drm_display_mode *mode)
9686 {
9687 #ifdef CONFIG_DRM_I915_FBDEV
9688         struct drm_i915_private *dev_priv = dev->dev_private;
9689         struct drm_i915_gem_object *obj;
9690         struct drm_framebuffer *fb;
9691
9692         if (!dev_priv->fbdev)
9693                 return NULL;
9694
9695         if (!dev_priv->fbdev->fb)
9696                 return NULL;
9697
9698         obj = dev_priv->fbdev->fb->obj;
9699         BUG_ON(!obj);
9700
9701         fb = &dev_priv->fbdev->fb->base;
9702         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9703                                                                fb->bits_per_pixel))
9704                 return NULL;
9705
9706         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9707                 return NULL;
9708
9709         return fb;
9710 #else
9711         return NULL;
9712 #endif
9713 }
9714
9715 bool intel_get_load_detect_pipe(struct drm_connector *connector,
9716                                 struct drm_display_mode *mode,
9717                                 struct intel_load_detect_pipe *old,
9718                                 struct drm_modeset_acquire_ctx *ctx)
9719 {
9720         struct intel_crtc *intel_crtc;
9721         struct intel_encoder *intel_encoder =
9722                 intel_attached_encoder(connector);
9723         struct drm_crtc *possible_crtc;
9724         struct drm_encoder *encoder = &intel_encoder->base;
9725         struct drm_crtc *crtc = NULL;
9726         struct drm_device *dev = encoder->dev;
9727         struct drm_framebuffer *fb;
9728         struct drm_mode_config *config = &dev->mode_config;
9729         struct drm_atomic_state *state = NULL;
9730         struct drm_connector_state *connector_state;
9731         int ret, i = -1;
9732
9733         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9734                       connector->base.id, connector->name,
9735                       encoder->base.id, encoder->name);
9736
9737 retry:
9738         ret = drm_modeset_lock(&config->connection_mutex, ctx);
9739         if (ret)
9740                 goto fail_unlock;
9741
9742         /*
9743          * Algorithm gets a little messy:
9744          *
9745          *   - if the connector already has an assigned crtc, use it (but make
9746          *     sure it's on first)
9747          *
9748          *   - try to find the first unused crtc that can drive this connector,
9749          *     and use that if we find one
9750          */
9751
9752         /* See if we already have a CRTC for this connector */
9753         if (encoder->crtc) {
9754                 crtc = encoder->crtc;
9755
9756                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9757                 if (ret)
9758                         goto fail_unlock;
9759                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9760                 if (ret)
9761                         goto fail_unlock;
9762
9763                 old->dpms_mode = connector->dpms;
9764                 old->load_detect_temp = false;
9765
9766                 /* Make sure the crtc and connector are running */
9767                 if (connector->dpms != DRM_MODE_DPMS_ON)
9768                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9769
9770                 return true;
9771         }
9772
9773         /* Find an unused one (if possible) */
9774         for_each_crtc(dev, possible_crtc) {
9775                 i++;
9776                 if (!(encoder->possible_crtcs & (1 << i)))
9777                         continue;
9778                 if (possible_crtc->state->enable)
9779                         continue;
9780                 /* This can occur when applying the pipe A quirk on resume. */
9781                 if (to_intel_crtc(possible_crtc)->new_enabled)
9782                         continue;
9783
9784                 crtc = possible_crtc;
9785                 break;
9786         }
9787
9788         /*
9789          * If we didn't find an unused CRTC, don't use any.
9790          */
9791         if (!crtc) {
9792                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9793                 goto fail_unlock;
9794         }
9795
9796         ret = drm_modeset_lock(&crtc->mutex, ctx);
9797         if (ret)
9798                 goto fail_unlock;
9799         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9800         if (ret)
9801                 goto fail_unlock;
9802         intel_encoder->new_crtc = to_intel_crtc(crtc);
9803         to_intel_connector(connector)->new_encoder = intel_encoder;
9804
9805         intel_crtc = to_intel_crtc(crtc);
9806         intel_crtc->new_enabled = true;
9807         old->dpms_mode = connector->dpms;
9808         old->load_detect_temp = true;
9809         old->release_fb = NULL;
9810
9811         state = drm_atomic_state_alloc(dev);
9812         if (!state)
9813                 return false;
9814
9815         state->acquire_ctx = ctx;
9816
9817         connector_state = drm_atomic_get_connector_state(state, connector);
9818         if (IS_ERR(connector_state)) {
9819                 ret = PTR_ERR(connector_state);
9820                 goto fail;
9821         }
9822
9823         connector_state->crtc = crtc;
9824         connector_state->best_encoder = &intel_encoder->base;
9825
9826         if (!mode)
9827                 mode = &load_detect_mode;
9828
9829         /* We need a framebuffer large enough to accommodate all accesses
9830          * that the plane may generate whilst we perform load detection.
9831          * We can not rely on the fbcon either being present (we get called
9832          * during its initialisation to detect all boot displays, or it may
9833          * not even exist) or that it is large enough to satisfy the
9834          * requested mode.
9835          */
9836         fb = mode_fits_in_fbdev(dev, mode);
9837         if (fb == NULL) {
9838                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9839                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9840                 old->release_fb = fb;
9841         } else
9842                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9843         if (IS_ERR(fb)) {
9844                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9845                 goto fail;
9846         }
9847
9848         if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
9849                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9850                 if (old->release_fb)
9851                         old->release_fb->funcs->destroy(old->release_fb);
9852                 goto fail;
9853         }
9854         crtc->primary->crtc = crtc;
9855
9856         /* let the connector get through one full cycle before testing */
9857         intel_wait_for_vblank(dev, intel_crtc->pipe);
9858         return true;
9859
9860  fail:
9861         intel_crtc->new_enabled = crtc->state->enable;
9862 fail_unlock:
9863         if (state) {
9864                 drm_atomic_state_free(state);
9865                 state = NULL;
9866         }
9867
9868         if (ret == -EDEADLK) {
9869                 drm_modeset_backoff(ctx);
9870                 goto retry;
9871         }
9872
9873         return false;
9874 }
9875
9876 void intel_release_load_detect_pipe(struct drm_connector *connector,
9877                                     struct intel_load_detect_pipe *old,
9878                                     struct drm_modeset_acquire_ctx *ctx)
9879 {
9880         struct drm_device *dev = connector->dev;
9881         struct intel_encoder *intel_encoder =
9882                 intel_attached_encoder(connector);
9883         struct drm_encoder *encoder = &intel_encoder->base;
9884         struct drm_crtc *crtc = encoder->crtc;
9885         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9886         struct drm_atomic_state *state;
9887         struct drm_connector_state *connector_state;
9888
9889         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9890                       connector->base.id, connector->name,
9891                       encoder->base.id, encoder->name);
9892
9893         if (old->load_detect_temp) {
9894                 state = drm_atomic_state_alloc(dev);
9895                 if (!state)
9896                         goto fail;
9897
9898                 state->acquire_ctx = ctx;
9899
9900                 connector_state = drm_atomic_get_connector_state(state, connector);
9901                 if (IS_ERR(connector_state))
9902                         goto fail;
9903
9904                 to_intel_connector(connector)->new_encoder = NULL;
9905                 intel_encoder->new_crtc = NULL;
9906                 intel_crtc->new_enabled = false;
9907
9908                 connector_state->best_encoder = NULL;
9909                 connector_state->crtc = NULL;
9910
9911                 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9912
9913                 drm_atomic_state_free(state);
9914
9915                 if (old->release_fb) {
9916                         drm_framebuffer_unregister_private(old->release_fb);
9917                         drm_framebuffer_unreference(old->release_fb);
9918                 }
9919
9920                 return;
9921         }
9922
9923         /* Switch crtc and encoder back off if necessary */
9924         if (old->dpms_mode != DRM_MODE_DPMS_ON)
9925                 connector->funcs->dpms(connector, old->dpms_mode);
9926
9927         return;
9928 fail:
9929         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9930         drm_atomic_state_free(state);
9931 }
9932
9933 static int i9xx_pll_refclk(struct drm_device *dev,
9934                            const struct intel_crtc_state *pipe_config)
9935 {
9936         struct drm_i915_private *dev_priv = dev->dev_private;
9937         u32 dpll = pipe_config->dpll_hw_state.dpll;
9938
9939         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9940                 return dev_priv->vbt.lvds_ssc_freq;
9941         else if (HAS_PCH_SPLIT(dev))
9942                 return 120000;
9943         else if (!IS_GEN2(dev))
9944                 return 96000;
9945         else
9946                 return 48000;
9947 }
9948
9949 /* Returns the clock of the currently programmed mode of the given pipe. */
9950 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9951                                 struct intel_crtc_state *pipe_config)
9952 {
9953         struct drm_device *dev = crtc->base.dev;
9954         struct drm_i915_private *dev_priv = dev->dev_private;
9955         int pipe = pipe_config->cpu_transcoder;
9956         u32 dpll = pipe_config->dpll_hw_state.dpll;
9957         u32 fp;
9958         intel_clock_t clock;
9959         int refclk = i9xx_pll_refclk(dev, pipe_config);
9960
9961         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9962                 fp = pipe_config->dpll_hw_state.fp0;
9963         else
9964                 fp = pipe_config->dpll_hw_state.fp1;
9965
9966         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9967         if (IS_PINEVIEW(dev)) {
9968                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9969                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9970         } else {
9971                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9972                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9973         }
9974
9975         if (!IS_GEN2(dev)) {
9976                 if (IS_PINEVIEW(dev))
9977                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9978                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9979                 else
9980                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9981                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9982
9983                 switch (dpll & DPLL_MODE_MASK) {
9984                 case DPLLB_MODE_DAC_SERIAL:
9985                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9986                                 5 : 10;
9987                         break;
9988                 case DPLLB_MODE_LVDS:
9989                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9990                                 7 : 14;
9991                         break;
9992                 default:
9993                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9994                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9995                         return;
9996                 }
9997
9998                 if (IS_PINEVIEW(dev))
9999                         pineview_clock(refclk, &clock);
10000                 else
10001                         i9xx_clock(refclk, &clock);
10002         } else {
10003                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10004                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10005
10006                 if (is_lvds) {
10007                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10008                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10009
10010                         if (lvds & LVDS_CLKB_POWER_UP)
10011                                 clock.p2 = 7;
10012                         else
10013                                 clock.p2 = 14;
10014                 } else {
10015                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10016                                 clock.p1 = 2;
10017                         else {
10018                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10019                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10020                         }
10021                         if (dpll & PLL_P2_DIVIDE_BY_4)
10022                                 clock.p2 = 4;
10023                         else
10024                                 clock.p2 = 2;
10025                 }
10026
10027                 i9xx_clock(refclk, &clock);
10028         }
10029
10030         /*
10031          * This value includes pixel_multiplier. We will use
10032          * port_clock to compute adjusted_mode.crtc_clock in the
10033          * encoder's get_config() function.
10034          */
10035         pipe_config->port_clock = clock.dot;
10036 }
10037
10038 int intel_dotclock_calculate(int link_freq,
10039                              const struct intel_link_m_n *m_n)
10040 {
10041         /*
10042          * The calculation for the data clock is:
10043          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10044          * But we want to avoid losing precison if possible, so:
10045          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10046          *
10047          * and the link clock is simpler:
10048          * link_clock = (m * link_clock) / n
10049          */
10050
10051         if (!m_n->link_n)
10052                 return 0;
10053
10054         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10055 }
10056
10057 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10058                                    struct intel_crtc_state *pipe_config)
10059 {
10060         struct drm_device *dev = crtc->base.dev;
10061
10062         /* read out port_clock from the DPLL */
10063         i9xx_crtc_clock_get(crtc, pipe_config);
10064
10065         /*
10066          * This value does not include pixel_multiplier.
10067          * We will check that port_clock and adjusted_mode.crtc_clock
10068          * agree once we know their relationship in the encoder's
10069          * get_config() function.
10070          */
10071         pipe_config->base.adjusted_mode.crtc_clock =
10072                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10073                                          &pipe_config->fdi_m_n);
10074 }
10075
10076 /** Returns the currently programmed mode of the given pipe. */
10077 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10078                                              struct drm_crtc *crtc)
10079 {
10080         struct drm_i915_private *dev_priv = dev->dev_private;
10081         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10082         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10083         struct drm_display_mode *mode;
10084         struct intel_crtc_state pipe_config;
10085         int htot = I915_READ(HTOTAL(cpu_transcoder));
10086         int hsync = I915_READ(HSYNC(cpu_transcoder));
10087         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10088         int vsync = I915_READ(VSYNC(cpu_transcoder));
10089         enum pipe pipe = intel_crtc->pipe;
10090
10091         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10092         if (!mode)
10093                 return NULL;
10094
10095         /*
10096          * Construct a pipe_config sufficient for getting the clock info
10097          * back out of crtc_clock_get.
10098          *
10099          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10100          * to use a real value here instead.
10101          */
10102         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10103         pipe_config.pixel_multiplier = 1;
10104         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10105         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10106         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10107         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10108
10109         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10110         mode->hdisplay = (htot & 0xffff) + 1;
10111         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10112         mode->hsync_start = (hsync & 0xffff) + 1;
10113         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10114         mode->vdisplay = (vtot & 0xffff) + 1;
10115         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10116         mode->vsync_start = (vsync & 0xffff) + 1;
10117         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10118
10119         drm_mode_set_name(mode);
10120
10121         return mode;
10122 }
10123
10124 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10125 {
10126         struct drm_device *dev = crtc->dev;
10127         struct drm_i915_private *dev_priv = dev->dev_private;
10128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10129
10130         if (!HAS_GMCH_DISPLAY(dev))
10131                 return;
10132
10133         if (!dev_priv->lvds_downclock_avail)
10134                 return;
10135
10136         /*
10137          * Since this is called by a timer, we should never get here in
10138          * the manual case.
10139          */
10140         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10141                 int pipe = intel_crtc->pipe;
10142                 int dpll_reg = DPLL(pipe);
10143                 int dpll;
10144
10145                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10146
10147                 assert_panel_unlocked(dev_priv, pipe);
10148
10149                 dpll = I915_READ(dpll_reg);
10150                 dpll |= DISPLAY_RATE_SELECT_FPA1;
10151                 I915_WRITE(dpll_reg, dpll);
10152                 intel_wait_for_vblank(dev, pipe);
10153                 dpll = I915_READ(dpll_reg);
10154                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10155                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10156         }
10157
10158 }
10159
10160 void intel_mark_busy(struct drm_device *dev)
10161 {
10162         struct drm_i915_private *dev_priv = dev->dev_private;
10163
10164         if (dev_priv->mm.busy)
10165                 return;
10166
10167         intel_runtime_pm_get(dev_priv);
10168         i915_update_gfx_val(dev_priv);
10169         if (INTEL_INFO(dev)->gen >= 6)
10170                 gen6_rps_busy(dev_priv);
10171         dev_priv->mm.busy = true;
10172 }
10173
10174 void intel_mark_idle(struct drm_device *dev)
10175 {
10176         struct drm_i915_private *dev_priv = dev->dev_private;
10177         struct drm_crtc *crtc;
10178
10179         if (!dev_priv->mm.busy)
10180                 return;
10181
10182         dev_priv->mm.busy = false;
10183
10184         for_each_crtc(dev, crtc) {
10185                 if (!crtc->primary->fb)
10186                         continue;
10187
10188                 intel_decrease_pllclock(crtc);
10189         }
10190
10191         if (INTEL_INFO(dev)->gen >= 6)
10192                 gen6_rps_idle(dev->dev_private);
10193
10194         intel_runtime_pm_put(dev_priv);
10195 }
10196
10197 static void intel_crtc_set_state(struct intel_crtc *crtc,
10198                                  struct intel_crtc_state *crtc_state)
10199 {
10200         kfree(crtc->config);
10201         crtc->config = crtc_state;
10202         crtc->base.state = &crtc_state->base;
10203 }
10204
10205 static void intel_crtc_destroy(struct drm_crtc *crtc)
10206 {
10207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10208         struct drm_device *dev = crtc->dev;
10209         struct intel_unpin_work *work;
10210
10211         spin_lock_irq(&dev->event_lock);
10212         work = intel_crtc->unpin_work;
10213         intel_crtc->unpin_work = NULL;
10214         spin_unlock_irq(&dev->event_lock);
10215
10216         if (work) {
10217                 cancel_work_sync(&work->work);
10218                 kfree(work);
10219         }
10220
10221         intel_crtc_set_state(intel_crtc, NULL);
10222         drm_crtc_cleanup(crtc);
10223
10224         kfree(intel_crtc);
10225 }
10226
10227 static void intel_unpin_work_fn(struct work_struct *__work)
10228 {
10229         struct intel_unpin_work *work =
10230                 container_of(__work, struct intel_unpin_work, work);
10231         struct drm_device *dev = work->crtc->dev;
10232         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10233
10234         mutex_lock(&dev->struct_mutex);
10235         intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10236         drm_gem_object_unreference(&work->pending_flip_obj->base);
10237
10238         intel_fbc_update(dev);
10239
10240         if (work->flip_queued_req)
10241                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10242         mutex_unlock(&dev->struct_mutex);
10243
10244         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10245         drm_framebuffer_unreference(work->old_fb);
10246
10247         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10248         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10249
10250         kfree(work);
10251 }
10252
10253 static void do_intel_finish_page_flip(struct drm_device *dev,
10254                                       struct drm_crtc *crtc)
10255 {
10256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10257         struct intel_unpin_work *work;
10258         unsigned long flags;
10259
10260         /* Ignore early vblank irqs */
10261         if (intel_crtc == NULL)
10262                 return;
10263
10264         /*
10265          * This is called both by irq handlers and the reset code (to complete
10266          * lost pageflips) so needs the full irqsave spinlocks.
10267          */
10268         spin_lock_irqsave(&dev->event_lock, flags);
10269         work = intel_crtc->unpin_work;
10270
10271         /* Ensure we don't miss a work->pending update ... */
10272         smp_rmb();
10273
10274         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10275                 spin_unlock_irqrestore(&dev->event_lock, flags);
10276                 return;
10277         }
10278
10279         page_flip_completed(intel_crtc);
10280
10281         spin_unlock_irqrestore(&dev->event_lock, flags);
10282 }
10283
10284 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10285 {
10286         struct drm_i915_private *dev_priv = dev->dev_private;
10287         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10288
10289         do_intel_finish_page_flip(dev, crtc);
10290 }
10291
10292 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10293 {
10294         struct drm_i915_private *dev_priv = dev->dev_private;
10295         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10296
10297         do_intel_finish_page_flip(dev, crtc);
10298 }
10299
10300 /* Is 'a' after or equal to 'b'? */
10301 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10302 {
10303         return !((a - b) & 0x80000000);
10304 }
10305
10306 static bool page_flip_finished(struct intel_crtc *crtc)
10307 {
10308         struct drm_device *dev = crtc->base.dev;
10309         struct drm_i915_private *dev_priv = dev->dev_private;
10310
10311         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10312             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10313                 return true;
10314
10315         /*
10316          * The relevant registers doen't exist on pre-ctg.
10317          * As the flip done interrupt doesn't trigger for mmio
10318          * flips on gmch platforms, a flip count check isn't
10319          * really needed there. But since ctg has the registers,
10320          * include it in the check anyway.
10321          */
10322         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10323                 return true;
10324
10325         /*
10326          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10327          * used the same base address. In that case the mmio flip might
10328          * have completed, but the CS hasn't even executed the flip yet.
10329          *
10330          * A flip count check isn't enough as the CS might have updated
10331          * the base address just after start of vblank, but before we
10332          * managed to process the interrupt. This means we'd complete the
10333          * CS flip too soon.
10334          *
10335          * Combining both checks should get us a good enough result. It may
10336          * still happen that the CS flip has been executed, but has not
10337          * yet actually completed. But in case the base address is the same
10338          * anyway, we don't really care.
10339          */
10340         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10341                 crtc->unpin_work->gtt_offset &&
10342                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10343                                     crtc->unpin_work->flip_count);
10344 }
10345
10346 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10347 {
10348         struct drm_i915_private *dev_priv = dev->dev_private;
10349         struct intel_crtc *intel_crtc =
10350                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10351         unsigned long flags;
10352
10353
10354         /*
10355          * This is called both by irq handlers and the reset code (to complete
10356          * lost pageflips) so needs the full irqsave spinlocks.
10357          *
10358          * NB: An MMIO update of the plane base pointer will also
10359          * generate a page-flip completion irq, i.e. every modeset
10360          * is also accompanied by a spurious intel_prepare_page_flip().
10361          */
10362         spin_lock_irqsave(&dev->event_lock, flags);
10363         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10364                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10365         spin_unlock_irqrestore(&dev->event_lock, flags);
10366 }
10367
10368 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10369 {
10370         /* Ensure that the work item is consistent when activating it ... */
10371         smp_wmb();
10372         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10373         /* and that it is marked active as soon as the irq could fire. */
10374         smp_wmb();
10375 }
10376
10377 static int intel_gen2_queue_flip(struct drm_device *dev,
10378                                  struct drm_crtc *crtc,
10379                                  struct drm_framebuffer *fb,
10380                                  struct drm_i915_gem_object *obj,
10381                                  struct intel_engine_cs *ring,
10382                                  uint32_t flags)
10383 {
10384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10385         u32 flip_mask;
10386         int ret;
10387
10388         ret = intel_ring_begin(ring, 6);
10389         if (ret)
10390                 return ret;
10391
10392         /* Can't queue multiple flips, so wait for the previous
10393          * one to finish before executing the next.
10394          */
10395         if (intel_crtc->plane)
10396                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10397         else
10398                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10399         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10400         intel_ring_emit(ring, MI_NOOP);
10401         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10402                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10403         intel_ring_emit(ring, fb->pitches[0]);
10404         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10405         intel_ring_emit(ring, 0); /* aux display base address, unused */
10406
10407         intel_mark_page_flip_active(intel_crtc);
10408         __intel_ring_advance(ring);
10409         return 0;
10410 }
10411
10412 static int intel_gen3_queue_flip(struct drm_device *dev,
10413                                  struct drm_crtc *crtc,
10414                                  struct drm_framebuffer *fb,
10415                                  struct drm_i915_gem_object *obj,
10416                                  struct intel_engine_cs *ring,
10417                                  uint32_t flags)
10418 {
10419         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10420         u32 flip_mask;
10421         int ret;
10422
10423         ret = intel_ring_begin(ring, 6);
10424         if (ret)
10425                 return ret;
10426
10427         if (intel_crtc->plane)
10428                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10429         else
10430                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10431         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10432         intel_ring_emit(ring, MI_NOOP);
10433         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10434                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10435         intel_ring_emit(ring, fb->pitches[0]);
10436         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10437         intel_ring_emit(ring, MI_NOOP);
10438
10439         intel_mark_page_flip_active(intel_crtc);
10440         __intel_ring_advance(ring);
10441         return 0;
10442 }
10443
10444 static int intel_gen4_queue_flip(struct drm_device *dev,
10445                                  struct drm_crtc *crtc,
10446                                  struct drm_framebuffer *fb,
10447                                  struct drm_i915_gem_object *obj,
10448                                  struct intel_engine_cs *ring,
10449                                  uint32_t flags)
10450 {
10451         struct drm_i915_private *dev_priv = dev->dev_private;
10452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10453         uint32_t pf, pipesrc;
10454         int ret;
10455
10456         ret = intel_ring_begin(ring, 4);
10457         if (ret)
10458                 return ret;
10459
10460         /* i965+ uses the linear or tiled offsets from the
10461          * Display Registers (which do not change across a page-flip)
10462          * so we need only reprogram the base address.
10463          */
10464         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10465                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10466         intel_ring_emit(ring, fb->pitches[0]);
10467         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10468                         obj->tiling_mode);
10469
10470         /* XXX Enabling the panel-fitter across page-flip is so far
10471          * untested on non-native modes, so ignore it for now.
10472          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10473          */
10474         pf = 0;
10475         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10476         intel_ring_emit(ring, pf | pipesrc);
10477
10478         intel_mark_page_flip_active(intel_crtc);
10479         __intel_ring_advance(ring);
10480         return 0;
10481 }
10482
10483 static int intel_gen6_queue_flip(struct drm_device *dev,
10484                                  struct drm_crtc *crtc,
10485                                  struct drm_framebuffer *fb,
10486                                  struct drm_i915_gem_object *obj,
10487                                  struct intel_engine_cs *ring,
10488                                  uint32_t flags)
10489 {
10490         struct drm_i915_private *dev_priv = dev->dev_private;
10491         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10492         uint32_t pf, pipesrc;
10493         int ret;
10494
10495         ret = intel_ring_begin(ring, 4);
10496         if (ret)
10497                 return ret;
10498
10499         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10500                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10501         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10502         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10503
10504         /* Contrary to the suggestions in the documentation,
10505          * "Enable Panel Fitter" does not seem to be required when page
10506          * flipping with a non-native mode, and worse causes a normal
10507          * modeset to fail.
10508          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10509          */
10510         pf = 0;
10511         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10512         intel_ring_emit(ring, pf | pipesrc);
10513
10514         intel_mark_page_flip_active(intel_crtc);
10515         __intel_ring_advance(ring);
10516         return 0;
10517 }
10518
10519 static int intel_gen7_queue_flip(struct drm_device *dev,
10520                                  struct drm_crtc *crtc,
10521                                  struct drm_framebuffer *fb,
10522                                  struct drm_i915_gem_object *obj,
10523                                  struct intel_engine_cs *ring,
10524                                  uint32_t flags)
10525 {
10526         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10527         uint32_t plane_bit = 0;
10528         int len, ret;
10529
10530         switch (intel_crtc->plane) {
10531         case PLANE_A:
10532                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10533                 break;
10534         case PLANE_B:
10535                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10536                 break;
10537         case PLANE_C:
10538                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10539                 break;
10540         default:
10541                 WARN_ONCE(1, "unknown plane in flip command\n");
10542                 return -ENODEV;
10543         }
10544
10545         len = 4;
10546         if (ring->id == RCS) {
10547                 len += 6;
10548                 /*
10549                  * On Gen 8, SRM is now taking an extra dword to accommodate
10550                  * 48bits addresses, and we need a NOOP for the batch size to
10551                  * stay even.
10552                  */
10553                 if (IS_GEN8(dev))
10554                         len += 2;
10555         }
10556
10557         /*
10558          * BSpec MI_DISPLAY_FLIP for IVB:
10559          * "The full packet must be contained within the same cache line."
10560          *
10561          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10562          * cacheline, if we ever start emitting more commands before
10563          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10564          * then do the cacheline alignment, and finally emit the
10565          * MI_DISPLAY_FLIP.
10566          */
10567         ret = intel_ring_cacheline_align(ring);
10568         if (ret)
10569                 return ret;
10570
10571         ret = intel_ring_begin(ring, len);
10572         if (ret)
10573                 return ret;
10574
10575         /* Unmask the flip-done completion message. Note that the bspec says that
10576          * we should do this for both the BCS and RCS, and that we must not unmask
10577          * more than one flip event at any time (or ensure that one flip message
10578          * can be sent by waiting for flip-done prior to queueing new flips).
10579          * Experimentation says that BCS works despite DERRMR masking all
10580          * flip-done completion events and that unmasking all planes at once
10581          * for the RCS also doesn't appear to drop events. Setting the DERRMR
10582          * to zero does lead to lockups within MI_DISPLAY_FLIP.
10583          */
10584         if (ring->id == RCS) {
10585                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10586                 intel_ring_emit(ring, DERRMR);
10587                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10588                                         DERRMR_PIPEB_PRI_FLIP_DONE |
10589                                         DERRMR_PIPEC_PRI_FLIP_DONE));
10590                 if (IS_GEN8(dev))
10591                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10592                                               MI_SRM_LRM_GLOBAL_GTT);
10593                 else
10594                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10595                                               MI_SRM_LRM_GLOBAL_GTT);
10596                 intel_ring_emit(ring, DERRMR);
10597                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
10598                 if (IS_GEN8(dev)) {
10599                         intel_ring_emit(ring, 0);
10600                         intel_ring_emit(ring, MI_NOOP);
10601                 }
10602         }
10603
10604         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
10605         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
10606         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10607         intel_ring_emit(ring, (MI_NOOP));
10608
10609         intel_mark_page_flip_active(intel_crtc);
10610         __intel_ring_advance(ring);
10611         return 0;
10612 }
10613
10614 static bool use_mmio_flip(struct intel_engine_cs *ring,
10615                           struct drm_i915_gem_object *obj)
10616 {
10617         /*
10618          * This is not being used for older platforms, because
10619          * non-availability of flip done interrupt forces us to use
10620          * CS flips. Older platforms derive flip done using some clever
10621          * tricks involving the flip_pending status bits and vblank irqs.
10622          * So using MMIO flips there would disrupt this mechanism.
10623          */
10624
10625         if (ring == NULL)
10626                 return true;
10627
10628         if (INTEL_INFO(ring->dev)->gen < 5)
10629                 return false;
10630
10631         if (i915.use_mmio_flip < 0)
10632                 return false;
10633         else if (i915.use_mmio_flip > 0)
10634                 return true;
10635         else if (i915.enable_execlists)
10636                 return true;
10637         else
10638                 return ring != i915_gem_request_get_ring(obj->last_read_req);
10639 }
10640
10641 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10642 {
10643         struct drm_device *dev = intel_crtc->base.dev;
10644         struct drm_i915_private *dev_priv = dev->dev_private;
10645         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10646         const enum pipe pipe = intel_crtc->pipe;
10647         u32 ctl, stride;
10648
10649         ctl = I915_READ(PLANE_CTL(pipe, 0));
10650         ctl &= ~PLANE_CTL_TILED_MASK;
10651         switch (fb->modifier[0]) {
10652         case DRM_FORMAT_MOD_NONE:
10653                 break;
10654         case I915_FORMAT_MOD_X_TILED:
10655                 ctl |= PLANE_CTL_TILED_X;
10656                 break;
10657         case I915_FORMAT_MOD_Y_TILED:
10658                 ctl |= PLANE_CTL_TILED_Y;
10659                 break;
10660         case I915_FORMAT_MOD_Yf_TILED:
10661                 ctl |= PLANE_CTL_TILED_YF;
10662                 break;
10663         default:
10664                 MISSING_CASE(fb->modifier[0]);
10665         }
10666
10667         /*
10668          * The stride is either expressed as a multiple of 64 bytes chunks for
10669          * linear buffers or in number of tiles for tiled buffers.
10670          */
10671         stride = fb->pitches[0] /
10672                  intel_fb_stride_alignment(dev, fb->modifier[0],
10673                                            fb->pixel_format);
10674
10675         /*
10676          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10677          * PLANE_SURF updates, the update is then guaranteed to be atomic.
10678          */
10679         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10680         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10681
10682         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10683         POSTING_READ(PLANE_SURF(pipe, 0));
10684 }
10685
10686 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
10687 {
10688         struct drm_device *dev = intel_crtc->base.dev;
10689         struct drm_i915_private *dev_priv = dev->dev_private;
10690         struct intel_framebuffer *intel_fb =
10691                 to_intel_framebuffer(intel_crtc->base.primary->fb);
10692         struct drm_i915_gem_object *obj = intel_fb->obj;
10693         u32 dspcntr;
10694         u32 reg;
10695
10696         reg = DSPCNTR(intel_crtc->plane);
10697         dspcntr = I915_READ(reg);
10698
10699         if (obj->tiling_mode != I915_TILING_NONE)
10700                 dspcntr |= DISPPLANE_TILED;
10701         else
10702                 dspcntr &= ~DISPPLANE_TILED;
10703
10704         I915_WRITE(reg, dspcntr);
10705
10706         I915_WRITE(DSPSURF(intel_crtc->plane),
10707                    intel_crtc->unpin_work->gtt_offset);
10708         POSTING_READ(DSPSURF(intel_crtc->plane));
10709
10710 }
10711
10712 /*
10713  * XXX: This is the temporary way to update the plane registers until we get
10714  * around to using the usual plane update functions for MMIO flips
10715  */
10716 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10717 {
10718         struct drm_device *dev = intel_crtc->base.dev;
10719         bool atomic_update;
10720         u32 start_vbl_count;
10721
10722         intel_mark_page_flip_active(intel_crtc);
10723
10724         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10725
10726         if (INTEL_INFO(dev)->gen >= 9)
10727                 skl_do_mmio_flip(intel_crtc);
10728         else
10729                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10730                 ilk_do_mmio_flip(intel_crtc);
10731
10732         if (atomic_update)
10733                 intel_pipe_update_end(intel_crtc, start_vbl_count);
10734 }
10735
10736 static void intel_mmio_flip_work_func(struct work_struct *work)
10737 {
10738         struct intel_crtc *crtc =
10739                 container_of(work, struct intel_crtc, mmio_flip.work);
10740         struct intel_mmio_flip *mmio_flip;
10741
10742         mmio_flip = &crtc->mmio_flip;
10743         if (mmio_flip->req)
10744                 WARN_ON(__i915_wait_request(mmio_flip->req,
10745                                             crtc->reset_counter,
10746                                             false, NULL, NULL) != 0);
10747
10748         intel_do_mmio_flip(crtc);
10749         if (mmio_flip->req) {
10750                 mutex_lock(&crtc->base.dev->struct_mutex);
10751                 i915_gem_request_assign(&mmio_flip->req, NULL);
10752                 mutex_unlock(&crtc->base.dev->struct_mutex);
10753         }
10754 }
10755
10756 static int intel_queue_mmio_flip(struct drm_device *dev,
10757                                  struct drm_crtc *crtc,
10758                                  struct drm_framebuffer *fb,
10759                                  struct drm_i915_gem_object *obj,
10760                                  struct intel_engine_cs *ring,
10761                                  uint32_t flags)
10762 {
10763         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10764
10765         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
10766                                 obj->last_write_req);
10767
10768         schedule_work(&intel_crtc->mmio_flip.work);
10769
10770         return 0;
10771 }
10772
10773 static int intel_default_queue_flip(struct drm_device *dev,
10774                                     struct drm_crtc *crtc,
10775                                     struct drm_framebuffer *fb,
10776                                     struct drm_i915_gem_object *obj,
10777                                     struct intel_engine_cs *ring,
10778                                     uint32_t flags)
10779 {
10780         return -ENODEV;
10781 }
10782
10783 static bool __intel_pageflip_stall_check(struct drm_device *dev,
10784                                          struct drm_crtc *crtc)
10785 {
10786         struct drm_i915_private *dev_priv = dev->dev_private;
10787         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10788         struct intel_unpin_work *work = intel_crtc->unpin_work;
10789         u32 addr;
10790
10791         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10792                 return true;
10793
10794         if (!work->enable_stall_check)
10795                 return false;
10796
10797         if (work->flip_ready_vblank == 0) {
10798                 if (work->flip_queued_req &&
10799                     !i915_gem_request_completed(work->flip_queued_req, true))
10800                         return false;
10801
10802                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
10803         }
10804
10805         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
10806                 return false;
10807
10808         /* Potential stall - if we see that the flip has happened,
10809          * assume a missed interrupt. */
10810         if (INTEL_INFO(dev)->gen >= 4)
10811                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10812         else
10813                 addr = I915_READ(DSPADDR(intel_crtc->plane));
10814
10815         /* There is a potential issue here with a false positive after a flip
10816          * to the same address. We could address this by checking for a
10817          * non-incrementing frame counter.
10818          */
10819         return addr == work->gtt_offset;
10820 }
10821
10822 void intel_check_page_flip(struct drm_device *dev, int pipe)
10823 {
10824         struct drm_i915_private *dev_priv = dev->dev_private;
10825         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10827         struct intel_unpin_work *work;
10828
10829         WARN_ON(!in_interrupt());
10830
10831         if (crtc == NULL)
10832                 return;
10833
10834         spin_lock(&dev->event_lock);
10835         work = intel_crtc->unpin_work;
10836         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
10837                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10838                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
10839                 page_flip_completed(intel_crtc);
10840                 work = NULL;
10841         }
10842         if (work != NULL &&
10843             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
10844                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
10845         spin_unlock(&dev->event_lock);
10846 }
10847
10848 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10849                                 struct drm_framebuffer *fb,
10850                                 struct drm_pending_vblank_event *event,
10851                                 uint32_t page_flip_flags)
10852 {
10853         struct drm_device *dev = crtc->dev;
10854         struct drm_i915_private *dev_priv = dev->dev_private;
10855         struct drm_framebuffer *old_fb = crtc->primary->fb;
10856         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10857         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10858         struct drm_plane *primary = crtc->primary;
10859         enum pipe pipe = intel_crtc->pipe;
10860         struct intel_unpin_work *work;
10861         struct intel_engine_cs *ring;
10862         bool mmio_flip;
10863         int ret;
10864
10865         /*
10866          * drm_mode_page_flip_ioctl() should already catch this, but double
10867          * check to be safe.  In the future we may enable pageflipping from
10868          * a disabled primary plane.
10869          */
10870         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10871                 return -EBUSY;
10872
10873         /* Can't change pixel format via MI display flips. */
10874         if (fb->pixel_format != crtc->primary->fb->pixel_format)
10875                 return -EINVAL;
10876
10877         /*
10878          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10879          * Note that pitch changes could also affect these register.
10880          */
10881         if (INTEL_INFO(dev)->gen > 3 &&
10882             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10883              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10884                 return -EINVAL;
10885
10886         if (i915_terminally_wedged(&dev_priv->gpu_error))
10887                 goto out_hang;
10888
10889         work = kzalloc(sizeof(*work), GFP_KERNEL);
10890         if (work == NULL)
10891                 return -ENOMEM;
10892
10893         work->event = event;
10894         work->crtc = crtc;
10895         work->old_fb = old_fb;
10896         INIT_WORK(&work->work, intel_unpin_work_fn);
10897
10898         ret = drm_crtc_vblank_get(crtc);
10899         if (ret)
10900                 goto free_work;
10901
10902         /* We borrow the event spin lock for protecting unpin_work */
10903         spin_lock_irq(&dev->event_lock);
10904         if (intel_crtc->unpin_work) {
10905                 /* Before declaring the flip queue wedged, check if
10906                  * the hardware completed the operation behind our backs.
10907                  */
10908                 if (__intel_pageflip_stall_check(dev, crtc)) {
10909                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10910                         page_flip_completed(intel_crtc);
10911                 } else {
10912                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10913                         spin_unlock_irq(&dev->event_lock);
10914
10915                         drm_crtc_vblank_put(crtc);
10916                         kfree(work);
10917                         return -EBUSY;
10918                 }
10919         }
10920         intel_crtc->unpin_work = work;
10921         spin_unlock_irq(&dev->event_lock);
10922
10923         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10924                 flush_workqueue(dev_priv->wq);
10925
10926         /* Reference the objects for the scheduled work. */
10927         drm_framebuffer_reference(work->old_fb);
10928         drm_gem_object_reference(&obj->base);
10929
10930         crtc->primary->fb = fb;
10931         update_state_fb(crtc->primary);
10932
10933         work->pending_flip_obj = obj;
10934
10935         ret = i915_mutex_lock_interruptible(dev);
10936         if (ret)
10937                 goto cleanup;
10938
10939         atomic_inc(&intel_crtc->unpin_work_count);
10940         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10941
10942         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10943                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10944
10945         if (IS_VALLEYVIEW(dev)) {
10946                 ring = &dev_priv->ring[BCS];
10947                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10948                         /* vlv: DISPLAY_FLIP fails to change tiling */
10949                         ring = NULL;
10950         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10951                 ring = &dev_priv->ring[BCS];
10952         } else if (INTEL_INFO(dev)->gen >= 7) {
10953                 ring = i915_gem_request_get_ring(obj->last_read_req);
10954                 if (ring == NULL || ring->id != RCS)
10955                         ring = &dev_priv->ring[BCS];
10956         } else {
10957                 ring = &dev_priv->ring[RCS];
10958         }
10959
10960         mmio_flip = use_mmio_flip(ring, obj);
10961
10962         /* When using CS flips, we want to emit semaphores between rings.
10963          * However, when using mmio flips we will create a task to do the
10964          * synchronisation, so all we want here is to pin the framebuffer
10965          * into the display plane and skip any waits.
10966          */
10967         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10968                                          crtc->primary->state,
10969                                          mmio_flip ? i915_gem_request_get_ring(obj->last_read_req) : ring);
10970         if (ret)
10971                 goto cleanup_pending;
10972
10973         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10974                                                   + intel_crtc->dspaddr_offset;
10975
10976         if (mmio_flip) {
10977                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10978                                             page_flip_flags);
10979                 if (ret)
10980                         goto cleanup_unpin;
10981
10982                 i915_gem_request_assign(&work->flip_queued_req,
10983                                         obj->last_write_req);
10984         } else {
10985                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10986                                                    page_flip_flags);
10987                 if (ret)
10988                         goto cleanup_unpin;
10989
10990                 i915_gem_request_assign(&work->flip_queued_req,
10991                                         intel_ring_get_request(ring));
10992         }
10993
10994         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10995         work->enable_stall_check = true;
10996
10997         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10998                           INTEL_FRONTBUFFER_PRIMARY(pipe));
10999
11000         intel_fbc_disable(dev);
11001         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11002         mutex_unlock(&dev->struct_mutex);
11003
11004         trace_i915_flip_request(intel_crtc->plane, obj);
11005
11006         return 0;
11007
11008 cleanup_unpin:
11009         intel_unpin_fb_obj(fb, crtc->primary->state);
11010 cleanup_pending:
11011         atomic_dec(&intel_crtc->unpin_work_count);
11012         mutex_unlock(&dev->struct_mutex);
11013 cleanup:
11014         crtc->primary->fb = old_fb;
11015         update_state_fb(crtc->primary);
11016
11017         drm_gem_object_unreference_unlocked(&obj->base);
11018         drm_framebuffer_unreference(work->old_fb);
11019
11020         spin_lock_irq(&dev->event_lock);
11021         intel_crtc->unpin_work = NULL;
11022         spin_unlock_irq(&dev->event_lock);
11023
11024         drm_crtc_vblank_put(crtc);
11025 free_work:
11026         kfree(work);
11027
11028         if (ret == -EIO) {
11029 out_hang:
11030                 ret = intel_plane_restore(primary);
11031                 if (ret == 0 && event) {
11032                         spin_lock_irq(&dev->event_lock);
11033                         drm_send_vblank_event(dev, pipe, event);
11034                         spin_unlock_irq(&dev->event_lock);
11035                 }
11036         }
11037         return ret;
11038 }
11039
11040 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11041         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11042         .load_lut = intel_crtc_load_lut,
11043         .atomic_begin = intel_begin_crtc_commit,
11044         .atomic_flush = intel_finish_crtc_commit,
11045 };
11046
11047 /**
11048  * intel_modeset_update_staged_output_state
11049  *
11050  * Updates the staged output configuration state, e.g. after we've read out the
11051  * current hw state.
11052  */
11053 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11054 {
11055         struct intel_crtc *crtc;
11056         struct intel_encoder *encoder;
11057         struct intel_connector *connector;
11058
11059         for_each_intel_connector(dev, connector) {
11060                 connector->new_encoder =
11061                         to_intel_encoder(connector->base.encoder);
11062         }
11063
11064         for_each_intel_encoder(dev, encoder) {
11065                 encoder->new_crtc =
11066                         to_intel_crtc(encoder->base.crtc);
11067         }
11068
11069         for_each_intel_crtc(dev, crtc) {
11070                 crtc->new_enabled = crtc->base.state->enable;
11071         }
11072 }
11073
11074 /* Transitional helper to copy current connector/encoder state to
11075  * connector->state. This is needed so that code that is partially
11076  * converted to atomic does the right thing.
11077  */
11078 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11079 {
11080         struct intel_connector *connector;
11081
11082         for_each_intel_connector(dev, connector) {
11083                 if (connector->base.encoder) {
11084                         connector->base.state->best_encoder =
11085                                 connector->base.encoder;
11086                         connector->base.state->crtc =
11087                                 connector->base.encoder->crtc;
11088                 } else {
11089                         connector->base.state->best_encoder = NULL;
11090                         connector->base.state->crtc = NULL;
11091                 }
11092         }
11093 }
11094
11095 /**
11096  * intel_modeset_commit_output_state
11097  *
11098  * This function copies the stage display pipe configuration to the real one.
11099  */
11100 static void intel_modeset_commit_output_state(struct drm_device *dev)
11101 {
11102         struct intel_crtc *crtc;
11103         struct intel_encoder *encoder;
11104         struct intel_connector *connector;
11105
11106         for_each_intel_connector(dev, connector) {
11107                 connector->base.encoder = &connector->new_encoder->base;
11108         }
11109
11110         for_each_intel_encoder(dev, encoder) {
11111                 encoder->base.crtc = &encoder->new_crtc->base;
11112         }
11113
11114         for_each_intel_crtc(dev, crtc) {
11115                 crtc->base.state->enable = crtc->new_enabled;
11116                 crtc->base.enabled = crtc->new_enabled;
11117         }
11118
11119         intel_modeset_update_connector_atomic_state(dev);
11120 }
11121
11122 static void
11123 connected_sink_compute_bpp(struct intel_connector *connector,
11124                            struct intel_crtc_state *pipe_config)
11125 {
11126         int bpp = pipe_config->pipe_bpp;
11127
11128         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11129                 connector->base.base.id,
11130                 connector->base.name);
11131
11132         /* Don't use an invalid EDID bpc value */
11133         if (connector->base.display_info.bpc &&
11134             connector->base.display_info.bpc * 3 < bpp) {
11135                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11136                               bpp, connector->base.display_info.bpc*3);
11137                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11138         }
11139
11140         /* Clamp bpp to 8 on screens without EDID 1.4 */
11141         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11142                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11143                               bpp);
11144                 pipe_config->pipe_bpp = 24;
11145         }
11146 }
11147
11148 static int
11149 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11150                           struct intel_crtc_state *pipe_config)
11151 {
11152         struct drm_device *dev = crtc->base.dev;
11153         struct drm_atomic_state *state;
11154         struct intel_connector *connector;
11155         int bpp, i;
11156
11157         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11158                 bpp = 10*3;
11159         else if (INTEL_INFO(dev)->gen >= 5)
11160                 bpp = 12*3;
11161         else
11162                 bpp = 8*3;
11163
11164
11165         pipe_config->pipe_bpp = bpp;
11166
11167         state = pipe_config->base.state;
11168
11169         /* Clamp display bpp to EDID value */
11170         for (i = 0; i < state->num_connector; i++) {
11171                 if (!state->connectors[i])
11172                         continue;
11173
11174                 connector = to_intel_connector(state->connectors[i]);
11175                 if (state->connector_states[i]->crtc != &crtc->base)
11176                         continue;
11177
11178                 connected_sink_compute_bpp(connector, pipe_config);
11179         }
11180
11181         return bpp;
11182 }
11183
11184 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11185 {
11186         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11187                         "type: 0x%x flags: 0x%x\n",
11188                 mode->crtc_clock,
11189                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11190                 mode->crtc_hsync_end, mode->crtc_htotal,
11191                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11192                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11193 }
11194
11195 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11196                                    struct intel_crtc_state *pipe_config,
11197                                    const char *context)
11198 {
11199         struct drm_device *dev = crtc->base.dev;
11200         struct drm_plane *plane;
11201         struct intel_plane *intel_plane;
11202         struct intel_plane_state *state;
11203         struct drm_framebuffer *fb;
11204
11205         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11206                       context, pipe_config, pipe_name(crtc->pipe));
11207
11208         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11209         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11210                       pipe_config->pipe_bpp, pipe_config->dither);
11211         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11212                       pipe_config->has_pch_encoder,
11213                       pipe_config->fdi_lanes,
11214                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11215                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11216                       pipe_config->fdi_m_n.tu);
11217         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11218                       pipe_config->has_dp_encoder,
11219                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11220                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11221                       pipe_config->dp_m_n.tu);
11222
11223         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11224                       pipe_config->has_dp_encoder,
11225                       pipe_config->dp_m2_n2.gmch_m,
11226                       pipe_config->dp_m2_n2.gmch_n,
11227                       pipe_config->dp_m2_n2.link_m,
11228                       pipe_config->dp_m2_n2.link_n,
11229                       pipe_config->dp_m2_n2.tu);
11230
11231         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11232                       pipe_config->has_audio,
11233                       pipe_config->has_infoframe);
11234
11235         DRM_DEBUG_KMS("requested mode:\n");
11236         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11237         DRM_DEBUG_KMS("adjusted mode:\n");
11238         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11239         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11240         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11241         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11242                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11243         DRM_DEBUG_KMS("num_scalers: %d\n", crtc->num_scalers);
11244         DRM_DEBUG_KMS("scaler_users: 0x%x\n", pipe_config->scaler_state.scaler_users);
11245         DRM_DEBUG_KMS("scaler id: %d\n", pipe_config->scaler_state.scaler_id);
11246         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11247                       pipe_config->gmch_pfit.control,
11248                       pipe_config->gmch_pfit.pgm_ratios,
11249                       pipe_config->gmch_pfit.lvds_border_bits);
11250         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11251                       pipe_config->pch_pfit.pos,
11252                       pipe_config->pch_pfit.size,
11253                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11254         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11255         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11256
11257         DRM_DEBUG_KMS("planes on this crtc\n");
11258         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11259                 intel_plane = to_intel_plane(plane);
11260                 if (intel_plane->pipe != crtc->pipe)
11261                         continue;
11262
11263                 state = to_intel_plane_state(plane->state);
11264                 fb = state->base.fb;
11265                 if (!fb) {
11266                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11267                                 "disabled, scaler_id = %d\n",
11268                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11269                                 plane->base.id, intel_plane->pipe,
11270                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11271                                 drm_plane_index(plane), state->scaler_id);
11272                         continue;
11273                 }
11274
11275                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11276                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11277                         plane->base.id, intel_plane->pipe,
11278                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11279                         drm_plane_index(plane));
11280                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11281                         fb->base.id, fb->width, fb->height, fb->pixel_format);
11282                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11283                         state->scaler_id,
11284                         state->src.x1 >> 16, state->src.y1 >> 16,
11285                         drm_rect_width(&state->src) >> 16,
11286                         drm_rect_height(&state->src) >> 16,
11287                         state->dst.x1, state->dst.y1,
11288                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11289         }
11290 }
11291
11292 static bool encoders_cloneable(const struct intel_encoder *a,
11293                                const struct intel_encoder *b)
11294 {
11295         /* masks could be asymmetric, so check both ways */
11296         return a == b || (a->cloneable & (1 << b->type) &&
11297                           b->cloneable & (1 << a->type));
11298 }
11299
11300 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11301                                          struct intel_crtc *crtc,
11302                                          struct intel_encoder *encoder)
11303 {
11304         struct intel_encoder *source_encoder;
11305         struct drm_connector_state *connector_state;
11306         int i;
11307
11308         for (i = 0; i < state->num_connector; i++) {
11309                 if (!state->connectors[i])
11310                         continue;
11311
11312                 connector_state = state->connector_states[i];
11313                 if (connector_state->crtc != &crtc->base)
11314                         continue;
11315
11316                 source_encoder =
11317                         to_intel_encoder(connector_state->best_encoder);
11318                 if (!encoders_cloneable(encoder, source_encoder))
11319                         return false;
11320         }
11321
11322         return true;
11323 }
11324
11325 static bool check_encoder_cloning(struct drm_atomic_state *state,
11326                                   struct intel_crtc *crtc)
11327 {
11328         struct intel_encoder *encoder;
11329         struct drm_connector_state *connector_state;
11330         int i;
11331
11332         for (i = 0; i < state->num_connector; i++) {
11333                 if (!state->connectors[i])
11334                         continue;
11335
11336                 connector_state = state->connector_states[i];
11337                 if (connector_state->crtc != &crtc->base)
11338                         continue;
11339
11340                 encoder = to_intel_encoder(connector_state->best_encoder);
11341                 if (!check_single_encoder_cloning(state, crtc, encoder))
11342                         return false;
11343         }
11344
11345         return true;
11346 }
11347
11348 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11349 {
11350         struct drm_device *dev = state->dev;
11351         struct intel_encoder *encoder;
11352         struct drm_connector_state *connector_state;
11353         unsigned int used_ports = 0;
11354         int i;
11355
11356         /*
11357          * Walk the connector list instead of the encoder
11358          * list to detect the problem on ddi platforms
11359          * where there's just one encoder per digital port.
11360          */
11361         for (i = 0; i < state->num_connector; i++) {
11362                 if (!state->connectors[i])
11363                         continue;
11364
11365                 connector_state = state->connector_states[i];
11366                 if (!connector_state->best_encoder)
11367                         continue;
11368
11369                 encoder = to_intel_encoder(connector_state->best_encoder);
11370
11371                 WARN_ON(!connector_state->crtc);
11372
11373                 switch (encoder->type) {
11374                         unsigned int port_mask;
11375                 case INTEL_OUTPUT_UNKNOWN:
11376                         if (WARN_ON(!HAS_DDI(dev)))
11377                                 break;
11378                 case INTEL_OUTPUT_DISPLAYPORT:
11379                 case INTEL_OUTPUT_HDMI:
11380                 case INTEL_OUTPUT_EDP:
11381                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11382
11383                         /* the same port mustn't appear more than once */
11384                         if (used_ports & port_mask)
11385                                 return false;
11386
11387                         used_ports |= port_mask;
11388                 default:
11389                         break;
11390                 }
11391         }
11392
11393         return true;
11394 }
11395
11396 static void
11397 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11398 {
11399         struct drm_crtc_state tmp_state;
11400         struct intel_crtc_scaler_state scaler_state;
11401
11402         /* Clear only the intel specific part of the crtc state excluding scalers */
11403         tmp_state = crtc_state->base;
11404         scaler_state = crtc_state->scaler_state;
11405         memset(crtc_state, 0, sizeof *crtc_state);
11406         crtc_state->base = tmp_state;
11407         crtc_state->scaler_state = scaler_state;
11408 }
11409
11410 static struct intel_crtc_state *
11411 intel_modeset_pipe_config(struct drm_crtc *crtc,
11412                           struct drm_display_mode *mode,
11413                           struct drm_atomic_state *state)
11414 {
11415         struct intel_encoder *encoder;
11416         struct intel_connector *connector;
11417         struct drm_connector_state *connector_state;
11418         struct intel_crtc_state *pipe_config;
11419         int base_bpp, ret = -EINVAL;
11420         int i;
11421         bool retry = true;
11422
11423         if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
11424                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11425                 return ERR_PTR(-EINVAL);
11426         }
11427
11428         if (!check_digital_port_conflicts(state)) {
11429                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11430                 return ERR_PTR(-EINVAL);
11431         }
11432
11433         pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
11434         if (IS_ERR(pipe_config))
11435                 return pipe_config;
11436
11437         clear_intel_crtc_state(pipe_config);
11438
11439         pipe_config->base.crtc = crtc;
11440         drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
11441         drm_mode_copy(&pipe_config->base.mode, mode);
11442
11443         pipe_config->cpu_transcoder =
11444                 (enum transcoder) to_intel_crtc(crtc)->pipe;
11445         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
11446
11447         /*
11448          * Sanitize sync polarity flags based on requested ones. If neither
11449          * positive or negative polarity is requested, treat this as meaning
11450          * negative polarity.
11451          */
11452         if (!(pipe_config->base.adjusted_mode.flags &
11453               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11454                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11455
11456         if (!(pipe_config->base.adjusted_mode.flags &
11457               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11458                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11459
11460         /* Compute a starting value for pipe_config->pipe_bpp taking the source
11461          * plane pixel format and any sink constraints into account. Returns the
11462          * source plane bpp so that dithering can be selected on mismatches
11463          * after encoders and crtc also have had their say. */
11464         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11465                                              pipe_config);
11466         if (base_bpp < 0)
11467                 goto fail;
11468
11469         /*
11470          * Determine the real pipe dimensions. Note that stereo modes can
11471          * increase the actual pipe size due to the frame doubling and
11472          * insertion of additional space for blanks between the frame. This
11473          * is stored in the crtc timings. We use the requested mode to do this
11474          * computation to clearly distinguish it from the adjusted mode, which
11475          * can be changed by the connectors in the below retry loop.
11476          */
11477         drm_crtc_get_hv_timing(&pipe_config->base.mode,
11478                                &pipe_config->pipe_src_w,
11479                                &pipe_config->pipe_src_h);
11480
11481 encoder_retry:
11482         /* Ensure the port clock defaults are reset when retrying. */
11483         pipe_config->port_clock = 0;
11484         pipe_config->pixel_multiplier = 1;
11485
11486         /* Fill in default crtc timings, allow encoders to overwrite them. */
11487         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11488                               CRTC_STEREO_DOUBLE);
11489
11490         /* Pass our mode to the connectors and the CRTC to give them a chance to
11491          * adjust it according to limitations or connector properties, and also
11492          * a chance to reject the mode entirely.
11493          */
11494         for (i = 0; i < state->num_connector; i++) {
11495                 connector = to_intel_connector(state->connectors[i]);
11496                 if (!connector)
11497                         continue;
11498
11499                 connector_state = state->connector_states[i];
11500                 if (connector_state->crtc != crtc)
11501                         continue;
11502
11503                 encoder = to_intel_encoder(connector_state->best_encoder);
11504
11505                 if (!(encoder->compute_config(encoder, pipe_config))) {
11506                         DRM_DEBUG_KMS("Encoder config failure\n");
11507                         goto fail;
11508                 }
11509         }
11510
11511         /* Set default port clock if not overwritten by the encoder. Needs to be
11512          * done afterwards in case the encoder adjusts the mode. */
11513         if (!pipe_config->port_clock)
11514                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11515                         * pipe_config->pixel_multiplier;
11516
11517         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11518         if (ret < 0) {
11519                 DRM_DEBUG_KMS("CRTC fixup failed\n");
11520                 goto fail;
11521         }
11522
11523         if (ret == RETRY) {
11524                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11525                         ret = -EINVAL;
11526                         goto fail;
11527                 }
11528
11529                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11530                 retry = false;
11531                 goto encoder_retry;
11532         }
11533
11534         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
11535         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
11536                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11537
11538         return pipe_config;
11539 fail:
11540         return ERR_PTR(ret);
11541 }
11542
11543 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
11544  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
11545 static void
11546 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
11547                              unsigned *prepare_pipes, unsigned *disable_pipes)
11548 {
11549         struct intel_crtc *intel_crtc;
11550         struct drm_device *dev = crtc->dev;
11551         struct intel_encoder *encoder;
11552         struct intel_connector *connector;
11553         struct drm_crtc *tmp_crtc;
11554
11555         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
11556
11557         /* Check which crtcs have changed outputs connected to them, these need
11558          * to be part of the prepare_pipes mask. We don't (yet) support global
11559          * modeset across multiple crtcs, so modeset_pipes will only have one
11560          * bit set at most. */
11561         for_each_intel_connector(dev, connector) {
11562                 if (connector->base.encoder == &connector->new_encoder->base)
11563                         continue;
11564
11565                 if (connector->base.encoder) {
11566                         tmp_crtc = connector->base.encoder->crtc;
11567
11568                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
11569                 }
11570
11571                 if (connector->new_encoder)
11572                         *prepare_pipes |=
11573                                 1 << connector->new_encoder->new_crtc->pipe;
11574         }
11575
11576         for_each_intel_encoder(dev, encoder) {
11577                 if (encoder->base.crtc == &encoder->new_crtc->base)
11578                         continue;
11579
11580                 if (encoder->base.crtc) {
11581                         tmp_crtc = encoder->base.crtc;
11582
11583                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
11584                 }
11585
11586                 if (encoder->new_crtc)
11587                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
11588         }
11589
11590         /* Check for pipes that will be enabled/disabled ... */
11591         for_each_intel_crtc(dev, intel_crtc) {
11592                 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
11593                         continue;
11594
11595                 if (!intel_crtc->new_enabled)
11596                         *disable_pipes |= 1 << intel_crtc->pipe;
11597                 else
11598                         *prepare_pipes |= 1 << intel_crtc->pipe;
11599         }
11600
11601
11602         /* set_mode is also used to update properties on life display pipes. */
11603         intel_crtc = to_intel_crtc(crtc);
11604         if (intel_crtc->new_enabled)
11605                 *prepare_pipes |= 1 << intel_crtc->pipe;
11606
11607         /*
11608          * For simplicity do a full modeset on any pipe where the output routing
11609          * changed. We could be more clever, but that would require us to be
11610          * more careful with calling the relevant encoder->mode_set functions.
11611          */
11612         if (*prepare_pipes)
11613                 *modeset_pipes = *prepare_pipes;
11614
11615         /* ... and mask these out. */
11616         *modeset_pipes &= ~(*disable_pipes);
11617         *prepare_pipes &= ~(*disable_pipes);
11618
11619         /*
11620          * HACK: We don't (yet) fully support global modesets. intel_set_config
11621          * obies this rule, but the modeset restore mode of
11622          * intel_modeset_setup_hw_state does not.
11623          */
11624         *modeset_pipes &= 1 << intel_crtc->pipe;
11625         *prepare_pipes &= 1 << intel_crtc->pipe;
11626
11627         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
11628                       *modeset_pipes, *prepare_pipes, *disable_pipes);
11629 }
11630
11631 static bool intel_crtc_in_use(struct drm_crtc *crtc)
11632 {
11633         struct drm_encoder *encoder;
11634         struct drm_device *dev = crtc->dev;
11635
11636         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11637                 if (encoder->crtc == crtc)
11638                         return true;
11639
11640         return false;
11641 }
11642
11643 static void
11644 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
11645 {
11646         struct drm_i915_private *dev_priv = dev->dev_private;
11647         struct intel_encoder *intel_encoder;
11648         struct intel_crtc *intel_crtc;
11649         struct drm_connector *connector;
11650
11651         intel_shared_dpll_commit(dev_priv);
11652
11653         for_each_intel_encoder(dev, intel_encoder) {
11654                 if (!intel_encoder->base.crtc)
11655                         continue;
11656
11657                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
11658
11659                 if (prepare_pipes & (1 << intel_crtc->pipe))
11660                         intel_encoder->connectors_active = false;
11661         }
11662
11663         intel_modeset_commit_output_state(dev);
11664
11665         /* Double check state. */
11666         for_each_intel_crtc(dev, intel_crtc) {
11667                 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
11668         }
11669
11670         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11671                 if (!connector->encoder || !connector->encoder->crtc)
11672                         continue;
11673
11674                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
11675
11676                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
11677                         struct drm_property *dpms_property =
11678                                 dev->mode_config.dpms_property;
11679
11680                         connector->dpms = DRM_MODE_DPMS_ON;
11681                         drm_object_property_set_value(&connector->base,
11682                                                          dpms_property,
11683                                                          DRM_MODE_DPMS_ON);
11684
11685                         intel_encoder = to_intel_encoder(connector->encoder);
11686                         intel_encoder->connectors_active = true;
11687                 }
11688         }
11689
11690 }
11691
11692 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11693 {
11694         int diff;
11695
11696         if (clock1 == clock2)
11697                 return true;
11698
11699         if (!clock1 || !clock2)
11700                 return false;
11701
11702         diff = abs(clock1 - clock2);
11703
11704         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11705                 return true;
11706
11707         return false;
11708 }
11709
11710 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11711         list_for_each_entry((intel_crtc), \
11712                             &(dev)->mode_config.crtc_list, \
11713                             base.head) \
11714                 if (mask & (1 <<(intel_crtc)->pipe))
11715
11716 static bool
11717 intel_pipe_config_compare(struct drm_device *dev,
11718                           struct intel_crtc_state *current_config,
11719                           struct intel_crtc_state *pipe_config)
11720 {
11721 #define PIPE_CONF_CHECK_X(name) \
11722         if (current_config->name != pipe_config->name) { \
11723                 DRM_ERROR("mismatch in " #name " " \
11724                           "(expected 0x%08x, found 0x%08x)\n", \
11725                           current_config->name, \
11726                           pipe_config->name); \
11727                 return false; \
11728         }
11729
11730 #define PIPE_CONF_CHECK_I(name) \
11731         if (current_config->name != pipe_config->name) { \
11732                 DRM_ERROR("mismatch in " #name " " \
11733                           "(expected %i, found %i)\n", \
11734                           current_config->name, \
11735                           pipe_config->name); \
11736                 return false; \
11737         }
11738
11739 /* This is required for BDW+ where there is only one set of registers for
11740  * switching between high and low RR.
11741  * This macro can be used whenever a comparison has to be made between one
11742  * hw state and multiple sw state variables.
11743  */
11744 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11745         if ((current_config->name != pipe_config->name) && \
11746                 (current_config->alt_name != pipe_config->name)) { \
11747                         DRM_ERROR("mismatch in " #name " " \
11748                                   "(expected %i or %i, found %i)\n", \
11749                                   current_config->name, \
11750                                   current_config->alt_name, \
11751                                   pipe_config->name); \
11752                         return false; \
11753         }
11754
11755 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11756         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11757                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
11758                           "(expected %i, found %i)\n", \
11759                           current_config->name & (mask), \
11760                           pipe_config->name & (mask)); \
11761                 return false; \
11762         }
11763
11764 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11765         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11766                 DRM_ERROR("mismatch in " #name " " \
11767                           "(expected %i, found %i)\n", \
11768                           current_config->name, \
11769                           pipe_config->name); \
11770                 return false; \
11771         }
11772
11773 #define PIPE_CONF_QUIRK(quirk)  \
11774         ((current_config->quirks | pipe_config->quirks) & (quirk))
11775
11776         PIPE_CONF_CHECK_I(cpu_transcoder);
11777
11778         PIPE_CONF_CHECK_I(has_pch_encoder);
11779         PIPE_CONF_CHECK_I(fdi_lanes);
11780         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
11781         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11782         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11783         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11784         PIPE_CONF_CHECK_I(fdi_m_n.tu);
11785
11786         PIPE_CONF_CHECK_I(has_dp_encoder);
11787
11788         if (INTEL_INFO(dev)->gen < 8) {
11789                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11790                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11791                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11792                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11793                 PIPE_CONF_CHECK_I(dp_m_n.tu);
11794
11795                 if (current_config->has_drrs) {
11796                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11797                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11798                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11799                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11800                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11801                 }
11802         } else {
11803                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11804                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11805                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11806                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11807                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11808         }
11809
11810         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11811         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11812         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11813         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11814         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11815         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11816
11817         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11818         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11819         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11820         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11821         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11822         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11823
11824         PIPE_CONF_CHECK_I(pixel_multiplier);
11825         PIPE_CONF_CHECK_I(has_hdmi_sink);
11826         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11827             IS_VALLEYVIEW(dev))
11828                 PIPE_CONF_CHECK_I(limited_color_range);
11829         PIPE_CONF_CHECK_I(has_infoframe);
11830
11831         PIPE_CONF_CHECK_I(has_audio);
11832
11833         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11834                               DRM_MODE_FLAG_INTERLACE);
11835
11836         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11837                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11838                                       DRM_MODE_FLAG_PHSYNC);
11839                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11840                                       DRM_MODE_FLAG_NHSYNC);
11841                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11842                                       DRM_MODE_FLAG_PVSYNC);
11843                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11844                                       DRM_MODE_FLAG_NVSYNC);
11845         }
11846
11847         PIPE_CONF_CHECK_I(pipe_src_w);
11848         PIPE_CONF_CHECK_I(pipe_src_h);
11849
11850         /*
11851          * FIXME: BIOS likes to set up a cloned config with lvds+external
11852          * screen. Since we don't yet re-compute the pipe config when moving
11853          * just the lvds port away to another pipe the sw tracking won't match.
11854          *
11855          * Proper atomic modesets with recomputed global state will fix this.
11856          * Until then just don't check gmch state for inherited modes.
11857          */
11858         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11859                 PIPE_CONF_CHECK_I(gmch_pfit.control);
11860                 /* pfit ratios are autocomputed by the hw on gen4+ */
11861                 if (INTEL_INFO(dev)->gen < 4)
11862                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11863                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11864         }
11865
11866         PIPE_CONF_CHECK_I(pch_pfit.enabled);
11867         if (current_config->pch_pfit.enabled) {
11868                 PIPE_CONF_CHECK_I(pch_pfit.pos);
11869                 PIPE_CONF_CHECK_I(pch_pfit.size);
11870         }
11871
11872         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11873
11874         /* BDW+ don't expose a synchronous way to read the state */
11875         if (IS_HASWELL(dev))
11876                 PIPE_CONF_CHECK_I(ips_enabled);
11877
11878         PIPE_CONF_CHECK_I(double_wide);
11879
11880         PIPE_CONF_CHECK_X(ddi_pll_sel);
11881
11882         PIPE_CONF_CHECK_I(shared_dpll);
11883         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11884         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11885         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11886         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11887         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11888         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11889         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11890         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11891
11892         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11893                 PIPE_CONF_CHECK_I(pipe_bpp);
11894
11895         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11896         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11897
11898 #undef PIPE_CONF_CHECK_X
11899 #undef PIPE_CONF_CHECK_I
11900 #undef PIPE_CONF_CHECK_I_ALT
11901 #undef PIPE_CONF_CHECK_FLAGS
11902 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11903 #undef PIPE_CONF_QUIRK
11904
11905         return true;
11906 }
11907
11908 static void check_wm_state(struct drm_device *dev)
11909 {
11910         struct drm_i915_private *dev_priv = dev->dev_private;
11911         struct skl_ddb_allocation hw_ddb, *sw_ddb;
11912         struct intel_crtc *intel_crtc;
11913         int plane;
11914
11915         if (INTEL_INFO(dev)->gen < 9)
11916                 return;
11917
11918         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11919         sw_ddb = &dev_priv->wm.skl_hw.ddb;
11920
11921         for_each_intel_crtc(dev, intel_crtc) {
11922                 struct skl_ddb_entry *hw_entry, *sw_entry;
11923                 const enum pipe pipe = intel_crtc->pipe;
11924
11925                 if (!intel_crtc->active)
11926                         continue;
11927
11928                 /* planes */
11929                 for_each_plane(dev_priv, pipe, plane) {
11930                         hw_entry = &hw_ddb.plane[pipe][plane];
11931                         sw_entry = &sw_ddb->plane[pipe][plane];
11932
11933                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
11934                                 continue;
11935
11936                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11937                                   "(expected (%u,%u), found (%u,%u))\n",
11938                                   pipe_name(pipe), plane + 1,
11939                                   sw_entry->start, sw_entry->end,
11940                                   hw_entry->start, hw_entry->end);
11941                 }
11942
11943                 /* cursor */
11944                 hw_entry = &hw_ddb.cursor[pipe];
11945                 sw_entry = &sw_ddb->cursor[pipe];
11946
11947                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11948                         continue;
11949
11950                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11951                           "(expected (%u,%u), found (%u,%u))\n",
11952                           pipe_name(pipe),
11953                           sw_entry->start, sw_entry->end,
11954                           hw_entry->start, hw_entry->end);
11955         }
11956 }
11957
11958 static void
11959 check_connector_state(struct drm_device *dev)
11960 {
11961         struct intel_connector *connector;
11962
11963         for_each_intel_connector(dev, connector) {
11964                 /* This also checks the encoder/connector hw state with the
11965                  * ->get_hw_state callbacks. */
11966                 intel_connector_check_state(connector);
11967
11968                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11969                      "connector's staged encoder doesn't match current encoder\n");
11970         }
11971 }
11972
11973 static void
11974 check_encoder_state(struct drm_device *dev)
11975 {
11976         struct intel_encoder *encoder;
11977         struct intel_connector *connector;
11978
11979         for_each_intel_encoder(dev, encoder) {
11980                 bool enabled = false;
11981                 bool active = false;
11982                 enum pipe pipe, tracked_pipe;
11983
11984                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11985                               encoder->base.base.id,
11986                               encoder->base.name);
11987
11988                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11989                      "encoder's stage crtc doesn't match current crtc\n");
11990                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11991                      "encoder's active_connectors set, but no crtc\n");
11992
11993                 for_each_intel_connector(dev, connector) {
11994                         if (connector->base.encoder != &encoder->base)
11995                                 continue;
11996                         enabled = true;
11997                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11998                                 active = true;
11999                 }
12000                 /*
12001                  * for MST connectors if we unplug the connector is gone
12002                  * away but the encoder is still connected to a crtc
12003                  * until a modeset happens in response to the hotplug.
12004                  */
12005                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12006                         continue;
12007
12008                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12009                      "encoder's enabled state mismatch "
12010                      "(expected %i, found %i)\n",
12011                      !!encoder->base.crtc, enabled);
12012                 I915_STATE_WARN(active && !encoder->base.crtc,
12013                      "active encoder with no crtc\n");
12014
12015                 I915_STATE_WARN(encoder->connectors_active != active,
12016                      "encoder's computed active state doesn't match tracked active state "
12017                      "(expected %i, found %i)\n", active, encoder->connectors_active);
12018
12019                 active = encoder->get_hw_state(encoder, &pipe);
12020                 I915_STATE_WARN(active != encoder->connectors_active,
12021                      "encoder's hw state doesn't match sw tracking "
12022                      "(expected %i, found %i)\n",
12023                      encoder->connectors_active, active);
12024
12025                 if (!encoder->base.crtc)
12026                         continue;
12027
12028                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12029                 I915_STATE_WARN(active && pipe != tracked_pipe,
12030                      "active encoder's pipe doesn't match"
12031                      "(expected %i, found %i)\n",
12032                      tracked_pipe, pipe);
12033
12034         }
12035 }
12036
12037 static void
12038 check_crtc_state(struct drm_device *dev)
12039 {
12040         struct drm_i915_private *dev_priv = dev->dev_private;
12041         struct intel_crtc *crtc;
12042         struct intel_encoder *encoder;
12043         struct intel_crtc_state pipe_config;
12044
12045         for_each_intel_crtc(dev, crtc) {
12046                 bool enabled = false;
12047                 bool active = false;
12048
12049                 memset(&pipe_config, 0, sizeof(pipe_config));
12050
12051                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12052                               crtc->base.base.id);
12053
12054                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12055                      "active crtc, but not enabled in sw tracking\n");
12056
12057                 for_each_intel_encoder(dev, encoder) {
12058                         if (encoder->base.crtc != &crtc->base)
12059                                 continue;
12060                         enabled = true;
12061                         if (encoder->connectors_active)
12062                                 active = true;
12063                 }
12064
12065                 I915_STATE_WARN(active != crtc->active,
12066                      "crtc's computed active state doesn't match tracked active state "
12067                      "(expected %i, found %i)\n", active, crtc->active);
12068                 I915_STATE_WARN(enabled != crtc->base.state->enable,
12069                      "crtc's computed enabled state doesn't match tracked enabled state "
12070                      "(expected %i, found %i)\n", enabled,
12071                                 crtc->base.state->enable);
12072
12073                 active = dev_priv->display.get_pipe_config(crtc,
12074                                                            &pipe_config);
12075
12076                 /* hw state is inconsistent with the pipe quirk */
12077                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12078                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12079                         active = crtc->active;
12080
12081                 for_each_intel_encoder(dev, encoder) {
12082                         enum pipe pipe;
12083                         if (encoder->base.crtc != &crtc->base)
12084                                 continue;
12085                         if (encoder->get_hw_state(encoder, &pipe))
12086                                 encoder->get_config(encoder, &pipe_config);
12087                 }
12088
12089                 I915_STATE_WARN(crtc->active != active,
12090                      "crtc active state doesn't match with hw state "
12091                      "(expected %i, found %i)\n", crtc->active, active);
12092
12093                 if (active &&
12094                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12095                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12096                         intel_dump_pipe_config(crtc, &pipe_config,
12097                                                "[hw state]");
12098                         intel_dump_pipe_config(crtc, crtc->config,
12099                                                "[sw state]");
12100                 }
12101         }
12102 }
12103
12104 static void
12105 check_shared_dpll_state(struct drm_device *dev)
12106 {
12107         struct drm_i915_private *dev_priv = dev->dev_private;
12108         struct intel_crtc *crtc;
12109         struct intel_dpll_hw_state dpll_hw_state;
12110         int i;
12111
12112         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12113                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12114                 int enabled_crtcs = 0, active_crtcs = 0;
12115                 bool active;
12116
12117                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12118
12119                 DRM_DEBUG_KMS("%s\n", pll->name);
12120
12121                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12122
12123                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12124                      "more active pll users than references: %i vs %i\n",
12125                      pll->active, hweight32(pll->config.crtc_mask));
12126                 I915_STATE_WARN(pll->active && !pll->on,
12127                      "pll in active use but not on in sw tracking\n");
12128                 I915_STATE_WARN(pll->on && !pll->active,
12129                      "pll in on but not on in use in sw tracking\n");
12130                 I915_STATE_WARN(pll->on != active,
12131                      "pll on state mismatch (expected %i, found %i)\n",
12132                      pll->on, active);
12133
12134                 for_each_intel_crtc(dev, crtc) {
12135                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12136                                 enabled_crtcs++;
12137                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12138                                 active_crtcs++;
12139                 }
12140                 I915_STATE_WARN(pll->active != active_crtcs,
12141                      "pll active crtcs mismatch (expected %i, found %i)\n",
12142                      pll->active, active_crtcs);
12143                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12144                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12145                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12146
12147                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12148                                        sizeof(dpll_hw_state)),
12149                      "pll hw state mismatch\n");
12150         }
12151 }
12152
12153 void
12154 intel_modeset_check_state(struct drm_device *dev)
12155 {
12156         check_wm_state(dev);
12157         check_connector_state(dev);
12158         check_encoder_state(dev);
12159         check_crtc_state(dev);
12160         check_shared_dpll_state(dev);
12161 }
12162
12163 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12164                                      int dotclock)
12165 {
12166         /*
12167          * FDI already provided one idea for the dotclock.
12168          * Yell if the encoder disagrees.
12169          */
12170         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12171              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12172              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12173 }
12174
12175 static void update_scanline_offset(struct intel_crtc *crtc)
12176 {
12177         struct drm_device *dev = crtc->base.dev;
12178
12179         /*
12180          * The scanline counter increments at the leading edge of hsync.
12181          *
12182          * On most platforms it starts counting from vtotal-1 on the
12183          * first active line. That means the scanline counter value is
12184          * always one less than what we would expect. Ie. just after
12185          * start of vblank, which also occurs at start of hsync (on the
12186          * last active line), the scanline counter will read vblank_start-1.
12187          *
12188          * On gen2 the scanline counter starts counting from 1 instead
12189          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12190          * to keep the value positive), instead of adding one.
12191          *
12192          * On HSW+ the behaviour of the scanline counter depends on the output
12193          * type. For DP ports it behaves like most other platforms, but on HDMI
12194          * there's an extra 1 line difference. So we need to add two instead of
12195          * one to the value.
12196          */
12197         if (IS_GEN2(dev)) {
12198                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12199                 int vtotal;
12200
12201                 vtotal = mode->crtc_vtotal;
12202                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12203                         vtotal /= 2;
12204
12205                 crtc->scanline_offset = vtotal - 1;
12206         } else if (HAS_DDI(dev) &&
12207                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12208                 crtc->scanline_offset = 2;
12209         } else
12210                 crtc->scanline_offset = 1;
12211 }
12212
12213 static struct intel_crtc_state *
12214 intel_modeset_compute_config(struct drm_crtc *crtc,
12215                              struct drm_display_mode *mode,
12216                              struct drm_atomic_state *state,
12217                              unsigned *modeset_pipes,
12218                              unsigned *prepare_pipes,
12219                              unsigned *disable_pipes)
12220 {
12221         struct drm_device *dev = crtc->dev;
12222         struct intel_crtc_state *pipe_config = NULL;
12223         struct intel_crtc *intel_crtc;
12224         int ret = 0;
12225
12226         ret = drm_atomic_add_affected_connectors(state, crtc);
12227         if (ret)
12228                 return ERR_PTR(ret);
12229
12230         intel_modeset_affected_pipes(crtc, modeset_pipes,
12231                                      prepare_pipes, disable_pipes);
12232
12233         for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
12234                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12235                 if (IS_ERR(pipe_config))
12236                         return pipe_config;
12237
12238                 pipe_config->base.enable = false;
12239         }
12240
12241         /*
12242          * Note this needs changes when we start tracking multiple modes
12243          * and crtcs.  At that point we'll need to compute the whole config
12244          * (i.e. one pipe_config for each crtc) rather than just the one
12245          * for this crtc.
12246          */
12247         for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
12248                 /* FIXME: For now we still expect modeset_pipes has at most
12249                  * one bit set. */
12250                 if (WARN_ON(&intel_crtc->base != crtc))
12251                         continue;
12252
12253                 pipe_config = intel_modeset_pipe_config(crtc, mode, state);
12254                 if (IS_ERR(pipe_config))
12255                         return pipe_config;
12256
12257                 pipe_config->base.enable = true;
12258
12259                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12260                                        "[modeset]");
12261         }
12262
12263         return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
12264 }
12265
12266 static int __intel_set_mode_setup_plls(struct drm_atomic_state *state,
12267                                        unsigned modeset_pipes,
12268                                        unsigned disable_pipes)
12269 {
12270         struct drm_device *dev = state->dev;
12271         struct drm_i915_private *dev_priv = to_i915(dev);
12272         unsigned clear_pipes = modeset_pipes | disable_pipes;
12273         struct intel_crtc *intel_crtc;
12274         int ret = 0;
12275
12276         if (!dev_priv->display.crtc_compute_clock)
12277                 return 0;
12278
12279         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12280         if (ret)
12281                 goto done;
12282
12283         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
12284                 struct intel_crtc_state *crtc_state =
12285                         intel_atomic_get_crtc_state(state, intel_crtc);
12286
12287                 /* Modeset pipes should have a new state by now */
12288                 if (WARN_ON(IS_ERR(crtc_state)))
12289                         continue;
12290
12291                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12292                                                            crtc_state);
12293                 if (ret) {
12294                         intel_shared_dpll_abort_config(dev_priv);
12295                         goto done;
12296                 }
12297         }
12298
12299 done:
12300         return ret;
12301 }
12302
12303 static int __intel_set_mode(struct drm_crtc *crtc,
12304                             struct drm_display_mode *mode,
12305                             int x, int y, struct drm_framebuffer *fb,
12306                             struct intel_crtc_state *pipe_config,
12307                             unsigned modeset_pipes,
12308                             unsigned prepare_pipes,
12309                             unsigned disable_pipes)
12310 {
12311         struct drm_device *dev = crtc->dev;
12312         struct drm_i915_private *dev_priv = dev->dev_private;
12313         struct drm_display_mode *saved_mode;
12314         struct drm_atomic_state *state = pipe_config->base.state;
12315         struct intel_crtc_state *crtc_state_copy = NULL;
12316         struct intel_crtc *intel_crtc;
12317         int ret = 0;
12318
12319         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
12320         if (!saved_mode)
12321                 return -ENOMEM;
12322
12323         crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
12324         if (!crtc_state_copy) {
12325                 ret = -ENOMEM;
12326                 goto done;
12327         }
12328
12329         *saved_mode = crtc->mode;
12330
12331         /*
12332          * See if the config requires any additional preparation, e.g.
12333          * to adjust global state with pipes off.  We need to do this
12334          * here so we can get the modeset_pipe updated config for the new
12335          * mode set on this crtc.  For other crtcs we need to use the
12336          * adjusted_mode bits in the crtc directly.
12337          */
12338         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12339                 ret = valleyview_modeset_global_pipes(state, &prepare_pipes);
12340                 if (ret)
12341                         goto done;
12342
12343                 /* may have added more to prepare_pipes than we should */
12344                 prepare_pipes &= ~disable_pipes;
12345         }
12346
12347         ret = __intel_set_mode_setup_plls(state, modeset_pipes, disable_pipes);
12348         if (ret)
12349                 goto done;
12350
12351         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
12352                 intel_crtc_disable(&intel_crtc->base);
12353
12354         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
12355                 if (intel_crtc->base.state->enable) {
12356                         intel_crtc_disable_planes(&intel_crtc->base);
12357                         dev_priv->display.crtc_disable(&intel_crtc->base);
12358                 }
12359         }
12360
12361         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12362          * to set it here already despite that we pass it down the callchain.
12363          *
12364          * Note we'll need to fix this up when we start tracking multiple
12365          * pipes; here we assume a single modeset_pipe and only track the
12366          * single crtc and mode.
12367          */
12368         if (modeset_pipes) {
12369                 crtc->mode = *mode;
12370                 /* mode_set/enable/disable functions rely on a correct pipe
12371                  * config. */
12372                 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
12373
12374                 /*
12375                  * Calculate and store various constants which
12376                  * are later needed by vblank and swap-completion
12377                  * timestamping. They are derived from true hwmode.
12378                  */
12379                 drm_calc_timestamping_constants(crtc,
12380                                                 &pipe_config->base.adjusted_mode);
12381         }
12382
12383         /* Only after disabling all output pipelines that will be changed can we
12384          * update the the output configuration. */
12385         intel_modeset_update_state(dev, prepare_pipes);
12386
12387         modeset_update_crtc_power_domains(state);
12388
12389         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
12390                 struct drm_plane *primary = intel_crtc->base.primary;
12391                 int vdisplay, hdisplay;
12392
12393                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
12394                 ret = drm_plane_helper_update(primary, &intel_crtc->base,
12395                                               fb, 0, 0,
12396                                               hdisplay, vdisplay,
12397                                               x << 16, y << 16,
12398                                               hdisplay << 16, vdisplay << 16);
12399         }
12400
12401         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12402         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
12403                 update_scanline_offset(intel_crtc);
12404
12405                 dev_priv->display.crtc_enable(&intel_crtc->base);
12406                 intel_crtc_enable_planes(&intel_crtc->base);
12407         }
12408
12409         /* FIXME: add subpixel order */
12410 done:
12411         if (ret && crtc->state->enable)
12412                 crtc->mode = *saved_mode;
12413
12414         if (ret == 0 && pipe_config) {
12415                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12416
12417                 /* The pipe_config will be freed with the atomic state, so
12418                  * make a copy. */
12419                 memcpy(crtc_state_copy, intel_crtc->config,
12420                        sizeof *crtc_state_copy);
12421                 intel_crtc->config = crtc_state_copy;
12422                 intel_crtc->base.state = &crtc_state_copy->base;
12423         } else {
12424                 kfree(crtc_state_copy);
12425         }
12426
12427         kfree(saved_mode);
12428         return ret;
12429 }
12430
12431 static int intel_set_mode_pipes(struct drm_crtc *crtc,
12432                                 struct drm_display_mode *mode,
12433                                 int x, int y, struct drm_framebuffer *fb,
12434                                 struct intel_crtc_state *pipe_config,
12435                                 unsigned modeset_pipes,
12436                                 unsigned prepare_pipes,
12437                                 unsigned disable_pipes)
12438 {
12439         int ret;
12440
12441         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
12442                                prepare_pipes, disable_pipes);
12443
12444         if (ret == 0)
12445                 intel_modeset_check_state(crtc->dev);
12446
12447         return ret;
12448 }
12449
12450 static int intel_set_mode(struct drm_crtc *crtc,
12451                           struct drm_display_mode *mode,
12452                           int x, int y, struct drm_framebuffer *fb,
12453                           struct drm_atomic_state *state)
12454 {
12455         struct intel_crtc_state *pipe_config;
12456         unsigned modeset_pipes, prepare_pipes, disable_pipes;
12457         int ret = 0;
12458
12459         pipe_config = intel_modeset_compute_config(crtc, mode, state,
12460                                                    &modeset_pipes,
12461                                                    &prepare_pipes,
12462                                                    &disable_pipes);
12463
12464         if (IS_ERR(pipe_config)) {
12465                 ret = PTR_ERR(pipe_config);
12466                 goto out;
12467         }
12468
12469         ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
12470                                    modeset_pipes, prepare_pipes,
12471                                    disable_pipes);
12472         if (ret)
12473                 goto out;
12474
12475 out:
12476         return ret;
12477 }
12478
12479 void intel_crtc_restore_mode(struct drm_crtc *crtc)
12480 {
12481         struct drm_device *dev = crtc->dev;
12482         struct drm_atomic_state *state;
12483         struct intel_encoder *encoder;
12484         struct intel_connector *connector;
12485         struct drm_connector_state *connector_state;
12486
12487         state = drm_atomic_state_alloc(dev);
12488         if (!state) {
12489                 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12490                               crtc->base.id);
12491                 return;
12492         }
12493
12494         state->acquire_ctx = dev->mode_config.acquire_ctx;
12495
12496         /* The force restore path in the HW readout code relies on the staged
12497          * config still keeping the user requested config while the actual
12498          * state has been overwritten by the configuration read from HW. We
12499          * need to copy the staged config to the atomic state, otherwise the
12500          * mode set will just reapply the state the HW is already in. */
12501         for_each_intel_encoder(dev, encoder) {
12502                 if (&encoder->new_crtc->base != crtc)
12503                         continue;
12504
12505                 for_each_intel_connector(dev, connector) {
12506                         if (connector->new_encoder != encoder)
12507                                 continue;
12508
12509                         connector_state = drm_atomic_get_connector_state(state, &connector->base);
12510                         if (IS_ERR(connector_state)) {
12511                                 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12512                                               connector->base.base.id,
12513                                               connector->base.name,
12514                                               PTR_ERR(connector_state));
12515                                 continue;
12516                         }
12517
12518                         connector_state->crtc = crtc;
12519                         connector_state->best_encoder = &encoder->base;
12520                 }
12521         }
12522
12523         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
12524                        state);
12525
12526         drm_atomic_state_free(state);
12527 }
12528
12529 #undef for_each_intel_crtc_masked
12530
12531 static void intel_set_config_free(struct intel_set_config *config)
12532 {
12533         if (!config)
12534                 return;
12535
12536         kfree(config->save_connector_encoders);
12537         kfree(config->save_encoder_crtcs);
12538         kfree(config->save_crtc_enabled);
12539         kfree(config);
12540 }
12541
12542 static int intel_set_config_save_state(struct drm_device *dev,
12543                                        struct intel_set_config *config)
12544 {
12545         struct drm_crtc *crtc;
12546         struct drm_encoder *encoder;
12547         struct drm_connector *connector;
12548         int count;
12549
12550         config->save_crtc_enabled =
12551                 kcalloc(dev->mode_config.num_crtc,
12552                         sizeof(bool), GFP_KERNEL);
12553         if (!config->save_crtc_enabled)
12554                 return -ENOMEM;
12555
12556         config->save_encoder_crtcs =
12557                 kcalloc(dev->mode_config.num_encoder,
12558                         sizeof(struct drm_crtc *), GFP_KERNEL);
12559         if (!config->save_encoder_crtcs)
12560                 return -ENOMEM;
12561
12562         config->save_connector_encoders =
12563                 kcalloc(dev->mode_config.num_connector,
12564                         sizeof(struct drm_encoder *), GFP_KERNEL);
12565         if (!config->save_connector_encoders)
12566                 return -ENOMEM;
12567
12568         /* Copy data. Note that driver private data is not affected.
12569          * Should anything bad happen only the expected state is
12570          * restored, not the drivers personal bookkeeping.
12571          */
12572         count = 0;
12573         for_each_crtc(dev, crtc) {
12574                 config->save_crtc_enabled[count++] = crtc->state->enable;
12575         }
12576
12577         count = 0;
12578         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
12579                 config->save_encoder_crtcs[count++] = encoder->crtc;
12580         }
12581
12582         count = 0;
12583         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12584                 config->save_connector_encoders[count++] = connector->encoder;
12585         }
12586
12587         return 0;
12588 }
12589
12590 static void intel_set_config_restore_state(struct drm_device *dev,
12591                                            struct intel_set_config *config)
12592 {
12593         struct intel_crtc *crtc;
12594         struct intel_encoder *encoder;
12595         struct intel_connector *connector;
12596         int count;
12597
12598         count = 0;
12599         for_each_intel_crtc(dev, crtc) {
12600                 crtc->new_enabled = config->save_crtc_enabled[count++];
12601         }
12602
12603         count = 0;
12604         for_each_intel_encoder(dev, encoder) {
12605                 encoder->new_crtc =
12606                         to_intel_crtc(config->save_encoder_crtcs[count++]);
12607         }
12608
12609         count = 0;
12610         for_each_intel_connector(dev, connector) {
12611                 connector->new_encoder =
12612                         to_intel_encoder(config->save_connector_encoders[count++]);
12613         }
12614 }
12615
12616 static bool
12617 is_crtc_connector_off(struct drm_mode_set *set)
12618 {
12619         int i;
12620
12621         if (set->num_connectors == 0)
12622                 return false;
12623
12624         if (WARN_ON(set->connectors == NULL))
12625                 return false;
12626
12627         for (i = 0; i < set->num_connectors; i++)
12628                 if (set->connectors[i]->encoder &&
12629                     set->connectors[i]->encoder->crtc == set->crtc &&
12630                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
12631                         return true;
12632
12633         return false;
12634 }
12635
12636 static void
12637 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
12638                                       struct intel_set_config *config)
12639 {
12640
12641         /* We should be able to check here if the fb has the same properties
12642          * and then just flip_or_move it */
12643         if (is_crtc_connector_off(set)) {
12644                 config->mode_changed = true;
12645         } else if (set->crtc->primary->fb != set->fb) {
12646                 /*
12647                  * If we have no fb, we can only flip as long as the crtc is
12648                  * active, otherwise we need a full mode set.  The crtc may
12649                  * be active if we've only disabled the primary plane, or
12650                  * in fastboot situations.
12651                  */
12652                 if (set->crtc->primary->fb == NULL) {
12653                         struct intel_crtc *intel_crtc =
12654                                 to_intel_crtc(set->crtc);
12655
12656                         if (intel_crtc->active) {
12657                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
12658                                 config->fb_changed = true;
12659                         } else {
12660                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
12661                                 config->mode_changed = true;
12662                         }
12663                 } else if (set->fb == NULL) {
12664                         config->mode_changed = true;
12665                 } else if (set->fb->pixel_format !=
12666                            set->crtc->primary->fb->pixel_format) {
12667                         config->mode_changed = true;
12668                 } else {
12669                         config->fb_changed = true;
12670                 }
12671         }
12672
12673         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
12674                 config->fb_changed = true;
12675
12676         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
12677                 DRM_DEBUG_KMS("modes are different, full mode set\n");
12678                 drm_mode_debug_printmodeline(&set->crtc->mode);
12679                 drm_mode_debug_printmodeline(set->mode);
12680                 config->mode_changed = true;
12681         }
12682
12683         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
12684                         set->crtc->base.id, config->mode_changed, config->fb_changed);
12685 }
12686
12687 static int
12688 intel_modeset_stage_output_state(struct drm_device *dev,
12689                                  struct drm_mode_set *set,
12690                                  struct intel_set_config *config,
12691                                  struct drm_atomic_state *state)
12692 {
12693         struct intel_connector *connector;
12694         struct drm_connector_state *connector_state;
12695         struct intel_encoder *encoder;
12696         struct intel_crtc *crtc;
12697         int ro;
12698
12699         /* The upper layers ensure that we either disable a crtc or have a list
12700          * of connectors. For paranoia, double-check this. */
12701         WARN_ON(!set->fb && (set->num_connectors != 0));
12702         WARN_ON(set->fb && (set->num_connectors == 0));
12703
12704         for_each_intel_connector(dev, connector) {
12705                 /* Otherwise traverse passed in connector list and get encoders
12706                  * for them. */
12707                 for (ro = 0; ro < set->num_connectors; ro++) {
12708                         if (set->connectors[ro] == &connector->base) {
12709                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
12710                                 break;
12711                         }
12712                 }
12713
12714                 /* If we disable the crtc, disable all its connectors. Also, if
12715                  * the connector is on the changing crtc but not on the new
12716                  * connector list, disable it. */
12717                 if ((!set->fb || ro == set->num_connectors) &&
12718                     connector->base.encoder &&
12719                     connector->base.encoder->crtc == set->crtc) {
12720                         connector->new_encoder = NULL;
12721
12722                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12723                                 connector->base.base.id,
12724                                 connector->base.name);
12725                 }
12726
12727
12728                 if (&connector->new_encoder->base != connector->base.encoder) {
12729                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
12730                                       connector->base.base.id,
12731                                       connector->base.name);
12732                         config->mode_changed = true;
12733                 }
12734         }
12735         /* connector->new_encoder is now updated for all connectors. */
12736
12737         /* Update crtc of enabled connectors. */
12738         for_each_intel_connector(dev, connector) {
12739                 struct drm_crtc *new_crtc;
12740
12741                 if (!connector->new_encoder)
12742                         continue;
12743
12744                 new_crtc = connector->new_encoder->base.crtc;
12745
12746                 for (ro = 0; ro < set->num_connectors; ro++) {
12747                         if (set->connectors[ro] == &connector->base)
12748                                 new_crtc = set->crtc;
12749                 }
12750
12751                 /* Make sure the new CRTC will work with the encoder */
12752                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
12753                                          new_crtc)) {
12754                         return -EINVAL;
12755                 }
12756                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
12757
12758                 connector_state =
12759                         drm_atomic_get_connector_state(state, &connector->base);
12760                 if (IS_ERR(connector_state))
12761                         return PTR_ERR(connector_state);
12762
12763                 connector_state->crtc = new_crtc;
12764                 connector_state->best_encoder = &connector->new_encoder->base;
12765
12766                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12767                         connector->base.base.id,
12768                         connector->base.name,
12769                         new_crtc->base.id);
12770         }
12771
12772         /* Check for any encoders that needs to be disabled. */
12773         for_each_intel_encoder(dev, encoder) {
12774                 int num_connectors = 0;
12775                 for_each_intel_connector(dev, connector) {
12776                         if (connector->new_encoder == encoder) {
12777                                 WARN_ON(!connector->new_encoder->new_crtc);
12778                                 num_connectors++;
12779                         }
12780                 }
12781
12782                 if (num_connectors == 0)
12783                         encoder->new_crtc = NULL;
12784                 else if (num_connectors > 1)
12785                         return -EINVAL;
12786
12787                 /* Only now check for crtc changes so we don't miss encoders
12788                  * that will be disabled. */
12789                 if (&encoder->new_crtc->base != encoder->base.crtc) {
12790                         DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
12791                                       encoder->base.base.id,
12792                                       encoder->base.name);
12793                         config->mode_changed = true;
12794                 }
12795         }
12796         /* Now we've also updated encoder->new_crtc for all encoders. */
12797         for_each_intel_connector(dev, connector) {
12798                 connector_state =
12799                         drm_atomic_get_connector_state(state, &connector->base);
12800                 if (IS_ERR(connector_state))
12801                         return PTR_ERR(connector_state);
12802
12803                 if (connector->new_encoder) {
12804                         if (connector->new_encoder != connector->encoder)
12805                                 connector->encoder = connector->new_encoder;
12806                 } else {
12807                         connector_state->crtc = NULL;
12808                         connector_state->best_encoder = NULL;
12809                 }
12810         }
12811         for_each_intel_crtc(dev, crtc) {
12812                 crtc->new_enabled = false;
12813
12814                 for_each_intel_encoder(dev, encoder) {
12815                         if (encoder->new_crtc == crtc) {
12816                                 crtc->new_enabled = true;
12817                                 break;
12818                         }
12819                 }
12820
12821                 if (crtc->new_enabled != crtc->base.state->enable) {
12822                         DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
12823                                       crtc->base.base.id,
12824                                       crtc->new_enabled ? "en" : "dis");
12825                         config->mode_changed = true;
12826                 }
12827         }
12828
12829         return 0;
12830 }
12831
12832 static void disable_crtc_nofb(struct intel_crtc *crtc)
12833 {
12834         struct drm_device *dev = crtc->base.dev;
12835         struct intel_encoder *encoder;
12836         struct intel_connector *connector;
12837
12838         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
12839                       pipe_name(crtc->pipe));
12840
12841         for_each_intel_connector(dev, connector) {
12842                 if (connector->new_encoder &&
12843                     connector->new_encoder->new_crtc == crtc)
12844                         connector->new_encoder = NULL;
12845         }
12846
12847         for_each_intel_encoder(dev, encoder) {
12848                 if (encoder->new_crtc == crtc)
12849                         encoder->new_crtc = NULL;
12850         }
12851
12852         crtc->new_enabled = false;
12853 }
12854
12855 static int intel_crtc_set_config(struct drm_mode_set *set)
12856 {
12857         struct drm_device *dev;
12858         struct drm_mode_set save_set;
12859         struct drm_atomic_state *state = NULL;
12860         struct intel_set_config *config;
12861         struct intel_crtc_state *pipe_config;
12862         unsigned modeset_pipes, prepare_pipes, disable_pipes;
12863         int ret;
12864
12865         BUG_ON(!set);
12866         BUG_ON(!set->crtc);
12867         BUG_ON(!set->crtc->helper_private);
12868
12869         /* Enforce sane interface api - has been abused by the fb helper. */
12870         BUG_ON(!set->mode && set->fb);
12871         BUG_ON(set->fb && set->num_connectors == 0);
12872
12873         if (set->fb) {
12874                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12875                                 set->crtc->base.id, set->fb->base.id,
12876                                 (int)set->num_connectors, set->x, set->y);
12877         } else {
12878                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12879         }
12880
12881         dev = set->crtc->dev;
12882
12883         ret = -ENOMEM;
12884         config = kzalloc(sizeof(*config), GFP_KERNEL);
12885         if (!config)
12886                 goto out_config;
12887
12888         ret = intel_set_config_save_state(dev, config);
12889         if (ret)
12890                 goto out_config;
12891
12892         save_set.crtc = set->crtc;
12893         save_set.mode = &set->crtc->mode;
12894         save_set.x = set->crtc->x;
12895         save_set.y = set->crtc->y;
12896         save_set.fb = set->crtc->primary->fb;
12897
12898         /* Compute whether we need a full modeset, only an fb base update or no
12899          * change at all. In the future we might also check whether only the
12900          * mode changed, e.g. for LVDS where we only change the panel fitter in
12901          * such cases. */
12902         intel_set_config_compute_mode_changes(set, config);
12903
12904         state = drm_atomic_state_alloc(dev);
12905         if (!state) {
12906                 ret = -ENOMEM;
12907                 goto out_config;
12908         }
12909
12910         state->acquire_ctx = dev->mode_config.acquire_ctx;
12911
12912         ret = intel_modeset_stage_output_state(dev, set, config, state);
12913         if (ret)
12914                 goto fail;
12915
12916         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
12917                                                    state,
12918                                                    &modeset_pipes,
12919                                                    &prepare_pipes,
12920                                                    &disable_pipes);
12921         if (IS_ERR(pipe_config)) {
12922                 ret = PTR_ERR(pipe_config);
12923                 goto fail;
12924         } else if (pipe_config) {
12925                 if (pipe_config->has_audio !=
12926                     to_intel_crtc(set->crtc)->config->has_audio)
12927                         config->mode_changed = true;
12928
12929                 /*
12930                  * Note we have an issue here with infoframes: current code
12931                  * only updates them on the full mode set path per hw
12932                  * requirements.  So here we should be checking for any
12933                  * required changes and forcing a mode set.
12934                  */
12935         }
12936
12937         intel_update_pipe_size(to_intel_crtc(set->crtc));
12938
12939         if (config->mode_changed) {
12940                 ret = intel_set_mode_pipes(set->crtc, set->mode,
12941                                            set->x, set->y, set->fb, pipe_config,
12942                                            modeset_pipes, prepare_pipes,
12943                                            disable_pipes);
12944         } else if (config->fb_changed) {
12945                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12946                 struct drm_plane *primary = set->crtc->primary;
12947                 struct intel_plane_state *plane_state =
12948                                 to_intel_plane_state(primary->state);
12949                 bool was_visible = plane_state->visible;
12950                 int vdisplay, hdisplay;
12951
12952                 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12953                 ret = drm_plane_helper_update(primary, set->crtc, set->fb,
12954                                               0, 0, hdisplay, vdisplay,
12955                                               set->x << 16, set->y << 16,
12956                                               hdisplay << 16, vdisplay << 16);
12957
12958                 /*
12959                  * We need to make sure the primary plane is re-enabled if it
12960                  * has previously been turned off.
12961                  */
12962                 plane_state = to_intel_plane_state(primary->state);
12963                 if (ret == 0 && !was_visible && plane_state->visible) {
12964                         WARN_ON(!intel_crtc->active);
12965                         intel_post_enable_primary(set->crtc);
12966                 }
12967
12968                 /*
12969                  * In the fastboot case this may be our only check of the
12970                  * state after boot.  It would be better to only do it on
12971                  * the first update, but we don't have a nice way of doing that
12972                  * (and really, set_config isn't used much for high freq page
12973                  * flipping, so increasing its cost here shouldn't be a big
12974                  * deal).
12975                  */
12976                 if (i915.fastboot && ret == 0)
12977                         intel_modeset_check_state(set->crtc->dev);
12978         }
12979
12980         if (ret) {
12981                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12982                               set->crtc->base.id, ret);
12983 fail:
12984                 intel_set_config_restore_state(dev, config);
12985
12986                 drm_atomic_state_clear(state);
12987
12988                 /*
12989                  * HACK: if the pipe was on, but we didn't have a framebuffer,
12990                  * force the pipe off to avoid oopsing in the modeset code
12991                  * due to fb==NULL. This should only happen during boot since
12992                  * we don't yet reconstruct the FB from the hardware state.
12993                  */
12994                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12995                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12996
12997                 /* Try to restore the config */
12998                 if (config->mode_changed &&
12999                     intel_set_mode(save_set.crtc, save_set.mode,
13000                                    save_set.x, save_set.y, save_set.fb,
13001                                    state))
13002                         DRM_ERROR("failed to restore config after modeset failure\n");
13003         }
13004
13005 out_config:
13006         if (state)
13007                 drm_atomic_state_free(state);
13008
13009         intel_set_config_free(config);
13010         return ret;
13011 }
13012
13013 static const struct drm_crtc_funcs intel_crtc_funcs = {
13014         .gamma_set = intel_crtc_gamma_set,
13015         .set_config = intel_crtc_set_config,
13016         .destroy = intel_crtc_destroy,
13017         .page_flip = intel_crtc_page_flip,
13018         .atomic_duplicate_state = intel_crtc_duplicate_state,
13019         .atomic_destroy_state = intel_crtc_destroy_state,
13020 };
13021
13022 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13023                                       struct intel_shared_dpll *pll,
13024                                       struct intel_dpll_hw_state *hw_state)
13025 {
13026         uint32_t val;
13027
13028         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13029                 return false;
13030
13031         val = I915_READ(PCH_DPLL(pll->id));
13032         hw_state->dpll = val;
13033         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13034         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13035
13036         return val & DPLL_VCO_ENABLE;
13037 }
13038
13039 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13040                                   struct intel_shared_dpll *pll)
13041 {
13042         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13043         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13044 }
13045
13046 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13047                                 struct intel_shared_dpll *pll)
13048 {
13049         /* PCH refclock must be enabled first */
13050         ibx_assert_pch_refclk_enabled(dev_priv);
13051
13052         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13053
13054         /* Wait for the clocks to stabilize. */
13055         POSTING_READ(PCH_DPLL(pll->id));
13056         udelay(150);
13057
13058         /* The pixel multiplier can only be updated once the
13059          * DPLL is enabled and the clocks are stable.
13060          *
13061          * So write it again.
13062          */
13063         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13064         POSTING_READ(PCH_DPLL(pll->id));
13065         udelay(200);
13066 }
13067
13068 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13069                                  struct intel_shared_dpll *pll)
13070 {
13071         struct drm_device *dev = dev_priv->dev;
13072         struct intel_crtc *crtc;
13073
13074         /* Make sure no transcoder isn't still depending on us. */
13075         for_each_intel_crtc(dev, crtc) {
13076                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13077                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13078         }
13079
13080         I915_WRITE(PCH_DPLL(pll->id), 0);
13081         POSTING_READ(PCH_DPLL(pll->id));
13082         udelay(200);
13083 }
13084
13085 static char *ibx_pch_dpll_names[] = {
13086         "PCH DPLL A",
13087         "PCH DPLL B",
13088 };
13089
13090 static void ibx_pch_dpll_init(struct drm_device *dev)
13091 {
13092         struct drm_i915_private *dev_priv = dev->dev_private;
13093         int i;
13094
13095         dev_priv->num_shared_dpll = 2;
13096
13097         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13098                 dev_priv->shared_dplls[i].id = i;
13099                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13100                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13101                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13102                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13103                 dev_priv->shared_dplls[i].get_hw_state =
13104                         ibx_pch_dpll_get_hw_state;
13105         }
13106 }
13107
13108 static void intel_shared_dpll_init(struct drm_device *dev)
13109 {
13110         struct drm_i915_private *dev_priv = dev->dev_private;
13111
13112         if (HAS_DDI(dev))
13113                 intel_ddi_pll_init(dev);
13114         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13115                 ibx_pch_dpll_init(dev);
13116         else
13117                 dev_priv->num_shared_dpll = 0;
13118
13119         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13120 }
13121
13122 /**
13123  * intel_wm_need_update - Check whether watermarks need updating
13124  * @plane: drm plane
13125  * @state: new plane state
13126  *
13127  * Check current plane state versus the new one to determine whether
13128  * watermarks need to be recalculated.
13129  *
13130  * Returns true or false.
13131  */
13132 bool intel_wm_need_update(struct drm_plane *plane,
13133                           struct drm_plane_state *state)
13134 {
13135         /* Update watermarks on tiling changes. */
13136         if (!plane->state->fb || !state->fb ||
13137             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13138             plane->state->rotation != state->rotation)
13139                 return true;
13140
13141         return false;
13142 }
13143
13144 /**
13145  * intel_prepare_plane_fb - Prepare fb for usage on plane
13146  * @plane: drm plane to prepare for
13147  * @fb: framebuffer to prepare for presentation
13148  *
13149  * Prepares a framebuffer for usage on a display plane.  Generally this
13150  * involves pinning the underlying object and updating the frontbuffer tracking
13151  * bits.  Some older platforms need special physical address handling for
13152  * cursor planes.
13153  *
13154  * Returns 0 on success, negative error code on failure.
13155  */
13156 int
13157 intel_prepare_plane_fb(struct drm_plane *plane,
13158                        struct drm_framebuffer *fb,
13159                        const struct drm_plane_state *new_state)
13160 {
13161         struct drm_device *dev = plane->dev;
13162         struct intel_plane *intel_plane = to_intel_plane(plane);
13163         enum pipe pipe = intel_plane->pipe;
13164         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13165         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13166         unsigned frontbuffer_bits = 0;
13167         int ret = 0;
13168
13169         if (!obj)
13170                 return 0;
13171
13172         switch (plane->type) {
13173         case DRM_PLANE_TYPE_PRIMARY:
13174                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13175                 break;
13176         case DRM_PLANE_TYPE_CURSOR:
13177                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13178                 break;
13179         case DRM_PLANE_TYPE_OVERLAY:
13180                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13181                 break;
13182         }
13183
13184         mutex_lock(&dev->struct_mutex);
13185
13186         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13187             INTEL_INFO(dev)->cursor_needs_physical) {
13188                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13189                 ret = i915_gem_object_attach_phys(obj, align);
13190                 if (ret)
13191                         DRM_DEBUG_KMS("failed to attach phys object\n");
13192         } else {
13193                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13194         }
13195
13196         if (ret == 0)
13197                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13198
13199         mutex_unlock(&dev->struct_mutex);
13200
13201         return ret;
13202 }
13203
13204 /**
13205  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13206  * @plane: drm plane to clean up for
13207  * @fb: old framebuffer that was on plane
13208  *
13209  * Cleans up a framebuffer that has just been removed from a plane.
13210  */
13211 void
13212 intel_cleanup_plane_fb(struct drm_plane *plane,
13213                        struct drm_framebuffer *fb,
13214                        const struct drm_plane_state *old_state)
13215 {
13216         struct drm_device *dev = plane->dev;
13217         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13218
13219         if (WARN_ON(!obj))
13220                 return;
13221
13222         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13223             !INTEL_INFO(dev)->cursor_needs_physical) {
13224                 mutex_lock(&dev->struct_mutex);
13225                 intel_unpin_fb_obj(fb, old_state);
13226                 mutex_unlock(&dev->struct_mutex);
13227         }
13228 }
13229
13230 int
13231 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13232 {
13233         int max_scale;
13234         struct drm_device *dev;
13235         struct drm_i915_private *dev_priv;
13236         int crtc_clock, cdclk;
13237
13238         if (!intel_crtc || !crtc_state)
13239                 return DRM_PLANE_HELPER_NO_SCALING;
13240
13241         dev = intel_crtc->base.dev;
13242         dev_priv = dev->dev_private;
13243         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13244         cdclk = dev_priv->display.get_display_clock_speed(dev);
13245
13246         if (!crtc_clock || !cdclk)
13247                 return DRM_PLANE_HELPER_NO_SCALING;
13248
13249         /*
13250          * skl max scale is lower of:
13251          *    close to 3 but not 3, -1 is for that purpose
13252          *            or
13253          *    cdclk/crtc_clock
13254          */
13255         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13256
13257         return max_scale;
13258 }
13259
13260 static int
13261 intel_check_primary_plane(struct drm_plane *plane,
13262                           struct intel_plane_state *state)
13263 {
13264         struct drm_device *dev = plane->dev;
13265         struct drm_i915_private *dev_priv = dev->dev_private;
13266         struct drm_crtc *crtc = state->base.crtc;
13267         struct intel_crtc *intel_crtc;
13268         struct intel_crtc_state *crtc_state;
13269         struct drm_framebuffer *fb = state->base.fb;
13270         struct drm_rect *dest = &state->dst;
13271         struct drm_rect *src = &state->src;
13272         const struct drm_rect *clip = &state->clip;
13273         bool can_position = false;
13274         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13275         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13276         int ret;
13277
13278         crtc = crtc ? crtc : plane->crtc;
13279         intel_crtc = to_intel_crtc(crtc);
13280         crtc_state = state->base.state ?
13281                 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13282
13283         if (INTEL_INFO(dev)->gen >= 9) {
13284                 min_scale = 1;
13285                 max_scale = skl_max_scale(intel_crtc, crtc_state);
13286                 can_position = true;
13287         }
13288
13289         ret = drm_plane_helper_check_update(plane, crtc, fb,
13290                                             src, dest, clip,
13291                                             min_scale,
13292                                             max_scale,
13293                                             can_position, true,
13294                                             &state->visible);
13295         if (ret)
13296                 return ret;
13297
13298         if (intel_crtc->active) {
13299                 struct intel_plane_state *old_state =
13300                         to_intel_plane_state(plane->state);
13301
13302                 intel_crtc->atomic.wait_for_flips = true;
13303
13304                 /*
13305                  * FBC does not work on some platforms for rotated
13306                  * planes, so disable it when rotation is not 0 and
13307                  * update it when rotation is set back to 0.
13308                  *
13309                  * FIXME: This is redundant with the fbc update done in
13310                  * the primary plane enable function except that that
13311                  * one is done too late. We eventually need to unify
13312                  * this.
13313                  */
13314                 if (state->visible &&
13315                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13316                     dev_priv->fbc.crtc == intel_crtc &&
13317                     state->base.rotation != BIT(DRM_ROTATE_0)) {
13318                         intel_crtc->atomic.disable_fbc = true;
13319                 }
13320
13321                 if (state->visible && !old_state->visible) {
13322                         /*
13323                          * BDW signals flip done immediately if the plane
13324                          * is disabled, even if the plane enable is already
13325                          * armed to occur at the next vblank :(
13326                          */
13327                         if (IS_BROADWELL(dev))
13328                                 intel_crtc->atomic.wait_vblank = true;
13329                 }
13330
13331                 intel_crtc->atomic.fb_bits |=
13332                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13333
13334                 intel_crtc->atomic.update_fbc = true;
13335
13336                 if (intel_wm_need_update(plane, &state->base))
13337                         intel_crtc->atomic.update_wm = true;
13338         }
13339
13340         if (INTEL_INFO(dev)->gen >= 9) {
13341                 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13342                         to_intel_plane(plane), state, 0);
13343                 if (ret)
13344                         return ret;
13345         }
13346
13347         return 0;
13348 }
13349
13350 static void
13351 intel_commit_primary_plane(struct drm_plane *plane,
13352                            struct intel_plane_state *state)
13353 {
13354         struct drm_crtc *crtc = state->base.crtc;
13355         struct drm_framebuffer *fb = state->base.fb;
13356         struct drm_device *dev = plane->dev;
13357         struct drm_i915_private *dev_priv = dev->dev_private;
13358         struct intel_crtc *intel_crtc;
13359         struct drm_rect *src = &state->src;
13360
13361         crtc = crtc ? crtc : plane->crtc;
13362         intel_crtc = to_intel_crtc(crtc);
13363
13364         plane->fb = fb;
13365         crtc->x = src->x1 >> 16;
13366         crtc->y = src->y1 >> 16;
13367
13368         if (intel_crtc->active) {
13369                 if (state->visible)
13370                         /* FIXME: kill this fastboot hack */
13371                         intel_update_pipe_size(intel_crtc);
13372
13373                 dev_priv->display.update_primary_plane(crtc, plane->fb,
13374                                                        crtc->x, crtc->y);
13375         }
13376 }
13377
13378 static void
13379 intel_disable_primary_plane(struct drm_plane *plane,
13380                             struct drm_crtc *crtc,
13381                             bool force)
13382 {
13383         struct drm_device *dev = plane->dev;
13384         struct drm_i915_private *dev_priv = dev->dev_private;
13385
13386         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13387 }
13388
13389 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13390 {
13391         struct drm_device *dev = crtc->dev;
13392         struct drm_i915_private *dev_priv = dev->dev_private;
13393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13394         struct intel_plane *intel_plane;
13395         struct drm_plane *p;
13396         unsigned fb_bits = 0;
13397
13398         /* Track fb's for any planes being disabled */
13399         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13400                 intel_plane = to_intel_plane(p);
13401
13402                 if (intel_crtc->atomic.disabled_planes &
13403                     (1 << drm_plane_index(p))) {
13404                         switch (p->type) {
13405                         case DRM_PLANE_TYPE_PRIMARY:
13406                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13407                                 break;
13408                         case DRM_PLANE_TYPE_CURSOR:
13409                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13410                                 break;
13411                         case DRM_PLANE_TYPE_OVERLAY:
13412                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13413                                 break;
13414                         }
13415
13416                         mutex_lock(&dev->struct_mutex);
13417                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13418                         mutex_unlock(&dev->struct_mutex);
13419                 }
13420         }
13421
13422         if (intel_crtc->atomic.wait_for_flips)
13423                 intel_crtc_wait_for_pending_flips(crtc);
13424
13425         if (intel_crtc->atomic.disable_fbc)
13426                 intel_fbc_disable(dev);
13427
13428         if (intel_crtc->atomic.pre_disable_primary)
13429                 intel_pre_disable_primary(crtc);
13430
13431         if (intel_crtc->atomic.update_wm)
13432                 intel_update_watermarks(crtc);
13433
13434         intel_runtime_pm_get(dev_priv);
13435
13436         /* Perform vblank evasion around commit operation */
13437         if (intel_crtc->active)
13438                 intel_crtc->atomic.evade =
13439                         intel_pipe_update_start(intel_crtc,
13440                                                 &intel_crtc->atomic.start_vbl_count);
13441 }
13442
13443 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13444 {
13445         struct drm_device *dev = crtc->dev;
13446         struct drm_i915_private *dev_priv = dev->dev_private;
13447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13448         struct drm_plane *p;
13449
13450         if (intel_crtc->atomic.evade)
13451                 intel_pipe_update_end(intel_crtc,
13452                                       intel_crtc->atomic.start_vbl_count);
13453
13454         intel_runtime_pm_put(dev_priv);
13455
13456         if (intel_crtc->atomic.wait_vblank)
13457                 intel_wait_for_vblank(dev, intel_crtc->pipe);
13458
13459         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13460
13461         if (intel_crtc->atomic.update_fbc) {
13462                 mutex_lock(&dev->struct_mutex);
13463                 intel_fbc_update(dev);
13464                 mutex_unlock(&dev->struct_mutex);
13465         }
13466
13467         if (intel_crtc->atomic.post_enable_primary)
13468                 intel_post_enable_primary(crtc);
13469
13470         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13471                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13472                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13473                                                        false, false);
13474
13475         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13476 }
13477
13478 /**
13479  * intel_plane_destroy - destroy a plane
13480  * @plane: plane to destroy
13481  *
13482  * Common destruction function for all types of planes (primary, cursor,
13483  * sprite).
13484  */
13485 void intel_plane_destroy(struct drm_plane *plane)
13486 {
13487         struct intel_plane *intel_plane = to_intel_plane(plane);
13488         drm_plane_cleanup(plane);
13489         kfree(intel_plane);
13490 }
13491
13492 const struct drm_plane_funcs intel_plane_funcs = {
13493         .update_plane = drm_atomic_helper_update_plane,
13494         .disable_plane = drm_atomic_helper_disable_plane,
13495         .destroy = intel_plane_destroy,
13496         .set_property = drm_atomic_helper_plane_set_property,
13497         .atomic_get_property = intel_plane_atomic_get_property,
13498         .atomic_set_property = intel_plane_atomic_set_property,
13499         .atomic_duplicate_state = intel_plane_duplicate_state,
13500         .atomic_destroy_state = intel_plane_destroy_state,
13501
13502 };
13503
13504 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13505                                                     int pipe)
13506 {
13507         struct intel_plane *primary;
13508         struct intel_plane_state *state;
13509         const uint32_t *intel_primary_formats;
13510         int num_formats;
13511
13512         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13513         if (primary == NULL)
13514                 return NULL;
13515
13516         state = intel_create_plane_state(&primary->base);
13517         if (!state) {
13518                 kfree(primary);
13519                 return NULL;
13520         }
13521         primary->base.state = &state->base;
13522
13523         primary->can_scale = false;
13524         primary->max_downscale = 1;
13525         if (INTEL_INFO(dev)->gen >= 9) {
13526                 primary->can_scale = true;
13527         }
13528         state->scaler_id = -1;
13529         primary->pipe = pipe;
13530         primary->plane = pipe;
13531         primary->check_plane = intel_check_primary_plane;
13532         primary->commit_plane = intel_commit_primary_plane;
13533         primary->disable_plane = intel_disable_primary_plane;
13534         primary->ckey.flags = I915_SET_COLORKEY_NONE;
13535         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13536                 primary->plane = !pipe;
13537
13538         if (INTEL_INFO(dev)->gen <= 3) {
13539                 intel_primary_formats = intel_primary_formats_gen2;
13540                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
13541         } else {
13542                 intel_primary_formats = intel_primary_formats_gen4;
13543                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
13544         }
13545
13546         drm_universal_plane_init(dev, &primary->base, 0,
13547                                  &intel_plane_funcs,
13548                                  intel_primary_formats, num_formats,
13549                                  DRM_PLANE_TYPE_PRIMARY);
13550
13551         if (INTEL_INFO(dev)->gen >= 4)
13552                 intel_create_rotation_property(dev, primary);
13553
13554         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13555
13556         return &primary->base;
13557 }
13558
13559 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13560 {
13561         if (!dev->mode_config.rotation_property) {
13562                 unsigned long flags = BIT(DRM_ROTATE_0) |
13563                         BIT(DRM_ROTATE_180);
13564
13565                 if (INTEL_INFO(dev)->gen >= 9)
13566                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13567
13568                 dev->mode_config.rotation_property =
13569                         drm_mode_create_rotation_property(dev, flags);
13570         }
13571         if (dev->mode_config.rotation_property)
13572                 drm_object_attach_property(&plane->base.base,
13573                                 dev->mode_config.rotation_property,
13574                                 plane->base.state->rotation);
13575 }
13576
13577 static int
13578 intel_check_cursor_plane(struct drm_plane *plane,
13579                          struct intel_plane_state *state)
13580 {
13581         struct drm_crtc *crtc = state->base.crtc;
13582         struct drm_device *dev = plane->dev;
13583         struct drm_framebuffer *fb = state->base.fb;
13584         struct drm_rect *dest = &state->dst;
13585         struct drm_rect *src = &state->src;
13586         const struct drm_rect *clip = &state->clip;
13587         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13588         struct intel_crtc *intel_crtc;
13589         unsigned stride;
13590         int ret;
13591
13592         crtc = crtc ? crtc : plane->crtc;
13593         intel_crtc = to_intel_crtc(crtc);
13594
13595         ret = drm_plane_helper_check_update(plane, crtc, fb,
13596                                             src, dest, clip,
13597                                             DRM_PLANE_HELPER_NO_SCALING,
13598                                             DRM_PLANE_HELPER_NO_SCALING,
13599                                             true, true, &state->visible);
13600         if (ret)
13601                 return ret;
13602
13603
13604         /* if we want to turn off the cursor ignore width and height */
13605         if (!obj)
13606                 goto finish;
13607
13608         /* Check for which cursor types we support */
13609         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13610                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13611                           state->base.crtc_w, state->base.crtc_h);
13612                 return -EINVAL;
13613         }
13614
13615         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13616         if (obj->base.size < stride * state->base.crtc_h) {
13617                 DRM_DEBUG_KMS("buffer is too small\n");
13618                 return -ENOMEM;
13619         }
13620
13621         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13622                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13623                 ret = -EINVAL;
13624         }
13625
13626 finish:
13627         if (intel_crtc->active) {
13628                 if (plane->state->crtc_w != state->base.crtc_w)
13629                         intel_crtc->atomic.update_wm = true;
13630
13631                 intel_crtc->atomic.fb_bits |=
13632                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13633         }
13634
13635         return ret;
13636 }
13637
13638 static void
13639 intel_disable_cursor_plane(struct drm_plane *plane,
13640                            struct drm_crtc *crtc,
13641                            bool force)
13642 {
13643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13644
13645         if (!force) {
13646                 plane->fb = NULL;
13647                 intel_crtc->cursor_bo = NULL;
13648                 intel_crtc->cursor_addr = 0;
13649         }
13650
13651         intel_crtc_update_cursor(crtc, false);
13652 }
13653
13654 static void
13655 intel_commit_cursor_plane(struct drm_plane *plane,
13656                           struct intel_plane_state *state)
13657 {
13658         struct drm_crtc *crtc = state->base.crtc;
13659         struct drm_device *dev = plane->dev;
13660         struct intel_crtc *intel_crtc;
13661         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13662         uint32_t addr;
13663
13664         crtc = crtc ? crtc : plane->crtc;
13665         intel_crtc = to_intel_crtc(crtc);
13666
13667         plane->fb = state->base.fb;
13668         crtc->cursor_x = state->base.crtc_x;
13669         crtc->cursor_y = state->base.crtc_y;
13670
13671         if (intel_crtc->cursor_bo == obj)
13672                 goto update;
13673
13674         if (!obj)
13675                 addr = 0;
13676         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13677                 addr = i915_gem_obj_ggtt_offset(obj);
13678         else
13679                 addr = obj->phys_handle->busaddr;
13680
13681         intel_crtc->cursor_addr = addr;
13682         intel_crtc->cursor_bo = obj;
13683 update:
13684
13685         if (intel_crtc->active)
13686                 intel_crtc_update_cursor(crtc, state->visible);
13687 }
13688
13689 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13690                                                    int pipe)
13691 {
13692         struct intel_plane *cursor;
13693         struct intel_plane_state *state;
13694
13695         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13696         if (cursor == NULL)
13697                 return NULL;
13698
13699         state = intel_create_plane_state(&cursor->base);
13700         if (!state) {
13701                 kfree(cursor);
13702                 return NULL;
13703         }
13704         cursor->base.state = &state->base;
13705
13706         cursor->can_scale = false;
13707         cursor->max_downscale = 1;
13708         cursor->pipe = pipe;
13709         cursor->plane = pipe;
13710         state->scaler_id = -1;
13711         cursor->check_plane = intel_check_cursor_plane;
13712         cursor->commit_plane = intel_commit_cursor_plane;
13713         cursor->disable_plane = intel_disable_cursor_plane;
13714
13715         drm_universal_plane_init(dev, &cursor->base, 0,
13716                                  &intel_plane_funcs,
13717                                  intel_cursor_formats,
13718                                  ARRAY_SIZE(intel_cursor_formats),
13719                                  DRM_PLANE_TYPE_CURSOR);
13720
13721         if (INTEL_INFO(dev)->gen >= 4) {
13722                 if (!dev->mode_config.rotation_property)
13723                         dev->mode_config.rotation_property =
13724                                 drm_mode_create_rotation_property(dev,
13725                                                         BIT(DRM_ROTATE_0) |
13726                                                         BIT(DRM_ROTATE_180));
13727                 if (dev->mode_config.rotation_property)
13728                         drm_object_attach_property(&cursor->base.base,
13729                                 dev->mode_config.rotation_property,
13730                                 state->base.rotation);
13731         }
13732
13733         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13734
13735         return &cursor->base;
13736 }
13737
13738 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13739         struct intel_crtc_state *crtc_state)
13740 {
13741         int i;
13742         struct intel_scaler *intel_scaler;
13743         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13744
13745         for (i = 0; i < intel_crtc->num_scalers; i++) {
13746                 intel_scaler = &scaler_state->scalers[i];
13747                 intel_scaler->in_use = 0;
13748                 intel_scaler->id = i;
13749
13750                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13751         }
13752
13753         scaler_state->scaler_id = -1;
13754 }
13755
13756 static void intel_crtc_init(struct drm_device *dev, int pipe)
13757 {
13758         struct drm_i915_private *dev_priv = dev->dev_private;
13759         struct intel_crtc *intel_crtc;
13760         struct intel_crtc_state *crtc_state = NULL;
13761         struct drm_plane *primary = NULL;
13762         struct drm_plane *cursor = NULL;
13763         int i, ret;
13764
13765         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13766         if (intel_crtc == NULL)
13767                 return;
13768
13769         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13770         if (!crtc_state)
13771                 goto fail;
13772         intel_crtc_set_state(intel_crtc, crtc_state);
13773         crtc_state->base.crtc = &intel_crtc->base;
13774
13775         /* initialize shared scalers */
13776         if (INTEL_INFO(dev)->gen >= 9) {
13777                 if (pipe == PIPE_C)
13778                         intel_crtc->num_scalers = 1;
13779                 else
13780                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13781
13782                 skl_init_scalers(dev, intel_crtc, crtc_state);
13783         }
13784
13785         primary = intel_primary_plane_create(dev, pipe);
13786         if (!primary)
13787                 goto fail;
13788
13789         cursor = intel_cursor_plane_create(dev, pipe);
13790         if (!cursor)
13791                 goto fail;
13792
13793         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13794                                         cursor, &intel_crtc_funcs);
13795         if (ret)
13796                 goto fail;
13797
13798         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13799         for (i = 0; i < 256; i++) {
13800                 intel_crtc->lut_r[i] = i;
13801                 intel_crtc->lut_g[i] = i;
13802                 intel_crtc->lut_b[i] = i;
13803         }
13804
13805         /*
13806          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13807          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13808          */
13809         intel_crtc->pipe = pipe;
13810         intel_crtc->plane = pipe;
13811         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13812                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13813                 intel_crtc->plane = !pipe;
13814         }
13815
13816         intel_crtc->cursor_base = ~0;
13817         intel_crtc->cursor_cntl = ~0;
13818         intel_crtc->cursor_size = ~0;
13819
13820         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13821                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13822         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13823         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13824
13825         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
13826
13827         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13828
13829         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13830         return;
13831
13832 fail:
13833         if (primary)
13834                 drm_plane_cleanup(primary);
13835         if (cursor)
13836                 drm_plane_cleanup(cursor);
13837         kfree(crtc_state);
13838         kfree(intel_crtc);
13839 }
13840
13841 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13842 {
13843         struct drm_encoder *encoder = connector->base.encoder;
13844         struct drm_device *dev = connector->base.dev;
13845
13846         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13847
13848         if (!encoder || WARN_ON(!encoder->crtc))
13849                 return INVALID_PIPE;
13850
13851         return to_intel_crtc(encoder->crtc)->pipe;
13852 }
13853
13854 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13855                                 struct drm_file *file)
13856 {
13857         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13858         struct drm_crtc *drmmode_crtc;
13859         struct intel_crtc *crtc;
13860
13861         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13862
13863         if (!drmmode_crtc) {
13864                 DRM_ERROR("no such CRTC id\n");
13865                 return -ENOENT;
13866         }
13867
13868         crtc = to_intel_crtc(drmmode_crtc);
13869         pipe_from_crtc_id->pipe = crtc->pipe;
13870
13871         return 0;
13872 }
13873
13874 static int intel_encoder_clones(struct intel_encoder *encoder)
13875 {
13876         struct drm_device *dev = encoder->base.dev;
13877         struct intel_encoder *source_encoder;
13878         int index_mask = 0;
13879         int entry = 0;
13880
13881         for_each_intel_encoder(dev, source_encoder) {
13882                 if (encoders_cloneable(encoder, source_encoder))
13883                         index_mask |= (1 << entry);
13884
13885                 entry++;
13886         }
13887
13888         return index_mask;
13889 }
13890
13891 static bool has_edp_a(struct drm_device *dev)
13892 {
13893         struct drm_i915_private *dev_priv = dev->dev_private;
13894
13895         if (!IS_MOBILE(dev))
13896                 return false;
13897
13898         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13899                 return false;
13900
13901         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13902                 return false;
13903
13904         return true;
13905 }
13906
13907 static bool intel_crt_present(struct drm_device *dev)
13908 {
13909         struct drm_i915_private *dev_priv = dev->dev_private;
13910
13911         if (INTEL_INFO(dev)->gen >= 9)
13912                 return false;
13913
13914         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13915                 return false;
13916
13917         if (IS_CHERRYVIEW(dev))
13918                 return false;
13919
13920         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13921                 return false;
13922
13923         return true;
13924 }
13925
13926 static void intel_setup_outputs(struct drm_device *dev)
13927 {
13928         struct drm_i915_private *dev_priv = dev->dev_private;
13929         struct intel_encoder *encoder;
13930         bool dpd_is_edp = false;
13931
13932         intel_lvds_init(dev);
13933
13934         if (intel_crt_present(dev))
13935                 intel_crt_init(dev);
13936
13937         if (IS_BROXTON(dev)) {
13938                 /*
13939                  * FIXME: Broxton doesn't support port detection via the
13940                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13941                  * detect the ports.
13942                  */
13943                 intel_ddi_init(dev, PORT_A);
13944                 intel_ddi_init(dev, PORT_B);
13945                 intel_ddi_init(dev, PORT_C);
13946         } else if (HAS_DDI(dev)) {
13947                 int found;
13948
13949                 /*
13950                  * Haswell uses DDI functions to detect digital outputs.
13951                  * On SKL pre-D0 the strap isn't connected, so we assume
13952                  * it's there.
13953                  */
13954                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13955                 /* WaIgnoreDDIAStrap: skl */
13956                 if (found ||
13957                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13958                         intel_ddi_init(dev, PORT_A);
13959
13960                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13961                  * register */
13962                 found = I915_READ(SFUSE_STRAP);
13963
13964                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13965                         intel_ddi_init(dev, PORT_B);
13966                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13967                         intel_ddi_init(dev, PORT_C);
13968                 if (found & SFUSE_STRAP_DDID_DETECTED)
13969                         intel_ddi_init(dev, PORT_D);
13970         } else if (HAS_PCH_SPLIT(dev)) {
13971                 int found;
13972                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13973
13974                 if (has_edp_a(dev))
13975                         intel_dp_init(dev, DP_A, PORT_A);
13976
13977                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13978                         /* PCH SDVOB multiplex with HDMIB */
13979                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
13980                         if (!found)
13981                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13982                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13983                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
13984                 }
13985
13986                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13987                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13988
13989                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13990                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13991
13992                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13993                         intel_dp_init(dev, PCH_DP_C, PORT_C);
13994
13995                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13996                         intel_dp_init(dev, PCH_DP_D, PORT_D);
13997         } else if (IS_VALLEYVIEW(dev)) {
13998                 /*
13999                  * The DP_DETECTED bit is the latched state of the DDC
14000                  * SDA pin at boot. However since eDP doesn't require DDC
14001                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14002                  * eDP ports may have been muxed to an alternate function.
14003                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14004                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14005                  * detect eDP ports.
14006                  */
14007                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14008                     !intel_dp_is_edp(dev, PORT_B))
14009                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14010                                         PORT_B);
14011                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14012                     intel_dp_is_edp(dev, PORT_B))
14013                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14014
14015                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14016                     !intel_dp_is_edp(dev, PORT_C))
14017                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14018                                         PORT_C);
14019                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14020                     intel_dp_is_edp(dev, PORT_C))
14021                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14022
14023                 if (IS_CHERRYVIEW(dev)) {
14024                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14025                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14026                                                 PORT_D);
14027                         /* eDP not supported on port D, so don't check VBT */
14028                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14029                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14030                 }
14031
14032                 intel_dsi_init(dev);
14033         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14034                 bool found = false;
14035
14036                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14037                         DRM_DEBUG_KMS("probing SDVOB\n");
14038                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14039                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14040                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14041                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14042                         }
14043
14044                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
14045                                 intel_dp_init(dev, DP_B, PORT_B);
14046                 }
14047
14048                 /* Before G4X SDVOC doesn't have its own detect register */
14049
14050                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14051                         DRM_DEBUG_KMS("probing SDVOC\n");
14052                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14053                 }
14054
14055                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14056
14057                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14058                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14059                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14060                         }
14061                         if (SUPPORTS_INTEGRATED_DP(dev))
14062                                 intel_dp_init(dev, DP_C, PORT_C);
14063                 }
14064
14065                 if (SUPPORTS_INTEGRATED_DP(dev) &&
14066                     (I915_READ(DP_D) & DP_DETECTED))
14067                         intel_dp_init(dev, DP_D, PORT_D);
14068         } else if (IS_GEN2(dev))
14069                 intel_dvo_init(dev);
14070
14071         if (SUPPORTS_TV(dev))
14072                 intel_tv_init(dev);
14073
14074         intel_psr_init(dev);
14075
14076         for_each_intel_encoder(dev, encoder) {
14077                 encoder->base.possible_crtcs = encoder->crtc_mask;
14078                 encoder->base.possible_clones =
14079                         intel_encoder_clones(encoder);
14080         }
14081
14082         intel_init_pch_refclk(dev);
14083
14084         drm_helper_move_panel_connectors_to_head(dev);
14085 }
14086
14087 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14088 {
14089         struct drm_device *dev = fb->dev;
14090         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14091
14092         drm_framebuffer_cleanup(fb);
14093         mutex_lock(&dev->struct_mutex);
14094         WARN_ON(!intel_fb->obj->framebuffer_references--);
14095         drm_gem_object_unreference(&intel_fb->obj->base);
14096         mutex_unlock(&dev->struct_mutex);
14097         kfree(intel_fb);
14098 }
14099
14100 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14101                                                 struct drm_file *file,
14102                                                 unsigned int *handle)
14103 {
14104         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14105         struct drm_i915_gem_object *obj = intel_fb->obj;
14106
14107         return drm_gem_handle_create(file, &obj->base, handle);
14108 }
14109
14110 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14111         .destroy = intel_user_framebuffer_destroy,
14112         .create_handle = intel_user_framebuffer_create_handle,
14113 };
14114
14115 static
14116 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14117                          uint32_t pixel_format)
14118 {
14119         u32 gen = INTEL_INFO(dev)->gen;
14120
14121         if (gen >= 9) {
14122                 /* "The stride in bytes must not exceed the of the size of 8K
14123                  *  pixels and 32K bytes."
14124                  */
14125                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14126         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14127                 return 32*1024;
14128         } else if (gen >= 4) {
14129                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14130                         return 16*1024;
14131                 else
14132                         return 32*1024;
14133         } else if (gen >= 3) {
14134                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14135                         return 8*1024;
14136                 else
14137                         return 16*1024;
14138         } else {
14139                 /* XXX DSPC is limited to 4k tiled */
14140                 return 8*1024;
14141         }
14142 }
14143
14144 static int intel_framebuffer_init(struct drm_device *dev,
14145                                   struct intel_framebuffer *intel_fb,
14146                                   struct drm_mode_fb_cmd2 *mode_cmd,
14147                                   struct drm_i915_gem_object *obj)
14148 {
14149         unsigned int aligned_height;
14150         int ret;
14151         u32 pitch_limit, stride_alignment;
14152
14153         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14154
14155         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14156                 /* Enforce that fb modifier and tiling mode match, but only for
14157                  * X-tiled. This is needed for FBC. */
14158                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14159                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14160                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14161                         return -EINVAL;
14162                 }
14163         } else {
14164                 if (obj->tiling_mode == I915_TILING_X)
14165                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14166                 else if (obj->tiling_mode == I915_TILING_Y) {
14167                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14168                         return -EINVAL;
14169                 }
14170         }
14171
14172         /* Passed in modifier sanity checking. */
14173         switch (mode_cmd->modifier[0]) {
14174         case I915_FORMAT_MOD_Y_TILED:
14175         case I915_FORMAT_MOD_Yf_TILED:
14176                 if (INTEL_INFO(dev)->gen < 9) {
14177                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14178                                   mode_cmd->modifier[0]);
14179                         return -EINVAL;
14180                 }
14181         case DRM_FORMAT_MOD_NONE:
14182         case I915_FORMAT_MOD_X_TILED:
14183                 break;
14184         default:
14185                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14186                           mode_cmd->modifier[0]);
14187                 return -EINVAL;
14188         }
14189
14190         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14191                                                      mode_cmd->pixel_format);
14192         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14193                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14194                           mode_cmd->pitches[0], stride_alignment);
14195                 return -EINVAL;
14196         }
14197
14198         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14199                                            mode_cmd->pixel_format);
14200         if (mode_cmd->pitches[0] > pitch_limit) {
14201                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14202                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14203                           "tiled" : "linear",
14204                           mode_cmd->pitches[0], pitch_limit);
14205                 return -EINVAL;
14206         }
14207
14208         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14209             mode_cmd->pitches[0] != obj->stride) {
14210                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14211                           mode_cmd->pitches[0], obj->stride);
14212                 return -EINVAL;
14213         }
14214
14215         /* Reject formats not supported by any plane early. */
14216         switch (mode_cmd->pixel_format) {
14217         case DRM_FORMAT_C8:
14218         case DRM_FORMAT_RGB565:
14219         case DRM_FORMAT_XRGB8888:
14220         case DRM_FORMAT_ARGB8888:
14221                 break;
14222         case DRM_FORMAT_XRGB1555:
14223         case DRM_FORMAT_ARGB1555:
14224                 if (INTEL_INFO(dev)->gen > 3) {
14225                         DRM_DEBUG("unsupported pixel format: %s\n",
14226                                   drm_get_format_name(mode_cmd->pixel_format));
14227                         return -EINVAL;
14228                 }
14229                 break;
14230         case DRM_FORMAT_XBGR8888:
14231         case DRM_FORMAT_ABGR8888:
14232         case DRM_FORMAT_XRGB2101010:
14233         case DRM_FORMAT_ARGB2101010:
14234         case DRM_FORMAT_XBGR2101010:
14235         case DRM_FORMAT_ABGR2101010:
14236                 if (INTEL_INFO(dev)->gen < 4) {
14237                         DRM_DEBUG("unsupported pixel format: %s\n",
14238                                   drm_get_format_name(mode_cmd->pixel_format));
14239                         return -EINVAL;
14240                 }
14241                 break;
14242         case DRM_FORMAT_YUYV:
14243         case DRM_FORMAT_UYVY:
14244         case DRM_FORMAT_YVYU:
14245         case DRM_FORMAT_VYUY:
14246                 if (INTEL_INFO(dev)->gen < 5) {
14247                         DRM_DEBUG("unsupported pixel format: %s\n",
14248                                   drm_get_format_name(mode_cmd->pixel_format));
14249                         return -EINVAL;
14250                 }
14251                 break;
14252         default:
14253                 DRM_DEBUG("unsupported pixel format: %s\n",
14254                           drm_get_format_name(mode_cmd->pixel_format));
14255                 return -EINVAL;
14256         }
14257
14258         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14259         if (mode_cmd->offsets[0] != 0)
14260                 return -EINVAL;
14261
14262         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14263                                                mode_cmd->pixel_format,
14264                                                mode_cmd->modifier[0]);
14265         /* FIXME drm helper for size checks (especially planar formats)? */
14266         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14267                 return -EINVAL;
14268
14269         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14270         intel_fb->obj = obj;
14271         intel_fb->obj->framebuffer_references++;
14272
14273         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14274         if (ret) {
14275                 DRM_ERROR("framebuffer init failed %d\n", ret);
14276                 return ret;
14277         }
14278
14279         return 0;
14280 }
14281
14282 static struct drm_framebuffer *
14283 intel_user_framebuffer_create(struct drm_device *dev,
14284                               struct drm_file *filp,
14285                               struct drm_mode_fb_cmd2 *mode_cmd)
14286 {
14287         struct drm_i915_gem_object *obj;
14288
14289         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14290                                                 mode_cmd->handles[0]));
14291         if (&obj->base == NULL)
14292                 return ERR_PTR(-ENOENT);
14293
14294         return intel_framebuffer_create(dev, mode_cmd, obj);
14295 }
14296
14297 #ifndef CONFIG_DRM_I915_FBDEV
14298 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14299 {
14300 }
14301 #endif
14302
14303 static const struct drm_mode_config_funcs intel_mode_funcs = {
14304         .fb_create = intel_user_framebuffer_create,
14305         .output_poll_changed = intel_fbdev_output_poll_changed,
14306         .atomic_check = intel_atomic_check,
14307         .atomic_commit = intel_atomic_commit,
14308 };
14309
14310 /* Set up chip specific display functions */
14311 static void intel_init_display(struct drm_device *dev)
14312 {
14313         struct drm_i915_private *dev_priv = dev->dev_private;
14314
14315         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14316                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14317         else if (IS_CHERRYVIEW(dev))
14318                 dev_priv->display.find_dpll = chv_find_best_dpll;
14319         else if (IS_VALLEYVIEW(dev))
14320                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14321         else if (IS_PINEVIEW(dev))
14322                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14323         else
14324                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14325
14326         if (INTEL_INFO(dev)->gen >= 9) {
14327                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14328                 dev_priv->display.get_initial_plane_config =
14329                         skylake_get_initial_plane_config;
14330                 dev_priv->display.crtc_compute_clock =
14331                         haswell_crtc_compute_clock;
14332                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14333                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14334                 dev_priv->display.off = ironlake_crtc_off;
14335                 dev_priv->display.update_primary_plane =
14336                         skylake_update_primary_plane;
14337         } else if (HAS_DDI(dev)) {
14338                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14339                 dev_priv->display.get_initial_plane_config =
14340                         ironlake_get_initial_plane_config;
14341                 dev_priv->display.crtc_compute_clock =
14342                         haswell_crtc_compute_clock;
14343                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14344                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14345                 dev_priv->display.off = ironlake_crtc_off;
14346                 dev_priv->display.update_primary_plane =
14347                         ironlake_update_primary_plane;
14348         } else if (HAS_PCH_SPLIT(dev)) {
14349                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14350                 dev_priv->display.get_initial_plane_config =
14351                         ironlake_get_initial_plane_config;
14352                 dev_priv->display.crtc_compute_clock =
14353                         ironlake_crtc_compute_clock;
14354                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14355                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14356                 dev_priv->display.off = ironlake_crtc_off;
14357                 dev_priv->display.update_primary_plane =
14358                         ironlake_update_primary_plane;
14359         } else if (IS_VALLEYVIEW(dev)) {
14360                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14361                 dev_priv->display.get_initial_plane_config =
14362                         i9xx_get_initial_plane_config;
14363                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14364                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14365                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14366                 dev_priv->display.off = i9xx_crtc_off;
14367                 dev_priv->display.update_primary_plane =
14368                         i9xx_update_primary_plane;
14369         } else {
14370                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14371                 dev_priv->display.get_initial_plane_config =
14372                         i9xx_get_initial_plane_config;
14373                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14374                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14375                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14376                 dev_priv->display.off = i9xx_crtc_off;
14377                 dev_priv->display.update_primary_plane =
14378                         i9xx_update_primary_plane;
14379         }
14380
14381         /* Returns the core display clock speed */
14382         if (IS_SKYLAKE(dev))
14383                 dev_priv->display.get_display_clock_speed =
14384                         skylake_get_display_clock_speed;
14385         else if (IS_BROADWELL(dev))
14386                 dev_priv->display.get_display_clock_speed =
14387                         broadwell_get_display_clock_speed;
14388         else if (IS_HASWELL(dev))
14389                 dev_priv->display.get_display_clock_speed =
14390                         haswell_get_display_clock_speed;
14391         else if (IS_VALLEYVIEW(dev))
14392                 dev_priv->display.get_display_clock_speed =
14393                         valleyview_get_display_clock_speed;
14394         else if (IS_GEN5(dev))
14395                 dev_priv->display.get_display_clock_speed =
14396                         ilk_get_display_clock_speed;
14397         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14398                  IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
14399                 dev_priv->display.get_display_clock_speed =
14400                         i945_get_display_clock_speed;
14401         else if (IS_I915G(dev))
14402                 dev_priv->display.get_display_clock_speed =
14403                         i915_get_display_clock_speed;
14404         else if (IS_I945GM(dev) || IS_845G(dev))
14405                 dev_priv->display.get_display_clock_speed =
14406                         i9xx_misc_get_display_clock_speed;
14407         else if (IS_PINEVIEW(dev))
14408                 dev_priv->display.get_display_clock_speed =
14409                         pnv_get_display_clock_speed;
14410         else if (IS_I915GM(dev))
14411                 dev_priv->display.get_display_clock_speed =
14412                         i915gm_get_display_clock_speed;
14413         else if (IS_I865G(dev))
14414                 dev_priv->display.get_display_clock_speed =
14415                         i865_get_display_clock_speed;
14416         else if (IS_I85X(dev))
14417                 dev_priv->display.get_display_clock_speed =
14418                         i855_get_display_clock_speed;
14419         else /* 852, 830 */
14420                 dev_priv->display.get_display_clock_speed =
14421                         i830_get_display_clock_speed;
14422
14423         if (IS_GEN5(dev)) {
14424                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14425         } else if (IS_GEN6(dev)) {
14426                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14427         } else if (IS_IVYBRIDGE(dev)) {
14428                 /* FIXME: detect B0+ stepping and use auto training */
14429                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14430         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14431                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14432         } else if (IS_VALLEYVIEW(dev)) {
14433                 dev_priv->display.modeset_global_resources =
14434                         valleyview_modeset_global_resources;
14435         } else if (IS_BROXTON(dev)) {
14436                 dev_priv->display.modeset_global_resources =
14437                         broxton_modeset_global_resources;
14438         }
14439
14440         switch (INTEL_INFO(dev)->gen) {
14441         case 2:
14442                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14443                 break;
14444
14445         case 3:
14446                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14447                 break;
14448
14449         case 4:
14450         case 5:
14451                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14452                 break;
14453
14454         case 6:
14455                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14456                 break;
14457         case 7:
14458         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14459                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14460                 break;
14461         case 9:
14462                 /* Drop through - unsupported since execlist only. */
14463         default:
14464                 /* Default just returns -ENODEV to indicate unsupported */
14465                 dev_priv->display.queue_flip = intel_default_queue_flip;
14466         }
14467
14468         intel_panel_init_backlight_funcs(dev);
14469
14470         mutex_init(&dev_priv->pps_mutex);
14471 }
14472
14473 /*
14474  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14475  * resume, or other times.  This quirk makes sure that's the case for
14476  * affected systems.
14477  */
14478 static void quirk_pipea_force(struct drm_device *dev)
14479 {
14480         struct drm_i915_private *dev_priv = dev->dev_private;
14481
14482         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14483         DRM_INFO("applying pipe a force quirk\n");
14484 }
14485
14486 static void quirk_pipeb_force(struct drm_device *dev)
14487 {
14488         struct drm_i915_private *dev_priv = dev->dev_private;
14489
14490         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14491         DRM_INFO("applying pipe b force quirk\n");
14492 }
14493
14494 /*
14495  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14496  */
14497 static void quirk_ssc_force_disable(struct drm_device *dev)
14498 {
14499         struct drm_i915_private *dev_priv = dev->dev_private;
14500         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14501         DRM_INFO("applying lvds SSC disable quirk\n");
14502 }
14503
14504 /*
14505  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14506  * brightness value
14507  */
14508 static void quirk_invert_brightness(struct drm_device *dev)
14509 {
14510         struct drm_i915_private *dev_priv = dev->dev_private;
14511         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14512         DRM_INFO("applying inverted panel brightness quirk\n");
14513 }
14514
14515 /* Some VBT's incorrectly indicate no backlight is present */
14516 static void quirk_backlight_present(struct drm_device *dev)
14517 {
14518         struct drm_i915_private *dev_priv = dev->dev_private;
14519         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14520         DRM_INFO("applying backlight present quirk\n");
14521 }
14522
14523 struct intel_quirk {
14524         int device;
14525         int subsystem_vendor;
14526         int subsystem_device;
14527         void (*hook)(struct drm_device *dev);
14528 };
14529
14530 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14531 struct intel_dmi_quirk {
14532         void (*hook)(struct drm_device *dev);
14533         const struct dmi_system_id (*dmi_id_list)[];
14534 };
14535
14536 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14537 {
14538         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14539         return 1;
14540 }
14541
14542 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14543         {
14544                 .dmi_id_list = &(const struct dmi_system_id[]) {
14545                         {
14546                                 .callback = intel_dmi_reverse_brightness,
14547                                 .ident = "NCR Corporation",
14548                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14549                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14550                                 },
14551                         },
14552                         { }  /* terminating entry */
14553                 },
14554                 .hook = quirk_invert_brightness,
14555         },
14556 };
14557
14558 static struct intel_quirk intel_quirks[] = {
14559         /* HP Mini needs pipe A force quirk (LP: #322104) */
14560         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
14561
14562         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14563         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14564
14565         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14566         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14567
14568         /* 830 needs to leave pipe A & dpll A up */
14569         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14570
14571         /* 830 needs to leave pipe B & dpll B up */
14572         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14573
14574         /* Lenovo U160 cannot use SSC on LVDS */
14575         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14576
14577         /* Sony Vaio Y cannot use SSC on LVDS */
14578         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14579
14580         /* Acer Aspire 5734Z must invert backlight brightness */
14581         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14582
14583         /* Acer/eMachines G725 */
14584         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14585
14586         /* Acer/eMachines e725 */
14587         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14588
14589         /* Acer/Packard Bell NCL20 */
14590         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14591
14592         /* Acer Aspire 4736Z */
14593         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14594
14595         /* Acer Aspire 5336 */
14596         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14597
14598         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14599         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14600
14601         /* Acer C720 Chromebook (Core i3 4005U) */
14602         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14603
14604         /* Apple Macbook 2,1 (Core 2 T7400) */
14605         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14606
14607         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14608         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14609
14610         /* HP Chromebook 14 (Celeron 2955U) */
14611         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14612
14613         /* Dell Chromebook 11 */
14614         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14615 };
14616
14617 static void intel_init_quirks(struct drm_device *dev)
14618 {
14619         struct pci_dev *d = dev->pdev;
14620         int i;
14621
14622         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14623                 struct intel_quirk *q = &intel_quirks[i];
14624
14625                 if (d->device == q->device &&
14626                     (d->subsystem_vendor == q->subsystem_vendor ||
14627                      q->subsystem_vendor == PCI_ANY_ID) &&
14628                     (d->subsystem_device == q->subsystem_device ||
14629                      q->subsystem_device == PCI_ANY_ID))
14630                         q->hook(dev);
14631         }
14632         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14633                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14634                         intel_dmi_quirks[i].hook(dev);
14635         }
14636 }
14637
14638 /* Disable the VGA plane that we never use */
14639 static void i915_disable_vga(struct drm_device *dev)
14640 {
14641         struct drm_i915_private *dev_priv = dev->dev_private;
14642         u8 sr1;
14643         u32 vga_reg = i915_vgacntrl_reg(dev);
14644
14645         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14646         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14647         outb(SR01, VGA_SR_INDEX);
14648         sr1 = inb(VGA_SR_DATA);
14649         outb(sr1 | 1<<5, VGA_SR_DATA);
14650         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14651         udelay(300);
14652
14653         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14654         POSTING_READ(vga_reg);
14655 }
14656
14657 void intel_modeset_init_hw(struct drm_device *dev)
14658 {
14659         intel_prepare_ddi(dev);
14660
14661         if (IS_VALLEYVIEW(dev))
14662                 vlv_update_cdclk(dev);
14663
14664         intel_init_clock_gating(dev);
14665
14666         intel_enable_gt_powersave(dev);
14667 }
14668
14669 void intel_modeset_init(struct drm_device *dev)
14670 {
14671         struct drm_i915_private *dev_priv = dev->dev_private;
14672         int sprite, ret;
14673         enum pipe pipe;
14674         struct intel_crtc *crtc;
14675
14676         drm_mode_config_init(dev);
14677
14678         dev->mode_config.min_width = 0;
14679         dev->mode_config.min_height = 0;
14680
14681         dev->mode_config.preferred_depth = 24;
14682         dev->mode_config.prefer_shadow = 1;
14683
14684         dev->mode_config.allow_fb_modifiers = true;
14685
14686         dev->mode_config.funcs = &intel_mode_funcs;
14687
14688         intel_init_quirks(dev);
14689
14690         intel_init_pm(dev);
14691
14692         if (INTEL_INFO(dev)->num_pipes == 0)
14693                 return;
14694
14695         intel_init_display(dev);
14696         intel_init_audio(dev);
14697
14698         if (IS_GEN2(dev)) {
14699                 dev->mode_config.max_width = 2048;
14700                 dev->mode_config.max_height = 2048;
14701         } else if (IS_GEN3(dev)) {
14702                 dev->mode_config.max_width = 4096;
14703                 dev->mode_config.max_height = 4096;
14704         } else {
14705                 dev->mode_config.max_width = 8192;
14706                 dev->mode_config.max_height = 8192;
14707         }
14708
14709         if (IS_845G(dev) || IS_I865G(dev)) {
14710                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14711                 dev->mode_config.cursor_height = 1023;
14712         } else if (IS_GEN2(dev)) {
14713                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14714                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14715         } else {
14716                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14717                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14718         }
14719
14720         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14721
14722         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14723                       INTEL_INFO(dev)->num_pipes,
14724                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14725
14726         for_each_pipe(dev_priv, pipe) {
14727                 intel_crtc_init(dev, pipe);
14728                 for_each_sprite(dev_priv, pipe, sprite) {
14729                         ret = intel_plane_init(dev, pipe, sprite);
14730                         if (ret)
14731                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14732                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14733                 }
14734         }
14735
14736         intel_init_dpio(dev);
14737
14738         intel_shared_dpll_init(dev);
14739
14740         /* Just disable it once at startup */
14741         i915_disable_vga(dev);
14742         intel_setup_outputs(dev);
14743
14744         /* Just in case the BIOS is doing something questionable. */
14745         intel_fbc_disable(dev);
14746
14747         drm_modeset_lock_all(dev);
14748         intel_modeset_setup_hw_state(dev, false);
14749         drm_modeset_unlock_all(dev);
14750
14751         for_each_intel_crtc(dev, crtc) {
14752                 if (!crtc->active)
14753                         continue;
14754
14755                 /*
14756                  * Note that reserving the BIOS fb up front prevents us
14757                  * from stuffing other stolen allocations like the ring
14758                  * on top.  This prevents some ugliness at boot time, and
14759                  * can even allow for smooth boot transitions if the BIOS
14760                  * fb is large enough for the active pipe configuration.
14761                  */
14762                 if (dev_priv->display.get_initial_plane_config) {
14763                         dev_priv->display.get_initial_plane_config(crtc,
14764                                                            &crtc->plane_config);
14765                         /*
14766                          * If the fb is shared between multiple heads, we'll
14767                          * just get the first one.
14768                          */
14769                         intel_find_initial_plane_obj(crtc, &crtc->plane_config);
14770                 }
14771         }
14772 }
14773
14774 static void intel_enable_pipe_a(struct drm_device *dev)
14775 {
14776         struct intel_connector *connector;
14777         struct drm_connector *crt = NULL;
14778         struct intel_load_detect_pipe load_detect_temp;
14779         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14780
14781         /* We can't just switch on the pipe A, we need to set things up with a
14782          * proper mode and output configuration. As a gross hack, enable pipe A
14783          * by enabling the load detect pipe once. */
14784         for_each_intel_connector(dev, connector) {
14785                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14786                         crt = &connector->base;
14787                         break;
14788                 }
14789         }
14790
14791         if (!crt)
14792                 return;
14793
14794         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14795                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14796 }
14797
14798 static bool
14799 intel_check_plane_mapping(struct intel_crtc *crtc)
14800 {
14801         struct drm_device *dev = crtc->base.dev;
14802         struct drm_i915_private *dev_priv = dev->dev_private;
14803         u32 reg, val;
14804
14805         if (INTEL_INFO(dev)->num_pipes == 1)
14806                 return true;
14807
14808         reg = DSPCNTR(!crtc->plane);
14809         val = I915_READ(reg);
14810
14811         if ((val & DISPLAY_PLANE_ENABLE) &&
14812             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14813                 return false;
14814
14815         return true;
14816 }
14817
14818 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14819 {
14820         struct drm_device *dev = crtc->base.dev;
14821         struct drm_i915_private *dev_priv = dev->dev_private;
14822         u32 reg;
14823
14824         /* Clear any frame start delays used for debugging left by the BIOS */
14825         reg = PIPECONF(crtc->config->cpu_transcoder);
14826         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14827
14828         /* restore vblank interrupts to correct state */
14829         drm_crtc_vblank_reset(&crtc->base);
14830         if (crtc->active) {
14831                 update_scanline_offset(crtc);
14832                 drm_crtc_vblank_on(&crtc->base);
14833         }
14834
14835         /* We need to sanitize the plane -> pipe mapping first because this will
14836          * disable the crtc (and hence change the state) if it is wrong. Note
14837          * that gen4+ has a fixed plane -> pipe mapping.  */
14838         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14839                 struct intel_connector *connector;
14840                 bool plane;
14841
14842                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14843                               crtc->base.base.id);
14844
14845                 /* Pipe has the wrong plane attached and the plane is active.
14846                  * Temporarily change the plane mapping and disable everything
14847                  * ...  */
14848                 plane = crtc->plane;
14849                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14850                 crtc->plane = !plane;
14851                 intel_crtc_disable_planes(&crtc->base);
14852                 dev_priv->display.crtc_disable(&crtc->base);
14853                 crtc->plane = plane;
14854
14855                 /* ... and break all links. */
14856                 for_each_intel_connector(dev, connector) {
14857                         if (connector->encoder->base.crtc != &crtc->base)
14858                                 continue;
14859
14860                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14861                         connector->base.encoder = NULL;
14862                 }
14863                 /* multiple connectors may have the same encoder:
14864                  *  handle them and break crtc link separately */
14865                 for_each_intel_connector(dev, connector)
14866                         if (connector->encoder->base.crtc == &crtc->base) {
14867                                 connector->encoder->base.crtc = NULL;
14868                                 connector->encoder->connectors_active = false;
14869                         }
14870
14871                 WARN_ON(crtc->active);
14872                 crtc->base.state->enable = false;
14873                 crtc->base.enabled = false;
14874         }
14875
14876         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14877             crtc->pipe == PIPE_A && !crtc->active) {
14878                 /* BIOS forgot to enable pipe A, this mostly happens after
14879                  * resume. Force-enable the pipe to fix this, the update_dpms
14880                  * call below we restore the pipe to the right state, but leave
14881                  * the required bits on. */
14882                 intel_enable_pipe_a(dev);
14883         }
14884
14885         /* Adjust the state of the output pipe according to whether we
14886          * have active connectors/encoders. */
14887         intel_crtc_update_dpms(&crtc->base);
14888
14889         if (crtc->active != crtc->base.state->enable) {
14890                 struct intel_encoder *encoder;
14891
14892                 /* This can happen either due to bugs in the get_hw_state
14893                  * functions or because the pipe is force-enabled due to the
14894                  * pipe A quirk. */
14895                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14896                               crtc->base.base.id,
14897                               crtc->base.state->enable ? "enabled" : "disabled",
14898                               crtc->active ? "enabled" : "disabled");
14899
14900                 crtc->base.state->enable = crtc->active;
14901                 crtc->base.enabled = crtc->active;
14902
14903                 /* Because we only establish the connector -> encoder ->
14904                  * crtc links if something is active, this means the
14905                  * crtc is now deactivated. Break the links. connector
14906                  * -> encoder links are only establish when things are
14907                  *  actually up, hence no need to break them. */
14908                 WARN_ON(crtc->active);
14909
14910                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14911                         WARN_ON(encoder->connectors_active);
14912                         encoder->base.crtc = NULL;
14913                 }
14914         }
14915
14916         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14917                 /*
14918                  * We start out with underrun reporting disabled to avoid races.
14919                  * For correct bookkeeping mark this on active crtcs.
14920                  *
14921                  * Also on gmch platforms we dont have any hardware bits to
14922                  * disable the underrun reporting. Which means we need to start
14923                  * out with underrun reporting disabled also on inactive pipes,
14924                  * since otherwise we'll complain about the garbage we read when
14925                  * e.g. coming up after runtime pm.
14926                  *
14927                  * No protection against concurrent access is required - at
14928                  * worst a fifo underrun happens which also sets this to false.
14929                  */
14930                 crtc->cpu_fifo_underrun_disabled = true;
14931                 crtc->pch_fifo_underrun_disabled = true;
14932         }
14933 }
14934
14935 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14936 {
14937         struct intel_connector *connector;
14938         struct drm_device *dev = encoder->base.dev;
14939
14940         /* We need to check both for a crtc link (meaning that the
14941          * encoder is active and trying to read from a pipe) and the
14942          * pipe itself being active. */
14943         bool has_active_crtc = encoder->base.crtc &&
14944                 to_intel_crtc(encoder->base.crtc)->active;
14945
14946         if (encoder->connectors_active && !has_active_crtc) {
14947                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14948                               encoder->base.base.id,
14949                               encoder->base.name);
14950
14951                 /* Connector is active, but has no active pipe. This is
14952                  * fallout from our resume register restoring. Disable
14953                  * the encoder manually again. */
14954                 if (encoder->base.crtc) {
14955                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14956                                       encoder->base.base.id,
14957                                       encoder->base.name);
14958                         encoder->disable(encoder);
14959                         if (encoder->post_disable)
14960                                 encoder->post_disable(encoder);
14961                 }
14962                 encoder->base.crtc = NULL;
14963                 encoder->connectors_active = false;
14964
14965                 /* Inconsistent output/port/pipe state happens presumably due to
14966                  * a bug in one of the get_hw_state functions. Or someplace else
14967                  * in our code, like the register restore mess on resume. Clamp
14968                  * things to off as a safer default. */
14969                 for_each_intel_connector(dev, connector) {
14970                         if (connector->encoder != encoder)
14971                                 continue;
14972                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14973                         connector->base.encoder = NULL;
14974                 }
14975         }
14976         /* Enabled encoders without active connectors will be fixed in
14977          * the crtc fixup. */
14978 }
14979
14980 void i915_redisable_vga_power_on(struct drm_device *dev)
14981 {
14982         struct drm_i915_private *dev_priv = dev->dev_private;
14983         u32 vga_reg = i915_vgacntrl_reg(dev);
14984
14985         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14986                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14987                 i915_disable_vga(dev);
14988         }
14989 }
14990
14991 void i915_redisable_vga(struct drm_device *dev)
14992 {
14993         struct drm_i915_private *dev_priv = dev->dev_private;
14994
14995         /* This function can be called both from intel_modeset_setup_hw_state or
14996          * at a very early point in our resume sequence, where the power well
14997          * structures are not yet restored. Since this function is at a very
14998          * paranoid "someone might have enabled VGA while we were not looking"
14999          * level, just check if the power well is enabled instead of trying to
15000          * follow the "don't touch the power well if we don't need it" policy
15001          * the rest of the driver uses. */
15002         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15003                 return;
15004
15005         i915_redisable_vga_power_on(dev);
15006 }
15007
15008 static bool primary_get_hw_state(struct intel_crtc *crtc)
15009 {
15010         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15011
15012         if (!crtc->active)
15013                 return false;
15014
15015         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
15016 }
15017
15018 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15019 {
15020         struct drm_i915_private *dev_priv = dev->dev_private;
15021         enum pipe pipe;
15022         struct intel_crtc *crtc;
15023         struct intel_encoder *encoder;
15024         struct intel_connector *connector;
15025         int i;
15026
15027         for_each_intel_crtc(dev, crtc) {
15028                 struct drm_plane *primary = crtc->base.primary;
15029                 struct intel_plane_state *plane_state;
15030
15031                 memset(crtc->config, 0, sizeof(*crtc->config));
15032
15033                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15034
15035                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15036                                                                  crtc->config);
15037
15038                 crtc->base.state->enable = crtc->active;
15039                 crtc->base.enabled = crtc->active;
15040
15041                 plane_state = to_intel_plane_state(primary->state);
15042                 plane_state->visible = primary_get_hw_state(crtc);
15043
15044                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15045                               crtc->base.base.id,
15046                               crtc->active ? "enabled" : "disabled");
15047         }
15048
15049         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15050                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15051
15052                 pll->on = pll->get_hw_state(dev_priv, pll,
15053                                             &pll->config.hw_state);
15054                 pll->active = 0;
15055                 pll->config.crtc_mask = 0;
15056                 for_each_intel_crtc(dev, crtc) {
15057                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15058                                 pll->active++;
15059                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15060                         }
15061                 }
15062
15063                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15064                               pll->name, pll->config.crtc_mask, pll->on);
15065
15066                 if (pll->config.crtc_mask)
15067                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15068         }
15069
15070         for_each_intel_encoder(dev, encoder) {
15071                 pipe = 0;
15072
15073                 if (encoder->get_hw_state(encoder, &pipe)) {
15074                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15075                         encoder->base.crtc = &crtc->base;
15076                         encoder->get_config(encoder, crtc->config);
15077                 } else {
15078                         encoder->base.crtc = NULL;
15079                 }
15080
15081                 encoder->connectors_active = false;
15082                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15083                               encoder->base.base.id,
15084                               encoder->base.name,
15085                               encoder->base.crtc ? "enabled" : "disabled",
15086                               pipe_name(pipe));
15087         }
15088
15089         for_each_intel_connector(dev, connector) {
15090                 if (connector->get_hw_state(connector)) {
15091                         connector->base.dpms = DRM_MODE_DPMS_ON;
15092                         connector->encoder->connectors_active = true;
15093                         connector->base.encoder = &connector->encoder->base;
15094                 } else {
15095                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15096                         connector->base.encoder = NULL;
15097                 }
15098                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15099                               connector->base.base.id,
15100                               connector->base.name,
15101                               connector->base.encoder ? "enabled" : "disabled");
15102         }
15103 }
15104
15105 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15106  * and i915 state tracking structures. */
15107 void intel_modeset_setup_hw_state(struct drm_device *dev,
15108                                   bool force_restore)
15109 {
15110         struct drm_i915_private *dev_priv = dev->dev_private;
15111         enum pipe pipe;
15112         struct intel_crtc *crtc;
15113         struct intel_encoder *encoder;
15114         int i;
15115
15116         intel_modeset_readout_hw_state(dev);
15117
15118         /*
15119          * Now that we have the config, copy it to each CRTC struct
15120          * Note that this could go away if we move to using crtc_config
15121          * checking everywhere.
15122          */
15123         for_each_intel_crtc(dev, crtc) {
15124                 if (crtc->active && i915.fastboot) {
15125                         intel_mode_from_pipe_config(&crtc->base.mode,
15126                                                     crtc->config);
15127                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15128                                       crtc->base.base.id);
15129                         drm_mode_debug_printmodeline(&crtc->base.mode);
15130                 }
15131         }
15132
15133         /* HW state is read out, now we need to sanitize this mess. */
15134         for_each_intel_encoder(dev, encoder) {
15135                 intel_sanitize_encoder(encoder);
15136         }
15137
15138         for_each_pipe(dev_priv, pipe) {
15139                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15140                 intel_sanitize_crtc(crtc);
15141                 intel_dump_pipe_config(crtc, crtc->config,
15142                                        "[setup_hw_state]");
15143         }
15144
15145         intel_modeset_update_connector_atomic_state(dev);
15146
15147         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15148                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15149
15150                 if (!pll->on || pll->active)
15151                         continue;
15152
15153                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15154
15155                 pll->disable(dev_priv, pll);
15156                 pll->on = false;
15157         }
15158
15159         if (IS_GEN9(dev))
15160                 skl_wm_get_hw_state(dev);
15161         else if (HAS_PCH_SPLIT(dev))
15162                 ilk_wm_get_hw_state(dev);
15163
15164         if (force_restore) {
15165                 i915_redisable_vga(dev);
15166
15167                 /*
15168                  * We need to use raw interfaces for restoring state to avoid
15169                  * checking (bogus) intermediate states.
15170                  */
15171                 for_each_pipe(dev_priv, pipe) {
15172                         struct drm_crtc *crtc =
15173                                 dev_priv->pipe_to_crtc_mapping[pipe];
15174
15175                         intel_crtc_restore_mode(crtc);
15176                 }
15177         } else {
15178                 intel_modeset_update_staged_output_state(dev);
15179         }
15180
15181         intel_modeset_check_state(dev);
15182 }
15183
15184 void intel_modeset_gem_init(struct drm_device *dev)
15185 {
15186         struct drm_i915_private *dev_priv = dev->dev_private;
15187         struct drm_crtc *c;
15188         struct drm_i915_gem_object *obj;
15189         int ret;
15190
15191         mutex_lock(&dev->struct_mutex);
15192         intel_init_gt_powersave(dev);
15193         mutex_unlock(&dev->struct_mutex);
15194
15195         /*
15196          * There may be no VBT; and if the BIOS enabled SSC we can
15197          * just keep using it to avoid unnecessary flicker.  Whereas if the
15198          * BIOS isn't using it, don't assume it will work even if the VBT
15199          * indicates as much.
15200          */
15201         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15202                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15203                                                 DREF_SSC1_ENABLE);
15204
15205         intel_modeset_init_hw(dev);
15206
15207         intel_setup_overlay(dev);
15208
15209         /*
15210          * Make sure any fbs we allocated at startup are properly
15211          * pinned & fenced.  When we do the allocation it's too early
15212          * for this.
15213          */
15214         for_each_crtc(dev, c) {
15215                 obj = intel_fb_obj(c->primary->fb);
15216                 if (obj == NULL)
15217                         continue;
15218
15219                 mutex_lock(&dev->struct_mutex);
15220                 ret = intel_pin_and_fence_fb_obj(c->primary,
15221                                                  c->primary->fb,
15222                                                  c->primary->state,
15223                                                  NULL);
15224                 mutex_unlock(&dev->struct_mutex);
15225                 if (ret) {
15226                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15227                                   to_intel_crtc(c)->pipe);
15228                         drm_framebuffer_unreference(c->primary->fb);
15229                         c->primary->fb = NULL;
15230                         update_state_fb(c->primary);
15231                 }
15232         }
15233
15234         intel_backlight_register(dev);
15235 }
15236
15237 void intel_connector_unregister(struct intel_connector *intel_connector)
15238 {
15239         struct drm_connector *connector = &intel_connector->base;
15240
15241         intel_panel_destroy_backlight(connector);
15242         drm_connector_unregister(connector);
15243 }
15244
15245 void intel_modeset_cleanup(struct drm_device *dev)
15246 {
15247         struct drm_i915_private *dev_priv = dev->dev_private;
15248         struct drm_connector *connector;
15249
15250         intel_disable_gt_powersave(dev);
15251
15252         intel_backlight_unregister(dev);
15253
15254         /*
15255          * Interrupts and polling as the first thing to avoid creating havoc.
15256          * Too much stuff here (turning of connectors, ...) would
15257          * experience fancy races otherwise.
15258          */
15259         intel_irq_uninstall(dev_priv);
15260
15261         /*
15262          * Due to the hpd irq storm handling the hotplug work can re-arm the
15263          * poll handlers. Hence disable polling after hpd handling is shut down.
15264          */
15265         drm_kms_helper_poll_fini(dev);
15266
15267         mutex_lock(&dev->struct_mutex);
15268
15269         intel_unregister_dsm_handler();
15270
15271         intel_fbc_disable(dev);
15272
15273         mutex_unlock(&dev->struct_mutex);
15274
15275         /* flush any delayed tasks or pending work */
15276         flush_scheduled_work();
15277
15278         /* destroy the backlight and sysfs files before encoders/connectors */
15279         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15280                 struct intel_connector *intel_connector;
15281
15282                 intel_connector = to_intel_connector(connector);
15283                 intel_connector->unregister(intel_connector);
15284         }
15285
15286         drm_mode_config_cleanup(dev);
15287
15288         intel_cleanup_overlay(dev);
15289
15290         mutex_lock(&dev->struct_mutex);
15291         intel_cleanup_gt_powersave(dev);
15292         mutex_unlock(&dev->struct_mutex);
15293 }
15294
15295 /*
15296  * Return which encoder is currently attached for connector.
15297  */
15298 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15299 {
15300         return &intel_attached_encoder(connector)->base;
15301 }
15302
15303 void intel_connector_attach_encoder(struct intel_connector *connector,
15304                                     struct intel_encoder *encoder)
15305 {
15306         connector->encoder = encoder;
15307         drm_mode_connector_attach_encoder(&connector->base,
15308                                           &encoder->base);
15309 }
15310
15311 /*
15312  * set vga decode state - true == enable VGA decode
15313  */
15314 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15315 {
15316         struct drm_i915_private *dev_priv = dev->dev_private;
15317         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15318         u16 gmch_ctrl;
15319
15320         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15321                 DRM_ERROR("failed to read control word\n");
15322                 return -EIO;
15323         }
15324
15325         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15326                 return 0;
15327
15328         if (state)
15329                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15330         else
15331                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15332
15333         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15334                 DRM_ERROR("failed to write control word\n");
15335                 return -EIO;
15336         }
15337
15338         return 0;
15339 }
15340
15341 struct intel_display_error_state {
15342
15343         u32 power_well_driver;
15344
15345         int num_transcoders;
15346
15347         struct intel_cursor_error_state {
15348                 u32 control;
15349                 u32 position;
15350                 u32 base;
15351                 u32 size;
15352         } cursor[I915_MAX_PIPES];
15353
15354         struct intel_pipe_error_state {
15355                 bool power_domain_on;
15356                 u32 source;
15357                 u32 stat;
15358         } pipe[I915_MAX_PIPES];
15359
15360         struct intel_plane_error_state {
15361                 u32 control;
15362                 u32 stride;
15363                 u32 size;
15364                 u32 pos;
15365                 u32 addr;
15366                 u32 surface;
15367                 u32 tile_offset;
15368         } plane[I915_MAX_PIPES];
15369
15370         struct intel_transcoder_error_state {
15371                 bool power_domain_on;
15372                 enum transcoder cpu_transcoder;
15373
15374                 u32 conf;
15375
15376                 u32 htotal;
15377                 u32 hblank;
15378                 u32 hsync;
15379                 u32 vtotal;
15380                 u32 vblank;
15381                 u32 vsync;
15382         } transcoder[4];
15383 };
15384
15385 struct intel_display_error_state *
15386 intel_display_capture_error_state(struct drm_device *dev)
15387 {
15388         struct drm_i915_private *dev_priv = dev->dev_private;
15389         struct intel_display_error_state *error;
15390         int transcoders[] = {
15391                 TRANSCODER_A,
15392                 TRANSCODER_B,
15393                 TRANSCODER_C,
15394                 TRANSCODER_EDP,
15395         };
15396         int i;
15397
15398         if (INTEL_INFO(dev)->num_pipes == 0)
15399                 return NULL;
15400
15401         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15402         if (error == NULL)
15403                 return NULL;
15404
15405         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15406                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15407
15408         for_each_pipe(dev_priv, i) {
15409                 error->pipe[i].power_domain_on =
15410                         __intel_display_power_is_enabled(dev_priv,
15411                                                          POWER_DOMAIN_PIPE(i));
15412                 if (!error->pipe[i].power_domain_on)
15413                         continue;
15414
15415                 error->cursor[i].control = I915_READ(CURCNTR(i));
15416                 error->cursor[i].position = I915_READ(CURPOS(i));
15417                 error->cursor[i].base = I915_READ(CURBASE(i));
15418
15419                 error->plane[i].control = I915_READ(DSPCNTR(i));
15420                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15421                 if (INTEL_INFO(dev)->gen <= 3) {
15422                         error->plane[i].size = I915_READ(DSPSIZE(i));
15423                         error->plane[i].pos = I915_READ(DSPPOS(i));
15424                 }
15425                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15426                         error->plane[i].addr = I915_READ(DSPADDR(i));
15427                 if (INTEL_INFO(dev)->gen >= 4) {
15428                         error->plane[i].surface = I915_READ(DSPSURF(i));
15429                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15430                 }
15431
15432                 error->pipe[i].source = I915_READ(PIPESRC(i));
15433
15434                 if (HAS_GMCH_DISPLAY(dev))
15435                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15436         }
15437
15438         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15439         if (HAS_DDI(dev_priv->dev))
15440                 error->num_transcoders++; /* Account for eDP. */
15441
15442         for (i = 0; i < error->num_transcoders; i++) {
15443                 enum transcoder cpu_transcoder = transcoders[i];
15444
15445                 error->transcoder[i].power_domain_on =
15446                         __intel_display_power_is_enabled(dev_priv,
15447                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15448                 if (!error->transcoder[i].power_domain_on)
15449                         continue;
15450
15451                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15452
15453                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15454                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15455                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15456                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15457                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15458                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15459                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15460         }
15461
15462         return error;
15463 }
15464
15465 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15466
15467 void
15468 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15469                                 struct drm_device *dev,
15470                                 struct intel_display_error_state *error)
15471 {
15472         struct drm_i915_private *dev_priv = dev->dev_private;
15473         int i;
15474
15475         if (!error)
15476                 return;
15477
15478         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15479         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15480                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15481                            error->power_well_driver);
15482         for_each_pipe(dev_priv, i) {
15483                 err_printf(m, "Pipe [%d]:\n", i);
15484                 err_printf(m, "  Power: %s\n",
15485                            error->pipe[i].power_domain_on ? "on" : "off");
15486                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15487                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15488
15489                 err_printf(m, "Plane [%d]:\n", i);
15490                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15491                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15492                 if (INTEL_INFO(dev)->gen <= 3) {
15493                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15494                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15495                 }
15496                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15497                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15498                 if (INTEL_INFO(dev)->gen >= 4) {
15499                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15500                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15501                 }
15502
15503                 err_printf(m, "Cursor [%d]:\n", i);
15504                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15505                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15506                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15507         }
15508
15509         for (i = 0; i < error->num_transcoders; i++) {
15510                 err_printf(m, "CPU transcoder: %c\n",
15511                            transcoder_name(error->transcoder[i].cpu_transcoder));
15512                 err_printf(m, "  Power: %s\n",
15513                            error->transcoder[i].power_domain_on ? "on" : "off");
15514                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15515                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15516                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15517                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15518                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15519                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15520                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15521         }
15522 }
15523
15524 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15525 {
15526         struct intel_crtc *crtc;
15527
15528         for_each_intel_crtc(dev, crtc) {
15529                 struct intel_unpin_work *work;
15530
15531                 spin_lock_irq(&dev->event_lock);
15532
15533                 work = crtc->unpin_work;
15534
15535                 if (work && work->event &&
15536                     work->event->base.file_priv == file) {
15537                         kfree(work->event);
15538                         work->event = NULL;
15539                 }
15540
15541                 spin_unlock_irq(&dev->event_lock);
15542         }
15543 }